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 1.1 Rejected energy as waste heat during primary power generation processes. 

Pie charts created based on estimated US energy consumption from primary 

sources of energy in all sectors including industrial, residential and transport 

sectors. Recreated based on updated data released in March 2020 [3]. 

1 

1.2 Thermoelectric efficiency of TE materials, including some recent 

nanomaterials. (a) ZT measurements for thermoelectric materials from 1940 

[19]. (b) Recent novel thermoelectric materials and their active working 

temperatures [29]. 

3 

1.3 

 

Carnot efficiencies vs ZT measurements. ZT = 2 was the minimum target to 

approach the 40% Carnot efficiency [19]. Cold junction is kept at room 

temperature (300 K). 

4 

1.4 Schematic of hierarchically nanostructured material with pores (blue 

bordered circles), inclusions (red filled circles) and nanocrystalline grain 

boundaries (black lines). The temperature gradient from hot (TH) to cold (TC) 

sides is indicated by gradient coloring (orange to green, respectively). 

Phonons at higher temperatures have shorter wavelengths, λ (or higher 

frequencies, ω) [32].  

5 

1.5 Hierarchically nanostructured material with hierarchical inclusions at the 

atomic scale, the nanoscale, and the mesoscale in the PbTe–SrTe system [5].  

6 

1.6 Nanostructured Si-based material with porous nanomesh thin film. (a) SEM 

image with nanometric pore sizes indicated. (b) AFM image of the same 

material gives its topography. (c) KPM image gives the surface potential for 

the same material. Uniform contrast indicates homogeneity in the surface 

potential of the film [33]. This experimental result is given by Taborda et al. 

in their work [33]. 

6 

2.1 Longitudinal and transverse waves in crystals. (a) Schematic of a 

monoatomic chain with point masses of mass = M representing atoms in the 

chain and “springs” with force constant ‘C’ representing the bonding 

potential between atoms. (b) Longitudinal wave in monoatomic chain with 

atoms moving in the direction of wave propagation (black-solid arrows). 

Each atom (solid red circle) is displaced in the positive x-direction 

(transparent red circle). (c) Transverse wave with atoms moving from their 

equilibrium positions (solid red circles) perpendicularly along the y-axis 

(transparent circles) respectively. (d) Transverse waves in crystal planes 

(blue-dashed lines). Displacement of atoms for respective planes (s-1, s, s+1) 

perpendicular to the direction of wave propagation are indicated by black-

solid lines (us-1, us, us+1), respectively. (e) Longitudinal wave in crystal planes 

with atoms moving in the direction of propagation (black-solid arrows). Each 

atom (solid red circle) is displaced in the positive x-direction (transparent red 

circle) leading to the displacement of the planes (blue-dashed lines). The 

distance (spacing) between the planes is indicated by ‘a’. The positive x and 

y directions are indicated. Figures recreated from Ref. [63]. 

 

13 



II 

 

2.2 Comparing monoatomic and diatomic crystals. (a) Schematic of a one-

dimensional monoatomic chain with point masses of mass = M representing 

the atoms in the chain. There is one atom per unit cell (solid red circle) 

displaced in the positive x-direction by displacement us (transparent red 

circle). (b) Schematic of a diatomic chain with point masses M1 (red) and M2 

(blue) representing the two atoms per unit cell. Each atom (solid circle) is 

displaced in the positive x-direction (transparent circle) by displacement us 

and vs for masses M1 (red) and M2 (blue) respectively. 

15 

2.3 Dispersion relation ω(q) in the first Brillouin zone. At the center of the first 

Brillouin zone Eq. 2.13 gives ω(q) = ω(0) = 0.   

17 

2.4 Dispersion relation ω(q) experimentally obtained for silicon [67] for 

longitudinal acoustic (LA), longitudinal optical (LO), transverse acoustic 

(TA) and transverse optical (TO) modes.  

21 

2.5 The fit for the dispersion relation ω obtained as in Ref. [85] for longitudinal 

acoustic (LA, blue lines) and transverse acoustic waves (TA, red lines). 

25 

2.6 The group velocity vg obtained as in Ref. [85] for longitudinal acoustic (LA, 

blue lines) and transverse acoustic waves (TA, red lines).  

25 

2.7 Normal and Umklapp scattering processes. Solid arrows indicate the phonon 

momenta before scattering (green arrows) and after scattering (red arrows).  

28 

3.1 Approaches to phonon transport simulations [101-105]. These include 

Molecular Dynamics or MD methods, NEGF (Non-Equilibrium Green’s 

Functions) and the Boltzmann transport Equation (BTE). The Monte Carlo 

approach is a method to solve the BTE and is used extensively in this Thesis. 

This is described in detail in Section 3.2. 

32 

3.2 Features of Monte Carlo simulations in a domain of length Lx = 1000 nm and 

width Ly = 500 nm. Domain coloring indicates local device temperature (in 

K), corresponding to the temperature color map. Possible phonon trajectories 

are given by blue and red lines. Blue-solid lines indicate incident phonon 

trajectories. These can be initialized from either the left (hot) or right (cold) 

boundary.  Blue-dashed lines indicate possible phonon trajectory angles, θ. 

Red lines indicate trajectories of scattered phonons after interaction with 

porous (blue circles) or nanocrystalline (black lines) geometries. Red-solid 

lines indicate specular scattering, where incident angle (θi) = reflected angle 

(θr). Red-dashed lines indicate diffuse scattering, where θr is randomized.      

39 

3.3 Top view of the studied simulation domain. (a) Coloring indicates established 

thermal gradients when the left and right contacts are set to TH = 310 K 

(yellow) and TC = 290 K (green). Dashed-lines indicate the phonon path traced 

through the simulation domain (pristine silicon channel). Direction of net 

phonon flux Φ is indicated above. The domain size is fixed to length Lx = 

1000 nm and width Ly = 500 nm. (b) The temperature gradient established for 

5 million phonons (1 point for every 1 nm in Lx). 

46 

3.4 Validation of the single-phonon Monte Carlo simulator (blue line) for thermal 

conductivity (κ) versus temperature for bulk Si. Simulation works (green 

lines) [16, 83, 89, 106, 116, 181, 182] and experimental works (red lines) 

[88, 96, 181, 183]are shown. The inset shows a close up of the temperature 

range between 250 K and 350 K. The simulated results are in close agreement 

to other literature results. Adopted from Chakraborty et al.[60]. 
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3.5 Phonon scattering in nanocrystalline structures. (a) Nanocrystalline (NC) 

materials with changing grain dimension (<d>) and length Lx in the transport 

direction. (b) Schematic for grain scattering indicating the initial angle of the 

phonon, θGB, from the normal (dashed line), grain boundaries (black lines), 

initial path of the phonon (blue line) and probable paths of the phonon after 

scattering (red-dashed lines and green-dashed transmitted line). Specular 

reflection (red-solid lines) and diffusive reflection (red-dashed lines) are also 

indicated. Transmission is dependent on grain boundary roughness as well as 

phonon wavevector q. Transmission probability is given by Eq. 3.13. 

50 

3.6 Validation of the Monte Carlo phonon transport simulator for nanocrystalline 

materials through comparisons with various simulation results (green lines) 

[65, 96, 97, 184, 185], and experimental results (red lines) [96, 98, 116, 185-

187] for silicon available in the literature, are shown. Our simulation results 

showing the thermal conductivity for silicon as the grain size is varied from 

a grain dimension <d> of 1000 nm to 50 nm are shown by the blue line. Error 

bars represent standard deviations for results over 50 simulations Adopted 

from Chakraborty et al. [59]. 

51 

3.7 Phonon scattering in nanoporous structures. (a) Ordered nanopores within the 

pristine channel material in a rectangular arrangement. (b) Random nanopores 

within the pristine channel material (c) Schematic of scattering mechanism 

for pore scattering, indicating the pore boundary, the initial angle of the 

phonon θin, and potential new angle of propagation θref depending on 

specularity parameter p. Probable paths of the phonon after scattering for both 

diffusive (red-dashed lines) and specular (red-solid line) are depicted. 

52 

3.8 Validation of the simulator for nanoporous Si materials. Various simulation 

results are shown (green lines) [86, 89, 152, 188, 189], and compared against 

experimental results (red lines) [41, 96, 190, 191]. Our simulation results for 

the thermal conductivity of silicon as the percentage porosity ( )is varied up 

to 50%. Simulations of ordered porous structures are indicated by the blue-

solid line, and of disordered porous structures the blue-dashed line. Adopted 

from Chakraborty et al. [59]. 

53 

4.1 Examples of the nanostructured geometries considered. The coloring 

indicates the established thermal gradients when the left and right contacts 

are set to TH = 310 K (yellow) and TC = 290 K (green). (a) Pristine silicon 

channel. (b) Nanocrystalline (NC) channel. (c) Ordered nanopores (NP) 

within the channel material of ~20% porosity in a rectangular arrangement. 

(d) Combined NC and disordered NP material. (e) Schematic of scattering 

mechanism for pore scattering, indicating the pore boundary, the initial angle 

of the phonon θin, and potential new angle of propagation θref depending on 

specularity parameter p. Probable paths of the phonon after scattering for both 

diffusive (red-dashed lines) and specular (red-solid line) are depicted. (f) 

Schematic of the scattering mechanism for grain boundary scattering, 

indicating the initial angle of the phonon θGB from the normal (dashed line), 

grain boundaries (black lines), initial path of the phonon (blue line) and 

probable paths of the phonon after scattering (red-dashed lines and green-

dashed transmitted line). Adopted from Chakraborty et al. [58]. 
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4.2 The effects of grain size and grain boundary roughness (Δrms) on the thermal 

conductivity of the silicon channel. Grain size is varied from an average grain 

dimension <d> of 1000 nm down to 50 nm. The structure geometry insets 

labelled ‘1’ to ‘6’ give typical examples of geometries from <d> = 50 nm to 

225 nm, respectively. We simulate three different values of grain boundary 

roughness, Δrms = 0.25 nm (red line), 1 nm (blue line) and 2 nm (black line). 

Each point is an average of 50 simulations. A sharp drop in thermal 

conductivity is observed below <d> ~ 140 nm (structure sub-figure and point 

‘4’). Inset: Some available experimental results [96, 98, 185, 186, 189] are 

compared to the Δrms = 1 nm (blue line). Adopted from [58]. 
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4.3 The thermal conductivity versus porosity ( ) for two geometry cases - 

ordered case (solid lines) and random case (dashed lines). Three different 

values for boundary specularity are considered: p = 1, totally specular 

boundary scattering (blue lines); p = 0.5 (green lines); and p = 0.1, almost 

diffusive boundary scattering (red lines). The inset depicts the percentage 

reduction in thermal conductivity for the p = 0.1 (red line), random porosity 

case compared to the ordered case. The geometry structures of the simulated 

geometries for ordered and random arrangement cases for 5%, 10 % and 15 

% porosity are shown on top of the figure. In all cases the domain size is fixed 

to length Lx = 1000 nm and width Ly = 500 nm. Adopted from [58]. 

61 

4.4 The thermal conductivity versus porosity ( ) for ordered pore structures, 

randomized pore structures, and polydispersed geometries with randomized 

pore positions and diameters. In the first two cases (red and black solid lines), 

the diameter is fixed at D = 50 nm. In all cases the specularity for all 

boundaries is fixed at p = 0.1. Adopted from [58]. 

63 

4.5 Monte Carlo simulations showing the combined effects of grain size and 

porosity ( ) in both the ordered pores case (solid lines) and random pores 

case (dashed line) versus grain size <d>. The thermal conductivity at for 

porosities   = 0%, 5%, 10% and 15% are shown by the blue, magenta, light-

blue, and red lines respectively. The effect of combined nanocrystalline and 

nanoporous material with random pore positions and sizes is depicted by the 

red-dashed line. Examples of typical geometries simulated for the case of 5% 

porosity, for both ordered and random pore arrangements, are shown above 

the figure. Adopted from [58]. 

64 

4.6 Monte Carlo simulation results compared to analytical models. (a) Thermal 

conductivity versus grain size for commonly employed analytical models for 

nanocrystalline geometries compared to the Monte Carlo results of this work 

(blue line). The grain size is varied from an average of <d> = 1000 nm down 

to 50 nm with a roughness Δrms = 1 nm. (b) Thermal conductivity versus 

porosity for the commonly employed analytical porous material models 

compared to the Monte Carlo results of this work (blue line). The pore 

boundary specularity is fixed at p = 0.1. In both cases the domain top/bottom 

roughness specularity is set to p = 0.1. Adopted from [58]. 

67 

4.7 Extraction of the variation in distances between pores,  , and variation in 

porosity,  , in the nanoporous materials examined. Geometries for (a) 

ordered and (b) randomized (disordered) nanoporous geometries with   = 10 

% are shown on top. The distribution of distances between pores, averaged 
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every ls = 100 nm (depicted by the red-dotted lines), is shown in (c) and (d), 

respectively. The distribution of pore distances is well defined and constant 

in the ordered case, but deviates in the randomized pore geometry. The 

distribution of porosity is shown in (e) and (f), respectively. In this case the 

distribution can be evaluated with higher resolution along the length of the 

material. In (e) the porosity averages 10 % in every ls = 100 nm domain. In 

(f) the porosity deviates from the 10 % average following an inverse trend 

compared to the distance between the pores shown in (d). The red shaded 

portions of the distance profile in (d) and the porosity profile in (f) represent 

the regions of increased thermal resistance. Adopted from [58]. 

4.8 Thermal conductivity versus porosity for the analytical models of randomized 

pore geometries, compared to the Monte Carlo simulation results of this work 

(blue line). Pore boundary specularity in Monte Carlo is fixed at p = 0.1. The 

model of Tarkhanyan et al. [204] as described by Eq. 4.8 is shown by the 

dashed-purple line. Equation 4.11 (black line) incorporates a deviation   

in the average distance. There is good agreement with Monte Carlo results for 

porosities beyond   = 20%. To improve the model, Eq. 4.13 (red line) 

incorporates a weight on the deviation Δδw, increasing the importance of 

regions of higher porosity. As a reference, Eq. 4.14 (green line), incorporates 

a further weighted deviation in porosity Δ w, which, however, slightly 

underestimates the Monte Carlo simulations. Adopted from [58]. 
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4.9 Thermal conductivity versus porosity for the analytical models of randomized 

pore geometries compared to the Monte Carlo simulation results in this work 

(blue line). Pore boundary specularity in Monte Carlo is fixed at p = 0.1. The 

model of Gesele et al. [188] as described by Eq. 4.6 is shown by the green-

dashed line. Equation 4.15 (black line) incorporates a deviation Δ  in the 

average porosity. There is good agreement with the Monte Carlo results for 

porosities beyond   = 30%. To improve the model, we incorporate a weight 

on the porosity Δ w (Eq. 4.16) increasing the importance of regions of higher 

porosity (red line). Adopted from [58]. 

75 

4.10 Comparison between the full Monte Carlo (MC) simulated results in 

structures with grains and pores (blue bars) and: i) MC simulation results of 

grains alone and pores alone, but combined through Matthiessen’s rule (green 

bars), ii) results given by the porous material model introduced in Eq. 4.13 

(Δδw model) combined with the nanocrystalline model of Eq. 4.4 through 

Matthiessen’s rule (purple bars), and iv) results given by model introduced in 

Eq. 4.16, (Δ w model) combined with the nanocrystalline model of Eq. 4.4 

through Matthiessen’s rule (red bars). (a) Ordered pore geometries. For the 

MC simulations, 50 realizations with grain boundaries of <d> = 225 nm are 

averaged, and pores of a fixed diameter D = 50 nm. (b) Randomized pore 

geometries. The pore diameters vary from 10 nm to 50 nm. The percentage 

numbers indicate the variation of each method from the full MC results (blue 

bars). Porosities   = 5%, 10 % and 15% are shown. Adopted from [58]. 
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5.1 Examples of the nanostructured geometries considered at high temperatures. 

(a) Nanocrystalline (NC) materials with changing grain dimension (<d>). 

Here <d> = 100 nm, black lines represent NC grain edges. (b) 

Nanocomposite material (NC+NP) with given grain dimension (<d>) and 
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porosity ( ). Here   = 5%, for a random polydispersed pore arrangement, 

with pore diameter of uniformly distributed between 10 nm - 50 nm and 

random pore position. (c) Schematic for grain scattering indicating the initial 

angle of the phonon, θGB, from the normal (dashed line), grain boundaries 

(black lines), initial path of the phonon (blue line) and probable paths of the 

phonon after scattering (red-dashed lines and green-dashed transmitted line). 

Transmission is dependent on grain boundary roughness as well as phonon 

wavevector q. Transmission probability is given by Eq. 3.13. (d) Schematic 

for pore scattering indicating the pore boundary, the initial angle of the 

phonon θin, and new angle of propagation after reflection, θref, depending on 

specularity parameter p. Probable paths of the phonon after scattering for both 

diffusive (red-dashed lines) and specular (red-solid line) are depicted. 

Transmission (t) through pores is always zero. Adopted from [60]. 

5.2 High temperature results for nanocrystalline structures. (a) Effect on κ as 

temperature increases from 300 K to 900 K, for the pristine case (blue line), 

nanocrystalline (NC) case with <d> = 100 nm (green line) and <d> = 50 nm 

(red line). A sharp reduction in κ of over 75% is observed at 300 K for the 

<d> = 100 nm case (green line). This drops further to more than 85% for 

temperatures over 800 K. The κ drop is greater in the <d> = 50 nm case (red 

line). A typical geometry for <d> = 100 nm case is given as an inset in Fig. 

(a). (b) The data in (a) normalized by the 300 K κ value of the pristine case 

(blue line). The effect of phonon boundary scattering is removed from all data 

after this normalization. (c) The data in (a) normalized by the pristine value 

(blue line) at every temperature. The effect of phonon-phonon scattering from 

all data is taken away due to this normalization. Adopted from [60]. 
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5.3 High temperature results for hierarchical structures. (a) Effect of hierarchical 

nanostructures on κ as temperature increases from 300 K to 900 K, for the 

pristine case (blue line), combined nanocrystalline and nanoporous (NC+NP) 

case with <d> = 100 nm (green line) with porosity   = 5 %, and <d> = 50 

nm (red line) with porosity   = 5 % . A reduction in κ of over 80% is observed 

at 300 K for the <d> = 100 nm case (green line) and more than 90% for 

temperatures over 800 K. The κ drop is greater in the <d> = 50 nm case (red 

line). A typical geometry for <d> = 50 nm with   = 5 % is shown in the inset 

of Fig. 5.3a. (b) The data in (a) normalized by the 300 K κ value of the pristine 

case (blue line). The effect of phonon boundary scattering is removed from 

all data after this normalization.  Dashed lines are the data of Fig. 5.2(b) as 

indicated. (c) The data in (a) normalized by the pristine value (blue line) at 

every temperature. The effect of phonon-phonon scattering from all data is 

taken away due to this normalization. Again, the dashed lines are the data of 

Fig. 5.2(c) for the NC cases of <d> = 100 nm (green-dashed line); <d> = 50 

nm (red-dashed line) alone. The legend of Fig. 5.3b applies one-to-one with 

the lines of Fig. 5.3c as well. At high temperatures there a further reduction 

in the normalized ratio observed due to pores. Adopted from [60]. 
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5.4 Separating effect of q dependence. (a) The effect of q-independent and q-

dependent scattering at grain boundaries compared to the pristine case. All 

values are normalized with respect to their value at 300K.  The effect of 

phonon boundary scattering is removed from all data after this normalization. 

(b) The data in (a) normalized by the pristine value (blue line) at every 

temperature. The effect of phonon-phonon scattering from all data is taken 
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away due to this normalization. (c) The data in (b) normalized to the q-

independent NC case at all temperatures. This shows the effect of the q-

dependence of the grain boundary scattering as the temperature increases. 

6.1 Schematic of the basis geometry simulated with porous region of length 𝐿1 

and pristine region of length 𝐿2. Individual properties are assigned for each 

region, including average phonon mean-free-path, (MFP) 𝜆 and average 

distance between pores (inter-pore distance) 𝑑. The total length of simulation 

domain is 𝐿𝑇. In all Monte Carlo simulations, we set 𝐿𝑇 = 1000 nm. The 

coloring indicates the established thermal gradients when the left and right 

contacts are set to TH = 310 K (yellow) and TC = 290 K (green), respectively, 

with the temperature profile given by blue dots (average of 5 million 

phonons). The green arrow above the schematic depicts “Forward” direction 

of heat flow from TH to TC.   

94 

6.2 Monte Carlo simulations showing the effect of porosity ( ) in the 

rectangular, ordered pores configuration on thermal conductivity, 𝜅 (left 

axis), and rectification, R (right axis). For each value of  , the 𝜅 in the 

‘Forward’ direction (𝜅F) is given by the red line, while the 𝜅 in the ‘Reverse’ 

direction (𝜅R) is given by the blue line and the rectification data is given by 

the purple line. The black line gives the results predicted by the model given 

by Eqs. 6.1, 6.5-6.6. Examples of typical geometries simulated for 6% and 

10% porosity are shown above the figure, as well as our definitions for 

‘Forward’ and ‘Reverse’ directions. All pore diameters are 50 nm. Error bars 

represent standard deviations of results. Adopted from [62]. 
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6.3 Monte Carlo simulations showing the effect of pore position, inter-pore 

distance compression and pore staggering on rectification (R on left axis). 

Four cases are examined, and the geometries simulated are given in the panel 

above the figure. These are i) the basis (rectangular) arrangement of pores 

(‘A’) with pore diameter D = 50 nm; ii) compressed arrangement (‘B’) which 

has the same configuration as ‘A’, but with halved inter-pore separation;  iii) 

staggered arrangement (‘C’) given by shifting pore positions of ‘A’ by 50 nm 

in the y-direction; iv) compressed + staggered arrangement of pores (‘D’) by 

reducing inter-pore distance to 12.5 nm in (iii). Pores are placed at 200 nm 

from the domain edge in the first (light-blue, 𝑥 = 200 nm) cases in all four 

arrangements ‘A’ – ‘D’. They are left-shifted by 100 nm and placed 100 nm 

from the domain edge in the second (dark-blue, 𝑥 = 100 nm) cases in all four 

arrangements. Adopted from [62]. 
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6.4 Normalized 𝜅 observed in the ‘Forward’ (red bars) and the ‘Reverse’ (blue 

bars) direction for each structures ‘A’–‘D’ of Fig. 3 (left axis). The 

rectification is shown by the black line in the right axis. (a) The pores are 

placed at 200 nm from the domain edge (𝑥 = 200 nm). (b) The pores are 

shifted by 100 nm and placed 100 nm from the domain edge (𝑥 = 100 nm). In 

each graph the 𝜅 is normalized to 𝜅PRISTINE. Adopted from [62]. 
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6.5 The dependence of thermal rectification on the exposed junction surface area 

and pore grading. Five cases are examined, and the geometries simulated are 

given above the bar chart. These are: i) the basis (rectangular) arrangement of 

pores (‘A’) with pore diameter D = 50 nm; ii) oblique arrangement (‘E’) 

where pores are arranged in a right-triangular fashion to give increased 

exposed surface area;  iii) staggered arrangement (‘C’); iv) triangular  
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arrangement (‘F’); v) graded (triangular) arrangement (‘G’) of pores by 

uniformly decreasing pore density in the x direction. Adopted from [62]. 

6.6 The rectification dependence on the construction of the triangular regions, 

and the hierarchical incorporation of smaller nanopores (D = 10 nm) in 

between the bigger ones (D = 50 nm). Four cases are examined, each for both 

rectangular geometries (dark-blue bars) and triangular geometries (green 

bars). The geometries simulated are shown in the panel above the figure. 

These are: i) the basis arrangement of pores (‘A’) for both rectangular and 

triangular configurations given by dark-blue bars or green bars, respectively. 

For all pores D = 50 nm, and inter pore distance d = 50 nm; ii) hierarchical 

arrangement (‘H’) by adding smaller pores in-between ‘A‘; iii) compressed 

arrangement (‘B’) with halved inter-pore separation d = 25 nm; iv) 

compressed + hierarchical arrangement of pores (‘I’) by reducing halving the 

original inter-pore distance. The result for arrangement ‘C’ from Fig. 3 is also 

included for comparison. All structures are placed 𝑥 = 100 nm from the edge 

of the device. Adopted from [62]. 

106 

7.1 Nanostructures examined with NEGF wave approach. (a) Schematics of 

typical geometries studied with length of 100 nm, width 10 nm and thickness 

1 nm for two pore diameters of D = 2 nm and D = 6 nm. The neck, n, is 

measured, as indicated, as the widest distance between the edge of the pore 

and the nearest geometry boundary. (b) The NEGF transmission vs the 

energy, ℏω. Transmission for the pristine case (TP, NEGF) is given by the black 

line. Transmission for nanostructured porous cases (TN, NEGF) are given for D 

= 1 nm (purple line), D = 2 nm (blue line), D = 3 nm (dark-green line), D = 4 

nm (light-green line), D = 5 nm (orange line), D = 6 nm (red dots), 

respectively. (c) The typical phonon spectrum for a [100] Si nanowire of 10 

nm width and 1 nm thickness. The transmission of the pristine channel (black 

line in Fig. 7.1b) is essentially a count of the number of modes at each energy 

of Fig. 1c. (d) The contribution of each phonon state to the total ballistic 

thermal conductance at room temperature calculated using Eq. 7.8 (without 

Umklapp scattering). Red and blue colors indicate the largest contribution and 

the smallest contribution, respectively (colormap). Adopted from [61]. 
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7.2 NEGF fractional transmission FNEGF versus energy ℏω given by Eq. 7.11, for 

D = 1 nm (purple dots), D = 2 nm (blue dots), D = 3 nm (dark-green dots), D 

= 4 nm (light-green dots), D = 5 nm (orange dots), D = 6 nm (red dots), 

respectively. Monte Carlo fractional transmission FMC given by Eq. 7.10, for 

the same structures. The pore diameters (D) and the corresponding neck to 

diameter (n/D) ratios are provided on the right axis. Adopted from [61]. 
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7.3 Monte Carlo fractional transmission FMC given by Eq. 7.10, for D = 1 nm 

(purple line), D = 2 nm (blue line), D = 3 nm (dark-green line), D = 4 nm 

(light-green line), D = 5 nm (orange line), D = 6 nm (red line), respectively, 

versus neck size, n. Typical geometries simulated are depicted in the panel 

above (I – IV). The common n/D values across structures are indicated by 

dashed lines. Adopted from [61]. 
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7.4 Percentage variation of the FNEGF from the FMC values for D = 1 nm (purple 

dots), D = 2 nm (blue dots), D = 3 nm (dark-green dots), D = 4 nm (light-

green dots), D = 5 nm (orange dots), D = 6 nm (red dots), respectively, versus 

energy ℏω. Adopted from [61]. 
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7.5 Comparing wave and particle approaches. (a) Schematic of effective increase 

in D and (b) effective decrease in D. (c) NEGF fractional transmission for 

structures with n/D = 4.5, D = 1 nm (purple dots), and n/D = 0.33, D = 6 nm 

(red dots), respectively, versus energy ℏω. MC fractional transmission for the 

same structures are plotted by the solid lines. The dashed lines represent 

Monte Carlo ray-tracing for structures with a ± 15% variation on their n/D 

ratio. Adopted from [61]. 
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7.6 NEGF results averaged <TNEGF> over energy in a part of the spectrum up to 

5 meV (purple-dashed line), up to 15 meV (green-dashed line) and for the 

whole spectrum (red-dashed line) vs n/D. These limits are depicted in the 

bottom inset with lines of corresponding colors. Error bars give the standard 

deviation of TNEGF data. MC fractional transmission vs n/D (blue-solid line) 

is given for comparison. Schematics of some geometries simulated are 

depicted at the top left corner. Adopted from [61]. 
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7.7 NEGF fractional transmission for two-pore structure with pore separation l = 

0 nm (black circles), l = 5 nm (blue dots), l = 25 nm (red dots) versus energy. 

MC fractional transmission for the same structures is shown by the solid lines. 

Schematic of a typical structure simulated with D = 5 nm is given in the panel 

above. Adopted from [61]. 
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7.8 NEGF fractional transmission for two-pore structures with vertical separation 

d = 0 nm (black dots), d = 2 nm (blue dots), d = 3 nm (red dots) versus energy. 

MC fractional transmissions for the same structures are shown by the solid 

lines. A schematic of a typical structure simulated with D = 2 nm is given in 

the panel above. Adopted from [61]. 
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8.1 Effect of adding high 𝜅 nanoinclusions in low 𝜅 matrix. (a) Schematic of a 

nanoinclusion, with diameter, D. (b) Schematic of the DMM phonon 

scattering interaction with a nanoinclusion boundary. (c) NI density vs 

Normalized 𝜅n = 𝜅C/𝜅M for NIs with no DMM (blue line) and with DMM 

(purple line) for the case of an artificial matrix 𝜅M = 0.1× 𝜅Si, and NIs with 

 𝜅NI = 𝜅Si, and D = 80 nm. A typical geometry with configuration ‘C’ of NI 

density is seen as inset, with D = 80 nm (purple NIs). 
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8.2 NI density vs Normalized 𝜅n = 𝜅C/𝜅M for the case of an artificial matrix 𝜅M = 

0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si. K 𝜅n for D = 30 nm (red line), D = 44 nm 

(orange line), D = 60 nm (green line), D = 72 nm (light-blue line) and D = 80 

nm (purple line) are given for the DMM case. Typical geometries simulated 

are seen in the geometry panel above for D = 30 nm (red NIs), D = 60 nm 

(green NIs), D = 80 nm (purple NIs) cases, respectively.  

131 

8.3 NI Area vs NI Boundary length for the case of an artificial matrix 𝜅M = 

0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si are given for all NI diameters and 

configurations. Typical geometries simulated with configurations A - C are 

seen in the geometry panel above for D = 60 nm (green NIs). Inset gives the 

value of A/b ratio for the peak value of 𝜅 observed as diameter changes.  
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8.4 NI density vs Normalized 𝜅n = 𝜅C/𝜅M for the case of an artificial matrix 𝜅M = 

0.1× 𝜅Si, and NIs with  𝜅NI = 0.5× 𝜅Si are given for the MC with no DMM 

(blue line) and MC with DMM (red line) cases. Real-world experimental 

results from the literature are given for similar 𝜅NI/ 𝜅M ratios. 𝜅n is normalized 

to real world 𝜅M in each case, respectively. 
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Abstract 

Nanostructuring is considered a very promising direction for high performance 

thermoelectric materials, which can convert waste heat into useful energy. These 

materials can reduce dependence on fossil fuels and enhance thermal energy 

harvesting, with huge environmental and societal benefits. In this work we investigate 

thermal transport in nanostructures and study methods to reduce the thermal 

conductivity (which enhances thermoelectric efficiency). Using silicon as an example, 

we consider the combined presence of nanocrystallinity and nanopores, arranged 

under both ordered and disordered (randomized) positions and sizes by using a phonon 

transport simulator constructed as a part of this work. We show that nanocrystalline 

boundaries degrade the thermal conductivity more drastically when the average grain 

size becomes smaller than the material average phonon mean-free-path. Introduction 

of pores in a hierarchical fashion degrades the thermal conductivity even further. Its 

effect, however, is significantly more severe when the pore sizes and positions are 

randomized, as randomization results in regions of higher porosity along the phonon 

transport direction, which introduce significant thermal resistance. We show that this 

randomization, or disorder, acts as a large increase in the overall effective porosity.  

Using our simulations, we show that existing compact nanocrystalline and 

nanoporous theoretical models describe thermal conductivity accurately under 

uniform nanostructured conditions but overestimate it in disordered geometries. We 

propose extensions to these models that accurately predict the thermal conductivity of 

disordered nanoporous materials based solely on a few geometrical features. 

Additionally, we show that the new compact models introduced can be used within 

Matthiessen’s rule to combine scattering from different geometrical features within 

~10% accuracy. Looking at high temperature regimes, we show that the relative 

reduction in thermal conductivity is stronger at high temperatures in the presence of 

nanocrystallinity, a consequence of the wavevector-dependent nature of phonon 

scattering on the nanocrystalline grain domain boundaries. 

We next consider asymmetric nanoporous structures, and investigate the 

combined effects of porosity, inter-pore distance, and pore position on thermal 

rectification in nanoporous silicon. We define thermal rectification in terms of system 

mean-free-paths rather than non-linearity in temperature – as conventionally done. We 

show that systems: i) with denser, compressed pore arrangements (i.e. with smaller 

inter-pore distances), ii) with pores positioned closer to the device edge/contact, and 

iii) with pores in a triangular arrangement, can achieve rectification of over 55%. 

Introducing hierarchically smaller pores into existing porous geometries increases 

rectification even further. Importantly, for the structures we simulate, we show that 

sharp rectifying junctions, separating regions of long from short phonon mean-free-

paths are more beneficial than spreading the asymmetry throughout the material along 

the heat direction in a graded fashion.  

Lastly, comparing a full wave-based quantum mechanical Non-Equilibrium 

Green's Function (NEGF) method, and a particle-based classical ray-tracing approach, 

we investigate the qualitative differences in the wave and particle-based phonon 

transport at the vicinity of nanoscale features, indicating when simplified particle 

based approaches fail, and when not. Insight extracted from this work can be used to 

provide better and more complete understanding of phonon transport in nanomaterials.   
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AFM Atomic Force Microscopy 

BTE Boltzmann Transport Equation  

DOS Density Of States 

HT High Temperature (> 300 K) 

KPM Kelvin Probe Microscopy 

LA Longitudinal Acoustic 

LO Longitudinal Optical 

MC Monte Carlo 
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NEGF Non-Equilibrium Green’s Function 

NP Nanoporous (structures) 

NI Nanoinclusion (structures) 
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SEM Scanning Electron Microscopy 

SL Superlattice (structures) 

TA Transverse Acoustic  

TE Thermoelectric 

TO Transverse Optical  
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1. Introduction 

 

1.1 Background 

In the currently prevailing context of global warming and dwindling 

conventional non-renewable energy resources, there is an increased interest in 

environmentally friendly and renewable energy resources, including ambient heat. An 

incredibly large amount of heat is available everywhere, either naturally in the 

environment (e.g. solar or geothermal), or when we burn fossil fuels to generate 

energy. Around two thirds of all the energy is lost in the process as waste heat [1-5] 

(as seen in Fig. 1.1 below). Sources put this wasted heat at anywhere between 13 to 

15 TWh [5, 6]. Thermoelectric materials can convert this waste heat directly into 

useful electrical energy, which can vastly contribute to energy sustainability, fighting 

against energy scarcity and global warming. In addition, heat available in small 

amounts from our bodies and the surrounding environment can be used to operate 

smart devices and power the Internet of Things (IoT). Conversely, thermoelectric 

materials can also be used to convert electricity to heat for localized heating or cooling 

applications. Hence, understanding thermal transport overall is vital for improvements 

in energy harvesting, reducing global warming, battery-less operation of smart devices 

and enhanced heat management systems for novel advanced applications. 

 

Figure 1.1: Rejected energy as waste heat during primary power generation processes. 

Pie charts created based on estimated US energy consumption from primary sources 

of energy in all sectors including industrial, residential and transport sectors. 

Recreated based on updated data released in March 2020 [3].  
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Clear understanding of thermal transport improves the design of thermoelectric 

(TE) materials and devices. Novel applications include flexible, foldable TE materials, 

TE generators, wearable devices, thermal rectifiers, thermal management systems (for 

both accurate heating and cooling) and TE materials that can be used as paint to recoup 

energy from irregular surfaces in the environment [7-9]. Miniaturization, coupled with 

faster processing speeds, results in a very large quantity of heat being generated per 

unit volume in integrated circuits (i.e. VLSI devices) [10]. Research shows that ‘on-

chip power density’ has already exceeded that of a nuclear reactor at 100 W/cm2 [11]. 

Unmitigated localized overheating can lead to extensive damage, as seen in batteries 

[12, 13], battery powered vehicles, [14] and other devices like smartphones or laptops, 

catching fire or even exploding [15]. Thermal management and thermoelectric cooling 

are thus TE device applications actively being researched for targeted cooling of local 

hotspots inside integrated circuits. With no inherently moving parts they are easy to 

miniaturize and integrate on chip [10, 16] using nanostructuring. Novel materials are 

also being examined for applications in thermal rectification, thermal cloaking, 

phonon waveguides, phonovoltaics and organic TEs.  

Still, energy harvesting and thermal management remain the primary 

applications of TE materials, potentially able to promote energy sustainability and the 

reduction in the use of fossil fuels, with huge environmental and societal benefits. 

Unfortunately, conventional bulk TE materials – such as tellurides of antimony, of 

bismuth and of lead [17] (e.g. Sb2Te3, Bi2Te3, and PbTe [9]) were unable to match the 

requirements in the commercial space – mainly due to poor material efficiencies. 

Primarily discovered in the mid-20th century, the conversion efficiency of these bulk 

materials did not exceed 5% [9, 18, 19]. Thus, research slowed, and their applications 

have largely been restricted to niche applications like nuclear batteries [20], space 

exploration (e.g. the Curiosity Rover) and some forays into pacemakers – which were 

abandoned in the 1980s [9, 21]. In recent years, technology and materials have been 

rapidly moving towards miniaturization and added functionality. At the forefront of 

this evolution in technology and complete overhaul in processing power is 

nanotechnology – the study of materials and processes that exist at a billionth of a 

meter, leading to vast improvements in materials, sensors and devices across fields 

[12, 13, 22-27].  Recent studies in nanostructuring and the introduction of 

nanostructured TE materials have improved efficiencies manifold.  
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Figure 1.2: Thermoelectric efficiency of TE materials, including some recent 

nanomaterials. (a) ZT measurements for thermoelectric materials from 1940 [19]. (b) 

Recent novel thermoelectric materials and their active working temperatures [29]. 

 

The efficiency of a thermoelectric material can be determined by its 

dimensionless thermoelectric figure of merit, ZT, given as follows:  

 

2

ZT T
S


=      (1.1) 

where σ is the electrical conductivity, κ is the thermal conductivity, S is the Seebeck 

coefficient and T is the temperature. The numerator σS2 is also collectively known as 

the power factor, PF. The mid-20th century gave us TE materials such as Lead 

Telluride (PbTe) and Zinc Antimonide (ZnSb) with ZT values below 0.5 (see Fig. 

1.2a). A ZT = 3 or above is desirable to be competitive (efficiency wise) with 

conventional sources of energy (which operate at 40% Carnot efficiencies), as seen in 

Fig. 1.3.  (A detailed comparison of efficiency of TE power generation and that of 

other methods is given in Fig. A1 in Appendix A.) As can be seen from the Fig. 1.2 

and Fig. 1.3 bulk ZT values for these thermoelectric materials are much lower than 

what is required, and thus research stalled. In the later part of the 20th century and 

thereafter, it was shown that nanostructuring can dramatically reduce the κ, or increase 

the PF to enhance efficiencies. For nanostructured TEs, ZTs over 2 in multiple 

instances, [9, 29] and even up to 5 in one instance [30] have been reported. To properly 

harness and apply these materials it is necessary to understand heat and heat transport 

at nanoscale. Thus, this Thesis focuses on methods to reduce the thermal conductivity 

(κ) using nanostructuring to improve the efficiency of thermoelectric materials. 
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Figure 1.3: Carnot efficiencies vs ZT measurements. ZT = 2 was the minimum target 

to approach the 40% Carnot efficiency [19]. Cold junction is kept at room temperature 

(300 K).  

 

Phonons are fundamental to the understanding of heat transport at nanoscale. 

Much like photons for electromagnetic energy, phonons are the fundamental quasi-

particles for thermal energy. They have characteristic frequencies (ω), wavevectors 

(q) and wavelengths (λ), which determine the amount of thermal energy (heat) they 

carry. A phonon can be considered the physical particle representing mechanical 

vibration, [31] (analogous to the photon representing EM vibration). They are 

responsible for the transmission of everyday sound and heat. Importantly, phonons 

dictate the transport of heat and the change of temperature at nanometric length scales. 

In nanostructures with feature sizes that could vary from a few to up to hundreds of 

nanometers, heat and phonon transport behaviour is distinctly different than in bulk 

materials. Phonons carry heat through these materials and interact with other phonons, 

boundaries, pores, inclusions or other nanostructures (as shown in Fig. 1.4 below) 

which causes them to scatter and the heat flow is interrupted. As a result, materials 

with ultra-low thermal conductivities and enhanced thermoelectric performance can 

be realised.  
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Figure 1.4: Schematic of hierarchically nanostructured material with pores (blue 

bordered circles), inclusions (red filled circles) and nanocrystalline grain boundaries 

(black lines). The temperature gradient from hot (TH) to cold (TC) sides is indicated 

by gradient coloring (orange to green, respectively). Phonons at higher temperatures 

have shorter wavelengths, λ (or higher frequencies, ω) [32]. Phonons with different 

wavelengths and mean-free-paths are scattered across length-scales in hierarchical 

nanostructures drastically reducing thermal conductivity [32-34].  

 

Some of the lower thermal conductivities in nanostructured materials have 

been achieved in materials that include hierarchical nanostructuring [5, 33]. These are 

materials incorporating multiple types of nanostructures, where boundaries or defects 

are introduced at the atomic size, the nanoscale, and mesoscale (as shown in Fig. 1.5 

below). Hence hierarchical materials scatter phonons of various wavelengths and 

reduce phonon transport throughout the phonon spectrum [5, 32-34] (as shown in Fig. 

1.4 above and Fig. 1.5 below).  

The choice of material when developing hierarchical nanocomposites is 

extremely important. Recent studies show that nanostructured compounds based on 

Bi, Te and Sb provide some of the most optimal thermoelectric nanomaterials at room 

temperature [5, 35-38], as in their bulk form. However, expensive raw material, poor 

processability, high processing cost and heavy metal pollution potentially limits their 

wide-scale application [38, 39].   
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Figure 1.5: Hierarchically nanostructured material with hierarchical inclusions at the 

atomic scale, the nanoscale, and the mesoscale in the PbTe–SrTe system [5]. Phonons 

scattered across length-scales can enhance ZT [5, 32, 40].   

 

On the other hand, structures based on silicon or SiGe [33, 41-45] are 

comparatively non-toxic [44] and have easy bulk availability. The industrial 

infrastructure behind silicon makes their cost of manufacturing much cheaper as 

compared to other thermoelectric materials. Unfortunately, while silicon has 

favourable PF properties, the thermal conductivity of silicon is quite high (at κ ~ 150 

Wm−1 K−1) when compared to other TE materials like Bi2Te3 (κ ~ 2 Wm−1 K−1), Bi2Se3 

(~1.3 Wm−1 K−1), and so on [38, 46, 47]. The use of nanostructuring can help greatly 

reduce the thermal conductivity. Specifically, for Si-based materials, silicon 

nanowires have been reported to exhibit κ < 2 Wm−1 K−1. Similar observations have 

been reported for SiGe nanowires [48] and silicon thin films of 2 nm to 6 nm in 

thickness [49, 50]. By introducing grain boundaries (see Fig. 1.4) thermal conductivity 

in nanostructured silicon can be reduced down to 0.787 ± 0.12 Wm−1 K−1 [51, 52].  

 

Figure 1.6: Nanostructured Si-based material with porous nanomesh thin film. (a) 

SEM image with nanometric pore sizes indicated. (b) AFM image of the same material 

gives its topography. (c) KPM image gives the surface potential for the same material. 

Uniform contrast indicates homogeneity in the surface potential of the film [33]. This 

experimental result is given by Taborda et al. in their work [33].    
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In novel single-crystalline silicon membranes with nanometric sized pores κ 

around 1-2 Wm−1 K−1 [41, 43, 53], has been reproducibly achieved, while still 

maintaining sufficient electronic properties. A recent work with hierarchical 

nanostructuring reported ultra-low κ of 0.55 ± 0.10 Wm−1 K−1 for SiGe nanocrystalline 

nanoporous structures, a value well below that of amorphous silicon structures [33] 

(see Fig. 1.6 above). Reports also show that hierarchical nanostructures can improve 

the thermoelectric power factor as well [45, 54-57]. Hence in this work we focus on 

silicon-based nanomaterials.  

Thus, a clear understanding of thermal transport at nanoscale is of paramount 

importance for energy harvesting, thermal safety management and continued 

development of novel, miniaturized devices. Various computational methods, such as 

the wave-based Non-Equilibrium Greens Functions or the particle-based Monte Carlo 

methods, have been used to study phonon transport and heating management in 

devices at these length scales. The Monte Carlo method has the added comparative 

advantage of being able to simulate large-scale geometries (up to several micrometers 

in size), while still incorporating multiple phonon scattering mechanisms and 

complex, hierarchical nanostructures. In this work, we describe the development, 

validation and employment of a Monte Carlo phonon transport simulator to investigate 

thermal transport in nanostructured materials. 

 

1.2  Motivation 

As we have discussed in the last section, understanding thermal transport at 

the nanoscale is of vital importance for sustainable energy harvesting, mitigation of 

waste heat and the development of improved thermoelectric devices. These materials 

can reduce dependence on fossil fuels, with huge environmental and societal benefits. 

An in-depth study of phonons and phonon transport is fundamental to the 

understanding of thermal transport at nanoscale.  

Primarily, we focus on phonon transport in hierarchically nanostructured 

silicon. Silicon is a well understood, established material. It is comparatively non-

toxic, cost effective and with established industry for mass scale device production. 

However, silicon’s comparatively high bulk thermal conductivity (κ) makes it an 
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inefficient thermoelectric (TE) material in the bulk form (see Eq. 1.1). Hierarchical 

nanostructuring (including nanocrystalline and nanoporous structures) drastically 

reduces κ in TE materials and enhances TE efficiency by scattering across the phonon 

spectrum (see Fig. 1.4 and Fig. 1.5). We investigate the effects of different types of 

nanostructuring – individually and combined at different temperature regimes to 

provide a thorough study of phonon transport for these materials [58-60].  We describe 

the development and validation of a Monte Carlo phonon transport simulator to model 

thermal transport (particularly thermal conductivity) in nanostructures [58, 59].  

The Monte Carlo (MC) method is a semi-classical particle-based approach, 

capable of incorporating multiple phonon scattering mechanisms. MC was chosen as 

it can incorporate complex large-scale geometries at appropriate length scales to 

understand phonon transport in hierarchical silicon structures. The advantage of MC 

is that it can be used to simulate complex, hierarchical geometries with channels up to 

several micrometers in size (scaling linearly with size). Our simulator is validated for 

both bulk and nanostructured Si-based materials [58, 59]. However, comprehensive 

understanding of thermal transport in even smaller structures need large scale 

simulations bridging length scales dictated by different physics related to the wave 

versus particle nature of phonons. Yet, available computational approaches implicitly 

treat phonons as either just waves or as particles. Here, we also seek to bridge this gap. 

Using a full wave-based NEGF method, and a particle-based ray-tracing MC 

approach, we investigate the qualitative differences in the wave-based and particle-

based phonon transport at the vicinity of nanoscale features [61]. 

Novel applications in heat management and thermoelectric materials have also 

been explored and thermal rectification is one exciting application in this context. With 

analogies to electrical diodes and transistors, operational, durable and efficient thermal 

rectifiers have the capacity to open new chapters in future semiconductor physics. We 

investigate the thermal rectification in geometrically asymmetric nanoporous silicon 

structures to give optimized thermal rectifiers [62]. 
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1.3 Thesis outline 

This PhD thesis investigates phonon transport in nanostructures including 

hierarchical and highly disordered Si-based nanomaterials. Overall, this project has 

led to several publications in high impact journals (5 journal publications, including 

in Physical Review B, Journal of Applied Physics and one more under preparation, see 

detailed list in Appendix B). The research and the results have been presented at many 

national and international conferences (over 10 presentations, including the 

Eurotherm, the International Conference on Thermoelectrics and the European 

Conference on Thermoelectrics, as listed in Appendix B), which have garnered 

various awards. This work has also contributed to many public engagement activities 

(including the British Science Festival and the Cheltenham Science Festival).  The 

complete details of these are enclosed as Appendix B.  

An outline of the thesis is as follows:  

Chapter 2 starts with an overview of phonon theory and thermoelectric theory, 

with particular emphasis on properties used to understand phonon transport in silicon-

based nanomaterials. This chapter heavily draws from the established literature on 

phonons [34, 63, 64].  

Chapter 3 investigates phonon transport theory and some methods that are 

used to simulate thermal properties in nanomaterials. We then outline the single-

particle ‘incident-flux’ Monte Carlo method and the simulator specifically developed 

during this PhD to determine thermal transport through nanostructures. We present 

our initial corroboration to bulk silicon material and validation at nanoscale feature 

sizes by comparing simulator results to those in the established literature. The results 

presented in this chapter have been published in Physical Review B and Materials 

Today: Proceedings [58, 59].  

In Chapter 4 the MC simulator is used to investigate thermal transport in 

hierarchically nanostructured silicon. We consider the combined presence of 

nanocrystallinity and nanopores, arranged under both ordered and and disorderd 

(randomized) positions and sizes at room temperature. We show that randomization 

or disorder acts as a large increase in the overall effective porosity. Using our 

simulations, we show that existing compact nanocrystalline and nanoporous 
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theoretical models describe thermal conductivity accurately under uniform 

nanostructured conditions but overestimate it in randomized geometries. We propose 

extensions to these models that accurately predict the thermal conductivity of 

randomized nanoporous materials based solely on a few geometrical features. 

Additionally, we show that the new compact models introduced can be used within 

Matthiessen’s rule to combine scattering from different geometrical features within 

~10% accuracy. The results in this chapter have been published in Physical Review B 

[58, 59]. 

In Chapter 5 we extend the work presented in Chapter 4 to investigate 

thermal properties at higher temperatures – we investigate phonon transport in silicon-

based disordered hierarchically nanostructured materials in the presence of 

nanocrystallinity and nanopores at the range of 300 K – 900 K. We show that at high 

temperatures phonon wavelength and spatial frequency dependent surface scattering 

could account for even a ~40% enhanced reduction in the thermal conductivity of 

nanocrystalline Si. Introduction of nanopores with randomized positions magnifies 

this effect, which suggests that hierarchical nanostructuring is actually more effective 

at high temperatures than previously thought. The results presented in this chapter 

have been published in the Journal of Electronic Materials [60].  

Chapter 6 explores thermal rectification in geometrically asymmetric 

nanoporous structures, and investigates the combined effects of porosity, inter-pore 

distance, and pore position relative to the device boundaries. We show that systems: 

i) with denser, compressed pore arrangements (i.e. with smaller inter-pore distances), 

ii) with pores positioned closer to the device edge/contact, and iii) with pores in a 

triangular arrangement, can achieve rectification of over 55%. Introducing 

hierarchically smaller pores into existing porous geometries increases rectification 

even further to over 60%. Importantly, for the structures we simulate, we show that 

sharp rectifying junctions, separating regions of long from short phonon mean-free-

paths are more beneficial than spreading the asymmetry throughout the material along 

the heat direction in a graded fashion. The results presented in this chapter have been 

published in the Journal of Applied Physics [62]. 

Chapter 7 compares particle and wave effects in phonon transport in simple 

systems. In this chapter, using a full wave-based Non-Equilibrium Green's Function 
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(NEGF) method, and a particle-based ray-tracing Monte Carlo (MC) approach, we 

investigate the qualitative differences in the wave and the particle-based phonon 

transport at the vicinity of nanoscale features. Using the simple example of a 

nanoporous geometry, we show that phonon transmission agrees very well for both 

methods with an error margin of ± 15%, across phonon wavelengths even for features 

with sizes down to 3-4 nm. For cases where phonons need to squeeze in smaller 

regions to propagate, we find that MC underestimates the transmission of long 

wavelength phonons whereas wave treatment within NEGF indicates that those long 

wavelength phonons can propagate more easily. We also find that particle-based 

simulation methods are somewhat more sensitive to structural variations compared to 

the wave-based NEGF method. The insight extracted from comparing wave and 

particle methods can be used to provide a better and more complete understanding of 

phonon transport in nanomaterials. The results presented in this chapter have been 

published in Computational Materials Science [61]. 

In Chapter 8 we investigate the influence of adding high thermal conductivity 

nanoinclusions to thermally resistive media. A way to increase the thermal (or 

electrical) conductivity of resistive matrix media is to incorporate highly conductive 

nanoinclusions. This is particularly important in organic electronics and 

thermoelectrics, where a flexible matrix can prove useful for numerous applications 

such as wearable electronics and thermoelectric devices. But the power factor of the 

matrix needs to be improved by incorporating highly electrically conductive 

nanoinclusions. These, however, inevitably conduct heat more easily as well. In this 

work we attempt to shed light on thermal transport in a low thermal conductivity 

medium in the presence of a network of nanoinclusions of higher thermal conductivity. 

The results presented in this chapter are in preparation for publication. 

Finally, in Chapter 9 we summarize our conclusions and present some 

possibilities for future work. 
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2. Phonon theory 

 This chapter presents the theory pertaining to phonons and their properties, 

including material specific properties for silicon, and the physics of intrinsic phonon-

phonon scattering. The role of phonons and thermal conductivity in the thermoelectric 

efficiency of materials is described. Lastly, improvements in thermoelectric 

efficiency, achieved by nanostructuring bulk materials, are examined. This chapter 

draws heavily from the established literature on phonons [34, 63, 64].  

 

2.1  Phonons and their properties  

The crystal lattice can be visualized as a three-dimensional, periodic array of 

identical building blocks or primitive cells.  The equilibrium positions of each atom in 

a solid is defined by the nature of the interatomic forces that bind the atoms. The 

displacement of atoms from their equilibrium positions creates vibrational waves that 

propagate through the crystal lattice. The energy of the wave propagating through the 

lattice is quantized and each quantum is called a phonon – (somewhat) analogously to 

the photon of the electromagnetic wave. Summarily, the phonon is a quasi-particle 

representing the mechanical vibration. A phonon can, thus, also be interpreted and 

studied as a mechanical wave of the lattice, with the same energy and momentum as 

the equivalent quasi-particle. These atomic oscillations (phonons) are responsible for 

the transmission of sound and heat. Understanding and controlling the phononic 

properties of materials provides opportunities to reduce environmental noise, 

transform waste heat into electricity (thermoelectricity), power IoT, develop novel 

device applications and even earthquake protection mechanisms [9, 31, 65].  

Phonons can be treated as both particles and waves [63, 65]. Every phonon has 

different wave-properties that describe it – its frequency [Hz], wavelength, λ [m], time 

period [s], wavenumber q (the spatial frequency of the wave, 2π/λ) and so on. Phonon 

propagation direction and magnitude is described by their wavevectors (q). To 

describe a phonon, we must understand the relationship between these properties. The 

derivations of these relationships are extensively covered in various works [63, 64, 

66]. We re-derive the pertinent parts below for a more complete understanding of 

phonon properties. If we assume the lattice vibrations to be perfectly elastic [63], each 

of the individual atoms in the lattice primitive cell can be modeled as a point-mass 
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where the bonding potential between the atoms is represented by springs, say with a 

force constant ‘C’ with units of N/m. This force constant C depends on the distance of 

separation between the masses (say u [m]) and is responsible for keeping the masses 

at their equilibrium positions, i.e. F ~ Cu. Displacement of these masses (atoms) from 

their equilibrium positions creates the vibrational waves that propagate through the 

crystal lattice – phonons. For a given phonon, the phonon frequency (number of 

oscillations per unit time) is given by ω. The energy of the phonon is therefore Ephonon 

= ℏω, where ℏ is the reduced Planck's constant.  

For a simple description of phonon vibrations let us first assume a one-

dimensional picture, say a linear chain of masses (monoatomic chain) where waves 

travel along the x-axis (see Fig. 2.1a). Individual atoms are allowed a range of motion 

determined by the force constant C that acts as a ‘spring’ moving the atoms back to 

their equilibrium position. Atoms can move either along the direction of propagation 

of the wave (longitudinal wave), here defined along the x-axis (see Fig. 2.1b), or 

perpendicular to it (transverse wave), here defined in the y-direction (see Fig. 2.1c). In 

longitudinal waves, atoms vibrate along the x-axis when the wave reaches them, but 

the chain of atoms remains straight with no perpendicular motion. In transverse waves 

the atoms remain in their equilibrium positions in the x-axis and move in the y-

direction, perpendicular to the direction of phonon propagation. These two modes of 

vibration represent the longitudinal and transverse phonon waves modes seen here in 

the schematics below (Fig. 2.1).  
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Figure 2.1. Longitudinal and transverse waves in crystals. (a) Schematic of a 

monoatomic chain with point masses of mass = M representing atoms in the chain and 

“springs” with force constant ‘C’ representing the bonding potential between atoms. 

(b) Longitudinal wave in monoatomic chain with atoms moving in the direction of 

wave propagation (black-solid arrows). Each atom (solid red circle) is displaced in the 

positive x-direction (transparent red circle). (c) Transverse wave with atoms moving 

from their equilibrium positions (solid red circles) perpendicularly along the y-axis 

(transparent circles) respectively. (d) Transverse waves in crystal planes (blue-dashed 

lines). Displacement of atoms for respective planes (s-1, s, s+1) perpendicular to the 

direction of wave propagation are indicated by black-solid lines (us-1, us, us+1), 

respectively. (e) Longitudinal wave in crystal planes with atoms moving in the 

direction of propagation (black-solid arrows). Each atom (solid red circle) is displaced 

in the positive x-direction (transparent red circle) leading to the displacement of the 

planes (blue-dashed lines). The distance (spacing) between the planes is indicated by 

‘a’. The positive x and y directions are indicated. Figures recreated from Ref. [63]. 

 

In a realistic three-dimensional crystal, it is simplest to assume a cubic lattice 

crystal and consider the movement along one of the principal directions ([100], [110] 

or [111]) [63]. As the wave propagates, entire collections of atoms (planes) move in 
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phase with displacements, either perpendicular or parallel to the direction of the wave 

propagation (Fig 2.1d and Fig 2.1e, respectively). The phonon wave can be partially 

described by the vector form of the wavenumber q – the wavevector q, for a given 

direction of propagation. For a displacement from the equilibrium position in any 

direction (solid red circles to transparent red circles in Fig. 2.1), we can describe the 

displacement as a linear combination of displacements in the x, y and z directions. 

Thus, in each direction the description of motion is reduced to a one-dimensional 

problem [63], which we derive below [63, 64, 66]. Every phonon has three modes – 

one longitudinal (in the direction of phonon propagation, say along the x-axis) and two 

transverse (in the other 2 directions, say y and z, i.e. perpendicular to the direction of 

propagation). Any oscillation in three dimensions can be interpreted as a linear 

combination of three waves travelling in three linearly independent directions [66].  

 

Figure 2.2. Comparing monoatomic and diatomic crystals. (a) Schematic of a one-

dimensional monoatomic chain with point masses of mass = M representing the atoms 

in the chain. There is one atom per unit cell (solid red circle) displaced in the positive 

x-direction by displacement us (transparent red circle). (b) Schematic of a diatomic 

chain with point masses M1 (red) and M2 (blue) representing the two atoms per unit 

cell. Each atom (solid circle) is displaced in the positive x-direction (transparent circle) 

by displacement us and vs for masses M1 (red) and M2 (blue) respectively.  

 

For a simple mathematical description of phonon vibrations let us solve for a 

one-dimensional picture i.e. a linear chain of equal masses (monoatomic chain) where 

waves travel along the x-axis (again, as shown in Fig. 2.1a and Fig. 2.2a). Individual 

atoms are allowed a range of motion determined by the force constant C (that is equal 

for equal masses). For a point mass (representing an atom) M that is displaced by a 

distance u to a position s along the x-axis, the force acting on M is given by the 

Newton’s second law, as follows:  
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2

2

s
s

d u
F M

dt
=   (2.1) 

in the direction of motion. As long as there is no permanent deformation in the chain 

due to this motion (i.e. the displacement is elastic), we can express the force as the 

product of the displacement u with the force (spring) constant C by using Hooke’s 

law. Cubic and higher-order terms may be neglected for sufficiently small elastic 

deformations [63, 66]. Considering only nearest-neighbor interactions we find that 

total force Fs on s from its nearest neighbors s+1 and s-1 is:  

 1 1( ) ( )s s s s sF C u u C u u+ −= − + −  (2.2) 

C is the force constant between two nearest neighbors in the same chain (as Fig. 2.2a).  

Phonon dispersion relation – the phonon dispersion relation gives the relation 

between the phonon frequency ω and q. If the force constant C is defined for one atom 

of mass M of the plane, then the force acting on one atom is given by Eq. 2.1 and Eq. 

2.2. Combining these we get the equation of motion of an atom in the plane position 

s, given by: 

 

2

1 12
( 2 )s

s s s

d u
M C u u u

dt
+ −= + −  (2.3) 

with M as the mass of the atom. We can describe the motion (change in position us) of 

an atom as a wave with time dependence e i t− . This gives us:  

 
i t

su Ae −=  (2.4) 

and differentiating twice with respect to time we have:  

 

2
2 2 2

2

i ts
s

d u
i Ae u

dt

 −= = −  (2.5) 

Hence, Eq. 2.3 can be re-written using Eq. 2.5 as:  

 
2

1 1( 2 )s s s sM u C u u u + −− = + −  (2.6) 

To solve Eq. 2.6 we can now look at it as a differential equation in space with a 

travelling wave solution of the form:  

 eisqa

su u=  (2.7) 

where, a is the spacing between the planes (see Fig. 2.1e) and u is the amplitude of the 

wave. Putting in the solution form obtained in Eq. 2.7 into Eq. 2.6 we have:     
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2 ( ) ( 1) ( 1)e [e e 2e ]isqa i s qa i s qa iqaM u Cu + −− = + −  (2.8) 

Dividing both sides of Eq. 2.8 by eisqau we get:   

 
2

1 (1 e ) 2iqaM C Cu −− = + −  (2.9) 

Applying Euler’s formula, 2cos e eix ixx −= +  to Eq. 2.9 we get:   

 
2 2 [1 cos( )]M C qa = −  (2.10) 

2 22 4
[1 cos( )] sin

2

C C qa
qa

M M


     
= − =     
     

                        (2.11) 

From here we easily get the dispersion relation ω(q) as:   

4
( ) sin

2

C qa
q

M


   
=    

   
                                        (2.12) 

We can plot this dispersion relation for the first unit cell of the reciprocal lattice i.e. 

the first Brillouin zone. A Brillouin zone is defined as a Wigner-Seitz primitive cell in 

the reciprocal lattice which gives a geometric interpretation of (x-ray) diffraction 

conditions observed for a given material [63]. Brillouin zones are used to describe 

energy bands for phonons (or other elementary excitations, like electrons) [63, 64].  

 

Figure 2.3. Dispersion relation ω(q) in the first Brillouin zone. At the center of the 

first Brillouin zone Eq. 2.13 gives ω(q) = ω(0) = 0.   

Phonon group velocity – For travelling waves the velocity of some of its 

characteristics (amplitude maxima/minima) is given by its phase velocity vp. However, 

the velocity at which energy is transported by the travelling wave is generally slower 

and given by its group velocity, vg. The group velocity of a phonon (i.e. energy wave 

packet) transmission in the direction of phonon propagation is given by: 
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g

d
v

dq


=                                               (2.13) 

In the case of our example, the monoatomic chain, vg becomes:  

4 4
sin cos

2 2 2
gv

d C qa C a qa

dq M M

         
= =         

         
                (2.14) 

Or, simplifying further: 

cos
2

g

q
v

C a
a

M

 
=  

 
                                         (2.15) 

Thus, at the edge of the first Brillouin zone, where q = π/a, the cosine term causes the 

group velocity to go down to zero – meaning that there is a standing wave with no net 

phonon propagation at the zone edge.  

Two atoms per basis primitive cell – The dispersion relation we derived in Eq. 

2.12 is for the case where there is only one atom per unit cell (we use the same mass 

M throughout).  In more realistic crystalline materials, there is more than one atom per 

unit cell. With this reconsideration, the derivation for the dispersion relation changes. 

We now consider a diatomic unit cell with atoms with masses M1 and M2 in the unit 

cell (as in Fig. 2.2b) for a 3D crystal. This leads to interesting new phonon vibrational 

modes or phonon ‘branches’ which we will see in the derivation below. As an 

overview we can note that for a primitive cell with two atoms – say NaCl, Si or 

diamond (C) – 2 ‘branches’ are formed: the acoustic and optical branches. Each branch 

contains one longitudinal phonon mode (along the direction of phonon propagation) 

and two transverse phonon modes (perpendicular to the direction of phonon 

propagation) as before for a total of 6 modes or possible ‘polarizations’. They are 

labeled as one longitudinal acoustic (LA) mode, two transverse acoustic (TA) modes, 

plus one longitudinal optical (LO) mode and two transverse optical (TO) modes. Their 

derivations are given below.  

To determine the dispersion relation and to see how these branches (optical 

and acoustic) appear we once again start with the equations of motion. Since we have 

two atoms per unit cell, with masses M1 and M2, we start with two different amplitudes 

u and v for masses M1 and M2 respectively [63]. Again, we assume that each atom 

plane only interacts with its nearest neighbor (see Fig.  2.2b). We also assume that the 



 

19 

force constant C is the same between all nearest-neighbor plane pairs. The force F1 

and F2 are given by:  

 
2

1 1 2

sd u
F M

dt
=                                                (2.16)  

  
2

2 2 2

sd v
F M

dt
=                                                (2.17)  

where u and v are the amplitudes for mass M1 and M2 respectively. Again, for elastic 

displacements us and vs, we can express the force as the product of the displacement 

and C using Hooke’s law. Cubic and higher-order terms may be neglected for 

sufficiently small elastic deformations. Considering only nearest-neighbor 

interactions from its nearest neighbors we have:  

1 1( 2 )s s sF C v v u−= + −                                           (2.18)  

2 1( 2 )s s sF C u u v+= + −                                           (2.19)  

Note that the nearest neighbor to an atom with M1 is actually an atom with mass M2 

(see Fig. 2.2b). Next, we look at Eq. 2.3 to determine the two equations of motion as: 

2

1 12
( 2 )s

s s s

d u
M C v v u

dt
−= + −                                     (2.20)  

2

2 12
( 2 )s

s s s

d v
M C u u v

dt
+= + −                                     (2.21)  

with M1 and M2 as the masses of the atoms respectively. The displacement of each set 

of atoms can be described by waves in space and time:     

e eisqa i t

su u −=                                               (2.22) 

   e eisqa i t

sv v −=                                               (2.23) 

where, a is the spacing between the planes (see Fig. 2.1e), u and v are the amplitudes 

of the waves respectively (just as in Eq. 2.7). From Eq. 2.5 we see how we can insert 

the wave form and differentiate twice with respect to time which gives us:   

2
2

2

s
s

d u
u

dt
= −                                               (2.24) 

2
2

2

s
s

d v
v

dt
= −                                               (2.25) 



 

20 

Comparing Eq. 2.24 to Eq. 2.22 we easily get:  

2
2 2

2
e eisqa i ts

s

d u
u u

dt

  −= − = −                                  (2.26) 

Similarly, comparing Eq. 2.25 to Eq. 2.23 we also get:  

2
2 2

2
e eisqa i ts

s

d v
v v

dt

  −= − = −                                 (2.27) 

Comparing the left-hand side (LHS) of Eq. 2.20 to Eq. 2.26 we can easily see that:   

2
2

1 12
e eisqa i tsd u

M M u
dt

 −= −                                     (2.28) 

and, comparing the LHS of Eq. 2.21 to Eq. 2.27 we have:   

2
2

2 22
e eisqa i tsd v

M M v
dt

 −= −                                     (2.29) 

For the right-hand side (RHS) of Eq. 2.20 we insert the wave forms of us and vs to get:   

( 1)

1( 2 ) e e e e 2 e eisqa i t i s qa i t isqa i t

s s sC v v u v v u  − − − −

−+ − = + −              (2.30) 

Similarly, for the RHS of Eq. 2.21 we again insert the wave forms to get:   

  
( 1)

1( 2 ) e e e e 2 e ei s qa i t isqa i t isqa i t

s s sC u u v u u v  + − − −

+ + − = + −            (2.31)  

We can cancel out the eisqa and e i t−  terms in each of the above Eq. 2.28 and Eq. 2.30 

as they are common to each term in both sets of coupled equations. Thus, from the 

LHS of Eq. 2.28 and the RHS of Eq. 2.30 we can rewrite Eq. 2.20 as:  

2

1 (1 e ) 2iqaM u Cv Cu −− = + −                                    (2.32) 

Similarly, from the LHS of Eq. 2.29 and the RHS of Eq. 2.31 we rewrite Eq. 2.21 as:  

2

2 (e 1) 2iqaM v Cu Cv− = + −                                    (2.33) 

Eq. 2.32 and Eq. 2.33 can be rearranged with all terms on the LHS to give: 

2

1

2

2

(2 ) [1 exp( )] 0

[1 exp( )] (2 ) 0

u C M vC iqa

uC iqa v C M





 − − + − =
 
− + + − = 

                          (2.34) 

We can then write Eq, 2.34 as a determinant:  

2

1

2

2

2 [1 exp( )]
0

[1 exp( )] 2

C M C iqa

C iqa C M





− − +
=

− + −
                           (2.35) 
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And then solve by subtracting the second diagonal from the first: 

2 2

1 2( )( ) ( )][ ( )]} 02 2 {[ 1 e 1 expiqa iqaC M C M C C  −− − − − − + =+        (2.36) 

2 2 2 4 2

2 1 1 24 2 2 1 1 0( )( )iqa iqaC C M C M M M C e e   −− − + − + + =        (2.37) 

Again, using Euler’s formula and simplifying further we get:  

4 2 2

1 2 1 22 ( ) 2 [1 cos( )] 0M M C M M C qa − + + − =                     (2.38) 

From here we solve as a quadratic equation in ω4 for the roots in terms of ω2: 

2
2 21 2 1 2

2

1 2 1 2 1 2

( ) ( ) 4
sin

( ) ( ) 2

C M M M M qa
C

M M M M M M


+ +  
=  −  

 
               (2.39) 

We can now easily get the dispersion relation by taking the square root of Eq. 2.39:  

2
21 2 1 2

2

1 2 1 2 1 2

( ) ( ) 4
( ) sin

( ) ( ) 2

C M M M M qa
q C

M M M M M M


+ +  
=  −  

 
               (2.40) 

The outer root with the ± leads to the appearance of the two branches of the dispersion 

relation – an optical and an acoustic branch (for both longitudinal and transverse 

waves). We can use Eq. 2.40 to plot the dispersion relation (see Fig. A2 Appendix A), 

however, dispersion relations in real materials are more complicated. The full 

dispersion relation of silicon with all 6 polarizations (LA, LO, and two each of TA and 

TO) is given in Fig. 2.4 below.  

 

Figure 2.4. Dispersion relation ω(q) experimentally obtained for silicon [67] for 

longitudinal acoustic (LA), longitudinal optical (LO), transverse acoustic (TA) and 

transverse optical (TO) modes.  
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We must note that the two branches (acoustic and optical) appear due to the 

presence of two atoms in the unit cell – not just because M1 and M2 have different 

masses. In order to clarify this, we set M1 = M2 = M.   

We have,  

2
21 2 1 2

2

1 2 1 2 1 2

( ) ( ) 4
( ) sin

( ) ( ) 2

C M M M M qa
q C

M M M M M M


+ +  
=  −  

 
               (2.40) 

Setting M1 = M2 = M we have:  
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which gives us:  
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which can be further simplified to:  
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                              (2.43) 

From here we can quite clearly see that the two branches – acoustic and optical are a 

consequence of having two atoms in the unit cell and that the branches remain even if 

the masses of the two atoms are the same. For a more detailed study of how the 

dispersion relation changes with the relative values of masses M1 and M2, please see 

Fig. A3a and Fig. A3b in Appendix A. It is interesting to note from Fig. 2.4 that the 

shape of the acoustic branch in the diatomic case is similar to the dispersion relation 

determined for the monoatomic case in Fig. 2.3. Intuitively, this represents when the 

atoms are moving “in-sync” (as if they are one atom) in each unit cell for the diatomic 

case – hence we see the same shape as if there were one atom. However, when the 

atoms are moving “out-of-sync” we get the shape of the optical branch, which is very 

different. We can see why, if we calculate the dispersion relation at the center of the 

first Brillouin zone.  

At the center of the Brillouin zone, for ω(0) from Eq. 2.40 we have:  
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Eq. 2.45 has two possible solutions (one for each branch):  

1 2
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(0)

C M M

M M
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+
=                                         (2.46) 

or,  

 (0) 0 =                                                   (2.47) 

Clearly, the frequency of the acoustic branch is hence zero in this limit, i.e. the center 

of the first Brillouin zone, as we have seen in Fig. 2.4. The frequency of the optical 

branch, on the other hand, depends only on the two masses M1 and M2 and the spring 

constant ‘C’. Furthermore, if we consider a reduced mass μ, such that:  

1 2

1 2

M M

M M
 =

+
                                               (2.48) 

We see that the solution for the optical branch is:  

2
(0)

C



=                                                 (2.49) 

Now, it is important to note that the reduced mass is always going to be smaller than 

the two component masses [63, 64, 66]. Hence, ω(0) gives the maxima for the optical 

branches. 

Thus, in this section we have seen how phonons can be described as vibrations 

or waves with longitudinal and transverse phonon modes. For materials with more 

than one atom in their unit cell – like diamond or silicon, the phonon modes further 

break up into branches – the optical and acoustic branches, for each of the longitudinal 

and transverse phonon modes. In silicon, for instance, this gives us an overall 6 phonon 

modes or polarizations – a longitudinal acoustic (LA), a longitudinal optical (LO), two 

transverse acoustic (TA) and two transverse optical (TO). These branches exist as a 
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consequence of having two atoms in the unit cell, even if the atoms have equal masses.  

From the next section onwards, we focus on the particular case of silicon materials 

and nanostructures for all cases, where not otherwise specified. 

 

2.2  Phonons in silicon  

Since the innovative work done by Atalla et al. in the late 1950s on silicon 

surface passivation and the invention of the silicon based MOSFET [68, 69] the next 

half-century has been referred to as the silicon age [69-71]. Silicon has become the 

dominant go-to material for semiconductor applications [69, 72]. It is a widely 

available, well understood material, relatively non-toxic and low cost, with a large, 

established manufacturing industry [44, 73]. This makes it an excellent candidate for 

research on thermal properties, heat management, nanostructured devices, phonons 

and phonon transport [73-78].   

The dispersion relation of phonons in silicon has been discussed in Section 2.1. 

It has been well documented that in silicon optical phonons (phonons of the optical 

branch) do not contribute significantly to thermal transport [63, 64, 79-81]. Lacroix et 

al. mention in their works on thermal transport that they do not consider optical 

phonons because of their low group velocity which means that they do not contribute 

significantly to the heat transfer [16, 82]. However, they add, optical modes can 

contribute indirectly through the interaction with other (acoustic) modes by potentially 

modifying their relaxation times. This could influence the overall thermal conductivity 

of the material [16]. Nevertheless, in these works, optical phonons are not considered. 

Hence, for the purposes of our work we can simplify the full dispersion relation seen 

in Fig. 2.4 to a quadratic fit, which is widely used in the literature. For simplicity, and 

since most of the heat is transferred by acoustic phonons (at least in Si [16, 80-84]), 

the dispersion for the acoustic branches of Si is described by [85]:    

2

s
q v q cq = +( )                                             (2.50) 

Above, vs is the sound velocity, and three acoustic modes are typically employed, one 

longitudinal, and two transverse modes. Fitting parameters to match bulk Si in the 

[100] direction is used and isotropy is assumed [16, 81, 84]. The transverse modes are 

degenerate, but lie on top of each other, as seen in Fig. 2.4. Each branch is described 
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by its own set of fitting parameters as indicated in Table 2.1 and plotted in Fig. 2.5 

[85, 86].  

Parameter 
Longitudinal acoustic (LA) 

branch 

Transverse acoustic (TA) 

branch 

vs [ms–1] 9.01 × 103 5.23 × 103 

c [m2s–1] –2 × 10-7 –2.26 × 10-7 

Table 2.1. Parameters used to produce the Si acoustic phonon branches [85].  

 

Figure 2.5. The fit for the dispersion relation ω obtained as in Ref. [85] for 

longitudinal acoustic (LA, blue lines) and transverse acoustic waves (TA, red lines).  

 

The phonon group velocity, can then be easily found as the as given by the 

slope of the dispersion relation, is extracted as Eq. 2.13.  

 

Figure 2.6. The group velocity vg obtained as in Ref. [85] for longitudinal acoustic 

(LA, blue lines) and transverse acoustic waves (TA, red lines).   
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2.3  Lattice thermal energy and phonon scattering  

Phonon thermal energy – Phonons, like photons, are quantized. Thus, for an 

angular frequency ω, the energy E of a phonon is given by ℏω, where ℏ is the reduced 

Planck’s constant. For phonons, like in the case of photons, we consider the 

equivalence to a quantum harmonic oscillator for determining energy eigenvalues En.  

1

2
nE n 

 
= + 
 

                                             (2.51) 

where, the quantum number n determines the excitation, and ½ ℏω is the zero-point 

energy of the mode given by ω. At thermal equilibrium, for a certain temperature T, 

the occupation number n   for a given ω is determined by the Bose-Einstein 

distribution: 

1

exp 1
B

n

k T


 =

 
− 

 

                                         (2.52)  

where kB is the Boltzmann constant. To determine the total phonon energy – or thermal 

energy ET (for a given temperature T) we sum En determined by Eq. 2.51 for all 

available phonons given by Eq. 2.52, and for all wavevectors and polarizations (pol). 

Thus, thermal energy of the lattice in a material of volume V is: 

1

2
T

pol

E V n 
 

 =   + 
 


q

                                  (2.53) 

The summations in Eq. 2.53 are performed over all polarizations and wavevectors 

summed over the first Brillouin zone [81]. The phonon is a travelling wave, and its 

ability to transmit its energy is dependent on its group velocity vg. The phonon group 

velocity is given by the slope of the dispersion relation – as seen in Eq. 2.13 – which 

is much smaller in optical modes in silicon than acoustic modes – as seen in Fig. 2.4. 

Hence, optical phonons do not contribute significantly to thermal conductivity in a 

direct manner [16, 63, 64, 80, 81, 87] and are ignored in the summation henceforth. 

Assuming a large bulk 3D crystal lattice (i.e. with a dense wavevector space) the 

wavevector space can be considered continuous. This allows us to replace the 

wavevector summation with an integral over the Brillouin zone, as follows:  
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Now, using the dispersion relation we can transform the integral over the wavevector 

space into an integral over the frequency space assuming that the Brillouin zone is 

isotropic. Considering that the number of phonon vibrational states available in the 

frequency range ω to ω + dω is given by the phonon density of states, we can calculate 

the energy from Eq. 2.54 as [81]:  
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where the density of states is given by [64]: 

2

2
( )

2

q dq
D

d

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=                                            (2.56) 

 Intrinsic phonon scattering – Phonons travelling in a crystal will often 

encounter boundaries, inclusions and imperfections and scatter, which will cause them 

to change their energy and/or momentum. Scattering processes can also take place in 

a pristine crystal through phonon-phonon scattering. These phonon-phonon processes 

can be inelastic and preserve neither the number of phonons nor their frequency in the 

collision process [16, 81].  These anharmonic interactions usually involve three 

phonons (two phonons annihilate to give birth to a third one) and while quartic 

interactions exist (four phonons – two phonon annihilate to give birth to two others), 

they usually contribute less to restore thermal equilibrium [16]. 

There are two kinds of three-phonon processes: normal processes which 

preserve momentum and Umklapp processes which do not preserve momentum but 

satisfy it by means of a reciprocal lattice vector (see Fig. 2.7 below). Hence Umklapp 

processes directly provide resistance to energy transport, while normal processes do 

not. Normal processes only indirectly effect the phonon energy or heat flow through 

the material by changing the frequency distribution of the phonons existing in the 

material [81]. Under normal scattering, the phonons involved do not change direction 

and the momentum and energy are conserved [16, 88, 89].  For both processes energy 

is always conserved. At higher temperatures (higher than the Debye temperature), 

Umklapp processes become significantly more important and directly affect heat 

propagation due to their resistance to energy transport.  
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Figure 2.7. Normal and Umklapp scattering processes. Solid arrows indicate the 

phonon momenta before scattering (green arrows) and after scattering (red arrows).  

 

Three-phonon Umklapp processes involve three phonons, typically of higher 

energies, and are dissipative in nature [34]. When two phonons interact, if their added 

momentum is larger than the length of the Brillouin zone G, then a third phonon is 

created, with total momentum p1+p2-G and backscattered (see Fig. 2.7). The energy 

lost is dissipated in the crystal lattice, changing (increasing) the lattice temperature. 

This dissipation of temperature due to scattering causes the establishment of a 

temperature gradient in the material and is primarily responsible for the thermal 

conductivity (κ). On the other hand, normal scattering processes are less important and 

only affect heat transfer by modifying the frequency distribution of the phonons. 

Together, these mechanisms determine the thermal properties of the material.   

 

2.4  Thermoelectricity and nanostructured thermoelectric materials  

Thermoelectricity is the phenomenon of interconverting between temperature 

difference and electricity. First discovered in 1786 by Alessandro Volta [90] it was 

independently rediscovered by Johann Seebeck by 1822 [91]. When thermoelectric 

elements (dissimilar materials) are connected electrically and heat is applied at one 

end, charge carriers (say, electrons in n-type semiconductors) diffuse towards the other 

cold end (with p-type semiconductors). This creates a charge build up or voltage 

proportional to temperature difference which can be used to drive a current through an 

external load [2, 11, 33, 43, 44, 54]. Thermoelectricity can be explored as a collection 

of thermoelectric effects including the Seebeck effect – the conversion of a 

temperature difference to current; and the Peltier effect – the conversion of electric 
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current to a temperature difference. All conducting materials exhibit some 

thermoelectric effect, but in most cases the observable effect is very small [9].  

In the past, the application of commonly used thermoelectric materials such as 

bismuth telluride (Bi2Te3) or lead telluride (PbTe) was limited due to the material's 

limited availability, toxicity, high cost and low efficiencies. Recently, increased 

research in the area of nanostructured thermoelectric materials and devices has led to 

significant breakthroughs. At the same time, dwindling conventional non-renewable 

energy resources, and climate change concerns have increased research in 

environmentally friendly and renewable energy resources. Many of the problems 

stated above may be simply solved by the introduction of highly efficient 

thermoelectric materials. This would decrease the requirement for conventional non-

renewable, environmentally harmful sources of energy, re-use waste heat to generate 

further energy and mitigate damage in devices at nanoscale.  

Various studies have been carried out on nanostructuring TE materials in order 

to modify σ, κ or S of a given material in order to improve the ZT to a figure of 2 or 

more at room temperature (as discussed previously in Chapter 1). This can be done 

by either increasing the power factor or by decreasing the thermal conductivity. This 

work focuses on ways to do the latter − to use nanostructuring to reduce the thermal 

conductivity, κ. Focusing on Si-based materials, Si nanowires have been reported to 

exhibit thermal conductivities close to, or even below the amorphous limit (κ < 2 

Wm−1 K−1), which allowed a 50-fold increase in ZT to ZT~0.5 by surface roughness 

engineering [92, 93, 94]. (The experimentally determined κ of amorphous silicon thin 

films is in the range of 1 - 2 Wm−1 K−1 at room temperature [95]). Similar observations 

have been reported for SiGe nanowires [48] and silicon thin films of 2 nm to 6 nm in 

thickness [49, 50]. Drastic reductions in thermal conductivity were also reported in 

nanocrystalline materials. Wang et al. [96] showed that the room temperature silicon 

thermal conductivity decreases from 81 Wm−1 K−1 to 24 Wm−1 K−1 as the average grain 

size decreases from 550 nm to 76 nm, whereas κ below 5 Wm−1 K−1 has been reported 

for average grain sizes of about 10 nm [97]. For grain sizes of 3 nm Nakamura et al. 

reported κ = 0.787 ± 0.12 Wm−1 K−1 [51, 52]. Additionally novel silicon membranes 

with nanoscopic pores have shown reproducibly low κ around 1-2 Wm−1 K−1 [41, 53, 

43], with little detriment to the electronic properties.  
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Nanostructures that combine the effects of alloying, nanocrystallinity, and 

porosity have started to appear as well, as a means to achieve an even lower κ. A recent 

Si-based work reported κ of 20.8 ± 3.7 Wm−1 K−1 for an average pore size of ~30 nm 

and grain sizes between 50 nm to 80 nm [98]. By reducing both pore and grain sizes, 

however, Basu et al. reported κ = 1.2 Wm−1 K−1 at 40% porosity in p-type silicon [99]. 

A recent work in SiGe nanomeshes, reported ultra-low κ of 0.55 ± 0.10 Wm−1 K−1 for 

SiGe nanocrystalline nanoporous structures, a value well below the amorphous limit 

[33]. More recently, by considering hierarchical nanostructuring for p-type 

Pb0.98Na0.02Te-SrTe, Tan et al. reported an even lower lattice thermal conductivity (κ) 

of 0.5 W K−1m−1 and a higher ZT of 2.5 at 923K [100].  

 

2.5  Summary 

This chapter explored the properties of phonons, the material specific 

dispersion relation of silicon and intrinsic phonon-phonon scattering that leads to 

thermal conductivity.  In the first section we described phonons as waves with 

longitudinal and transverse phonon modes where additional branches occur for 

materials with more than one atom in their unit cell – like diamond or silicon. In 

silicon, this gives us an overall 6 phonon modes or polarizations – one longitudinal 

acoustic (LA), one longitudinal optical (LO), two transverse acoustic (TA) and two 

transverse optical (TO). These branches exist as a consequence of having two atoms 

in the unit cell, even if the atoms have equal masses. Focusing on silicon, we used a 

simplified approximation of its dispersion relation to examine further phonon 

properties.  The next section explored the contribution of phonons to thermal energy 

and other thermal properties of silicon. Intrinsic phonon scattering and its role in the 

thermal conductivity of silicon structures was examined. Lastly, we briefly touched 

upon how thermoelectric elements function, and examined thermoelectric material 

properties. We delved into improvements in thermoelectric efficiency offered by 

nanostructuring the existing thermoelectric materials and explored new novel 

nanomaterials for thermoelectric applications. In the next chapter we look at methods 

to simulate and model phonon transport in nanoscale structures.   
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3. Phonon transport theory 

This chapter describes different approaches used to perform phonon transport 

simulations, including an introduction to Boltzmann transport theory, and then focuses 

on the Monte Carlo method, which is implemented in a simulator – especially 

developed for this study and used extensively for the results in this Thesis. The Monte 

Carlo simulator specifics are discussed. Treatment of phonon interactions for various 

scattering mechanisms, including phonon-phonon scattering, phonon-grain 

boundaries and phonon-pores scattering are described. Initial validation of the 

simulator results for the pristine bulk Si, for nanocrystalline silicon and for nanoporous 

cases are then carried out by comparing the obtained simulation results against 

available measured data for the thermal conductivity of silicon nanomaterials.    

 

3.1 Approaches to phonon transport simulations 

The problems outlined in the previous Chapters 1 and 2, such as device 

overheating leading to thermal breakdown, waste of two-third of all energy generated, 

improving thermoelectric efficiency, could be addressed by improving our 

fundamental understanding of how phonons propagate through materials and devices 

– which at the moment is far from complete. In this context, theoretical simulations 

can help with both, predicting the thermal properties of a material and clarifying the 

physics of phonon transport. In Chapter 2 we have seen that nanostructuring materials 

has demonstratively improved the thermoelectric efficiency of several materials. The 

pertinent length scales and properties of the nanostructured materials that we primarily 

study make simulations a crucial tool to clarify the physics of phonon transport in 

these materials, and to be able to study them in a viable, repeatable and methodical 

manner.  

A significant number of simulation approaches are available in the literature 

which can be used to explain the experimental observations of reduced thermal 

conductivity and enhanced ZT in nanostructures. Understanding the qualitative and 

quantitative effects of such structures on the thermal conductivity would allow for the 

design of more efficient thermoelectric materials and heat management systems in 

general. Some of these methods are discussed further in this section.  
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Theoretical simulations can predict the thermal conductivity of a 

nanostructured material through a comprehensive and rigorous analysis of the 

molecular level structure and the interatomic interactions [101]. Some methods are 

based in ‘momentum space’ (phonon spectrum) which assume periodic systems, while 

other methods use ‘real space’ techniques which directly consider the nanostructuring. 

In this work we focus on the latter. A hierarchical chart giving an overview of these 

methods is given in Fig. 3.1 below.  

 

Figure 3.1: Approaches to phonon transport simulations [101-105]. These include 

Molecular Dynamics or MD methods, coupled methods, NEGF (Non-Equilibrium 

Green’s Functions) and the Boltzmann transport Equation (BTE). The Monte Carlo 

approach is a method to solve the BTE and is used extensively in this Thesis. This is 

described in detail in Section 3.2. 

 

Simulation methods commonly used for studying thermal transport from an 

atomistic perspective, which we touch upon here, include Molecular Dynamics, Non-

Equilibrium Green’s Functions and solving the Boltzmann Transport Equation. 

Classical molecular dynamics (MD), Non-equilibrium molecular dynamics (NEMD) 

and hybrid methods use interatomic forces and thermodynamic interactions to describe 

thermal transport and determine thermal conductivity. Combined (coupled) 

approaches combine facets from multiple approaches to determine thermal properties. 

Alternatively, the Boltzmann Transport Equation (BTE) describes the transport of an 
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ensemble of particles. Using phonon properties (dispersion relation, scattering rates, 

etc.) the phonon transport behaviour and thermal conductivity can be determined for 

a given material [16, 81, 89]. The Monte Carlo method is one approach to solve the 

BTE. Lastly, Non-Equilibrium Green’s Functions (NEGF) use harmonic 

approximations of phonon properties (phonon dispersion relations) directly to 

determine thermal properties and thermal conductivity [105].  Both MD and NEGF 

methods are briefly outlined below, before focusing on the Boltzmann Transport 

Equation (BTE) and the Monte Carlo method which is used extensively in this Thesis.  

 

3.1.1 Molecular Dynamics (MD) methods  

The solution to Newton’s laws (i.e., the classical equations of motion) at the 

atomic scale gives us the molecular dynamics (MD) approach. In MD, atomic 

interactions (i.e., how the atoms move with respect to each other) are determined by 

interatomic potentials [106, 107]. Interatomic potentials are functions that relate the 

potential energy of a system to its atomic positions. Thus, MD can capture coherence 

effects and anharmonicity through the choice of potentials [108]. Finite difference 

algorithms are used to solve the system at each time step, usually less than a 

femtosecond [103]. Thus, there is a trade-off computationally between the size of the 

system and the time for the simulation. The main methods of calculating thermal 

conductivity using MD include equilibrium [109-111] and non-equilibrium [112-115] 

approaches.  

Non-equilibrium MD (NEMD) approaches are direct and analogous to simple 

experiments [101, 108]. Simply put, in NEMD approaches (e.g., [113]), one region of 

the simulation cell is heated and a second region some distance away is cooled. The 

temperature profile between the hot and cold regions is determined, from which the 

temperature gradient can be calculated. If the amount of energy needed to maintain 

the elevated temperature in the hot region and reduced temperature in the cool region 

is known, then the heat current can be computed, from which the thermal conductivity 

can be calculated using Fourier’s law. The direct method usually involves large (109 

K/m) [108] temperature gradients and system sizes dictate the ability to accommodate 

long wavelength phonons and large phonon mean-free-paths.  
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In the equilibrium molecular dynamics (EMD) approach periodic boundary 

conditions are commonly utilized and hence some phonon mean-free-paths (MFPs) 

that are larger than the size of the systems domains can be simulated. However, one 

of the major drawbacks of this approach is that while EMD allows for shorter system 

sizes, it also requires a longer simulation time. A widely used and well established 

EMD approach is the Green–Kubo method [101, 108-110]. The Green–Kubo method 

is based on linear response theory and the assumption that local fluctuations in the heat 

flux of a system in equilibrium are due to the same mechanisms which govern the 

overall thermal properties of the material. The thermal properties of the material are 

computed using the Green-Kubo expression which relates the thermal conductivity of 

the system to the heat current autocorrelation function J vector [101, 102, 108]. The 

thermal conductivity can be derived as:  

2

B 0

1
(0) ( )

3
ij i j t

k VT




=   J J                                    (3.1) 

Here, kB is the Boltzmann constant, V is the volume T is the temperature i, j denote the 

cartesian coordinates for the thermal conductivity tensor and the angular brackets (< >) 

here denote an average over time [108]. 

A significant advantage of the Green–Kubo method is the relatively small 

simulation cell size required – which is much smaller than the simulation cell sizes 

required for NEMD calculations. The disadvantages of the Green–Kubo method 

include poor convergence and the intrinsic difficulty in defining the heat current for 

complicated many-body interatomic potentials [101, 107, 108, 115]. Additionally, 

both of the classes of MD methods also continue to suffer from system size effects, 

that is, the longest wavelength of a phonon is limited by the system size [115, 116].  

There are also hybrid MD methods for analyzing thermal transport in hybrid 

nanomaterials. One method [108, 117] simulates the interaction of wave packets with 

nanomaterials, i.e., the interaction of a group or a packet of phonons with the 

nanostructure. This has been carried out in various nanoscale defects and structures, 

such as for grain boundaries [118], point defects [119] as well as carbon nanotube 

junctions [120]. The system of interest is initialized with an initial state, structure and 

localized wave packet of phonons from a single branch and with a narrow range of 

wavevector values. The wave packet is then allowed to propagate and its interaction 
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with the nanostructured features is then studied to provide information about phonon 

transport through the system. An alternate approach calculates the relaxation time 

(RTA) of the individual phonons from equilibrium molecular dynamics (RTA-ED) 

[121, 122]. The RTA is then used to calculate the thermal conductivity, but the 

approach is applicable only above the Debye temperature. This method, however, does 

have the computational advantage that it requires shorter MD runs than the Green–

Kubo method, and smaller system sizes than direct methods [121, 122]. 

 

3.1.2 Non-Equilibrium Green’s Functions (NEGF) 

NEGF is a well-established, fully quantum mechanical method which takes 

into account the exact geometry without any underlying assumptions [123, 124]. 

NEGF was originally used for electronic systems but has also started to be used for 

phonon transport, recently [125]. The NEGF method has been used widely for thermal 

transport in low dimensional materials [126-133]. For computational reasons it cannot 

scale to large bulk systems. It provides the phonon transport through a given material 

including all phonon wave effects. 

Unlike MD, in which the phonon properties are implicit in (and can be 

extracted from) the choice of interatomic potentials, the NEGF is one approach that 

begins with harmonic approximations of phonon properties. This method was 

primarily developed to study quantum transport in the nanostructures [134, 135]. 

Unlike other methods, the NEGF method does not require thermal equilibrium to be 

established in the system of interest. Hence, some consider NEGF the only method 

that is strictly valid for very small nanostructures, since the notion of the 

thermodynamic equilibrium for a handful of atoms is ill defined [126, 135]. However, 

similar to MD methods, practical applications of the NEGF approach require limiting 

the simulation system domain size to reduce the computational cost of modelling.  

The NEGF method easily captures coherence effects and the exact geometry 

is included [126, 136]. Similar to the case of electrical conductivity through molecular 

junctions, for phonon calculations, nanostructures are considered to be connected by 

two contacts, both of which are semi-infinite and coupled to a heat bath at some lead 

temperature. Phonon populations are established in the contacts corresponding to the 

lead temperature. Heat current through the system might be expressed through the 
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Landauer formula, analogous to the electrical conductivity [128]. The thermal 

conductivity can be computed by solving the Green’s function 𝐺(𝐸) in the non-

equilibrium case, which involves the dynamical matrix of the nanostructure and gives 

a thermal conductivity which appears to be quantized, as experimentally observed 

[137]. The Green’s function is given by [134]: 

( )
1
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1 2( )G E I D
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 = − − −
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                                (3.2a) 

where, D is the Dynamical matrix, 1 , 2 are the self-energy matrices for the device 

contacts. These matrices and the NEGF method is described in greater detail in 

Chapter 7.  

There are various applications of NEGF with corresponding modifications. An 

efficient way of computing the transmission coefficient (Tr(ω)) is through the Caroli 

formula: Tr(ω) = Tr(𝐺(𝐸)ΓL (E)𝐺(𝐸)ΓR(E)) [134, 118], where ΓL and ΓR describe the 

interaction between the contacts and the central region. Caroli et al. first obtained a 

formula for the electronic transport using a more restricted case [138]. The thermal 

conductance can then be obtained using the Landauer formula: 
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( )
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G Tr D d

A T


   



  
=  

 
                             (3.2b) 

where ( )n   is the Bose-Einstein distribution and T is the temperature, A is the cross-

sectional area perpendicular to the heat flow direction, D(ω) is the phonon density of 

states for given frequency. Given a system with length L, the thermal conductivity, κ 

= Gk L/A.  For thermal transport, the NEGF has been derived, modified and applied 

across various systems [126, 136, 139-144].  

In short, the NEGF method has not only been used primarily for electronic 

transport [134], but also for phonon transport in low-dimensional materials [126-132], 

yielding results in agreement with experimental measurements [126, 129]. We discuss 

NEGF at greater depth in Chapter 7, which deals with wave transport through 

nanostructures. Typically, the NEGF method describes transport in the ballistic limit 

but the formalism can also be applied to diffusive cases [132]. This is also expanded 

upon in Chapter 7. 
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3.1.3 Boltzmann Transport Equation (BTE) 

Heat conduction is classically described by the Fourier law and the heat 

conduction equation − which is essentially a diffusion equation [16].  

T
T

t



= 


                                                   (3.3) 

where the LHS determines the temperature variation, T , per change in unit time 

given by t ,  is the medium diffusivity and T is the change in temperature. Eq. 3.3 

is also commonly known as the heat equation. This kind of equation can be interpreted 

as describing a random walk of particles [16, 145]. When looking at heat transport, we 

are actually dealing with energy carriers: electrons are the dominant carriers in metals, 

while phonons are the dominant carriers in semiconducting and insulating materials. 

When these carriers undergo a large number of collisions and their behavior is 

diffusive in nature, Fourier’s law can suitably yield predictive results. However, 

Fourier’s law ignores changes to nanoscale structuring and quantum features. Hence 

for nanoscale structures where there are a lower number of collisions, Fourier’s law 

fails. This is the case in a ballistic regime, which often occurs in low-dimensional or 

nanostructured materials. In such regimes, a different approach is needed. A 

convenient method is to consider the evolution of a distribution function which 

describes the number of particles (phonons) in a certain elementary region around a 

point, i.e., ( , , )f f t= r q , where f  is the distribution function (a number between one and 

zero describing the average distribution of carriers), r is the particle position, q is its 

wavevector, and t is time. This equation varies in space and time under the influence 

of external forces and collisions and is called the Boltzmann Transport Equation [146]. 

The Boltzmann Transport Equation (BTE) is a transport equation describing the 

transport of an ensemble of particles and can be used to model the phonon behavior in 

a crystal lattice [16, 81, 85, 86, 89]. In the absence of external forces, (such as external 

lattice stress/strain), the BTE is given by:  

scatt

f f
v f

t t

 
+  =

 
                                            (3.4) 

Where v is the velocity of the particles. Here the left side of the Eq. 3.4 represents the 

advection component (ballistic component) which causes deviations from the 

equilibrium. The right side of the equation represents the scattering component which 

restores the equilibrium by means of scattering events − phonon-phonon or phonon-
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geometry scattering, etc. The distribution function typically has multiple variables − 

time, space variables, and wavevector variables and the scattering rate − which is 

usually a nonlinear function of q [16, 81, 89]. These complexities and large number of 

independent variables render the BTE extremely difficult to solve by deterministic 

means [81]. An alternative method to solve the BTE is the Monte Carlo method. 

Understanding and modelling the collision term is of key importance in the resolution 

of the BTE, which can be done in a straight-forward way with Monte Carlo [16]. The 

collision term is given by: 

( ) ( ) ( ) ( ), ,

scatt

f
f f

t 


   =  − 


q

q q q q q q                             (3.5) 

where ( ),  q q is the scattering rate from q to q. This scattering term is due to three 

phonon scattering and is a non-linear function which is difficult to treat. However, we 

know that the scattering term restores the equilibrium and thus we can take the 

relaxation time approximation (RTA) for the three phonon processes such that, for a 

time τ the function ( , , )f f t= r q  reduces to (0, , )f f= r q  at rate 1/ τ. Thus, the scattering 

term in the Eq. 3.5 reduces to [34]:  

0

scatt

f f f

t 

 −
= −


                                              (3.6) 

We can hence now use the Monte Carlo method to solve the BTE to study 

phonon transport through a material and determine its thermal properties. Note that 

this approach is not relevant to treat the wave aspects of the problem such as 

interference or tunnelling.  

 

3.2 Monte Carlo method 

The Monte Carlo method is an alternative, effective way to solve the BTE in a 

statistical manner capable of dealing with larger and more complex devices and 

geometries. Understanding the qualitative and quantitative effects of such geometries 

on the phonon transport and thermal conductivity would allow the design of more 

efficient thermoelectrics and heat management systems in general. 

Monte Carlo methods strike a compromise between the comprehensive (but 

sometimes prohibitive) detail of molecular dynamics and the simple (and sometimes 
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inaccurate) application of Fourier's law at the nanoscale [147]. Herein, a large number 

of random events (scattering events) and trajectories are simulated for a given number 

of particles. Multiple geometries, including pores, nanocrystalline grains, both 

diffusive and specular boundaries can all be considered and incorporated 

simultaneously. Some of these can be seen in Fig. 3.2 below.  

 

Figure 3.2: Features of Monte Carlo simulations in a domain of length Lx = 1000 nm 

and width Ly = 500 nm. The domain coloring indicates the local device temperature 

(in K), corresponding to the temperature color map. Possible phonon trajectories are 

given by blue and red lines. Blue-solid lines indicate initial or incident phonon 

trajectories. These can be initialized from either the left (hot) or right (cold) boundary.  

Blue-dashed lines indicate possible phonon trajectory angles, θ. Red lines indicate 

trajectories of scattered phonons after interaction with porous (blue circles) or 

nanocrystalline (black lines) geometries. Red-solid lines indicate specular scattering, 

where incident angle (θi) = reflected angle (θr). Red-dashed lines indicate diffuse 

scattering, where θr is randomized.     

 

One of the earliest works where Monte Carlo was implemented in phonon 

transport is by Mazumder et al. in 2001 [81]. Since then transport schemes of greater 

complexities and with various different focuses have been attempted, such as the work 

by Lacroix et al. [16] which features simulations on silicon and germanium thin films 

where bulk thermal conductivities of silicon and germanium were numerically 

retrieved with a maximal error lower than 8%. In their work, Aksamija et al. dealt with 

rough boundaries in both the specular and the diffusive case with an attempt to 

improve upon the final random angle in the phonon-phonon scattering as given by the 

relaxation-time approximation, by attempting to conserve the (‘quasi’) momentum as 



 

40 

determined by the full phonon dispersion [10, 148].  More complex nanostructures 

have since been examined using MC, such as nanowires [82, 149], thin films [150, 

151], nanoporous materials [89, 152-155], polycrystalline materials [95, 97, 156-158], 

nanocomposites [87, 159], and corrugated structures [160-163]. In devices specific 

work, Vasileska et al. have successfully simulated self-heating effects in Silicon-on-

Insulator devices [164]. They show that at very high porosities, the strong increase in 

boundary scattering due to the decrease in nanowire and nanocrystal size, together 

with the confinement effects involved, results in reduced carrier diffusion and a 

quenching of phonon drag, with consequent reduction in the total TE efficiency [164]. 

This section describes the basis MC simulator developed and employed to 

solve the Boltzmann Transport Equation for phonons in Si nanostructures using the 

Monte Carlo method. We outline the theory behind this method as it applies to pristine, 

nanocrystalline and nanoporous geometries and describe the approach and specific 

implementation used throughout this Thesis. 

 

3.2.1 Incident flux (or single-particle) simulation process 

The Monte Carlo (MC) approach has been adopted for a semi-classical 

particle-based description of phonon transport. For computational efficiency we 

consider a 2D simulation domain of length Lx = 1000 nm and width Ly = 500 nm. This 

choice of domain size has been verified in previous work as being large enough to 

give good agreement with other experimental and theoretical results for real 

nanomaterials, while being small enough to be computationally efficient [58, 59, 60, 

86, 89], as shown in validation sections 3.2.4 to 3.2.6. It is also much longer than the 

average MFP of the system (~130 nm), which ensures diffusive transport. 

The MC simulation method is described adequately in the literature, but 

because our method differs in some details, below we describe our numerical scheme. 

We use the incident flux or  ‘single-phonon MC’ approach which differs from the 

multi-phonon MC approach described in various works in the literature [11, 16, 34, 

80, 81, 85] in terms of phonon attributes book-keeping.  

In a multi-phonon approach, many phonons are initialized simultaneously. 

This is the ‘many particle’ or the ‘ensemble Monte Carlo’ method and it is the most 

common method used in electronic devices [34]. Phonon paths, energy and 
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temperature of all cells are traced simultaneously at every time step, and often periodic 

boundary conditions are employed to remove the effect of the limited simulation 

domain. In the single phonon approach one phonon is simulated at a time from the 

domain edge and propagates through the simulation domain until it exits at either edge. 

Once the phonon exits, the next phonon is then initialized. This is similar to the Ab 

Initio Monte Carlo method developed by Davies et al., but in a 2D domain [166].  

The simulation procedure is then as follows: Phonons enter from either 

direction of the simulation domain and alternate between free flight and scattering 

events. The time it spends in the simulation domain until it exits again, is recorded as 

its Time-Of-Flight (TOF). The regions at the left/right of the simulation domain are 

given ‘Hot’ and ‘Cold’ temperatures, TH and TC, respectively. The rest of the domain 

is initially set at the average temperature of TH and TC – we label that as TBODY. At 

room temperature, a ΔT = 20 K is adequate to gather the necessary statistics for 

simulation convergence, and low enough to ensure the simulation is still within the 

linear response regime [58, 86, 89]. 

Phonons are initialized in the contacts only, based on polarization, frequency, 

velocity, and energy. Phonon probabilities are drawn from a dispersion relation ω(q), 

modified by the Bose Einstein distribution at the given temperature. We use the 

dispersion relation ω(q) and corresponding group velocities vg(q) as described in 

Chapter 2 by Eq. 2.50 and Eq. 2.13 below [85]:  

2
( )

s
q v q cq = +

                             (2.50) 

       
g

d
v

dq


=                                            (2.13) 

where vs and c are fitting parameters to match the thermal conductivity of bulk Si in 

the [100] direction. The dispersion coefficients we use are vs = 9.01×103 ms−1 and c = 

−2×10−7 m2s−1 for the longitudinal acoustic (LA) branch, and vs = 5.23×103 ms−1 and 

c = −2.26×10−7 m2s−1 for the transverse acoustic (TA) branches [86]. Following 

common practice, the contribution of optical phonons is neglected as they have low 

group velocities and do not contribute significantly to phonon transport [16, 80, 81, 

84] (although they indirectly could influence the interaction between optical and 

acoustic phonons and alter the effective relaxation rates of the acoustic phonons [16, 

165]).   
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3.2.2 Phonon scattering treatment 

Phonons in the simulation domain either scatter, or are in free flight. During 

free flight, the position r at time t of the phonon is given by the equation: 

( ) ( )1   i i gt t t−= + r r  v                                            (3.7) 

Scattering of phonons is caused either by interaction with geometrical features, 

or by three-phonon internal scattering (Umklapp processes). The three-phonon 

scattering, which is responsible for the change in the temperature of the domain, is 

computed in the relaxation time approximation and is a function of temperature and 

frequency, as [16, 80, 81, 85, 89, 88]:  

31 LA 2

LA NU B T − =                                               (3.8a) 

1 TA 4

TA, N N B T − =                                              (3.8b) 

for normal scattering processes in the LA and TA branches respectively, and: 
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for Umklapp processes in the TA branch, where 𝜔 is the frequency, 𝑇 is the 

temperature and 𝜔1/2 is the frequency corresponding to 𝑞 = 𝑞𝑚𝑎𝑥/2 . The parameters 

B used in the case of Si are: 𝐵NU
LA = 2.0 × 10−24 𝑠, 𝐵N

TA = 9.3 × 10−13 𝑠, 𝐵U
TA =

5.5 × 10−18 𝑠 [86, 88, 89]. In the works of Holland et al. a simpler Debye 

approximation is used with impurity scattering implemented. Yet, these equations 

used here are commonly used to describe relaxation time in phonon Monte Carlo 

simulations for Si [11, 16, 80, 81, 82, 85, 89, 86], even with more advanced 

approximations and including in works that ignore the impurity scattering [86, 89]. 

However, in these works a small temperature difference (ΔT~5%) between the device 

contacts is required to accurately capture the low temperature peak [86, 89, 116] and 

this was used in our work. Using the Matthiessen’s rule, the total relaxation time 

1 1 1 1

LA TA, N TA, U    − − − −+= +  is determined. When a phonon has spent this time τ in the 

simulation domain, travelling with its state velocity, it undergoes the next scattering 

event, after which the τ is reset.  



 

43 

Physically, under the normal scattering condition, pair-systems of two phonons 

do not change their direction and their pair momentum and energy are conserved [16, 

88, 89]. There is just momentum transfer between the two phonons of the pair-system, 

but this does not affect the thermal conductivity directly. However, indirectly it can 

affect the momentum causing phonons which undergo dissipative processes to interact 

differently with boundaries than the original system [34]. In phonon MC simulations, 

however, we alter the frequency (and consequently energy and momentum) and 

magnitude of the velocity of the phonon, and only leave its direction unchanged. This 

is further described below. Three-phonon Umklapp processes involve three phonons, 

typically of higher energies, and are dissipative. Two-phonons interact, and if their 

added momentum is larger than the length of the Brillouin zone G, then a third phonon 

is created, with total momentum p1+p2-G and backscattered. (However, when 

simulating these processes there are cases where it is more convenient in simulations 

to randomize the direction rather than just backscattering [34].) The energy lost is 

dissipated in the lattice, raising its temperature. This dissipative mechanism causes the 

establishment of a temperature gradient in the channel material and is responsible for 

the thermal conductivity [34, 81].  

The scattering process is as follows: If the phonon is in the TA branch its 

frequency determines the scattering process used. If the frequency of the phonon is 

high (ω>𝜔1/2) Umklapp scattering is carried out, whereas for a low frequency phonon 

(ω<𝜔1/2) normal processes are carried out. This means that for normal process a new 

frequency, wavevector/momentum and velocity amplitude is chosen in the same way 

as is done during the initialization procedure, using the temperature of the simulation 

cell, but the direction remains unchanged. The relaxation time estimation [16, 167] 

states that 𝜔1/2 corresponds to the qmax/2 for the TA branch. For phonons in the LA 

branch we set that half phonons have the probability to undergo a normal scattering 

process, where there is no change in direction and half scatter according to Umklapp 

processes [16]. This means that we draw a random number from a uniform 

distribution, and check if it is below (normal) or above (Umklapp) 0.5. During the 

Umklapp processes we reset the phonon direction, and reset its energy using the 

temperature of the simulation cell where the Umklapp event happened [34, 58]. During 

normal processes, all the participating phonons must be collinear to achieve scattering. 
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Thus, TA mode phonon interactions would only give another TA phonon, whereas LA 

phonon interaction would only result in a LA phonon [81, 168]. 

Momentum conservation is more difficult to maintain within our simulation 

framework where particle-phonons travel independently. Lacroix et al. suggest an 

approach, by which the normal processes “approximately” preserve momentum [16]. 

Considering that Umklapp processes contribute to the thermal resistance directly 

(unlike normal processes), when the phonons scatter through an Umklapp process their 

direction after scattering is randomized as in the initialization procedure (rather than 

backscattered). Therefore, these phonons randomly scatter and contribute to the 

diffusion of heat. For normal processes, it is then assumed that when scattering, 

phonons do not change their propagation direction, only their frequency, the 

magnitude of their wavevector and velocity. By this treatment, the normal processes 

“approximately” preserves momentum. For a plane-parallel geometry, it seems 

possible to guarantee the momentum conservation in a single direction [16, 34]. One 

must note that according to Holland [88] only normal processes exist for the LA 

branch. However, as pointed out by Lacroix et al. [16] applying this assumption means 

momentum has to be conserved for each scattering event involving an LA phonon, 

which leads to thermal conductivity values higher than the theoretical ones for 

temperatures between 100 K and 250 K in Si. Thus, in order to ensure a more realistic 

momentum conservation only half of the LA phonons are scattered using normal 

processes and this has been validated by various works [16, 58, 59, 82, 89, 86]. 

  

3.2.3 Thermal gradient and thermal properties 

Three-phonon scattering causes a change in the energy, and thus the 

temperature (T) of the simulation domain ‘cell’ where scattering took place (we use a 

1 nm domain discretization). If a phonon undergoes a three-phonon scattering as it 

propagates in the channel material, its frequency and energy will be re-initialized 

according to the temperature of the simulation ‘cell’ where it scatters. The total energy 

of the phonons in a simulation lattice ‘cell’ and the temperature is connected through 

the relation [89]: 
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where, 𝜔 is the frequency, 𝑇 the temperature, DOS the density of states and 𝑔𝑝 the 

polarization branch degeneracy. A scaling factor W is also introduced to scale the 

number of phonons simulated to the real population (i.e. in Si at 300 K the phonon 

population is ~105 per 10 nm−3 [89, 169]).  

Every time a phonon with energy Eph undergoes a three-phonon scattering 

event in a ‘cell’ whose temperature Tcell corresponds to energy Ecell, a new phonon 

frequency, wavevector and energy is re-initialized according to Tcell, in the same way 

that is done for the initialization in the contacts to begin with, i.e. according to the 

phonon DOS weighted by the Bose Einstein distribution function at that Tcell. The 

energy difference between this new phonon energy and the old phonon energy ΔE is 

dissipated in the cell. Thus, new Ecell(new) = Ecell(old) + ΔE. This energy dissipation 

corresponds to a change in the ‘cell’s’ temperature – the temperature can both, rise or 

fall, to account for the energy dissipated or extracted from the lattice. The energy 

difference ΔE corresponds to a temperature change ΔT as well, obtained from back-

solving Eq. 3.9 equation for T. Thus, for each ‘cell’ in the domain we keep and update 

its energy Ecell and temperature Tcell. 

Repeated iterations and scattering events that lead to exchange of energy with 

the lattice give a steady state thermal gradient between the two contacts that are placed 

at different temperatures TH and TC. If a phonon originates from a region of higher 

temperature (higher energy phonons), and enters a region of lower temperature, it is 

more probable that after a three-phonon scattering event a phonon with a lower energy 

will be created (initialized) since the temperature in the new ‘cell’ is lower and the rest 

of the energy will be dissipated in the lattice, raising the lattice temperature.  

On the other hand, if a phonon enters a hotter region, coming from a colder 

region (lower energy phonon), it is more probable that after a three-phonon scattering 

event a phonon of higher energy will be created, absorbing energy from the lattice, 

and lowering its temperature. Thus, a temperature gradient is established for a 

continuous flow of phonons (shown in Fig. 3.3 with the yellow to green color scheme). 
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Initially, phonons are injected from both ends of the domain at their respective junction 

temperatures to establish a temperature gradient across the device as seen by the 

coloring in Fig. 3.3. An average of 2.5 million phonons are simulated for this, injected 

from each side.  

Once the thermal gradient has converged, another 2.5 million phonons are then 

injected into the domain from each side. They can make it to the other side, or 

backscatter to where they originated from. The total energy entering and leaving the 

simulation domain is calculated by the net sum of the corresponding phonon energies 

that enter/exit at the hot and cold junctions as calculated by Eq. 3.9. We label the total 

incident energy from the hot junction as 
H

inE  and the total energy of phonons leaving 

the simulation domain from the hot junction as 
H

outE . Similarly, 
C

inE  and 
C

outE  are the 

in-coming and out-going energies at the cold junction. We then determine the average 

phonon energy flux in the system as:  

( ) ( )H H C C

in out in out

 

− − −
 =

E E E E

n TOF
                    (3.10) 

where n is the total number of phonons simulated and <TOF> is their average time-

of-flight. In-depth study on variations of <TOF> is given as Fig. A4 in Appendix A. 

The simulated thermal conductivity is then extracted as:  

X

C

s
A T

L
 


=                           (3.11) 

where is the effective (scaled) cross section area of the simulation domain, which 

together with the scaling factor W above, are used to convert the simulated energy flux 

to thermal conductivity with the proper units [W/mK], as well as calibrate our 2D 

simulation result to the pristine Si bulk thermal conductivity value. Here AC = Ly × 

effective thickness of 0.1 nm (details to follow).  
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Figure 3.3: This is a top view of the studied simulation domain. (a) The coloring 

indicates the established thermal gradients when the left and right contacts are set to 

TH = 310 K (yellow) and TC = 290 K (green). Dashed-lines indicate the phonon path 

traced through the simulation domain (pristine silicon channel). Direction of net 

phonon flux Φ is indicated above. The domain size is fixed to length Lx = 1000 nm 

and width Ly = 500 nm. (b) The linear temperature gradient established for 5 million 

phonons (1 point for every 1 nm in Lx).  

 

Next, to account for the fact that the length of the simulated domain (Lx) is 

smaller than some phonon wavelengths, especially at lower temperatures, a scaling of 

the simulated thermal conductivity (κs) is needed to compute the final thermal 

conductivity κ as [83]: 

( )
( )
X pp

s

X


 

+
=

L

L
                   (3.12) 

where λpp is the average phonon mean-free-path (MFP) of Si. Values for the average 

bulk MFP of phonons in Si at room temperature vary in the literature. In experimental 

studies, values from 100 nm [115] to 300 nm [170, 171] are mentioned (the latter is a 

study on Si films). In theoretical works an even greater variation – from 43 nm [172], 

100 nm [173], 135 nm [83, 88], to 200-300 nm [11] have been reported. A simple 
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gray-body approximation based analytical estimate using kinetic theory gives a value 

of 43 nm [174, 175], however, this fails to address the phonon size effects observed in 

nanoporous silicon materials [175, 176]. More recent calculations estimate longer 

MFPs [177, 178]. Here we chose to use λpp = 135 nm from Jeong et al, because in that 

work the MFP is reported over a variety of temperatures, and we could then validate 

our scaling method over the entire temperature range.  

In this way, the finite size of the simulation domain is overcome using the 

average mean-free-path to scale the simulated thermal conductivity to the actual 

thermal conductivity of an infinite channel length. This scaling is important for the 

pristine bulk case of silicon where a large number of phonons have mean-free-paths 

larger than the simulation domain size, and replaces the need for periodic boundary 

conditions [89]. It is particularly important in the low temperature range where the low 

temperature κ peak of silicon is observed only after this scaling (see Fig. 3.4 below). 

It allows us to simulate shorter channels (in the micrometer range), which simplifies 

the simulation considerably. Thus, with the width of our simulation domain fixed at 

500 nm and a scaling factor of W = 4×105 as specified above [179], which accounts 

for the reduction of the number of simulated phonons per unit volume, when using the 

thickness of 0.1 nm which corresponds to a single atomic layer [180] (to compute the 

volume V of the ‘cells’ above), our simulated thermal conductivity is κs = 130 

Wm−1K−1 at 300 K.  

After using Eq. 3.12 to account for the finite simulation domain we obtain the 

pristine bulk silicon κ ~ 148 Wm−1K−1, which is the value for pristine bulk Si at room 

temperature [151, 86]. Note that in the case of nanocrystalline and nanoporous 

structures (the focus of this work), where the scattering length is determined by the 

grain sizes and pore distances, this scaling is less important. Indeed, the difference 

between the calculated thermal conductivity if the MFP scaling is performed using λpp  

= 135 nm, vs λpp  = 300 nm is at most 15% in the pristine material case, drops to ~6% 

in the case pores are introduced, and becomes insignificant when nanocrystallinity is 

introduced as well. This is also reinforced by the fact that we have fully diffusive 

transport in our disordered systems, verified by simulations of channels with different 

lengths and extraction of the average phonon paths. (See Fig. A5, Appendix A for 
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validation of this method and the above statement for different pp  considerations, as 

well as demonstration of diffusive transport in the channels we simulate).  

Thus, scaling by an ‘effective’ thickness we can calibrate the pristine material 

to Si bulk values, and by scaling with the mean-free-path in Eq. 3.12 we make it 

possible to simulate shorter channels and avoid periodic boundary conditions (see Fig. 

A6,  Appendix A for validation this statement in channels with different lengths). 

Also, the use of the ‘single-phonon’ method is computationally simpler since we do 

not keep track of all phonon positions at the same time. All these simplify the 

computation significantly. In addition, although Monte Carlo can be efficient for 

complex geometries in 3D [16, 80, 81, 84, 86, 89, 151], here we effectively simulate 

a 2D material, i.e. corresponding to ribbons. We executed over 1000 simulations (just 

for validations and results in Chapter 4), each simulation taking approximately 8-10 

hrs, which is an order of magnitude less computationally expensive compared to 3D 

simulations. Our results have been validated by comparing with experimental results, 

and other (2D and 3D) simulators in the next section. 

 

3.2.4  Validation of thermal conductivity simulations for bulk Si case  

 

Figure 3.4: Validation of the single-phonon Monte Carlo simulator (blue line) for 

thermal conductivity (κ) versus temperature for bulk Si. Simulation works (green 

lines) [16, 83, 89, 106, 116, 181, 182] and experimental works (red lines) [88, 96, 181, 

183] are shown. The inset shows a close up of the temperature range between 250 K 

and 350 K. The simulated results are in close agreement to other literature results. 

Adopted from Chakraborty et al. [60].  
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Initially simulations were carried out to compare and validate the simulator for 

bulk values of silicon thermal conductivity. The figure above (Fig. 3.4) compares the 

single-phonon Monte Carlo thermal conductivity simulation results (blue line) for Si 

versus temperature to other (multi-phonon) Monte Carlo methods (in green lines) and 

experimental measured data (in red lines). Excellent agreement is found [59, 60].  

 

3.2.5 Treatment of nanocrystalline structures   

We consider transport in different nanostructured geometries. In the first case 

we consider nanocrystalline geometries as shown in Fig. 3.5a, with the average grain 

size in the simulation domain defined as x G/ d L N =   , where xL  is the length 

of the domain in the transport direction and GN   is the average number of grains 

encountered in that length.  

 

Figure 3.5: Phonon scattering in nanocrystalline structures. (a) Nanocrystalline (NC) 

materials with changing grain dimension (<d>) and length Lx in the transport 

direction. (b) Schematic for grain scattering indicating the initial angle of the phonon, 

θGB, from the normal (black-dashed line), grain boundaries (black lines), initial path 

of the phonon (blue line) and probable paths of the phonon after scattering (red-dashed 

lines and green-dashed transmitted line). Examples of specular reflection (red-solid 

lines) and diffusive reflection (red-dashed lines) are also indicated. Transmission is 

dependent on grain boundary roughness as well as phonon wavevector q. 

Transmission probability is given by Eq. 3.13. 

 

Grains in the nanocrystalline case are generated using Voronoi tessellations, 

where grain boundaries are created by considering input values for the number of 
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“seeding points” and the dimensions of the domain [156]. In these structures κ is 

impeded in two ways − the scattering of phonons due to the grain boundaries and 

internal three-phonon Umklapp scattering inside the grains. If a phonon reaches a 

boundary, then a decision is made whether the phonon will transmit to the other side, 

or reflect. This decision is made upon a probability distribution, which depends on the 

phonon wavevector, the roughness of the boundary Δrms and the angle of incidence 

between the phonon path and the normal to the grain boundary θGB (see Fig. 3.5b), and 

is given by the commonly employed relation [156]: 

( )2 2 2

scatter rms GBexp 4 sin   = −t q    (3.13) 

If the phonon makes it to the other side of the boundary, it continues its path intact. If 

it is reflected, then another random number, that depends on the specularity parameter 

p (roughness strength), dictates whether it will scatter specularly, or diffusively [81]. 

We do not assume that the phonon changes its energy at the interface as is common 

practice, but only its direction.  

 
Figure 3.6: Validation of the Monte Carlo phonon transport simulator for 

nanocrystalline materials through comparisons with various simulation results (green 

lines) [65, 96, 97, 184, 185], and experimental results (red lines) [96, 98, 116, 185-

187] for silicon available in the literature, are shown. Our simulation results showing 

the thermal conductivity for silicon as the grain size is varied from a grain dimension 

<d> of 1000 nm to 50 nm are shown by the blue line. Error bars represent standard 

deviations for results over 50 simulations. Adopted from Chakraborty et al. [59].  
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Simulations were carried out from a grain dimension <d> of 1000 nm to 50 nm 

as shown by the blue line in Fig. 3.6 above. Comparing with existing theoretical 

literature values (in green lines) and experimental data (in red lines) we see good 

agreement [59].  

 

3.2.6 Treatment of nanoporous structures 

 

Figure 3.7: Phonon scattering in nanoporous structures. (a) Ordered nanopores within 

the pristine channel material in a rectangular arrangement. (b) Random nanopores 

within the pristine channel material (c) Schematic of scattering mechanism for pore 

scattering, indicating the pore boundary, the initial angle of the phonon θin, and 

potential new angle of propagation θref depending on specularity parameter p. Probable 

paths of the phonon after scattering for both diffusive (red-dashed lines) and specular 

(red-solid line) are depicted. 

 

We next look at the treatment of porous structures as we see in Fig. 3.7a and 

Fig. 3.7b above. If a phonon interacts with a pore boundary, it is reflected either 

specularly or diffusively. When it is reflected, then a random number, that depends on 

the specularity parameter p (roughness strength), dictates whether it will scatter 

specularly, or diffusively [81]. We do not assume that the phonon changes its energy 

at the interface as is common practice, but only its direction. p takes values from 0 to 

1, with p = 0 indicating diffusive, randomized reflection angle and p = 1 specular 

reflection where the angle of incidence is the same as the angle of reflection (see Fig. 

3.7c). In the case of specular pore boundary scattering, the angle the phonon will 

reflected into, is defined based on geometrical considerations (the angle of incidence 

is the same as the angle of reflection) as: 

ref inc  2  = −              (3.14) 

where θinc is the angle of propagation of the phonon relative to the x-axis, and γ is the 

angle formed by the line perpendicular to the pore at the point of interaction and the 

x-axis, as explained in Fig. 3.7c. Using this formalism, we carry out simulations for 

the nanoporous structures – changing the number of pores in the pristine channel in 
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both the ordered and random nanoporous cases, seen in Fig. 3.7a and Fig. 3.7b 

respectively. We vary the percentage porosity (area of pores as a percentage of total 

area of domain) from 0% (an empty, pristine channel) up to 50%. Results vary 

depending on if the pore arrangements are ordered (blue-solid lines) or random i.e. 

disordered (blue-dashed line), however, again qualitatively and quantitatively our 

results are within other literature data. This is seen in Fig. 3.8 below.  

 
Figure 3.8: Validation of the simulator for nanoporous Si materials. Various 

simulation results are shown (green lines) [86, 89, 152, 188, 189], and compared 

against experimental results (red lines) [41, 96, 190, 191]. Our simulation results for 

the thermal conductivity of silicon as the percentage porosity ( ) (area of pores as a 

percentage of total area of domain) is varied up to 50%. Simulations of ordered porous 

structures are indicated by the blue-solid line, and of disordered porous structures the 

blue-dashed line. Adopted from Chakraborty et al. [59].  

 

Note that instead of a constant specularity p, in Monte Carlo it is also possible 

to determine the actual specularity for each phonon using the expression: 

 ( ) ( )2 2 2

rmsexp 4 cosp q q  = −                                (3.15) 

where Δrms is the roughness of the pore boundary surface and   is the angle of phonon 

incidence [192]. This formalism would also allow wavevector (q) dependence of 

reflections. In that case, what is constant is the surface roughness (Δrms). Here we use 

a constant p, and the rationale behind studies which use constant Δrms versus constant 

p [86, 89, 172, 193-196], is that the microscopic details of phonon scattering at 
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interfaces are poorly understood anyway [195]. However, either way gives very 

similar results without any qualitative or quantitative differences in disordered 

structures. For example, one can map a specific Δrms to a specific specularity; the p = 

0.1 case in our results below corresponds to Δrms ~ 0.3 nm (see Fig. A7, Appendix A), 

which corresponds well to rough silicon surfaces [197, 198]. 

    

3.3  Summary 

In summary, in this chapter we explored different methods to simulate phonon 

transport in nanostructured materials. We developed a large-scale ‘single-phonon’ 

Monte Carlo phonon transport simulator to solve the Boltzmann Transport Equation 

for phonons in Si nanostructures. We established the treatment of nanocrystalline and 

nanoporous geometries in silicon nanomaterials. The simulator was thoroughly 

validated for the bulk pristine, nanocrystalline and nanoporous cases, against both 

experimental and theoretical values in the literature. The MC method and the phonon 

transport simulator described in this chapter form a part of our published works [58-

62]. For these results simulations were carried out using up to 10 million phonons at a 

time (and up to 50 iterations per geometry) with appropriate supercomputing clusters, 

when necessary. The phonon transport simulator was also repackaged, written entirely 

in Matlab, as a more user friendly app using in-built Matlab GUI. The app was used 

and validated against existing literature [41, 86, 89, 96, 152, 189, 190, 191]. Feedback 

was used to improve the app and further details regarding its most updated version are 

available in Appendix A, in the section A12.  

Using the methods discussed in this chapter we now investigate the phonon 

transport in hierarchical nanostructures, highly disordered geometries at different 

temperature regimes and novel nanostructured material designs in the following 

chapters.  
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4. Phonon transport in hierarchically disordered 

silicon nanostructures 

4.1 Introduction: hierarchically nanostructured materials 

As discussed in Chapter 1, hierarchical and highly disordered nanostructures 

are one of the most promising ways to achieve very high thermoelectric (TE) 

efficiencies and, thus, engineering such materials has recently attracted significant 

attention. Strong disorder, and more specifically disorder on hierarchical length scales, 

originating from various types of defects, can scatter phonons of different wavelengths 

throughout the spectrum and drastically reduce thermal conductivity. This approach 

substantially improves thermoelectric efficiency and it is currently being employed in 

a variety of new generation thermoelectric materials. For example, using hierarchical 

inclusions at the atomic scale, the nanoscale, and the mesoscale in the PbTe–SrTe 

system, Biswas et al. reported a κ of 0.9 Wm−1 K−1 at 915 K and a ZT of 2.2 [5]. More 

recently, using this method for the p-type Pb0.98Na0.02Te-SrTe system, Tan et al. 

reported an even lower lattice thermal conductivity (κ) of 0.5 W K−1m−1 and a higher 

ZT of 2.5 at 923K [100]. Reports also show that hierarchical nanostructures can 

improve the thermoelectric power factor as well [45, 54-58]. 

Drastic reductions in thermal conductivity have been reported in 

nanocrystalline silicon materials. Wang et al. [96] showed that the room temperature 

silicon thermal conductivity decreases from 81 Wm−1 K−1 to 24 Wm−1 K−1 as the 

average grain size decreases from 550 nm to 76 nm, whereas κ below 5 Wm−1 K−1 has 

been reported for average grain sizes of about 10 nm [97]. For grain sizes of 3 nm 

Nakamura et al. reported κ = 0.787 ± 0.12 Wm−1 K−1 [51, 52]. Nanoporous ‘holey’ 

structures have been shown to exhibit reproducibly low κ around 1-2 Wm−1 K−1 [41, 

53, 43], while still maintaining sufficient electronic properties. Nanostructures that 

combine these achieve even lower κ. A recent silicon-based work reported κ of 20.8 ± 

3.7 Wm−1 K−1 for an average pore size of ~30 nm and grain sizes between 50 nm to 80 

nm [98]. By reducing both pore and grain sizes, however, Basu et al. reported κ = 1.2 

Wm−1 K−1 at 40% porosity in p-type silicon [99]. A recent work in SiGe nanomeshes, 

reported ultra-low κ of 0.55 ± 0.10 Wm−1 K−1 for SiGe nanocrystalline nanoporous 

structures, a value well below the amorphous limit [33]. 
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 A significant amount of work can be found in the literature attempting to 

clarify these experimental observations. However, theoretical investigations of 

thermal conductivity in highly/hierarchically disordered nanostructures (which 

include not only crystalline boundaries, but also pores of random sizes placed at 

random positions) are very limited. Understanding the qualitative and quantitative 

details of such geometries on the thermal conductivity would allow the design of more 

efficient thermoelectrics and heat management materials in general. In this chapter, 

we solve the Boltzmann Transport Equation for phonons in disordered Si 

nanostructures using the Monte Carlo (MC) method and the simulator described in 

Chapter 3. Monte Carlo, which can capture the details of geometry with relevant 

accuracy, is widely employed to understand phonon transport in various 

nanostructures such as nanowires [16, 82, 149], thin films [150, 151], nanoporous 

materials [89, 152-155], polycrystalline materials [95 , 97, 156-158], nanocomposites 

[87, 159], corrugated structures [160-163], Silicon-on-Insulator devices [164], etc.  

In this chapter, we consider geometries that include grain boundaries, surfaces, 

and pores as in realistic nanocomposite materials, which all contribute to reducing 

thermal conductivity. We show that the influence of randomization in the disorder has 

a crucial effect in determining thermal conductivity, despite being usually overlooked. 

After examining the influence of nanocrystallinity and porosity individually and 

combined, we validate the simplified compact models commonly employed in the 

literature. We then propose more accurate models based on simple geometrical 

configurations that describe the randomization of disorder. These improved models 

could serve as a valuable tool for materials design and for experimentalists to more 

accurately evaluate a first order interpretation of their results, without the need of 

large-scale simulations.  

This chapter is organized as follows: In Section 4.2 we investigate the effects 

of nanocrystallinity, grain size and grain roughness in nanocrystalline case. In Section 

4.3 we present our results on the effects of nanoporous structures, randomized 

disordered pores and hierarchical nanostructuring on thermal conductivity 𝜅. In 

Section 4.4 we validate existing analytical models for such geometries and develop 

our more accurate compact models for highly disordered cases. In Section 4.5 we 
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verify the applicability of Matthiessen’s rule for the hierarchical nanostructures 

considered in previous sections. Finally, in Section 4.6 we present our conclusions. 

 

 

Figure 4.1: Examples of the nanostructured geometries considered. The coloring 

indicates the established thermal gradients when the left and right contacts are set to 

TH = 310 K (yellow) and TC = 290 K (green). (a) Pristine silicon channel. (b) 

Nanocrystalline (NC) channel. (c) Ordered nanopores (NP) within the channel 

material of ~20% porosity in a rectangular arrangement. (d) Combined NC and 

disordered NP material. (e) Schematic of scattering mechanism for pore scattering, 

indicating the pore boundary, the initial angle of the phonon θin, and potential new 

angle of propagation θref depending on specularity parameter p. Probable paths of the 

phonon after scattering for both diffusive (red-dashed lines) and specular (red-solid   

line) are depicted. (f) Schematic of the scattering mechanism for grain boundary 

scattering, indicating the initial angle of the phonon θGB from the normal (dashed line), 

grain boundaries (black lines), initial path of the phonon (blue line) and probable paths 

of the phonon after scattering (red-dashed lines and green-dashed, transmitted line). 

Reproduced from [D. Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 

2018, American Physical Society. 
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4.2 Effects of grain size and roughness in nanocrystalline case 

The Monte Carlo (MC) approach has been adopted for a semi-classical 

particle-based description of phonon transport. The MC simulation method is 

described adequately in the literature, but because our method differs in some details, 

we have described our numerical scheme thoroughly in Chapter 3. We use the ‘single-

phonon MC’ approach which differs from the multi-phonon MC approach described 

in various works in the literature [11, 16, 80, 81, 85] in terms of phonon attributes 

book-keeping. The domain is populated with nanostructured features as shown in Fig. 

4.1 above. Here, we look at the structures depicted in Fig. 4.1 above at 300 K only. 

Initially simulations were carried out to compare and validate the simulator for bulk 

values of silicon thermal conductivity as seen in Chapter 3. Good agreement is found 

between our simulated results and literature values of silicon thermal conductivity 

across a large temperature range with several works in the literature. After bulk-Si 

validation, we proceeded with the analysis of nanostructuring on the thermal 

conductivity. 

The treatment and validation of nanocrystalline structures is outlined in 

Chapter 3 (Section 3.3.5). We begin our investigation with the effects of the grain 

size <d> and boundary roughness (Δrms) on the thermal conductivity. The probability 

of phonon transmission across a grain boundary is given by:  

( )2 2 2

scatter rms GBexp 4 sin   = −t q     (3.13) 

The results are shown in Fig. 4.2 where κ is plotted as a function of average 

grain size <d>. Each point is an average of 50 simulations of different geometry 

realizations.  
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Figure 4.2: The effects of grain size and grain boundary roughness (Δrms) on the 

thermal conductivity of the silicon channel. Grain size is varied from an average grain 

dimension <d> of 1000 nm down to 50 nm. The structure geometry insets labelled ‘1’ 

to ‘6’ give typical examples of geometries from <d> = 50 nm to 225 nm, respectively. 

We simulate three different values of grain boundary roughness, Δrms = 0.25 nm (red 

line), 1 nm (blue line) and 2 nm (black line). Each point is an average of 50 

simulations. A sharp drop in thermal conductivity is observed below <d> ~ 140 nm 

(structure sub-figure and point ‘4’). Inset: Some available experimental results [96, 

98, 185, 186, 189] are compared to the Δrms = 1 nm (blue line). Reproduced from [D. 

Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American 

Physical Society. 

We consider average grain size from <d> = 1000 nm down to <d> = 50 nm as 

indicated by the geometry sub-figures above the graph in Fig. 4.2 (from sub-figure 1 

where <d> = 50 nm to sub-figure 6 where <d> = 225 nm). Three different values of 

Δrms = 0.25 nm, 1 nm, and 2 nm were simulated, shown in Fig. 4.2 by the red, blue, 

and black lines, respectively. Decreasing grain size causes a reduction in κ, from 97.8 

Wm−1K−1 to 19.9 Wm−1K−1. This is consistent with other available theoretical [65, 95-

97, 116, 183-187, 199] and experimental results [96, 98, 185, 186, 189], as shown in 

the inset in Fig. 4.2. Note that our large grain thermal conductivity does not reach the 

bulk value (κ ~ 140 Wm−1K−1) because we consider boundary scattering on the 
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surfaces of the simulation domain. An important observation is that a rapid drop in κ 

is observed for structures in which the average grain size is below the average phonon 

mean-free-path (λpp = 135 nm). For these structures, grain boundary scattering has a 

more dominant role than intrinsic three-phonon scattering. This observation is 

consistent for the different values of grain boundary roughness. On the other hand, 

changes in the values of grain boundary roughness (Δrms) seem to play a comparatively 

smaller role in decreasing κ (comparing the red, blue, and black lines respectively, in 

Fig. 4.2). Phonon paths are already randomized by the numerous grains and intrinsic 

scattering, and thus the additional randomness from grain boundary roughness plays a 

minimal role. Similarly, it is also noticeable that as the grain size decreases the 

variability in the results (the average of the 50 simulations for each point), as indicated 

by the error bars, also decreases, especially for grain sizes smaller than the MFP.  

 

4.3 Effects of nanoporous and hierarchical nanostructuring 

This section explores the effects of nanoscale porous structures, highly random 

disordered porous structures and combined hierarchical nanostructuring on the 

thermal conductivity. The effects of porosity (percentage of porous region compared 

to total area), pore boundary roughness (in terms of specularity) are initially 

investigated. The effects of randomness or disorder at the nanoscale is then examined 

using only nanoporous structures. Finally, nanocrystalline and nanoporous structures 

are combined to form hierarchical composite nanostructures. Thermal behaviour in 

hierarchically nanostructured material, in both ordered and disordered cases, is then 

further investigated.     

 

4.3.1 Influence of porosity and pore roughness 

Figure 4.3 summarizes the effects of porosity ( ) and pore boundary 

roughness on the thermal conductivity of nanoporous silicon. Treatment of 

nanoporous structures is outlined in Chapter 3 (Section 3.3.6). Examples of the 

typical geometries considered, with porosities of 5%, 10% and 15%, for both ordered 

and disordered configurations, are shown as sub-figures above Fig. 4.3. In all sub-

figures the channel dimensions are length Lx = 1000 nm and width Ly = 500 nm.  
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Figure 4.3: The thermal conductivity (κ) versus porosity ( ) for two geometry cases 

− ordered case (solid lines) and random case (dashed lines). Three different values for 

boundary specularity are considered: p = 1, totally specular boundary scattering (blue 

lines); p = 0.5 (green lines); and p = 0.1, almost diffusive boundary scattering (red 

lines). The inset depicts the percentage reduction in thermal conductivity for the p = 

0.1 (red line), random porosity case compared to the ordered case. The geometry 

structures of the simulated geometries for ordered and random arrangement cases for 

5%, 10 % and 15 % porosity are shown on top of the figure. In all cases the domain 

size is fixed to length Lx = 1000 nm and width Ly = 500 nm. Reproduced from [D. 

Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American 

Physical Society. 

In the ordered geometry cases the pore diameter is fixed at D = 50 nm. In the 

random cases the pores are arranged in random positions and their diameters vary from 

10 nm to 50 nm using a uniform distribution. Here, κ is plotted as a function of porosity 

  (x-axis), and results for structures with boundary specularity parameters p = 1 (fully 

specular case, blue line), p = 0.5 (green line), and p = 0.1 (almost fully diffusive case, 

red line) are shown. The ordered pore cases are shown in solid and the randomized 

pore cases in dashed lines. Again, each point is the average of 50 different 

configurations with the variation bar denoted. Note that for the p = 1 case (blue-solid 
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line), where boundaries everywhere are completely specular, and for zero porosity, the 

value of κ approaches the bulk 148 Wm-1 K-1. 

Phonons back-scatter on the pores since the pores are large and transmission 

is not allowed, unlike in the case of grain boundary scattering where transmission of 

phonons through the grain boundary is statistically allowed. Firstly, we observe that 

reducing specularity causes a reduction in κ. However, an order of magnitude decrease 

in p from p = 1 (blue line) to p = 0.1 (red line) causes only a ~33% drop in κ at most, 

and only at low porosities where phonon trajectories might still not be completely 

randomized [86]. Increasing porosity, on the other hand, causes a significant decrease 

in κ as also observed in previous theoretical [86, 89, 152, 173, 188, 200] and 

experimental results [41, 43, 53, 201]. In fact, the effect of porosity has a much greater 

impact than pore roughness. An order of magnitude reduction in specularity causes 

roughly the same effect as 15 % porosity in the ordered case (blue-solid line), an 

observation consistent with previous works [86, 89]. We note here that Monte Carlo 

does not account for coherent phonon effects which could affect the phonon spectrum 

and thermal conductivity, but there is increasing evidence that such effects are 

important only at low temperatures and weak roughness conditions [196, 202], 

whereas here we deal with room temperature and mostly diffusive boundaries.  

  

4.3.2 Influence of randomized pore positions and diameters 

We next consider the effects of random diameter and pore positions at different 

porosities as shown in the ‘random’ sub-figures in Fig. 4.3. A further decrease in 

thermal conductivity is observed as a consequence of disorder, irrespective of pore 

boundary specularity. For the diffusive pore case the reduction can vary from ~35% 

(low porosity) to ~65% (high porosity), which is quite significant, as shown in the 

inset of Fig. 4.3. We discuss the reasons behind this in detail in Section 4.4 below 

when we construct an analytical model to account for this reduction. On the other 

hand, the influence of specularity in the randomized pore cases is again comparatively 

minimal and diminishes as porosity increases (blue, green and red-dashed lines in Fig. 

4.3). It is illustrative to separate the two effects that constitute the randomization in 

the polydispersed nanoporous geometries, i.e. the randomization in pore position and 

randomization in pore diameter. Figure 4.4 shows the thermal conductivity if 
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structures with ordered pores and polydispersed pores (solid and dashed red lines – 

same as the p = 0.1 cases in Fig. 4.3), and the corresponding thermal conductivity of 

the structures in which only the pore positions are randomized. Typical geometries are 

depicted in the schematics of Fig. 4.4.  

 

Figure 4.4: The thermal conductivity versus porosity ( ) for ordered pore structures, 

randomized pore structures, and polydispersed geometries with randomized pore 

positions and diameters. In the first two cases (red and black solid lines), the diameter 

is fixed at D = 50 nm (see sub-figure schematics for 10% porosity). In all cases the 

specularity for all boundaries is fixed at p = 0.1. Reproduced from [D. Chakraborty et 

al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American Physical Society. 

 

Clearly, the randomization of the positions alone has a significant effect in 

lowering the thermal conductivity. It seems that for lower porosities it is the dominant 

factor for the deviation between the ordered and the polydispersed geometries. For 

higher porosities both randomized location and randomized diameters have similar 

influence in further reducing the thermal conductivity from the ordered pore case. The 

effect of pore scattering surface area on thermal conductivity is also further explored 

in Section 4.4.3 and in the Appendix (see Section A8 and Fig. A8 in Appendix A). 
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4.3.3 Hierarchical disordered nanostructures 

We next combine the effects of nanocrystallinity and porosity, as in realistic 

nanocomposite materials. Again, ordered and randomized pores are considered as 

shown in Fig. 4.5a and Fig. 4.5b, respectively, shown here for 5% porosity.  

 

Figure 4.5: Monte Carlo simulations showing the combined effects of grain size and 

porosity ( ) in both the ordered pores case (solid lines) and random pores case (dashed 

line) versus grain size <d>. The thermal conductivity at for porosities   = 0%, 5%, 

10% and 15% are shown by the blue, magenta, light-blue, and red lines respectively. 

The effect of combined nanocrystalline and nanoporous material with random pore 

positions and sizes (uniformly distributed between 10 nm to 50 nm) is depicted by the 

red-dashed line. Examples of typical geometries simulated for the case of 5% porosity, 

for both ordered and random pore arrangements, are shown above the figure. 

Reproduced from [D. Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 

2018, American Physical Society. 

 

Figure 4.5c plots the thermal conductivity versus the average grain size (<d>) 

for structures with different porosity values ( ). The roughness on the transmittable 

grain boundaries is fixed to Δrms = 1 nm, while for the outer top/bottom boundaries of 

the simulation domain and the pore boundaries we use a specularity parameter of p = 
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0.1. Both conditions correspond to rough, almost fully diffusive cases. Again, each 

point shown in Fig. 4.5c is an average of 50 simulations. The top blue line depicts the 

zero porosity case, the same as the initial results for Δrms = 1 nm shown in Fig. 4.2 

(blue line). Adding pores in an ordered fashion further reduces κ. This can be seen for 

5% (magenta line), 10% (light-blue line) and 15% (red line) ordered porosity. The 

thermal conductivity decreases as either porosity increases, or the average grain size 

<d> decreases, with large porosity dominating at large grain sizes, whereas boundary 

scattering dominates at small grain sizes. With regards to the variation bars, as porosity 

increases and/or grain size decreases, scattering becomes more and more randomized, 

and variations in the thermal conductivity are reduced, as also observed above.  

The red-dashed line in Fig. 4.5c shows the thermal conductivity versus average 

grain size in the case of a   = 15% randomized porous structure. The pores are 

randomized in terms of diameter and position as indicated in Fig. 4.5b. The pore sizes 

are again varied from D = 10 nm to 50 nm in a random fashion using a uniform 

distribution. As in the case of only porous geometries earlier, randomization in the 

pore features reduces κ significantly. In this case, at <d> = 1000 nm at the right side 

of Fig. 4.5c, there is an initial 50% drop in κ in the randomized case compared to the 

ordered (red lines), followed by a slow rate of decrease in κ as the grain size decreases. 

This suggests that a high degree of randomization and small average pore size, makes 

phonon scattering on pores much more dominant than the intrinsic three phonon 

scattering and grain boundary scattering. When the grain size becomes very small 

(below pp ), then it starts to play an important role again. In these structures, around 

20 scattering events is not uncommon across the domain (see Fig. A6b, Appendix A).   

 

4.4  Analytical models developed 

There are many analytical models available in the literature that describe the 

effects of material geometry on κ, either in the presence of grain boundaries [184, 199, 

200, 203], or pores [182, 188, 204, 205]. These are based on simple geometrical 

considerations, and assume uniformity of the corresponding features, but in the case 

of non-uniformities, or in the presence of two or more types of nanosized features, 

their accuracy fades. Here we compare our full simulation results to some of these 
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widely employed analytical models found in the literature. We aim to quantify their 

validity and further develop more accurate models that can capture the effects of non-

uniformity (disorder) in nanostructuring, based on simple geometrical considerations. 

  

4.4.1  Nanocrystalline case 

The analytical models widely employed for nanocrystalline materials, are 

based on the simple logic that: i) phonons in a nanostructured material undergo 

additional scattering events at a rate at which they meet the boundaries as they 

propagate in the material, ii) an additional interface resistance (Kapitza resistance) is 

introduced due to disruptions in the phonon flow. Based on these principles, a few 

examples of the form that these models take are given in the works of Nan et al. [200], 

Yang et al. [203] and Dong et al. [184], given by Eqs. 4.1, 4.2, and 4.3, respectively:  
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Above, κ0 is the bulk thermal conductivity of silicon and λpp is the average phonon-

phonon mean-free-path (here λpp = 135 nm), RK is the Kapitza resistance, and d the 

average grain size (<d> in Monte Carlo). Here we use RK = 1.06 ×109 Km2W−1 [206]. 

Literature values for RK vary slightly in the range of 1−1.16 × 109 Km2W−1 [118, 184, 

206 - 210], a variation that makes only very little qualitative difference to the results 

we show below (at most 2 to 3%, see Fig. A9, Appendix A). In another simplified 

intuitive picture, 𝜅 is scaled by how many more scattering events a phonon undergoes 

due to the crystalline boundaries within the length of its pristine material MFP as:  
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    (4.4) 

Note that Δrms or the boundary specularity does not appear in any of these 

models, which are assumed valid under diffusive phonon scattering conditions.  

 

Figure 4.6: Monte Carlo simulation results compared to analytical models. (a) 

Thermal conductivity versus grain size for commonly employed analytical models for 

nanocrystalline geometries compared to the Monte Carlo results (blue line). The grain 

size is varied from an average of <d> = 1000 nm down to 50 nm with a roughness 

Δrms = 1 nm. (b) Thermal conductivity versus porosity for the commonly employed 

analytical porous material models compared to the Monte Carlo results (blue line). 

The pore boundary specularity is fixed at p = 0.1. In both cases the domain top/bottom 

roughness specularity is set to p = 0.1. Updated, adopted from Chakraborty et al. [58].  
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Figure 4.6a compares our Monte Carlo simulation results to those of the 

various nanocrystalline material models. We keep the temperature fixed at T = 300 K 

and almost diffusive grain boundary scattering with p = 0.1.  With the exception of the 

model described by Eq. 4.1 which overestimates the thermal conductivity, and the 

model by Eq. 4.4 (‘NC model’) which underestimates it slightly at larger grain sizes, 

the models based on the simple reasoning of increased scattering rates and Kapitza 

resistance are in very good qualitative and quantitative agreement with the full Monte 

Carlo simulation results (blue line). 

 

4.4.2  Nanoporous case 

In the case of porous materials, the various analytical models are based on the 

simple logic that the thermal conductivity is reduced due to: i) the material volume 

reduction reflecting the reduction in the material heat capacity, and ii) the larger 

number of scattering events on the pore boundaries within the intrinsic phonon-

phonon scattering mean-free-path length, similar to the nanocrystalline material case. 

A few commonly employed models in the literature for the thermal conductivity of 

nanoporous materials are given in the works of Eucken et al. [205], Gesele et al. [188], 

Dettori et al. [173], Tarkhanyan et al. [204], and Verdier et al. [182], given by Eqs. 

4.5 [205], 4.6 [188], 4.7 [173], 4.8 [204] and 4.9 [182], respectively:  
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where δ is the average distance between adjacent pores and D is the pore diameter. In 

Eq. 4.6, 0g  is related to percolation transport, approximated by the Looyenga effective 

medium model to be (1– )2 [211]. To extract the distance δ, we determine the number 

of collision (scattering) events, Ncoll, per unit length (along the length of the material 

towards the transport direction). The way that the number of collisions encountered is 

extracted, is simply by multiplying the size of the pores (area) by the number density 

of the pores (ρ) in domain in units of number/area, as [173]:  

2

coll
4

D
N


=                                               (4.10) 

The inverse of the number of interface scattering events per unit length provides the 

effective scattering distance δ between the pores (δ =1/ collN ). We adopted this from 

the works of Dettori et al. [173] and Lorenzi et al. [212]. For instance, in the case of 

10% porosity in the geometries we consider, the pores are spaced every 150 nm. The 

diameter is 50 nm, which from the above equation one can extract δ ~ 100 nm, which 

is similar to an effective distance between the pore perimeters. In the case of 30% 

order porosity, for example this number changes to 39 nm.  

Figure 4.6b shows a comparison of our diffusive boundary Monte Carlo 

simulations for the ordered porous structures of Fig. 4.3 ‘ordered cases’, with the 

analytical models as described by Eqs. 4.5-4.9. The model of Gesele et al. (green line) 

[188] and Tarkhanyan et al. (purple line) [204] given by Eq. 4.6 and Eq. 4.8, 

respectively, show excellent agreement. The model by Dettori et al. (light-blue line) 

[173] given by Eq. 4.7 initially slightly underestimates the Monte Carlo results, but 

shows good agreement after   = 20%.  The model of Eucken et al. given by Eq. 4.5, 

which only accounts for the reduction in the material volume ( ) in the first order, 

significantly overestimates the Monte Carlo results. Alternately, the model given by 

Eq. 4.8 [182] (red line) accounts only for the mean-free-path reduction, but 

underestimates the reduction in 𝜅 in the Monte Carlo results.   

Overall, there is good match for the ordered porous cases (especially using Eq. 

4.6 and Eq. 4.8), but not for the polydispersed cases – where the thermal conductivity 

results are much lower. This signals that, disordered pores these models fail, and more 

accurate models are needed. In fact, the models described by Eq. 4.5 and Eq. 4.6 do 
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not consider specific information regarding the details of the pore distribution in the 

material (positioning, diameters, shapes, interfaces, etc.), but only the volume 

reduction value. The models given by Eq. 4.7, Eq. 4.8, and Eq. 4.9 further consider an 

effective distance where scattering events are introduced, but still nothing about the 

distribution of those geometrical features in the material. We now expand on these 

models to include details of the random disordered pore distribution.  

 

4.4.3  Random nanoporous case 

To construct an effective analytical model for the thermal conductivity in the 

case of structures with randomized pore geometries, we consider the following logic: 

In the case of pores with randomized diameters and positioning, there are regions in 

the simulation domain that have a higher porosity than the average porosity of the 

overall material. These regions have an increased thermal resistance compared to the 

average resistance of the other segments of the material, something referred to as 

reduced ‘line-of-sight’ [213-215]. It is not clear though, how rearrangement of the 

thermal resistance along the length of the material in low and high resistance regions 

can affect the thermal conductivity and at what degree. Previous work shows that there 

is indeed a correlation between such rearrangements and lowering thermal 

conductivity [89, 213]. On the other hand, by introducing a larger number of small 

diameter pores, as in this work, the effect of resistance variation along the path is 

magnified, since a reduced average diameter of pores provides greater surface area for 

phonon scattering [154, 196]. The effect of pore surface area on thermal conductivity 

is explored in further depth in Section A8, Appendix A.  

To construct an analytical model that can take this thermal resistance variation 

into account, we proceed as follows: We start by dividing the simulation domain into 

subdomains perpendicular to the transport direction, whose length ls is determined 

from scattering mean-free-path considerations using Eq. 4.10, i.e. ls = δ, as shown in 

Fig. 4.7a and 4.7b (for ordered and randomized geometries, respectively).  



 

71 

 

 

Figure 4.7: Extraction of the variation in distances between pores,  , and variation 

in porosity,  , in the nanoporous materials examined. Geometries for (a) ordered  and 

(b) randomized (disordered) nanoporous geometries with   = 10 % are shown on top. 

The distribution of distances between pores, averaged every ls = 100 nm (depicted by 

the red-dotted lines), is shown in (c) and (d), respectively. The distribution of pore 

distances is well defined and constant in the ordered case, but deviates in the 

randomized pore geometry. The distribution of porosity is shown in (e) and (f), 

respectively. In this case the distribution can be evaluated with higher resolution along 

the length of the material. In (e) the porosity averages to   = 10 % in every ls = 100 

nm domain. In (f) the porosity deviates from the 10 % average following an inverse 

trend compared to the distance between the pores shown in (d). The red shaded 

portions of the distance profile in (d) and the porosity profile in (f) represent the 

regions of increased thermal resistance. Reproduced from [D. Chakraborty et al., Phys. 

Rev. B 98, 115435 (2018)], Copyright 2018, American Physical Society. 

 

Here, in the case of 10% porosity the ls ~ 100 nm. We then compute the 

effective distance to adjoining pores δs separately for each subdomain of length ls again 

using Eq. 4.10. This is done over the total length of the simulation domain as shown 

in Fig. 4.7c and 4.7d, respectively. In the ordered case this remains at ls = δ = 100 nm 

(horizontal line in Fig. 4.7c). In the randomized pore geometry, however, δs deviates 

from ls, as seen in Fig. 4.7d, especially in the regions of large deviation in local 

porosity. The local porosity profiles are also shown in Fig. 4.7e and Fig. 4.7f, 
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respectively. In the ordered case the porosity averages to the global porosity (10%) 

every ls, whereas in the disordered case the porosity deviates substantially, following 

the inverse trend of the distance deviation of Fig. 4.7d. For porosity we can construct 

higher resolution profiles as we have access to the porosity along the channel length 

limited by our domain discretization resolution. The red shaded regions in Fig. 4.7d 

and 4.7f depict the areas of distance/porosity smaller/greater than the average 

distance/porosity, which will introduce additional thermal resistance. We need to 

stress here that the choice of ls, as the calculation of δ are extracted in a logical way, 

based completely on the underlying geometries. These change only when the porosity 

and randomness changes in the geometry, and are not parameters that we use 

arbitrarily to map the models to Monte Carlo data. Although the choice of δ as the 

distance between scattering events is intuitive, the choice of ls can also be justified by 

the fact that the important things that affect transport happen within the scattering 

lengths (see Fig. A10, Appendix A for sensitivity of the results in variations in ls).  

We then evaluate the standard deviation of the average scattering distance 

values along the length δs, and label this as Δδ. In the case of ordered pore 

arrangements this deviation would be zero. In the case of randomized pore geometries, 

however, it can be significant. To extract a more accurate value for Δδ we run 50 

simulations of different randomized geometries for each porosity value and average 

the extracted 50 Δδ. We then alter the distance δ in the models for random porosities 

as δr = δ – Δδ to account for an average smaller scattering mean-free-path. For 

example, in the case of 10% porosity with  = 100 nm, Δδ ~ 10 nm, indicating an 

effective increase in boundary scattering. In a similar way, the average deviation in 

porosity Δ  can be determined by using the porosity profiles along the length of the 

channel. We refer to these models from here on as the Δδ and the Δ  models. As a 

first attempt to model thermal conductivity in randomized pore geometries we 

consider altering δ in the model by Tarkhanyan et al. [204] given by Eq. 4.8, which 

provides the best match to ordered porous simulations in Fig. 4.6b (purple line). The 

model now becomes:  
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In the simulated geometries, again the pore sizes are varied from D = 10 nm to 

50 nm in a random fashion using a uniform distribution. The thermal conductivity 

predictions are plotted by the black line in Fig. 4.8, which compares this model with 

the full Monte Carlo results (blue line). For reference, we plot by the purple-dashed 

line the result of the same model in the ordered case as in Fig. 4.6b, which significantly 

overestimates the thermal conductivity. As we can see, the improved model has very 

good agreement with the MC results for high porosities, but for low porosities still 

some mismatch is observed. 

 

Figure 4.8: Thermal conductivity versus porosity for the analytical models of 

randomized pore geometries, compared to the Monte Carlo simulation results (blue 

line). Pore boundary specularity in Monte Carlo is fixed at p = 0.1. The model of 

Tarkhanyan et al. [204] as described by Eq. 4.8 is shown by the purple- dashed line. 

Equation 4.11 (black line) incorporates a deviation   in the average distance. There 

is good agreement with Monte Carlo results for porosities beyond   = 20%. To 

improve the model, Eq. 4.13 (red line) incorporates a weight on the deviation Δδw, 

increasing the importance of regions of higher porosity. As a reference, Eq. 4.14 (green 

line), incorporates a further weighted deviation in porosity Δ w, which, however, 

slightly underestimates the Monte Carlo simulations. Reproduced from [D. 

Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American 

Physical Society. 

 

In order to improve the Δδ model (Eq. 4.11) for low porosities, we consider 

further the effect of local resistance imposed by the geometrical arrangement. Clearly, 

a large number of pores would give a very small local δs, i.e. high local porosity and 
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will impose a significant degradation of thermal conductance. Thus, the model is 

extended to include the possibility that some subdomains can have a porosity much 

higher than the average porosity, i.e. regions of high thermal resistance contributing 

to a more substantial drop in κ. For this, we simply consider the deviation in the 

scattering distances in each subdomain as before, but we now weigh more the regions 

where the local δs is less than that of the uniform case. Similarly, we can also weigh 

more those regions as the porosity there exceeds the average porosity. In this way, we 

increase the dominance of regions with higher local porosity in determining thermal 

resistance. Thus, the deviation in the scattering lengths/porosity, decreases/increases 

even further as:   

X
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−
                                           (4.12) 

where LH is the proportion of these high porosity regions compared to the overall 

length of the domain LX. For example, for porosities   = 10%, 20%, 30%, w ~ 19 

nm, 10 nm, and 8 nm, respectively, an increase compared to the corresponding non-

weighted  ~ 10 nm, 8 nm, and 8 nm. Thus, an improved model (we will refer to it 

as ‘Δδw model’) is now given by:  
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As can be seen in Fig. 4.8, this model (red line) has very close agreement with 

the full Monte Carlo results (blue line) for the random porosity case. We note that 

considering both the weighted deviation in distance and porosity as:  
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seems to underestimate the thermal conductivity predictions compared to Monte Carlo 

(green line in Fig. 4.8), possibly because of double counting the scattering events. We 

note that the choice of the regions LH that have in absolute terms smaller δs (or higher 

porosity) than the average δ, is arbitrary. One can consider LH as regions which have 
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δs smaller than a fraction of δ, which might be more relevant when the variations are 

very small. In our case, however, the variation is substantial and the reference we used 

(δ) provided a good match with the Monte Carlo simulation results (where LH ~ 500 

nm, 200 nm, and 0 nm, for porosities   = 10%, 20%, 30%, respectively). Next, as a 

second example, we test the same methodology by increasing the effective porosity in 

the model by Gesele et al. [188] in Eq. 4.6. We increase the porosity by the overall 

deviation Δ , and by the weighted deviation Δ w (referring to them as the ‘Δ ’ and 

‘Δ w’ models). Here we only modify the transport component in the model, i.e.:  

( )( )
2

0  1 1 ( )    = − − +                                     (4.15)  

( )( )0

2

W  1 1 ( )    = − − +                (4.16)  

Figure 4.9 shows the comparison of these models to our Monte Carlo results 

(blue line) versus porosity.  

 

Figure 4.9: Thermal conductivity versus porosity for the analytical models of 

randomized pore geometries compared to the Monte Carlo (MC) simulation results in 

this work (blue line). Pore boundary specularity in MC is fixed at p = 0.1. The model 

of Gesele et al. [188] as described by Eq. 4.6 is shown by the green-dashed line. 

Equation 4.15 (black line) incorporates a deviation Δ  in the average porosity. There 

is good agreement with the MC results for porosities beyond   = 30%. To improve 

the model, we incorporate a weight on the porosity Δ w (Eq. 4.16) increasing the 

importance of regions of higher porosity (red line). Reproduced from [D. Chakraborty 

et al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American Physical Society. 
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Since we simulated 50 different channels for each porosity value, in the model 

we use the average Δ w value for all 50 of these geometries. In the case of 10% 

porosity, for example (shown in Fig. 4.7a), Δ  increases the effective porosity by 

another 7.5% to the total 17.5% porosity. The model predictions using Δ , given by 

Eq. 4.15, are shown by the black line in Fig. 4.9.  

While this model works well for higher porosity values above   = 20%, it 

again overestimates the thermal conductivity for porosities below   = 20%. This is 

again due to the possibility of regions of porosities above the average value in the 

simulation domain, which dominate thermal resistance. At higher porosities the pores 

make the different regions look more uniform. However, this is significant 

improvement compared to the starting model of Gesele et al. Eq. 4.6, which as shown 

by the green-dashed line, it significantly overestimates the thermal conductivity. Note 

that in the uniform porosity cases Δ  is effectively zero.  

In the case where we include the weighted porosity Δ w (the ‘Δ w model’ 

given by Eq. 4.16), the model is significantly improved as indicated by the red line in 

Fig. 4.9, which essentially overlaps the Monte Carlo results (blue line). Here, for the 

10% porosity case, Δ w is computed to be 18% after we average it over 50 different 

channels. This is a ~10% increase in the overall porosity over the non-scaled Δ  

above. This makes the effective porosity of this disordered channel to increase by 

almost a factor of three to W 28% +  = . In summary, it turns out that for   = 10%, 

20%, and 30%, Δ w = 18%, 21%, and 16%. As porosity increases the deviation in 

porosity, in general, decreases. However, these numbers stress the importance of 

nanostructured geometry variability in thermal conductivity, an effect that is usually 

overlooked, but increases the effective porosity significantly, with its effect being 

more dominant even than boundary roughness.    

Thus, the new models (Δδw and Δ w) described by Eq. 4.13 and Eq. 4.16 are 

shown to be accurate and can be used to extract first order thermal conductivity 

estimations for structures with random pore positions and diameters, using knowledge 

of basic geometrical specifics of the nanostructure. In an experimental setting, these 
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models can not only be used to understand thermal conductivity measurements if the 

geometrical features are known, but also conversely, to estimate the degree of disorder 

in nanostructures, once average porosity and thermal measurement data is available. 

Details on the degree of randomization might be hard to extract in the entire domain 

of the material, but these models provide a possible way of estimating this. Finally, 

we note that recent theoretical studies about the effect of variations for electronic 

transport (where the mean-free-path is much shorter), is not as noticeable [57, 216]. 

Thus, variability can be used as means to achieve lower thermal conductivity without 

affecting the electronic system, which is advantageous for thermoelectric applications.   

 

4.5  Verifying Matthiessen’s rule 

 When different scattering events are considered independently, it is usual 

practice to combine the different scattering rates, or resistivities using Matthiessen’s 

rule. Matthiessen’s rule dictates that if each scattering process can be characterized by 

a relaxation time τ, then all such processes combined contribute to a combined 

relaxation time TOTAL , such that:  

TOTAL 1 2 3

1 1 1 1
  ...

   
= + + +                             (4.17) 

where, 1 , 2 , etc. are relaxation times for different scattering mechanisms 

(nanostructures, etc). It is important to examine if the combination of nanocrystallinity 

and nanoporosity can be combined using Matthiessen’s rule, which will provide an 

indication of the degree of independence of the two scattering mechanisms. Here, we 

examine this using the Monte Carlo simulation results for each mechanism 

independently and together. We also examine the eligibility of the analytical models 

we have constructed in being used within the Matthiessen’s rule. In this case we 

consider scattering due to: i) three phonon processes leading to a κPH, ii) scattering due 

to nanocrystalline geometries leading to a κNC, and iii) scattering due to nanopores 

leading to a κNP. Thus, the total conductivity is given by: 

TOTAL PH NC NP

1 1 1 1
 

   
= + +                               (4.18) 
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We proceed with our verifications as follows: i) We simulated structures 

including nanocrystallinity with <d> = 225 nm and nanoporosities 5%, 10%, and 15%. 

In the ordered pore case we use D = 50 nm and in the random pore case D varies from 

D = 10 nm to 50 nm in a random fashion using a uniform distribution. ii) We simulated 

the nanocrystalline geometry structures and the nanoporous structures separately, for 

the same <d> and   as in (i). iii) We computed the combined thermal conductivity of 

the two simulations in (ii) using Matthiessen’s rule and compared that to the combined 

Monte Carlo simulation of (i). iv) We combined the results of the analytical models 

for nanocrystallinity (the ‘NC model’ given by Eq. 4.4) and porosity (Δδw and Δ w 

models given by Eq. 4.13 and Eq. 4.16 respectively) and compared those to the Monte 

Carlo simulation results of (i). For the structures with porosities   = 5 %, 10 %, 15 %, 

we extracted w = 27 nm, 19 nm, 13 nm, and Δ w = 20%, 18%, 16%, respectively. 

The summary of these comparisons is shown in Fig. 4.10a and 4.10b for the 

ordered and randomized porous materials, respectively. The blue bars show the full 

MC simulations which include nanocrystallinity and porosity. The error bars indicate 

the spread of the 50 simulations performed to extract the average value of the thermal 

conductivity. The green bars indicate MC simulations for each scattering environment 

separately (nanocrystallinity and porosity), coupled together using Matthiessen’s rule 

to extract the overall thermal conductivity. The purple bars indicate the thermal 

conductivity predicted by the Δδw analytical model (Eq. 4.13) combined with the 

nanocrystalline model by Eq. 4.4 using Matthiessen’s rule. Finally, the red bars 

indicate the thermal conductivity predicted by the combination of the Δ w model (Eq. 

4.16) and Eq. 4.4 using Matthiessen’s rule. The percentage difference of the three latter 

situations compared to the full MC results is indicated on top of the respective bars.  
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Figure 4.10: Comparison between the full Monte Carlo (MC) simulated results in 

structures with grains and pores (blue bars) and: i) MC simulation results of grains 

alone and pores alone, but combined through Matthiessen’s rule (green bars), ii) 

results given by the porous material model introduced in Eq. 4.13 (Δδw model) 

combined with the nanocrystalline model of Eq. 4.4 through Matthiessen’s rule 

(purple bars), and iv) results given by model introduced in Eq. 4.16, (Δ w model) 

combined with the nanocrystalline model of Eq. 4.4 through Matthiessen’s rule (red 

bars). (a) Ordered pore geometries. For the MC simulations, 50 realizations with grain 

boundaries of <d> = 225 nm are averaged, and pores of a fixed diameter D = 50 nm. 

(b) Randomized pore geometries. The pore diameters vary from 10 nm to 50 nm. The 

percentage numbers indicate the variation of each method from the full MC results 

(blue bars). Porosities   = 5%, 10 % and 15% are shown. Reproduced from [D. 

Chakraborty et al., Phys. Rev. B 98, 115435 (2018)], Copyright 2018, American 

Physical Society. 
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Clearly, a very good agreement between the full MC results, the partial MC 

results, and the analytical models is observed. In the ordered pore case shown in Fig. 

4.10a the error introduced by the analytical models is at most 10%, observed for the 

15% porosity material. In the case of random pores results shown in Fig. 4.10b, a 

slightly larger variation is observed for the larger porosities, but it is still at most 13 % 

(for both partial MC results and the analytical models).  

The good agreement between all results, indicates that Matthiessen’s rule is 

still valid to a large degree and the nanocrystallinity and nanoporosity can be treated 

as independent mechanisms. It also indicates that well-validated analytical models are 

at first order accurate for estimating phonon transport in complex nanostructured 

materials, at least for silicon at room temperature. Quantifying the validity of 

Matthiessen’s rule is especially important for experimentalists seeking a fast 

verification of measured data, but we should note that our conclusions could be only 

confidently valid for the structures and geometries we considered. Deviations from 

Matthiessen’s rule have been observed in various cases for phononic, but also 

electronic systems [217, 218]. In particular, we only considered nanopores larger than 

10 nm in diameter to stay within the validity of the particle nature of phonons as treated 

by Monte Carlo. Other works, however, have considered smaller pores (D less than 

10 nm), which also drastically reduce κ, but indicate larger violations of Matthiessen’s 

rule [173, 212, 219-222].  

 

4.6  Conclusions 

In conclusion, here in this chapter we have employed a ‘single-phonon’ Monte 

Carlo phonon transport simulator to solve the Boltzmann Transport Equation for 

phonons in hierarchical and highly disordered Si nanostructures. We investigated the 

presence of nanocrystalline and nanoporous features separately and combined, in 

ordered and disordered realizations. In nanocrystalline geometries the effect of grain 

size on 𝜅 is more pronounced at grain sizes <d> smaller than the average phonon mean 

free path of the system (λpp). In that case, boundary scattering dominates over internal 

three-phonon scattering. We further show that the effect of changing porosity ( ) on 

thermal conductivity is much larger than boundary roughness and specularity (p) in 
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reducing 𝜅. An important result of this work is that it demonstrates that randomization 

in disorder, which is often overlooked, can play an important effect, further reducing 

thermal conduction by even up to 60% compared to the ordered pore geometry. Thus, 

non-uniformity can be as important, if not more important in reducing 𝜅 compared to 

boundary roughness and specularity (p) and needs to be considered at a similar level 

when interpreting experimental data.  

Based on simple geometrical rules and previous analytical models for ordered 

structures, we constructed accurate analytical models for randomized porous 

structures with excellent agreement with the full-scale Monte Carlo simulations. We 

believe our results and the models presented will provide guidance in developing 

better understanding of thermal transport in nanostructured materials and aid the 

design of better thermoelectric and heat management materials. The results presented 

in this chapter form a part of our published work Chakraborty et al. [58].  
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5. Enhanced phonon boundary scattering in 

hierarchical nanostructures 

 

5.1 Introduction: hierarchical nanomaterials at high temperatures 

There is significant work available in the literature explaining thermal 

conductivity trends in nanostructured materials using a variety of theoretical and 

simulation methods [11, 16, 58-62, 80-86, 223-226]. In the previous Chapter 4 we 

provide a complete room temperature analysis of thermal conductivity trends in Si-

based nanomaterials in the presence of multiple defects, such as nanocrystalline 

boundaries and nanopores, also in the presence of disorder, however, exclusively at 

room temperature 300 K. Here, we extend these Si-based studies [58, 59] to higher 

temperatures, and focus specifically on answering the following question: Are there 

any quantitative differences in the thermal conductivity trends in hierarchically 

nanostructured and highly disordered materials between what is observed at room 

temperature versus what can be observed at higher temperatures? In other words, are 

nanostructured features more effective, or less effective in reducing the thermal 

conductivity at higher, rather than lower temperatures?  

The main motivation for this study emanates from the following: i) The 

average mean-free-path for phonon-phonon scattering at room temperature in Si is 

indicated in several reports to reside somewhere between 100 nm – 300 nm [83, 88, 

170-173]. At elevated temperatures, the mean-free-path is reduced as the phonon-

phonon scattering increases, increasing the importance of phonon-phonon scattering 

compared to phonon boundary scattering. ii) On the other hand, as the temperature is 

raised, phonons of different frequencies and wavevectors (usually larger wavevectors) 

participate in transport, which react differently to scattering off the various 

nanofeatures, and specifically for this study, off nanocrystalline boundaries (usually 

increasing scattering probabilities) [60, 156]. Therefore, in this chapter we focus on 

understanding how these two seemingly counter-acting features affect the thermal 

conductivity of disordered hierarchically nanostructured materials at higher 

temperatures. This study can enhance the understanding of silicon based 

thermoelectric (TE) devices operating at high temperatures, and could help the design 
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of better TE materials with ultra-low thermal conductivities. The insight provided by 

this chapter could be generalized for other materials, beyond Si, as well. The rest of 

this chapter is organized as follows. Section 5.2 presents the approach to high 

temperature systems, Section 5.3 presents the main results and analysis, and Section 

5.4 gives the conclusions. 

 

5.2 Approach: high temperature (HT) systems 

For calculating the thermal conductivity we solve the phonon Boltzmann 

Transport Equation (BTE) using the Monte Carlo method, with all details and 

validation described in previous Chapters (3 and 4) and published works [58, 59, 60], 

therefore, we provide below the method details that are important in this study alone. 

The geometries we consider are shown in Fig. 5.1 below.  

 
 

Figure 5.1:  Examples of the nanostructured geometries considered at high 

temperatures. (a) Nanocrystalline (NC) materials with changing grain dimension 

(<d>). Here <d> = 100 nm, black lines represent NC grain edges. (b) Nanocomposite 

material (NC+NP) with given grain dimension (<d>) and porosity ( ). Here   = 5%, 

for a random polydispersed pore arrangement, with pore diameter of uniformly 

distributed between 10 nm - 50 nm and random pore position. (c) Schematic for grain 

scattering indicating the initial angle of the phonon, θGB, from the normal (dashed line), 

grain boundaries (black lines), initial path of the phonon (blue line) and probable paths 

of the phonon after scattering (red-dashed lines and green-dashed transmitted line). 

Transmission is dependent on grain boundary roughness as well as phonon wavevector 

q. Transmission probability is given by Eq. 3.13. (d) Schematic for pore scattering 

indicating the pore boundary, the initial angle of the phonon θin, and new angle of 

propagation after reflection, θref, depending on specularity parameter p. Probable paths 

of the phonon after scattering for both diffusive (red-dashed lines) and specular (red-

solid line) are depicted. Transmission (t) through pores is always zero. Adopted from 

Chakraborty et al. [60]. 
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Fig. 5.1a shows a typical nanocrystalline geometry in the simulation domain 

of length Lx = 1000 nm and width Ly = 500 nm whereas Fig. 5.1b shows a typical 

hierarchically nanostructured disordered geometry, where nanopores of random 

position and diameter through a normal distribution are inserted.         

In the nanocrystalline geometry cases, the average grain size in the simulation 

domain is defined as <d> (as shown in Chapter 3, Section 3.2.5). Following the 

commonly employed boundary scattering picture, the scattering probability at grain 

boundaries depends on the phonon wavevector, q, the roughness of the boundary, Δrms, 

and the angle of incidence between the phonon path and the normal to the grain 

boundary, θGB, as indicated in Fig. 5.1c. This determines whether an incident phonon 

will be transmitted to the other side or will be reflected, and is given by the commonly 

employed relation [156] as given by Eq. 3.13 in Chapter 3:  

( )2 2 2

scatter rms GBexp 4 sin   = −t q    (3.13) 

If the phonon is reflected, another parameter which depends again on the 

roughness and the phonon wavevector, the specularity, p, determines the angle of 

phonon reflection [81]. p takes values from 0 to 1, with p = 0 indicating a diffusive, 

randomized reflection angle and p = 1 specular reflection where the angle of incidence 

is the same as the angle of reflection. This is specularity parameter is also applied to 

the boundaries of pores in the nanoporous cases (see Fig. 5.1b). Its treatment is also 

given in Section 3.26 and highlighted here in Fig. 5.1d. In the case of the pores, 

however, we do not explicitly consider the q-dependence, but we consider specular or 

diffusive boundary scattering just by assigning the specularity parameter p. 

The main investigation we undertake in this work concerns the influence of 

boundary scattering at high temperatures, and more specifically the role that different 

wavevector (q) and MFP phonons play in grain boundary scattering. Therefore, it is 

useful to have an indication of the participation of larger q phonons in thermal 

conductivity as the temperature is raised. The ΔT taken for these calculations is 5% of 

the temperature considered.  

In our published work, Chakraborty et al. [60], we show that high frequency 

phonon scattering has a greater overall contribution (up to 20% for T = 600 K) to 
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thermal transport at higher temperatures. This includes the increase in Umklapp 

scattering, which are competing processes in increasing/reducing the participation of 

high q-states. It seems from the simple analysis that the statistics have more influence 

in increasing participation. This makes boundary scattering more dominant in 

reducing the thermal conductivity at higher temperatures as we show below in the 

Monte Carlo simulations.   

 

5.3 Results: Effects of high temperature 

In this section we study the effects of temperature on thermal transport in 

nanostructured material. Particularly, we focus on the enhanced reduction of thermal 

conductivity due to nanocrystalline structures. This is done by removing the effects of 

high temperature (above 300 K) in pristine structures, and the effect of nanocrystalline 

structures at room temperature (300 K) from the overall effect of nanocrystalline 

structures at high temperatures (above 300 K) by successive normalizations. We first 

normalize the thermal conductivity to the 300 K value for all given systems (i.e. at 300 

K all geometries begin from the same reference), therefore, essentially removing the 

effect of the average MFP reduction due to the grain boundary scattering. By further 

normalizing κ again for the NC geometries by the pristine κ value at each temperature 

we can further eliminate the effect of the temperature-dependent phonon-phonon 

scattering reduction which is common for all cases. This leaves us just the effect of 

the q-dependent boundary scattering which we want to examine. We also explore 

disordered hierarchical nanostructures in this way, by introducing disordered 

nanoporous structures into the existing nanocrystalline geometries.   

 

5.3.1 Pristine structures 

In Fig. 5.2a below, with the blue line we show the thermal conductivity κ for 

the bulk pristine system (without nanocrystallinity) as a function of temperature from 

300 K to 900 K, which has the typical reduction trend due to the increase in the 

phonon-phonon scattering rates. At 900 K, for example, there is a decrease in κ by 

more than 60%. The ΔT used for these simulations and calculations is 5% of the 

temperature considered. 
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Figure 5.2: High temperature results for nanocrystalline structures. The ΔT taken for 

these calculations is 5% of the temperature considered. (a) Effect on thermal 

conductivity (κ) as temperature increases from 300 K to 900 K, for the pristine case 

(blue line), nanocrystalline (NC) case with <d> = 100 nm (green line) and <d> = 50 

nm (red line). A sharp reduction in κ of over 75% is observed at 300 K for the <d> = 

100 nm case (green line). This drops further to more than 85% for temperatures over 

800 K. The κ drop is greater in the <d> = 50 nm case (red line). A typical geometry 

for <d> = 100 nm case is given as an inset in Fig. (a). (b) The data in (a) normalized 

by the 300 K κ value of the pristine case (blue line). The effect of phonon boundary 

scattering is removed from all data after this normalization. (c) The data in (a) 

normalized by the pristine value (blue line) at every temperature. The effect of 

phonon-phonon scattering from all data is taken away due to this normalization. 

Adopted from Chakraborty et al. [60]. 
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5.3.2 Nanocrystalline case 

We begin our investigation on the effects of nanocrystallinity on the thermal 

conductivity of Si as the temperature is raised. The introduction of nanograin 

boundaries into the material (as shown in the inset of Fig. 5.2a) causes an additional 

reduction in κ as expected. We further show in Fig. 5.2a the effect on κ, as temperature 

increases from 300 K to 900 K for nanocrystalline (NC) geometries with <d> = 100 

nm (Fig. 5.2a, green line) and <d> = 50 nm (Fig. 5.2a, red line). A sharp reduction in 

κ of over 75% is observed at 300 K for the <d> = 100 nm case (green line) from the 

bulk value (blue line) at 300 K. The κ drop is greater in the <d> = 50 nm case (red 

line) indicating as expected that a smaller grain size causes greater κ reduction.  

Noticeably, however, at elevated temperatures, the reduction in κ for the <d> 

= 100 nm NC structure (Fig. 5.2a, green line) drops by a larger amount (85% at 800K). 

This enhanced reduction of κ observed at high temperatures cannot be explained based 

on phonon-phonon scattering and/or the reduction in average MFP due to grain 

boundaries alone, but as we show further below, it is a consequence of the q-dependent 

boundary scattering, which increases as the average phonon q-value increases. This 

overall enhanced κ reduction of ~ 7% of the pristine value (from 78% to 85% due to 

the q-dependent scattering processes) might seem small compared to just the pristine 

case values, however, in absolute terms that number is large if compared to the κ of 

the NC case, which stands at just 16% of the pristine material at 300 K for <d> = 100 

nm. Essentially, this 7% reduction is almost half of the remaining κ after the 

introduction of NC.  

To clarify this magnitude, in Fig. 5.2b, we normalize the thermal conductivity 

to the 300 K value for both the single crystal and NC systems (i.e. at 300 K all 

geometries begin from the same reference), therefore, essentially removing the effect 

of the average MFP reduction due to the grain boundary scattering. The difference in 

the blue line (pristine) versus the green/red lines (NC structures), is now the difference 

in the phonon-phonon scattering, and the q-dependent boundary scattering.  By further 

normalizing κ for the NC geometries by the pristine κ value at all temperatures in Fig. 

5.2c, i.e. by computing the κNC/κpristine ratio at each temperature (where κpristine is the 
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blue line in Fig. 5.2b), we can further eliminate the effect of the temperature-dependent 

phonon-phonon scattering reduction which is common for all cases.  

Thus, the differences in the lines of Fig. 5.2c from the pristine blue-dashed line 

show the influence of the q-dependent boundary processes for the NC cases of <d> = 

100 nm (green line) and <d> = 50 nm (red line). The q-dependent processes are 

responsible for doubling the reduction in κ for the <d> = 100 nm (green line) and 

amplifying the reduction in <d> = 50 nm (red line) by a factor of four at 900 K. Note 

that this q-dependent scattering at the grain boundaries corresponds to a small decrease 

in κ (compared to the pristine material). In the presence of crystalline boundaries 

where κ is already reduced this is a large component. As a result, the ZT value of a 

thermoelectric material will benefit significantly due to this. Note that this effect is 

built in the boundary scattering, it is not something that can be easily used as a design 

strategy directly, but separating its effect from the geometrical features alone helps the 

understanding of phonon transport in nanostructures.    

     

5.3.3 Hierarchical case 

Next, we perform the same investigation for disordered hierarchically 

nanostructured Si-based materials, in which case we incorporate nanopores into the 

nanocrystalline structures (as in Fig. 5.1b). A typical simulated geometry for  = 5 % 

porosity with randomly sized and randomly distributed pores is also shown in the inset 

of Fig. 5.3a. Here we chose the pore diameter randomly from D = 10 nm to D = 50 nm 

using a uniform distribution. Again, we consider operating temperatures from T = 300 

K to 900 K. In Fig. 5.3a (blue line) we show the thermal conductivity versus 

temperature as in Fig. 5.2a, but for the new geometry (the blue line for the pristine 

material is the same in Fig. 5.2a). The green and red lines show the behavior of the 

hierarchical nanostructures (combined nanocrystalline and nanoporous (NC+NP) 

case) with <d> = 100 nm (green line) and <d> = 50 nm (red line). A reduction in κ of 

over 80% is observed at 300 K for the <d> = 100 nm case (green line), which is more 

than the NC only case. κ drops further by more than 90% for temperatures at 800 K. 

The drop in κ is even larger in the <d> = 50 nm case (red line) at ~ 95%.  
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Figure 5.3: High temperature results for hierarchical structures. (a) Effect of 

hierarchical nanostructures on κ as temperature increases from 300 K to 900 K, for the 

pristine case (blue line), combined nanocrystalline and nanoporous (NC+NP) case 

with   = 5 % for <d> = 100 nm (green line) <d> = 50 nm (red line). A reduction in κ 

of over 80% is observed at 300 K for the <d> = 100 nm case (green line) and more 

than 90% for temperatures over 800 K. The κ drop is greater in the <d> = 50 nm case 

(red line). A typical geometry for <d> = 50 nm with   = 5 % is shown in the inset of 

Fig. 5.3a. (b) The data in (a) normalized by the 300 K κ value of the pristine case (blue 

line). The effect of phonon boundary scattering is removed from all data after this 

normalization. (c) The data in (a) normalized by the pristine value (blue line) at every 

temperature. The effect of phonon-phonon scattering from all data is taken away due 

to this normalization. Again, the dashed lines are the data of Fig. 5.2(c) for the NC 

cases of <d> = 100 nm (green-dashed line); <d> = 50 nm (red-dashed line) alone. The 

legend of Fig. 5.3b applies one-to-one with the lines of Fig. 5.3c as well. At high 

temperatures there a further reduction in the normalized ratio observed due to pores. 

Adopted from Chakraborty et al. [60]. 
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In Fig. 5.3b, as earlier in Fig. 5.2b, we normalize the thermal conductivity of 

the three structures to their value at T = 300 K. Thus, we remove in this figure the 

effect of geometry and the MFP of boundary scattering due to the nanostructured 

features that the phonons encounter. What remains is then the effect of different 

phonon-phonon MFP (which we do not expect to have much difference) and the q-

dependence of the boundary scattering. It is clear from this figure that as the 

temperature increases, the reduction in the thermal conductivity is larger in the 

nanocomposite structure, as also observed earlier. In dashed lines we also show the 

NC lines of Fig. 5.2b, indicating that the reduction is slightly larger in the 

hierarchically nanostructured materials.  

This is more clearly shown in Fig. 5.3c, in which we normalize the data lines 

of Fig. 5.3b to the pristine blue line of Fig. 5.3b. This removes the influence of the 

phonon-phonon scattering, and what is left is just the influence that the q-dependence 

has on the boundary scattering as in Fig. 5.2c. Again, the q-dependence of the 

boundary scattering has a severe effect, even larger by ~15 % in the case of the 

hierarchical disordered geometries (solid lines) compared to the nanocrystalline 

geometries (dashed lines). This is again expected to have a proportional contribution 

to ZT. We remark that while pores themselves do not have any q-dependent 

transmission properties (we treat pore scattering as q-independent), their presence 

introduces more disorder, increases the number of scattering events in the system and 

the times phonons pass through the grain boundaries, thus enhancing the overall effect 

of T-dependent surface scattering. Effectively, pores force phonons to pass through 

grain boundaries back and forth more times, which increases the importance of the q-

dependent processes across the boundaries.  

In order to directly compare and contrast q-dependent and q-independent 

scattering at grain boundaries, we turn off the q-dependence and re-run the 

simulations. In this case we consider only specular scattering at grain boundary and 

transmission without change in phonon angle. In Figs. 5.4a–5.4c the effect of q-

independent grain boundary scattering, for the nanocrystalline (NC) case with <d> = 

50 nm (purple-dashed line) is compared to the q-dependent case (red line).  
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Figure 5.4: Separating effect of q dependence. (a) The effect of q-independent and q-

dependent scattering at grain boundaries compared to the pristine case. All values are 

normalized with respect to their value at 300K.  The effect of phonon boundary 

scattering is removed from all data after this normalization. (b) The data in (a) 

normalized by the pristine value (blue line) at every temperature. The effect of 

phonon-phonon scattering from all data is taken away due to this normalization. (c) 

The data in (b) normalized to the q-independent NC case at all temperatures. This 

shows the effect of the q-dependence of the grain boundary scattering as the 

temperature increases. Adopted from Chakraborty et al. [60]. 
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Figure 5.4a corresponds to same calculations shown in Figs. 5.2b and 5.3b, 

now also including the q-independent <d> = 50 nm (purple line) calculation. Clearly, 

the q-independent simulation result resides between the pristine and q-dependent 

result through the entire temperature range. Figure 5.4b is equivalent to Fig. 5.2c and 

Fig. 5.3c and shows the result of removing phonon-phonon scattering effects, 

indicating the difference between q-dependent and q-independent boundary scattering. 

This is shown more clearly in Fig. 5.4c, where we normalize the q-dependent system 

to the q-independent case (purple dashed line) at 300 K. In the nanocrystalline (NC) 

case that is q-dependent, there is a steady decrease in κ as temperature increases, 

approaching a ~ 40% further reduction in comparison with the q-independent case.  

 

5.4 Conclusions 

In this chapter we employed the Monte Carlo transport simulator to solve the 

BTE for phonons in nanocrystalline Si-based materials and nanocrystalline materials 

with pores. We investigated the influence of wavevector q-dependent scattering on the 

nanocrystalline boundaries, and how this affects the thermal conductivity. We show 

that at higher temperatures, because the average phonon wavevector (q) increases, 

scattering through boundaries becomes stronger, and the thermal conductivity 

reduction is enhanced with temperature, compared to q-independent boundary 

scattering. We show that even up to ~ 40% further reduction in thermal conductivity 

at high temperatures (800 K) is attributed to the q-dependence of boundary scattering, 

compared to if the boundary scattering was q-independent. The introduction of random 

nanopores in addition to nanocrystallinity, i.e. hierarchical disorder, magnifies this 

effect by an additional ~15% at 800 K. This suggests that nanostructuring at high 

temperatures can actually be more effective than previously thought, and a simple 

constant MFP due to boundary scattering overestimates the thermal conductivity. This 

approach could be used to predict the behavior of materials depicting q-dependent 

boundary scattering at high temperatures, as well as providing insight into the design 

of low thermal conductivity, high ZT hierarchically disordered nanostructured 

materials for high temperature applications. The results presented in this chapter can 

be seen in our published work, Chakraborty et al. [60]. 
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6. Thermal rectification in nanoporous silicon material 

 

6.1 Introduction: thermal rectification in porous nanostructures 

This chapter explores thermal rectification in geometrically asymmetric 

nanoporous structures. Significant research has been done on understanding and 

controlling thermal transport in nanostructures for novel materials and applications 

[212, 227-233]. Thermal rectification refers to the application where the thermal 

conductivity of the device material changes with material orientation [230-236]. This 

is analogous to current or charge transport through a diode and we define it as Eq. 6.1 

below [230, 231, 233]. Since initial findings of thermal rectification between Cu and 

Cu2O [234] interfaces in the 1930s, various experimental [230, 235-237] and 

theoretical studies [155, 238-245] have investigated thermal rectification in different 

materials. Rectification values of up to 350% were theoretically predicted in graphene 

nanoribbons [233], while experiments showed that graphene junctions could provide 

even higher values of up to 800% rectification [237]. In case of the more 

technologically and commercially placed silicon, theoretical studies suggest that 

geometrically asymmetric structures can enhance thermal rectification effects [36, 

239-245], as verified by some experimental works as well [243, 247]. Rectification is 

achieved when the structure is separated into regions in which the mean-free-path 

(MFP) is controlled by two mechanisms – the temperature-dependent Umklapp 

scattering, and a mechanism much less temperature dependent such as boundary 

scattering. To-date, however, the specifics that determine rectification, as well as the 

design details which would allow further optimization, are not well understood.  

Our simulation method is outlined in Section 6.2. In Section 6.3 we present 

and discuss our results before drawing our conclusions in Section 6.4. 

 

6.2  Approach: determining rectification (R) in nanostructures 

Here, using Monte Carlo (MC) phonon transport simulations, we intend to 

provide the details and important points that control thermal rectification in 

nanostructured materials. We use nanoporous Si as an example, and place the pores in 
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various geometrical configurations to identify the parameters that determine 

rectification. The basis geometry we begin with is shown in Fig. 6.1.  

 
Figure 6.1: Schematic of the basis geometry simulated with porous region of length 

𝐿1 and pristine region of length 𝐿2. Individual properties are assigned for each region, 

including average phonon mean-free-path, (MFP) 𝜆 and average distance between 

pores (inter-pore distance) 𝑑. The total length of simulation domain is 𝐿𝑇. In all Monte 

Carlo simulations, we set 𝐿𝑇 = 1000 nm. The coloring indicates the established thermal 

gradients when the left and right contacts are set to TH = 310 K (yellow) and TC = 290 

K (green), respectively, with the temperature profile given by blue dots (average of 5 

million phonons). The green arrow above the schematic depicts “Forward” direction 

of heat flow from TH to TC. Updated and adopted from Chakraborty et al. [62]. 

 

We consider a simulation domain of length Lx = 1000 nm in the x-direction and 

width Ly = 500 nm in the y-direction. The asymmetry is created by placing the pores 

only in one part (porous region) of the material. We investigate the influence of 

porosity, pore density (as a function of inter-pore distance, d) and pore position relative 

to the device left/right boundary. We compute the thermal conductivity in the materials 

by using the MC phonon transport simulator described in Chapter 3. The MC 

approach offers great flexibility of geometrical configurations and parametric control 

over the scattering mechanisms that the phonons undergo, while still allowing very 

good accuracy [58, 59] and large micrometer size simulation domains.  

In the structures we consider, the domain is populated with circular pores of 

different arrangements. Each pore has a diameter of 50 nm. All phonons reflect on the 
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pores in a specular fashion [58, 59]. While systems with asymmetric roughness do 

have a thermal rectification effect [248], in this work we leave the effect of roughness 

aside, and focus on the geometrical configurations of the pores. The basis simulation 

domain with 8% porosity is shown in Fig. 6.1. The coloring indicates the thermal 

gradient between the hot side with temperature TH = 310 K (yellow) and the cold side 

with TC = 290 K (green). The green arrow on top of the schematic indicates the 

‘Forward’ direction of heat flow (κF), which we define when the pores are placed near 

the left, ‘hot’ contact, while keeping the ‘cold’ side empty of pores, thus creating an 

asymmetry in the transport direction. Next, the structure is ‘flipped’ by rotating it 180 

degrees such that the pores are now on ‘cold’ side while keeping the ‘hot’ side empty 

of pores. The thermal conductivity in this ‘Reverse’ direction is denoted as κR. The 

rectification, R, is defined here as:  

   1F

R

R



= −                                                          (6.1) 

It should be noted, that unlike in other works where large ΔT have been used 

to determine thermal rectification (TH ~ 2 TC or more are commonly used [238, 245]) 

ΔT is very small in our case. This is reflected here in the temperature profile obtained 

in Fig. 6.1 (blue dots) where there is very little deviation from a linear thermal gradient 

observed. This was also the case for all the devices/structures investigated here on.  

 

6.3 Results: R for different geometry arrangements 

In this section we investigate the effects of porosity, pore density and pore 

position relative to the device boundaries on R. Different geometrical arrangements of 

pores and hierarchical inclusion of smaller sized pores are explored to improve R. 

 

6.3.1 Rectification in asymmetric porous arrangements 

We begin our investigation by considering rectangular arrangements of pores 

as in Fig. 6.1 and the schematics in Fig. 6.2 below. Figure 6.2 summarizes the effect 

of asymmetry on the thermal rectification (R) of this type of geometrical configuration. 

To change the asymmetry, we begin with placing pores on the left of the 
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domain/material, and then gradually add more and more layers separated by an inter-

pore distance d, until the material becomes fully porous symmetric. We denote this 

asymmetry as the increasing average porosity ( ) of the material with the addition of 

porous layers. Examples of the typical geometries considered, with porosities of 6% 

and 10% for both ‘Forward’ and ‘Reverse’ configurations, are shown in the geometry 

panels above Fig. 6.2. As explained above, the temperature profiles for these systems 

deviated very little from a linear thermal gradient due to small ΔT used and have thus 

been omitted in the figure below. In Fig. 6.2 we plot the thermal conductivity κ as a 

function of porosity   on the left y-axis. The ‘Forward’ direction thermal conductivity 

(𝜅F) is plotted by the red line, whereas ‘Reverse’ 𝜅R is by the blue line. The 

rectification R, is given by the purple line and indicated on the right y-axis.  

 
Figure 6.2: Monte Carlo simulations showing the effect of porosity in the rectangular, 

ordered pores configuration on thermal conductivity, 𝜅 (left axis), and rectification, R 

(right axis). For each value of  , the 𝜅 in the ‘Forward’ direction (𝜅F) is given by the 

red line, while the 𝜅 in the ‘Reverse’ direction (𝜅R) is given by the blue line and the 

rectification data is given by the purple line. The black line gives the results predicted 

by the model given by Eqs. 6.1, 6.5-6.6. Examples of typical geometries simulated for 

6% and 10% porosity are shown above the figure, as well as our definitions for 

‘Forward’ and ‘Reverse’ directions. The direction of heat flow (from TH to TC) is given 

by the red arrows in the schematics above the graph. All pore diameters are 50 nm. 

Error bars give standard deviations of results. Adopted from Chakraborty et al. [62]. 
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First, we observe that the largest difference between 𝜅F, and 𝜅R is observed for 

the lower porosity case, where the pores are placed all the way to the edge of one side. 

For that case (  = 6%) a difference of ~ 30 Wm−1 K−1 between κF and κR is observed. 

This gives the highest rectification value of 25% for the geometries in Fig. 6.2. As 

more porous columns are added and the overall porosity increases, the structure 

becomes more symmetric, the thermal conductivity decreases, but the difference in 𝜅F 

and κR also decreases, which reduces rectification. At   = 18% the pores are uniformly 

distributed throughout the simulation domain and no rectification is observed. Thus, 

structural asymmetry in the transport direction (x-direction) gives rise to thermal 

rectification as also observed in previous theoretical [36, 155, 245] and experimental 

works [249, 250]. In Fig. 6.2, we can clearly observe that the κF is larger compared to 

𝜅R, which means that the hot phonons with shorter MFPs encountering the pores suffer 

less. In the κR situation (when the structure is ‘flipped’), the phonons that propagate 

from the pristine left (hot) to the porous right (cold), however, suffer more as by the 

time they reach the cold right side they develop longer MFPs. This behaviour can be 

understood through a simple application of Matthiessen’s rule.  

 

6.3.2 Modelling thermal rectification 

Under the assumption of Matthiessen’s rule, we consider the fact that R is 

actually determined by the change in transport properties of phonons as they encounter 

the pores while at high temperature regions (shorter MFPs), or while at lower 

temperature regions (longer MFPs). A simple model that can predict this behaviour is 

obtained by splitting the material system into two regions of length Li, that determine 

the total thermal resistance when added together as: 

PRISTINE POROUST

T PRISTINE POROUS

   
L LL

  
= +                                          (6.2) 

Equivalently, the thermal conductivities in each region are proportional to the MFPs 

of phonons in each region as:  

PRISTINE POROUST

T PRISTINE POROUS

   
L LL

  
+                                        (6.3) 
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Where λPRISTINE is the temperature dependent Umklapp three-phonon scattering MFP 

for Si (λPRISTINE = λpp = 135 nm at T = 300 K) and λPOROUS is the MFP in the porous 

region, which is given by the combination of two different scattering mechanisms, the 

Umklapp scattering MFP λpp and the pore scattering MFP, which we take as d, the 

average distance between the pores. Thus, the MFP in the porous region is given by: 

POROUS pp

1 1 1
   

d 
= +                                             (6.4) 

Considering the thermal conductivity in the Forward direction (𝜅F), when pores are 

placed closer to the hot junction as in Fig. 6.1, we then have:  
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  +
 + 
 

                                   (6.5) 

where λH < λpp < λC since the two regions are on the hotter/colder sides of the average 

temperature. Similarly, in the reverse direction we have:  
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 
 +
 + 
 

                                   (6.6) 

Inserting Eq. 6.5 and Eq. 6.6 in Eq. 6.1 we can estimate the rectification R. The black 

line in Fig. 6.2 shows the rectification R calculated using Eq. 6.1 with λH = 120 nm for 

the hot side (TH = 310 K) as and λC = 150 nm for the cold side (TC = 290 K), taken 

from Jeong et al. [83] and verified by our simulator. Note that the model only provides 

the rectification R, and not thermal conductivity values, as we only have 

proportionalities to the MFPs in Eq. 6.5 and Eq. 6.6. This model may be improved by 

including effects of boundary roughness and resistance [238, 239], pore shape [155] 

or by including multiple materials in the same device [239, 270]. However, for a first 

order approximation of porous silicon material this model gives satisfactory results. 

Using Eq. 6.1 and the lengths of the different porous regions, R values for all porosities 

are calculated, and a very surprising match to the Monte Carlo results is observed 

(black versus purple lines in Fig. 6.2) using the values of  λH and λC above. 
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Thus, based on this reasoning, what is important for rectification is the 

formation of the regions which force phonons from the hot side in the ‘Forward’ 

direction to interact as differently as possible with phonons reaching there from the 

cold side during the ‘Reverse’ direction. The closer the porous region is to the contacts, 

the larger the differences between the λH and λC, which in our simulations varies almost 

linearly between the two contacts [65, 83], and the larger the rectification is (purple 

line in Fig. 6.2). Note that studies also suggest that a non-linear temperature gradient 

can lead to rectification [238, 245], in our case, however, it is the variation of the 

phonon MFPs that does so. Another important observation is the monotonic decrease 

in rectification as the pore columns pile up across the transport direction, in which 

case the structure becomes more and more ‘symmetric’. From Eqs. 6.5 and 6.6, one 

would expect that the lengths of the porous versus non-porous regions would also play 

a role, with the longer LPOROUS to increase rectification. The longer the porous region, 

however, the smaller the difference between λH and λC, which is the primary reason 

behind rectification.  

 

6.3.3 Rectangular porous geometries 

To better understand the geometric details that influence rectification further, 

we perform a series of simulations by altering the position, inter-pore spacing, and 

porous regions’ effective resistance (the latter is achieved by changing from an aligned 

to a staggered pore configuration) [59, 62]. In Fig. 6.3 we show the rectification 

achieved by the porous geometries illustrated in the depicted schematics. The first 

series of simulations begin with the rectangular arrangement of pores located at the 

left side at a distance of 200 nm (~2 MFPs) from the left contact (𝑥 = 200 nm). The 

pores are located at distances d = 50 nm with respect to each other (light-blue, upper-

left most schematic). We then investigate geometrical features on the rectifications as 

follows: i) by changing inter-pore distance, d, and making the structures more 

‘compressed’, thus increasing thermal resistance; (still keeping the number of pores 

the same), ii) by staggering the overall geometry, thus reducing the line-of-side [213-

215], also increasing the pore region resistance. iii) by combining effects (i) and (ii) 

i.e. reducing the inter-pore distance and staggering the pores.  
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First, we look at the rectification results shown by the light-blue bars (𝑥 = 200 

nm) in Fig. 6.3. We start from the basis (rectangular) arrangement of pores (labelled 

arrangement ‘A’ on the figure) with a porosity of 8% and pore diameter D = 50 nm 

which provides 11% rectification. Reducing the inter-pore distance (arrangement ‘B’) 

increases rectification to 20%, then by staggering every alternate line of pores i.e. by 

moving the pores by 50 nm in the y-axis (arrangement ‘C’), an additional small 

rectification is added to reach 24%. The combination of the two further increases 

rectification to 31% (arrangement ‘D’) This indicates that the larger the resistance of 

the rectifying region/junction, the larger the rectification that can be achieved. 

 
Figure 6.3: Monte Carlo simulations showing the effect of pore position, inter-pore 

distance compression and pore staggering on rectification (R) on left axis. Geometries 

simulated are given in the panel above the figure. These are i) the basis (rectangular) 

arrangement of pores (‘A’) with pore diameter D = 50 nm; ii) compressed arrangement 

(‘B’) which has the same configuration as ‘A’, but with halved inter-pore separation;  

iii) staggered arrangement (‘C’) given by shifting pore positions of ‘A’ by 50 nm in 

the y-direction; iv) compressed + staggered arrangement of pores (‘D’) by reducing 

inter-pore distance to 12.5 nm in (iii). Pores are placed at 200 nm from the domain 

edge in the first (light-blue, 𝑥 = 200 nm) cases in all four arrangements ‘A’ – ‘D’. 

They placed 100 nm from the domain edge in the second (dark-blue, 𝑥 = 100 nm) 

cases in all four arrangements. Adopted from Chakraborty et al. [62]. 
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Next, in the second (dark-blue, 𝑥 = 100 nm) cases, we shift the entire pore 

geometry by 100 nm and place it at 100 nm from the domain edge (~1 MFP). We 

observe that just by moving the pores closer to the channel edge, the thermal 

rectification increases from the initial 11% to 18% (left-most structures, arrangement 

‘A’). This shift of the porous region brings a substantial increase, and we can explain 

it as follows: The placement of the pores in different regions in the channel, with 

different temperatures, interacts with phonons of different MFPs. In the dark-blue, 𝑥 

= 100 nm case, for example, in the ‘Forward’ direction the phonons encountering the 

pores have MFPs λH = 120 nm (> λpp = 135 nm since T = 308 K), while in the ‘Reverse’ 

direction, they have MFP λC = 147 nm (since T = 292 K).  

On the other hand, in the light-blue, 𝑥 = 200 nm case, the numbers are slightly 

closer together, i.e. λH = 124 nm (T = 306 K) in the ‘Forward’ direction and λC = 143 

nm (T = 294 K) in the reverse direction. (Note that here we have considered the 

temperature of the beginning of the pore region that is closer to the corresponding 

contact to report the MFPs). The larger the differences in the MFPs of the phonons 

when they encounter the pores in the ‘Forward and ‘Reverse’ directions, the larger the 

rectification, and that is why the systems which place the pores closer to the device 

edge have larger rectification. The simple reason is that the longer the phonon MFPs, 

the more phonons are affected by nanostructuring (within the Matthiessen’s rule 

picture), and the larger the difference between the MFPs of the phonons when they 

encounter the porous regions in the two configurations, the larger the rectification. 

Please note, these MFP values have been extracted from the system and then checked 

against existing literature [83]. Near 300 K they appear to scale almost linearly with 

temperature, but this is no longer the case when the device temperature changes 

significantly. This has been examined closer in Fig. A13, in Appendix A, where we 

examine the effect of device temperature on rectification.   

As a simple first order verification, inserting the above values in the model of 

Eqs. 6.5-6.6, provides values for R ~ 18% for dark-blue, 𝑥 = 100 nm case and R ~ 13% 

for the light-blue, 𝑥 = 200 nm case, very similar to the ones that result out of the 

simulation (R ~ 18% and R ~ 11%, respectively). It seems that the choice of picking 

the MFPs at the beginning of the porous regions closer to the contacts provides this 

very good match. Following the same geometrical arrangements, ‘A’ – ‘D’ in the dark-
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blue cases (like in the light-blue, cases) we observe an increased rectification for the 

x = 100 nm cases at all cases (compare the dark-blue bars to the light-blue bars). 

Bringing the pores closer together to d/2 = 25 nm in the x-direction (‘B’ in Fig. 6.3) 

increases rectification to 28%, introducing staggering (‘C’) provides another 

increment to 35%, and combining the two geometries (and enforcing an even smaller 

separation) as in the ‘D’ arrangement, the overall rectification jumps as high as 44%.  

 

6.3.4 Influence of pore positions and density 

 
Figure 6.4: Normalized 𝜅 observed in the ‘Forward’ (red bars) and the ‘Reverse’ (blue 

bars) direction for each structures ‘A’– ‘D’ of Fig. 3 (left axis). The rectification is 

shown by the black line in the right axis. (a) The pores are placed at 200 nm from the 

domain edge (𝑥 = 200 nm). (b) The pores are shifted by 100 nm and placed 100 nm 

from the domain edge (𝑥 = 100 nm). In each graph the 𝜅 is normalized to the bulk 

silicon value, 𝜅PRISTINE (i.e. 148 Wm−1 K−1). Adopted from Chakraborty et al. [62]. 

 

In order to better understand the increase in rectification as we move pores 

closer to the device edge, we compare the contributions of κF and κR to rectification of 

the same structures in Fig. 6.3. In Fig. 6.4 we show the corresponding κF and κR by the 

red and blue bars, respectively.   
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Figure 6.4 shows that, as expected, both κF and κR drop as the structure 

becomes more resistive, but the reduction in κR (blue bars) is larger for all cases, and 

this is the primary reason behind the rectification improvements. For instance, the κR 

observed in the light-blue, 𝑥 = 200 nm case drops by ~29% when comparing the basis 

left-most structure (‘A’) to the right-most one (‘D’). On the other hand, the 

corresponding κR drop in the dark-blue, 𝑥 = 100 nm case is ~36%. We can draw a 

couple of conclusions from these observations: i) the larger drop in κR compared to 

that of κF is what increases rectification in these structures, and ii) that κR reduces more 

as pores are brought closer to the cold domain edge. That is again in agreement with 

the simple Matthiessen’s rule, which states that it is the long MFP colder phonons that 

are affected more when encountering the porous regions. Thus, the greatest 

rectification is seen for the most asymmetric case, where the temperature-dependent 

MFPs of phonons differ as much as possible between the ‘Forward’ and ‘Reverse’ 

directions. As placing the pores closer to the edge enhances rectification, from here on 

we consider the 𝑥 = 100 nm basis case to examine further geometrical configurations. 

 

6.3.5 Effect of surface area and grading 

From the simple model presented in Eqs. 6.5-6.6, rectification is determined 

by the asymmetry in the different interaction of the hot/cold MFPs in the porous 

regions, which of course will have a certain length. An interesting point to examine 

here, is the interplay between the effect of increasing asymmetry along the transport 

direction in a gradual (graded) way, versus having sharp junctions with a given 

interface length  to separate the porous and pristine regions (length in our case of 2D 

simulations – in 3D it would be interface area). In the first (graded) case the 

rectification region will increase throughout the material, but its local influence will 

be smaller, whereas in the second case, the rectification region is small, essentially 

rectification is dominated by the junction between the porous/pristine regions, but its 

strength is larger. In the simulation results shown in Fig. 6.5 below, we begin again 

with the basis ‘A’ structure of 8% porosity. In order to examine the effect of increasing 

the interface area that separates the two regions, we rearrange the pores in an oblique 

configuration (‘E’) seen in the panel above Fig. 6.5.  
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Figure 6.5: The dependence of thermal rectification on the exposed junction surface 

area and pore grading. Five cases are examined, and the geometries simulated are 

given above the bar chart. These are: i) the basis (rectangular) arrangement of pores 

(‘A’) with pore diameter D = 50 nm; ii) oblique arrangement (‘E’) where pores are 

arranged in a right-triangular fashion to give increased exposed surface area;  iii) 

staggered arrangement (‘C’); iv) triangular  arrangement (‘F’); v) graded (triangular) 

arrangement (‘G’) of pores by uniformly decreasing pore density in the x direction. 

Adopted from Chakraborty et al. [62]. 

 

We find that increasing the interface area, i.e. increasing the surface area where 

rectification happens, increases R to ~ 22% overall (comparing the ‘A’ with ‘E’ case 

bars in Fig. 6.5). By following the same logic for staggered pores (‘C’) and exposing 

both sides we consider a triangular arrangement of pores (arrangement ‘F’) we reach 

an amplified R = 45% (as compared to R = 34% of the simple staggered arrangement 

‘C’). However, by extending this structure to get a graded geometry throughout the 

domain (graded-triangular) arrangement ‘G’ in Fig. 6.5), does not lead to any more 

rectification improvements. In fact, R drops to ~31% from 45% that is achieved by the 

triangular structure (case ‘F’), which is more asymmetric and divides the domain into 

two discrete porous and non-porous segments. In the fully graded ‘G’ case phonons 

interact with the pores throughout the domain. It could be argued that that a graded 

porous structure would provide a small degree of rectification locally, but that would 

extend to the entire channel, and the aggregated effect could be significant. Our 

simulations show, however, the reverse, namely that that discontinuous regions 

(junctions) provide a greater rectification than graded geometries in our Si structures, 
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as also indicated in other materials [36, 99, 155, 234], as the differences between the 

phonon MFPs in the ‘Reverse’ and ‘Forward’ directions in each segment of the 

structure are now smaller.  

 

6.3.6 Triangular arrangements and hierarchical nanopores 

Here onwards we use the triangular geometry configurations with pores placed 

x = 100 nm from the edge (green bars and green geometries in Fig. 6.6) which provide 

the maximum rectification, and compare them to our basis rectangular structures 

(dark-blue bars and dark-blue geometries in Fig. 6.6). The rectification for the basis 

(rectangular) structure ‘A’ is 18% and this increases to 45% for the triangular case, as 

we have already seen. We then explore the effects of: i) decreasing inter-pore spacing 

as before, and ii) introducing smaller pores in a hierarchical fashion to the previously 

considered geometries. In both cases we aim to increase the resistance of the porous 

region, a strategy that increases rectification, as we have observed earlier. The 

structures can be seen in the geometry panel above Fig. 6.6 (dark-blue for the 

rectangular and green for the triangular cases, respectively). In the second structure 

column (‘H’) in Fig. 6.6, by introducing smaller nanopores of with pore diameter D = 

10 nm to the existing base structures in a hierarchical fashion we increase the effective 

pore density. This gives R = 51% for the triangular case compared to 24% in the 

rectangular case (green versus blue bars for structures ‘H’ of Fig. 6.6). We then reduce 

the inter-pore distance from d = 50 nm to d/2 = 25 nm in the x-direction (column ‘C’ 

in Fig. 6.6), thus making the structures more ‘compressed’ with increased thermal 

resistance. Structure ‘C’ in the triangular arrangement causes an increase to R = 57%, 

compared to 28% in the rectangular ‘C’ case. 

Finally, by combining the effects of density and hierarchical nanopores we get 

a maximum rectification of R = 61% in the combined hierarchical structure 

(arrangement ‘I’) for the triangular case in Fig. 6.6. Compared to the arrangement ‘D’, 

the compressed rectangular case given by the white bar with blue-dashed outline in 

Fig. 6.6, the triangular configuration provides a 35% increase in heat rectification. 

This further stresses the importance of the larger rectifying junction length/area, as 

well as the high thermal resistance of the porous region, rather than the graded porous 

configurations in the structures we have investigated.  
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Figure 6.6: The rectification dependence on the construction of the triangular regions, 

and the hierarchical incorporation of smaller nanopores (D = 10 nm) in between the 

bigger ones (D = 50 nm). Four cases are examined, each for both rectangular 

geometries (dark-blue bars) and triangular geometries (green bars). The geometries 

simulated are shown in the panel above the figure. These are: i) the basis arrangement 

of pores (‘A’) for both rectangular and triangular configurations given by dark-blue 

bars or green bars, respectively. For all pores D = 50 nm, and inter pore distance d = 

50 nm; ii) hierarchical arrangement (‘H’) by adding smaller pores in-between ‘A‘; iii) 

compressed arrangement (‘B’) with halved inter-pore separation d = 25 nm; iv) 

compressed + hierarchical arrangement of pores (‘I’) by reducing halving the original 

inter-pore distance. The result for arrangement ‘C’ from Fig. 6.3 is also included for 

comparison. All structures are placed 𝑥 = 100 nm from the device edge. Adopted from 

Chakraborty et al. [62]. 

 

Although not the focus of this study, we also carried out simulations for 

rectification at higher and lower temperatures (see Fig. A13, Appendix A). It was 

found that increasing the temperature has a detrimental effect on rectification. This 

can be understood since, for a given geometry, higher temperatures reduce the phonon 

λpp due to larger phonon-phonon scattering and increase their influence in determining 

thermal resistance over the pore scattering, reducing rectification. Decreasing 

temperature causes an increased rectification effect – since a lower temperature 
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reduces phonon-phonon scattering so that the pore influence increases. This effect has 

also been noted in some other works [232, 236, 245, 248]. Yet, in the case of Gluchko 

et al. (the Nomura group) while the rectification effect observed did increase for lower 

temperatures, it was still within the margin of error [232]. This may be due to a few 

reasons i) the large radius of the pores used, which reduces rectification (Gluchko et 

al. surmise this is why rectification is observed when phonon MFPs are longer at low 

temperatures). ii) pores were arranged uniformly throughout the device – which we 

know from our study causes minimum rectification. No asymmetric geometrical 

junction/graded arrangements were used. iii) the Eucken model (Eq. 4.5) [205] was 

used to correct their κ, which only accounts for the reduction in the material volume 

( ) in the first order, and does not give accurate results for nanoscopic pores [58, 59, 

173, 182, 204]. Rectification was primarily created using asymmetry in pore shape – 

a method which gives varying results [155, 227, 232]. Apart from nanopores, it is also 

possible to create rectification effects using materials mismatch and nanocrystalline 

grain boundaries – methods which are subject to detailed prior study covered 

extensively in the literature [227, 230, 231, 233, 236, 246]. 

 

6.4 Conclusions 

 In this chapter we examined the effect of pore density, position, junction 

surface area, and hierarchical nanostructuring on thermal rectification in nanoporous 

Si using Monte Carlo simulations. Rectification requires asymmetry in geometry. We 

show that rectification is optimized: i) when the temperature-dependent phonon-

phonon scattering limited MFPs of phonons encountering the porous regions are as 

different as possible in the ‘Forward’ compared to the ‘Reverse’ directions, ii) when 

the porous regions are as resistive as possible, and iii) when the rectifying junction 

that separates the porous and pristine regions is as large as possible. Practically, we 

have shown that these conditions are achieved: i) by placing the porous region as near 

to the contact as possible, ii) by making the porous region as resistive as possible 

(denser, compressed, staggered, hierarchically placed pores), and iii) by using 

triangular rather than rectangular pore region configurations. By combining these 

effects, we showed that rectification values of greater than 60 % can be reached.  These 

results have been published in Chakraborty et al. [62].  
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7. Wave versus particle phonon nature in thermal 

transport in nanostructures 

 

7.1 Introduction: wave and particle phonon treatement 

Nanostructuring has magnified our ability to understand and control phonon 

transport in nanomaterials, giving rise to novel applications. Phonon waveguides, 

which can be used for nanoelectromechanical systems (NEMS) [251], phonovoltaics, 

which uses high energy phonons to generate power, similar to photovoltaics [252, 

253], heat management, and primarily  improved thermoelectrics are a few emerging 

technologies that depend on heat flow at the nanoscale. Nanostructuring of materials 

has demonstratively yielded extremely low thermal conductivity (κ), even below the 

amorphous limit of materials, resulting in enhanced thermoelectric efficiency [5, 33]. 

Particularly for porous silicon materials, novel single-crystalline membranes with 

nanoscopic pores give reproducibly low κ around 1-2 Wm−1 K−1 [41, 53, 43]. 

Optimizing and controlling heat flow prerequisites a theoretical understanding 

of phonon transport in these materials. This requires methods that bridge through 

various length scales which are dictated by different physics related to the wave versus 

particle treatment of phonons. Yet, conventional computational methods consider 

these approaches (i.e., waves vs particles) independently, and whether and under what 

circumstances wave effects and coherence have significant influence in phonon 

transport is still an open question [196, 202, 254, 255].  

Classical methods based on the Boltzmann Transport Equation (BTE) treat 

phonons as incoherent particles [196] and have been used very successfully to describe 

thermal transport properties in silicon across various nanostructures such as nanowires 

[16, 82, 149], thin films [150, 151, 256], nanoporous materials [58-62, 152-155], 

polycrystalline materials [58, 60, 95, 97, 156-158], nanocomposites [87, 159], 

corrugated structures [160-163], and silicon-on-insulator devices [164]. These 

methods scale very well computationally and allow flexibility in the treatment of 

scattering and geometrical features (Monte Carlo for example), and are commonly 

employed to simulate thermal transport in nanostructures.  
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However, these classical methods do not consider phonon wave effects that 

could be important at the nanoscale. For example, adding periodic pores in a thin film 

system to create a nanomesh [33, 41, 53, 152, 257] introduces a secondary artificial 

periodicity to the original lattice, potentially modifying the phonon dispersion 

relations to form a “phononic crystal”, analogous to the better-known photonic crystals 

[258]. Changes in phonon group velocities, band gaps, the density of states, and 

thermal conductivity that arise due to wave interactions are referred to as coherent 

effects. It is also suggested that such effects can lead to Anderson localization, mode 

conversion, or Rayleigh waves and drastically reduce κ [259, 260].  

However, experimental results are still inconclusive on the relative importance 

of (wave-based) coherence effects versus (particle-based) boundary scattering effects 

[196, 202] at length scales below 100 nm [33, 41, 53, 43, 88, 98, 99, 201, 254, 255]. 

Theoretical investigations can help improve the understanding of phonon transport at 

these length scales, but investigations which include both wave-based and also 

particle-based methods are scarce. Fully understanding the qualitative and quantitative 

effects of such geometries on thermal transport and phonon transmission functions 

would allow the design of more efficient materials and devices for thermoelectric, heat 

management, and other phononic applications.  

In this work, we attempt to shed some light on the difference in phonon 

transport through structures with nanoscale feature sizes when phonons are purely 

waves, versus being purely particles. We compare phonon transport in a simple porous 

silicon geometry using a full wave approach based on the atomistic Non-Equilibrium 

Green's Function (NEGF) method, and a particle–based approach using the ray-tracing 

Monte Carlo (MC) method, and quantify how much of the wave effects MC captures.  

Our motivation resides in the fact that MC is a truly valuable tool, that allows 

one to simulate hierarchically disordered systems, such as the ones which are used for 

the new generation thermoelectric materials. It has been proved successful in 

interpreting experiments [10, 16, 81, 89, 151, 202, 224, 254, 255, 261], despite the 

fact that waves can only be approximated by particles only in the short wavelength 

limit, and despite the fact that long wavelength acoustic phonons carry a large portion 

of the heat.  
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Thus, our aim is to quantify the margin of validity (or error) of the simple ray-

tracing (which we know fails under certain conditions) compared to wave-based 

physics. Using the same simple geometries for both methods, we find that phonon 

transmission through the pores agrees very well for both wave-based and particle-

based methods, with an error margin of ± 15%, across phonon wavelengths even for 

features with sizes down to 3-4 nm. Only for smaller feature sizes, the wave-based 

NEGF shows that long wavelength phonons can transmit easily, whereas we find that 

comparatively MC underestimates their transmission. In addition, particle-based 

simulation methods appear more sensitive to nanoscale structural variations compared 

to the wave-based NEGF method. Insights and knowledge gleaned from comparing 

wave and particle methods can be used to provide a better and more complete 

understanding of phonon transport in nanomaterials.  

The chapter is organized as follows: In Section 7.2 we describe the theoretical 

background and computational methods. In Section 7.3 we present our results, 

comparing wave-based Non-Equilibrium Green's Function (NEGF) and particle-based 

Monte Carlo ray-tracing simulations for simple geometries considering a single pore. 

In Section 7.4 we discuss the import of these results and examine geometries with 

more than one pore. Finally, in Section 7.5 we present our conclusions. 

 

7.2 Approach: theoretical background and methods 

The wave nature of phonons can be approximated by particles when they have 

wavelengths smaller than the characteristic length scales of the static disorder in the 

material under consideration (in our case pore size, pore distance, neck – see Fig. 7.1a). 

In materials with boundaries such as nanowires and thin films, when the boundary 

roughness amplitude in the structure is small, phonon reflection is primarily specular 

across wavevectors and correlation lengths [192].  

For large roughness amplitudes, phonon reflections are diffusive, multiple 

scattering events at boundaries arise, and the thermal conductivity reduces 

significantly [202, 224, 255]. On the other side of the spectrum, long-wavelength 

phonons, much longer than the characteristic disorder in the nanostructure, cannot be 

effectively treated as particles, as at this point diffraction and interference effects 

become important. For example, Maurer et al. showed that such modes can be thought 
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of as elastic-waves, which in the case of a large boundary roughness amplitude can 

experience a degree of localization, and Rayleigh waves can also appear in the material 

[192, 260].  

Despite the limitation of Monte Carlo and ray-tracing when it comes to long 

wavelength phonons, the acoustic phonons that carry a significant portion of the heat 

are routinely treated as particles within Monte Carlo to describe thermal transport in 

nanostructures. Measured data has been successfully described in a large number of 

instances and materials with characteristic sizes smaller than the dominant phonon 

wavelengths [10, 16, 80, 81, 89, 151, 202, 254, 255, 261]. There is a growing interest 

in understanding thermal transport in hierarchically nanostructured materials, in which 

nanoscale features of various scales are embedded within a matrix material.  

In this case, Monte Carlo simulations are highly applicable, as they allow 

flexibility in the simulation domain geometry and size and provide relatively good 

accuracy with reasonable computational cost. While large domains, larger than all 

important phonon wavelengths and mean-free-paths, can justify the treatment of the 

wave-phonons in terms of particles, still, in the vicinity of the smaller, nanoscale 

features, wave effects could persist. The influence of these features on the thermal 

conductivity under the wave versus particle phonon description is unknown. 

The basis porous geometry we begin with is shown in Fig. 7.1a. The structure 

is defined by the pore diameter D and the neck size n, which is the minimum distance 

between the pore boundary and the upper/lower boundaries. For computational 

efficiency we consider a basis two-dimensional (2D) simulation domain of length Lx 

= 100 nm (x-direction) and width Ly = 10 nm (y-direction). For all geometries we 

considered, we calculate the transmission of phonons from one side to the other for 

both methods: the wave-based NEGF method and the particle-based MC method.  
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Figure 7.1: Nanostructures examined with NEGF wave approach. (a) Schematics of 

typical geometries studied with length of 100 nm, width 10 nm and thickness 1 nm for 

two pore diameters of D = 2 nm and D = 6 nm. The neck, n, is measured, as indicated, 

as the widest distance between the edge of the pore and the nearest geometry boundary. 

(b) The NEGF transmission [unitless] vs the energy, ℏω. Transmission for the pristine 

case (TP, NEGF) is given by the black line. Transmission for nanostructured porous cases 

(TN, NEGF) are given for D = 1 nm (purple line), D = 2 nm (blue line), D = 3 nm (dark-

green line), D = 4 nm (light-green line), D = 5 nm (orange line), D = 6 nm (red dots), 

respectively. (c) The typical phonon spectrum for a [100] Si nanowire of 10 nm width 

and 1 nm thickness calculated by applying periodic boundary conditions on the unit 

cell in the transport direction. The transmission of the pristine channel (black 

line in Fig. 7.1b) is essentially a count of the number of modes at each energy of Fig. 

1c. (d) The contribution of each phonon state to the total ballistic thermal conductance 

at room temperature calculated using Eq. 7.8 (without Umklapp scattering). Red and 

blue colors indicate the largest contribution and the smallest contribution, respectively 

(colormap). Adopted from Chakraborty et al. [61]. 
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7.2.1 Non-Equilibrium Green’s Function method (NEGF) 

The wave-based NEGF is a well-established, fully quantum mechanical 

method which can take into account the exact nanostructure geometry without any 

underlying assumptions. Thus, coherent effects are naturally captured. The work on 

NEGF was done in collaboration with our co-author H. Karamitaheri [61]. The method 

has been used primarily for electronic transport [134], but also for phonon transport in 

low-dimensional materials [126-132], yielding results in agreement with experimental 

measurements [126, 129]. It involves building the Dynamical matrix, which in our 

case, is built atomistically using force constants [123]. A first nearest-neighbour force 

constant method is used to set up the dynamical matrix component between the ith and 

the jth silicon atoms, which are the first nearest-neighbours of each other. The force 

constant tensor describing the coupling between the ith and the jth atom is given by:   
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where we use 
r =15.1319 N/m, 

ti =127.4988 N/m, and 
to =15.1319 N/m, as the force 

constant fitting parameters for the radial, the in-plane transverse, and the out-of-plane 

transverse components of the force constant tensor, respectively [61, 125, 126]. Using 

these values the phononic bandstructure of bulk silicon is obtained to be in a relatively 

good agreement with the ones calculated using the more complete, but more 

computationally expensive modified valence force field method [126, 136]. The 3x3 

dynamical matrix components are then calculated as: 
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where q
ij

 and 
ij  represents, respectively, the polar and azimuthal angles of the bond 

between the ith and the jth silicon atoms. The dynamical matrix is then described as: 
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where M is the silicon atomic mass. Using the device dynamical matrix, the Green’s 

function is given by [134]: 

                                       (7.6) 

here, the energy at the contacts is given by the self-energy matrices, 1  and 2 , which 

are calculated using the Sancho-Rubio iterative scheme [262]. Afterwards, the ballistic 

transmission function can be computed using the relation: 

ph 1 2( )T Trace G G + =                                             (7.7) 

where,  are the broadening functions that describe the interaction between the 

contacts and the central region, defined at each contact as 
in out =  +  [34]. The 

thermal conductance can then be obtained using the Landauer formula: 
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where n(ω) is the Bose-Einstein distribution and T is the temperature. Figure 7.1a 

shows typical channels we simulate, with one pore located in the middle. The channels 

we simulate with NEGF have length Lx = 100 nm, width Ly = 10 nm, but also a small 

thickness of 1 nm, as the Dynamical matrix is built on atomistic lattice. The simulation 

domain contains 73,000 atoms. Figure 7.1b depicts the phonon transmissions obtained 

with NEGF (TNEGF) vs the energy (ℏω) for the different geometries simulated. 

Transmission for the pristine case is given by the black line, followed by transmission 

for the different porous cases. On average, we observe that the transmission is reduced 

from the pristine channel as the pore size increases - in the figure we show the 

geometry with D = 1 nm (purple line), D = 2 nm (blue line), D = 3 nm (dark-green 

line), D = 4 nm (light-green line), D = 5 nm (orange line), and D = 6 nm (red line).  
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The typical phonon spectrum for a [100] Si nanowire of 10 nm width and 1 nm 

thickness is also calculated by applying periodic boundary conditions on its unit cell 

in the transport direction and shown in Fig. 7.1c, where the quantized phonon sub-

bands are evident. The transmission of the pristine channel (black line in Fig. 7.1b) is 

essentially a count of the number of modes at each energy of Fig. 7.1c. For reference, 

in Fig. 7.1d we show the contribution of each phonon state to the total ballistic thermal 

conductance at room temperature calculated as:  
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where vg,i (q)  is the group velocity of phonon with wavevector ‘q’ in the ‘ith’ band and 

A is the cross section area. Red and blue colors indicate the largest contribution and 

the smallest contribution, respectively (colormap). As seen, in addition to the low 

frequencies, the high frequency phonons have some contribution to the ballistic 

conduction as well. In practice, however, Umklapp scattering is what limits the 

intrinsic conductivity, which also results in the high frequency phonons contributing 

only little to heat conduction. The largest contribution is attributed to the low 

frequency acoustic modes. Recently, approaches based on the quantum mechanical 

NEGF method, using atomistic meshes and including anharmonic phonon-phonon 

scattering have been developed [121, 196, 257], however, these are computationally 

costly, and thus bound to much smaller systems. Here, however, we seek something 

simpler: to isolate the coherent wave effects versus particle ray-tracing effects.  

 

7.2.2 Monte Carlo ray-tracing method (MC) 

For the particle-based simulations, we employ the ray-tracing Monte Carlo 

(MC) method to trace the phonon transmission in the nanostructures under 

consideration. Typically, Monte Carlo can accurately capture geometry details within 

micro–mesoscale domains and is therefore widely employed to understand phonon 

transport in nanostructures [16, 58-62, 82, 89, 95, 149-164]. However, as we are only 

interested in the (ballistic) transmission here, (where scattering happens only at the 

static pores), and in this case all phonons move in straight lines independent of their 

frequency, we follow a simple version of what is usually employed in advanced MC 
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simulations. In our MC (ray-tracing) method, phonons are now initialized one at a time 

at the left contact with only a random initial angle, (as in the single-phonon incident-

flux method [83]). We do not use a specific dispersion relation, or Bose Einstein 

distribution to initialize the population as all phonons across the dispersion are treated 

in the same way. Phonons are initialized on the left contact and allowed to travel 

through the simulation domain where they are either transmitted to the right or 

backscattered to the left. Once the phonon exits, the next phonon is then initialized. 

Thus, we only trace the phonon paths, and compute the transmission probability by 

taking a large number of phonon counts – ten million phonons are initialized on the 

left contact for each structure. The transmission from MC, unlike the one from NEGF, 

it is frequency independent, and essentially only depends on geometry. Hence for 

every structure considered, a single value of phonon transmission is determined for 

the MC cases. The domain discretization is 0.1 nm, and scattering on pores and 

boundaries is considered specular (the angle of incidence is the same as the angle of 

reflection). 

Thus, for a pristine system, the MC transmission, TP, MC is 100%, i.e., all 

phonons that enter the system from the left contact leave from the right. When 

nanostructures are introduced in the domain, phonons backscatter, and the 

transmission, TN, MC, is reduced from 100% depending on the pore diameter, D, and 

neck size n (Fig. 7.1a). This transmission is normalized by the pristine value to get a 

“fractional transmission from pristine” value for the MC. This is given by:  

N, MC

MC

P, MC

T
F

T
=                                                      (7.10) 

In the pristine case FMC is 1. Since scattering in MC is completely specular there is no 

wavevector (or frequency) dependence in the FMC (these are shown as solid lines in 

all figures from Fig. 7.2 onwards). To directly compare the MC transmissions to the 

NEGF transmissions, the latter are also converted into a normalized, fractional 

transmission in the same way: 
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However, since the transmissions in NEGF have frequency dependence FNEGF also 

varies when plotted versus energies, ℏω because different energies behave differently 
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in the presence of nanostructuring. Note that although MC (ray-tracing) is completely 

particle-based, boundary scattering can be wavevector dependent and can be described 

using a boundary scattering treatment derived from diffraction theory [58, 192, 224, 

263] (see Fig. A7 in Appendix A). In all these cases, however, the scattering 

behaviour at a boundary depends on the boundary roughness strength, but here we 

consider the pore and the domain boundaries in both NEGF and MC to be completely 

smooth. Although scattering by the nanopore boundary is wavevector dependent 

within the NEGF formalism, we have no way to include this in ray-tracing without the 

need to assume the surface roughness amplitude. This would then lead to a situation 

of not being able to compare the two approaches on the same structure. Since we do 

not include the coherence-breaking [263-265] phonon-phonon scattering in NEGF 

(that would be computationally extremely demanding), we do not include it in MC 

either for one-to-one comparison. Thus, we investigate the purely coherent wave 

effects extracted from NEGF, to the ray-tracing MC in which case particles travel 

ballistically in the simulation domain, and the only source of scattering is the static 

disorder from the pores. 

 

7.3 Results: wave vs particle phonon behaviour   

 

Figure 7.2: NEGF fractional transmission FNEGF versus energy ℏω given by Eq. 7.11, 

for D = 1 nm (purple dots), D = 2 nm (blue dots), D = 3 nm (dark-green dots), D = 4 

nm (light-green dots), D = 5 nm (orange dots), D = 6 nm (red dots), respectively. 

Monte Carlo fractional transmission FMC given by Eq. 7.10 (lines, same color scheme), 

for the same structures. The pore diameters (D) and the corresponding neck to 

diameter (n/D) ratios are given on the right axis. Adopted from Chakraborty et al. [61]. 
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In order to evaluate the effect that each pore size (and corresponding neck) 

exert on the transmission, in Fig. 7.2 we consider the fractional transmissions, i.e., the 

ratios between each of the porous geometries to the pristine one. For this, the 

transmissions in all the porous structures (colored lines in Fig. 7.1b) are divided by the 

transmission of the pristine case (black line in Fig. 7.1b). For the case of NEGF 

transmissions, this is given by Eq. 7.11, and is plotted in Fig. 7.2 versus energy, ℏω 

(the color scheme is the same as in Fig. 7.1b). For every pore size the neck to diameter 

ratio (n/D) is also denoted on the right-side axis. The neck size characterizes the region 

available for phonon propagation, in addition to information about the scattering 

surface area which is implicit in the pore diameter. As we show later on, the n/D ratio 

is a more accurate measure of the scattering strength compared to the diameter, or the 

neck alone. In Fig. 7.2, the average fractional transmission (i.e., the average of all the 

dots for each geometry), which we label <TNEGF>, decreases from ~ 0.79 for the 

smallest pore size (D = 1 nm, n/D = 4.5, purple dots) to ~ 0.3 for the largest pore size 

(D = 6 nm, n/D = 0.33, red dots), a reduction of ~ 63%. Interestingly, if we consider 

only very the low frequency (long wavelength) acoustic phonons with energies under 

3 meV, we see that the corresponding reduction is only ~ 10%. The high transmissions 

obtained with NEGF at low frequencies can be interpreted based on the wave-nature 

of phonons. Even for small neck sizes, low frequency, long wavelength phonons are 

more likely not to “see” the pores and propagate through them.  

 

7.3.1 MC transmissions versus geometry   

The exact same structures used for the NEGF calculations were also simulated 

with Monte Carlo. In Fig. 7.2, the solid straight lines indicate the MC fractional 

transmissions, given by Eq. 7.10, following the same coloring scheme for each 

corresponding structure. The average fractional transmission decreases from ~ 0.83 

for the smallest pore size (purple line) to ~ 0.26 for the largest pore size (red line) a 

reduction of ~ 70% as in the case of NEGF. Comparing the flat MC lines with the 

NEGF dots, we can clearly see that MC provides a good approximation of the wave-

based NEGF results for: i) all structures for energies above 10 meV (within an error 

margin to be discussed later in this section), and ii) for some of the smaller diameter 

structures with neck sizes above n > 2 nm for all frequencies. This observation is quite 

interesting, as it quantifies the validity of particle-based methods for the case of long 
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wavelength phonons, which is assumed to be problematic. It essentially shows that 

particle-based methods fail to describe the phonon transmission only when phonons 

are forced into extremely narrow constrictions of a few nanometres thick. In all other 

cases they seem to perform adequately.   

7.3.2 Influence of neck size n and n/D ratio 

 To identify which structural feature size – neck or diameter or n/D – most 

affects the MC results, in Fig. 7.3 we compare the MC results in terms of the neck 

size, diameter, and n/D ratios.  

 

Figure 7.3: MC fractional transmission FMC given by Eq. 7.10, for D = 1 nm (purple 

line), D = 2 nm (blue line), D = 3 nm (dark-green line), D = 4 nm (light-green line), D 

= 5 nm (orange line), D = 6 nm (red line), respectively, versus neck size, n. Typical 

geometries simulated are depicted in the panel above (I – IV). The common n/D values 

across structures are indicated by dashed lines. Adopted from Chakraborty et al. [61]. 

 

Here, each line plots the fractional transmissions for each porous structure of 

a given pore diameter using the same coloring as earlier. For each pore size the neck 

is increased by increasing the width of the simulation domain Ly. Typical geometries 

simulated are given in geometry panel above Fig. 7.3 (I – IV). Uniform n/D values are 

indicated by the dashed black lines. For a fixed diameter, the transmission increases 

as the neck size increases, as expected. In the case of D = 6 nm (red line) the smallest 

neck size, n = 2 nm (geometry IV in panel above), yields the smallest transmission, 
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and increasing the neck size for the same pore size (moving up the red line) increases 

fractional transmission to ~ 0.83 (geometry III in panel above). The last point of the 

red line corresponds to n/D = 4.5. Interestingly, all other structures of different 

diameters, but of the same n/D, have the same fractional transmission (dashed lines 

for constant n/D ratios across Fig. 7.3). At the same neck size, on the other hand, as 

the diameter increases (moving vertically downwards from line to line), the fractional 

transmission decreases. Thus, the n/D ratio is better correlated to the MC fractional 

transmissions in these structures, than either D or n alone, indicating a better metric 

for identifying the influence of porosity and constrictions together. We have verified 

the strong correlation between n/D and thermal transport in molecular dynamics (MD) 

simulations as well (work done by other members of the group, as noted in Ref. [61]). 

We will discuss the effect of geometry based on this metric from here on. 

 

7.3.3 Comparing NEGF and MC variations 

We now quantify the variation between the fractional transmissions given by 

the two methods. In Fig. 7.4 we plot their variation as a percentage of the MC value 

(FNEGF/FMC −1). For the MC this quantity is flat at zero for all structures, i.e., FMC/FMC 

−1, and allows to extract a global variation measure between NEGF and MC across 

geometries and frequencies.  

 

Figure 7.4: Percentage variation of the FNEGF from the FMC values for D = 1 nm 

(purple dots), D = 2 nm (blue dots), D = 3 nm (dark-green dots), D = 4 nm (light-green 

dots), D = 5 nm (orange dots), D = 6 nm (red dots), respectively, versus energy ℏω. 

Adopted from Chakraborty et al. [61]. 
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The data in Fig. 7.4 uses the same coloring scheme as in Fig. 7.2. The n/D 

values indicated in each case range from n/D = 4.5 (purple dots) to n/D = 0.33 (red 

dots). Overall, the NEGF fractional transmissions oscillate around the MC fractional 

transmissions (at 0). The variation increases with decreasing feature sizes, i.e., with a 

decreasing n/D ratio (compare red vs purple dots for the smaller/larger n/D, 

respectively). Again, the variation is highest for low frequency (long wavelength) 

acoustic phonons with energies under 3 meV, where variation in excess of ~100% can 

be seen for n/D < 0.5, i.e., the fractional transmission from MC is half the value from 

NEGF at these energies. However, for phonons with energies greater than 8 meV, the 

MC method is able to approximate the NEGF phonon transmission within a 15% error 

margin especially for the smaller diameters/large neck sizes.  

 
Figure 7.5: Comparing wave and particle approaches. (a) Schematic of effective 

increase in D and (b) effective decrease in D. (c) NEGF fractional transmission for 

structures with n/D = 4.5, D = 1 nm (purple dots), and n/D = 0.33, D = 6 nm (red dots), 

respectively, versus energy ℏω. MC fractional transmission for the same structures are 

plotted by the solid lines. The dashed lines represent MC ray-tracing for structures 

with a ± 15% variation on their n/D ratio. Adopted from Chakraborty et al. [61]. 

 

The 15% margin within which the MC is able to approximate the NEGF is a 

consequence of the frequency dependence of the NEGF transmissions. This results in 
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variations around a mean value that is in any case adequately captured by the MC ray-

tracing transmissions. In fact, this margin can also be captured in simple geometrical 

variations. We have simulated using MC structures in which we have altered the size 

of the pores, as seen in Fig. 7.5a and Fig. 7.5b such that n/D is varied by ±15% for the 

smaller and the larger diameter structures. Smaller/larger pores will allow 

larger/smaller transmissions. The dashed lines in Fig. 7.5c indicate the change in the 

MC transmission as the n/D changes. Effectively this encompasses a larger proportion 

of the frequency dependent NEGF transmissions, but still not for the low frequency, 

long wavelength phonons, especially in the larger diameter structure. 

 

7.4 Discussion: limits of MC and NEGF 

In the results above we see variations between the NEGF and the MC of 25% 

to 100% for frequencies below 8 meV, at low feature sizes, i.e., below n/D = 0.5, n = 

2 nm. This quantifies the region of validity of particle-based approaches for this 

specific nanostructure (at least). However, looking at the global average of the NEGF 

transmissions (dots) we find that the error is less than 15% for most of the spectrum.  

 
Figure 7.6: NEGF results averaged  <TNEGF> over energy in a part of the spectrum up 

to 5 meV (purple-dashed line), up to 15 meV (green-dashed line) and for the whole 

spectrum (red-dashed line) vs n/D. These limits are depicted in the bottom inset with 

lines of corresponding colors. Error bars give the standard deviation of TNEGF data. 

MC fractional transmission vs n/D (blue-solid line) is given for comparison. 

Schematics of some geometries simulated are depicted at the top left corner. Adopted 

from Chakraborty et al. [61]. 
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This is shown in Fig. 7.6, which plots the global average transmission of the 

NEGF results for all frequencies, <TNEGF>, at a given n/D ratio (red-dashed line), and 

compares them to the values of MC for those same structures (blue line). The error 

margin for all n/D is less than 15%. MC slightly overestimates the transmission for 

structures with large necks and small pore sizes (when n/D >2) where D is the limiting 

variable. It slightly underestimates the transmission for structures with small neck 

sizes and large pore sizes (n/D < 2), where n is the limiting variable. Thus, particle-

based MC captures average wave-based thermal transmission effects largely within 

15% down to constriction feature sizes of 2 nm. This knowledge could be very useful 

in quantifying the accuracy of simulations of thermal transport in nanostructured 

materials under different simulation methods.  

While the dominant phonon wavelength is ~ 1 nm at 300 K, we must note that 

a major component of the heat in Si is carried by long wavelength acoustic phonons 

with frequencies below 20 meV [16, 80, 81, 84, 125]. Furthermore, if we look at low 

temperature systems, the dominant wavelengths are much larger than at room 

temperature. This can result in the error in MC being larger in narrow constrictions, 

as it cannot capture the transmission of these long wavelength phonons accurately. On 

the other hand, in the presence of nanostructuring, where the phonon mean-free-paths 

are limited by the geometrical feature sizes, the relative contribution of phonons from 

the rest of the spectrum would increase [65, 266-268]. This can be intuitively seen 

from Matthiessen’s rule, in which the overall mean-free-path of a phonon is dominated 

by the stronger of the scattering processes. Thus, a long mean-free-path will suffer 

relatively more in the presence of nanostructuring compared to shorter MFP phonons, 

which reduces the gap between their relative contributions to heat current. In fact, it is 

pointed out that optical phonons and the rest of the spectrum can also carry a 

significant portion of the heat at the nanoscale because longer (acoustic) mean-free-

path phonons are scattered more strongly leading to a proportionally larger 

contribution to transport from (optical) mean-free-paths [83]. In order to further 

quantify the upper limit of the error that could be expected in MC, in Fig. 7.6 we also 

look at < TNEGF > in a part of the spectrum up to 5 meV (purple-dashed line) and 15 

meV (green-dashed line). The deviation from the MC blue line, and thus the potential 

error, is at a maximum for the small n/D cases. At n/D = 0.33, the error is 120% when 

we consider <TNEGF> up to 5 meV. Conversely, the error is at its lowest (below 3%) 
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for high n/D structures (see n/D = 4.5). In this case, thermal transport properties 

predicted by MC would be very applicable from nanostructures with n/D of 2 (or neck 

size 2 nm) and above. On the other hand, we find that the global average error 

(variation from MC value) for < TNEGF > up to 5 meV (purple-dashed line) is 46% 

while, if frequencies to up to 15 meV are considered this reduces to 12%. 

 

7.5 Multi-pore cases  

Our results repeatedly show that MC underestimates transmissions for long 

wavelength phonons, compared to NEGF. This is due to the particle-nature of the 

method, in which by definition phonons always scatter when they hit pores. From a 

structural examination point of view, this also means the MC method is more sensitive 

to structural changes in the device. To study this more closely we examine structures 

with more than one pore. In Fig. 7.7 we take a system with two pores and measure the 

effect of pore separation on both the NEGF and the MC fractional transmissions.  

 

Figure 7.7: NEGF fractional transmission for two-pore structure with pore separation 

l = 0 nm (black circles), l = 5 nm (blue dots), l = 25 nm (red dots) versus energy. MC 

fractional transmission for the same structures is shown by the solid lines. Schematic 

of a typical structure simulated with D = 5 nm is given in the panel above. Updated 

and adopted from Chakraborty et al. [61]. 

 

The pore diameter is kept constant at D = 5 nm and the pores are positioned 

equidistantly from the central point, with changing horizontal pore separation length, 
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l, along the x-axis. Taking the average <TNEGF> for all energies at each given l we 

observe that the fractional transmission is reduced from an average of 0.27 in the l = 

0 nm case (black circles) in Fig. 7.7, where the pore boundaries are just touching, to 

0.25, where the pores are separated by l = 25 nm (red dots), . This is a difference of 

~8%. In the case of MC, we see a larger change in fractional transmissions for the 

same structures from 0.27 in the l = 0 nm case (black line) to 0.22 when the pores are 

separated by l = 25 nm (red line). This is a difference of 20%, as seen by comparing 

the two straight lines, more than double of what the NEGF experiences. The case of a 

vertical separation along the y-axis, is explored in Fig. 7.8, with pore sizes fixed at D 

= 2 nm. The pores are placed at the mid-point of the structure along the x-axis and 

equidistantly from the middle of the y-axis, with changing pore separation distance, d.  

 

Figure 7.8: NEGF fractional transmission for two-pore structures with vertical 

separation d = 0 nm (black dots), d = 2 nm (blue dots), d = 3 nm (red dots) versus 

energy. MC fractional transmissions for the same structures are shown by the solid 

lines. A schematic of a typical structure simulated with D = 2 nm is given in the panel 

above. Adopted from Chakraborty et al. [61]. 

 

Taking the average <TNEGF> for all energies for each d, we observe that the 

fractional transmission reduces from an average of 0.49 in the d = 0 nm case (black 

dots) to 0.47 in the d = 3 nm case (red dots). This is a difference of only 4%. In the 

case of MC, we see a larger change in fractional transmissions for the same structures 
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from 0.5 in the d = 0 nm case (black line) to 0.45 in the d = 3 nm case (red line). This 

is a difference of 10%, again more than double compared to that observed in the NEGF 

case. Thus, we can conclude that the particle-based MC is more sensitive to 

geometrical details in the material structure than the wave-based NEGF at these 

feature sizes between 1 to 10 nm. Again, this is attributed to long wavelength phonons 

transmitting through or around the pores, being less affected by their structural details 

in NEGF. It is, however, possible to approximate the NEGF results by changing the 

effective size of the features simulated in MC, as we see in Fig. 7.5. For low feature 

sizes an effective decrease in pore size would increase transmission in MC to reduce 

the deviation from NEGF.  

 

7.6 Conclusions 

 In this work, we investigated the effect of the wave versus particle nature of 

phonons in their flow through nanostructured porous Si with small pores and 

constrictions. We used a full wave approach based on the atomistic Non-Equilibrium 

Green's Function (NEGF) method, and a particle-based approach using ray-tracing 

Monte Carlo (MC). Using the same simple geometries for both methods, we showed 

that phonon transmission through the pores agrees well for both methods, with an error 

margin of ± 15% across phonon wavelengths even for constriction sizes as small as 2 

nm and pore diameters as small as 1 nm as well. We also show that the neck to 

diameter ratio, n/D is a better measure of the effect of geometry, rather than the neck, 

or the diameter alone. We find that MC significantly underestimates the transmission 

of long wavelength phonons only in structures with n/D < 2 compared to NEGF. Long 

wavelength phonons are shown to propagate more easily through small constrictions, 

compared to what a particle treatment would suggest. We also found that the particle-

based MC is more sensitive to structural details compared to the wave-based NEGF 

method. Overall, this work suggests that in spite of the different assumptions made by 

each method, it is possible to use the MC even at the nanoscale and obtain results in 

agreement (within 15%) with NEGF, even down to very small features. Insights and 

features extracted from our comparison of wave versus particle methods can be useful 

in providing a better and more complete understanding of phonon transport in 

nanomaterials. These results have been published in Chakraborty et al. [61].  
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8. Effects of conductive nanoinclusions in resistive 

matrix  

 

8.1 Introduction: conductive nanoinclusions (NI) in resistive matrix 

There is a vast amount of study in the literature on the incorporation of 

nanoinclusions in inorganic crystalline materials in order to produce desirable 

thermoelectric properties. This can include enhanced thermoelectric efficiency by the 

reduction of thermal conductivity (κ) [5, 33, 40-45, 100] or by an increase in power 

factor (PF) [54-56]. The reduction in κ is generally accomplished due to phonon 

scattering at the matrix-NI interface and depends on the thermal boundary resistance 

of the interface and the dimensions of the NIs [269]. In their investigation of 

germanium nanoinclusions (lower κ = 58 Wm−1 K−1) in a silicon matrix (higher κ = 

148 Wm−1 K−1) Jean et al. [260] report an 80% maximum reduction in thermal 

conductivity. Similarly works with other nanocomposite materials we have κ 

reductions using amorphous Si [220], Cu-Si [270], Si-Ge [270-272]. Furthermore, 

using hierarchical inclusions at the atomic scale, the nanoscale, and the mesoscale in 

the PbTe–SrTe system, Biswas et al. reported a κ of 0.9 Wm−1 K−1 at 915 K and a ZT 

of 2.2 [5]. More recently, using this method for the p-type Pb0.98Na0.02Te-SrTe system, 

Tan et al. reported an even lower lattice κ of 0.5 W K−1m−1 and a higher ZT of 2.5 at 

923K [100]. Reports also show that hierarchical inclusions can improve the 

thermoelectric power factor as well [54-56].  

On the opposite scenario, a common method to increase the thermal (or 

electrical) conductivity of resistive matrix media is to incorporate highly conductive 

nanoinclusions (NIs) [38, 273-276]. Important examples of these are organic 

materials, which are used for flexible electronics and thermoelectrics, but in their 

pristine form they conduct electricity and heat very poorly. In the case of organic 

materials the matrix thermal conductivity is very low, usually in the range of 0.1 – 0.3 

Wm−1 K−1 [38, 277-279], and conductive NIs are inserted in order to increase their PF 

[38, 276] and thus enhance their ZT. PFs of 390 μ Wm−1 K−1 and 432 μWm−1 K−1 for 

NIs of SnSe and Bi2Te3 respectively, in PEDOT:PSS organic matrix (PF of 143 

μWm−1 K−1) [274, 275, 280] have been attained using inorganic-organic hybrid 

nanocomposites. Including more hierarchical and layered structures, such as alternate 
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layers of materials (e.g. PANi/graphene-PEDOT:PSS/PANi/DWNT-PEDOT:PSS 

PEDOT:PSS) can raise PFs to 2710 μWm−1 K−1 [273]. However, including NIs leads 

to a change in the thermal properties as well, and particularly an increase in the κ of 

the given nanocomposite should be expected. However, the thermal conductivity trend 

is not monotonic, in general both an increase and a decrease can be observed with NI 

density [38, 276, 281]. This trend in κ is achieved due to two competing mechanisms 

– the increased intrinsic κ of the NI material which tends to increase the overall κ, and 

the increased boundary scattering at the matrix-NI interface as the NI density 

increases, which ends to decrease the overall κ. To-date, however, the specifics that 

determine this increase in κ, as well as the details which would explain the overall κ 

behavior, are not well understood. Here, we attempt to shed light on thermal transport 

in a low thermal conductivity medium in the presence of a network of nanoinclusions 

of higher thermal conductivity.   

For this, we employ the Monte Carlo simulator described in Chapter 3 and the 

simulation method specifics for this particular geometry are outlined in Section 8.2. 

In Section 8.3 we present the simulation results and compare them to experimental 

observations in real organic materials before drawing our conclusions in Section 8.4. 

 

8.2 Approach: simulations of systems with NIs 

The Monte Carlo (MC) approach has been adopted for a semi-classical 

particle-based description of phonon transport. For computational efficiency we 

consider a 2D simulation domain of length Lx = 1000 nm and width Ly = 500 nm. The 

domain is populated with nanoinclusions (NIs) of diameters D. The MC simulation 

method is described adequately in previous chapters (and our previous published 

works [58, 59]). Here we additionally incorporate nanoinclusions. The matrix-NI 

interface was described by a well-established lattice mismatch model – the diffusive 

mismatch model (DMM) which is, extensively described in the literature [282-286].  

The DMM assumes perfectly diffusive phonon transport at interfaces. Phonons 

encountering an interface scatter in a diffuse fashion and are reinitialized in a random 

direction. Probability of transmission is proportional to the phonon density of states 

[116]. It is well established and is considered to be more suited to approximations at 

room temperature and higher than some other models [101, 116, 284-286]. We also 

utilize this model, as opposed to other models like the Acoustic Mismatch Model 
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(AMM) primarily because phonon scattering in organic materials, although not fully 

understood, is largely assumed to be diffusive in nature [38, 276]. Although, some 

works point out that no experiment has yet been able to distinguish between the AMM 

and DMM for energy transport between solids near room temperature. [286-288]. 

 

8.3 Results  

Now we use the modified simulator to see how thermal conductivity changes 

for an artificial material. We take a bulk silicon channel and increase the scattering 

rate τ to create an artificial material with thermal conductivity that is 10x lower than 

bulk silicon. Into this channel we then place NIs which have an intrinsic thermal 

conductivity of Si (10 times larger compared to the matrix material) to see the effects 

of NI density and size.  

 

8.3.1 Influence of NI density (%NI fraction)  

NIs are added as filled circles with diameter D = 80 nm (purple) as seen in the 

inset of Fig. 8.1. This process initially improves the overall κ of the nanocomposite as 

NI density increases. In the first no DMM case (blue line in Fig. 8.1c), the lattice 

mismatch is ignored and there is a steady increase in the thermal conductivity of the 

system as NI density increases. This is easily understood since the κ of the NIs is 10x 

larger as compared to the matrix material. This means that there is reduced intrinsic 

phonon scattering in the NI area (purple circles in inset of Fig. 8.1) which leads to an 

increase in κ proportional to the increase in NI area. However, when the lattice 

mismatch (DMM) is included phonons scatter at the NI boundaries (schematic Fig. 

8.1b) and we see a different picture (purple line in Fig. 8.1c). Initially for a small 

number of NIs, as the NI density increases there is an improvement in the thermal 

conductivity. However, this reaches a peak normalized 𝜅n value of ~ 4.5 at 20% NI 

density. 𝜅n is obtained by dividing the composite system 𝜅C by the matrix 𝜅M = 15 

Wm−1 K−1.  
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Figure 8.1. Effect of adding high 𝜅 nanoinclusions in low 𝜅 matrix. (a) Schematic of 

a nanoinclusion, with diameter, D. (b) Schematic of the DMM phonon scattering 

interaction with a nanoinclusion boundary. (c) NI density vs Normalized 𝜅n = 𝜅C/𝜅M 

for NIs with no DMM (blue line) and with DMM (purple line) for the case of an 

artificial matrix 𝜅M = 0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si, and D = 80 nm. A typical 

geometry with configuration ‘C’ of NI density is seen as inset, with D = 80 nm 

(purple NIs).  

 

Increasing the NI density any more actually reduces 𝜅n as seen in Fig. 8.1c. 

We can interpret this as follows: The change in κn is achieved due to two competing 

mechanisms – the increased intrinsic κ of the NI material and NI-matrix interface 

scattering (Fig. 8.1b). The κ of the NI is 10x larger as compared to the matrix material 

which means reduced intrinsic phonon scattering in the NI area (purple circles in inset 

of Fig. 8.1).  This process initially improves the overall κn of the nanocomposite as NI 

density increases, while it is dominant. However, the boundary scattering at the 

matrix-NI interface causes a reduction in thermal conductivity. As the number of NIs 

increase with increasing NI density the matrix-NI interface length increases and the 

boundary scattering becomes more dominant. This leads to a decrease in the overall 𝜅 

of the nanocomposite system as NI density increases. To see how the strength of each 

process compares we change the diameters, D of the NIs.  
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8.3.2 Influence of NI Diameter (D) 

As the positive effect of NI high thermal conductivity area competes with 

negative effect of NI boundary scattering, a peak is formed as the NI density increases, 

at the point where the strength of both is equally dominant. Here, in Fig. 8.2 by 

changing the NI size (D) we observe multiple effects. The 𝜅NI/𝜅M ratio is kept fixed at 

10, with 𝜅M = 0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si. We simulate different structures with 

increasing NI density (% NI fraction) for different NI sizes, i.e. changing D. Examples 

of the different NI sizes and configurations considered are given in the geometry panel 

above Fig. 8.2. Each line represents the change in normalized 𝜅n , for a fixed D, as NI 

density increases. We examine NIs with D = 80 nm (purple line), D = 72 nm (light-

blue line), D = 60 nm (green line), D = 44 nm (orange line) and  D = 30 nm (red line). 

All NI boundaries are taken to be fully diffusive (DMM case).  

 

 

Figure 8.2. NI density vs Normalized 𝜅n = 𝜅C/𝜅M for the case of an artificial matrix 

𝜅matrix = 0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si. 𝜅n for D = 30 nm (red line), D = 44 nm 

(orange line), D = 60 nm (green line), D = 72 nm (light-blue line) and D = 80 nm 

(purple line) are given for the DMM case. Typical geometries simulated are seen in 

the geometry panel above for D = 30 nm (red NIs), D = 60 nm (green NIs), D = 80 

nm (purple NIs) cases, respectively.  
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Firstly, as D is reduced there is a marked reduction in the size of the peak 

formed. In the case of the D = 80 nm (purple line) the peak normalized 𝜅n ~ 4.5. For a 

reduced D = 30 nm (red line) the peak reduces to a normalized 𝜅n ~ 2. Simply put, 

smaller NI sizes have a smaller NI area/boundary ratio (A/b ratio) and hence at a given 

NI area the boundary scattering becomes dominant, causing a reduction in the thermal 

conductivity peak. In other words, this means that boundary scattering processes 

become more dominant at smaller NI densities for smaller NI sizes – which is also 

seen in Fig. 8.2. As NI size increases, the peaks in their 𝜅n shift to the right. For D = 

80 nm (purple line) the peak is formed at 20% NI density, for D = 44 nm (green line) 

the peak is formed at 12% NI density, and for D = 30 nm (red line) the peak forms at 

formed at 5% NI density.  

As the non-monotonic trend is a consequence of the NI area and boundary 

length, in Fig. 8.3 we study the changes in total NI boundary length (sum of the 

boundaries of all NIs present in the system) and total NI area ( sum of all NI areas in 

the domain) as NI size changes. For all configurations A – E (shown in the geometry 

panel above Fig. 8.3) the NI Area versus NI boundary is given for all NI sizes 

considered, starting from the largest D = 80 nm (purple line), to the smallest D = 30 

nm (red line). For systems with smaller NI sizes the boundary length is much higher 

at the same NI Area. This can be seen in Fig. 8.3, where the NI boundary length for 

the D = 30 nm case (red line) is always much longer than the NI boundary length for 

larger NI sizes, for the same NI area. Longer NI boundary translates to more phonon 

scattering and hence we get a reduced peak size for the D = 30 nm case. In fact, the D 

= 80 nm case (purple line in Fig. 8.3) has the lowest NI boundary length per unit area, 

and this translates to the highest peak as seen in Fig. 8.2 (purple line).  

Looking at it in another way, the 𝜅 reduction due to boundary scattering is 

dependent on boundary length and thus proportional to D. The 𝜅 increase due to higher 

𝜅NI is due to the NI area and is proportional to D2. For small values of D there is less 

area per NI for the same number of NIs. However, as D increases the effect of 𝜅NI 

increases by D2 while the effect of boundary scattering increases by D – leading to 

larger peaks at higher NI densities for larger NI sizes. Hence the two competing effects 

seem largely dependent on the NI area to boundary length (A/b) ratio. Our simulations 

are 2D, but similarly in 3D this should be Volume/Surface Area.  
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We closely examine the A/b ratio for the peak/maximum 𝜅n observed for each 

NI diameter in the inset of Fig. 8.3. Here we can clearly see that the peak 𝜅n occurs 

for a higher A/b ratio as NI size, D, increases, signifying a clear positive correlation. 

We can surmise that an increased in A/b ratio gives an increased peak 𝜅n.  

 

Figure 8.3. NI Area vs NI Boundary length for the case of an artificial matrix 𝜅M = 

0.1× 𝜅Si, and NIs with  𝜅NI = 𝜅Si are given for all NI diameters and configurations. 

Typical geometries simulated with configurations A – E are seen in the geometry 

panel above for D = 60 nm (green NIs). Inset gives the value of A/b ratio for the peak 

value of thermal conductivity observed as diameter (D) changes.  

 

Hence, introducing higher thermal conductivity NIs (𝜅NI) to resistive media 

can increase the overall thermal conductivity of the composite, 𝜅C. This can be done 

in a controlled fashion by modulating the NI size or the A/b ratio of the NIs. This is 

particularly important in organic electronics and thermoelectrics, where a flexible 

matrix can prove useful for numerous applications such as wearable electronics and 

thermoelectric devices, but the conductivity of the matrix needs to be improved. This 

is contrary to the usual motivation in thermoelectric devices where one wants to 

decrease thermal conductivity as much as possible to improve the ZT. Here the effort 

is to increase the electrical conductivity at the expense of the thermal conductivity. 

Next, compare how our work compares to some real-world examples. We have only 

identified systems of organic matrix with inorganic NIs, and although thermal 
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transport in organic materials is of very different nature compared to the organic 

crystalline materials that we treat within MC, still we compare these systems as similar 

trends are also observed.  

 

8.3.3 Comparison to experiments 

In order to mimic real world applications and materials we take the same 

artificial material channel with thermal conductivity that is 10 times lower than bulk 

silicon and place NIs which have an intrinsic thermal conductivity ½ of Si (5 times 

larger compared to the matrix material). In Fig. 8.4 we see how our results compare to 

some real-world examples of nanocomposites with an organic matrix with inorganic 

NIs.  

 

Figure 8.4. NI density vs Normalized 𝜅n = 𝜅C/𝜅M for the case of an artificial matrix 

𝜅M = 0.1× 𝜅Si, and NIs with  𝜅NI = 0.5× 𝜅Si are given for the MC with no DMM (blue 

line) and MC with DMM (red line) cases. Real-world experimental (and theory) 

results from the literature are given for similar 𝜅NI/ 𝜅M ratios. 

 

We maintain the same 𝜅NI ~ 5× 𝜅M for each case and compare the normalized 

𝜅n values for each experimentally observed material with our predictions (red line in 

Fig. 8.4). The green data points in Fig. 8.4 are for experimental devices that use 

PEDOT:PSS as the organic matrix material with Bi2Te3 nanoinclusions [279, 289, 

275] and the green-dashed line gives the theoretical predictions for the same material 
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[279]. The black data points in Fig. 8.4 incorporate Sb2Te3 nanoinclusions in the same 

organic matrix, (theoretical predictions given by dashed-black line) [279, 276]. We 

see some initial overall match between our results and these experimental 

observations. For a lower 𝜅NI we expect lower 𝜅n values. Indeed, looking at a 𝜅NI ~ 

3× 𝜅M case with SnSe nanoinclusions [274] (dark-blue data point in Fig. 8.4, again 

with PEDOT:PSS as the organic matrix material) we see that the 𝜅n is lower than the 

predicted 𝜅NI ~ 5× 𝜅M, as expected. The characteristic peak that we observed here 

has been reported in other hybrid materials recently [290-295] and further 

experimental match with our simulation is anticipated as research into this area 

evolves. 

 

8.4 Conclusions  

In this work we have attempted to shed light on thermal transport in a low 

thermal conductivity medium in the presence of a network of nanoinclusions of higher 

thermal conductivity. We take a bulk silicon channel and increase the scattering rate 

within a Monte Carlo simulator to create an artificial material with thermal 

conductivity that is 10x lower than bulk silicon. Into this channel we then place NIs 

which have an intrinsic thermal conductivity 5x and 10x larger compared to the matrix 

material. We show that the thermal conductivity follows a non-linear trend with the 

density of NIs. Incorporation of low densities of NIs does improve the thermal 

conductivity, but as the NI density increases and phonons encounter more boundary 

scattering, thermal conductivity tends to decrease again. In fact, we show that as the 

NI boundary length to NI area ratio (surface to volume ratio in 3D) increases (i.e. 

several smaller NIs rather than a few larger ones), the reduction in thermal 

conductivity is encountered at lower NI densities, resulting in smaller overall increase 

in the thermal conductivity due to NIs. Insights extracted from this work can be used 

to provide a better understanding of phonon transport in nanocomposite materials with 

intrinsically low matrix thermal conductivities, where its beneficial to incorporate NIs 

of higher thermal conductivity, such as flexible organic thermoelectrics. 
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9. Conclusions and future work 

 

9.1 Conclusions 

In this thesis we investigated thermal transport in hierarchically nanostructured 

and highly disordered geometries through theory and large-scale simulations. The 

thesis developed and employed a ‘single-phonon’ Monte Carlo phonon transport 

simulator to solve the Boltzmann Transport Equation for phonons in hierarchical and 

disordered Si nanostructures. We have presented a thorough investigation into the 

impact of nanostructures on the thermal properties of these materials.  

The main results of the work are as follows: 

1) In nanocrystalline geometries the effect of grain size on thermal 

conductivity (𝜅) is more pronounced at grain sizes <d> smaller than the 

average phonon mean free path of the system (λpp). In that case, boundary 

scattering dominates over internal three-phonon scattering. Further, effect 

of changing grain size and porosity ( ) on thermal conductivity is much 

larger than effect of boundary roughness and specularity (p) in reducing 𝜅. 

Combining defects to create hierarchical nanostructuring reduces thermal 

conductivity significantly.   

2) Randomization or highly disordered porous geometry, which is often 

overlooked, can play an important effect, reducing thermal conduction by 

even up to 60% compared to the ordered pore geometry. Thus, non-

uniformity can be as important, if not more important in reducing 𝜅 

compared to boundary roughness and specularity (p) and needs to be 

considered at a similar level in interpreting experimental data. We 

constructed new accurate analytical models for randomized porous 

structures, based on existing models for ordered structures, with excellent 

agreement with the full-scale Monte Carlo simulations.  

3) Nanocrystalline grain boundaries are more effective at reducing thermal 

conductivity at higher temperatures. Up to ~ 40% further reduction in 

thermal conductivity at high temperatures (800 K) can be attributed to the 

q-dependence of boundary scattering. Incorporating hierarchically 

disordered nanopores magnifies this effect by an additional ~15% at 800 K. 
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This suggests that nanostructuring at high temperatures can be more 

effective than previously thought.  

4) Thermal rectification was observed in silicon for small temperature 

differences. Rectification was defined in terms of system mean-free-paths 

rather than non-linearity in temperature – as conventionally done. It was 

shown that it is possible to enhance thermal rectification R in porous 

materials by using denser pores nearer the device edge. Triangular pore 

arrangements are more effective at thermal rectification than rectangular 

arrangements. Total of over 60% rectification was observed for an 

optimized geometry and nanostructure density.  

5) Wave-based NEGF method and particle-based MC method were 

compared. Phonon transmission through the pores (for the same geometry) 

agree well for both methods, with an error margin of ± 15% across phonon 

wavelengths even for constriction sizes as small as 2 nm and pore 

diameters as small as 1 nm as well. Neck to diameter ratio, n/D is shown 

to be a better measure of the effect of geometry, rather than the neck, or 

the diameter alone. MC underestimates the transmission of long 

wavelength phonons in structures with n/D < 2 compared to NEGF. Long 

wavelength phonons propagate more easily through small constrictions, 

compared to what a particle treatment would suggest. MC is more sensitive 

to structural details compared to the wave-based NEGF method. Overall, 

in spite of the different assumptions made by each method, it is possible to 

use the MC even at nanoscale and obtain results in agreement (within 15%) 

with NEGF, even down to very small features.  

6) Incorporating nanoinclusions (NIs) consisting of a material of higher 

thermal conductivity compared to the matrix thermal conductivity, results 

in a peak value for thermal conductivity with NI surface fraction (volume 

in 3D). This is a consequence of the interplay of the high thermal 

conductivity regions that increase phonon transport, and the increased 

boundaries which impede phonon transport. Its amplitude is determined by 

the surface/area to boundary line ratio. These insights would be greatly 

helpful for understanding studies with a large difference on thermal 

conductivity between the matrix and NIs, for example organics or hybrid 

nanocomposites.  
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9.2 Future work 

There are a few potentially interesting lines of inquiry that could follow from 

this work: 

1) All through Chapters 4 and 5 of this Thesis we discuss how thermal 

conductivity of certain systems change – it would be great to see how the 

electronic conductivity and Seebeck coefficient change for the same 

system to get an idea of the ZT. We already know from concurrent work in 

the group, however, that as long as the density of nanoinclusions/pores was 

kept within a certain margin there would be minimal negative impact due 

to the addition of these nanostructures. Although this was briefly discussed 

in Chapters 1, 4 and 5 there could be more work done on this, specifically 

for the geometries we employ here.  

2) Throughout Chapters 4 to Chapter 6 in this thesis, we use silicon as the 

base material to examine our hypotheses. While we do take into account 

germanium (in Appendix A) and some other artificial base materials in 

Chapter 8 there could be further work done on this using different 

materials.  

3) In Chapter 6 we look at the thermal rectification offered by rearranging 

circular shaped pores into different geometrical shapes. In other very recent 

work, it was observed that using triangular pores arranged in specific 

geometric shapes enhanced thermal rectification in some materials. It 

would be interesting to see the changes in the rectification if other pore 

shapes are used. 

4) Novel thermal materials such as phononic crystals and waveguides 

(analogous to photonic materials), thermal cloaks, heat channels 

(analogous to optical metamaterials) and other novel applications could be 

further examined.  

5) In Chapter 8 we describe thermal transport in dissimilar materials. 

Recently, there has been great interest in research on transport in 

heterogenous materials and layered hybrid (inorganic-organic) systems. 

There is scope for further investigation in this direction. 
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Appendix A 

In this Appendix A we include background information and sensitivity studies 

related to the simulation parameters and the various model choices we employ in the 

Thesis. The purpose is to demonstrate that the conclusions, and the analytical models 

we propose, are robust with respect to model assumptions and parameter choice.  

 

1. Thermoelectric power generation efficiency: 

Thermoelectric power generation efficiency of thermoelectric materials is 

compared to other methods of power generation. This is given in Fig. A1 below [9].  

 

Figure A1: Comparison between the efficiency of conventional engines and the 

efficiency of thermoelectric generators reported as a function of ZT [9].  

 

2. Simple dispersion relation: 

Eq. 2.40 has been used to plot a simplified dispersion relation with one optical 

mode and one acoustic mode in Fig. A2 below. The first Brillouin zone is shown with 

an acoustic branch (blue line) and an optical branch (green line) for M1 = 0.3M2.  

 

Figure A2: A simplified dispersion relation for a material with M1 = 0.3M2. The 

normalized frequencies are given for the first Brillouin zone with an acoustic branch 

(blue line) and an optical branch (green line).  



 

140 

3. Change in dispersion relation with Mass (M): 

Eq. 2.40 has been used to plot a simplified dispersion relation in Fig. A3 below. 

Here the effect of mass on the dispersion relation is examined by comparing the cases 

where M1 = 0.3M2 (Fig. A3a) and M1 = M2 (Fig. A3b) below.  

 

Figure A3: A simplified dispersion relation for a material with (a) M1 = 0.3M2 and 

(b) M1 = M2. The normalized frequencies are given for the first Brillouin zone with an 

acoustic branch (blue line) and an optical branch (green line).  

 

4. Time-of-flight <TOF> variation: 

The variation of <TOF> for different phonon frequencies (ω) and specularities 

(p) is given below.  

 

Figure A4: Variation of <TOF> with phonon frequency (ω) for cases were p = 1 (blue 

line), p = 0.5 (green line) and p = 0.1 (red line).  

 

5. Phonon-phonon mean-free-path (MFP) value: 

The influence of a different choice for the phonon-phonon scattering mean-

free-path (MFP) λpp. In the literature λpp varies from 100 nm to 300 nm, thus, here, we 

recreate Fig. 4.5 as Fig. A5 for λpp = 135 nm – solid lines (as in the main text) and λpp 

= 300 nm – dashed lines. Figure A5 shows the thermal conductivity versus 
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nanocrystalline domain size for porous materials with porosities   = 0% and 15%, in 

both ordered and randomized pore conditions. Doubling the MFP has at most ~15% 

qualitative difference in our results in the pristine material with no crystallinity and no 

porosity (compare the dashed to solid blue lines at <d> = 1000 nm), which drops to 

~ 6% in the case where high and randomized disorder is introduced (dashed versus 

solid purple lines at <d> = 1000 nm). At smaller <d> the dependence on MFP is 

insignificant, indicating that boundary scattering dominates transport. Thus, the 

assumption of MFP choice does not change any of our quantitative or qualitative 

trends. 

 

Figure A5: Monte Carlo simulations showing the effect of different phonon-phonon 

scattering MFPs on the combined effects of grain size <d> and porosity ( ). The blue 

lines show the thermal conductivity in the presence of nanocrystallinity only (no 

pores). Ordered pores case (red lines) and random pores case (purple lines) versus 

grain size <d> are also shown. Porosity   = 15% is considered. The dashed lines 

indicate the simulations where λpp = 300 nm [11, 171]. The solid lines are for λpp = 135 

nm as in the main text [83, 88]. Adopted from Chakraborty et al. [58]. 

 

6. Channel length dependence: 

Throughout the paper, we have fixed the channel length at Lx = 1000 nm, which 

is indeed shorter that some of the phonon mean-free-paths in Si, and used a scaling to 

adjust for this short channel described by Eq. 3.12. Here we performed Monte Carlo 

simulations in nanoporous materials of channel length twice as much, at Lx = 2000 nm 

and compare the thermal conductivity results for the two cases. Figure A6a shows the 

comparison of the thermal conductivity versus porosity in channels with the different 

lengths, Lx = 1000 nm (blue line), and Lx = 2000 nm (red line).  Indeed, due to the 

scaling performed, the boundary scattering on the upper/lower surfaces, as well as 

scattering on the pores, the channel we consider (Lx = 1000 nm) is already diffusive, 
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and changing the length does not alter the thermal conductivity, either for the pristine 

channel (for   = 0) or for the porous cases at any porosity.  

In order to have a clear picture on the transport regime at which the channel 

operates (ballistic versus diffusive), we calculate the average phonon path length in 

our polycrystalline structures from the moment the phonons enter the domain after 

initialization, to the moment they are extracted from the domain. This is shown below 

in Fig. A6b versus the nanocrystalline size <d>. The average phonon path length in 

the pristine channel is only twice the length of the domain (at <d> = 1000 nm), which 

is the reason for the phonon mean-free-path scaling we employ by Eq. 3.12. As the 

nanocrystallites are reduced in size, the path increases (since total distance a phonon 

travels increases due to scattering), especially when their size becomes smaller 

compared to λpp  (135 nm). The path of the phonons is then more than an order of 

magnitude compared to the channel length, indicating compete channel diffusion, and 

large reductions in the thermal conductivity.   

 
Figure A6: (a) Thermal conductivity versus porosity for randomized nanoporous 

geometries in the nominal domain length Lx = 1000 nm (blue line) and doubled domain 

length Lx = 2000 nm (black line). Pore boundary specularity is p = 0.1. (b) Average 

phonon path vs <d> for nanocrystalline geometry cases. <d> is varied from <d> =1000 

nm to <d> = 50 nm. Updated and adopted from Chakraborty et al. [58]. 

 

7. Constant roughness Δrms versus constant specularity p: 

Instead of a constant specularity p, in Monte Carlo it is also customary to 

determine the actual specularity for each phonon using the expression 

( ) ( )2 2

rmsexp 4p q q = − , which also allows wavevector dependence reflections. In that 

case, what is constant is the surface roughness (Δrms). Below, we recreate Fig. 4.3 for 

the ordered pore cases only, as Fig. A7, but include simulation results for constant Δrms 

= 0.3 nm treatment of pore boundary scattering (i.e. note there is q-dependent 
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scattering), a value which corresponds well to rough silicon surfaces [197, 198]. This 

specific p = 0.1 (red line in Fig. A7) we employ throughout, seems to correspond to 

this Δrms ~ 0.3 nm over the entire range of porosity values we consider (black-dashed 

line in Fig. A7).  

However, we must qualify that, while there is a good quantitative 

understanding of the phonon reflection process using roughness or specularity, 

detailed understanding of how phonons of specific wavelengths reflect from 

atomically rough surfaces remains unclear – primarily due to  limited control over high 

frequency phonon generation and detection [296]. For instance, while it is established 

and widely accepted that the increase in roughness of pore boundaries reduces the 

thermal conductivity observed, in one of his works Maldovan argues that it is possible 

to get the lowest thermal conductivity using specular reflections on pore boundaries 

[297]. This is a field where research continues to evolve.  

 

Figure A7: Comparison of fixed specularity values vs fixed Δrms (black line) for 

ordered porous geometry cases. Three different values for fixed boundary specularity 

are considered: p = 1, totally specular boundary scattering (blue line); p = 0.5 (green 

line); and p = 0.1, almost diffusive boundary scattering (red line). The results for the 

fixed Δrms = 0.3 nm (black-dashed line) most closely correspond to p = 0.1. Adopted 

from Chakraborty et al. [58]. 

 

8. Pore scattering surface area dependence: 

In order to examine the effect of pore scattering surface on thermal 

conductivity, κ, we look at both the ordered and the disordered porous case – where 

both pore size and position is randomly distributed. Both the specular case (p = 1, blue 

lines) and the diffusive case (p = 0.1, red lines) are examined in ordered (solid lines) 

and polydispersed (dashed lines) pore combinations in Fig. A8 below. For lower pore 

scattering surface (percentage porosities) κ is much greater in the ordered case than 
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the disordered case for both cases (comparing solid and dashed lines respectively). 

This would indicate that the reduction in κ is not just the effect of increased surface 

area, but also greatly dependent pore position for lower pore scattering surface 

(percentage porosities). At higher pore scattering surface (above ~ 13,000 nm) the 

effect of pore position reduces and reduction in κ is due to surface area in 

polydispersed cases increases.  

 

Figure A8: Thermal conductivity versus pore scattering surface for specular pore 

boundaries with p = 1 (blue lines) and the diffusive pore boundaries with p = 0.1 (red 

lines). Both ordered cases (solid lines) and polydispersed cases (dashed lines) are 

examined. 

 

9. Kapitza resistance variation: 

In the analytical models for nanocrystalline materials described by Eqs. 4.1-

4.3 the value of the Kapitsa resistance appears. There is a slight variation in the values 

of the Kapitsa resistance in the literature, from RK = 1 to 1.16 109 Km2W–1. Here we 

vary the value of RK in that range to examine the amplitude of this variation in the 

thermal conductivity. Indeed, the effect of this variation, as shown in Fig. A10 is 

minor, both qualitatively and quantitatively.   
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Figure A9: Thermal conductivity versus grain size from the commonly employed 

Yang model [203] analytical model for nanocrystalline geometries compared to the 

Monte Carlo results (blue line). We assume Δrms = 1 nm. The Kapitza resistance value 

is varied from 1 x 109 Km2W–1 (red line), to 1.06 x 109 Km2W–1 (yellow line) to 1.16 

x 109 Km2W–1 (purple line). Adopted from Chakraborty et al. [58]. 

 

 

10. Choice of domain splitting ls for the randomized analytical models: 

Randomization causes additional reduction in thermal conductivity as seen in 

theory and experimental works [58, 60, 298]. In the extension of the analytical models 

in order to capture the effect of randomized porosity (Eqs. 4.11, 4.13), we split the 

simulation domain in lengths of ls = δ, where δ is the scattering length introduced by 

the pores, and determine the deviation in porosity across the length of the channel 

based on that ls region separation. Although δ is determined by the underlying 

geometry, ls is a choice we make based on the fact that the effect of porosity will be 

correlated to the scattering distance it causes. However, here we investigate the 

sensitivity of the proposed models on the choice of ls. We separated the domain in ls = 

δ, ls = 2δ and ls = δ/2, and extracted the deviations in porosity based on those separation. 

We then included them in the analytical model given by Eq. 4.13. Figure A10 below 

is a recreation of Fig. 4.8 of the main text, which shows that: i) independent of the 

choice of ls, the model that included deviations provides better fit to the Monte Carlo 

data compared to the simple, non-randomized model (dashed-purple line), ii) large ls 

compared to δ still gives accurate results, iii) smaller ls compared to δ overestimates 

the effect of disorder variability, especially at lower porosities. However, at higher 

porosities the inaccuracy decreases independent of the choice of ls. 
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Figure A10: The sensitivity of the randomized models in the ls distance that we choose 

to split the channel into for the calculation of the porosity variation along the transport 

direction. Results for 2ls ls, and ls/2, where ls=δ are shown and compared to the Monte 

Carlo results and the simpler non-randomized model of Eq. 4.8. Adopted from 

Chakraborty et al. [58]. 

 

11. Germanium thermal conductivity: 

In order to verify our simulator for a different material we used the bulk case 

of germanium (Ge). Optical modes are neglected from the dispersion relations, as in 

previous works, for both Si [16, 58, 59, 80, 81, 89] and Ge, [153, 299]. For simplicity, 

we use the quadratic fit for the dispersion for the acoustic branches as described by 

Eq. 2.50 in Chapter 2 as [85]:    

2

s
q v q cq = +( )                                           (2.50) 

Above, the fitting parameters vs and c for both silicon and germanium materials 

are parameters as indicated in Table A1 and plotted in Fig. A11.  

Parameter 

Longitudinal 

acoustic (LA) 

branch 

Transverse acoustic 

(TA) branch 

Material 

vs [ms−1] 9.01 × 103 5.23 × 103 Si 

c [m2s−1] −2 × 10-7 −2.26 × 10-7 Si 

vs [ms−1] 5.63 × 103 2.60 × 103 Ge 

c [m2s−1] −1.5 × 10-7 −1.13 × 10-7 Ge 

Table. A1. Fitting parameters that are used to produce the Si and Ge acoustic 

phonon branches, respectively [85, 153].  
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Figure A11: (a) The fit for the dispersion relation ω obtained as in Refs. [85, 153] 

and (b) the group velocities for longitudinal acoustic (LA, red lines) and transverse 

acoustic waves (TA, green lines) for the cases of silicon (solid lines) and germanium 

(dashed lines), respectively.  

 

All validation of the simulator was carried out using a fixed simulation domain 

of length Lx = 1000 nm and width Ly = 500 nm. Good agreement is found between our 

simulated results and literature values of silicon thermal conductivity (𝜅 = 148 Wm−1 

K−1) and germanium thermal conductivity (𝜅 = 55 Wm−1 K−1) [153, 300].  

 

12. Phonon Transport GUI - The GUIDE app: 

This project was aimed to optimise the design of nanostructured thermoelectric 

(TE) materials that convert heat directly into electricity. During the course of this 

project we developed a fully functional Monte Carlo phonon transport code. To make 

this simulator more accessible to users across the spectrum, the more complex and 

computationally expensive  MC code was simplified into the phonon transport 

simulator app “Guided User Interface Developed for Experimentalists” (GUIDE) 

created by myself within the duration of my PhD course at Warwick (over the last 3 

years from November 2016). The Phonon Transport GUIDE app is a simple graphic 

guided user interface with interactive inputs that allows the user to generate geometric 

structures with thermal properties. It has been created entirely in Matlab, with simple 

intuitive inputs and a user friendly interface. It was validated by myself against 

established literature sources [41, 86, 89, 96, 152, 1898, 190, 191] for porous silicon 

material specific applications. Subsequently, it was given to students for their project 

work (whereupon they validated it independently) for simple porous structures based 

on silicon. The GUIDE app, is designed to predict thermal properties of given 

materials and can be used to maximize κ reduction as well as explore thermal 
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rectification. The GUI input does not allow for significant parallelization (although 

this was attempted by a project student). It takes certain approximations (e.g. linear 

thermal gradient is pre-assumed, increased domain discretization, etc.) in order to 

significantly reduce computation time. For instance, this allowed us to quickly study 

a range of different geometry configurations for their rectification values before 

investigating the best ones in-depth using the full MC Monte Carlo phonon transport 

simulator. Our results from these studies were subsequently published as Chakraborty 

et al. [62]. The code is currently being integrated into a unified electro-thermal 

computational platform for predicting nanomaterial properties – which should be 

available shortly. Screenshots of its two currently operational versions of the GUIDE 

app v1.1 and v1.3 are given below.  

 

 

Figure A12: Screenshots of GUIDE’s two operational versions (a) v1.1 and (b) v1.3.  

 

This ties into our overall aim to integrate the MC code, wave based NEGF 

codes etc. developed by our group into a unified electro-thermal computational 

platform for predicting nanomaterial properties. The latest updates on this (including 

codes when made available) are given on our University website, which I helped 

design and maintain until May 2020.  

More details given on our website: 

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/comp

utational_nanotechnology_lab/erc_nanothermma/  

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/erc_nanothermma/
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/erc_nanothermma/
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13. Effect of device temperature on thermal rectification: 

 

Figure A13: The rectification dependence on the pore and neck sizes – given by the 

neck/diameter (n/D) ratio, and the mean temperature of the simulation domain. Three 

temperature ranges are examined Tavg = 350 K (light-blue line) for TH = 360 K to TC = 

340 K, Tavg = 300 K (blue line) with TH = 310 K to TC = 290 K and Tavg = 250 K (purple 

line) with TH = 260 K to TC = 240 K. The rectification for whole range of n/D values 

simulated for the Tavg = 300 K (blue line) case is given as an inset on the top right 

corner. Typical geometries simulated are also indicated in the insets. Adopted from 

Chakraborty et al. [62]. 

 

In Fig. A13 we show the effect of temperature. We have performed simulations 

for different geometries at two different temperatures, one higher (TH = 350 K), and 

one lower (TH = 250 K).  For a given geometry, higher temperatures reduce the phonon 

λpp due to larger phonon-phonon scattering (λpp = 100 nm for TH = 350 K), and increase 

their influence in determining thermal resistance over the pore scattering, which 

reduces rectification. In contrast, lower temperatures increase the phonon MFPs (λpp 

= 220 nm for TH = 250 K), which reduce their influence on determining thermal 

resistance over the pore scattering (or the pore influence becomes bigger), which 

increases rectification.    
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Appendix B  

 

1. Journal Publications:  

 

This work has led to journal publications in the following peer-reviewed journals: 

 

1. D. Chakraborty, S. Foster, and N. Neophytou, Monte Carlo phonon transport 

simulations in hierarchically disordered silicon nanostructures, Physical 

Review B, 98, 115435 (2018). [Chapter 3 and Chapter 4] 

2. D. Chakraborty, S. Foster, and N. Neophytou. Monte Carlo simulations for 

phonon transport in silicon nanomaterials. Materials Today: Proceedings, 8, 

652 (2019). [Chapter 3] 

3. D. Chakraborty, L. de Sousa Oliveira, and N. Neophytou. Enhanced Phonon 

Boundary Scattering at High Temperatures in Hierarchically Disordered 

Nanostructures. Journal of Electronic Materials, 48, 4, 1909-1916, (2019). 

[Chapter 5] 

4. D. Chakraborty, J. Brooke, N. C. S. Hulse and N. Neophytou. Thermal 

rectification optimization in nanoporous Si using Monte Carlo simulations. 

Journal of Applied Physics 126, 184303 (2019). [Chapter 6] 

5. D. Chakraborty, H. Karamitaheri, L. de Sousa Oliveira, and N. Neophytou. 

Effect of wave versus particle phonon nature in thermal transport through 

nanostructures. Computational Materials Science, 180, 109712 (2020). 

[Chapter 7] 

6. D. Chakraborty and N. Neophytou. Effects of boundary interfaces on 

dissimilar materials. APL Materials, in process. [Chapter 8] 

 

Further details about these publications is available on my google scholar or the  

university webpage. Links given below: 

Google Scholar page:    

https://scholar.google.co.uk/citations?hl=en&user=jvni1XwAAAAJ 

University webpage:  

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/comp

utational_nanotechnology_lab/dhritimanc  

  

https://scholar.google.co.uk/citations?hl=en&user=jvni1XwAAAAJ
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dhritimanc
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dhritimanc
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2. Conference Presentations:  

  

Certain segments of the research presented in this thesis have been presented at 

multiple high impact national and international conferences, receiving certain awards. 

A selected list of (oral and poster) presentations is given below (* denotes lead 

presenter):  

 

1. Dhritiman Chakraborty*, Samuel Foster, Neophytos Neophytou.  

Oral presentation: ‘ Multi-Scale Phonon Transport Monte Carlo Simulations in 

Hierarchically Disordered Nanomaterials,’ European Conference on 

Thermoelectrics, ECT, Padova, Italy, September 2017. (link to pdf) 

2. S. Foster*, D. Chakraborty, M. Thesberg, H. Kosina, N. Neophytou. 

Oral presentation: Monte Carlo simulations for extracting the power factor in 

1D systems”, EPRSC Thermoelectric Network Meeting, Manchester UK, Feb. 

14-15, 2017. 

3. Dhritiman Chakraborty*, Samuel Foster, Laura Oliveira, Neophytos 

Neophytou. 

Poster presentation: ‘Phonon transport in hierarchically disordered silicon 

nanostructures,’ UK Thermoelectric Network Meeting, Edinburgh, UK, 

February 2018. (Best poster award). (link to pdf) 

4. Dhritiman Chakraborty*, Samuel Foster, Laura de Sousa Oliveira, Neophytos 

Neophytou. 

Poster presentation: ‘Phonon transport in hierarchically disordered silicon 

nanostructures’, IET Midlands Power Group Annual Prize Award Evening, 7th 

March, 2018, Aston University, Birmingham. (Exceptional poster 

presentation certificate). 

5. Laura de Sousa Oliveira*, Dhritiman Chakraborty, Chathurangi 

Kumarasinghe, Samuel Foster, Vassilios Vargiamidis, and Neophytos 

Neophytou. 

Poster presentation: ‘Phonon and electronic transport in nanostructures and 

complex materials’, School on Electron-Phonon Physics from First Principles, 

20th March, 2018, ICTP, Trieste, Italy. 

6. Dhritiman Chakraborty* and Neophytos Neophytou. 

Poster presentation: ‘Phonon transport in hierarchically disordered silicon 

nanostructures’, University of Warwick Engineering Symposium, 20th April, 

2018, University of Warwick, Coventry, UK. (link to pdf) 

7. Neophytos Neophytou*, Dhritiman Chakraborty, Laura de Sousa Oliveira. 

Oral presentation: ‘Phonon transport simulations in large scale hierarchically 

disordered nanostructures’, EMRS Spring Meeting, Strasbourg, France, June 

18-22, 2018. 

http://nneophytou.com/wp-content/uploads/2009/10/Dhritiman_Chakraborty_proceedings_ECT_2017_POSTED.pdf
http://nneophytou.com/wp-content/uploads/2009/10/Chakraborty-UKTEN-poster_final.pdf
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dctest/dhritiman_chakraborty_-engineering_symposium_2018_extended_abstract_ieee.pdf
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8. Dhritiman Chakraborty*, Laura de Sousa Oliveira, Samuel Foster, and 

Neophytos Neophytou. 

Poster presentation: ‘Phonon Transport in hierarchically disordered 

nanostructures: From Monte Carlo simulations to simple analytical models’, 

37th International Conference on Thermoelectrics and 16th European 

Conference on Thermoelectrics, Caen, France, 2nd July, 2018. (link to pdf) 

9. Laura de Sousa Oliveira*, Dhritiman Chakraborty, and Neophytos Neophytou, 

Oral presentation: ’Molecular dynamics simulations to understand phonon 

transport in nanoporous materials’, International Conference on 

Thermoelectrics / European Conference on Thermoelectrics, ICT/ECT 2018, 

Caen, France, July, 2018. 

10. N. Neophytou*, S. Foster, V. Vargiamidis, D. Chakraborty, L. Oliveira, C. 

Kumarasinghe, and M. Thesberg,  

Invited talk: ‘Simulation studies of nanostructured thermoelectric materials,’ 

IEEE NANO 2018, Cork, Ireland, July 24-26, 2018.  

11. Laura de Sousa Oliveira*, Dhritiman Chakraborty, Vassilios Vargiamidis, 

Samuel Foster, and Neophytos Neophytou.  

Oral presentation: “Transport simulations in hierarchically disordered 

nanostructures for thermoelectric materials design”, IEEE Nanotechnology 

Materials and Devices Conference, October 15th–17th 2018, Portland, 

Oregon, USA. 

12. Laura de Sousa Oliveira, Dhritiman Chakraborty, and Neophytos Neophytou. 

Oral presentation: “Molecular dynamics simulations in disordered nanoporous 

materials”, CNRS Groupement de Recherche Européen, October 11th–12th 

2018, Lyon, France.  

13. Dhritiman Chakraborty*, Laura de Sousa Oliveira, H. Karamitaheri, and 

Neophytos Neophytou. 

Poster presentation: ‘Phonon transport simulations in nanostructured silicon: 

Merging information from Monte Carlo, NEGF and MD’, Nanoscale and 

Microscale Heat Transfer VI, Eurotherm seminar No. 111, 2 – 7 December, 

2018, Levi, Lapland, Finland. (Book of Abstracts) 

14. Dhritiman Chakraborty*, Laura de Sousa Oliveira, Samuel Foster, and 

Neophytos Neophytou. 

Oral + Poster presentation: ‘Phonon Transport in hierarchically disordered 

nanostructures: Monte Carlo simulations to analytical models’, IET Midlands 

Power Group Annual Prize Award Evening, 27th March, 2019, University of 

Birmingham, Birmingham. (Exceptional presentation award + Valued 

poster certificate). 

15. Dhritiman Chakraborty*, Samuel Foster, Neophytos Neophytou 

Poster presentation: ‘Analytical models for thermal conductivity in highly 

disordered nanostructures’ UK Thermoelectric Network Meeting, Kings 

College London, UK, May 2019. (link to pdf) 

 

http://nneophytou.com/wp-content/uploads/2009/10/ICT-2018-Dhritiman-Final-abstract.pdf
file:///C:/Users/Dhrit/Downloads/Thesis%20Presub/Finals/dctest/eurotherm_book_of_abstracts_pg_148.pdf
http://nneophytou.com/wp-content/uploads/2009/10/UKTEN-Kings-2019-Chakraborty-abstract.pdf
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16. Dhritiman Chakraborty*, Neophytos Neophytou,  

Oral presentation: ‘Phonon transport in hierarchically disordered silicon 

nanostructures.’, Engineering Postgraduate Symposium, 23rd April, 2019, 

University of Warwick, Coventry, UK. (link to pdf) 

17. Dhritiman Chakraborty*, H. Karamitaheri, Neophytos Neophytou,  

Oral presentation: ‘Phonon transport in hierarchically disordered silicon 

nanostructures: Monte Carlo to wave-informed Monte Carlo using multi-

physics.’, International School of Physics ‘Enrico Fermi’, Varenna, Italy, July 

2019. (link to pdf)  

18. Laura de Sousa Oliveira*, Dhritiman Chakraborty, Vassilios Vargiamidis, 

Neophytos Neophytou,  

Oral presentation: ‘The effect of geometry on thermal transport in nanoporous 

Si from large-scale MD’, International School of Physics ‘Enrico Fermi’, 

Varenna, Italy, July 2019. 

19. Neophytos Neophytou, Vassilios Vargiamidis, Samuel Foster, Laura de Sousa 

Oliveira, Dhritiman Chakraborty, Chathurangi Kumarasinghe, Patrizio 

Graziosi, and Mischa Thesberg,  

Oral presentation: ‘Advanced thermoelectric transport simulations in complex 

bandstructure and nanostructured materials,’ 17th European Conference on 

Thermoelectrics, Limassol, Cyprus, 2019. (link to pdf) 

 

Extended abstracts printed or published as a part of conference contributions: 

1. D. Chakraborty*, N. Neophytou. ‘Phonon transport simulations in 

hierarchically disordered silicon-based nanostructures,’ PGR Engineering 

Symposium, University of Warwick, Coventry, UK, April 23, 2019 (oral 

presentation). (link to pdf) 

2. D. Chakraborty*, S. Foster, L. Oliveira, N. Neophytou. ‘Phonon transport in 

hierarchically disordered Silicon nanostructures’ PGR Engineering 

Symposium, University of Warwick, Coventry, UK, April 20, 2018 (poster 

presentation). (link to pdf) 

3. Neophytou, N. Neophytou*, S. Foster, V. Vargiamidis, D. Chakraborty, L. 

Oliveira, C. Kumarasinghe, and M. Thesberg, ‘Simulation studies of 

nanostructured thermoelectric materials,’ IEEE NANO 2018, Cork, Ireland, 

July 24-26, 2018 (invited talk). (link to pdf) 

 

Further details about these presentations available on our webpages online. Links 

given below: 

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/comp

utational_nanotechnology_lab/dhritimanc (including extended abstracts) 

http://nneophytou.com/?page_id=12  (detailed list on supervisor’s webpage) 

  

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dctest/ee-y3-1690923-d_chakraborty_extended_abstract.pdf
http://nneophytou.com/wp-content/uploads/2009/10/DChakraborty-Varenna-school-presentation-abstract-2019-FINAL.pdf
http://nneophytou.com/wp-content/uploads/2009/10/ECT_2019_abstract_NN-FINAL.pdf
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dctest/ee-y3-1690923-d_chakraborty_extended_abstract.pdf
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dctest/dhritiman_chakraborty_-engineering_symposium_2018_extended_abstract_ieee.pdf
http://nneophytou.com/wp-content/uploads/2009/10/IEEENANO18_submission_ABSTRACT_Neophytou_SUBMIT.pdf
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dhritimanc
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/dhritimanc
http://nneophytou.com/?page_id=12
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3. Public engagement activities:  

During the course of this PhD, I participated in various public engagement 

activities designed to disseminate information and raise awareness about our project 

to members of the general public. We applied for fiscal support from and were 

awarded the Warwick Public Engagement Fund, on the basis of which we participated 

at the Cheltenham Science Festival (June 2019) and the British Science Festival (Sept. 

2019), apart from my participation at the yearly Warwick Engineering and Open days.  

 

Cheltenham Science Festival: 4 - 9 June 2019, Imperial Square, Cheltenham 

      

 

Topic: Energy crisis: Nanomaterials for green energy generation 

Brief Background: The Cheltenham Science Festival took place at the Imperial Square 

in Cheltenham from 4 - 9 June 2019. We, (the members of the Computational 

Nanotechnology Lab, School of Engineering) from the University of Warwick 

interacted with children and adults alike to share their knowledge and expertise in the 

field of thermoelectric power generation and green energy. Our collaborators from the 

University of Exeter also participated in the presentations by displaying graphene 

based flexible LEDs, smart fabrics.  

Exhibit description: Energy harvesting is a very relevant subject, potentially able to 

promote energy sustainability and reduction in the use of fossil fuels, with huge 

environmental and societal benefits. Two thirds of the energy used in power generation 

ends up as wasted heat. An incredibly large amount of heat is available basically 

everywhere from our bodies to our natural environment. Thermoelectric materials can 

convert this waste heat into useful electrical energy, and vastly contribute to energy 

sustainability, fighting against energy scarcity and global warming. Our exhibit 

captured the essence of thermoelectric power conversion and generation, with an 

assortment of modules and devices that took heat from common sources to power 

electronic appliances of everyday use, thereby converting heat to examples of useful 

work. e.g. charging of a phone, lighting a lamp, and powering a fan. 
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British Science Festival (Family Day): 14 Sept. 2019, University of Warwick 

 

Topic: Energy crisis: Nanomaterials for green energy  

Brief Background: The British Science Festival took place at the University of 

Warwick in Coventry from 11 - 14 September 2019. We, (the members of the 

Computational Nanotechnology Lab, School of Engineering) interacted with children 

and adults alike on Family Day to share their knowledge and expertise in the field of 

thermoelectric power generation and green energy. Our collaborators from the 

University of Exeter also participated in the presentations at the British Science 

Festival (Family Day).  

Exhibit description: At this event we presented modules to show how thermoelectric 

power generation can help solve the current energy crisis, to kids and adults alike. 

With roughly two thirds of all energy we use wasted as heat, new generation devices 

and nanomaterials can efficiently harvest this heat, convert it back to electricity and 

inject it back into our power supply. Our exhibit captured the essence of thermoelectric 

power conversion and generation, with an assortment of modules and devices that took 

heat from common sources to power electronic appliances of everyday use, thereby 

converting heat to examples of useful work. e.g. charging of a phone, lighting a lamp, 

and turning a fan. 

Further details about these activities available on our webpage. Link given below: 

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computationa

l_nanotechnology_lab/publicengagement/ 

  

  

https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/publicengagement/
https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/publicengagement/
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