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Chapter 1

Introduction

The work presented in this thesis is concerned with quantifying, in various dif-

ferent senses, how natural quantities associated to hyperbolic groups grow and

distribute.

Hyperbolic groups were introduced by Gromov in his seminal work [29]

and are a fundamental object of study in geometric group theory. Given a group

G with generating set S, the word metric (with respect to S) assigns to a group

element g ∈ G its word length |g|, i.e. the length of the shortest word(s) that

express g, with letters in S ∪ S−1. A hyperbolic group is a finitely generated

group that, when equipped with the word metric for any finite generating set,

satisfies an abstract geometrical condition that mimics a property of the hy-

perbolic plane. That is, geodesic triangles in the Cayley graph of G are ‘thin’.

This condition, although natural, seems at first to be somewhat superficial,

yet the theory of hyperbolic groups is deep and interesting. For example, hy-

perbolic groups exhibit strong combinatorial properties and in particular have

a solvable word problem: there exists an algorithm that decides whether two

words (with letters in a fixed generating set) express the same group element.

Furthermore, by the work of Cannon and Ghys and de le Harpe, hyperbolic

groups are strongly Markov. That is, given a hyperbolic group G equipped

with a finite generating set S, there exists a finite directed graph G that in

some sense encodes the properties of G and S. Cannon proved that cocompact

Kleinian groups are strongly Markov [10] and Ghys and de la Harpe showed

that Cannon’s approach worked for all hyperbolic groups [25].

Using this directed graph G, we can associate a dynamical system (Σ, σ :

Σ→ Σ) to G. The system (Σ, σ) is known as a subshift of finite type and is a

key object in symbolic dynamics. When G consists of a single connected com-

ponent (i.e. given any vertices x, y in G there is a path from x to y and a path

from y to x), then the ergodic properties of (Σ, σ) are well understood. For
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example the σ-invariant measures on Σ satisfy a variational principle. That is,

there exists a unique σ-invariant probability measure that maximises the en-

tropy (or randomness) of σ on Σ. We call this measure the measure of maximal

entropy. Suppose for now that G consists of a single connected component.

A central theme of ergodic theory is to understand the growth and distri-

butional behaviour of Birkhoff sums, which describe the behaviour of a function

along the orbit of a point. Given a function f : Σ → R, the nth Birkhoff sum

of f at x ∈ Σ is given by fn(x) = f(x) + f(σ(x)) + . . .+ f(σn−1(x)). The well-

known Birkhoff Ergodic Theorem states that, since the measure of maximal

entropy µ is ergodic with respect to σ, if f ∈ L1(Σ, µ)

lim
n→∞

fn(x)

n
=

∫
f dµ

for µ almost every x ∈ Σ. It is then natural to ask if we can formulate a more

precise description of how fn(x) grows as n→∞ for typical x ∈ Σ. The space

Σ supports a collection of natural metrics and a result of Ratner [50] describes

the distributional behaviour of fn when f is Hölder with respect to one (and

hence all) of these metrics. More specifically, if f is Hölder and not (up to a

natural equivalence) a constant function, then as n→∞, the Birkhoff sums fn

with an appropriate normalisation, follow a non-degenerate normal distribution

with respect to the measure of maximal entropy. This statistical result relies

on the fact that G is a single connected component and in general, the graph

G associated to a hyperbolic group may not have this property. In this thesis,

one of the main difficulties is overcoming this issue.

Returning to our geometrical setting, suppose that G is a hyperbolic

group equipped with a finite generating set and that ϕ : G→ R is a real valued

function. An interesting and natural question to ask is the following: how does

ϕ typically grow as we increase the word length of its input, i.e. how does ϕ

distribute over the words of length n, Wn = {g ∈ G : |g| = n}, as n → ∞?

Furthermore, can we exploit the connection between G and (Σ, σ) to better

understand how the values of ϕ distribute in R?

One of the aims of this work is to answer these questions and to be

able to precisely describe the asymptotic behaviour of real valued functions on

hyperbolic groups. Our main results are split across three chapters (chapters

4, 5 and 6). In the first of these chapters we study the statistical behaviour

of real valued functions on hyperbolic groups with respect to the sequence of

uniform measures on Wn. A natural question that follows from this work is the

following: how do these real valued functions grow as we travel along typical

geodesic rays in the Gromov boundary of the group? We consider this question
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in Chaper 5. Lastly, in Chapter 6, we study the relative growth of normal sub-

groups of hyperbolic groups. In this introduction we will discuss these problems

in more depth, beginning with the problems presented in Chapter 4.

Let G be a non-elementary hyperbolic group with a fixed finite gener-

ating set S. A non-elementary group is one that does not admit a finite index

cyclic subgroup. Let |g| denote the word length of g ∈ G with respect to S and

write Wn = {g ∈ G : |g| = n}. There has been significant interest in under-

standing how the images of elements of Wn, under natural real valued maps,

such as group homomorphism or quasimorphisms, are distributed in R. For

example, Horsham and Sharp proved that when G is a free group (or surface

group with presentation G = 〈a1, . . . , ag, b1, . . . , bg|
∏g
i=1[ai, bi]〉 for g ≥ 2) and

S is the canonical free generating set for G and ϕ : G→ R is a sufficiently reg-

ular quasimorphism (i.e. a group homomorphism up to bounded error), then

the normalized images

{ϕ(g)/
√
n : g ∈Wn},

converge to a normal distribution as n→∞ [31], [32]. Other similar statistical

results have been proved when G is a free group, [35], [49], [51].

In [9] Calegari and Fujiwara obtain a Gaussian limit law that holds

for general non-elementary hyperbolic groups. They construct a sequence of

measures νn on G, such that if ϕ : G→ R belongs to a class of functions, called

bicombable functions, then there exists Λ ∈ R such that the distributions

νn

{
g ∈ G :

ϕ(g)− Λn√
n

≤ x
}
,

converge as n→∞ to a normal distribution. Calegari extends this result in his

survey [8], showing that the above central limit theorem holds for a wider class

of functions than bicombable functions.

The proof of these results rely on ideas and techniques from ergodic the-

ory. In fact, these proofs follow a similar methodology that we briefly described

above. That is, using that G is strongly Markov we associate to the pair G,ϕ

(where G is a hyperbolic group and ϕ : G → R is in the required class) a

dynamical system (Σ, σ : Σ→ Σ) and a suitable function f : Σ→ R. The func-

tion f is chosen in such a way that the statistical behaviour of ϕ on G can be

deduced from the statistical behaviour of f on (Σ, σ). Then, using techniques

from ergodic theory, one can study the behaviour of f on Σ to deduce a central

limit theorem for ϕ on G. In the result of Calegari and Fujiwara, the measures

νn are supported on Wn and weight elements of Wn by a quantity depending
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on the system (Σ, σ). The system (Σ, σ) associated to G is not canonical and

hence neither are the measures νn.

The above discussion leads to the following natural questions.

1. Does the result of Horsham and Sharp generalise to the case that G is an

arbitrary non-elementary hyperbolic group?

2. In the result of Calegari and Fujiwara, can we replace the sequence νn with

a sequence of measures that does not depend on (Σ, σ)? In particular,

can we replace νn with the sequence of uniform measures on Wn?

In Chapter 4 we answer these questions in the affirmative. We also prove an

averaging theorem, large deviation theorem, multidimensional central limit the-

orem and a local limit theorem.

To prove these results, we would like to employ the techniques described

above. To do this we need we make assumptions on the real valued functions

we consider. We are interested in the statistics of functions ϕ : G → R that

satisfy two conditions which we call Condition (1) and Condition (2). These

conditions allow us to translate questions about ϕ on G to questions about a

suitable function f : Σ → R. They are somewhat technical and so we defer

their statement until Chapter 3. Intuitively, Condition (1) allows us to asso-

ciate f : Σ → R to ϕ and Condition (2) is a growth condition that we will

use to deduce important properties of f . For now we note that there are many

natural examples of functions satisfying these conditions, including group ho-

momorphisms, some quasimorphisms and the displacement function associated

to certain group actions on CAT(−1) spaces.

Our averaging theorem is analogous to the law of large numbers and in

some sense is the most basic statistical result that we prove. Our central limit

theorem is a more subtle result and as such requires an additional assump-

tion to avoid degenerate cases. We simply need to assume that the function

ϕ(·)−Λ| · | : G→ R is unbounded. Also, using Theorem 4.1.1, we quantify the

rate of convergence associated to our central limit theorem. We show that the

sequence of distributions that we consider converges uniformly to the Gaussian

distribution at a O
(
n−1/2

)
rate. This is the so-called Berry-Esseen error term.

Suppose ϕ : G→ R satisfies Condition (1) and Condition (2) mentioned

above. The results presented in Chapter 4 quantify, in some sense, how ϕ grows

as we increase the word length of its input. A different way to measure this

growth would be to study how ϕ grows along geodesic rays in the Gromov

boundary of G, ∂G. There is a natural measure, the Patterson–Sullivan mea-
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sure, which can be thought of as an extension to ∂G of the sequence of uniform

measures on Wn. It is therefore natural to ask if we can quantify the growth

rate of ϕ along Patterson–Sullivan typical geodesic rays in ∂G. We study this

problem in Chapter 5 and will now discuss our results in more detail.

Let G be a non-elementary hyperbolic group and suppose that G acts

cocompactly (i.e. the quotient under the action of G is compact) by isometries

on a complete hyperbolic geodesic metric space (X, d). Fix a finite generating

set S for G and an origin o for X. Let C(G) denote the Cayley graph of G with

respect to S and write ∂G for the Gromov boundary of G. By the S̆varc-Milnor

Lemma, there exists constants C1, C2 > 0 such that, for any infinite geodesic

ray γ based at the identity in C(G),

C1n ≤ d(o, γno) ≤ C2n

for all n ≥ 1. Here γn denotes the end point of γ after n steps. This inequality

describes the coarse behaviour of the displacement function g 7→ d(o, go) along

geodesic rays. It is then natural to ask whether we can describe more precisely

how the displacement grows along typical geodesic rays in ∂G? The Patterson–

Sullivan measure provides us with a natural way of quantifying typicality in

this setting. We say that a property exhibited by elements of ∂G is typical if it

holds on a full Patterson–Sullivan measure set.

Gekhtman, Taylor and Tiozzo asked the above question in a more general

setting. They prove the following theorem in [24]. Let ν denote the Patterson–

Sullivan measure obtained as the weak * limit

lim
n→∞

∑
|g|≤n λ

−|g|δg∑
|g|≤n λ

−|g| ,

where δg denotes the Dirac measure based at g ∈ G and λ is the exponential

growth rate of #Wn. We write [γ] ∈ ∂G for the element in ∂G that contains γ.

Proposition 1.0.1 (Theorem 1.3 [24]). Suppose a hyperbolic group G has a

non-elementary action by isometries on a separable, hyperbolic geodesic metric

space X. Then, there is L > 0 such that for every x ∈ X and ν almost every

[γ̃] ∈ ∂G,

lim
n→∞

dX(x, γnx)

n
= L,

where γ is any geodesic ray in [γ̃].

To prove this, Gekhtman, Taylor and Tiozzo exploit the strongly Markov struc-

ture of G. That is, they use the fact that there exists a finite directed graph
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G that in some sense encodes the key properties of G. They obtain the above

theorem by studying random walks on the loop graph associated to G. This is

one way to exploit the structure provided by G. However, we could instead use

this strongly Markov structure in the way discussed above. That is, we can use

the graph G to construct a dynamical system and then use our techniques from

Chapter 4.

This discussion leads us to ask whether Proposition 1.0.1 remains true

if we replace the displacement function with a different real valued function.

Furthermore, can we formulate a more precise statement describing how these

functions behave along geodesic rays? These are the questions that we consider

in Chapter 5.

Lastly, in Chapter 6, we study the relative growth of normal subgroups

of hyperbolic groups. Suppose G is equipped with a finite symmetric generating

set. By a result of Coornaert [15], the growth rate of #Wn is purely exponential,

i.e. there exist constants λ > 1 and C1, C2 > 0 such that

C1λ
n ≤ #Wn ≤ C2λ

n

for all n ≥ 1. Now suppose that N is a subgroup of G. An interesting question

to ask is how #(Wn ∩ N), which we call the relative growth of N , grows in

comparison to #Wn. A result of Gouëzel, Mathéus and Maucourant [26] states

that if N has infinite index in G then

lim
n→∞

#(Wn ∩N)

#Wn
= 0. (1.0.1)

This is a subtle result that relies strongly on the hyperbolicity of G. If we

suppose further that N is normal and the quotient G/N is isomorphic to Zν

for some ν ≥ 1, then we have access to more structure. With this additional

information it seems reasonable to expect that we can describe the relative

growth of N more precisely.

Pollicott and Sharp [46] studied this problem when G is the fundamental

groups of a compact orientable surface of genus at least two and N is the com-

mutator subgroup. Sharp [55] extended this to cover hyperbolic groups G that

may be realised as convex cocompact groups of isometries of real hyperbolic

space whose fundamental domain can be chosen to be a finite sided polyhedron

R such that
⋃
g∈G ∂R is a union of geodesic hyperplanes, with generators given

by the side pairings. The fundamental groups of compact surfaces were shown

to satisfy this condition by Bowen and Series [6]. In addition, this class includes
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free groups on at least two generators and certain higher dimensional examples

(see Bourdon’s thesis [4]). In these cases, it was shown that there exists an

integer D ≥ 1 (related to the certain periodicities in the graph G) such that,

along the subsequence Dn, the relative growth #(WDn ∩N) grows asymptot-

ically like λDn/(Dn)ν/2, as n → ∞. The aim of Chapter 6 is to extend this

result so that it applies all non-elementary hyperbolic groups. This result has

interesting consequences regarding relative growth series.

In Chapters 2 and 3 we introduce the preliminary materials needed for

our proofs in the subsequent chapters. In Chapter 2 we will focus on the ideas

and techniques that we will require from ergodic theory and more specifically

thermodynamic formalism.
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Chapter 2

Thermodynamic formalism

and symbolic dynamics

2.1 General subshifts of finite type

Let A be a k × k matrix consisting of zeros and ones and let Ai,j denote the

(i, j)th entry of A. We can think of A as describing a finite directed graph on

k vertices 1, . . . , k where vertex i is joined to vertex j by a directed edge if and

only if Ai,j = 1. The subshift of finite type ΣA associated to A is then the space

of infinite paths in the graph described by A. More formally

ΣA = {(xn)∞n=0 : xn ∈ {1, 2, . . . , k}, Axn,xn+1 = 1, n ∈ Z≥0}.

Given x in ΣA we write xn for the nth coordinate of x. We equip {1, 2, . . . , k}
with the discrete topology and use this to endow ΣA with the Tychonov product

topology. This topology is generated by sets of the form

[x0, x1, . . . , xn] := {y ∈ ΣA : yi = xi for 0 ≤ i ≤ n}.

These are known as cylinder sets.

We define the shift map σ : ΣA → ΣA that sends x ∈ ΣA to y = σ(x) ∈
ΣA where yn = xn+1 for all n ≥ 0 (i.e. σ shifts a sequence one index to the left

and deletes the initial term).

The topology on ΣA is metrizable. Fix 0 < θ < 1 and take x, y ∈ ΣA. If

x0 = y0 we set

dθ(x, y) = θN ,

where N is the largest positive integer such that xi = yi for all 0 ≤ i < N . If

x0 6= y0 we set d(x, y) = 1 and if x = y, d(x, y) = 0. It is easy to see that dθ is
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a metric and that it is compatible with the topology on ΣA. It is also easy to

see that (ΣA, dθ) is a compact metric space.

Let C(ΣA) denote the space of all continuous functions from ΣA to C.

We now want to consider the vector space of complex valued functions on ΣA

that are Lipschitz with respect to dθ.

Definition 2.1.1. Let

Fθ = {f : ΣA → C : f is Lipschitz with respect to dθ}.

We will say that a function f : ΣA → R is Hölder if it belongs to Fθ for some

0 < θ < 1. Given f ∈ Fθ, the nth variation of f is

varn(f) = sup{|f(x)− f(y)| : xi = yi for |i| < n}.

We use this to define

|f |θ = sup

{
varn(f)

θn
: n ≥ 0

}
which is just the least Lipschitz constant for f . This does not define a norm

on Fθ (in fact, | · |θ is a semi-norm) as it assigns 0 to all constant functions.

However, we can easily modify | · |θ so that it becomes a norm.

Definition 2.1.2. We define a norm on Fθ by

‖f‖θ = |f |θ + |f |∞,

where | · |∞ is the usual supremum norm.

We then have the following.

Proposition 2.1.3. [5] When equipped with ‖ · ‖θ, Fθ becomes a Banach space.

A central theme of ergodic theory is to understand the growth and dis-

tributional behaviour of Birkhoff sums: given f ∈ Fθ, the n-th Birkhoff sum of

f is the function

fn(·) = f(·) + f(σ(·)) + . . .+ f(σn−1(·)).

Often, when trying to describe how the Birkhoff sums of a function f ∈ Fθ be-

have, there is a dichotomy that occurs depending on whether f is cohomologous

to a constant or not.
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Definition 2.1.4. We say that f, g ∈ Fθ are cohomologous (denoted by f ∼ g)

if there exists continuous h : ΣA → C such that

f = g + h ◦ σ − h.

We say that f ∈ Fθ is cohomologous to a constant if f ∼ g where g is a constant

function.

We now want to define topological entropy. This is a dynamical quan-

tity which describes, in some sense, the randomness of a dynamical system.

Consider a subshift of finite type (ΣA, σ) and a σ-invariant probability measure

µ on ΣA. We equip ΣA with the Borel σ-algebra described above. Now, given

a finite measurable partition γ of ΣA and a sub σ-algebra C, we define the

conditional information and the conditional entropy of γ given C as

Iµ(γ|C) = −
∑
C∈γ

χC logµ(C|C) and Hµ(γ|C) =

∫
Iµ(γ|C) dµ

respectively. Here, χC denotes the indicator function for C ∈ γ and µ(C|C)
denotes the conditional expectation Eµ(χC |C). The entropies of σ with respect

to µ and γ are defined as hµ(σ, γ) = Hµ(γ|σ−1C) where C is the smallest σ-

algebra containing
⋃∞
j=0 σ

−1γ. The entropy of σ with respect to µ is hµ(σ) =

supγ hµ(σ, γ) where the supremum is taken over all finite measurable partitions.

The topological entropy of (ΣA, σ) is given by

h = sup
µ
{hµ(σ)}

where the supremum is taken over all σ-invariant probability measures. As

mentioned above, h describes the randomness of σ on ΣA. Topological entropy

will be useful for describing the growth of certain quantities. To see how, we

need to define transfer operators.

Throughout this thesis there are many points at which we want to un-

derstand the growth of certain dynamical expressions. The key tools that will

allow us to analyse these expressions are transfer operators.

Definition 2.1.5. Take f ∈ Fθ, we define the transfer operator Lf : C(ΣA)→
C(ΣA) by

(Lfw)(x) =
∑
σy=x

ef(y)w(y).

The operator Lf preserves Fθ and the restriction Lf : Fθ → Fθ is a bounded

linear operator [42]. Intuitively, Lfw maps a point x ∈ ΣA to the sum of w
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evaluated at the preimages y ∈ σ−1(x) each weighted by ef(y). We can directly

calculate its iterates which are given by

(Lnfw)(x) =
∑

σn(y)=x

ef
n(y)w(y).

To better understand the behaviour of transfer operators, we need to make

additional assumptions on the subshift of finite type ΣA which we consider.

Specifically, we need to assume that the underlying matrix A is aperiodic or

irreducible.

Definition 2.1.6. We say that a k×k zero-one matrix A is irreducible if given

i, j ∈ {1, 2, . . . , k}, there exists n ∈ N such that (An)i,j > 0. If there exists

n ∈ N such that (An)i,j > 0 for all i, j, then A is aperiodic.

The following theorem provides us with information about the eigenvalues of

irreducible and aperiodic matrices. Recall that an eigenvalue is simple if its

corresponding (generalised) eigenspace is one-dimensional.

Theorem 2.1.7. (The Perron-Frobenius Theorem) [21]. Suppose that A

is an irreducible matrix with non-negative entries. Then, A has a real, simple,

maximal, positive eigenvalue λ. Furthermore, there exists an integer p ≥ 1 (the

period of A) such that A has eigenvalues e2πik/pλ for k = 0, . . . , p − 1 and all

other eigenvalues have absolute value strictly less than λ. Suppose that A has

non-negative entries and is aperiodic. Then, A has spectrum as described above

but for p = 1.

Recall that a dynamical system (X,T ) (i.e. where X is a metric space

and T : X → X is a function) is said to be weak mixing if for all open U, V ⊂ X,

there exists N ∈ Z≥0 such that for all n > N , T−nU ∩V 6= ∅. If given any open

U, V ⊂ X there exists n such that T−nU ∩ V 6= ∅ then we say that our system

is transitive. It is a simple exercise to show that A is aperiodic if and only if

the system ΣA is weak mixing mixing. Similarly, A is irreducible if and only if

ΣA is transitive.

2.2 Mixing subshifts

Throughout this subsection we will assume all subshifts are weak mixing. When

ΣA has this property, the transfer operators defined above exhibit a variety of

useful properties. In particular, they exhibit a spectral gap and have a simple

maximal eigenvalue with strictly positive eigenfunction. The following theorem

will be useful.
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Theorem 2.2.1 (Theorem 2.2 [42]). (The Ruelle-Perron-Frobenius The-

orem). Suppose f : ΣA → R belongs to Fθ and that A is aperiodic.

1. There is a simple maximal positive eigenvalue β ∈ R of Lf : Fθ → Fθ,

with a strictly positive eigenfunction h ∈ Fθ.

2. The rest of the spectrum (excluding β) is contained in a disc of radius

strictly less than β. (This is the aforementioned spectral gap property).

3. There is a unique probability measure µ on ΣA such that
∫
Lfv dµ =

β
∫
v dµ for all v ∈ Fθ.

4. Supposing h is normalised so that
∫
h dµ = 1, we have that β−nLnfv →

h
∫
v dµ uniformly for all vC(ΣA).

Suppose the eigenfunction h from above satisfies
∫
h dµ = 1 and define the

measure m = hµ. This measure is σ-invariant. Furthermore σ is strong mixing

with respect to m and hence m is ergodic.

The following result provides an alternate characterisation for the lead

eigenvalue β in Theorem 2.2.1.

Theorem 2.2.2 (Proposition 3.4 [42]). (The Variational Principle). Take

real valued f ∈ Fθ. There exists a unique σ-invariant probability measure m,

such that for all other σ-invariant measures m′,

hµ(σ) +

∫
f dm′ < hm(σ) +

∫
f dm.

Moreover, if µ and h ∈ Fθ are as in Theorem 2.2.1 and
∫
h dµ = 1, then

m = hµ.

Definition 2.2.3. We define the pressure of a real valued function f ∈ Fθ to

be

P (f) = sup
µ

{
hµ(σ) +

∫
f dµ

}
,

where the supremum is taken over all σ-invariant probability measures. The

measure that attains this supremum is known as the equilibrium state of f .

We define the measure of maximal entropy to be the equilibrium state of the

constant function f = 0.

An important result, proved by Ruelle [53], is that eP (f) is the simple

maximal eigenvalue of Lf . Another useful fact is that f, g ∈ Fθ satisfy f ∼ g+c

for some constant c if and only if f and g have the same equilibrium state.
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So far we have mostly worked with transfer operators Lf associated to

real valued f ∈ Fθ. We now suppose that f ∈ Fθ is complex valued and so

f = u+ iv for real valued u, v ∈ Fθ. The following result describes the spectral

properties of Lf .

Theorem 2.2.4 (Pollicott [44]). Take f as above. Then, ρ(Lf ) ≤ eP (u) where

ρ(Lf ) denotes the spectral radius of Lf : Fθ → Fθ. Further, if Lf has an

eigenvalue of modulus eP (u) then it is simple, unique and the remainder of the

spectrum is contained in a disc of radius strictly smaller than eP (u). If Lf has

no eigenvalues of modulus eP (u) then the spectral radius of Lf is strictly smaller

than eP (u).

We can extend the definition of pressure to complex valued functions

f ∈ Fθ such that Lf has a simple maximal eigenvalue λ, with the rest of the

spectrum of Lf contained in {z ∈ C : |z| < |λ| − ε} for some ε > 0. We define

the pressure of f , P (f), by eP (f) = λ which is defined modulo 2πi. Note that

we can take P (f) to be real when f is real-valued. From now on, when we refer

to the pressure function, we mean the ‘extended version’.

We would like to understand how the simple maximal eigenvalues of

Lf vary as we perturb the function f ∈ Fθ. For this we require results from

perturbation theory.

Theorem 2.2.5. [34, Theorem 6.17] Let B(V ) denote the Banach algebra of

bounded linear operators on a Banach space. Suppose T0 has a simple isolated

eigenvalue λ(T0) with corresponding eigenvector v(T0). Then, for any ε > 0,

there is δ > 0 such that if ‖T −T0‖ < δ then T has a simple isolated eigenvalue

λ(T ) with corresponding eigenvector v(T ). Moreover

• the maps T 7→ λ(T ) and T 7→ v(T ) are analytic for ‖T − T0‖ < δ,

• if ‖T − T0‖ < δ, then |λ(T )− λ(T0)| < ε and the part of the spectrum of

T that does not include λ(T ) is contained in {z ∈ C : |z − λ(T0)| > ε}.

This theorem along with the fact that the map f 7→ Lf is continuous (in fact

analytic [42]) implies that the domain on which the pressure function is defined

is open. Theorem 2.2.5 can also be used to show that the pressure function is

analytic in the following sense.

Definition 2.2.6. [34] Let B be a complex Banach space and U ⊂ C an open

subset of C. A map S : U → B is said to be analytic if

l ◦ S : U → C

13



is analytic for all l ∈ B∗. Here, B∗ denotes the dual space to B.

If B1, B2 are complex Banach spaces with open V ⊂ B1, then T : V →
B2 is analytic if T ◦ S is analytic in its domain of definition for any analytic

map S : U → B1 for U ⊂ C open.

Theorem 2.2.5 implies that there exists a complex neighbourhood of zero

and a projection valued, analytic function Q : U → B(Fθ), such that, for s ∈ U,

• Lg+sfQ(s) = Q(s)Lg+sf and

• Lg+sfw(s) = eP (g+sf)w(s), where w(s) = Q(s) · 1.

Using these expressions we can calculate derivatives of the pressure function.

The following result is originally due to Ruelle.

Lemma 2.2.7 (Proposition 4.12 [42]). Take real valued f, g ∈ Fθ. Then,

dP (g + sf)

ds

∣∣∣
s=0

=

∫
f dm, and

σ2 =
d2P (g + sf)

ds2

∣∣∣
s=0

= lim
n→∞

1

n

∫ (
fn −

∫
fdm

)2

dm,

where m is the equilibrium state for g. Furthermore σ2 > 0 if and only if f is

not cohomologous to a constant.

We then obtain the following Taylor expansion for P (g + sf) for s in a

complex neighbourhood U of zero:

P (sf) = P (0) + s

∫
fdµ+ s2σ2/2 + s3ψ(s), (2.2.1)

where ψ is analytic in U .

Using this expansion it is possible to prove that the Birkhoff sums of

functions f ∈ Fθ follow a central limit theorem. Let µ denote the measure of

maximal entropy. If f ∈ Fθ for some 0 < θ < 1 and
∫
f dµ = 0, then there

exists σ2
f ≥ 0 such that for x ∈ R

µ

{
z ∈ ΣA :

fn(z)√
n
≤ x

}
=

1√
2πσf

∫ x

−∞
e−t

2/2σ2
f dt+O(n−1/2)

as n → ∞ [14]. Furthermore, σ2
f = 0 if and only if f is cohomologous to a

constant. The following lemma provides some useful characterisations of being

cohomologous to a constant.

Proposition 2.2.8 (Livsic [39]). A real valued function f ∈ Fθ is cohomologous

to C ∈ R if and only if one (and hence both) of the following hold,
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1. the set {fn(x)− nC : x ∈ Σ, n ∈ Z>0} is a bounded subset of R,

2. fn(x)− nC = 0 for all x ∈ Σ and n ∈ Z>0 with σn(x) = x.

2.3 Transitive subshifts

In this subsection we consider transitive subshifts that are not weak mixing.

When this is the case, there exists a natural number p > 1 known as the period

of A such that ΣA has a unique p-cyclic disjoint decomposition

ΣA =

p−1⊔
k=0

ΣAk

where each ΣAk ⊂ ΣA is a finite union of length one cylinders. The shift map

sends ΣAj to ΣAj+1 where j, j + 1 are taken modulo p. Furthermore, for each

j, σp : ΣAj → ΣAj is a mixing subshift. It follows from the results presented

in the previous section that the transfer operator L0 : Fθ → Fθ (i.e. where 0

denotes the zero valued constant function) has spectrum containing p simple

maximal eigenvalues at e2πik/peh for k = 0, . . . , p− 1. The rest of the spectrum

is contained in the disk {z : |z| < eh − δ} for some δ > 0. The constant h

is the topological entropy of (Σ, σ) and is obtained, as in the case when A is

aperiodic, from the variational expression

h = sup
m
{hm(σ)},

where the above supremum is taken over all σ-invariant probability measures.

This supremum is attained uniquely by the measure of maximal entropy µ and

this measure is ergodic with respect to σ.

As in the mixing case a central limit theorem holds for the normalised

Birkhoff sums n−1/2fn with respect to the measure of maximal entropy. As

before this central limit theorem is non-degenerate if and only if f is not co-

homologous to a constant. Proposition 2.2.8 also holds in this more general

setting.

2.4 Non-transitive subshifts

In this thesis we will need to work with subshifts that are not transitive, i.e. we

will consider ΣA where A is not irreducible. Such subshifts will arise naturally

when studying hyperbolic groups. More precisely, we will use that hyperbolic

groups are strongly Markov: given a hyperbolic group G there exists a finite
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directed graph (and hence a subshift of finite type ΣA) that encodes the prop-

erties of G.

When we associate a subshift ΣA to a hyperbolic group, then A may not

be irreducible and so the main results of the previous sections do not apply. For

example, given real valued f ∈ Fθ the spectral properties of Lf may not be the

same as those described in the Ruelle-Perron-Frobenius Theorem. It is also the

case that there may not be a unique measure of maximal entropy for ΣA. In

order to obtain our main results we will need to overcome these issues. To do

this we will exploit the geometrical and combinatorial properties of hyperbolic

groups to learn more about the structure of the subshifts that we consider. This

will allow us to apply results that hold for transitive subshifts.

To motivate the study of non-transitive subshifts we will now move on

to our study of hyperbolic groups.

16



Chapter 3

Hyperbolic groups and the

strongly Markov property

3.1 Hyperbolic groups

In this section we recall classical properties of hyperbolic groups. The concept

of hyperbolicity was introduced by Gromov in his fundamental paper [29]. For

a good account of the theory concerning hyperbolic groups, see [25].

Definition 3.1.1. Let (X, d) be a geodesic metric space. We say that X is

hyperbolic if there exists a constant δ ≥ 0 such that given any geodesic triangle

xyz in X, the side xy is contained in the union of the δ-neighbourhoods of the

other two sides, yz and zx. A finitely generated group G is hyperbolic (in the

sense of Gromov) if for any finite generating set S for G, the Cayley graph of

G with respect to S is hyperbolic when equipped with the path metric.

A hyperbolic group is non-elementary if it is not virtually cyclic, i.e. it does

not contain a finite index cyclic subgroup. In this work we are only interested

in non-elementary hyperbolic groups. All groups labeled G are assumed to

be non-elementary hyperbolic groups. Given an element g ∈ G, we use |g| to

denote the word length of g: the length of the shortest word(s) representing g

with letters in S ∪ S−1. Let Wn denote the set consisting of group elements of

word length n. We define the left and right word metrics on G as follows.

Definition 3.1.2. The left and right word metrics on G are

dL(g, h) = |g−1h| and dR(g, h) = |gh−1|

respectively.

We also define the Gromov product as follows.
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Definition 3.1.3. Given g, h ∈ G the Gromov product (g, h) of g and h is

(g, h) =
1

2

(
|g|+ |h| − |g−1h|

)
.

We will require some techniques from Patterson–Sullivan theory. We

recall some basic facts about the boundaries of hyperbolic groups and the

Patterson–Sullivan measure.

Let C(G) denote the Cayley graph of G with respect to S. An infinite

geodesic ray γ is an infinite path in C(G) such that any finite sub-path of γ is

a geodesic in C(G). Given such a geodesic ray γ, let γn denote the element in

G corresponding to the end point of γ after n steps. Two geodesic rays γ, γ′

are said to be equivalent if dL(γn, γ
′
n) is bounded uniformly for n ∈ Z≥0. The

Gromov boundary ∂G of G, is the set of equivalence classes of infinite geodesic

rays in C(G). The boundary ∂G supports a natural (metrizable) topology that

can be seen as the extension of the topology on G given by the word metric.

With this topology, G∪∂G becomes the compactification of G (with the topol-

ogy given by the word metric). Given a geodesic ray γ let [γ] ∈ ∂G denote the

equivalence class containing γ. The action of G extends to G ∪ ∂G by sending

[γ] ∈ ∂G to [gγ] ∈ ∂G.

A Patterson–Sullivan measure ν is a measure on G∪∂G that is supported

on ∂G. It is defined as a limit of a convergent subsequence of∑
g∈G λ

−s|g|δg∑
g∈G λ

−s|g|

as s approaches 1 from above. All of the measures realised as the limit of one

of these subsequences are equivalent to each other i.e. they have the same sets

of measure 0. We can construct a specific measureν as the limit as n→∞, of

the following sequence of measures∑
|g|≤n λ

−|g|δg∑
|g|≤n λ

−|g| .

Here λ = lim supn→∞(#Wn)1/n is the exponential growth rate of #Wn and

δg denotes the Dirac measure based at g ∈ G. We will see later that the limit

defining ν exists.The measure ν enjoys many useful properties and in particular

is ergodic with respect to the action of G on ∂G.

Definition 3.1.4. A Borel measure µ on ∂G is ergodic if for any G-invariant

Borel measurable subset E of ∂G, µ(E) is either 0 or 1.

For a comprehensive account of the above material, see [15] and [33].
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Using the Patterson–Sullivan measure, Coornaert proved that the growth of

#Wn is purely exponential [15].

Proposition 3.1.5 (Coornaert [15]). There exists C1, C2 > 0, λ > 1 such that

for all n ≥ 1,

C1λ
n ≤ #Wn ≤ C2λ

n.

3.2 The strongly Markov property

Hyperbolic groups have interesting combinatorial properties. One of the rea-

sons for this is their strongly Markov structure: a hyperbolic group can be

represented by a finite directed graph with useful properties.

Definition 3.2.1. A group G is strongly Markov if given any symmetric gen-

erating set S for G, there exists a finite directed graph G with vertex set V and

directed edge set E ⊂ V ×V that exhibits the following properties: V contains

a vertex ∗ and there exists a labelling ρ : E → S for which the following hold,

1. (x, ∗) does not belong to E for any x ∈ V ,

2. the map sending a path (starting at ∗) with concurrent edges

(∗, x0), (x0, x1), . . . , (xn−1, xn) to the group element

ρ(∗, x0)ρ(x0, x1) . . . ρ(xn−1, xn), is a bijection,

3. the above bijection preserves word length; if |g| = n, then the finite path

corresponding to g consists of n edges.

The following is an example of a directed graph (satisfying the properties in

the above definition) associated to the group 〈a, b|ab2〉. This image is from the

thesis of Horsham [31].
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Here A and B denote the inverses of a and b respectively. The matrix describing

this graph is

∗ 1 2 3 4


∗ 0 1 1 1 1

1 0 1 0 0 1

2 0 0 0 1 0

3 0 0 1 1 0

4 0 1 0 0 0

We can associate to the free group 〈a, b〉 a similar directed graph,

that is described by the matrix

∗ 1 2 3 4


∗ 0 1 1 1 1

1 0 1 1 0 1

2 0 1 1 1 0

3 0 0 1 1 1

4 0 1 0 1 1

Given a directed graph G associated to a group, it will be convenient for

us to augment G by adding an extra vertex, 0. We add directed edges from each

vertex in V \{∗} to 0 and also from 0 to itself. We extend the labelling ρ to these

new edges by ρ(x, 0) = e (the identity element in G) for all x ∈ V ∪ {0}\{∗}.
Cannon proved that cocompact Kleinian groups are strongly Markov
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[10]. Ghys and de la Harpe [25] showed that Cannon’s approach worked for all

hyperbolic groups. The augmentation method described above was first used by

Lalley [38] to facilitate the use of thermodynamic formalism. More specifically

Lalley introduced this augmentation so that group elements in G can be realised

as infinite sequences, i.e. elements in a subshift of finite type.

Proposition 3.2.2 (Cannon [10], Ghys and de la Harpe [25]). Any hyperbolic

group is strongly Markov.

Throughout the rest of this thesis, given a hyperbolic group G with

generating set S, we use G to denote a directed graph associated to G and S

via the strongly Markov property. We will always assume that such G has been

augmented, to include the ∗ and 0 vertices, in the way described above. We

note that G can admit infinitely many different graphs satisfying the properties

in Definition 3.2.1.

This strongly Markov structure makes hyperbolic groups susceptible to

analysis through the use of thermodynamic formalism and subshifts of finite

type. Let G be a hyperbolic group with associated directed graph G. Labelling

the vertices of G, 1, . . . , k, we can describe G by a k× k zero-one matrix A. We

set the (i, j)th entry of A to be 1 if and only if there exists an edge from vertex

i to vertex j. We call A the transition matrix associated to G. We can then

embed G into the shift space ΣA via the function i : G→ ΣA defined by

i(g) = (∗, x0, x1, . . . , xn−1, 0, 0, . . .),

where (∗, x0), (x0, x1), . . . , (xn−2, xn−1) is the unique shortest path in G corre-

sponding to g and |g| = n. We use the notation 0̇ to denote the sequence in ΣA

consisting of only zeros.

Property (3) from Definition 3.2.1 implies that #Wn =
∑

j∈V A
n(∗, j),

i.e. the number of group elements in G of word length n is the same as the

number of length n paths in G\0 starting at ∗. Let B denote the matrix A with

the columns and rows corresponding to the ∗ and 0 vertices removed.

Definition 3.2.3. Let G, A and B be as above. We say that G is aperiodic (or

irreducible) if B is aperiodic (or irreducible).

In general, it is possible that G is not irreducible. However, in certain cases, for

example for surface groups with presentations 〈a1, . . . , ag, b1, . . . , bg|
∏g
j=1[aj , bj ]〉

(with g ≥ 2) and free groups equipped with their canonical free generating sets,

G can be chosen to be aperiodic [54]. When G is aperiodic, results from ther-

modynamic formalism apply more readily. One of the main difficulties in this
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work is overcoming the additional difficulties that arise in the case that G is

neither aperiodic nor irreducible

Following [47], we can relabel the columns/rows of B to assume that B

has the form

B =


B1,1 0 . . . 0

B2,1 B2,2 . . . 0
...

...
. . .

...

Bm,1 Bm,2 . . . Bm,m

 ,

where the matrices Bi,i are irreducible. The matrices Bi,i are known as the

irreducible components of B or G. By property (3) in Definition 3.2.1 and

Proposition 3.1.5, the spectral radius of each Bi,i is bounded above by λ, the

exponential growth rate of #Wn. Furthermore, there must be at least one

component that has λ as an eigenvalue (otherwise there would be 0 < δ < λ

for which #Wn = O((λ− δ)n)).

Definition 3.2.4. We call an irreducible component maximal if its correspond-

ing matrix has spectral radius λ.

An important property of G is the following.

Lemma 3.2.5. [8, Lemma 3.4.2] Let G be a directed graph associated to G.

The maximal components of G are disjoint. That is, there does not exist a path

in G from one maximal component to another.

Proof. Let B1 and B2 be maximal components and suppose there is a path P

of length l from B1 to B2. Then for n > l, the number of length n paths in G
would be at least ∑

r+s=n−l
Br

1B
s
2, (3.2.1)

where Bk
1 denotes the number of length k paths contained in B1 ending at the

start vertex of P and Bk
2 denotes the number of length k paths in B2 starting at

the end vertex of P . Quantity (3.2.1) grows like nλn which implies that #Wn

grows at least like nλn. This contradicts Proposition 3.1.5.

3.3 Properties of the Patterson–Sullivan measure

Our results rely on the work of Calegari and Fujiwara [9] that compares the

Patterson–Sullivan measure ν to a natural measure µ on ΣA. In this section

we construct this measure and compare it to ν. To deduce our results we
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need to extend the work of Calegari and Fujiwara in [9] to obtain a deeper

understanding of how the measures µ and ν compare.

Suppose that G has vertex set V . For v ∈ RV , define the function

p : RV → RV by

p(v) = lim
n→∞

1

n

n∑
k=0

Akv

λk
.

This function projects v to the eigenspace of A corresponding to the eigenvalue

λ. Similarly, the function r : RV → RV defined by

r(v) = lim
n→∞

1

n

n∑
k=0

(AT )kv

λk

projects v to the eigenspace of AT corresponding to the eigenvalue λ. We need

to know the rate of convergence associated to the limit defining p.

Lemma 3.3.1. For v ∈ RV we have that

p(v) =
1

n

n∑
k=0

Akv

λk
+O

(
1

n

)

where the implied constant depends only on v.

Proof. Given v ∈ RV we can write v as a linear combination of elements in a

Jordan basis for A. Since maximal components are disjoint, if an eigenvalue x

of A has absolute value λ, then there does not exist a Jordan chain of length

strictly greater than one associated to x. A simple calculation then shows that

if ṽ belongs to the generalised eigenspace associated to the eigenvalue x 6= λ,

then
1

n

n∑
k=0

Akṽ

λk
= O

(
1

n

)
.

The result follows.

Let 1 ∈ RV denote the vector consisting of 1 in each coordinate and let

v∗ denote the vector consisting of a 1 in the coordinate corresponding to the ∗
vertex and zeros elsewhere. Using p and r, we define a measure µ on ΣA via

a stochastic matrix N : RV → RV and vertex distribution ρ : V → R. For a

vector v ∈ RV , let vj denote the coordinate of v corresponding to the vertex

j ∈ V . The matrix N is defined as follows. Set

Ni,j =
Ai,jp(1)j
λp(1)i
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if p(1)i 6= 0 and Ni,i = 1, Ni,j = 0 (if i 6= j) when p(1)i = 0. The vertex

distribution ρ is defined by

ρ(j) = p(1)jr(v∗)j .

As for the usual construction of Markov measures, this defines a σ-invariant

measure on ΣA. We normalise this measure to obtain the probability measure

µ. There is a nice description of µ in terms of thermodynamic formalism.

Proposition 3.3.2. There exists 0 < αi < 1 for i = 1, . . . ,m with
∑m

i=1 αi = 1

such that

µ =

m∑
i=1

αiµi, (3.3.1)

where each µi is the measure of maximal entropy for the system (ΣBi , σ).

Proof. Choose a maximal component Bi. One can check that the vector ob-

tained from restricting p(1) or r(v∗) to the vertices in Bi is a right or left

eigenvector respectively for Bi (with eigenvalue λ). Then by comparing the

construction of µ to Parry’s construction of the measure of maximal entropy

for a subshift of finite type [41], we see that the restriction of µ to the maximal

component ΣBi is up to scaling, the measure of maximal entropy µi on this

component. Furthermore, from the definitions of p and r, it is clear that µ

assigns zero mass to the complement of the union of the maximal components.

The result follows.

Let A′ denote the matrix A with the row/column corresponding to the

0 vertex removed.

Definition 3.3.3. Define sets Y, Y1, . . . , Ym ⊂ ΣA′ by

Y = {x ∈ ΣA′ : x0 = ∗},

Yi = {x ∈ Y : x eventually enters Bi and never leaves}.

Let h : Y → ∂G be the natural map associated to the bijection defined in

Definition 3.2.1. Given y ∈ Y , we use h(y)n to denote the nth step in the

geodesic ray determined by y.

There is a measure ν̂ on Y that pushes forward under h to the Patterson–

Sullivan measure on ∂G. We denote the pushforward map by h∗ so that h∗ν̂ = ν.
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The measure ν̂ can be constructed as follows. Define, for n ∈ Z≥0,

ν̂n =

∑
|g|≤n e

−h|g|δi(g)∑
|g|≤n e

−h|g| .

This is a sequence of measures living on ΣA. Then h∗ν̂n = νn where

νn =

∑
|g|≤n e

−h|g|δg∑
|g|≤n e

−h|g| .

Now take a weak ∗ convergent subsequence ν̂nk of ν̂n and suppose that ν̂nk → ν̂

as k →∞. It is easy to see that h : Y → ∂G is continuous and hence

h∗ν̂ = lim
k→∞

h∗ν̂nk = lim
k→∞

νnk = ν.

We will now see that we can explicitly calculate the ν̂ measure of cylinder sets.

Given a finite path in G let [y] denote the elements in ΣA′ that have y as an

initial segment.

Lemma 3.3.4. Let y be a finite path in G starting at ∗. We have that

ν̂([y]) =
p(1)vy
p(1)∗

λ−|y|,

where |y| is the length of y and vy denotes the last vertex in y.

Proof. Since [y] is both open and closed, ν̂[y] = limk→∞ ν̂nk [y]. However, for

n ≥ |y|,

ν̂n[y] =

∑
|g|≤n e

−h|g|δg[y]∑
|g|≤n e

−h|g|

=

(
1
n

∑n
j=|y|

Aj−|y|(1)

λj−|y|

)
vy
λ−|y|(

1
n

∑n
j=0

Aj(1)
λj

)
∗

and from the definition of p we see that this converges to the required expression.

The proof of Lemma 3.3.4 shows that ν̂n → ν̂ as n→∞, i.e. we need not

look at convergence along a subsequence nk. For k ∈ Z≥0, let σk∗ ν̂ denote the

pushforward of ν̂ under σk. The following lemma compares these pushforward

measures to the measure µ.
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Lemma 3.3.5. For each v ∈ V with µ[v] > 0 and k ∈ Z≥0 there exists αkv ≥ 0

such that

σk∗ ν̂|[v] = αkvµ|[v].

There exists a length k path from ∗ to v if and only if αkv > 0. If µ[v] = 0 we

define αkv = ν̂(σ−k[v]) for all k ∈ Z≥0. Furthermore,

1

n

n∑
k=0

αkv =

1 +O(n−1) if µ[v] > 0

O(n−1) if µ[v] = 0.

The implied constants can be taken to be independent of v.

Proof. This is a consequence of Lemma 3.3.1, the construction of ν̂ and the

proof of Lemma 4.22 in [9]. A simple calculation using the definition of ν̂ shows

the existence of αkv satisfying the first condition of the lemma. The convergence

associated to the final statement is proved in Lemma 4.22 of [9]. By inspecting

the proof of this lemma, we see that Lemma 3.3.1 quantifies the convergence as

O(n−1).

It follows that
1

n

n∑
k=0

σk∗ ν̂

converges in the weak * topology to the measure µ. There is a much stronger

relationship between ν̂ and µ however. Given two measures, λ1 and λ2 on ΣA,

recall that their total variation ‖λ1−λ2‖TV is given by supE⊂ΣA |λ1(E)−λ2(E)|.

Proposition 3.3.6. We have that,∥∥∥∥∥∥ 1

n

n∑
j=0

σj∗ν̂ − µ

∥∥∥∥∥∥
TV

= O(n−1)

as n→∞.

Proof. For any E ⊂ ΣA,∣∣∣∣∣∣ 1n
n∑
j=0

σj∗ν̂(E)− µ(E)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
j=0

∑
v∈V

(
σj∗ν̂|[v](E)− µ|[v](E)

)∣∣∣∣∣∣
≤
∑
v∈V
µ[v]>0

∣∣∣∣∣∣ 1n
n∑
j=0

αjv − 1

∣∣∣∣∣∣+
∑
v∈V
µ[v]=0

∣∣∣∣∣∣ 1n
n∑
j=0

αjv

∣∣∣∣∣∣ ,
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where αjv are as defined in the previous lemma. Applying the previous lemma

concludes the proof.

We will need the following definition and lemma later.

Definition 3.3.7. For each j ∈ Z≥0 let

Aj =

(
σ−j

(⋃
i

ΣBi

)
\
j−1⋃
k=0

σ−k

(⋃
i

ΣBi

))
∩ Y.

Then, for each n ∈ Z≥0, define a measure ν̂n on ΣA′ by

ν̂n(E) = ν̂

E ∩ n⋃
j=0

Aj


for E ⊂ ΣA′ .

Intuitively, each Aj consists of elements in ΣA′ that correspond to a path in G
that starts at ∗, enters a maximal component on exactly its jth step and then

never leaves this component.

Lemma 3.3.8. There exists 0 < θ < 1 such that ‖ν̂n − ν̂‖TV = O(θn), as

n→∞.

Proof. We claim that

ν̂

⋃
j>n

Aj

→ 0

exponentially quickly as n→∞. To see this, note that the number of length n

paths in G that start at ∗ and do not enter a maximal component is O((λ−δ)n)

for some 0 < δ < λ. Combining this observation with Lemma 3.3.4 implies that

there exists C > 0 independent of j, n such that

ν̂

⋃
j>n

Aj

 ≤ C∑
j>n

(
λ− δ
λ

)j
.

This proves the claim. Along with Lemma 3.3.4, this shows that Y \∪mi=1 Yi can

be written as a countable union of zero ν̂ measure sets. Hence ν̂ (Y \ ∪mi=1 Yi) = 0

and for any E ⊂ Y ,

ν̂(E)− ν̂n(E) = ν̂

E ∩ ⋃
j>n

Aj

 ≤ ν̂
⋃
j>n

Aj

 .
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Applying the claim a further time concludes the proof.

We end this section by observing that, for any E ⊂ ∪iΣBi ,

σj∗ν̂(E) = σj∗ν̂j(E). (3.3.2)

3.4 Regularity of functions

In this section we discuss the regularity conditions required for functions to

satisfy our theorems. Fix a generating set S for G. We are interested in

functions ϕ : G→ R that satisfy two conditions, which we name Condition (1)

and Condition (2).

Condition (1) There exists a directed graph G associated to G,S via the strongly

Markov property with transition matrix A and a function f ∈ Fθ(ΣA) (for

some 0 < θ < 1) such that ϕ(g) = f(x) + f(σ(x)) + . . . + f(σ|g|−1(x)) for

g ∈ G and x = i(g) ∈ ΣA.

Condition (2) ϕ is Lipschitz in the left and right word metrics on G.

We now discuss examples of functions that satisfy Condition (1). The

first class we consider is of functions that satisfy the following Hölder condition.

Definition 3.4.1. We say that a map ϕ : G→ R is Hölder (for G and S) if for

any fixed a ∈ G there exists C > 0 and 0 < θ < 1 such that

|∆aϕ(g)−∆aϕ(h)| ≤ Cθ(g,h),

for any g, h ∈ G. Here ∆aϕ(g) = ϕ(ag)− ϕ(g).

Pollicott and Sharp proved that any function satisfying the above Hölder con-

dition for G, S, satisfies Condition (1) (see Lemma 1 of [47]). In fact, they

showed that for such functions, one can find an appropriate Hölder function

f : ΣA → R given any graph G associated to G,S. We note that functions sat-

isfying Definition 3.4.1 are always Lipschitz in the left word metric. This can

be seen by setting h to be e, the identity of G, in Definition 3.4.1. When h = e,

∆aϕ(h) = ϕ(a)−ϕ(e) for any a ∈ S and hence |ϕ(ag)−ϕ(g)| ≤ C+|ϕ(a)|+|ϕ(e)|
for all g ∈ G. It is easy to see that this implies ϕ to be Lipschitz in the left

word metric. Inspired by the work of Calegari and Fujiwara, we introduce the

following class of functions.

Definition 3.4.2. Suppose S is symmetric. Given an element g ∈ G, there

is a unique path of length |g| in G, starting at ∗, that is mapped to g under
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the bijection defined in part (3) of Definition 3.2.1. Let egi belong to the edge

set of G and let it denote the ith edge in the path corresponding to g. A map

ϕ : G→ R is called edge combable (with respect to G) if there exists a function

dϕ from the edge set of G to R such that, for each g ∈ G,

ϕ(g) =

|g|∑
i=1

dϕ(egi ).

We refer to dϕ as a (discrete) derivative of ϕ.

Remark 3.4.3. In [9] Calegari and Fujiwara define the class of combable func-

tions. These functions are similar to edge combable functions except that a

derivative dϕ is a function from the vertex set of G to Z. The equation relating

ϕ and dϕ is the same except the sum is taken over the vertices in the path

corresponding to g. Given a combable function ϕ, one can consider ϕ as an

edge combable function. To see this, take the derivative dϕ of ϕ (which is a

function defined on the vertex set of G) and define dϕ′ on the edge set of G
to send an directed edge to the value of dϕ evaluated at the end point of this

edge. It is easy to see that ϕ can be considered an edge combable function with

derivative dϕ′. Therefore the set of edge combable functions contains the set of

combable functions.

Remark 3.4.4. Suppose that ϕ is edge combable with respect to G and that dϕ

is integer valued. Then we can find a different directed graph G′ that satisfies

the properties in Definition 3.2.1 and for which ϕ is combable. To see this,

consider the following recoding of G to G′. Define the vertex set for G′ to be the

edge set of G and say that two vertices u and v in G′ are connected by a directed

edge from u to v if the edges e, r in G corresponding to u, v are concurrent in G.

This process may introduce multiple ∗ vertices for G′, however, we can simply

identify these vertices to overcome this problem.

The above discussions imply that the class of edge combable functions

includes combable functions and real valued homomorphisms.

Lemma 3.4.5. Edge combable functions satisfy Condition (1).

Proof. Let ϕ be edge combable with derivative dϕ. For x = (xn)∞n=0 ∈ ΣA,

define

f(x) =

{
dϕ((x0, x1)) x1 6= 0

0 x1 = 0,

where ρ denotes the labelling map defined in Definition 3.2.1. Since f is constant

on cylinders of length 2, f ∈ Fθ(ΣA) for any 0 < θ < 1. To see that Condition
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(1) is satisfied, note that

f |g|(i(g)) =
n−1∑
k=0

f(σk(∗, y0, . . . , yn−1, 0̇))

=
n∑
i=1

dϕ(egi )

= ϕ(g).

We have now seen examples of functions that satisfy Condition (1). A

large class of functions that satisfy Condition (2) are quasimorphisms.

Definition 3.4.6. A function ϕ : G → R is a quasimorphism if there exists a

constant A > 0 such that

|ϕ(gh)− ϕ(g)− ϕ(h)| ≤ A

for all g, h ∈ G.

Quasimorphisms are a natural generalisation of homomorphisms. Indeed, quasi-

morphisms are homomorphisms up to a uniformly bounded error. Note that

bounded functions are also quasimorphisms. A necessary and sufficient condi-

tion for a hyperbolic group G to admit a non-trivial real valued homomorphism

is that the rank of the abelianisation of G must be greater than or equal to 1.

This is because any homomorphism ϕ : G → R factors through the abeliani-

sation of G. Hence if a hyperbolic group has finite abelianisation it does not

admit any non-trivial homomorphisms to R. However, a result of Epstein and

Fujiwara [18] shows that every hyperbolic group G admits uncountably many

real valued quasimorphisms.

We now consider the class of functions satisfying both Condition (1)

and Condition (2). In [9] Calegari and Fujiwara consider combable functions

that are Lipschitz in the left and right words metrics on G. Furthermore, they

prove that the class consisting of these functions is independent of the choice

of symmetric S and G associated to G. Hence our results apply to all functions

considered by Calegari and Fujiwara in [9]. In particular our results apply

to Brooks counting quasimorphisms. We will now define and discuss Brooks

counting quasimorphisms on free groups equipped with their canonical free

generating sets. The general definition of a Brooks counting quasimorphism
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(for arbitrary hyperbolic groups and generating sets) is a bit more technical -

see [7] for a general definition.

Suppose G is a free group equipped with its free generating set and

w ∈ G is an element of G. We define the Brooks counting quasimorphism ϕw

associated to w as follows. Given g ∈ G let φw : G → R be the function that

counts the total number of copies of w that appear in the unique shortest word

representing g. We define

ϕw = φw − φw−1 .

The difficulty in extending this definition to arbitrary hyperbolic groups is that

there does not necessarily exist a unique shortest word expression for a given

group element. In [9] the authors observe that Brook’s counting quasimor-

phisms are not necessarily Hölder.

However, in [31], [32] Horsham and Sharp consider Hölder quasimor-

phisms. As discussed above, these functions satisfy Condition (1) and Condi-

tion (2). Hence our results also apply to these functions. The following is an

example of a Hölder quasimorphism that is due to Barge and Ghys [1].

Example: Suppose G acts cocompactly by isometries on a simply con-

nected Riemannian surface X with all sectional curvatures bounded above by

−1. Write M = X/G. Given a smooth 1-form ω on M , we can lift ω to a

G-invariant smooth 1-form ω̃ on X. Fix an origin o ∈ X and define ϕ : G→ R
by

ϕ(g) =

∫ go

o
ω̃.

Note that

ϕ(gh)− ϕ(g)− ϕ(h) =

∫
∂T (g,h)

ω̃ =

∫
T (g,h)

dω̃

where T (g, h) denotes the triangle in X with vertices o, go and gho. The last

equality in the above follows from Stoke’s Theorem. By compactness and hy-

perbolicity, the right hand side of the above is bounded uniformly in g, h. This

proves that ϕ is a quasimorphism. In [43] Picaud proved that these quasimor-

phisms satisfy Condition (1).

There are many other examples of functions satisfying Conditions (1)

and (2). See, for example, [1], [18] and [25]. As discussed in the introduction,

the following examples are of particular interest to us.

Let (X, d) be a complete CAT(−1) geodesic metric space. A group G

is said to act convex cocompactly on X if the quotient of the intersection of X

and the convex hull (in X) of the limit set of G, is compact. Suppose G acts

properly discontinuously, convex cocompactly by isometries on X. Fix a finite
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generating set for G and an origin o (in the convex hull of the limit set of G)

for X.

Lemma 3.4.7. In the setting described above, the displacement function g 7→
d(o, go) satisfies Condition (1) and Condition (2).

Proof. The fact that the displacement satisfies Condition (1) is due to Pollicott

and Sharp. This was proved in [48] (see Proposition 3) when G acts on a

negatively curved manifold X. However, the only property of X required for

the proof is the CAT(−1) property and hence the proof applies to our case also.

Showing that Condition (2) is satisfied is a simple exercise.

3.5 Spectral properties of transfer operators

3.5.1 Spectral description of certain transfer operators

Let G,S have associated directed graph G described by transition matrix A.

To deduce our main results, we analyse the following weighted sum∑
g∈Wn

esϕ(g),

for small complex s as n→∞. We want to express this sum in terms of transfer

operators. To form a useful expression, we exploit the structure of G and in

particular, use the fact that maximal components are disjoint. We therefore

consider transfer operators of a specific form. The aim of this section is to

define and study these operators.

Definition 3.5.1. For f ∈ Fθ(ΣA) define the transfer operator LA,f : Fθ(ΣA)→
Fθ(ΣA) by

LA,fg(x) =
∑

σ(y)=x

y∈ΣA\{0̇}

ef(y)g(y).

Note that these transfer operators vary slightly from those previously

defined, as we are excluding 0̇ as a possible preimage in the sum defining the

operators. Pollicott and Sharp studied the spectral properties of these operators

in [47].

Let Bi for i = 1, . . . ,m denote the maximal components of A.

Definition 3.5.2. For each i = 1, . . . ,m, define a matrix Ci by,

Ci(u, v) =

{
0 if u or v belong to a maximal component that is not Bi,

A(u, v) otherwise.
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We define LBi,f and LCi,f analogously to LA,f . Note that the operators LBi,f

are the same as the operators Lf acting on Fθ(ΣBi) as given in Definition 2.2.

We want to understand the spectral properties of the operators LCi,sf

for small complex s. We analyse the operators in the case that s = 0 and

then use perturbation theory to obtain our desired result. Suppose that λ is

the exponential growth rate of #Wn. It is well known that for each i, LBi,0

has the same simple maximal eigenvalues as Bi. These maximal eigenvalues

have modulus λ since the Bi are maximal components. From our discussion

in Section 2, λ is equal to eh where h denotes the topological entropy of the

system (ΣBi , σ). We want to show that LCi,0 has essentially the same spectrum

as LBi,0.

Lemma 3.5.3. Suppose each Bi has cyclic period pi. Then, the operators LCi,0

are quasicompact, have spectra that consist of pi finite multiplicity maximal

eigenvalues at e2πik/pieh for k = 0, 1, . . . , pi − 1. The rest of the spectrum is

contained in the disk {z : |z| < eh − δ} for some δ > 0.

Proof. The proof is basically an application of Lemma 2 from [47]. Quasicom-

pactness of the operators follows immediately. By relabelling the columns of

Ci, we can rewrite each Ci in the form

Ci =


C1,1 0 . . . 0

C2,1 C2,2 . . . 0
...

...
. . .

...

Cm,1 Cm,2 . . . Cm,m


where the Cj,j correspond to irreducible components of G. By construction

all maximal components have corresponding matrix 0 except for the matrix

corresponding to Bi. Let

P =



C1,1 0 0 . . . 0

0 C2,2 0 . . . 0

0 0 C3,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Cm,m


Lemma 2 in [47] states that the operators LCi,0 and LP,0 have the same isolated

eigenvalues. It is easy to see that the spectrum of LP,0 consists of pi finite

multiplicity eigenvalues, e2πik/pieh for k = 0, . . . , pi − 1 and the rest of the

spectrum is contained in {z : |z| < eh − δ} for some δ > 0. Quasicompactness

of the LCi,0 now implies the result.
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One can check that the finite multiplicity eigenvalues from the above

lemma are in fact simple. Let B∗i denote the matrices that describes the sub-

graph of G that contains the vertices in Bi, the 0 vertex and all edges between

these vertices that are allowed by A. There are a few steps in showing that the

eigenvalues in the above lemma are simple. We show that each of the following

statements can be deduced from the previous one.

1. The maximal eigenvalue for LB∗i ,0 is simple in the case that Bi is aperiodic.

2. The maximal eigenvalues for LB∗i ,0 are simple in the case that Bi is irre-

ducible.

3. The maximal eigenvalues for LCi,0 are simple when Ci is irreducible.

Statement (1) in the above is well known [35], [47]. We will show how to deduce

(2) from (1) and (3) from (2).

Proof of (1) =⇒ (2). Suppose that Bi is irreducible. Recall that there exists

pi, the period of Bi, such that ΣBi has pi-cyclic decomposition

ΣBi =

pi−1⊔
k=0

ΣBki
.

LBi,0 has spectrum containing maximal eigenvalues at e2πik/pieh for k = 0, 1, . . . , pi−
1. The rest of the spectrum is contained in a disk of radius strictly smaller than

eh.

The pith iterates of the transfer operators LpiBi,0 act as the direct sum

of operators Lpi
Bki ,0

for k = 0, . . . , pi − 1 each acting on Fθ(ΣBki
) respectively.

The analogous statement is true for the LpiB∗i ,0
. The following notation expresses

this,

LpiB∗i ,0
=
(
LpiB∗i,0,0

, LpiB∗i,1,0
, . . . , LpiB∗i,pi−1,0

)
,

LpiBi,0 =

(
Lpi
B0
i ,0
, Lpi

B1
i ,0
, . . . , Lpi

Bp−1
i ,0

)
.

Here, each B∗i,k corresponds to Bk
i with the 0 vertex (and all edges to the 0

vertex) added back in. We will continue to use the above notation through out

the rest of this work.

Each (ΣB∗i,k
, σpi) is a subshift of finite type of the same form as the

aperiodic case from (1). We know that, for each k, Lpi
Bki ,0

has simple maximal

eigenvalue epih and hence LpiB∗i,k,0
does also. From the definition of LB∗i ,0 it is

easy to see that the spectrum of LB∗i ,0 consists of simple maximal eigenvalues
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at e2πik/pieh for k = 0, 1, . . . , pi− 1 and the rest of the spectrum is contained in

the disk {z : |z| < eh − δ} for some δ > 0. This concludes the proof.

Proof of (2) =⇒ (3). Suppose g ∈ Fθ(ΣB∗i
) is the eigenfunction for the eigen-

value e2πik/pieh for LB∗i ,0. Let h be an eigenfunction corresponding to the

eigenvalue e2πik/pieh for LCi,0. Suppose there exists x ∈ ΣCi such that x0 does

not belong to Bi but there exists a path from x0 into Bi. Then,

epihn|h(x)| = |LpinCi,0h(x)|

≤
∑

σpin(y)=x

y∈ΣCi\{0̇}

|h(y)|

=
∑

σpin(y)=x

y∈ΣCi\{0̇}:y0, . . . , ypin−1 are not in Bi

|h(y)|.

However, the growth of the number of length n paths in G, starting at ∗, that

do not enter a maximal component, is o(ehn). This implies that

epihn|h(x)| = o(epihn),

which forces h(x) = 0. Hence h is zero on

S := {x ∈ ΣCi : x0 is not in Bi and there exists a path from x0 into Bi in G}.

We deduce that h|ΣB∗
i

is an eigenfunction for LB∗i ,0. Now, suppose LCi,0 has

another eigenfunction for the eigenvalue e2πik/pieh. Then, by taking a linear

combination of h and this new eigenfunction, we can assume that there exists

an non-zero eigenfunction for LB∗i ,0 that is zero on the set

{x ∈ ΣCi : there exists a path from x0 into Bi in G}.

However, by taking x such that h(x) 6= 0 and running the same growth argument

as before, we see that any such eigenfunction cannot exists. Hence LCi,0 has

algebraically simple eigenvalues at e2πik/pieh for k = 0, . . . , pi − 1.

To see geometric simplicity a similar argument can be applied. Suppose
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LCi,0 has Jordan chain

gn−1

gn−2 =
(
LCi,0 − e2πik/pieh

)
gn−1

...

g =
(
LCi,0 − e2πik/pieh

)
g1,

for n ≥ 3. Then we see that there exists bounded linear operators Pj(n) such

that for each j and n ∈ Z≥0,

LpinCi,0gj = enpihgj + Pj(n)gj−1.

By the same growth argument as before, if gj−1 is 0 on the set S, then gj

is also 0 on S. Hence, by induction, all the gj are 0 on S. This implies

that g, g1, . . . , gn−1 restricts to a Jordan chain for LB∗i ,0 which in turn implies

g|B∗i = 0, a contradiction. This concludes the proof.

In summary we have shown.

Proposition 3.5.4. Suppose each Bi has cyclic period pi. Then, there exists

δ > 0 such that the operators LCi,0 have spectra that consist of pi simple maximal

eigenvalues at e2πik/pieh for k = 0, 1, . . . , pi − 1 and the rest of the spectrum is

contained in {z : |z| < eh − δ}.

We now study the perturbed operators LCi,sf . By Proposition 3.5.4,

upper semi-continuity of the spectrum and Proposition 2.2.5, for all sufficiently

small (complex) s, LCi,sf has pi simple maximal eigenvalues and exhibits a

spectral gap to the rest of the spectrum. This gap is uniform for s in a small

neighbourhood of the origin. Our aim is to show that, as we perturb LCi,0,

these simple maximal eigenvalues vary in the same way. Specifically, we want

to show that for small s, LCi,sf has pi simple maximal eigenvalues of the form

λse
2πik/pi for k = 0, . . . , pi − 1, where s 7→ λs is analytic.

By Lemma 2 in [47], for sufficiently small s, the simple maximal eigenval-

ues of LCi,sf are those of LBi,sf . Hence it suffices to study small perturbations

of LBi,0. Suppose ΣBi has cyclic decomposition
⊔pi−1
k=0 ΣBki

as before.

We consider the pi th iterate of LBi,0,

LpiBi,sf =

(
Lpi
B0
i ,sf

, Lpi
B1
i ,sf

, . . . , Lpi
B
pi−1
i ,sf

)
.

The systems (ΣBki
, σpi) are aperiodic subshifts and Lpi

Bki ,sf
acts as LBki ,sfpi

on
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this system. Define f̃k : ΣBki
→ R by f̃k(x) = fpi(x). We can choose ε > 0 such

that for |s| < ε each of the LBki ,sfpi
have a simple maximal eigenvalue eP (sf̃k)

and exhibit a spectral gap to the rest of the spectrum. Fix |s| < ε. We deduce

that the spectrum of LpiBi,sf consists of a finite multiplicity maximal eigenvalue

λ := eP (sf̃ l) for some l ∈ {0, . . . , pi−1} and the rest of the spectrum is contained

in a disk, centered at the origin, of radius strictly less than |λ|. It is easy to see

that if x is in the spectrum of LpiBi,sf , then one of the pith roots of x must be in

the spectrum of LBi,sf . Furthermore, each element in the spectrum of LBi,sf

is the pith root of an element in the spectrum of LpiBi,sf . By quasicompactness

LBi,sf has an eigenvalue that is a pith root of λ. Suppose g0 is the associated

eigenfunction. Note that g0 restricted to ΣBki
is an eigenfunction for each k

satisfying Lpi
Bki ,sf

g0|Bki = λg0|Bki . It follows from the definition of the transfer

operator, that for each k, g0|Bki is not identically zero (otherwise g0 would be

identically zero). We deduce that for all s sufficiently small, the eigenvalues

eP (sf̃k) agree for all k. It follows that for all s sufficiently small, the spectrum

of LBi,sf consists of pi simple maximal eigenvalues of the form e2πik/pieP (sf̃0)/pi

for k = 0, 1, . . . , pi − 1 and the rest of the spectrum is contained in a disk

of radius strictly less than the modulus of eP (sf̃0)/pi − δ, for some δ > 0. To

simplify notation we write Pi(sf) to denote P (sf̃0)/pi . To summarise, we have

shown the following.

Proposition 3.5.5. There exists ε, δ > 0 such that for all |s| < ε, LCi,sf has

pi simple maximal eigenvalues e2πik/piePi(sf) for k = 0, . . . , pi − 1, these are

contained in the δ neighbourhood of {e2πik/pieh : k = 0, . . . , pi − 1} and the rest

of the spectrum is contained in the disk |z| < eh − 2δ.

Let ε be as in the above proposition. We use B(Fθ(ΣA)) to denote the

Banach algebra of bounded linear operators over ΣA. Results from analytic

perturbation theory (see Theorem 6.17 in [34]) imply that there exist analytic

projection valued functions Qi,k : {s ∈ C : |s| < ε} → B(Fθ(ΣA)) such that

Qi,k(s) projects a function in Fθ(ΣCi) to the one-dimensional eigenspace asso-

ciated to the simple maximal eigenvalue e2πik/piePi(sf) of the operator LCi,sf .

3.5.2 Comparing pressure across maximal components

In this section we show that, as we perturb the operators LCi,0, the simple

maximal eigenvalues from Proposition 3.5.5 vary in a similar way. Specifically,

we show that the quantities

Λi :=
dPi(sf)

ds

∣∣∣
s=0

and σ2
i :=

d2Pi(sf)

ds2

∣∣∣
s=0
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are independent of the maximal component Bi.

To show that these quantities agree across components, we appeal to

the work of Calegari and Fujiwara. We will use the argument presented in [8]

and [9]. To apply this argument, we need the following technical lemma.

Lemma 3.5.6. Suppose r = (rk)
∞
k=0 ∈ ΣA with r0 = ∗. Write r̃k ∈ G to denote

the group element corresponding to the path (∗, r1, . . . , rk−1, 0̇) in G under the

bijection from Definition 3.2.1. Then,

fn(σk(r)) = ϕ(r̃n+k)− ϕ(r̃k) +O(1),

where the above error term constant is independent of r, k and n.

Proof. Given n, k ∈ Z≥0 and r ∈ ΣA, define s1, s2, s3 ∈ ΣA by

s1 = (∗, r1, . . . , rk−1, 0̇), s2 = (∗, r1, . . . , rk+n−1, 0̇), s3 = (rk, rk+1, . . . , rk+n−1, 0̇).

Then, by the Hölder property of f , there exists C > 0 independent of n, k and

r, such that

|fn(σk(r))− fn(s3)| ≤ C.

Then, note that fn(s3) + fk(s2) = fn+k(s2) and also that there exists C ′ > 0

independent of n, k and r, such that

|fk(s2)− fk(s1)| ≤ C ′.

Finally, by Condition (1),

fk(s1) = ϕ(r̃k) and fk+n(s2) = ϕ(r̃k+n)

and so

fn(σk(r)) = fn(s3) +O(1)

= fn+k(s2)− fk(s2) +O(1)

= ϕ(r̃n+k)− ϕ(r̃k) +O(1),

where the implied constant term is independent of n, k and r.

The main result of this section is the following. Recall that ν denotes

the Patterson–Sullivan measure on ∂G.

Proposition 3.5.7. The quantities, Λi and σ2
i do not depend on i = 1, . . . ,m.
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Proof. Let Y ⊂ ΣA and h : Y → ∂G be as defined in Definition 3.3.3. An

important fact, on which this proof relies, is that if µi(E) > 0 for some set

E ⊂ ΣBi , then there exists k ∈ Z≥0 such that σk∗ ν̂(E) > 0. This property,

which follows easily from Proposition 3.3.5, is the key ingredient that allows us

to compare the ν̂ measure with the µ measure.

The measure µi is ergodic with respect to σ on ΣBi and by the ergodic

theorem, if g ∈ L1(ΣBi , µi) then

1

m
gm(z)→

∫
g dµi,

as m→∞, for µi a.e z ∈ ΣBi . We define

F (n, x) =

{
r ∈ ΣBi :

fn(r)− Λin√
n

≤ x
}

and

µ(z,m) =
1

m

m∑
k=0

δσkz.

Throughout the following it is helpful to keep the following expression in mind,∫
1F (n,x) dµ(z,m) =

1

m
#

{
0 ≤ j ≤ m :

fn(σj(z))− Λin√
n

≤ x
}

where 1F (n,x) denotes the indicator function for F (n, x). To simplify our nota-

tion in the following, if σ2
i = 0, then we take

1√
2πσi

∫ x

−∞
e−t

2/2σ2
i dt

to be the Heaviside function. The central limit theorem for subshifts of finite

type [14] implies that there exists a set Ni ⊂ ΣBi with µi(Ni) = 1, such that

for all x ∈ R and z ∈ Ni,

lim
n→∞

lim
m→∞

∫
1F (n,x) dµ(z,m) = lim

n→∞
µi(F (n, x))

=
1√

2πσi

∫ x

−∞
e−t

2/2σ2
i dt.

We note that if z ∈ ΣA satisfies the above convergence, then any pre-image

y ∈ σ−1(z) also satisfies the above convergence. Also, from the above discussion,

there exists k ∈ Z≥0 such that σk∗ ν̂(Ni) > 0. Combining these observations
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implies that there exists a set Ei ⊂ Y of positive ν̂ measure and for x ∈ R,

lim
n→∞

lim
m→∞

∫
1F (n,x) dµ(y,m) =

1√
2πσi

∫ x

−∞
e−t

2/2σ2
i dt, (3.5.1)

when y ∈ Ei. Hence, for each i = 1, . . . ,m, h(Ei) ⊂ ∂G has positive ν measure.

We define the set Si ⊂ ∂G to be the collection of elements in ∂G that

have a corresponding infinite geodesic ray γ such that for all x ∈ R,

lim
n→∞

lim sup
m→∞

1

m
#

{
0 ≤ j ≤ m :

ϕ(γj+n)− ϕ(γj)− Λin√
n

≤ x
}

=

1√
2πσi

∫ x

−∞
e−t

2/2σ2
i dt.

Since ϕ is Lipschitz in the left and right word metric, if γ1, γ2 are two geodesic

rays with the same end point in ∂G, then γ1 satisfies the above convergence if

and only if γ2 does. Further, as ϕ is Lipschitz in the right word metric Si is

G-invariant. See Lemma 4.3 in [9] for a more detailed explanation of these last

two points.

This G invariance implies that, by the ergodicity of the action of G on

∂G with respect to ν, ν(Si) either has full measure or zero measure. However,

Lemma 3.5.6 and expression (6.2) imply that h(Ei) ⊂ Si. To see this note that

for y ∈ Ei,

1

m
#

{
0 ≤ j ≤ m :

ϕ(h(y)j+n)− ϕ(h(y)j)− Λin√
n

≤ x
}

is equal to

1

m
#

{
0 ≤ j ≤ m :

fn(σj(y)) +O(1)− Λin√
n

≤ x
}

=

∫
1F (n,x+O(n−1/2)) dµ(y,m),

where the above error term arises from the application of Lemma 3.5.6. This

error term does not affect the convergence exhibited in (6.2) and we deduce

that h(Ei) ⊂ Si. Since ν(h(Ei)) > 0, Si has full measure. It follows that

the Si coincide and hence that Λi and σ2
i do not depend on i = 1, . . . ,m as

required.

From now on, we use the notation

Λϕ :=
d

ds
Pi(sf)

∣∣∣
s=0

and σ2
ϕ :=

d2

ds2
Pi(sf)

∣∣∣
s=0

,

for any i = 1, . . . ,m.

By the above discussion Λϕ and σ2
ϕ are well defined i.e. independent
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of the choice of maximal component. Computing the Taylor expansion of each

Pi(sf) in a neighbourhood of zero gives the following.

Lemma 3.5.8. There exists a neighbourhood U of 0 in C such that for s ∈ U
and for each i = 1, . . . ,m,

Pi(sf) = h+ Λϕs+ σ2
ϕs

2/2 +O(s3) (3.5.2)

as s→ 0.

3.6 Cohomology conditions

The aim of this section is to characterise the case that σ2
ϕ = 0. Let Bi be a

maximal component with cyclic decomposition

ΣBi =

pi−1⊔
j=0

Σ
Bji
.

Definition 3.6.1. Let BG
i denote the elements in G that can be realised as a

word corresponding to a path contained in the component Bi. Specifically, let

ρ denote the labelling map from Definition 3.2.1, then BG
i is the set,

{g ∈ G : g = ρ(e0)ρ(e1) . . . ρ(en−1) for some path with edges e0, . . . , en−1 in Bi}.

Recall that for small s, the spectral radius of the operator LCi,sf is given

by the modulus of ePi(sf). Furthermore, Pi(sf) denotes the quantity P (sf̃0)/pi

where f̃0 is the function fpi restricted to ΣB0
i
.

Lemma 3.6.2. Suppose ϕ satisfies Condition (1) and Condition (2) with as-

sociated potential f : ΣA → R. Let (fpi)n(x) denote fpi(x) + fpi(σpi(x)) + ...+

fpi(σpi(n−1)(x)). Then, the following are equivalent

1. σ2
ϕ = 0,

2. The function fpi on (ΣB0
i
, σpi) is cohomologous to a constant,

3. {(fpi)n(x)− npiΛϕ : x ∈ ΣB0
i
, n ∈ Z≥0} is bounded,

4. {(fpi)n(x)− npiΛϕ : x ∈ Σ
Bji
, n ∈ Z≥0} is bounded for j = 0, 1, ..., pi − 1,

5. {fn(x)− nΛϕ : x ∈ ΣBi , n ∈ Z≥0} is bounded,

6. {ϕ(g)− |g|Λϕ : g ∈ BG
i } is bounded,
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7. {ϕ(g)− |g|Λϕ : g ∈ G} is bounded.

Proof. (1) ⇐⇒ (2) This is a standard result. See [42].

(2) ⇐⇒ (3) This is proved in [35], see Lemma 2.3.

(3) ⇐⇒ (4) This follows from the discussion leading up to Proposition 5.6.

(4) ⇐⇒ (5) This is a simple exercise.

(5) ⇐⇒ (6) Given g ∈ BG
i , we can view g as a path contained in the component

Bi. We can then extend this path on the left to a path that begins at the ∗
vertex and on the right so that it ends at the 0 vertex. Furthermore, there

exists L ∈ Z≥0 such that we can always extend a group element in this way

by adding at most L new vertices. This extended path corresponds to a group

element g′ ∈ G and we have that, by Condition (2),

ϕ(g) = ϕ(g′) +O(1),

where the implied constant is independent of g and g′. Then, using the embed-

ding i : G→ ΣA we see that

ϕ(g) = f |g|(σ|g
′|−|g|(i(g′))) +O(1),

where the implied constant is independent of g. Now choose any x = (xk)
∞
k=0 ∈

ΣBi for which x0, x1, ..., x|g| describes the path related to g. Then, by the Hölder

condition on f ,

ϕ(g) = f |g|(x) +O(1),

where the implied constant is independent of g and our choice of x. This gives

one of our desired implications. Running this argument backwards gives the

other.

(6) ⇐⇒ (7) This is a consequence of hyperbolic groups being growth quasitight

(see Definition 1.5 in [22]). By Lemma 4.6 of [26] there exists a finite set M ⊂ G
such that MBG

i M = G (see also Proposition 7.2 of [22]). The conclusion then

follows easily from Condition (2).

Definition 3.6.3. We say that ϕ(·)−Λϕ|·| is unbounded if {ϕ(g)− |g|Λϕ : g ∈ G}
is an unbounded subset of R.

Remark 3.6.4. Lemma 7.2 characterises the degenerate case for Calegari and

Fujiwara’s central limit theorem [9]. This is because, as discussed earlier, the

functions considered by Calegari and Fujiwara have an associated Hölder poten-

tial and the variance, σ2
ϕ, associated to this potential agrees with the variance

in Calegari and Fujiwara’s central limit theorem.
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We can use the positive variance conditions from Lemma 3.6.2 to deduce

combinatorial and geometric properties of functions satisfying Condition (1) and

Condition (2). The remainder of this section is dedicated to this end.

We begin by defining the following set

U = {[γ] ∈ ∂G : {ϕ(γn)− |γn|Λϕ : n ∈ Z≥0} is unbounded}.

This set is a well defined because ϕ is Lipschitz in the left word metric on G.

Given [γ], [γ′] ∈ ∂G, there exists C > 0 such that

|(ϕ(γn)−|γn|Λϕ)−(ϕ(γ′n)−|γ′n|Λϕ)| = |ϕ(γn)−ϕ(γ′n)|+||γn|−|γ′n|| ≤ CdL(γn, γ
′
n).

If [γ] = [γ′], the right hand side of the above is bounded uniformly in n and hence

{ϕ(γn)−|γn|Λϕ : n ∈ Z≥0} is bounded if and only if {ϕ(γ′n)−|γ′n|Λϕ : n ∈ Z≥0}
is bounded.

Definition 3.6.5. We say that ϕ is unbounded on the boundary if ν(U) > 0.

Remark 3.6.6. As ϕ is Lipschitz in the right word metric, U is G-invariant.

Therefore by the ergodicity of the action of G on ∂G with respect to ν, ν(U) = 0

or 1. Hence the above definition can be equivalently stated by changing ν(U) >

0 to ν(U) = 1.

Proposition 3.6.7. A function ϕ : G→ R satisfying Condition (1) and (2) is

unbounded on the boundary if and only if ϕ(·)− Λϕ| · | is unbounded.

Proof. It is clear that if ϕ is unbounded on the boundary then ϕ(·)− Λϕ| · | is

unbounded

Conversely, suppose that ϕ(·)− Λϕ| · | is unbounded. Let ν, ν̂, µ and µi

denote the measures defined in the proof of Proposition 6.2 and let h : ΣA → ∂G

denote the map defined in this proposition. Since ϕ(·) − Λϕ| · | is unbounded,

f satisfies a non-degenerate central limit theorem on a maximal component Bi

with respect to the measure of maximal entropy µi on that component, i.e., for

y ∈ R,

lim
n→∞

µi(G(n, y)) =
1√

2πσi

∫ ∞
y

e−t
2/2σ2

i dt,

where

G(n, y) =

{
x ∈ ΣBi :

fn(x)− Λin√
n

≥ y
}

and σ2
i > 0.
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Hence for any y ∈ R,

µi(lim sup
n→∞

G(n, y)) = µi

⋂
n≥1

⋃
j≥n

G(j, y)


≥ lim sup

n→∞
µi(G(n, y)) > 0.

Now fix y > 0 and note that

µ {x ∈ ΣA : {fn(x)− nΛi : n ∈ Z≥0} is unbounded } ≥ µi(lim sup
n→∞

G(n, y)) > 0.

As in the proof of Proposition 6.2, the relationship between ν̂ and µ implies

that

ν̂ {x ∈ ΣA : x0 = ∗ and {fn(x)− nΛi : n ∈ Z≥0} is unbounded } > 0.

Then, by Condition (1) and the Hölder properties of f , for x ∈ ΣA,

fn(x)− nΛi = ϕ(g)− |g|Λi +O(1),

where g is the unique group element such that i(g) = (∗, x0, ..., xn−1, 0, 0, ...).

The implied constant in the above is independent of x. Lastly, since ν̂ pushes

forward under h : ΣA → ∂G to ν on ∂G,

ν {[γ] ∈ ∂G : {ϕ(γn)− |γn|Λi : n ∈ Z≥0} is unbounded} > 0

and ϕ is unbounded on the boundary.

The following is a combinatorial condition that is equivalent to ϕ(·) −
Λϕ| · | being unbounded.

Definition 3.6.8. We say that ϕ is unbounded on a thick domain if whenever

a subset, H ⊂ G has the property that

{ϕ(g)− |g|Λϕ : g ∈ H}

is bounded, then the asymptotic density of H with respect to Wn is zero, i.e.

lim
n→∞

#(Wn ∩H)

#Wn
= 0.

Lemma 3.6.9. A function satisfying Condition (1) and Condition (2) is un-

bounded on a thick domain if and only if ϕ(·)− Λϕ| · | is unbounded.
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Proof. It is clear that if ϕ is unbounded on a thick domain, then ϕ(·)− Λϕ| · |
is unbounded.

Conversely, suppose that ϕ(·)− Λϕ| · | is unbounded and that H ⊂ G is

such that {ϕ(g) − Λϕ|g| : g ∈ H} is bounded. There then exists real M > 0

such that,

#(Wn ∩H) ≤ #

{
g ∈Wn :

ϕ(g)− nΛϕ√
n

∈
[
−M√
n
,
M√
n

]}
for all n ≥ 1. Applying Theorem 4.1.2 then gives that, as n→∞,

#(Wn ∩H)

#Wn
=

1√
2πσϕ

∫ Mn−1/2

−Mn−1/2

e−t
2/2σ2

ϕ dt+O(n−1/2) = O(n−1/2).

Remark 3.6.10. The proof of Lemma 7.9 shows that we can replace the limit

in Definition 7.9 with a limit infimum without affecting the class of functions

that are unbounded on a thick domain.

We will now provide a class of functions that satisfy our central limit

theorem with positive variance.

Lemma 3.6.11. If ϕ : G → R is a non-trivial group homomorphism or an

unbounded quasimorphism satisfying Condition (1), then σ2
ϕ > 0.

Proof. From Theorem 4.1.1 and the equalities |g| = |g−1| and ϕ(g) = −ϕ(g−1)

that hold for all g ∈ G, we see that Λϕ = 0. The result follows.

Combining Propositions 7.8 and 7.9 gives the following result.

Corollary 3.6.12. Suppose G is a non-elementary hyperbolic group and ϕ :

G → R satisfies Condition (1), Condition (2) and that ϕ(·) − Λϕ| · | is un-

bounded. Then the subset of ∂G consisting of (equivalence classes of) geodesic

rays along which ϕ(·)−Λϕ|·| is unbounded, has full Patterson-Sullivan measure.

Furthermore, if ϕ(·)− Λϕ| · | is bounded on H ⊂ G, then

#(Wn ∩H)

#Wn
= O

(
1√
n

)
as n→∞.
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Chapter 4

Statistics in hyperbolic groups

4.1 Discussion and statement of results

In this section we study the statistical and distributional behaviour of real

valued functions on hyperbolic groups that satisfy Condition (1) and Condition

(2). We begin by stating our main results of this chapter.

Theorem 4.1.1 (Averaging Theorem). Let G be a non-elementary hyperbolic

group equipped with a fixed generating set. Suppose that ϕ : G → R satisfies

Condition (1) and Condition (2). Then, there exists Λ ∈ R such that

1

#Wn

∑
g∈Wn

ϕ(g)

n
= Λ +O

(
1

n

)
as n→∞.

This result can be seen as an analogue of the law of large numbers, as

it describes how ϕ(g)/|g| averages over the sets Wn as n → ∞. This leads us

to ask if we can describe more precisely how ϕ averages over Wn, as n→∞. If

we additionally assume that ϕ(·)−Λ| · | is unbounded, then we obtain a central

limit theorem for the normalised images{
ϕ(g)− nΛ√

n
: g ∈Wn

}
.

Using Theorem 4.1.1 we deduce a Berry-Esseen error term.

Theorem 4.1.2 (Central Limit Theorem). Let G be a non-elementary hyper-

bolic group equipped with a finite generating set. Suppose that ϕ : G → R
satisfies Condition (1) and Condition (2) and that ϕ(·) − Λ| · | is unbounded.
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Let Λ be the constant from Theorem 4.1.1. Then, there exists σ2 > 0 such that

1

#Wn
#

{
g ∈Wn :

ϕ(g)− nΛ√
n

≤ x
}

=
1√
2πσ

∫ x

−∞
e−t

2/2σ2
dt+O

(
1√
n

)
,

where the implied constant is independent of x ∈ R.

We also prove the following large deviations result.

Theorem 4.1.3 (Large Deviation Theorem). Let G be a non-elementary hy-

perbolic group. Suppose that ϕ : G → R satisfies Condition (1) and Condition

(2). Then, for any ε > 0,

lim sup
n→∞

1

n
log

(
1

#Wn
#

{
g ∈Wn :

∣∣∣∣ϕ(g)

n
− Λ

∣∣∣∣ > ε

})
< 0,

where Λ is as in Theorem 4.1.1.

We will show that Theorem 4.1.2 provides a positive answer to the two

questions posed earlier in the introduction. Apart from answering these two

questions, our motivation behind this work is to understand the statistics of

the displacement function associated to group actions on CAT(−1) spaces. We

are interested in answering the following question.

Let (X, d) be a complete CAT(−1) geodesic metric space and fix an ori-

gin for X. Suppose that a hyperbolic group G equipped with a finite generating

set acts on X properly discontinuously, convex cocompactly by isometries. The

S̆varc-Milnor Lemma implies that there exists constants C0, C1 > 0 such that

C0|g| ≤ d(o, go) ≤ C1|g|

for all g ∈ G. We call the function g 7→ d(o, go) the displacement. The above

inequality shows that word length and displacement are comparable quantities.

This leads us to ask whether we can form a more refined comparison, on aver-

age, between them.

Recall that the displacement function satisfies Condition (1) and Condi-

tion (2). Theorems 4.1.1, 4.1.2 and 4.1.3 then apply and we obtain the following

comparison results. Note that the fact Λ > 0 follows from the Svarc-Milnor

Lemma.

Theorem 4.1.4. Suppose a non-elementary hyperbolic group G acts convex co-

compactly by isometries on a complete, geodesic, CAT(−1) metric space (X, d).

Fix an origin o ∈ X and a finite generating set for G. Then there exists Λ > 0
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such that
1

#Wn

∑
g∈Wn

d(o, go)

n
= Λ +O

(
1

n

)
.

Also, for any fixed ε > 0,

lim sup
n→∞

1

n
log

(
1

#Wn
#

{
g ∈Wn :

∣∣∣∣d(o, go)

n
− Λ

∣∣∣∣ > ε

})
< 0.

Furthermore, if d(o, · o)−Λ| · | is unbounded unbounded, then there exists σ2 > 0

such that

1

#Wn
#

{
g ∈Wn :

d(o, go)− nΛ√
n

≤ x
}

=
1√
2πσ

∫ x

−∞
e−t

2/2σ2
dt+O

(
1√
n

)
,

where the implied constant is independent of x ∈ R.

Remark 4.1.5. We note that similar results have been obtained by Gekhtman,

Taylor and Tiozzo in [23] and [24].

(i) In [23], Gekhtman, Taylor and Tiozzo showed that

1

#Wn
#

{
g ∈Wn :

∣∣∣∣d(o, go)

n
− Λ

∣∣∣∣ > ε

}
→ 0 (4.1.1)

with no estimate on the rate of convergence, for non-elementary actions (see

Section 5 of [24] for a definition) of G on hyperbolic metric spaces. These actions

are more general than convex cocompact actions. However, we have recently

learned from these authors that the random walk results they used have been

improved by Sunderland [57] and that this improvement, combined with the

work in [24], gives exponential convergence in (4.1.1) at the level of generality

considered in [24].

(ii) In [23], Gekhtman, Taylor and Tiozzo obtained a central limit theorem as

above (but without an error term) in the special case where G is a free group

or surface group.

After proving the above results, we generalise our method to the multi-

dimensional setting with the aim of studying the statistics of the abelianisation

homomorphism ϕ : G→ G/[G,G]. The abelianisation G/[G,G] takes the form

Zk ⊕ Torsion for some k ≥ 0 and we are interested in how the image of G

distributes in the non-torsion factor, Zk. We will assume that k ≥ 1 and that

we have fixed an isomorphism taking the non-torsion part of G/[G,G] to Zk.
We will refer to the induced homomorphism ϕ : G → Zk as the abelianisation
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homomorphism. Note that the components of this map are integer valued ho-

momorphisms and so satisfy Condition (1) and Condition (2). This will allow

us to apply the multidimensional analogues of the methods used to prove The-

orems 4.1.1, 4.1.2 and 4.1.3. We prove that the abelianisation homomorphism

satisfies a non-degenerate multidimensional central limit theorem.

Theorem 4.1.6. Let G be a non-elementary hyperbolic group equipped with a

finite generating set S. Suppose that G has abelianisation Zk⊕Torsion for some

k ≥ 1 and that ϕ : G→ Zk is the abelianisation homomorphism constructed in

the way described above. Then there exists a symmetric, positive definite matrix

Σ ∈Mk(R) such that for A ⊂ Rk,

1

#Wn
#

{
g ∈Wn :

ϕ(g)√
n
∈ A

}
→ 1

(2π det(Σ))k/2

∫
A
e−〈x,Σx〉/2 dx

as n→∞.

This result generalises the work of Rivin, who, in [51], proves the above theorem

for free groups.

In the last section, we consider a more subtle distributional result than

those in the above theorems. That is, we prove local central limit theorems.

To obtain these results we need to understand the arithmetic properties of the

images of the functions ϕ : G→ R that we consider. To gain this understanding,

we need to assume that ϕ satisfies some additional properties. Our methods and

therefore results do not apply to all maps satisfying Condition (1) and Condition

(2). We obtain the following local limit theorem for group homomorphisms to

R.

Theorem 4.1.7. Suppose G is a non-elementary hyperbolic group equipped with

a finite generating set. Let ϕ : G → R be a group homomorphism that has a

dense image in R. Then, Theorem 4.1.2 holds and we obtain σ > 0 such that

any a, b ∈ R with a < b,

1

#Wn
#{g ∈Wn : ϕ(g) ∈ [a, b]} ∼ b− a√

2πσ
√
n

as n→∞.

In [56] Sharp studies local limit theorems for homomorphisms ϕ : G→ Z
(where G is a free group). In this work we are interested in the complementary

case in which the image of ϕ : G → R is dense in R. We show that, in a

natural sense, almost all group homomorphisms satisfy the hypotheses of The-

orem 4.1.7. After proving this result we obtain a further local limit theorem for
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the displacement function associated to convex cocompact actions on pinched

Hadamard surfaces. We defer the statement of this result until after the proof

of Theorem 4.1.7.

We are nearly ready to prove these results. Before doing so we explain

how we will make use of transfer operators in our proofs. We also establish the

notation that we will use and make an observation that will allow us to simplify

our analysis.

As mentioned previously, to prove our results, we need an understanding

of the sums ∑
g∈Wn

esϕ(g),

for small complex s, as n → ∞. We now show how to express this quantity

in terms of transfer operators. This expression highlights the link between the

geometrical setting of ϕ on G and the dynamical setting of f on ΣA. Let χ

denote the indicator function for the set {(xn)∞n=0 ∈ ΣA : x0 = ∗}.

Lemma 4.1.8. There exists ε, δ > 0 such that for |s| < ε, each LCi,sf has

spectrum as described in Proposition 3.5.5 and

∑
g∈Wn

esϕ(g) =

m∑
i=1

LnCi,sfχ(0̇) +O
(
en(h−δ)

)
,

where the implied constant is independent of |s| < ε.

Proof. Note that ∑
g∈Wn

esϕ(g) =
∑
z

esf
n(z). (4.1.2)

where the second sum is taken over {z ∈ ΣA : σn(z) = 0̇, z0 = ∗, zn−1 6= 0̇}.
Hence, the quantity

m∑
i=1

LnCi,sfχ(0̇),

expresses (4.1.2) up to overcounting contributions from elements belonging to

{z ∈ ΣA : σn(z) = 0̇, z0 = ∗, zn−1 6= 0 and the path corresponding

to z does not enter a maximal component}.

Since the cardinality of this set is O(en(h−ν)) for some ν > 0 and f is bounded,

the result follows.

We now establish the notation that we will use throughout the remaining
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sections. Suppose G is equipped with a generating set S. Suppose G,S has

associated directed graph G described by transition matrix A. Let Wn denote

the elements in G of word length n and let #Wn denote the cardinality of Wn.

Let B, Bi and Ci for i = 1, . . . ,m denote the matrices defined in Chapter 3.5 and

suppose that ϕ : G→ R is a function satisfying Condition (1) and Condition (2).

Suppose ϕ has associated potential f ∈ Fθ(ΣA). Let LCi,sf denote the transfer

operators and letQi,k denote the projection valued operators previously defined.

Denote by Qi the projection

Qi =

pi−1∑
k=0

Qi,k.

Let Λϕ and σ2
ϕ be the quantities related to ϕ that were defined in Chapter

3.5.2.

Throughout our proofs, we use the notation established above. The

following lemma will allow us to simplify our analysis.

Lemma 4.1.9. Define γ : G → R by γ(g) = ϕ(g) − |g|Λϕ. Then γ satis-

fies Condition (1) and Condition (2) and the potential related to γ is f − Λϕ.

Furthermore

Λγ = 0 and σ2
γ = σ2

ϕ.

Proof. It is easy to check that the word length function g 7→ |g| satisfies Con-

ditions (1) and (2) with related potential given by the constant function with

value 1. It follows that γ also satisfies Conditions (1) and (2) with potential

f − Λϕ. Using the notation established in Section 6, for any chosen maximal

component with index i,

Λγ =
d

ds
Pi(s(f − Λϕ))

∣∣∣
s=0

and σ2
γ =

d2

ds2
Pi(s(f − Λϕ))

∣∣∣
s=0

.

For real s we have that,

Pi(s(f − Λϕ)) = Pi(sf)− sΛϕ,

from which the remainder of the lemma easily follows.

Assumption: The above lemma implies that, by swapping ϕ to γ, it suffices

to prove Theorems 4.1.1, 4.1.2 and 4.1.3 under the assumption that Λϕ = 0.

We assume this throughout the remaining sections.
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4.2 Averaging theorem

We define the following generating function.

Definition 4.2.1. Let

η(z, s) =
∞∑
n=0

zn

n

∑
g∈Wn

esϕ(g).

We want to study the domain of analyticity for η.

Lemma 4.2.2. We have that

η(z, s) =
∞∑
n=0

zn

n

m∑
i=1

LnCi,sfχ(0̇) + α(z, s),

for some function α(z, s) that is bi-analytic in {z : |z| < e−h+δ} × {s : |s| < ε}
for some ε, δ > 0.

Proof. Let ε, δ > 0 be as in Lemma 4.1.8. Using Lemma 4.1.8 we can write, for

|s| < ε, ∑
g∈Wn

esϕ(g) =
m∑
i=1

LnCi,sfχ(0̇) + ωn(s),

where ωn(s) is analytic in |s| < ε and ωn(s) = O
(
eh(n−δ)). The implied constant

is uniform in |s| < ε. Define

α(z, s) =

∞∑
n=0

zn

n
ωn(s).

Clearly α satisfies the required identity for the lemma. Further, since the error

term associated to ωn is independent of s, for fixed |s0| < ε, α(z, s0) is analytic

in {z : |z| > e−h+δ}. Conversely, for fixed |z0| < e−ε+δ, α(z0, s) is analytic

in |s| < ε. Hence, by Hartogs’ Theorem (see Theorem 1.2.5 in [30]), α(z, s)

satisfies the required analyticity condition.

Let ε > 0 be as in Lemma 4.1.8. By the Spectral Radius Theorem and

Lemma 4.1.8, there exists δ′ > 0 such that∣∣∣∣∣
m∑
i=1

LnCi,sfχ(0̇)

∣∣∣∣∣ = O
(
en(h+δ′)

)
,

where the error term is independent of |s| < ε. Lemma 3.5.5 and an application

of Hartogs’ Theorem then implies that η is bi-analytic in {|z| < e−h−δ
′} × {s :
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|s| < ε}. Taking the derivative of η with respect to s at s = 0 gives,

d

ds
η(z, s)

∣∣∣∣
s=0

=

∞∑
n=0

zn

n

∑
g∈Wn

ϕ(g)

for all |z| sufficiently small. Let ε, δ > 0 be as in Lemma 4.1.8. Recall that we

have analytic projection valued functions Qi,k for the simple maximal eigenval-

ues of the transfer operators LCi,sf . For |s| < ε , Qi,k(s) is the eigenprojection

associated to the eigenvalue e2πik/piePi(sf) for LCi,sf . Using these projections

we write

m∑
i=1

LnCi,sfχ(0̇) =

m∑
i=1

pi∑
k=1

e2πink/pienPi(sf)Qi,k(s)χ(0̇) +O(en(h−δ)), (4.2.1)

which is valid for |s| < ε.

Using identity (4.2.1) we can apply the same argument as in the proof

of Lemma 4.2.2, to the function

∞∑
n=0

zn

n

m∑
i=1

LnCi,sfχ(0̇),

to deduce the following.

Lemma 4.2.3.

η(z, s) =
∞∑
n=0

zn

n

m∑
i=1

pi∑
k=1

e2πink/pienPi(sf)Qi,k(s)χ(0̇) + β(z, s), (4.2.2)

for some β(z, s) that is bi-analytic in {z : |z| < e−h+ε} × {s : |s| < δ} for some

ε, δ > 0.

We then turn our attention to the double sum in (4.2.2).

Lemma 4.2.4. Define

ψn(s) :=
m∑
i=1

pi∑
k=1

e2πink/pienPi(sf)Qi,k(s)χ(0̇). (4.2.3)

Then, each ψn is analytic in a neighbourhood of 0 and

ψ′n(0) = O
(
enh
)
.

Proof. We recall that the projections Qi,k are analytic in a small neighbourhood

of the origin. Hence the maps s 7→ Qi,k(s)χ(0̇) are analytic in a neighbourhood
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of the origin. Differentiating each ψn and using the Taylor expansions for the

pressure (3.5.8) (recalling that Λϕ = 0), gives the required result.

Taking the derivative of expression (4.2.2) with respect to s at s = 0

and then rearranging, we obtain

∞∑
n=0

zn

−ψ′n(0)

n
+
∑
g∈Wn

ϕ(g)

n

 =
d

ds
β(z, s)

∣∣∣
s=0

. (4.2.4)

The domain of bi-analyticity for β implies that the radius of convergence of the

above series is strictly greater than e−h.

We are now ready to prove our result.

Proof of Theorem 4.1.1. Equation (4.2.4) implies that

∑
g∈Wn

ϕ(g)

n
=
ψ′n(0)

n
+O(en(h−δ))

for some δ > 0.

Dividing the above identity by #Wn and then applying Proposition 3.1.5

and Lemma 4.2.4 implies that

1

#Wn

∑
g∈Wn

ϕ(g)

n
= O

(
1

n

)

as required.

4.3 Central limit theorem

We now move on to the proof of Theorem 4.1.2. Throughout this section,

suppose that ϕ(·)− Λ| · | is unbounded. By Lemma 3.6.2 we have that σ2
ϕ > 0.

Recall that we want to study the convergence of the distributions

Fn(x) =
1

#Wn
#

{
g ∈Wn :

ϕ(g)√
n
≤ x

}
as n → ∞. A classical way of studying this convergence is to take the Fourier

transforms F̂n : R→ R of each Fn and to apply a result from probability theory

that gives a uniform bound on the difference Fn − N , where N is our desired

normal distribution, in terms of the F̂n. This is the approach we employ.
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These Fourier transforms are given by

F̂n(t) =
1

#Wn

∑
g∈Wn

eitϕ(g)n−1/2
. (4.3.1)

Lemma 4.3.1. We have that, for the ε given in Proposition 4.1.8,

F̂n(t) =

∑m
i=1 L

n
Ci,itfn−1/2χ(0̇)∑m

i=1 L
n
Ci,0

χ(0̇)
+ o(1), (4.3.2)

when |t| < ε
√
n. The above error term is uniform in |t| < ε

√
n.

Proof. Setting s = itn−1/2 in Lemma 4.1.8 allows us to rewrite expression

(4.3.1) as

F̂n(t) =
1

#Wn

m∑
i=1

Ln
Ci,itfn−1/2χ(0̇) + o(1).

Similarly, by setting s = 0 in Lemma 4.1.8, we have that

#Wn ∼
m∑
i=1

LnCi,0χ(0̇).

Combining these two identities proves the lemma.

To obtain our central limit theorem with Berry-Esseen error term we

want to make use of an inequality similar to the well-known ‘Basic Inequality’.

Proposition 4.3.2 (Basic Inequality [19] Lemma 2, Section XVI.3). Suppose

that F is a probability distribution with vanishing expectation and Fourier trans-

form F̂ . Suppose that N is the normal distribution with mean 0, variance σ2 > 0

and derivative N ′. Suppose further that F −N vanishes at ±∞. Then,

‖F −N‖∞ ≤
1

π

∫ T

−T

1

|t|

∣∣∣F̂ (t)− e−σ2t2/2
∣∣∣ dt+

24‖N ′‖∞
πT

,

where T > 0 is arbitrary.

As mentioned above, this inequality allows us to study the convergence

rate of our central limit theorem via the Fourier transforms of our distributions.

The standard ‘Basic Inequality’ applies to distributions with zero mean and for

our purposes, we need a version of the inequality that applies to a sequence of

distributions with varying means. We therefore amend the Basic Inequality to

the following form.

55



Proposition 4.3.3. Let Hn for n ∈ Z≥0 be a sequence of distributions with

Fourier transforms Ĥn and means En. Write N for the normal distribution

with mean zero and variance σ2 > 0 and suppose that Hn −N vanishes at ±∞
for each n ∈ Z≥0. Suppose there exists a sequence of positive real numbers

Tn > 0 and a constant C > 0 such that∫ Tn

−Tn
|Ĥn(t)| dt ≤ C,

for all n ∈ Z≥0. Then, there exists K ≥ 0 such that

‖Hn −N‖∞ ≤ K
(∫ Tn

−Tn

1

|t|
|Ĥn(t)− e−σ2t2/2| dt+

1

Tn
+ |En|e|EnTn|

)
, (4.3.3)

for all n ∈ Z≥0.

Proof. Consider the distributions Fn(x) := Hn(x+En). These have mean zero.

Hence, by Proposition 4.3.2

‖Fn −N‖∞ ≤
1

π

∫ Tn

−Tn

1

|t|
|e−itEnĤn(t)− e−σ2t2/2| dt+

24‖N ′‖∞
πTn

,

for all n ∈ Z≥0. We also have∫ Tn

−Tn

1

|t|
|e−itEnĤn(t)− Ĥn(t)| dt =

∫ Tn

−Tn

1

|t|
|e−itEn − 1||Ĥn(t)| dt

≤ |En|e|TnEn|
∫ Tn

−Tn
|Ĥn(t)| dt

≤ C|En|e|TnEn|,

for all n ∈ Z≥0. Now, define

Mn :=

∫ Tn

−Tn

1

|t|
|Ĥn(t)− e−σ2t2/2| dt+ |En|e|TnEn| +

1

Tn
.

From the above,

‖Fn −N‖∞ = O(Mn).

We then observe that

‖Hn − Fn‖∞ ≤ ‖N ′‖∞|En|+ 2Mn.

Lastly,

‖Hn −N‖∞ ≤ ‖Fn −N‖∞ + ‖Hn − Fn‖∞ = O(Mn + |En|),
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where the implied error term does not depend on n ∈ Z≥0. This is precisely

the required statement.

We could apply this result directly to our distributions Fn, however, the

error term in expression (4.3.2) would lead to complications when comparing

F̂n to e−σ
2t2/2 in the right hand side of (4.3.3). Ideally, if we are to apply

Proposition 4.3.3 to a sequence of distributions Hn, we would like an exact

expression for each Ĥn in terms of transfer operators. To achieve this, we

consider, instead of Fn, the following sequence of distributions,

Hn(x) =
1

#Wn + (m− 1)#Nn

(
#

{
g ∈Wn :

ϕ(g)√
n
≤ x

}
+ (m− 1)#

{
g ∈ Nn :

ϕ(g)√
n
≤ x

})
,

where

Nn = {g ∈Wn : the path in G corresponding

to g does not enter a maximal component}

and G has m maximal components.

Since #Nn = O
(
en(h−δ)) for some δ > 0, ‖Fn−Hn‖∞ converges to zero

exponentially quickly. Hence, to prove Theorem 4.1.2, it suffices to show the

following.

Proposition 4.3.4. We have that

Hn(x) =
1√

2πσϕ

∫ x

−∞
e−t

2/2σ2
ϕ dt+O

(
1√
n

)
,

where the implied constant is independent of x ∈ R and n ∈ Z≥0.

We consider the distributions Hn, because each Ĥn has an exact expres-

sion in terms of transfer operators.

Lemma 4.3.5. For all t ∈ R and n ∈ Z≥0,

Ĥn(t) =

∑m
i=1 L

n
Ci,itfn−1/2χ(0̇)∑m

i=1 L
n
Ci,0

χ(0̇)
.

Proof. We note that, for all t ∈ R and n ∈ Z≥0,

∑
g∈Wn

eitϕ(g)n−1/2
+ (m− 1)

∑
g∈Nn

eitϕ(g)n−1/2
=

m∑
i=1

Ln
Ci,itfn−1/2χ(0̇).
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Using this expression and the same proof as Lemma 4.3.1 gives the required

result.

We want to apply Proposition 4.3.3 to the sequence Hn and a suitable se-

quence Tn. Our aim is to show that for any sufficiently small ε > 0, Proposition

4.3.3 holds for the pair Hn and Tn = ε
√
n.

Lemma 4.3.6. For any fixed sufficiently small ε > 0, there exists a constant

C > 0 depending only on ε such that∫ ε
√
n

−ε
√
n
|Ĥn(t)| dt ≤ C,

for all n ∈ Z≥0.

Proof. Since
∑m

i=1 L
n
Ci,0

χ(0̇) = Θ(enh),

∫ ε
√
n

−ε
√
n
|Ĥn(t)| dt = O

(
e−nh

∫ ε
√
n

−ε
√
n

m∑
i=1

|Ln
Ci,itfn−1/2χ(0̇)| dt

)
.

Hence it suffices to show that for each i = 1, . . . ,m, if ε > 0 is sufficiently small,

then

e−nh
∫ ε
√
n

−ε
√
n
|Ln
Ci,itfn−1/2χ(0̇)| dt = O(1), (4.3.4)

where the implied constant is independent of n ∈ Z≥0.

Using the projections Qi,k and Qi we can write for sufficiently small ε,

Ln
Ci,itfn−1/2χ(0̇) =

pi−1∑
k=0

enPi(itfn
−1/2)e2πikn/piQi,k(itn

−1/2)χ(0̇)

+ Ln
Ci,itfn−1/2(I −Qi(itn−1/2))χ(0̇). (4.3.5)

Substituting this expression into the left hand side of (4.3.4) implies that to

prove (4.3.4) it suffices to show that

e−nh
∫ ε
√
n

−ε
√
n

∣∣∣enPi(itfn−1/2)Qi,k(itn
−1/2)χ(0̇)

∣∣∣ dt = O(1) (4.3.6)

and

e−nh
∫ ε
√
n

−ε
√
n

∣∣∣LnCi,itfn−1/2(I −Qi(itn−1/2))χ(0̇)
∣∣∣ dt = O(1) (4.3.7)

for each i = 1, . . . ,m, k = 0, . . . , pi − 1 and that these error terms are indepen-

dent of n.
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To prove (4.3.6), note that the Taylor expansion for the pressure (3.5.8)

implies that if ε is sufficiently small, then for all |t| < ε
√
n,

|enPi(itfn−1/2)−nh| ≤ e−σ2
ϕt

2/4.

Hence for fixed, sufficiently small ε,

e−nh
∫ ε
√
n

−ε
√
n

∣∣∣enPi(itfn−1/2)Q(itn−1/2)χ(0̇)
∣∣∣ dt = O

(∫ ε
√
n

−ε
√
n
e−σ

2t2/4dt

)
= O(1).

To prove (4.3.7), recall that, by Proposition 3.5.5, if ε is sufficiently

small, then for fixed s with |s| < ε, there exists δ′ > 0 such that

LnCi,sf (I −Qi(s))χ(0̇) = O
(
en(h−δ′)

)
,

where the implied constant is independent of n ∈ Z≥0. Since the maps s 7→ Ls

and s 7→ Qi(s) for i = 1, . . . ,m are continuous (in fact analytic), at the cost of

reducing ε, we can find δ > 0 and K > 0 such that

LnCi,sf (I −Qi(s))χ(0̇) ≤ Ken(h−δ),

for all |s| < ε and n ∈ Z≥0. Hence

Ln
Ci,itfn−1/2(I −Qi(itfn−1/2))χ(0̇) = O

(
en(h−δ)

)
,

where the implied constant is independent of t and n with |t| < ε
√
n. Substi-

tuting this expression into the left hand side of (4.3.6) gives the required decay

rate. This concludes the proof.

We have shown that Proposition 4.3.3 applies to the pair Hn and Tn =

ε
√
n as long as ε > 0 is sufficiently small. The bound (4.3.3) then provides us

with a way of computing the decay rate of ‖Hn−N‖∞, where N is the normal

distribution with mean 0 and variance σ2
ϕ > 0. We now turn our attention to

the terms in (4.3.3). We begin by studying the means En of the distributions

Hn. These means are given by

√
nEn =

∫
ϕ(g) dµ̃n

where

µ̃n =
1

#Wn + (m− 1)#Nn

∑
g∈Wn

δg + (m− 1)
∑
g∈Nn

δg

 .
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It follows easily from Theorem 4.1.1 that En → 0 as n → ∞. Further, we can

quantify the rate of this convergence.

Proposition 4.3.7. We have that

En = O

(
1√
n

)
.

Proof. This is a simple application of Theorem 4.1.1.

We now study the decay rate of the first term in the right hand side of

(4.3.3). Our aim is to prove the following.

Proposition 4.3.8. For any fixed ε > 0 sufficiently small,∫ ε
√
n

−ε
√
n

1

|t|
|Ĥn(t)− e−σ2

ϕt
2/2| dt = O

(
1√
n

)
,

where the implied constant is independent of n ∈ Z≥0.

We will break the proof of this proposition into two lemmas. We begin

by studying the following difference

Ĥn(t)− e−σ2
ϕt

2/2 =

∑m
i=1

(
Ln
Ci,itn−1/2f

χ(0̇)− e−σ2
ϕt

2/2LnCi,0χ(0̇)
)

∑m
i=1 L

n
Ci,0

χ(0̇)
.

By Proposition 3.1.5 we can write

∣∣∣Ĥn(t)− e−σ2
ϕt

2/2
∣∣∣ ≤ Ce−nh m∑

i=1

∣∣∣LnCi,itn−1/2f
χ(0̇)− e−σ2

ϕt
2/2LnCi,0χ(0̇)

∣∣∣ ,
where C > 0 is a constant independent of n ∈ Z≥0. Hence to prove Proposition

4.3.8 it suffices to show that for each i = 1, . . . ,m, if ε > 0 is sufficiently small,∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣LnCi,itn−1/2f
χ(0̇)− e−σ2

ϕt
2/2LnCi,0χ(0̇)

∣∣∣ dt = O

(
1√
n

)
. (4.3.8)

Substituting (4.3.5) into (4.3.8) we obtain (assuming that ε is sufficiently small),

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣LCi,itn−1/2fχ(0̇)− e−σ2
ϕt

2/2LnCi,0χ(0̇)
∣∣∣ dt ≤ I(ε)in + II(ε)in,

where I(ε)in, II(ε)in are given by
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pi−1∑
k=0

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣enPi(itfn−1/2)Qi,k(itn
−1/2)χ(0̇)− e−σ2

ϕt
2/2+nhQi,k(0)χ(0̇)

∣∣∣ dt,
e−nh

∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣LnCi,itn−1/2f
(I−Qi(itn−1/2))χ(0̇)− e−σ2

ϕt
2/2LnCi,0(I−Qi(0))χ(0̇)

∣∣∣ dt
respectively. We have therefore shown that to prove Proposition 4.3.8, it suffices

to show that I(ε)in and II(ε)in decay at a n−1/2 rate. The next two lemmas prove

this.

Lemma 4.3.9. For any fixed sufficiently small ε > 0,

I(ε)in = O

(
1√
n

)
.

Proof. It suffices to show that for any fixed sufficiently small ε > 0 and for all

i, k, the quantity

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣enPi(itfn−1/2)Qi,k(itn
−1/2)χ(0̇)− e−σ2

ϕt
2/2+nhQi,k(0)χ(0̇)

∣∣∣ dt
is O

(
n−1/2

)
. By the triangle inequality, this is a simple consequence of the

following two estimates.

For any fixed sufficiently small ε > 0,

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣enPi(itfn−1/2)Qi,k(itn
−1/2)χ(0̇)− enPi(itfn−1/2)Qi,k(0)χ(0̇)

∣∣∣ dt
(4.3.9)

and

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣enPi(itfn−1/2)Qi,k(0)χ(0̇)− e−σ2
ϕt

2/2+nhQi,k(0)χ(0̇)
∣∣∣ dt (4.3.10)

are both O
(
n−1/2

)
. To prove that (4.3.9) decays at an O(n−1/2) rate, recall

that for each i, k there exists bounded linear operators Q̃i,k such that

Qi,k(t) = Qi,k(0) + tQ̃i,k(t)

for all t sufficiently small. Also, from the Taylor expansion for the pressure

(3.5.8) (recall that we are assuming Λϕ = 0), we can assume that ε is sufficiently
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small so that for |t| < ε
√
n,

|enPi(itfn−1/2)−nh| ≤ e−σ2
ϕt

2/4.

Hence for fixed sufficiently small ε > 0, there exists C > 0 such that

e−nh
∣∣∣enPi(itfn−1/2)Qi,k(itn

−1/2)χ(0̇)− enPi(itfn−1/2)Qi,k(0)χ(0̇)
∣∣∣

=
|t|√
n

∣∣∣∣Q̃i,k ( |t|√n
)∣∣∣∣ ∣∣∣enPi(tfn−1/2)−nh

∣∣∣
≤ C|t|√

n
e−σ

2
ϕt

2/4,

for all |t| < ε
√
n. Substituting this inequality into (4.3.9) gives the result.

The required decay rate for (4.3.10) can be proved analogously to The-

orem 1 in [14]. The proof is almost identical and hence we refer the reader to

[14] for the proof.

Combining (4.3.9) and (4.3.10) concludes the proof of the lemma.

Lemma 4.3.10. For fixed small ε > 0,

II(ε)in = O

(
1√
n

)
.

Proof. Recall that by Lemma 2.2.5, LnCi,0(I−Qi(0))χ(0̇) = O
(
en(h−δ)) for some

δ > 0. Using this fact and the inequality |ez − 1| ≤ |z|e|z| it is easy to see that

for any fixed sufficiently small ε,

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣LnCi,0(I −Qi(0))χ(0̇)− e−σ2
ϕt

2/2LnCi,0(I −Qi(0))χ(0̇)
∣∣∣ dt

is O
(
n−1/2

)
.

Hence to conclude the proof of this lemma it suffices to show that for

fixed small ε > 0 and for all i,

e−nh
∫ ε
√
n

−ε
√
n

1

|t|

∣∣∣LnCi,itn−1/2f
(I −Q(itn−1/2))χ(0̇)− LnCi,0(I −Qi,k(0))χ(0̇)

∣∣∣ dt
(4.3.11)

is O
(
n−1/2

)
.

To obtain the required decay rate for (4.3.11), we begin by defining

operators Ti,n(t) by

MnLnCi,tf (I −Qi(t)) = MnLnCi,0(I −Qi(0)) + Ti,n(t), (4.3.12)
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where M is the multiplication operator Mg = e−hg. To simplify notation in the

following, let Lt denote the operator MLCi,t(I −Qi(t)). Note that the spectral

radius of L0 is strictly less than 1. As discussed earlier, we can find (at the cost

of reducing ε), 0 < ρ < 1 and K > 0 such that

‖Lns ‖ ≤ Kρn

for all |s| < ε and n ∈ Z≥0.

An operator version of the Mean Value Theorem (see Theorem 3.2 of

[3]) states that,

‖Lnt − Ln0‖ ≤ |t| sup
0<l<1

‖D(Lntl)‖,

where D(Lt) denotes the derivative of an operator s 7→ Ls at t. Furthermore,

applying the Leibniz rule yields

D(Lnt ) =
n∑
k=1

Ln−kt DLt L
k−1
t .

Hence, for fixed, small ε,

‖Ti,n(itn−1/2)‖ = ‖Ln
itn−1/2 − Ln0‖ ≤ |t|n−1/2 sup

0<l<1
‖D(Ln

itn−1/2l
)‖

≤ |t|n−1/2Cnρn

= C|t|
√
nρn,

for some constant C > 0 independent of |t| < ε
√
n.

Now note that

e−nh
∣∣∣LnCi,itn−1/2f

(I −Q(itn−1/2))χ(0̇)− LnCi,0(I −Qi,k(0))χ(0̇)
∣∣∣

can be rewritten as ∣∣∣Ti,n(itn−1/2)χ(0̇)
∣∣∣ .

We see that for fixed, sufficiently small ε > 0, there exists a constant C > 0

(independent of i, n and t) such that (4.3.11) is bounded above by

C

∫ ε
√
n

−ε
√
n

1

|t|
√
n|t|ρndt = 2Cεnρn.

This clearly satisfies the required decay rate for (4.3.11) and thus concludes the

proof of the lemma.

From these two lemmas, we deduce Proposition 4.3.8. We are now ready
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to prove our central limit theorem.

Proof of Theorem 4.1.2. By Lemma 4.3.6, Proposition 4.3.7 and Proposition

4.3.8, there exists ε > 0 such that for Tn = ε
√
n, the following hold.

1. The pair Hn, Tn satisfy the conditions required to apply Proposition 10.2,

with N as the normal distribution with mean 0 and variance σ2
ϕ > 0.

2. ∫ Tn

−Tn

1

|t|
|Ĥn(t)− e−σ2

ϕt
2/2| dt = O

(
1√
n

)
.

3.

|En|e|TnEn| = O

(
1√
n

)
.

Furthermore, the above implied error term constants are independent of n ∈
Z≥0. Proposition 4.3.3 then implies that

‖Hn −N‖∞ = O

(
1√
n

)
,

proving Proposition 4.3.4. As discussed in the paragraph preceding Proposition

10.3, this convergence implies that

‖Fn −N‖∞ = O

(
1√
n

)
as required.

4.4 Large deviation theorem

In this section we prove our large deviation theorem for ϕ : G→ R. As before,

let f be the function associated to ϕ via Condition (1). We begin by defining

the following sequence of measures on ΣA,

µn =
1

#Mn

∑
z∈Mn

δz,

where δx denotes the Dirac measure based at x and

Mn = {z ∈ ΣA : σn(z) = 0̇, z0 = ∗ and zn−1 6= 0}.

We want to rephrase our large deviation result in terms of f and µn on ΣA. A
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simple calculation gives that

1

#Wn
#

{
g ∈Wn :

∣∣∣∣ϕ(g)

n

∣∣∣∣ > ε

}
= µn

{
z ∈ ΣA :

∣∣∣∣fn(z)

n

∣∣∣∣ > ε

}
.

Hence to prove Theorem 4.1.3, it suffices to show that for each ε > 0,

lim sup
n→∞

1

n
logµn

{
z ∈ ΣA :

∣∣∣∣fn(z)

n

∣∣∣∣ > ε

}
< 0.

We need the following lemma.

Lemma 4.4.1. Fix ε > 0. Then, there exists ρ > 0 and k ∈ {1, . . . ,m} such

that for fixed t ∈ R satisfying 0 < t < ρ,∫
etf

n(z)dµn = O
(
e−nh+ntε/2+nPk(tf)

)
.

The implied constant depends on t and ε but not on n.

Proof. Let δ, ε be as in Lemma 4.1.8. Take 0 < ρ < ε. For 0 < t < ρ and for all

i, |Pi(tf)− h| < δ. By Lemma 4.1.8 we can write

#Wn

∫
etf

n(z)dµn =
m∑
i=1

LnCi,tfχ(0̇) +O(en(h−δ)).

By the Spectral Radius Theorem we can take Ct > 0, depending on t but not

i, such that

‖LnCi,tf‖ ≤ Cte
n(Pi(tf)+εt/2)

for all n ∈ Z≥0 and i = 1, . . . ,m. Combining these observations gives that

∫
etf

n(z)dµn =

∑m
i=1 L

n
Ci,tf

χ(0̇)

#Wn
+O(e−nδ)

= O

(
e−nh+ntε/2

m∑
i=1

enPi(tf), e−nδ

)

= O

(
e−nh+ntε/2

m∑
i=1

enPi(tf)

)
.

We now recall that, by Proposition 2.2.5, the maps t 7→ ePi(tf) for i = 1, . . . ,m,

are real analytic. Hence there exists ξ > 0 and k ∈ {1, . . . ,m} such that for all

0 < t < ξ,

max
i=1,...,m

{
ePi(tf)

}
= ePk(tf).

By reducing ρ, if necessary, so that it is less that ξ, we see that for fixed
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0 < t < ρ,

∫
etf

n(z)dµn = O

(
e−nh+ntε/2

m∑
i=1

enPi(tf)

)
= O

(
e−nh+ntε/2+nPk(tf)

)
,

as required.

The same proof as the previous lemma gives the following.

Lemma 4.4.2. Fix ε > 0. Then, there exists ρ′ < 0 and k′ ∈ {1, . . . ,m} such

that for fixed t ∈ R satisfying ρ′ < t < 0,∫
etf

n(z)dµn = O
(
e−nh−ntε/2+nPk′ (tf)

)
.

The implied constant depends on t and ε but not on n.

We are now ready to prove our large deviation theorem.

Proof of Theorem 4.1.3. Fix ε > 0. Let ρ and k be those chosen in Lemma

4.4.1. Define b(s) = −sε/2− h+ Pk(sf). Note that b(0) = 0 and

b′(0) = −ε/2 +
d

ds
Pk(sf)

∣∣
s=0

= −ε/2 + Λϕ = −ε/2 < 0.

Hence we can choose 0 < t < ρ such that b(t) < 0. Fix t at this value, then,

µn

{
z ∈ ΣA :

fn(z)

n
> ε

}
≤
∫
et(f

n(z)−nε)dµn

= e−tnε
∫
etf

n(z)dµn

≤ C̃te−tnε−nh+tnε/2+nPk(tf)

= C̃te
nb(t),

where the second inequality in the above follows from Lemma 4.4.1 and C̃t is

the constant associated to the error term from this lemma.

Hence,

lim sup
n→∞

1

n
logµn

{
z ∈ ΣA :

fn(z)

n
> ε

}
≤ b(t) < 0.

The inequality

lim sup
n→∞

1

n
logµn

{
z ∈ ΣA :

fn(z)

n
< −ε

}
< 0
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can be proven in a similar way, this time using Lemma 4.4.2 instead of Lemma

4.4.1. By our earlier discussion, this concludes the proof.

4.5 Multidimensional central limit theorem

In this section we prove Theorem 4.1.6. To do so, we generalise our current

methods to the multidimensional setting. That is, we show that our methods

apply to functions ϕ : G → Rk that satisfy Condition (1) and Condition (2)

componentwise. We begin by recalling the multidimensional central limit the-

orem for subshifts of finite type. Let 〈·, ·〉 denote the Euclidean inner product.

Suppose ΣM is an irreducible subshift of finite type and f : ΣM → Rk

a function with components that belong to Fθ(ΣM ) for some 0 < θ < 1. Then,

there exists a covariance matrix Σ ∈ Mk(R) and Λ ∈ Rk such that for any

A ⊂ Rk,

µ

{
x ∈ ΣM :

fn(x)− nΛ√
n

∈ A
}
→ 1

(2π det(Σ))k/2

∫
A
e−〈x,Σx〉/2 dx

where µ is the measure of maximal entropy for (ΣM , σ). Furthermore, the

following are equivalent,

1. the above central limit theorem is non-degenerate,

2. Σ is positive definite,

3. 〈t, f〉 is not cohomologous to a constant for any t ∈ Rk\{0},

4. for or each t ∈ Rk\{0} the set {〈t, (fn(x)− nΛ)〉 : x ∈ ΣM , n ∈ Z≥0} is

unbounded.

Let L〈s,f〉 denote the transfer operator acting on Fθ(ΣM ) defined in Definition

2.2. Proposition 2.2.5 implies that for all sufficiently small s ∈ Ck, the transfer

operator L〈s,f〉 has p simple maximal eigenvalues of the form e2πij/peP (〈s,f〉) for

j = 1, . . . , p where p is the period of M and s 7→ P (〈s, f〉) is analytic in a

neighbourhood of the origin. The constant Λ and covariance matrix Σ have

entries

Λi =
∂

∂si

∣∣∣∣
s=0

P (〈s, f〉) and Σi,j =
∂2

∂si∂sj

∣∣∣∣
s=0

P (〈s, f〉)

for i, j ∈ {1, . . . , k} and where s = (s1, . . . , sk).

Using the same arguments as in Sections 5, we can deduce similar state-

ments concerning the spectra of the operators LCi,〈s,f〉.
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Proposition 4.5.1. There exists ε > 0 such that for all ‖s‖ < ε the op-

erators LCi,〈s,f〉 for i = 1, . . . ,m each have pi simple maximal eigenvalues

e2πij/piePi(〈s,f〉) for j = 0, . . . , pi − 1, where each s 7→ ePi(〈s,f〉) is analytic in

‖s‖ < ε.

Futhermore, the argument of Calegari and Fujiwara presented in Propo-

sition 3.6.2 can be applied to compare the pressure functions Pi(〈s, f〉) for

i = 1, . . . ,m. The following result can be obtained using the same argument

used to prove Proposition 3.6.2. The required modification to the proof is sim-

ple, we need only replace the use of the central limit theorem for subshifts of

finite type with the multidimensional version stated above.

Proposition 4.5.2. Given α, β ∈ {1, . . . , k} the quantities

(Λϕ)α :=
∂

∂sα

∣∣∣∣
s=0

Pi(〈s, f〉) and (Σϕ)α,β :=
∂2

∂sα∂sβ

∣∣∣∣
s=0

Pi(〈s, f〉)

do not depend on the maximal component Bi. Furthermore, for each i =

1, . . . ,m and ‖s‖ < ε,

Pi(〈s, f〉) = h+ Λϕs+ 〈s,Σϕs〉+O(‖s‖3)

as s→ 0.

We now turn our attention to the non-degeneracy criteria in the mul-

tidimensional setting. Lemma 3.6.2 can be easily generalised using the mul-

tidimensional criteria for degeneracy stated above. We obtain the following

result.

Proposition 4.5.3. Let Σϕ be the covariance matrix defined above. Then Σϕ

is positive definite if and only if for each non-zero t ∈ R, the function 〈t, ϕ(·)−
Λϕ| · |〉 : G→ R is unbounded.

We are now ready to prove a multidimensional central limit theorem.

Theorem 4.5.4. Suppose ϕ : G → Rk satisfies Condition (1) and Condition

(2) componentwise. Then there exists Λϕ ∈ Rk and a symmetric matrix Σϕ ∈
Mk(R) such that

1

#Wn
#

{
g ∈Wn :

ϕ(g)− Λϕn√
n

∈ A
}
→ 1

(2π det(Σϕ))k/2

∫
A
e−〈x,Σϕx〉/2 dx

as n→∞. Furthermore, Σϕ is positive definite if and only if for each non-zero

t ∈ Rk the function 〈t, ϕ(·)− Λϕ| · |〉 : G→ R is unbounded.
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Proof. We have already discussed the non-degeneracy criteria. We therefore

just need to prove the central limit theorem. As in the previous sections, we

may assume that Λϕ = 0. It then suffices, by Lévy’s Continuity Theorem, to

show that we have the following pointwise convergence of the Fourier transform:

for each t ∈ Rk,
F̂n(t)→ e−〈t,Σϕt〉/2

as n→∞, where

F̂n(t) =
1

#Wn

∑
g∈Wn

ei〈t,ϕ〉n
−1/2

.

Using a multidimensional analogue of Lemma 4.1.8 (which can be proved in

the same way as the one-dimensional version), we can write, for all ‖t‖n−1/2

sufficiently small,

∑
g∈Wn

ei〈t,ϕ〉n
−1/2

=

m∑
i=1

Ln
Ci,i〈t,f〉n−1/2χ(0̇) + o(enh)

as n→∞. Hence,

F̂n(t) =

∑m
i=1 L

n
Ci,i〈t,f〉n−1/2χ(0̇) + o(enh)∑m
i=1 L

n
Ci,0

χ(0̇) + o(enh)

as n→∞. Using the projections Qi,k and Qi for i = 1, . . . ,m, k = 0, . . . , pi−1,

we can write

F̂n(t) = e−〈t,Σϕt〉/2 Gn(t)

where

Gn(t) =

∑m
i=1

∑pi−1
k=0 e

nP (〈itn−1/2,f〉)+〈t,Σϕt〉/2e2πikn/piQi,k(itn
−1/2)χ(0̇) + o(1)∑m

i=1

∑pi−1
k=0 e

2πikn/piQi,k(χ)(0̇) + o(1)
.

By the analyticity of the Qi,k, for each i = 1, . . . ,m and k = 0, . . . , pi − 1,

Qi,k(t) = Qi,k(0) +O(‖t‖). Also, using the Taylor expansions for the pressures

from Proposition 4.5.2, for each i = 1, . . . ,m, nP (〈itn−1/2, f〉) + 〈t,Σϕt〉/2 =

O(n−1/2). Combining these facts gives that

Gn(t) =

∑m
i=1

∑pi−1
k=0 e

nP (〈itn−1/2,f〉)+〈t,Σϕt〉/2e2πikn/piQi,k(0)χ(0̇) + o(1)∑m
i=1

∑pi−1
k=0 e

2πikn/piQi,k(0)χ(0̇) + o(1)

and so for each t ∈ R, Gn(t)→ 1 as→∞. Hence F̂n(t)→ e−〈t,Σϕt〉/2 as n→∞
as required.

We can now deduce Theorem 4.1.6 as a corollary of the above result.
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Suppose that the abelianisation of G is isomorphic to Zk ⊕ Torsion for some

k ≥ 1. Fix an isomorphism taking the non-torsion part of G/[G,G] to Zk and

let ϕ : G→ Zk be the induced homomorphism.

Proof of Theorem 4.1.6. To conclude the proof of Theorem 4.1.6 we need to

show that Λϕ = 0 and Σϕ is positive definite. To see that Λϕ = 0 note that for

each j = 1, . . . , k the jth coordinate of Λϕ is the mean Λϕj of the homomorphism

ϕj obtained by projecting ϕ to its jth coordinate. By Theorem 4.1.1 and

a simple symmetry argument Λϕj = 0 for all j = 1, . . . , k (see the proof of

Lemma ??). This concludes the first part of the proof. For the second part

we need to show that 〈t, ϕ〉 is unbounded for any t ∈ Rk\{0}. Since ϕ is

surjective onto Zk, the function ψt : G → R defined by ψt = 〈t, ϕ〉 is a non-

trivial group homomorphism for any t ∈ Rk\{0}. Hence by Lemma 7.11 the

result follows.

Remark 4.5.5. The above proof applies to any surjective group homomor-

phism ϕ : G→ Zk.

4.6 Local limit theorem

In this section we prove our local limit theorem, Theorem 4.1.7. Suppose

ϕ : G → R is a group homomorphism satisfying the hypothesis of Theorem

4.1.7. As in the other sections, we want to study the function f : ΣA → R
corresponding to ϕ. We begin by recalling the following definition.

Definition 4.6.1. We say that f ∈ Fθ is lattice if there exists a, b ∈ R such

that

{fn(x)− an : x ∈ ΣA, n ∈ Z≥0 with σn(x) = x} ⊆ bZ.

We want to prove that if f is related to ϕ via Condition (1), then the

restriction of f to each maximal component is non-lattice. This will allow us to

deduce important spectral properties for the transfer operators LCj ,itf where t

is real. The aim of the next couple of lemmas is to prove this.

Lemma 4.6.2. Suppose that there exists g1, g2, g3 in G such that ϕ(g1), ϕ(g2), ϕ(g3)

form a rationally independent triple. Then, for any a, b ∈ R, Ha,b = ϕ−1(aZ⊕
bZ) is an infinite index subgroup of G, i.e. |Ha,b : G| =∞.

Proof. For each a, b ∈ R there is g ∈ G with ϕ(g) /∈ aQ⊕ bQ. Indeed, if no such

g exists then we can find xi, yi ∈ Q for i = 1, 2, 3 such that

ϕ(gi) = axi + byi for i = 1, 2, 3.
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Eliminating a and b would imply that the ϕ(gi) are rationally dependent con-

trary to our assumption.

Now consider for k, l ∈ Z the cosets gkHa,b, g
lHa,b for g /∈ aQ ⊕ bQ.

If these cosets coincide then gk−l ∈ Ha,b, (k − l)ϕ(g) ∈ aZ ⊕ bZ and so

ϕ(g) ∈ aQ ⊕ bQ. This contradiction implies that gkHa,b and glHa,b are dis-

tinct for k 6= l. Hence |Ha,b : G| =∞ as required.

We now require the following result of Gouëzel, Mathèus and Mau-

courant.

Proposition 4.6.3 (Theorem 4.3 [26]). Suppose G is a non-elementary hyper-

bolic group equipped with a finite generating set and H < G is an infinite index

subgroup of G. Then the density of H with respect to Wn is zero, i.e.

lim
n→∞

#(Wn ∩H)

#Wn
= 0.

Using this and the previous lemma we deduce the following.

Lemma 4.6.4. For each a, b ∈ R there exist D ∈ Z≥0 such that

lim
n→∞

1

#WDn
#{g ∈WDn : ϕ(g)− aDn ∈ bZ} = 0.

Proof. Notice that

{g ∈ G : ϕ(g)− a|g| ∈ bZ} ⊆ Ha,b.

Hence,

#{g ∈Wn : ϕ(g)− an ∈ bZ} ≤ #(Wn ∩Ha,b).

If ϕ satisfies the hypotheses of Lemma 4.6.2, then we may then apply Proposi-

tion 4.6.3 to conclude that

#(Wn ∩Ha,b) = o(#Wn)

and the result follows.

Otherwise, the image of ϕ is cZ ⊕ dZ for some rationally independent

c, d ∈ R. We can assume that aZ∩ (cZ⊕ dZ) is non-empty, since if it is empty,

Ha,b has infinite index and we can apply the same argument used above. Fix

D ∈ Z≥0 such that aD ∈ aZ ∩ (cZ⊕ dZ). Then note that

{g ∈WDn : ϕ(g)− aDn ∈ bZ} ⊂ {g ∈WDn : ϕ̃ ◦ ϕ(g) = ϕ̃(aDn)}
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where ϕ̃ : cZ ⊕ dZ → cZ ⊕ dZ/(bZ ∩ (cZ ⊕ dZ)) = Kb is the quotient homo-

morphism. We have that Kb is necessarily isomorphic to Z ⊕ Torsion or Z2

depending on whether bZ ∩ (cZ⊕ dZ) is trivial. Let ϕ′ : G→ Z be the compo-

sition ψ ◦ ϕ̃ ◦ ϕ where ψ : Kb → Z is a homomorphism that projects Kb to a Z
factor. We then have that

#{g ∈WDn : ϕ(g)− aDn ∈ bZ} ≤ #{g ∈WDn : ϕ′(g)− n(ψ ◦ ϕ̃(aD)) = 0}.

and so we need to show that

#{g ∈WDn : ϕ′(g)− n(ψ ◦ ϕ̃(aD)) = 0} = o(#WDn).

This follows from Corollary 3.6.12 if ψ ◦ ϕ̃(aD) = 0 and Theorem 4.1.3 if

ψ ◦ ϕ̃(aD) 6= 0. This concludes the proof.

We can now deduce the required properties of f .

Lemma 4.6.5. For each maximal component Bj the restriction of f to ΣBj ,

fj , is non-lattice.

Proof. Suppose fj is lattice. We can then find a, b ∈ R such that

{fnj (x)− na : σn(x) = x, x ∈ ΣBj} ⊆ bZ.

Since #{x ∈ ΣBj : σnpj (x) = x} grows like λnpj , the correspondence between

G and ΣA implies (as in the proof of Proposition 3.6.11) that #{g ∈ Wnpj :

ϕ(g)−npja ∈ bZ} ≥ Cλnpj for some C > 0. We then have that, for any integer

D,

lim sup
n→∞

1

#WDn
#{g ∈WDn : ϕ(g)− aDn ∈ bZ} > 0.

This contradicts Lemma 4.6.4. The result follows.

Using this lemma, we deduce the following.

Proposition 4.6.6. Suppose ϕ : G → R is a group homomorphism satisfying

the hypothesis of Theorem 4.1.7. Then for all t ∈ R\{0} and each j = 1, . . . ,m,

the spectral radius of LCj ,itf is strictly less than eh.

Proof. When Cj consists of a single connected component, it is well known that

the spectral radius of LCj ,itf is less than or equal to eh for all t ∈ R. The non-

lattice condition guarantees that for all t ∈ R\{0} this inequality is strict [42].

When Cj is not a single component, Cj contains a component with spectral

radius eh and all other components have spectral radius strictly less than eh.
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We can then, by Lemma 2 from [47], apply the above result component-wise to

deduce our result.

We are now ready to prove Theorem 4.1.7. Since our method follows

that of [52], we will sketch the proof. We will highlight where our work is

needed.

Proof of Theorem 4.1.7. We sketch a proof. Note that, by Corollary 3.6.11,

σ2
ϕ > 0. Theorem 4.1.7 is concerned with the asymptotics of

1

#Wn

∑
g∈Wn

χ[a,b](ϕ(g)),

where χ[a,b] is the indicator function on [a, b] for a, b ∈ R. We first consider

this expression when χ[a,b] is replaced by a function φ[a,b] : R → C which is

integrable and has Fourier transform φ̂[a,b] that is compactly supported and

satisfies φ̂[a,b](t) = φ̂[a,b](0) +O(|t|). Using Fourier inversion we can write

∑
g∈Wn

φ[a,b](ϕ(g)) =
1

2π

∫
R

∑
g∈Wn

eitϕ(g)φ̂[a,b](t) dt.

Then, using Lemma 4.1.8 and the same over-counting argument used to prove

Theorem 4.1.2 (see Lemma 4.3.5), we can assume∑
g∈Wn

eitϕ(g)

has an exact expression in terms of the transfer operators. We can then write,

∑
g∈Wn

φ[a,b](ϕ(g)) =
1

2π

∫
R
φ̂[a,b](t)

m∑
j=1

LnCj ,itfχ(0̇) dt.

Then, using Proposition 4.6.6 and Lemma 4.1.8, we show that there exists ε > 0

such that the lead terms describing the growth of this quantity are

1

2π

∫
[−ε,ε]

φ̂[a,b](t)e
2πikn/pjenPj(itf)Qj,k(it)χ(0̇) dt

for all pairs j, k. We can then apply the arguments presented in [52] to show

that, for each j, k this quantity grows asymptotically like∫
φ[a,b](t) dt e2πikn/pjQj,k(0)χ(0̇)

√
2πσϕ

√
n

enh
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where we have used that σϕ is independent of the maximal component. We

then normalise by #Wn and write #Wn in terms of transfer operators (see the

proof of Theorem 4.5.4) to see that

1

#Wn

∑
g∈Wn

φ[a,b](ϕ(g)) ∼
∫
φ[a,b](t) dt√
2πσϕ

√
n

as n → ∞. Using a standard approximation argument we can remove the

assumptions on φ[a,b] and show that the above convergence holds when φ[a,b]

is replaced by any smooth positive function of compact support. We can then

use a further standard approximation argument to deduce the same converges

holds when we replace φ[a,b] with χ[a,b]. This concludes the proof.

As mentioned previously, the hypothesis of Theorem 4.1.7 is satisfied, in

some sense, by almost every homomorphism ϕ : G → R. We will now explain

what we mean by this. Note that, since every homomorphism ϕ : G→ R factors

through the abelianisation G/[G,G] of G, any homomorphism is of the form

g 7→ 〈ϕab(g), v〉 where ϕab : G→ Zk is the abelianisation homomorphism post-

composed with the projection to the non-torsion factor of G/[G,G], and v is a

vector in Rk. We can therefore naturally identify the space of homomorphisms

Hom(G,R) with Rk where k ∈ Z is the rank of the abelianisation of G. As

long as k ≥ 2 then we can find homomorphisms in Hom(G,R) that satisfy our

theorem, as these homomorphisms correspond to vectors v ∈ Rk that have two

entries that form a rationally independent pair. Furthermore since rationally

dependent pairs lie in a countable collection of planes of codimension at least 1

in Rk for k ≥ 2, the set of vectors in Rk that correspond to homomorphisms that

satisfy our theorem have complement in Rk that has Lebesgue measure zero. In

this sense almost all homomorphisms satisfy the hypotheses of Theorem 4.1.7.

We now prove a local limit theorem for the displacement function asso-

ciated to certain ‘nice’ actions. See [17] for the definitions of the objects used

throughout the rest of this section. Our aim now is to prove the following.

Theorem 4.6.7. Suppose that a fuchsian group G (equipped with a finite sym-

metric generating set) acts convex cocompactly on a pinched Hadamard surface

X with origin o ∈ X. Then there exists σ2 > 0 such that for a, b ∈ R, a < b,

1

#Wn
# {g ∈Wn : d(o, go)− nΛ ∈ [a, b]} ∼ b− a√

2πσ
√
n

as n→∞.
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Suppose for the rest of this section that G and X are as in the above

theorem. It follows immediately that G is hyperbolic and that the displacement

function satisfies Condition (1) and (2). We restrict our study to these actions

because we have, in this setting, a good understanding of the length spectrum.

Recall that the length spectrum for the action of G on X is the set of possible

translation lengths, where, given g ∈ G, the translation length of g is

τ(g) = lim
n→∞

d(o, gno)

n
.

This limit exists by the triangle inequality and subadditivity. Let r : ΣA → R
be the function related to the displacement function via Condition (1). We

would like to use arguments involving the length spectrum to deduce non-lattice

properties for r. The following definition and lemma allow us to do this.

Definition 4.6.8. Let v be a vertex in G. The loop semi-group Lv associated to

v is the semi-group consisting of group elements g ∈ G that correspond (under

the labeling ρ from Definition 3.3) to a loop in G starting (and also ending) at

v.

This definition is taken from [23]. We then have the following.

Lemma 4.6.9. The restriction r : ΣBj → R is lattice if and only if there exists

a, b ∈ R such that for each each vertex v ∈ Bj

{τ(g)− a|g| : g ∈ Lv} ⊆ bZ.

Proof. Take g ∈ Lv. By the Hölder properties of r, we have that,

d(o, go) = r|g|(xg) +O(1)

where xg ∈ ΣBj is the periodic point obtained from repeating the loop corre-

sponding to g ∈ Lv. The implied error is uniform in g. Applying this equality

to gn, using that |gn| = n|g| and then dividing by n and letting n tend to infin-

ity shows that τ(g) = r|g|(xg). Substituting this expression into the non-lattice

condition concludes the proof.

We note that, if r : ΣBj → R is non-lattice for any maximal compo-

nent Bj , then by Lemma 3.6.2 the variance σ2 associated to the displacement

function is strictly positive. We are now ready to prove our result.

proof of Theorem 4.6.7. We can use the same method used above to prove The-

orem 4.1.7. To apply our argument we need to show that the restrictions
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r : ΣBj → R are non-lattice. Once we have shown this, our result follows as

before.

We begin by noting that, by Corollary 6.11 of [23], for a vertex v be-

longing to a maximal component, there exist independent hyperbolic elements

g, h ∈ Lv (i.e. g and h both have two fixed points in the boundary ∂X and these

four fixed points are all distinct). We now consider for n ∈ Z≥0 the elements

ghn. These elements satisfy the following properties,

1. for all n sufficiently large ghn is hyperbolic, and;

2. for all n ∈ Z≥0, |ghn| = |g|+ n|h|.

The first property is easy to verify and the second follows from the properties

of the coding from Definition 3.3 . This second identity in the above implies

that for any a ∈ R,

eτ(ghn)−τ(ghn−1) = e(τ(ghn)−a|ghn|)−(τ(ghn−1)−a|ghn−1|)+a (4.6.1)

for all n ∈ Z≥0. Furthermore, it is known (see [17]) that

lim
n→∞

eτ(ghn)−τ(ghn−1) = eτ(h). (4.6.2)

We now suppose for contradiction that

{τ(g)− a|g| : g ∈ Lv} ⊆ bZ

for some a, b ∈ R. By (4.6.1) we have that

eτ(ghn)−τ(ghn−1) ∈ ea+bZ

for all n ∈ Z≥0. The convergence in (4.6.2) then implies that for all n sufficiently

large

τ(ghn) = τ(ghn−1) + τ(h).

However, from the proof of Proposition 2.1 in [17], we can find arbitrarily large

n such that that τ(ghn) < τ(ghn−1) + τ(h). This contradiction shows that

the restrictions r : ΣBj → R are non-lattice. By our above discussion, this

concludes the proof.
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Chapter 5

Growth along geodesic rays

5.1 Discussion and statement of results

In this chapter we study the growth of functions as we travel along Patterson–

Sullivan typical geodesic rays in ∂G. Our first result is the following. Let ν

denote the Patterson-Sullivan measure defined in Section 3.3.

Theorem 5.1.1. Let G be a non-elementary hyperbolic group equipped with a

finite generating set S. Suppose that ϕ : G → R satisfies Condition (1) and

Condition (2). Then there exists Λ ∈ R such that for ν almost every [γ̃] ∈ ∂G,

ϕ(γn)

n
= Λ +O

(√
log log n√

n

)
,

for any γ belonging to [γ̃]. The implied error constant depends only on γ.

Remark 5.1.2. When ϕ is the displacement function associated to a con-

vex cocompact group action on a CAT(−1) metric space, we recover a special

case of Proposition 1.0.1 with an improved error term. We note that the non-

elementary actions to which Proposition 1.0.1 applies are more general than

convex cocompact.

This shows that, along typical elements of ∂G, a function ϕ satisfying

the hypotheses of Theorem 1.2 grows asymptotically like Λn. We can then ask

if it is possible to describe more precisely how ϕ grows along elements of ∂G.

To achieve this, we need to impose an additional assumption on ϕ to ensure

that ϕ(·) − | · |Λ grows along typical geodesic rays. Specifically, we need that

the set

{[γ] ∈ ∂G : {ϕ(γn)− nΛ : n ∈ Z≥0} is unbounded}

is non-empty. The fact that this set is well-defined will follow from Condition
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(2). Surprisingly, this is the only additional hypothesis we need in order to

obtain the following, more precise description of how ϕ grows.

Theorem 5.1.3. Let G be a non-elementary hyperbolic group equipped with a

finite generating set S. Fix a bounded subset H of the vertex set of the Cayley

graph of G. Suppose ϕ : G→ R satisfies Condition (1) and Condition (2) and

that Λ is the quantity defined in Theorem 1.2. Then, if the set

{[γ] ∈ ∂G : {ϕ(γn)− nΛ : n ∈ Z≥0} is unbounded}

is non-empty, there exists σ2 > 0 such that for x ∈ R,

ν(An(x)) =
1√
2πσ

∫ x

−∞
e−t

2/2σ2
dt+O(n−1/4),

as n→∞, where

An(x) =

{
[γ̃] ∈ ∂G : for all γ ∈ [γ̃] with γ0 ∈ H,

ϕ(γn)− nΛ√
n

≤ x
}
.

The implied constant is uniform in x ∈ R.

Remark 5.1.4. The reason that we ask for γ0 ∈ H is due to the following fact.

For ν almost every [γ̃] ∈ ∂G and every n ≥ 1, we can find γ ∈ [γ̃] for which

ϕ(γn) − nΛ is arbitrarily large. Therefore without this assumption, An would

have zero ν measure for all n ∈ Z≥0.

Corollary 3.6.11 shows that real-valued group homomorphisms satisfy

the hypotheses of Theorem 5.1.3.

5.2 Proofs of results

Suppose that ϕ : G → R satisfies Condition (1) and Condition (2) and let

f : ΣA → R be the function related to ϕ via Condition (1). Fix a bounded subset

H ⊂ C(G) of the vertex set of the Cayley graph C(G) (i.e. supg∈H{|g|} <∞).

We begin by proving that Theorem 5.1.1 holds without an error term,

i.e.we show that there exists Λ ∈ R for which the set

UΛ =

{
[γ] ∈ ∂G : lim

n→∞

ϕ(γn)

n
= Λ

}
,

is well-defined and has full ν measure.

Lemma 5.2.1. For any Λ ∈ R the set UΛ is well-defined and G-invariant.
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Proof. Since ϕ is Lipschitz in the right word metric, if [γ] ∈ ∂G and g ∈ G,

then there exists C > 0 for which

|ϕ(γn)− ϕ(gγn)| ≤ C

uniformly for n ∈ Z≥0. Hence

lim
n→∞

ϕ(γn)

n
= Λ if and only if lim

n→∞

ϕ(gγn)

n
= Λ.

This proves G-invariance. The proof that UΛ is well-defined follows the same

argument, this time using that ϕ is Lipschitz in the left word metric.

We are now ready to prove Theorem 5.1.1 without the associated error

term.

Proof of Theorem 5.1.1 without error term. Since the action of G on ∂G is er-

godic with respect to ν, it suffices, by Lemma 5.2.1, to prove that there exists

Λ for which UΛ has positive ν measure. Consider a maximal component Bi. By

the ergodic theorem, µ(EΛ) > 0, where

EΛ =

{
y ∈ ΣBi :

fn(y)

n
→ Λ as n→∞

}
and Λ =

∫
ΣBi

f dµi. Hence by Proposition 3.3.6 there exists k ∈ Z≥0 for which

σk∗ ν̂(EΛ) > 0. We now note that if y ∈ EΛ and x ∈
⋃
n≥0 σ

−n({y}) then

lim
n→∞

fn(x)

n
→ Λ

as n→∞. Hence,

ν̂

{
y ∈ Y :

fn(y)

n
→ Λ as n→∞

}
≥ σk∗ ν̂(EΛ) > 0.

By Condition (1), for y ∈ Y, fn(y) = ϕ(h(y)n) + O(1) where the implied

constant is independent of both n and y. Combining this with the fact that

h∗ν̂ = ν implies that ν (UΛ) > 0 and thus concludes the proof.

We will now improve this result by including a proof of the error term.

proof of Theorem 5.1.1. Note that if ϕ has the property that the set

{[γ] ∈ ∂G : {ϕ(γn)− nΛ : n ∈ Z≥0} is unbounded}
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is empty, then the error term associated to the convergence in Theorem 5.1.1 is

O(n−1). Hence to prove our result, we can assume that this set is non-empty.

By Proposition 3.6.2 this implies that for any fixed maximal component ΣBi

the function f restricted to ΣBi is not cohomologous to a constant. With this

knowledge, we re-run the proof of our theorem without the error term, but

replace the set UΛ with the set

ÛΛ =

{
[γ] ∈ ∂G :

ϕ(γn)

n
= Λ +O

(√
log logn√

n

)}
.

As before this set is G-invariant and well defined. We can then follow the same

proof as before but replace the use of the ergodic theorem for f on ΣBi with

an application of the law of the iterated logarithm. We can do this because

of the assumption that f is not cohomologous to a constant. We obtain that

µ(ÊΛ) > 0, where

ÊΛ =

{
y ∈ ΣBi :

fn(y)

n
= Λ +O

(√
log logn√

n

)}
.

One can then check that the same algebraic manipulations used in our previous

proof allow us to deduce that ν(ÛΛ) > 0. This concludes the proof.

We now move on to the proof of Theorem 5.1.3. By replacing ϕ(·) with

ϕ(·)−Λ| · | and f(·) with f(·)−Λ, it suffices to prove Theorem 5.1.3 under the

assumption that Λ = 0. We will assume this from now on.

The intuition behind our proof of Theorem 5.1.3 is the following. By

Proposition 3.3.6, µ is obtained from averaging the pushforwards of ν̂. If we

could therefore, in some sense, reverse this averaging and express ν̂ in terms of

µ, then we could use our knowledge of µ to learn about ν̂. The relationship

between these measures is particularly nice and allows us carry out such a pro-

cedure.

Recall that we want to study the convergence of the following distribu-

tions.

Definition 5.2.2. Define, for n ∈ Z≥0 and x ∈ R,

Rn(x) = ν

{
[γ̃] ∈ ∂G : for all γ ∈ [γ̃] with γ0 ∈ H,

ϕ(γn)√
n
≤ x

}
and

N(x, σ) =
1√
2πσ

∫ x

−∞
e−t

2/2σ dt.

80



We want to prove that there exists σ2 ≥ 0 for which

‖Rn(x)−N(x, σ)‖∞ = O(n−1/4)

as n→∞. To simplify notation we will express this as Rn = N(σ) +O(n−1/4).

We will use the following fact multiple times.

Lemma 5.2.3. Let Fn, Hn : R → R be sequences of distributions and suppose

that kn, ln are sequences of integers with kn → ∞ and ln → ∞ as n → ∞.

Suppose further that there exists a constant C > 0 independent of n and x such

that

Hn(x− Cl−1
n ) ≤ Fn(x) ≤ Hn(x+ Cl−1

n ),

for all n, x. Then, if Hn = N(σ) + O(k−1
n ), we have that Fn = N(σ) +

O(k−1
n , l−1

n ).

Proof. This is a simple consequence of the fact that the derivative of N(σ) is

uniformly bounded.

Our aim is to construct a sequence of distributions on Y with respect to ν̂

from which we can gain an understanding of the Rn. The following two lemmas

are the first step in achieving this. The first lemma is an easy consequence of

the hyperbolicity of G and so we exclude the proof.

Lemma 5.2.4. There exists C > 0 such that

sup
γ,γ′∈[γ̃]
γ0,γ′0∈H

sup
n∈Z≥0

{dL(γn, γ
′
n)} < C

uniformly for [γ̃] ∈ ∂G.

Using this lemma we obtain the following.

Lemma 5.2.5. Define, for n ∈ Z≥0 and x ∈ R,

R̃n(x) = ν

{
[γ̃] ∈ ∂G : for some γ ∈ [γ̃] with γ0 ∈ H,

ϕ(γn)√
n
≤ x

}
.

Then, if R̃n = N(σ) +O(n−1/4), we have that Rn = N(σ) +O(n−1/4).

Proof. Clearly Rn(x) ≤ R̃n(x) for all x ∈ R and n ∈ Z≥0. Also, by the previous

lemma and the fact that ϕ is Lipschitz in the dL metric, there exists C > 0

independent of x and n such that

R̃n(x− Cn−1/2) ≤ Rn(x),
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for all x, n. Combining these two bounds and applying Lemma 5.2.3 concludes

the proof.

The previous two lemmas show that, without loss of generality, we may

assume that the identity element of G belongs to H. We will assume this from

now on. We can now construct distributions on Y from which we can deduce

the convergence of Rn. Recall that given y ∈ Y , h(y)n for n ∈ Z≥0 denotes the

nth group element in the geodesic ray determined by y.

Definition 5.2.6. Define distributions

Hn(x) = ν̂

{
y ∈

⋃
i

Yi :
ϕ(h(y)n)√

n
≤ x

}

for n ∈ Z≥0 and x ∈ R.

The following lemma shows that to prove Theorem 5.1.3, it suffices to

prove the analogous statement for the distributions Hn.

Lemma 5.2.7. If Hn = N(σ) +O(n−1/4) then Rn = N(σ) +O(n−1/4).

Proof. It is proven in [8] that h is surjective, see Lemma 3.5.1. Hence there

exists K > 0 independent of n, x such that

Hn(x) ≤ ν̂
(
h−1

{
[γ̃] ∈ ∂G : for some γ ∈ [γ̃] with γ0 ∈ H,

ϕ(γn)√
n
≤ x

})
≤ Hn(x+Kn−1/2),

for all n ∈ Z≥0 and x ∈ R. Since h∗ν̂ = ν,

ν̂

(
h−1

{
[γ̃] ∈ ∂G : for some γ ∈ [γ̃] with γ0 ∈ H,

ϕ(γn)√
n
≤ x

})
= R̃n(x)

and applying Lemmas 5.2.3 and 5.2.4 completes the proof.

The next step is to study the Hn. We do this by constructing distri-

butions on ∪iΣBi with respect to µ and then, by relating µ to ν̂, use these to

understand the Hn distributions. To simplify notation, we define, for x ∈ R
and n ∈ Z≥0,

En(x) =

{
y ∈

⋃
i

Yi :
fn(y)√

n
≤ x

}
⊂ Y.

The following lemma along with Proposition 3.3.6 will allow us to compare the

ν̂ and µ measures.

82



Lemma 5.2.8. For any sequence of integers kn such that kn →∞ as n→∞,

1

kn

kn∑
j=0

ν̂j(En(x)) = ν̂(En(x)) +O(k−1
n ),

where the implied constant is independent of n, x.

Proof. By Lemma 3.3.8 there exists 0 < θ < 1 such that for each j ∈ Z≥0,

ν̂j(En(x)) = ν̂(En(x)) +O(θj),

where the implied constant is independent of j, n and x. Taking the average of

ν̂1(En(x)), . . . , ν̂kn(En(x)) and letting n→∞ gives the result.

We now describe how f distributes over ΣA with respect to the measure

µ. Along with the previous lemma, this will allow us to deduce the convergence

of the Hn distributions.

Proposition 5.2.9. There exists σ2 ≥ 0 such that for each x ∈ R,

µ

{
y ∈

⋃
i

ΣBi :
fn(y)√

n
≤ x

}
= N(x, σ) +O(n−1/2)

as n→∞ and the above error term is uniform in x ∈ R. Furthermore, σ2 > 0

if and only if

{[γ] ∈ ∂G : {ϕ(γn) : n ∈ Z≥0} is unbounded}

is non-empty.

Proof. By Proposition 3.3.2, the measure µ is a weighted sum of the measures of

maximal entropy µi on each maximal component Bi. We obtain a central limit

theorem, with mean Λi and variance σi, for µi and f on each ΣBi . Proposition

3.5.7 shows that Λi and σi do not depend on the maximal component Bi (and

by assumption Λi = 0 for each i = 1, . . . ,m). From this and the Berry-Esseen

Theorem for subshifts of finite type [14] we obtain the desired central limit

theorem, with error term, for µ and f . The criteria for positive variance follows

from Lemma 3.6.2 and Proposition 3.6.2.

We are now ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. By Lemma 5.2.7 it suffices to prove that for x ∈ R

Hn(x) = N(x, σ) +O(n−1/4)
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as n→∞.

We begin by applying Proposition 3.3.6 and Proposition 5.2.9 to deduce

that for any integer valued sequence kn, with kn →∞ as n→∞,

1

kn

kn∑
j=0

σj∗ν̂

{
y ∈

⋃
i

ΣBi :
fn(y)√

n
≤ x

}
= N(x, σ) +O(k−1

n , n−1/2), (5.2.1)

as n→∞, uniformly for x ∈ R. We then define, for n ∈ Z≥0 and x ∈ R,

C±n (x) =

{
y ∈

⋃
i

ΣBi :
fn(y)√

n
≤ x± 2kn|f |∞√

n

}
.

If we suppose further that kn = o(
√
n), then expression (5.2.1) implies that

1

kn

kn∑
j=0

σj∗ν̂(C±n (x)) = N(x, σ) +O(knn
−1/2, k−1

n ). (5.2.2)

We now note that, by inclusion,

σj∗ν̂j(C
−
n (x)) ≤ ν̂j(En(x)) ≤ σj∗ν̂j(C+

n (x)) (5.2.3)

for all n, j ≤ kn and x. Recall that, by (3.3.2), σj∗ν̂(C±n (x)) = σj∗ν̂j(C
±
n (x))

for all n, x. Hence, if we choose kn = bn1/4c, then (5.2.2) along with inequality

(5.2.3) imply that

1

kn

kn∑
j=0

ν̂j(En(x)) = N(x, σ) +O(n−1/4)

and so by Lemma 5.2.8,

ν̂(En(x)) = N(x, σ) +O(n−1/4).

Lastly, using Lemma 5.2.3 and the fact that, for y ∈ Y, fn(yn) = ϕ(h(y)n) +

O(1), it is easy to see that

Hn(x) = ν̂(En(x)) +O(n−1/2) = N(x, σ) +O(n−1/4),

concluding the proof.

Remark 5.2.10. The O(n−1/4) error term arises due to the fact that ν is

supported on Y whereas µ is supported ∪iΣBi . To pass the central limit theorem

in Proposition 5.2.9 to one for ν and Y , we need to compare the values f takes
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on Y to the values f takes on ∪iΣBi . This comparison introduces an error term

that can be seen explicitly as the 2kn|f |∞n−1/2 terms in the sets C±n (x). In the

case that A is aperiodic (or irreducible) this term is no longer needed since for

any y ∈ Y , σ(y) belongs to the only (necessarily maximal) component.

In [6], Bowen and Series provide a geometrical condition for Fuchsian

groups that guarantees the existence of a coding ΣA described by an aperi-

odic matrix. This condition is satisfied by the fundamental groups of compact

hyperbolic surfaces (i.e. surface groups) equipped with the generating set con-

sisting of the side pairings for the standard fundamental domain. Free groups

equipped with their canonical generating set also satisfy this condition. The

above remark then implies the following.

Corollary 5.2.11. If G and ϕ : G→ R satisfy the hypotheses of Theorem 5.1.3

and G is a free group or surface group equipped with the generating set described

above, then the error term in Theorem 5.1.3 can be improved to O(n−1/2).

Remark 5.2.12. It seems plausible that the optimal error term in Theorem

5.1.3 is O(n−1/2). The author has not pursued this however.
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Chapter 6

Relative growth of normal

subgroups

6.1 Discussion of results

In this chapter we study the relative growth of subgroups of hyperbolic groups.

In particular we focus of normal subgroups that form a free abelian quotient.

Our main theorem is the following.

Theorem 6.1.1. Let G be a non-elementary hyperbolic group equipped with a

finite generating set and let N / G be a normal subgroup with G/N ∼= Zν for

some ν ≥ 1. Then

#(Wn ∩N) = O

(
λn

nν/2

)
as n→∞. Furthermore, there exists D ∈ Z≥0 and C > 0 such that

#(WDn ∩N) ∼ CλDn

(Dn)ν/2

as n→∞.

This result has the following immediate corollary.

Corollary 6.1.2. Let G be a non-elementary hyperbolic group equipped with a

finite generating set and let N / G be a normal subgroup such that the abelian-

isation of G/N has rank ν ≥ 1. Then

#(Wn ∩N) = O

(
λn

nν/2

)
as n→∞.
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Proof. Write the abelianisation of G/N as Zν ×F , where F is finite. There are

then natural surjective homomorphisms φ : G→ G/N and ψ : G/N → Zν . Set

φ0 = ψ ◦ φ and N0 = kerφ0. Then N ⊂ N0. Furthermore, by Theorem 6.1.1,

#(Wn ∩N0) = O(λnn−ν/2), giving the required estimate.

Remark 6.1.3. The relative growth in Corollary 6.1.2 may occur at a slower

exponential rate. Indeed, Coulon, Dal’Bo and Sambusetti recently showed that

#(Wn∩N) = O(λn0 ), for some 0 < λ0 < λ precisely when G/N is not amenable

[16]. In fact, their result does not require normality of the subgroup, in which

case amenability is replaced by co-amenability of N in G, i.e. that the G-action

on the coset space G/N is amenable.

To prove Theorem 6.1.1, we would like to employ the strategy used by

Sharp in [55]. However, there are significant technical obstacles which we need

to overcome in order to use this method. We summarise these below.

(i) Firstly, as mentioned above, in [55] there are strong restrictions on the hy-

perbolic groups and their generating sets. This makes it much easier to study

the relative growth quantity #(Wn ∩ N). We need to find a new approach

that works for general non-elementary hyperbolic groups, that will allow us to

express #(Wn ∩N) in terms of quantities which we can analyse.

(ii) Secondly, we need a good understanding of how real valued group homo-

morphisms on hyperbolic groups grow as we increase the word length of the

input. Our work from Chapter 4 allows us to deduce the required properties of

these homomorphisms.

We end this section with a discussion of relative growth series. We define

the relative growth series for N in G (with respect to the given generators) to

be the power series
∞∑
n=0

#(Wn ∩N)zn.

When N = G, this is the standard growth series and, for hyperbolic groups, is

well-known to be the series of a rational function [10], [25]. The requirement

that a power series be rational imposes a strong constraint on the coefficients:

if
∑∞

n=0 anz
n is rational then there are complex numbers ξ1, . . . , ξm and poly-

nomials P1, . . . , Pm such that

an =

m∑
j=1

Pj(n)ξnj

(Theorem IV.9 of [20]). Comparing with the asymptotic in Theorem 6.1.1,
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we see that #(Wn ∩ N) does not satisfy this constraint. Thus we obtain the

following.

Corollary 6.1.4. Suppose G is a non-elementary hyperbolic group equipped

with a finite generating set. Let N / G be a normal subgroup with G/N ∼= Zν

for some ν ≥ 1. Then, the relative growth series

∞∑
n=1

#(Wn ∩N)zn

is not the series of a rational function.

Remark 6.1.5. (i) The first result of this type is due to Grigorchuk, who

showed that the relative growth series is not rational when G is the free group

on two generators and N is the commutator subgroup (see [28]). A similar

result was obtained for the fundamental groups of compact surfaces of genus

≥ 2 in [46] and this was extended to a wider class of hyperbolic groups in [55].

(ii) We note that, as Corollary 6.1.4 requires the asymptototic along a subse-

quence in Theorem 6.1.1, it does not apply to general infinite index subgroups

of hyperbolic groups. In fact, Grigorchuk showed that if N is a finite index

subgroup of a free group than its relative growth series is rational [27].

6.2 Proof of Theorem 6.1.1

Suppose G is a non-elementary hyperbolic group and N a normal subgroup

satisfying the hypothesis of Theorem 6.1.1. Let ϕ : G→ Zν denote the quotient

homomorphism. In this section it is easier to work with weighted matrices than

transfer operators. We define the following matrices.

Definition 6.2.1. For each j = 1, . . . ,m, define a matrix Cj by,

Cj(u, v) =

{
0 if u or v belong to a maximal component that is not Bj ,

A(u, v) otherwise.

Now suppose that ϕ : G → G/N ∼= Zν is the quotient homomorphism. We

define a function f : ΣA → Zν by

f((xn)∞n=0) = ϕ(ρ(x0, x1)),

where ρ is the labelling map from Definition 3.2.1. Since f((xn)∞n=0) depends

only on the first two coordinates of (xn)∞n=0, we can consider f as a map from

the directed edge set of G to R. We then have that ϕ(g) = f(∗, x1)+f(x1, x2)+
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· · ·+ f(x|g|−1, x|g|) where (∗, x1), . . . , (x|g|−1, x|g|) is the unique path associated

to g by Property (2) of Definition 3.2.1. Using f , we weight the matrices Cj

componentwise and define, for t ∈ Rν ,

Cj(t)(u, v) = e2πi〈t,f(u,v)〉Cj(u, v).

We define the matrices Bj(t) analogously.

To study the relative growth of N we would like to express #(Wn ∩N)

in terms of the matrices Cj(t). Using the orthogonality identity

∫
Rν/Zν

e2πi〈t,ϕ(g)〉 dt =

1 if ϕ(g) = 0

0 otherwise

we can write

#(Wn ∩N) =
∑
|g|=n

∫
Rν/Zν

e2πi〈t,ϕ(g)〉 dt =

∫
Rν/Zν

∑
|g|=n

e2πi〈t,ϕ(g)〉 dt.

The following result will allow us to rewrite #(Wn ∩ N) in terms of

the matrices Cj . Let v∗ be the vector in RV with a one in the coordinate

corresponding to the ∗ vertex and zeros elsewhere. Also, let 1 ∈ Rν be the

vector with a one in each coordinate.

Lemma 6.2.2. There exists ε > 0 such that for all t ∈ Rν/Zν

∑
|g|=n

e2πi〈t,ϕ(g)〉 =
m∑
j=1

〈Cnj (t)v∗,1〉+O((λ− ε)n)

as n→∞. The implied constant is independent of t.

Proof. Using the correspondence between G and ΣA, we can write∣∣∣∣∣∣
∑
|g|=n

e2πi〈t,ϕ(g)〉 −
m∑
j=1

〈Cnj (t)v∗,1〉

∣∣∣∣∣∣ = (m− 1)

∣∣∣∣∣∣
∑
g∈Mn

e2πi〈t,ϕ(g)〉

∣∣∣∣∣∣ ≤ (m− 1) #Mn,

where Mn consists of the elements in G of word length n whose corresponding

path in G does not enter a maximal component. It is clear that #Mn = O((λ−
ε)n) for some ε > 0 and so the result follows.
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Using this lemma, we see that

#(Wn ∩N) =

m∑
j=1

∫
Rν/Zν

〈Cnj (t)v∗,1〉 dt+O((λ− ε)n).

Hence to study the relative growth of N would like to understand the spectral

behaviour of the Cj(t) for t ∈ Rν/Zν . From their definitions, it is clear that

the matrices Cj each have pj simple maximal eigenvalues of modulus λ and

the rest of the spectrum is contained in a disk of radius strictly smaller than

λ − ε, for some ε > 0. We shall be interested in the values of t for which the

operators Cj(t) have spectral radius λ. These values of t are characterised by

the following lemma.

Lemma 6.2.3. For any t ∈ Rν , the operator Cj(t) has spectral radius at most

λ. Furthermore, Cj(t) has spectral radius exactly λ if and only if it has pi

simple maximal eigenvalues of the form e2πiθe2πik/piλ for k = 0, . . . , pi − 1 and

some θ ∈ R. This occurs if and only if Bj(t) = e2πiθMBjM
−1 where M is a

diagonal matrix with modulus one diagonal entries. Furthermore, when Cj(t)

has pi simple maximal eigenvalues of modulus λ, the rest of the spectrum is

contained in a disk of radius strictly less than λ.

Proof. When Cj consists of a single component (ignoring the ∗ vertex) and so

is the same as Bj , this is Wielandt’s Theorem [21]. When this is not the case,

we can write the spectrum of Cj(t) as a union of the spectra of the irreducible

components making up Cj(t). By definition, each Cj has one component Bj

with spectral radius λ and all other components have spectral radius strictly

less than λ. Therefore applying Wielandt’s Theorem to each component gives

the required result.

We now follow the method presented in [55]. Let fj = f |ΣBi for j =

1, . . . ,m. If a sequence γ = (x0, x1, . . . , xn) is such that Bj(xi, xi+1) = 1 for

i = 0, . . . , n and x0 = xn, then we call γ a cycle and define its length as l(γ) = n.

Let Cj be the collection of all such cycles and note that the length of any cycle

in Cj is a multiple of pj . Given a cycle γ ∈ Cj , we define its fj-weight to be

wfj (γ) = fj(x0, x1) + · · ·+ fj(xn−1, xn).

Let Γj be the subgroup of Zν generated by {wfj (γ) : γ ∈ Cj}. We define ∆j to

be the following subgroup of Γj ,

∆j = {wfj (γ)− wfj (γ
′) : γ, γ′ ∈ Cj and l(γ) = l(γ′)}.
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(This is a version of Krieger’s ∆-group [37]. For a proof that it is a group, see

page 892 of [56].) We now choose two cycles γ, γ′ ∈ Cj such that l(γ)−l(γ′) = pj

and set cj = wfj (γ) − wfj (γ′). Applying the results of [40] to the aperiodic

shift (ΣBj , σ
pj ), we see that the group Γj/∆j is cyclic and is generated by the

element cj + ∆j . Our aim is to show that this group has finite order. To do

so, we will use a result of Marcus and Tuncel. For each j = 1, . . . ,m, let Ej

denote the directed edge set for the graph with transition matrix Bj . Write Vj

for the analogously defined vertex sets. We say that a function g : Ej → R is

cohomologous to a constant if there exists C ∈ R and h : Vj → R such that

g(x, y) = C + h(y)− h(x) for all (x, y) ∈ Ej .

Lemma 6.2.4 ([40]). If 〈t, fpjj 〉 is not cohomologous to a constant for any

non-zero t ∈ Rν/Zν , then Γj/∆j has finite order.

It is clear that, for t ∈ Rν , 〈t, fpjj 〉 is cohomologous to a constant if and

only if 〈t, fj〉 is cohomologous to constant. Using ideas from [11], we will show

that the hypothesis of the above lemma is satisfied for each j = 1, . . . ,m.

Lemma 6.2.5. For non-zero t ∈ Rν/Zν and for all j = 1, . . . ,m, 〈t, fj〉 is not

cohomologous to a constant.

Proof. We begin by noting that, since ϕ is surjective, for any t ∈ Rν\{0} the

function ψt := 〈t, ϕ〉 : G → R is a non-trivial group homomorphism. Theo-

rem 6.1.1 implies that if 〈t, fj〉 (for any j ∈ {1, . . . ,m}) is cohomologous to a

constant, then that constant is given by

lim
n→∞

1

#Wn

∑
|g|=n

ψt(g)

n
.

By symmetry this limit is zero. Then Corollary 3.6.12 shows that ψt is not

cohomologous to 0 as required.

Remark 6.2.6. Since the above proof relies on the zero density result of

Gouëzel, Mathéus and Maucourant [26], quantifying the decay rate in (1.0.1)

requires a priori knowledge of the convergence to zero.

Let Dj = |Γj/∆j | for j = 1, . . . ,m. From the above discussion, we know

that each Dj is finite. We also note that Lemma 6.2.5 shows that rankZ(Γj) = ν

and so |Zν/Γj | is finite for each j = 1, . . . ,m. Combining this with all of the

above work, allows us to state the following result that describes the spectral

behaviour of the Cj(t) as t varies. We use the notation %(M) to denote the

spectral radius of a matrix M .
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Proposition 6.2.7. For t ∈ Rν/Zν , define χt ∈ Ẑν by χt(x) = e2πi〈t,x〉. Then

we have that

{χt : %(Cj(t)) = λ} = ∆⊥fj ,

where ∆⊥fj = {χ ∈ Ẑν : χ(∆fj ) = 1}. Furthermore, when χt ∈ ∆⊥fj , Cj(t) has

pj simple maximal eigenvalues of the form e2πiθe2πik/pjλ for some θ ∈ R and

k = 0, . . . , pj − 1.

Proof. This is essentially Proposition 4 from [55] which is derived from work in

[45]. However, here we need to consider the non-aperiodic matrices Cj(t). To

deduce this more general statement, we can apply Proposition 4 from [55] to

the maximal component associated to the matrix C
pj
j (t). This is justified since

this maximal component is aperiodic. To conclude the proof, we note that the

part of the spectrum of Cj(t) coming from Bj(t) is invariant under the rotation

z 7→ ze2πi/pj .

Proposition 6.2.7 implies that there exist Dj <∞ values of t for which

the spectral radius of Cj(t) is maximal and equal to λ. Denote these values

by t = 0, tj1 . . . , t
j
Dj−1. When t takes one of these values, Cj(t) has pj simple

maximal eigenvalues of the form e2πiθe2πik/pjλ for k = 0, . . . , pj−1 and for some

θ ∈ R. We now choose, for each j = 1, . . . ,m, a neighbourhood U j0 of zero and

define U jr = U j0 + tjk for k = 0, . . . , Dj − 1. Results from perturbation theory

guarantee that, as long as each U j0 is sufficiently small, there exists ε > 0 such

that the following hold for each j = 1, . . . ,m.

1. If t ∈
⋃Dj−1
r=0 U jr , then the matrices Cj(t) each have pj simple, maximal

eigenvalues of the form λj(t)e
2πik/pj for k = 0, . . . , pj−1, where t→ λj(t)

is analytic and independent of k = 0, . . . , pj − 1.

2. Let Mν(C) denote the vector space of ν × ν complex matrices. For each

j = 1, . . . ,m and k = 0, . . . , pj − 1, there exists an analytic matrix-valued

function Qj,k :
⋃Dj−1
r=0 U jr → Mν(C), where Qj,k(t) is the eigenprojection

onto the eigenspace associated to the eigenvalue λj(t)e
2πik/pj of the matrix

Cj(t).

3. If t ∈ (Rν/Zν)\
⋃Dj−1
r=0 U jr then the spectral radius of each Cj(t) is bounded

uniformly above by λ− ε.

Using this description of the spectrum, we can write

#(Wn ∩N) =
m∑
j=1

Dj−1∑
r=0

pj−1∑
k=0

∫
Ujr

λj(t)e
2πikn/pj 〈Qj,k(t)v∗,1〉 dt+O((λ− ε)n),
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for some ε > 0. Hence there exists constants cjr,k = 〈Qj,k(tjr)v∗,1〉, for r =

0, . . . , Dj − 1 and k = 0, . . . , pj − 1, such that #(Wn ∩N) is equal to

m∑
j=1

Dj−1∑
r=0

pj−1∑
k=0

e2πin(r/Dj+k/pj)cjr,k

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt+O((λ− ε)n).

(6.2.1)

The asymptotics of each

ajn :=

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt

were studied in [45], where it was shown that, for each j = 1, . . . ,m, there exists

τj > 0 such that

ajn ∼
τjλ

n

nν/2
(6.2.2)

as n → ∞. Applying this along the subsequence Dn, where D is given by the

product of all the p1, . . . , pm and D1, . . . , Dm, we see that

#(WDn ∩N) =
C̃λDn

(Dn)ν/2
+ o

(
λDn

(Dn)ν/2

)
(6.2.3)

as n→∞, where

C̃ =
m∑
j=1

τj

Dj−1∑
r=0

pj−1∑
k=0

cjr,k

 .

It is clear that C̃ ∈ R≥0. However, for (6.2.3) to be a useful asymptotic

expression, we would like that C̃ is strictly positive. We now show that this is

always the case.

Lemma 6.2.8. We necessarily have that C̃ > 0.

Proof. Fix j ∈ {1, . . . ,m} and recall that for any loop γ = (x0, . . . , xDn) ∈ Cj
with wfj (γ) = 0, the group element gγ = ρ(x0, x1)ρ(x1, x2) . . . ρ(xDn−1, xDn)

belongs to the kernel of ϕ (or, equivalently, to N) and furthermore, gγ has

word length Dn. Also, for any two distinct loops γ, γ′ ∈ Cj , we have gγ 6= gγ′

whenever γ and γ′ have the same initial vertex. Combining these observations

and applying the pigeonhole principle gives that

#(WDn ∩N) ≥ (#Vj)
−1#{γ ∈ Cj : l(γ) = Dn, wfj (γ) = 0}
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for all n ≥ 1. Pollicott and Sharp proved in [45] that

#{γ ∈ Cj : l(γ) = Dn, wfj (γ) = 0} ∼ KλDn

(Dn)ν/2

as n→∞ for some K > 0. Hence

C̃ = lim sup
n→∞

(Dn)ν/2#(WDn ∩N)

λDn
≥ K(#Vj)

−1 > 0,

as required.

We can now conclude the proof of our main result.

Proof of Theorem 6.1.1. Combining (6.2.1) and (6.2.2) implies that

#(Wn ∩N) = O

 m∑
j=1

∫
Uj0

λj(t)
n (1 +O(‖t‖)) dt

 = O

(
λn

nν/2

)

which proves the first part of Theorem 6.1.1. The second part follows from

(6.2.3) and the fact that C̃ > 0.
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[25] É. Ghys and P. de la Harpe. Sur les groupes hyperboliques d’après Mikhael

Gromov. Progr. Math., 83, 1990.
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