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Abstract
We extend the finite element method introduced by Lakkis and Pryer (SIAM J. Sci. Com-
put. 33(2): 786–801, 2011) to approximate the solution of second-order elliptic problems 
in nonvariational form to incorporate the discontinuous Galerkin (DG) framework. This is 
done by viewing the “finite element Hessian” as an auxiliary variable in the formulation. 
Representing the finite element Hessian in a discontinuous setting yields a linear system of 
the same size and having the same sparsity pattern of the compact DG methods for vari-
ational elliptic problems. Furthermore, the system matrix is very easy to assemble; thus, 
this approach greatly reduces the computational complexity of the discretisation compared 
to the continuous approach. We conduct a stability and consistency analysis making use of 
the unified frameworkset out in Arnold et al. (SIAM J. Numer. Anal. 39(5): 1749–1779, 
2001/2002). We also give an a posteriori analysis of the method in the case where the prob-
lem has a strong solution. The analysis applies to any consistent representation of the finite 
element Hessian, and thus is applicable to the previous works making use of continuous 
Galerkin approximations. Numerical evidence is presented showing that the method works 
well also in a more general setting.

Keywords  Nonvariational problems · Discontinuous Galerkin · Error estimates · 
Adaptivity

Mathematics Subject Classification  65N15 · 65N30 · 65Y20 · 65N12

1  Introduction

Linear, second-order, nonvariational partial differential equations (PDEs) are those which 
are given in the form
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where X∶Y = trace
(
X⊺Y

)
 is the Frobenious inner product between matrices. If the matrix 

A is differentiable, then there is an equivalence between this problem and its variational 
sibling

where

and d is the dimension under consideration. Rewriting in this form is sometimes undesira-
ble. For example, if the coefficient matrix A has near singular derivatives, the problem will 
become advection dominated and possibly unstable for conforming finite element methods. 
There is a wealth of material on the treatment of advection-dominated problems [c.f., 18, 
19]. If A is not differentiable, then the problem has no variational structure. In this case, 
standard finite element methods cannot be applied.

In a previous work [32], a finite element method for the approximation of the nonvar-
iational problem (1) was introduced. This involved the introduction of a finite element 
Hessian represented in the same finite element space as the solution (modulo boundary 
conditions). The applications of the discrete representation of a Hessian of a piecewise 
function are becoming broader, for example, it can be used to drive anisotropic adaptive 
algorithms [1, 40], as a notion of discrete convexity [2] and in the design of finite ele-
ment methods for nonlinear fourth-order problems [37].

The algebraic formulation of the C0 Galerkin approximation of the nonvariational 
problem requires the solution of large sparse (d + 1)2N2 linear system [32, Lem 3.3], 
where N is the number of degrees of freedom. Equivalently, using a Schur complement 
argument, this can be reduced to an N2 full linear system. The reason that this system is 
full is due to the global nature of the L2(�) projection operator into a continuous finite 
element space. The motivation for extending the nonvariational finite element method 
into the discontinuous setting is the massive gain in computational efficiency over the 
continuous case. Indeed, due to the local representation of the projection operators in 
these discontinuous spaces, we are able to make massive computational savings, in that 
the system matrix becomes sparse and is the same size as that of a standard discontinu-
ous Galerkin stiffness matrix for the Laplacian.

There has been a plethera of other finite element methods posed for linear nonvaria-
tional PDEs exist including [38] in which the authors pose a stable discontinuous Galer-
kin scheme for linear nonvariational problems using discrete analogs of the classical 
methods used to prove existence of strong solutions, see also [29] where similar tech-
niques are used over curved domains. In [22–24] the author considers a least squares 
formulation, see also [31, 35] for related formulations. Many of these formulations 
share the same disadvantage in the conditioning of the system matrix—the condition 
number scales like a fourth-order problem. As already mentioned, one of the desirable 
features of the formulation presented here is that it scales in the same fashion as a dis-
continuous Galerkin method for a second-order variational problem, a property shared 
by the method in [25] under the Cordes condition.

(1)−A∶D2u = f ,

(2)−div(A∇u) + DA∇u = f ,

(3)DA =

(
d∑

i=1

�iai,1(x),⋯ ,

d∑

i=1

�iai,d(x)

)
,
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We are particularly interested in nonvariational PDEs due to their relation to general 
fully nonlinear PDEs

which are of significant current research. In the literature finite element methods have been 
presented to solve this general class of problem. For example in [8] the author presents a C1 
finite element method shows stability and consistency (hence convergence) of the scheme 
which requires a high degree of smoothness on the exact solution. In [20, 21] the authors 
give a method in which they approximate the general second-order fully nonlinear PDE by 
a sequence of fourth-order quasilinear PDEs. This is reminiscent of the vanishing viscos-
ity method introduced for classically studying first-order fully nonlinear PDEs. Efficiency 
of any method used to approximate a problem such as this is key. Each of the methods is 
computationally costly due to their reliance on C1 finite elements [8, 21] or mixed methods 
[20].

In [5], a generic framework was set up to prove convergence of numerical approximations 
to the viscosity solutions of degenerate elliptic fully nonlinear PDEs. This involved construct-
ing monotone sequences of approximations which are typically applied to finite difference 
approximations of the nonlinear problem [c.f., 36]. The assumption of consistency made in the 
[5] framework is incompatible with finite element methods; however, an extremely important 
observation made in [28] is that the consistency condition may be weakened to incorporate the 
finite element case using a localisation argument (in the case of isotropic diffusion).

A posteriori analysis of linear nonvariational problems is less standard than for those of 
variational type. Typically, results are based on “closeness” conditions of Cordes type [12] 
which guarantees existence of a unique smooth, H2 solution. Under these assumptions, it is 
relatively straightforward to derive a posteriori bounds in the natural norm for the problem, 
H2 , or a mesh-dependent equivalent. For other methods, this has been done in [24]. It has even 
been shown that adaptive methods for these problems converge optimally in terms of the num-
ber of degrees of freedom [30].

We show similar a posteriori bounds that make it straightforward to incorporate the method 
into well-developed software package for finite element methods, shown here using Dune [6, 
7]. In this work, we are interested in the asymptotic behaviour of the discontinuous approxi-
mation and the computational gains using this method. In a subsequent work, we will study 
the computational gains using the discontinuous framework presented over the continuous one 
given in [32], as well as exploit the powerful parallelisation capabilities of the package.

The rest of the paper is set out as follows. In Sect. 2, we formally introduce the model prob-
lem and give a brief review of known classical facts about nonvariational PDEs. In Sect. 3, we 
examine the discretisation of the nonvariational method in the discontinuous Galerkin frame-
work, making use of the unified framework set out in [4] to derive a very general formulation 
of the finite element Hessian represented as a discontinuous object. We present some exam-
ples and examine the natural question of what happens when we try to eliminate the finite 
element Hessian from the formulation. In Sect. 4, we conduct an a posteriori analysis of the 
method and show upper and lower bounds to the error in an H2-like mesh-dependent norm. 
Finally, in Sect. 5, we detail a summary of extensive numerical experiments aimed at examin-
ing convergence and robustness of the method presented.

(4)F
(
D2u

)
= 0,
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2 � Problem Formulation

In this section, we formulate the model problem, fix notation and give some basic assump-
tions. In addition, we review the existence and uniqueness of the nonvariational problems. 
Let 𝛺 ⊂ ℝd , d = 2, 3 , be a connected domain with polygonal boundary. The Lebesgue 
spaces are defined as

and the Sobolev and Hilbert spaces

These are equipped with the norms

where � = {�1,⋯ , �d} is a multi-index, ��� = ∑d

i=1
�i and derivatives D� are understood in 

a weak sense. We pay particular attention to the cases k = 1, 2 and

The model problem in strong form is: find u ∈ H2(�) ∩ H1
0
(�) such that

where the data f ∈ L2(�) are prescribed and L  is a general linear, second-order, uni-
formly elliptic partial differential operator. Let A ∈ L∞(�)d×d , we then define

We assume that A is uniformly positive definite, i.e., there exists a 𝛾 > 0 such that for all x

and we call � the ellipticity constant.

Definition 1  (Strong solution) A strong solution of (1) is a function u ∈ H2(�) ∩ H1
0
(�) , 

that is a twice weakly differentiable function, which satisfies the problem almost 
everywhere.

Theorem 1  (Existence and regularity of a strong solution of (1) [12]) Let 𝛺 ⊂ ℝd be a con-
vex polytope. Suppose A ∈ L∞(�)d×d is uniformly elliptic and f ∈ L2(�) . Suppose further 
that A satisfies the Cordes condition, that there exists 0 < 𝛼 ∈ L∞(𝛺) and 0 < 𝛽, 𝛾 ∈ ℝ 
with 𝛽 + 𝛾 < 1 such that

(5)L2(𝛺) =

{
𝜙 ∶ ∫𝛺

|𝜙(x)|2 dx < ∞

}
and L∞(𝛺) =

{
𝜙 ∶ sup

x∈𝛺
|𝜙(x)| < ∞

}
,

(6)
Wk,p(�) = {� ∈ Lp(�) ∶ D�� ∈ Lp(�), for |�| ⩽ k} and Hk(�) ∶= Wk,2(�).

(7)‖�‖2
L2(�)

=∫�

���2 dx, ‖�‖L∞(�) = sup
x∈�

��(x)�,

(8)‖v‖p
Wk,p(�)

=
�

���⩽k
‖D�v‖p

Lp(�)
and �v�p

Wk,p(�)
=

�

���=k
‖D�v‖p

Lp(�)
,

(9)H1
0
(�) ∶= closure of C∞

0
(�) in H1(�).

(10)⟨Lu,�⟩ = ⟨f ,�⟩, ∀� ∈ H1
0
(�),

(11)L ∶ H
2(�) ∩ H

1

0
(�) → L

2(�),

u ↦ Lu ∶= −A∶D2
u.

(12)y⊺A(x)y ⩾ �|y|2, ∀ y ∈ ℝ
d,
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Then, (1) admits a unique strong solution. There also exists a constant independent of u 
such that

Remark 1  (Less regular solutions) Note that the theory of viscosity solutions has been 
developed for non-classical solutions of (10), if the problem data do not satisfy the regular-
ity assumed above, see [27].

Assumption 1  (Inf-sup condition) From hereon in, we will assume that the problem satis-
fies an inf-sup condition, that is, with

then, for all w ∈ H2(�) ∩ H1
0
(�)

This is true under a variety of conditions. For example, those of Theorem 1. Note that for 
d = 2 , this criterion is satisfied for all essentially bounded, symmetric positive definite A.

3 � Discretisation

Let T  be a shape regular triangulation of � , namely, T  is a finite family of sets such that 

1)	 K ∈ T  implies K is an open simplex (segment for d = 1 , triangle for d = 2 , tetrahedron 
for d = 3),

2)	 for any K, J ∈ T  we have that K ∩ J is a full subsimplex (i.e., it is either ∅ , a vertex, an 
edge, a face, or the whole of K and J ) of either K and J and

3)	
⋃

K∈T K = �.

We use the convention where h ∶ � → ℝ denotes the mesh size function of T  , i.e.,

where hK is the diameter of K. We let E  be the skeleton (set of common interfaces) of the 
triangulation T  and say e ∈ E  if e is on the interior of � and e ∈ �� if e lies on the bound-
ary ��.

Let ℙk(T) denote the space of piecewise polynomials of degree k over the triangulation 
T  , i.e.,

and introduce the finite element spaces

(13)|� ∶ Y − �(x)A ∶ Y| ⩽ �|Y| + �|� ∶ Y|, ∀Y ∈ Sym+(ℝd×d).

(14)‖u‖H2(�) ⩽ C‖f‖L2(�).

(15)a(w, v) ∶= ∫�

−A∶D2wv dx,

(16)sup
v∈L2(�)

a(w, v)

‖v‖L2(�)

⩾ C‖Δw‖L2(�).

(17)h(x) ∶= max
K∋x

hK ,

(18)ℙ
k(T) =

{
� ∶ �|K ∈ ℙ

k(K)
}
,
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to be the usual spaces of discontinuous piecewise polynomial functions.

Remark 2  (Generalised Hessian) Assume v ∈ H2(�) , let n ∶ �� → ℝd be the outward 
pointing normal of � , then the Hessian D2v of v, satisfies the following identity:

If v ∈ H1(�) , the right-hand side of (21) is still well defined in view of duality, in this case 
we set

where the last term is understood as a duality pairing.

Definition 2  (Broken Sobolev spaces, trace spaces) We introduce the broken Sobolev 
space

We also make use of functions defined in these broken spaces restricted to the skeleton of 
the triangulation. This requires an appropriate trace space

Definition 3  (Jumps, averages and tensor jumps) We define average, jump and tensor jump 
operators for arbitrary scalar functions v ∈ T(E) , vectors v ∈ T(E)d and matrices V ∈ T(E)d×d 
as

Note that on the boundary of the domain �� , the jump and average operators are defined as

(19)𝕍 =𝕍(T, k) ∶= ℙ
k(T),

(20)𝕍0 =𝕍0(T, k) ∶=
{
� ∈ ℙ

k(T) ∶ �|�� = 0
}
,

(21)∫𝛺

D2v 𝜙 dx = −∫𝛺

∇v⊗ ∇𝜙 dx + ∫𝜕𝛺

∇v⊗ n 𝜙 ds, ∀𝜙 ∈ H1(𝛺).

(22)
⟨
D2v |𝜙

⟩
= −∫𝛺

∇v⊗ ∇𝜙 dx + ∫𝜕𝛺

∇v⊗ n 𝜙 ds, ∀𝜙 ∈ H1(𝛺),

(22)Hk(T) ∶=
{
� ∶ �|K ∈ Hk(K), for each K ∈ T

}
.

(24)T(E) ∶=
∏

K∈T

L2(�K) =
∏

K∈T

H
1

2 (K).

(25){v} =
1

2

(
v|K1

+ v|K2

)
, {v} =

1

2

(
v|K1

+ v|K2

)
,

(26)[[v]] =v|K1
nK1

+ v|K2
nK2

, [[v]] =
(
v|K1

)
⋅ nK1

+
(
v|K2

)
⋅ nK2

,

(27)[[V]] =V|K1
nK1

+ V|K2
nK2

, [[v]]⊗ = v|K1
⊗ nK1

+ v|K2
⊗ nK2

.

(28){v}
|||�� ∶= v, {v}

|||�� ∶= v,

(29)[[v]]
|||�� ∶= vn, [[v]]

|||�� ∶= v ⋅ n,
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We will often use the following Proposition which we state in full for clarity but 
whose proof is merely using the identities in Definition 3.

Proposition 1  (Elementwise integration) For a generic vector-valued function p and sca-
lar-valued function � , we have

where ∇h =
(
Dh

)⊺ is the elementwise spatial gradient. Furthermore, If we have 
p ∈ T(E ∪ ��)d and � ∈ T(E ∪ ��) , the following identity holds

An equivalent tensor formulation of (31)–(32) is

where

In addition for matrix-valued V, we have that

and

3.1 � Construction of an Appropriate Discrete Hessian

We now use the framework set out in [4] to construct a general notion of discrete Hes-
sian. We first give a definition using a flux formulation.

Definition 4  (Generalised finite element Hessian: flux formulation) Let u ∈ H2(T) , 
Û ∶ H

1(T) → T(E ∪ ��) be a linear form and p̂ ∶ H
2(T) × H

1(T)d → T(E ∪ ��)d a bilin-
ear form representing approximations to u and ∇u over the skeleton of the triangulation. 
Then, we define the generalised finite element Hessian H[u] as the solution of

(30)[[V]]
|||𝜕𝛺 ∶= Vn, [[v]]⊗

|||𝜕𝛺 ∶= v⊗ n.

(31)
∑

K∈T
∫K

div(p)� dx =
∑

K∈T

(
−∫K

p ⋅ ∇h� dx + ∫�K

�p ⋅ nK ds

)
,

(32)
∑

K∈T
∫�K

�p ⋅ n
K
ds = ∫

E

[[p]]{�} ds + ∫
E∪��

[[�]] ⋅ {p} ds = ∫
E∪��

[[p�]] ds.

(33)
∑

K∈T
∫K

Dhp𝜙 dx =
∑

K∈T

(
−∫K

p⊗ ∇h𝜙 dx + ∫𝜕K

𝜙p⊗ nK ds

)
,

(34)
∑

K∈T
∫𝜕K

𝜙p⊗ nK ds = ∫
E

[[p]]⊗{𝜙} ds + ∫
E∪𝜕𝛺

[[𝜙]]⊗ {p} ds = ∫
E∪𝜕𝛺

[[p𝜙]]⊗ ds.

(35)
∑

K∈T
∫K

(
Dhp

)
∶V dx =

∑

K∈T

(
−∫K

p∶DhV dx + ∫��

(Vp) ⋅ n ds

)

(36)
∑

K∈T
∫𝜕𝛺

(Vp) ⋅ n ds = ∫
E

[[V]] ⋅ {p} ds + ∫
E∪𝜕𝛺

[[p]]⊗∶{V} ds = ∫
E∪𝜕𝛺

[[Vp]] ds.



	 Communications on Applied Mathematics and Computation

1 3

for all � ∈ � .

We now present the primal formulation for the generalised finite element Hessian.

Theorem 2  (Generalised finite element Hessian: primal form) Let u ∈ H2(T) and let Û and 
p̂ be defined as in Definition 4. Then, the generalised finite element Hessian H[u] is given 
for each � ∈ �  as

Proof  Note that in view of Definition 3 for generic vector fields q ∈ � and v ∈ �  , we have 
the following identity:

Then summing (37) over K ∈ T  and making use of the identity (40) we see

Using the same argument for (38)

Note that, again making use of (40), we have for each q ∈ H1(T)d and v ∈ H1(T) that

Taking v = u in (43) and substituting into (38), we see

(37)∫K

H[u] 𝛷 dx = −∫K

p⊗ ∇h𝛷 dx + ∫𝜕K

p̂K ⊗ n 𝛷 ds, ∀𝛷 ∈ H1(T),

(38)∫K

p⊗ q dx = −∫K

u Dhq dx + ∫𝜕K

q⊗ n �UK ds

(39)

∫𝛺

H[u] 𝛷 dx = − ∫𝛺

∇
h
u⊗ ∇

h
𝛷 dx + ∫

E∪𝜕𝛺

[[𝛷]]⊗ {p̂} ds + ∫
E

{𝛷}[[p̂]]⊗ ds

− ∫
E

{�U − u}[[∇
h
𝛷]]⊗ ds − ∫

E∪𝜕𝛺

[[�U − u]]⊗ {∇
h
𝛷} ds.

(40)
∑

K∈T
∫𝜕K

vq⊗ n ds = ∫
E∪𝜕𝛺

[[v]]⊗ {q} ds + ∫
E

{v}[[q]]⊗ ds.

(41)

∫𝛺

H[u] 𝛷 dx =
∑

K∈T
∫K

H[u] 𝛷 dx =
∑

K∈T

(
−∫K

p⊗ ∇h𝛷 dx + ∫𝜕K

p̂K ⊗ n 𝛷

)
ds

= −∫𝛺

p⊗ ∇h𝛷 dx + ∫
E∪𝜕𝛺

[[𝛷]]⊗ {p̂K} ds + ∫
E

{𝛷}[[p̂K]]⊗ ds.

(42)

∫𝛺

p⊗ q dx =
∑

K∈T
∫K

p⊗ q dx =
∑

K∈T

(
−∫K

u Dhq dx + ∫𝜕K

q⊗ n �UK ds

)

= −∫𝛺

u Dhq dx + ∫
E∪𝜕𝛺

[[�U]]⊗ {q} ds + ∫
E

{�U}[[q]]⊗ ds.

(43)∫𝛺

q⊗ ∇hv dx = −∫𝛺

Dhqv dx + ∫
E∪𝜕𝛺

{q}⊗ [[v]] ds + ∫
E

[[q]]⊗{v} ds.

(44)∫𝛺

p⊗ q dx = ∫𝛺

q⊗ ∇hu dx + ∫
E∪𝜕𝛺

[[�U − u]]⊗ {q} ds + ∫
E

{�U − u}[[q]]⊗ ds.
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Now choosing q = ∇h� and substituting (44) into (37), we arrive at the fully generalised 
finite element Hessian given by (39).

Remark 3  (Consistent representations of the gradient operator) If one were interested in 
consistent representations of other derivatives, for example the gradient operator, one 
would need to modify the proof of Theorem 2. Examples of consistent gradient representa-
tions can be found in [4]. See also [10, 11, 17]. Using this methodology, it should be pos-
sible to construct an entire hierarchy of derivatives.

Example 1  An example of a DG formulation for the approximation to the Hessian, D2u , 
can be derived by taking the fluxes in the following way:

The result is a discrete representation of the Hessian H[uh] as a unique element of � d×d 
such that

We can also derive unsymmetric approximations with fluxes similar to those used for the 
NIPG method. This is given by taking � = −1 in the following, while the symmetric ver-
sion is given by � = 1:

3.2 � The Discontinuous Nonvariational Finite Element Method

We are now in a position to state the numerical method for the approximation of (1). We look 
to find uh ∈ �0 together with H[uh] ∈ � d×d such that

with

(45)Û =

{
{uh} over E,

0 on ��,

(46)p̂ ={∇huh} on E ∪ ��.

∫𝛺

H[uh] 𝛷 dx = −∫𝛺

∇huh ⊗ ∇h𝛷 dx + ∫
E∪𝜕𝛺

[[uh]]⊗ {∇h𝛷} + [[𝛷]]⊗ {∇huh} ds.

(47)

∫𝛺

H[uh] 𝛷 dx = −∫𝛺

∇huh ⊗ ∇h𝛷 dx

+ ∫
E∪𝜕𝛺

𝜃[[uh]]⊗ {∇h𝛷} + [[𝛷]]⊗ {∇huh} ds

= ∫𝛺

D2
h
uh𝛷 dx − ∫

E

[[∇huh]]⊗{𝛷} ds

+ ∫
E∪𝜕𝛺

𝜃[[uh]]⊗ {∇h𝛷} ds, ∀𝛷 ∈ � .

(48)Ah

(
uh,�

)
= l(� ), ∀� ∈ �0

(49)Ah

(
uh,�

)
∶=∫�

−A∶H[uh]� dx + ∫
E∪��

�h−1[[uh]] ⋅ [[� ]] ds,
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where the penalisation parameter 𝜎 > 0 is to be chosen sufficiently large.
Using the L2 projection operator Pk ∶ L2(�) → �  defined for v ∈ L2(�) through

it is possible to elliminate the finite element Hessian from the bilinear form for sufficiently 
smooth A.

Lemma 1  (Elimination of the finite element Hessian in a general setting) If the fluxes are 
chosen as in Example 1, then

Proof  This follows from the following identity:

Remark 4  The solution of the problem in this form is nontrivial due to the global L2(�) 
projection appearing in the formulation. However, in the discontinuous setting, the global 
L2(�) projection is in fact computable locally. We may actually exploit this fact to optimise 
our schemes efficiency. We will discuss this further in the sequel.

Example 2  (Laplacian formulation) Note that if in (1) we have that A = I , then we have 
that

and our bilinear form reduces to

since Pk(�A) = �I.
The nonvariational finite element method, thus, coincides with the classical (symmetric) 

interior penalty method for the Laplacian [16].

(50)l(� ) ∶=∫�

f� dx,

(51)∫�

Pk(v)� dx = ∫�

v� dx, ∀� ∈ � ,

(52)

Ah

(
uh,�

)
= ∫�

Dh

(
Pk(�A)

)
∇huh dx − ∫

E∪��

�[[uh]] ⋅ {Dh

(
Pk(�A)

)
} ds

− ∫
E∪��

[[Pk(�A)]] ⋅ {∇huh} ds + ∫
E∪��

�h−1[[uh]] ⋅ [[� ]] ds.

(53)

∫�

−A∶H[uh]� dx = ∫�

−H[uh]∶(�A) dx = ∫�

−H[uh]∶Pk(�A) dx

= ∫�

Dh

(
Pk(�A)

)
∇huh dx − ∫

E∪��

�[[uh]] ⋅ {Dh

(
Pk(�A)

)
} ds

− ∫
E∪��

[[Pk(�A)]] ⋅ {∇huh} ds.

(54)f = −A∶D2u = −Δu

(55)
A

h

(
u
h
,�

)
= ∫�

(
∇

h
�
)
⋅ ∇

h
u
h
dx − ∫

E∪��

�[[u
h
]] ⋅ {∇

h
�} ds

− ∫
E∪��

([[� ]] ⋅ {∇
h
u
h
} − �h−1[[u

h
]] ⋅ [[� ]]) ds,
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Remark 5  (Relation to standard DG methods) It is not difficult to prove that choosing to 
numerical fluxes in the same way as presented in [4, Table 3.2] results in the same cor-
relation to the DG methods summarised in the aforementioned paper for the case that A is 
constant. For brevity, we will not prove this here.

Note that when A is not constant, we have that the nonvariational finite element method 
does not coincide with its standard variational finite element counterpart. Indeed, the 
method is able to successfully cope with classes of advection dominated problems not fall-
ing under the variational framework without special treatment [32, §4.2] which is illus-
trated by the result of Lemma 1.

We conclude this section with a proof of consistency of the method and then show that 
Galerkin orthogonality holds.

Lemma 2  (Consistency) Let u ∈ H2(�) and assume that the numerical fluxes are chosen in 
a consistent fashion in the sense of [4, §3.1], that is,

Then for � ∈ �

Therefore, we have that H[u] = Pk
(
D2u

)
.

Proof  Applying Proposition 1 to the first term in the definition of H[u] yields

which proves the results under the consistency conditions on the fluxes.

Lemma 3  (Galerkin orthogonality) Let u ∈ H2(�) ∩ H1
0
(�) be a strong solution to the 

problem (1) and let uh ∈ �0 be its nonvariational finite element approximation. Assume 
that the numerical fluxes Û and p̂ are consistent, then we have the following orthogonality 
result:

with the error functional given by

(56)Û =u|E∪��,

(57)p̂ =∇u|E∪��.

(58)∫�

H[u]� dx = ∫�

D2u� dx.

(59)

∫𝛺

H[u]𝛷 dx = ∫𝛺

D2u𝛷 dx + ∫
E

[[�p − ∇u]]⊗{𝛷} ds + ∫
E∪𝜕𝛺

{p̂ − ∇u}⊗ [[𝛷]] ds

− ∫
E

{�U − u}[[∇h𝛷]]⊗ ds − ∫
E∪𝜕𝛺

[[�U − u]]⊗ {∇h𝛷} ds

= ∫𝛺

D2u𝛷 dx, ∀𝛷 ∈ � ,

(60)A
h

(
u
h
− u,�

)
= J(� ), ∀� ∈ �0,

(61)J(� ) = ∫�

(
D2u −H[u]

)
∶(A� ) dx.
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Proof  Using the consistency result and that [[u]] = 0 , we conclude

concluding the proof.

Remark 6  If A is piecewise constant, then since H[u] = Pk
(
D2u

)
 we have J(� ) = 0 and we 

recover the usual Galerkin orthogonality Ah

(
uh − u,�

)
= 0.

Definition 5  (H1(T) and H2(T) norms) We introduce the broken H1(T) and H2(T) norms 
as

These are equivalent to their continuous equivalent norms for functions in � .

Proposition 2  (Projection approximation in �  ) Let Pk ∶ L2(�) → �  be the L2(�) orthogo-
nal projection operator defined by (51). Using standard approximation arguments, we have 
that

Lemma 4  (Stability of H [37, Theorem 4.10]) Let H be defined as in Example 1. Then the 
DG Hessian is stable in the sense that

Consequently, we have

4 � A Posteriori Analysis

The discrete bilinear form (49) only makes sense over H2(T) × H2(T) . To allow for an a 
posteriori bound we require an extension to ensure the appropriate stability arguments can 
be applied. We require the bilinear form to be extended to H2(T) × L2(�) . To do this for 
(u, v) ∈ H2(T) × L2(�) , we define

Ah

(
uh − u,�

)
= Ah

(
uh,�

)
+ ∫�

A∶H[u]� dx = l(� ) + ∫�

H[u]∶(A� ) dx

= −∫�

A∶D2u� −H[u]∶(A� ) dx = J(� ),

(62)‖‖uh‖‖
2

DG,1
∶= ‖‖∇huh

‖‖
2

L2(�)
+ h−1‖‖[[uh]]‖‖

2

L2(E)
,

(63)‖‖uh‖‖
2

DG,2
∶=

‖‖‖D
2
h
uh
‖‖‖
2

L2(�)
+ h−1‖‖[[∇huh]]

‖‖
2

L2(E)
+ h−3‖‖[[uh]]‖‖

2

L2(E)
.

(64)

{ ‖‖v − Pkv
‖‖DG,1 ⩽ Chk|v|Hk+1(�),

‖‖v − Pkv
‖‖L2(�)

⩽ Chk+1|v|Hk+1(�).

(65)‖‖‖D
2
h
vh −H[vh]

‖‖‖
2

L2(�)
⩽ C

(

∫
E

h−1||[[∇hvh]]
||
2
+ h−3||[[vh]]||

2
ds

)
.

(66)‖‖H[vh]
‖‖
2

L2(�)
⩽ C‖‖vh‖‖

2

DG,2
.
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Remark 7  Notice that the modified bilinear form (67) coincides with (49) over � × �  and 
that it satisfies

Assumption 2  (Existence of an H2 reconstruction) We will assume there exists an operator 
R ∶ � → H2(�) such that

Such an example is given, for d = 2 , in [26, Lem 3.1] and consists of averaging techniques 
onto macro-elements on the Hsieh-Clough-Tocher space or in [9], for d = 3 , using virtual 
element spaces.

Proposition 3  (Abstract upper bound) Let u ∈ H2(�) solve (1), uh ∈ �  be the finite element 
approximation given by (48) and R(uh) ∈ H2(�) be a post-processor satisfying (69). Then,

Proof  Making use of the Miranda-Talenti inequality [34, 39] and the inf-sup condition (16) 
we see that

Now, adding and subtracting appropriate terms, we have

and the result follows.

Theorem 3  (A posteriori bound) Let u ∈ H2(�) solve (1) and uh ∈ �  be the finite element 
approximation given by (48). Then

where

(67)Ah(u, v) ∶= ∫�

A∶H(u)v + ∫
E

�h−1
e
[[u]] ⋅ [[Pkv]].

(68)Ah(u, v) ⩽ C ���u���DG,2‖v‖L2(�) for(u, v) ∈
�
H2(T) × L2(�)

�
.

(69)|||R(uh) − uh|||2DG,2 ⩽ C

(
‖‖‖h

−1∕2[[∇uh]]
‖‖‖
2

L2(E)
+
‖‖‖h

−3∕2[[uh]]
‖‖‖
2

L2(E)

)
.

(70)

��u −R(uh)
��H2(�)

⩽
1

C
sup

v∈L2(�)

�
l(v) −Ah

�
uh, v

�
+Ah

�
uh −R(uh), v

�
+Ah

�
R(uh), v

�
−A

�
R(uh), v

��

‖v‖L2(�)

.

(71)C��u −R(uh)
��H2(𝛺)

⩽ C̃
���Δ

�
u −R(uh)

����L2(𝛺)
⩽ sup

v∈L2(𝛺)

A
�
u −R(uh), v

�

‖v‖L2(𝛺)

.

(72)

A
(
u −R(uh), v

)
= l(v − vh) −Ah

(
uh, v − vh

)

+Ah

(
uh −R(uh), v

)
+Ah

(
R(uh), v

)
−A

(
R(uh), v

)
,

(73)|||u − uh|||DG,2 ⩽ C

(
∑

K∈T

�2
K
+
∑

e∈E

�2
e

)1∕2

,
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Proof  Beginning from Proposition 3 we note that the bound can be split into a residual 
component I1 , a nonconformity component I2 and an inconsistency component I3 as 
follows:

Now, we proceed to bound these term by term. In view of Cauchy-Schwartz, we have

For the nonconformity term, we note that

by the properties of the reconstruction given in (69).
For the inconsistency term, we have that

Making use of Lemma 4 and the properties of the reconstruction (69), we see that

(74)�2
K
∶= ‖‖f + A∶H(uh)

‖‖
2

L2(K)
,

(75)�2
e
∶= h−1

e
‖‖[[∇uh]]‖‖

2

L2(e)
+ h−3

e
‖‖[[uh]]‖‖

2

L2(e)
.

(76)

��u −R(uh)
��H2(�)

⩽
1

C

�
sup

v∈L2(�),‖v‖
L2 (�)⩽1

�
l(v) −Ah

�
uh, v

��

+ sup
v∈L2(�),‖v‖

L2 (�)⩽1

Ah

�
uh −R(uh), v

�

+ sup
v∈L2(�),‖v‖

L2 (�)⩽1

Ah

�
R(uh), v

�
−A

�
R(uh), v

�
�

=∶ I1 +I2 +I3.

(77)

I1 ⩽ sup
v∈L2(�),‖v‖

L2 (�)⩽1
∫�

�
f − A∶H(uh)

�
v

⩽

�
�

K∈T

��f − A∶H(uh)
��
2

L2(K)

�1∕2

.

(78)I2 ⩽ C |||R(uh) − uh|||DG,2 ⩽ C

(
∑

e∈K

h−1
e
‖‖[[∇hvh]]

‖‖
2

L2(e)
+ h−3

e
‖‖[[vh]]‖‖

2

L2(e)

)1∕2

,

(79)

I3 = sup
v∈L2(�),‖v‖

L2 (�)⩽1

1

C ∫�

A∶
�
H(R(uh)) − D2

R(uh)
�
v

⩽ C‖A‖L∞(�)
���H(R(uh)) − D2

R(uh)
���L2(�)

⩽ C‖A‖L∞(�)

�
��H(R(uh)) −H(uh)

��L2(�)
+
���H(uh) − D2

h
uh
���L2(�)

+
���D

2
h
uh − D2

R(uh)
���L2(�)

�
.
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Again from Lemma 4 we have that

and finally (69) gives that

Hence, we have that

Collecting (77), (78) and (83) yields the desired result.

Proposition 4  (A posteriori lower bound) Using the notation of Theorem 3, through stand-
ard a posteriori techniques, we have a lower bound of the form

where

5 � Numerical Experiments

In this section, we detail numerical experiments carried out in the finite element package 
Dune-Fem [15] which is based on the Dune software framework [6, 7]. The code makes use of 
the newly developed Python frontend [15] and the unified form language [3] is used to provide 
the problem data. The code will be made freely available within the Dune-Fem-tutorial in a 
future release [13].

We present some benchmark problems designed such that the exact solution is known. In 
each of the experiments the domain � = [0, 1]2 and we consider the coefficient matrix to be

varying a(x) and b(x) . We study three different choices using x =
(
x1, x2

)
 as follows. 

(80)

‖‖H(R(u
h
)) −H(u

h
)‖‖L2(�)

⩽ C |||R(u
h
) − u

h
|||DG,2

⩽ C

(
∑

e∈E

h
−1
e
‖‖[[∇h

v
h
]]‖‖

2

L
2(e)

+ h
−3
e
‖‖[[vh]]‖‖

2

L
2(e)

)1∕2

.

(81)‖‖‖H(u
h
) − D

2

h
u
h

‖‖‖L2(�)
⩽ C

(
∑

e∈E

h
−1
e
‖‖[[∇h

v
h
]]‖‖

2

L
2(e)

+ h
−3
e
‖‖[[vh]]‖‖

2

L
2(e)

)1∕2

,

(82)‖‖‖D
2
h
uh − D2

R(uh)
‖‖‖L2(�)

⩽ C

(
∑

e∈E

h−1
e
‖‖[[∇hvh]]

‖‖
2

L2(e)
+ h−3

e
‖‖[[vh]]‖‖

2

L2(e)

)1∕2

.

(83)I3 ⩽ C

(
∑

e∈E

h−1
e
‖‖[[∇hvh]]

‖‖
2

L2(e)
+ h−3

e
‖‖[[vh]]‖‖

2

L2(e)

)1∕2

.

(84)𝜂K +
∑

e∈𝜕K

𝜂e ⩽ C

(
‖‖‖D

2u −H[uh]
‖‖‖L2(K̂)

+
∑

K∈K̂

𝜂I,K

)
,

(85)�2
I,K

∶=
‖‖‖
(
Pk−2A − A

)
∶ H(uh)

‖‖‖
2

L2(K)
+ ‖‖f − Pk−2f

‖‖
2

L2(K)
.

(86)A(x) =

[
1 b(x)

b(x) a(x)

]
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1)	 (Coercive) In this test, we take the components of A such that the differential opera-
tor can be written in variational form and is coercive, fitting into a standard analytical 
framework: 

2)	 (Continuous not H2 ) In this test, we take A such that it is comparable to [32, §4.4] 

3)	 (Discontinuous not W1,∞ ) In our third test, a is discontinuous and not in W1,∞ . We take 
b ≡ 0 and choose 

 with 

 Note that the initial grid is chosen so that it aligns with the discontinuity.
We study the behaviour of our method for polynomial degrees k = 1, 2, 3 , choosing the 
forcing such that the exact solution is given by the following two choices. 

1)	 (Smooth solution): u(x) = sin 2πx1 sin 2πx2.

2)	 (H2⧵H3 solution): u(x) =

{
1

4

(
cos 8π

|||x −
1

2

|||
2

+ 1
)
, if

|||x −
1

2

|||
2

⩽
1

8
,

0, otherwise.

The penalty parameter is chosen as � = �A,max5k(k + 1) where �A,max is the maximum 
eigenvalue of A.

Remark 8  (Compatibility of spaces for uh and H(uh) ) Note that it is not actually required 
that the approximations uh and H(uh) are represented in the same finite element space. 
Computationally we observe similar results when H(uh) is one degree lower than uh and 
suboptimal convergence rates when H(uh) is two orders lower than uh . Other choices do not 
appear to be stable.

Benchmarking for these tests is shown in Figs.  1, 2 and 3. For linear polynomials, 
the H2(T)-error does not converge since the piecewise Hessian of uh vanishes. So we 
only show the errors in the L2(�) and H1(T) norms. For the smooth solution (left col-
umn), we clearly see that the method converges optimally in both norms. While for the 
less smooth solution convergence is slowed as would be expected when approximat-
ing an H2(�) solution. For polynomial orders 2 and 3 convergence is optimal for all 
norms studied here when approximating a smooth solution and between 1 and 1.5 for 

(87)a(x) = 1 − ln
((
x1 − 1∕2

)2
+ 10−4

)
,

(88)b(x) = 0.

(89)a(x) = 2,

(90)b(x) =
(
x2
1
x2
2

)1∕3
.

(91)a(x) = �(|x|∞)

(92)𝛼(s) =
1

100
+ 1 000

{√
1

4
− s, if s <

1

4
,

cos πs, otherwise.
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the H2(�) solution. The convergence rate hardly depends on the smoothness of A. The 
only case where some clear dependency is visible is in the L2(�) errors for quadratic 
polynomials with the discontinuous A . In this case, the order of the L2(�) error seems 
to equal the convergence in the H1(T) norm, i.e., is not optimal (see Fig. 2).

We also study the condition number of the system matrix generated when assembling 
(49). The results are shown in Fig.  4. In contrast to many other methods, which rewrite the 

Fig. 1   Convergence rates for the error measured in H1(�) and L2(�) for k = 1 testing the case when u is 
either a prescribed smooth solution or u ∈ H

2(�)∕H3(�) . We also test three different choices for diffusion 
coefficient A that are coercive, continuous but not H2 and discontinuous. The rates are optimal in H1(�) in 
all cases and in L2(�) in most cases. Note we did not present the H2(�) rates nor the estimate since neither 
will converge for k = 1



	 Communications on Applied Mathematics and Computation

1 3

nonvariational model as a fourth-order problem, the condition number depends on the grid spac-
ing in the same way as it does for second-order variational problem, i.e., it is O(h−2).

Finally, we study the behaviour of the residual error indicator and an adaptive scheme for the 
approximation of the solutions to these problems. The indicator is included in Figs. 2, 3 where its 
reliability is clearly visible. A comparison of these globally refined simulations with an adaptive 
simulation using an equal distribution strategy for locally refining the grid are given in Figs. 5 
and 6. As to be expected, no advantage can be gained when approximating a smooth solution. 

Fig. 2   Convergence rates for the error measured in H2(�) , H1(�) and L2(�) for k = 2 and the estimator 
given in Theorem 3. We test the case when u is either a prescribed smooth solution or u ∈ H

2(�)∕H3(�) . 
We also test three different choices for diffusion coefficient A that are coercive, continuous but not H2 and 
discontinuous. The rates are optimal in H2(�) and H1(�) in all cases and in L2(�) in most cases. When the 
solution is not smooth the rates are slowed to an expected rate in-line with the regularity of u. In all cases, 
the estimate is efficient and robust
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For the H2(�) solution, the adaptive simulation approximately doubles the convergence rate of 
the scheme.

We conclude with a simulation for which we do not have an exact solution. We use 
the discontinuous A and choose a constant forcing f ≡ 1 000 . As before boundary condi-
tions are equal to zero. Results are shown in Fig. 6 where we show the convergence of the 
residual indicator under global and local refinement. A visualisation of the function a, the 
resulting discrete solution, and the adaptive grid are given in Fig. 7.

Fig. 3   Convergence rates for the error measured in H2(�) , H1(�) and L2(�) for k = 3 and the estimator 
given in Theorem 3. We test the case when u is either a prescribed smooth solution or u ∈ H

2(�)∕H3(�) . 
We also test three different choices for diffusion coefficient A that are coercive, continuous but not H2 and 
discontinuous. The rates are optimal in H2(�) and H1(�) in all cases and in L2(�) in most cases. When the 
solution is not smooth the rates are slowed to an expected rate in-line with the regularity of u. In all cases, 
the estimate is efficient and robust.
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Fig. 4   Condition number estimates of the system matrix given by (49). Notice that the condition number 
grows in the same asymptotic fashion as the IP-DG method for the Laplacian ( A =Identity). Also, the com-
plexity does not change asymptotically as k is increased

Fig. 5   Comparison of simulations carried out on adaptive and globally refined grids driven by the estimate 
from Theorem  3. We test the case when u is either a prescribed smooth solution or u ∈ H

2(�)∕H3(�) and 
when A is discontinuous. For the smooth solution, we find the uniform and adaptive schemes behave simi-
larly, for the solution that is not H3(�) , the adaptive scheme clearly outperforms the uniform one, although 
there is no gain from using k = 3
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Fig. 6   Convergence of estimator under adaptive and globally refined grids. Here, we consider the case when 
A is discontinuous, shown in Fig. 7a, and the forcing is chosen f = 100 . No exact solution is known for this 
case. There is a clear indication that the adaptive scheme outperforms the uniform one

Fig. 7   Visualisation of the problem coefficient, the solution and the underlying adaptive mesh refinement 
level. Notice the algorithm refines where the problem data are discontinuous and well as near boundary lay-
ers caused by the anisotropy of the diffusion tensor
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6 � Conclusions and Outlook

In this work, we have extended the framework from [32] for linear nonvariational prob-
lems to incorporate discontinuous approximations. We have derived a posteriori bounds 
for this problem and shown they are useful to drive adaptive algorithms. We would like 
to point out that the approach presented here can be directly applied to the case where 
the approximation uh is chosen in a continuous finite element space but the finite ele-
ment Hessian is defined in the discontinuous fashion described here.

In the numerical experiments, we note the method is well posed and converges opti-
mally even for A that are discontinuous. The method is well suited to solve nonlinear 
problems [33] and this will be the topic of ongoing research.
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