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Abstract
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Doctor of Philosophy in Mathematics

Turbulence and Vortices in Classical and Quantum Fluids

by Adam Griffin

We present studies of different aspects of turbulence. One main focus is
a superfluid turbulence. We focus on how quantised vortices interact with
external potentials which could model experimental apparatus. In one chap-
ter, we discuss the deflection of vortices and their overall interaction with
vortex like impurities. Following this, the introduction of imbalance and a
barrier is explored in the context of how it can be used to control regimes
of turbulence in possible experiments. Here, the discussion focusses on how
certain by-products of turbulence affect the dynamics of the vortices. In
another related work, the affect of particles (which is common in superfluid
experiments for measuring vortex position) on the motion of vortices in sim-
ple cases is explored. Although some of the systems discussed here do not
directly exhibit turbulence, they are models of key components which are
present in turbulent flows. Studying such structures is often referred to as a
‘bottom up’ approach to turbulence. Finally, we study the affect of viscos-
ity on stationary solutions of a diffusion approximation of the Navier-Stokes
equation.
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Chapter 1

Introduction and Theory

I Motivation

Turbulence manifests itself all around us, from trivial things such as boiling
a kettle or flushing a toilet to life threatening volcanic erruptions [123] and
extra terrestrial hurricanes [125]. One of the greatest challenges facing the
world today is the warming of our planet. With increased temperatures
corresponding to more energy [122], it is as important as ever to be able to
understand turbulence.

Definitions of turbulence vary, with some indicating that fluids with
chaotic motion, with randomly changing velocities and even densities is
enough to be turbulent. However, others prefer the definition of turbulence
to rest on some of the key foundational discoveries of turbulence. That is,
the fluid must have some scales separated by an inertial range within which
there is a flux of conserved quantities. These ideas were first put forward
by Richardson [91] in the 1920s and further developed by Taylor[108] in his
papers building a statistical perspective of turbulence. These ideas were
then furthered by Kolmogorov in his famous 1941 paper [57]. The famous
poem by Richardson paints a nice picture of one of the fundamental ideas
in modern turbulence. The poem:

Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

– Lewis F. Richardson
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The poem depicts a direct energy cascade from large scales (big whorls)
to smaller scales (lesser whorls). In turbulence, the picture can become
much more complicated in terms of multiple quantities cascading in different
directions [50], or even a lack of locality [35].

The above work was done for classical fluids; however, in nature there
are fluids which are inherently different. Some fluids, namely, helium II
(helium below 2.19K) and condensed ultra cold atomic gases (Bose-Einstein
condensates) do not exhibit viscosity and can flow without dissipation. Su-
perfluidity was first discovered by Kapitza [55] in 1938, interestingly this is
the first paper in which the name ‘superfluid’ was used to describe fluids
with such properties. Vortices are quantised in superfluids, that is, they
have a fixed circulation and size. Since the conjectures of Onsager [87] and
Feynman [37] in the mid 20th century, quantum vortices have attracted
much interest - with progress being made analytically, numerically and ex-
perimentally. Quantum vortices appear naturally in many systems, from
superfluid helium [18] to superconductors [111], neutron stars [14, 118], non-
linear optics and atomic Bose-Einstein condensates (BECs) [70]. The last
context, BECs, is particularly relevant to this thesis. Research into these
phenomena has revealed new physics as well as interesting analogies and
points of contact with classical hydrodynamics (e.g. flows past obstacles,
Karman vortex streets, vortex leapfrogging).

Vortices play a pivotal role in turbulence. The added restriction of the
quantisation of the circulation along with the lack of viscosity makes quan-
tum turbulence distinct from its classical counterpart. A cascade of energy
through scales characterises turbulence. In this sense, large scales in the
quantum world can correspond to large clusters of vortices. Mechanisms of
energy transfer include vortex interactions and vortex annihilations (vor-
tices of opposing polarity colliding in 2D and cancelling each others out)
accompanied by the emission of sound waves.

Even with quantisation, big whorls are still possible, in this sense as a
combination of many smaller whorls. It is important to understand how the
quantised vortices interact with each other and external objects, and how
they are involved in cascades. In 2D (two dimensional) ideal turbulence,
there are two cascades at the same time, namely, enstrophy cascading to
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small scales (direct cascade) and energy to large scales (inverse cascade).
For large numbers of vortices, the tendency to form large-scale clusters can
be understood as an inverse cascade of turbulence.

How the vortices are created is important to the type of turbulence; for
instance, in a recent paper [41], the authors show that different obstacles in
a fluid can create large vortex clusters or a gas of paired vortices. Vortices
can be nucleated from the decay of large structures such as shock waves or
solitons. How these structures decay can depend on external potentials and
experimental apparatus, this is discussed in Chapter 3.

A way to observe the motion of quantised vortices in liquid helium is to
place particles in the fluid. The particles are then trapped on the core and
are tracked [18]. The effect of the particles on the vortices is not yet fully
understood. Many questions remain unanswered on how the measurements
should be interpreted. We endeavour to answer such questions by starting
with a simple case and explaining the dynamics, then moving forward by
increasing the complexity.

Another way to study turbulence is via the global statistics such as the
energy spectra. Stationary solutions are ones with constant flux through
the inertial range. That is, energy is injected at some scale and cascades
at a constant rate, then exits the inertial range by being removed from the
system.

II Structure

This thesis consists of two published research articles:

1. Vortex scattering by impurities in a Bose-Einstein conden-
sate
A. Griffin, G. W. Stagg, N. P. Proukakis, and C. F. Barenghi - Jour-
nal of Physics B: Atomic, Molecular and Optical 50, 115003 (2017).[44]

2. Steady states in Leith’s model of turbulence
V.N. Grebenev, A. Griffin, S.B. Medvedev and S.V. Nazarenko -
Journal of Physics A: Mathematical and Theoretical 49 (36), 365501
(2016)[42]
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and two articles submitted for publication:

3. The Vortex-Particle Magnus effect
A. Griffin, S. Nazarenko, V. Shukla and M. Brachet
Submitted to Physical Review A (APS)

4. Breaking of Josephson junction oscillations and onset of
quantum turbulence in Bose-Einstein condensates
A. Griffin, S. Nazarenko and D. Proment
Submitted to Journal of Physics A (IOP)

We start with an introduction into some relevant background theory
of superfluid turbulence, this is pertinent for papers 1, 3 and 4. This is
followed by details of the numerical methods used in said papers. Finally,
the foundations of the final chapter based on paper 2 are presented at the
end of the introduction. In papers 1, 3 and 4, I am the lead author. In paper
2, as I am not the lead author I have placed my contributions in the main
text and work that I contributed to with discussion into Appendix B for
completion. Here, the abstracts of each paper are presented as a precursor
to the introduction.

II.i Vortex scattering

Understanding quantum dynamics in a two-dimensional Bose-Einstein con-
densate (BEC) relies on understanding how vortices interact with each oth-
ers microscopically and with local imperfections of the potential which con-
fines the condensate. Within a system consisting of many vortices, the
trajectory of a vortex-antivortex pair is often scattered by a third vortex,
an effect previously characterised. However, the natural question remains as
to how much of this effect is due to the velocity induced by this third vortex
and how much is due to the density inhomogeneity which it introduces. In
this work, we describe the various qualitative scenarios which occur when
a vortex-antivortex pair interacts with a smooth density impurity whose
profile is identical to that of a vortex but lacks the circulation around it.
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II.ii Breaking of Josephson junction oscillations and

onset of quantum turbulence in Bose–Einstein con-

densates

We analyse the formation and the dynamics of quantum turbulence in a two-
dimensional Bose–Einstein condensate with a Josephson junction barrier
modelled using the Gross–Pitaevskii equation. We show that a sufficiently
high initial superfluid density imbalance leads to randomisation of the dy-
namics and generation of turbulence, namely, the formation of a quasi-1D
dispersive shock consisting of a train of grey solitons that eventually breakup
into chains of distinct quantised vortices of alternating vorticity followed by
random turbulent flow. The Josephson junction barrier allows us to create
two turbulent regimes: acoustic turbulence on one side and vortex turbu-
lence on the other. Throughout the dynamics, a key mechanism for mixing
these two regimes is the transmission of vortex dipoles through the barrier:
we analyse this scattering process in terms of the barrier parameters, sound
emission and vortex annihilation. Finally, we discuss how the vortex turbu-
lence evolves for long times, presenting the optimal configurations for the
density imbalance and barrier height in order to create the desired turbulent
regimes which last as long as possible.

II.iii Magnus particle effect

Experimentalists use particles as tracers in liquid helium. The intrusive
effects of particles on the dynamics of vortices remain poorly understood.
We implement a study of how basic well understood vortex states, such as
a propagating pair of oppositely signed vortices, change in the presence of
particles by using a simple model based on the Magnus force. We focus
on the 2D case, and compare the analytic and semi-analytic model with
simulations of the Gross-Pitaevskii (GP) equation with particles modelled
by dynamic external potentials. The results confirm that the Magnus force
model is an effective way to approximate vortex-particle motion either with
closed-form simplified solutions or with a more accurate numerically solv-
able ordinary differential equations (ODEs). Furthermore, we increase the
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complexity of the vortex states and show that the suggested semi-analytical
model remains robust in capturing the dynamics observed in the GP simu-
lations.

II.iv Leith model of turbulence

We present a comprehensive study and full classification of the stationary
solutions in Leith’s model of turbulence with a generalised viscosity. Three
typical types of boundary value problems are considered: problem 1 (2)
with a finite positive value of the spectrum at the left (right) and zero at the
right (left) boundaries of a wave number range, and problem (3) with finite
positive values of the spectrum at both boundaries. Formulations of these
problems and analysis of existence of their solutions are based on a phase-
space analysis of orbits of the underlying dynamical system. One of the
two fixed points of the underlying dynamical system is found to correspond
to a “sharp front" where the energy flux and the spectrum vanish at the
same wave number. The other fixed point corresponds to the only exact
power-law solution—the so-called dissipative scaling solution. The roles of
the Kolmogorov, dissipative and thermodynamic scaling, as well as of sharp
front solutions, are discussed.

III Non-Linear Schrödinger Equation

To study turbulence from the ‘bottom up’ we introduce an equation which
can be used as a model for superfluids. The Non-Linear Schrödinger (NLS)
equation is usually presented in dimensionless form and can have positive
or negative (focusing or defocussing) interaction terms. The NLS equation
for the evolution of the complex scalar wave function ψ(r, t) ∈ C:

i
∂

∂t
ψ (r, t) =

(
−∇2 + s |ψ (r, t)|2

)
ψ (r, t) , (1.1)

where the parameter s here prescribes the focusing or defocussing nature
of the equation. This equation is a universal model and encapsulates many
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different areas of physics, such as optics [83], water waves [126] and Bose-
Einstein condensates [45, 89]. In this report we restrict ourselves to up to
3 spatial dimensions such that r ∈ D ∈ Rd where d = 3 and t ∈ R+, where
D is some domain prescribed with a suitable boundary.

The application to fluid dynamics of this equation can best be demon-
strated via the Madelung transformation. The Madelung transformation
was first used to show how the probability clouds describing positions and
momenta of particles have fluid like properties in the Schrödinger equation.

III.i Madelung Transformation

The wave function can be expressed by its density ρ (r, t) and phase θ (r, t);

ψ (r, t) =
√
ρ (r, t)eiθ(r,t). (1.2)

The fluid velocity can then be written as,

v (r, t) = 2∇θ (r, t) . (1.3)

Via substitution of the above representation of the wave function into
the NLS equation and separation of real and complex terms, we arrive at
two familiar equations (calculation shown in section I in appendix A). The
equation found by consideration of the real part is the continuity equation,

∂ρ

∂t
= −∇ · (ρv) . (1.4)

This equation represents the conservation of particle number density within
the NLS equation. The equation found by considering the imaginary parts
is given by,

∂v

∂t
+ (v · ∇)v = s

∇ρ2

ρ
+ 2∇∇

2√ρ
√
ρ
. (1.5)
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This is very similar to Euler’s equation with a differing pressure term given
by,

∇p
ρ

= s
∇ρ2

ρ
+ 2∇∇

2√ρ
√
ρ
. (1.6)

The first term is similar to the adiabatic pressure p = −sρ2 found in classical
ideal fluids. The second term corresponds to the quantum pressure. The
difference of the quantum pressure term is an important one, as the pressure
is not constant the fluid will be compressible therefore the flow will host
coherent structures such as sound waves.

As the wave function has a corresponding velocity in equation (1.3), one
can calculate the circulation. Substitution of (1.3) into the equation for
circulation, one will arrive at,

Γ =

∮
L
∇θ · dL. (1.7)

Note here that if we let the value of ψ at the beginning of the closed line
integral to be ψ0 then at the end point of the line integral, ψf , we obtain
the expression ψf = ψ0e

iΓ. However, the wave function is single valued
implying that ψf = ψ0 thus Γ must be equal to some multiple of 2π. This
is equivalent to: ∮

L
∇θ · dL = 4πq, (1.8)

where q is an integer. For a homogeneous condensate q = 0, for q 6= 0 there
must be a phase singularity in the flow. The phase singularity is present
when considering the flow around a vortex. This causes the circulation to
be quantised where q is the charge of the vortex.

The mass of fluid within the system is conserved (calculation shown in
section II in appendix A) under evolution of (1.1),

N =

∫
D
|ψ (r, t) |2dr. (1.9)
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Total Momentum, P, is also conserved,

P = − i
2

∫
D

[ψ∗∇ψ − ψ∇ψ∗] dr. (1.10)

It can also be shown that the total energy is conserved in the system (cal-
culation shown in Section II in Appendix A) and that the system can be
represented by the following Hamiltonian,

H =

∫
D

[
|∇ψ|2 +

s

2
|ψ|4

]
dr. (1.11)

The first term in (1.11) can be decomposed by using the Madelung
transform (1.2) into the kinetic energy and the so called quantum energy

|∇ψ|2 = ρ|∇θ|2 + |∇√ρ| = εkin + εquant. (1.12)

Further, the kinetic energy can be decomposed into divergence and curl
free parts by using the Helmholtz decomposition. To do this practically we
make use of the Fourier transform of the density flux ĵ, we use the following
formula from [86] for the kinetic compressible energy:

Ec
kin =

∫
D

∑
α

(∑
β

kαkβ
k2

ĵβ

)2
1/2

dk (1.13)

where α = x, y and β = x, y. From this the incompressible energy can be
calculated as the difference of the total energy and the kinetic compressible
energy.

In the field of condensed gases a re-scaled version of (1.1) is known as the
the Gross Pitaevskii (GP) equation [45, 89]. The GP equation describes a
Bose-Einstein condensate (BEC) formed in a weakly interacting dilute Bose
gas at zero temperature. The GP equation is given by

i~
∂

∂t
ψ (r, t) =

(
− ~2

2m
∇2 + Vext (r) + g |ψ (r, t)|2

)
ψ (r, t) . (1.14)
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Where ψ(r, t) ∈ C is a complex scalar wave function, here r ∈ R3, ~ is
the reduced Planck’s constant, m is the mass of a boson and Vext is some
spatially dependent confining potential. The magnitude of the non-linear
interaction g, is given by

g =
4π~2a

m
, (1.15)

for the scattering length a which characterises the repulsive interaction be-
tween bosons. The equation is the defocussing (s = 1) NLS with the scaling

x = ξx′ t =
~
µ
t′ ψ = ψ0ψ

′ Vext = V ′µ, (1.16)

where

ξ =
~√

2mgρ0

, (1.17)

is the healing length which is the length scale where the repulsion and
diffusion balance within (1.14). The chemical potential µ is the change in
energy to a condensate when the number of particles change. Here, ψ0 is the
solution to the steady infinite condensate and ρ0 = |ψ0|2. The circulation
is also rescaled, in these units it is quantised to multiples of h/m.

It is useful to consider steady solutions to this equation, that is solutions
independent of time. The time independent GP equation can be found by
considering the evolution of the state,

ψ (r, t) = ψs (r) e−
iµt
~ , (1.18)

where ψs is a time independent solution. Applying this substitution to
equation (1.14) we find the time independent GP equation:

µψs (r) =

(
−~2∇2

2m
+ Vext (r) + g |ψs (r)|2

)
ψs (r) . (1.19)
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III.ii Uniform Solution

One of the simplest solutions can be found by considering the one dimen-
sional time independent GP Equation and for a uniform density such that
∂2ψ
∂x2

= 0 and no external potential, Vext = 0, then the time independent GP
equation (1.19) becomes,

g |ψ|2 ψ = µψ. (1.20)

By rearranging,

ψ (x) = ψ0 =

√
µ

g
. (1.21)

It is simpler to write this in terms of the real valued density,

ρ (x) = ρ0 = ψ2
0 =

µ

g
. (1.22)

For this case the chemical potential, interaction strength and density are
trivially linked and the density is constant in space.

III.iii Semi-Infinite Trap

Consider an infinite one dimensional line with a potential defined as,

Vext (x) =∞ when x < 0 Vext (x) = 0 when x ≥ 0 (1.23)

The region x < 0 is not accessible to the wavefunction due to the potential
at the origin. Thus this is equivalent to the boundary condition ψ (0) = 0 ,
We also specify for the other boundary that ψ (x) = ψ0 =

√
µ
g

as x→∞
due to the limiting case where the wave function will not interact with
the boundary the wave function is required to become the solution in an
infinite plane as in (1.22). We once again consider the time independent
Gross-Pitaevskii equation in the region of zero external potential. Applying
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these conditions to equation (1.19), one arrives at,

µψ =

(
− ~2

2m

∂2

∂x2
+ g |ψ|2

)
ψ. (1.24)

Now using the second constraint we rearrange to find µ = ψ2
0g, substituting

this into the above equation gives

∂2ψ

∂x2
= −2mg

~2

(
ψ2

0 − |ψ|2
)
ψ, (1.25)

which we can solve to give

ψ (x) = ψ0tanh

(
x

ξ

)
. (1.26)

Here we see clearly how the healing length ψ is a scale at which the wave-
function heals to a potential or boundary. This solution also motivates the
choice of the tanh function in Chapter 4.

IV Numerical Methods

Here we present a brief overview of the numerical methods used. We use
finite difference and pseudo-spectral methods.

IV.i Finite Difference Method

Finite difference is a method for numerically calculating derivatives. The
method relies on approximating derivatives at a particular point in space
and time by considering nearby points at well defined finite distances. The
derivation is a simple exercise in which you take advantage of the cancella-
tions of the forward and backward Taylor expansions. To begin, prescribe
a spatial discretisation, for one dimension this is x, into Nx points and tem-
poral domain, t, into Nt points. The points are separated by small finite
increments ∆x and ∆t for space and time respectively. We denote the field
at position xj and time tj as ψi,j = ψ (xj, tj). Within the scheme, the two
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important derivatives for solving the GP equation are given by:

∂ψi,j
∂t

=
ψi,j+1 − ψi,j−1

2∆t
+O (∆t) (1.27)

∂2ψi,j
∂x2

=
ψi+1,j − 2ψi,j + ψi−1,j

∆x2
+O

(
∆x2

)
. (1.28)

The method also has a stability condition which is ∆t/(∆x2) < 1/2 in
1D and ∆t/(∆x2) + ∆t/(∆y2) < 1/2 in 2D. To improve the stability and
accuracy of the method we can use higher order methods. In particular the
fourth order second partial derivative can be written:

∂2ψi,j
∂x2

=
− 1

12
ψi+2,j + 4

3
ψi+1,j − 5

2
ψi,j + 4

3
ψi−1,j − 1

12
ψi−2,j

∆x2
+O

(
∆x4

)
(1.29)

IV.ii The Runge-Kutta Method

The Runge-Kutta 4th order method is used for time-stepping because of its
relative ease of use and its high stability. The method works by considering
the approximate derivatives at different points and uses symmetry to cancel
error terms from the approximations to increase the order of the truncation
error. The truncation error of the Runge-Kutta method is of the order
O (∆t5) therefore the total error for multiple steps is of order O (∆t4).

ψi+1 = ψi +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = hf(t, ψn)

k2 = hf(t+ ∆t/2, ψn + k1/2)

k3 = hf(t+ ∆t/2, ψn + k2/2)

k4 = hf(t+ ∆t, ψn + k3)

Where f represents the dimensionless version of the right hand side of
(1.14).
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IV.iii Imaginary Time Propagation

To study the dynamics of the GP equation, it is often useful to find a ground
state given the boundary conditions and external potentials. This state will
minimise the kinetic energy, allowing studies with small perturbations such
as the addition of vortices or change in potential. To find such a config-
uration with minimal energy we use a numerical method called Imaginary
time propagation [103, 5]. To gain insight into this method, consider wave
function, ψ(x, t), in one spatial dimension expressed as a superposition of
eigenstates ψn with corresponding eigenenergies En given by

ψ (x, t) =
∞∑
n=1

anψn (x) e−
iEn
~ t. (1.30)

In the above equation an are coefficients of the orthonormal basis func-
tions, such that any initial data can be expressed by choosing suitable
coefficients. We can now order the eigenenergies with the condition that
En < En+1, which implies that E0 is the ground state energy. To proceed
we consider the substitution t = −iτ , which transforms the arbitrary state
into the form

ψ (x, τ) =
∞∑
n=1

anψn (x) e−
En
~ τ . (1.31)

The above equation is decreasing in τ and will tend to zero as τ increases.
If we numerically enforce conservation of density, |ψ|2, then we ψ no longer
can go to zero, instead it will tend to the wavefunction that minimises the
energy. To explain this consider Equation (1.31) which can be re-written,
by taking the exponential of the lowest eigenenergy outside the sum, as

ψ (x, τ) = e−
E0
~ τ
[
a0ψ0 + a1ψ1 (x) e

(E0−E1)
~ τ + a2ψ2 (x) e

(E0−E2)
~ τ + · · ·

]
.

(1.32)
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It is now clear that any term inside the bracket of the form,

anψn (x) e
(E0−En)

~ τ , (1.33)

will tend to zero as τ increases due to (E0−En) < 0 for En > 0. The speed
of convergence to zero is increasing in n, thus the ground state will have the
slowest convergence. This fact along with the renormalisation imposing a
constant density shows us that as τ increases ψ will tend to the lowest energy
state. By using the numerical methods discussed in the above sections with
the substitution of tp = −iτp we now have a method for finding the ground
state.

IV.iv Model and methods for particles

A modification of the dimensionless GP equation (1.14) will allow us to
study particles. We allow the particle to act on the fluid as any external
potential. The fluid also acts on the particle by changing its position due to a
force calculated from the pressure exerted on the particle due to the density
of the surrounding fluid. We present the equation for the wavefunction ψ:

i
∂ψ

∂t
= −1

2
∇2ψ − ψ + |ψ|2ψ +

N0∑
i=1

VP(r− qi)ψ; (1.34)

which is coupled with a particle which follows Newtonian mechanics, with

m0q̈i = f0,i + fSR,i, (1.35)

where
fo,i =

∫
D
|ψ|2∇VP dr, (1.36)

and fSR,i models the short-range repulsion between the particles and only
become significant when particles are close enough to collide. The choice of
the function VP dictates the shape and penetrability of the particle. For our
studies we choose a Gaussian particle, which corresponds to a disk shape
particle with a small, but not insignificant boundary layer. More details are
given in Chapter 4.
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The total energy of this system in the absence of any external force is
conserved and given by

E = EGP + EP (1.37)

is conserved; here, EGP, the energy of the superfluid field calculated by
(1.11) with the correct potential and scales, EP is the total energy of the
particles, which can be further separated into contributions from the kinetic
energy and potential energy from the short range repulsion EP = EPkin +
ESR. The GP energy is the same as (1.11) with the correct potential and
scales and is defined as

EGP =
1

A

∫
A

[
1

2
|∇ψ|2 +

1

2

(
|ψ|2 − 1

)2

(1.38a)

+
∑No

i=1
VP(r− qi)|ψ|2

]
dr; (1.38b)

EPkin =
1

A
∑

i=1

1

2
moq̇

2
i ; (1.38c)

ESR =
1

A
∑No,No

i,j,i6=j

∆Er
1/2
SR

|qi − qj|1/2
. (1.38d)

In this model Eqs. (1.34)-(1.35), the total momentum is conserved

P(t) =

∫
D

i

2
(ψ∗∇ψ − ψ∇ψ∗) dr +

∑No

i=1
moq̇i (1.39)

The total density is still also conserved

N =

∫
D
|ψ|2 dr. (1.40)

We model the particles by specifying the potential VP which is discussed
in Chapter 4. We use the pseudo-spectral method for calculating the spa-
tial derivatives. We can show how this method works by focusing on the
Laplacian term in equation (1.34),

∂ψ

∂t
= i∇2ψ. (1.41)
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By using the Fourier transform of ψ:

ψ̂ =

∫
D
ψe−ik·xdx (1.42)

and taking the Fourier transform of (1.41) we find

∂ψ̂

∂t
= −ik2ψ̂ (1.43)

which has a solution if we integrate for t:

ψ̂(t) = ψ̂0e
−ik2t. (1.44)

Thus to find the solution we can use the inverse Fourier transform:

ψ =

∫
Dk
ψ̂eik·xdk. (1.45)

To deal with the nonlinear term plus any external potential term we can
consider the equation:

∂ψ

∂t
= IFT [k2[FT [ψ]]]− i|ψ|2ψ − iψ − i

N0∑
i=1

VP(r− qi)ψ. (1.46)

where FT [·] indicates the Fourier transform and IFT [·] its inverse. Now we
can use the Runge-Kutta method discussed in IV.ii to step in time.

When performing the Fourier transform numerically dealiasing errors
can arise. We follow Ref. [59] and use the standard 2/3-dealiasing rule,
with kmax = 2/3×Nc/2 in the Galerkin projector PG

PG[ψ̂(k)] = H(kmax − |k|)ψ̂(k). (1.47)

Here , H(·) the Heaviside function. The two thirds rule arises from re-
quiring that interactions between waves that introduce waves outside of the
available modes are not re introduced as unphysical waves due to the DFT.
If we have two waves with wave numbers k1 and k2 such that k1 + k2 >

Nc/2, the DFT will then assign the amplitude of the wave resulting from
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their interaction to the mode k1 + k2 − Nc. To counter this we choose a
sub-domain in k in which all amplitudes are set to zero. We chose that
k1 + k2 − N < −kmax < Nc, for all k1, k2 ∈ [−kmax, kmax]. The extremal
values are then required to satisfy 2kmax−Nc < −kmax. Thus, we arrive at
the 2/3-dealiasing rule, withkmax = 2/3×Nc/2.

We first apply PG on |ψ|2 and then again on PG[|ψ|2]ψ. This ensures
global momentum conservation in our simulations. This is essential for the
study of collisions between particles [97] and their interactions with the field
ψ. Thus, our Galerkin-truncated GPE becomes

i
∂ψ(r, t)

∂t
= PG

[
−IFT [k2[FT [ψ(r, t)]]] + PG[|ψ|2]ψ(r, t)

− 1 +
∑No

i=1
VP(r− qi)ψ(r, t)

]
.

(1.48)

Given our Galerkin-truncation scheme, we can write the force acting on the
particle as

fo,i = −
∫
A

[
ψ∗PG[VP(r− qi)∇ψ]

+ ψPG[VP(r− qi)∇ψ∗]
]
d2x.

(1.49)

V Derivation of Leith Model

In this section we follow the original paper of Leith [64] in his derivation of a
simplistic model for the diffusion of energy in the Navier-Stokes (NS) equa-
tion. This is a precursor to Chapter 5, in which we analyse the stationary
solutions when the viscosity is generalised. We start by defining one of the
fundamental quantities of turbulence, the two point correlation function of
the velocity:

〈u(x) · u(x + r)〉 =
1

2

∫
R3

u(x) · u(x + r)dx. (1.50)
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To find an evolution equation for this quantity we take the Navier-Stokes
equation,

∂u

∂t
+ (u · ∇)u− ν∇2u = 0 (1.51)

where u is the velocity of a fluid. We also chose the velocity to be
divergence free,

∇ · u = 0 (1.52)

such that the density of the fluid is conserved. The final terms corresponds
to dissipation, with ν being the kinematic viscosity. By taking the dot
product of (1.51) with the velocity at some point a distance r, u(x + r),
performing the averaging and using the fact the velocity is divergence free
we have:

1

2

∂〈u(x) · u(x + r)〉
∂t

+ A(u)− 1

2
ν∇2(〈u(x) · u(x + r〉) = 0 (1.53)

where A(u) encapsulates the average of the non-linear term in (1.51),
we omit the details of this term as the proposed model will approximate
the effect of this term as diffusion in k−space rather than the complicated
non-local convolution. Now we define the 3D energy spectrum as follows,

E(3D)(k) =
1

2

∫
R3

〈u(x) · u(x + r)〉e−ik·rdr. (1.54)

The energy spectrum is a focus of the study of turbulence. It shows how
the energy is distributed over different length scales. We aim to approximate
the dynamics of this quantity due to the evolution of (1.51). We note that
if the turbulence is isotropic then the dependence is only on k = |k|, also
all the information can be expressed in a 1D energy spectrum, given by,
E(1D)(k) = 4πk2E(3D)(k). Thus we can define the kinetic energy spectrum
as
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〈u2〉
2

=

∫
D
E(1D)(k)dk (1.55)

By taking the Fourier transform of (1.53) we have:

∂E(3D)(k, t)

∂t
+ =(k, t)− νk2E(3D)(k, t) = 0 (1.56)

Where here = accounts for the distribution of energy amongst the wave
numbers due to non-linear interactions. The term = should conserve energy
thus we define

= = −∇ · F (1.57)

such that F is the flux vector of energy. We assume compactness in
k-space, that is, for some cut-off kc F(k > kc) = 0. If we restrict ourselves
to isotropy and the radial component of F is F then (1.56) can be written:

∂E(1D)(k, t)

∂t
= −k−2∂(k2F(k))

∂k
− νk2E(1D)(k) (1.58)

The restriction of isotropy allows us to integrate radially and azimuthally
such that the total energy and flux for each shell corresponding to the wave
number k will be given by:

E(1D)(k) = 4πk2E(3D)(k) (1.59)

F = 4πk2F (1.60)

now,
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∂E(1D)

∂t
= −k−2∂k

2F

∂k
− νk2E(1D) (1.61)

To proceed Leith applied the ideas of Kolmogorov which has physical
intuition and experimental evidence. The idea was that the flux in k must
be local, such that the value of the energy flux ε(k) is influenced mainly
by the values at points close to k. To formulate this we introduce what is
referred to as the diffusion approximation:

F = −D∂Q
∂k

(1.62)

Where D is a diffusion coefficient and Q the diffusion potential, both
of which can be functions that vary in k-space and as a function of energy
density.

Dimensional arguments can show that the product DQ has dimension
k9/2ε3/2, the dimensions we need to consider are,

[DQ] =

[
∂E(1D)

∂t
k3

]
= L3T−3L−3 = T−3, (1.63)

[ε] = L2T−2, (1.64)

[E(1D)] = L3T−2. (1.65)

Using these dimensions, and equation (1.61) we can determine the di-
mension of the product DQ:

[DQ] = [ε]α[k−1]β (1.66)

[T−3] = [L3T−2]α[k−1]β (1.67)

α = 3/2 (1.68)

β = 9/2. (1.69)
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Thus to find the dimension of D and Q separately, we can write:

D = βk9/2−mεn (1.70)

Q = kmε3/2−n, (1.71)

if n = 3/2 this case is known as the Kovasznay’s approximation which is a
simpler model, we choose n 6= 3/2 then

F = −β
(

3

2
− n

)
k

11
2

[
m

3
2
− nε

3
2 +

3

2
kε

1
2
∂ε

∂k

]
(1.72)

where E = E(1D) here, the notation is contracted for simplicity. As the
factor of n coincides with multiplication of the constants β and m we lose
no generality in choosing n = 0, as this choice just rescales the constants.
The choice ofm can be made on physical grounds. If we consider an isolated
region of k- space where the energy distribution is constant every where and
there is no flux, then the correct solution corresponds to m = 0 to cancel
the first term in the bracket in (1.72). Thus substituting (1.72) into (1.61)
we arrive at

∂E

∂t
= β

∂

∂k

[
k

11
2 E

1
2
∂k−2E

∂k

]
− νk2E, (1.73)

which is Leith’s model of turbulence. The term β can be chosen to fit
numerical observations. Equation (1.73) approximates the evolution of the
energy spectrum due to the Navier-Stokes equation. The equation differs
from NS due to the treatment of the nonlinear term. In the Leith model
we have replaced a non-local convolution in k−space with a local diffusion
type nonlinearity. The equation is especially useful for studying the effects
of this type of locality in turbulence.
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Chapter 2

Vortex Scattering via impurities

I Introduction

In a recent paper [102], Smirnov & Smirnov have studied the scattering
of two-dimensional (2D) vortex-antivortex pairs and solitons by a single
quantum vortex in a homogeneous atomic Bose-Einstein condensate. They
found that the pair is scattered over large angles radiating sound waves, in
agreement with earlier calculations [12]. This scattering process is impor-
tant because it lies at the heart of the dynamics of 2D quantum turbulence,
a problem which is currently attracting experimental and theoretical atten-
tion [79, 82, 62, 105, 26, 46]. Our understanding of the turbulent motion of
many interacting vortices is based on recognizing the most elementary inter-
actions, such as the interaction of a vortex with another vortex of the same
or opposite sign (resulting respectively in rotational or translation motion of
the pair). Similarly, we would like to recognize the possible elementary in-
teractions between a vortex and a large density perturbation induced by the
dynamics of vortices by external means. It is well-known that a quantum
vortex in a Bose-Einstein condensate is a hole of zero density around which
the phase changes by 2π. The natural question is whether the incoming
vortex-antivortex pair would be scattered (and if so, by which amount) by
a density perturbation alone (without the circulation around it), as density
gradients induce a Magnus force [72, 36] which deflects the pair. To answer
this question, we have performed numerical simulations of vortex-antivortex
pairs travelling towards a fixed target in the form of a density perturbation
(hereafter referred to as an ‘impurity’) and whose depth and size is similar
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to the depth and size of a quantum vortex (but without the circulation).
Here we report about the significant scattering induced by the impurity, and
compare it with the scattering induced by a target in the form of a vortex.

For simplicity we consider a homogeneous condensate at zero temper-
ature, and aim at identifying the various qualitative scenarios which are
possible (quantitative predictions of vortex trajectories in a harmonically
trapped condensate require more specific calculations which depend on the
actual physical parameters and geometry, and are outside the scope of this
work). A better physical understanding of the scattering which imperfec-
tions induce on vortices is generally useful (although in general imperfections
may not be as symmetric as we describe them here). Our results are also
relevant to the manipulation of vortices using optical potentials generated
by laser beams [29, 107].

II Model

We simulate the dimensionless version of the GP equation (1.1) in a 2D do-
main −L ≤ x, y ≤ L. The initial condition at t = 0, schematically described
in Fig. 2.1, is a vortex-antivortex pair, consisting of a left (clockwise) vortex
and a right (anticlockwise) vortex initially placed respectively at positions
xL(0), yL(0) and xR(0), yR(0). We call d = |xL(0) − xR(0)| the initial dis-
tance between the vortices of the pair. The vortex-antivortex pair travels
along the negative y direction with impact parameter h = (xR(0)+xL(0))/2

towards a fixed density perturbation (or impurity) held at xI = yI = 0. The
impurity is represented by the (dimensionless) external potential V (x, y) =∑4

j=1 Aje
−R2/σ2

j where R2 = ((x− xI)2 + (y − yI)2).
With a suitable choice of parameters Aj1 solving the time-independent

GPE without the vortex-antivortex pair, the density profile of the impurity
approximately matches the profile of a singly-charged vortex at xI , yI in
the homogeneous condensate.

To quantify the scattering, we measure the deflection angle θ of the an-
tivortex away from its initial trajectory, but in some cases (for example if the

1Parameters: A1 = 14; A2 = 0.22; A3 = 0.15; A4 = 0.05; σ1 = 0.4; σ2 = 1.25;
σ3 = 2.5; σ4 = 4.75.
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Figure 2.1: Schematic representation of the scattering con-
figuration. Initially, the vortex (red, right) and the antivor-
tex (blue, left) are separated by the distance d; the impact
parameter is h (here h < 0). The vortex-antivortex pair
travels in the negative y-direction towards the impurity (or
a third vortex) at the origin. The scattering angle is θ (here

θ > 0).

vortex-antivortex pair breaks up) a different description of the interaction
is necessary.

We choose L = 156.6ξ and impose ψ = 0 on the boundaries. We use
a 10242 grid, corresponding to the (dimensionless) spatial discretization
∆x = ∆y = 0.3ξ. Time-stepping is performed using the 4th-order Runge-
Kutta scheme; the typical (dimensionless) time step is ∆t = 0.01. During
typical evolutions the total energy is conserved within 0.003 %. The calcu-
lations were repeated in a 5122 box with size L = 76.65ξ resulting in the
same qualitative scattering scenarios which we describe in the next section.
Variations in the deflection angles resulting from discretization errors and
from sound waves reflected from the boundaries are small (of the order of
one percent); the trapping scenario appears more sensitive to perturbations.
On the other hand, in the experiments, 2D vortex configurations typically
contain significant sound waves besides thermal noise.
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III Scattering scenarios

In all calculations we choose initial y-coordinates yL(0) = yR(0) = 65ξ,
sufficiently away from the impurity; the initial x-coordinates, xL(0) and
xR(0), vary from case to case, as we change the impact parameter h and
the vortex separation d. We have identified three typical scenarios:
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Figure 2.2: Scenarios of interactions between the vortex-
antivortex pair and the impurity. In all panels the pair trav-
els from top to bottom toward the impurity; the red (right)
line and the blue (left) line are the trajectories of the vor-
tex and the antivortex respectively; the black circle at the
origin marks the impurity. The top panels show the com-
puted trajectories; the bottom panels show density profiles
at arbitrarily selected times together with the trajectories.
Panels (a,b): Fly-by scenario for (h, d) = (−10.0ξ, 6.91ξ)
and (−7.9ξ, 6.91ξ) respectively. The vortex-antivortex pair
is scattered by the impurity, deflecting to the left by an angle
θ. Panel (c): Trapping scenario for (h, d) = (−6.0ξ, 6.98ξ).
The vortex (red trajectory) is trapped by the impurity, and
the antivortex (blue trajectory) orbits around it. Panels
(d,e): Go-around scenario for (h, d) = (−2.0ξ, 6.91ξ) and
(0.0ξ, 6.98ξ) respectively. The vortex and the antivortex
overtake the impurity, going around it in opposite directions.

1. Fly-by scenario If the impact parameter h is large and negative,
the vortex-antivortex pair is too far at the left of the impurity, see
Fig. 2.2(a), to be affected, and the deflection angle is θ ≈ 0. If h
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increases (still keeping h < 0), the vortex-antivortex pair is scattered
to the left (as seen from the initial direction of travel) with increasing
positive deflection angle θ, as shown in Fig. 2.2(a,b).

2. Trapping scenario If h is further increased (still keeping h < 0),
the vortex falls into the region of low density of the impurity, see
the red trajectory of Fig. 2.2(c), becomes trapped and stops, with a
strong emission of sound waves, see Fig. 2.3; at this point, the isolated
antivortex processes around the impurity, see the blue trajectory of
Fig. 2.2(c). In this scenario the deflection angle cannot be defined.

3. Go-around scenario

A further increase of h means that the vortex-antivortex pair is al-
most aimed at the impurity; the left (anticlockwise) vortex and the
right (clockwise) vortex overtake the impurity on opposite sides, going
around it along opposite directions, before joining again, re-forming
the pair, and moving on to infinity. Fig. 2.2(d) shows that for slightly
negative values of h the vortex pair is scattered to the right (θ < 0);
for h ≈ 0, see Fig. 2.2(e), the vortex-antivortex pair proceeds almost
straight (θ ≈ 0), vortex and antivortex going around the impurity in
opposite directions.

Finally, for larger, positive values of h, the trajectories of the vortex and
the antivortex are the same (as the impurity does not introduce any pre-
ferred orientation), θ being replaced by −θ (in other words the function θ(h)

is antisymmetric in h). We summarize the scenarios which we have revealed
by plotting the deflection angle θ as a function of the impact parameter h,
see the blue line and dots in Fig. 2.4(top). The shaded areas represent the
regions where the deflection angle θ cannot be defined (one vortex becomes
trapped) and the blue line is interrupted.

It is instructive to replace the impurity with a third vortex, choosing
positive anticlockwise circulation, initially placed at xI = yI = 0. In this
way we can directly compare the deflections of the vortex pair’s trajectory
caused by a third vortex to the deflection caused by an impurity with the
same density perturbation, isolating the effect of the vortex circulation.
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Figure 2.3: Trapping scenario. Plots of relative density
n/n0 showing the emission of a sound wave during trap-
ping, corresponding to the evolution shown in Fig. 2.2(c), at
two different times t1 = 485τ (left) and t2 = 505τ (right).
The red (right) line and dot mark the vortex and its trajec-
tory, the blue (left) line and dot mark the antivortex. At t1
the vortex and the antivortex are respectively at (0, 0) and
(−9.3ξ,−0.6ξ); at t2 they are at (0, 0.6ξ) and (−8.7ξ,−3.0ξ).

Unlike the impurity, which is fixed, the third vortex is free to move under
the velocity field of the vortex-antivortex pair. The deflection angle θ caused
by the third vortex is shown by the red line and dots of Fig. 2.4(top). It is
apparent that, for large negative impact parameters, the deflection angle θ is
approximately the same for vortex and impurity, but becomes significantly
larger for the vortex at small negative h; moreover, there is no trapping
regime for the vortex. Note also that, for the vortex, the curve θ(h) is not
antisymmetric about h = 0 as in the case of the impurity: for h < 0, the
closest interaction is between vortices of the same sign, which makes the
two close vortices to rotate around each other causing a deflection to the
left (θ > 0) with respect to the initial direction of motion; for h > 0, the
closest interaction is between vortices of the opposite sign, which makes the
two close vortices to travel away together, causing a deflection to the right
(θ < 0); with respect to the initial direction of motion. This is why the
two peaks of the red curve of Fig. 2.4(top), which represent these strong
interactions, are not symmetric about h = 0. Between these two peaks
there is a regime in which the antivortex of the pair swaps place with the
(initially stationary) third vortex, which couples with the original vortex of
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the pair and travels away with it, forming a new pair.
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Figure 2.4: Deflection angle θ as a function of impact pa-
rameter h for initial vortex-antivortex separation d ≈ 6.9ξ
(top) and d ≈ 2.9ξ (bottom) when the target is an impurity
(blue line and dots) and a vortex (red line and dots). The
shaded blue areas represent the parameter regions where θ
cannot be defined because one vortex becomes trapped in the
impurity. Comparing top and bottom, notice the absence of
the trapping regime and the extension of the figure to larger
positive values of h (negligible deflection if the target is an

impurity, non-negligible if it is a vortex).

An example of this swapping regime is presented in Fig. 2.5(a). Finally,
notice that the effect of the third vortex extends to large positive values of
h, unlike the effect of the impurity.

Fig. 2.4(bottom) shows what happens if we halve the initial separation
of the vortex from the antivortex to d ≈ 2.9ξ. At this short separation, the
trapping regimes disappears (the vortex, now rather close to the antivortex,
moves at large speed, and the impurity is not strong enough to stop it).
The other features of the interaction remain qualitatively the same as for
the larger pair separation d ≈ 6.9ξ.
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Figure 2.5: Top left: Example of vortex swapping scenario
(initial separation d = 7.26ξ, impact parameter h = 4.66ξ).
Top Right: Example of vortex deflection around large impu-
rity. Bottom: scattering from a third vortex (initial d = 7.2ξ,

h = 32.7ξ); notice the movement of the third vortex.

-20 -10 0 10 20

x/ ξ

0

0.2

0.4

0.6

0.8

1

n
/n

0

Figure 2.6: Relative density profiles, n/n0 vs x, of vortex
(solid red line and circles), standard impurity (solid blue
line), large impurity (dashed blue line) and shallow impurity

(dashed red line).
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Increasing the size of the impurity or making it shallower - as for the
density profiles shown by the dashed red and blue lines of Fig. 2.6 - does not
change the scenarios of interaction with the vortex-antivortex pair in a qual-
itative way. Fig. 2.7(top left) and Fig. 2.7(bottom left) show the go-around
scenario respectively for a large deep impurity and for a smaller, shallower
impurity (the density at the centre is only n ≈ 0.5). It is interesting to
notice that phase defects (ghost vortices) appear inside the large impurity
- compare the top right and bottom right panels of Figs. 2.7. An example
of the scattering regime with an impurity similar to the size of the large
impurity of Fig. 2.6 (dashed blue line) is shown in 2.5(b).
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Figure 2.7: Go-around scenario for large (top) and shallow
(bottom) impurity. The trajectories of the vortex (red line
and dot) and the antivortex (blue line and dot) are super-

imposed to the density n(x, y) (left) and phase(right).

Changing the depth of the impurity whilst keeping the width close to
that of a vortex only modifies the deflection angle slightly. For deeper
impurities we generally see larger scattering angles in the region close to
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the impurity. The general trend is that the shallower the impurity is, the
smaller the region in which trapping takes place (see Fig. 2.8), until the
impurity is too shallow to trap a vortex, as shown by the black line of 2.8.
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Figure 2.8: Top: Density profiles, n/n0 vs x for vortex-like
potential (gray), n/n0 = 0.096 A1 = 8 (blue),n/n0 = 0.239
A1 = 4 (red) and n/n0 = 0.403 A1 = 2 (black). Bottom:
Deflection angle θ against impact parameter h. Colours cor-
respond to top figure (lines are interrupted in the region of

trapping).

We have already pointed out (Fig. 2.3) that sound waves created by
accelerating vortices [12]. In general, these waves represent small acoustic
losses of kinetic energy which we quantify by recalling the classical expres-
sion for the energy of a vortex ring of radius R and core radius a in a fluid
of density ρ, which is [11] E = ρκ2RL/2 where L = [ln (8R/a) − 2]. Ne-
glecting variations of the slow logarithmic term, by measuring the change of
distance between the vortex and the antivortex of the pair, we can estimate
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the relative energy loss ∆E/E ≈ ∆R/R, which is as high as ∆E/E ≈ 6%

for the scattering shown in Fig. 2.5(b).

IV Discussion and conclusions

We have compared trajectories of vortex-antivortex pairs launched either
towards a third vortex or toward an impurity in the form of a similar den-
sity hole but without the circulation. By varying the impact parameter, we
have identified three general scenarios (fly-by, trapping, go-around) which
can occur. In the first scenario, the effect of the impurity if qualitative sim-
ilar to that of the vortex, in the second and third scenarios it is significantly
different. These scenarios represent the elementary processes which can be
recognized within a turbulent system. They are therefore relevant to ex-
periments in which vortices are manipulated by laser beams and to studies
of 2D quantum turbulence, as large density perturbations are often gener-
ated by vortex annihilations or by the moving laser beam used to nucleate
vortices in the first place.

Our results are consistent with work on the scattering of 2D quasi-
solitons from potential barriers [74], for example we observe that a vortex
pair is deflected towards a density dip rather than away from it as predicted
(see their Fig. 1, bottom). Our work is motivated by the aim of getting in-
sight into what is typically seen in experiments and numerical simulations
of 2D vortex turbulence, and differs from Ref. [74] in three respects. Firstly
it is concerned with well-separated vortex and antivortex rather than soli-
tons (when the speed of the pair exceeds the critical value v/c = 0.61 where
c is the sound speed, the circulation is lost and the pair becomes a soli-
tonic object). Secondly it refers to much smaller impurities (of the order
of the core size, not ten times larger). In particular, unlike Ref. [74], in
our work the vortex and the antivortex which make up a pair can separate.
Thirdly, by solving directly the GPE, we allow acoustic losses unlike the
model equations of Ref. [74].

Future work should look at the effects induced by an inhomogeneous
density background in harmonically trapped condensates. Other aspects
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which are worth investigating are thermal and quantum fluctuations, which
are not included in our mean field GPE model. Qualitatively, one would
expect thermal fluctuations to move the vortex and the antivortex of a
pair closer to each other, eventually leading to their annihilation. This ef-
fect would lead to the introduction of a new length/time scale associated
with the vortex-antivortex pair’s intrinsic decaying dynamics. Qualitatively,
however, we would still expect the same regimes to emerge. Quantum fluc-
tuations would lead to an intrinsic jitter motion of each vortex about its
mean position, with the target impurity also suffering some fluctuations
from the fluctuating density in that region. On the average we would still
expect the fly-by and go-around scenarios to persist, but our discussion
here may represent a rather idealised case. In fact it would be interesting
to investigate this scenario experimentally.
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Chapter 3

Breaking of Josephson junction
oscillations and onset of quantum
turbulence in Bose–Einstein
condensates

I Introduction

The Josephson junction (JJ) is an experimental set-up designed to showcase
the Josephson effect [54]. This quantum mechanical effect, which describes
particle tunnelling through a barrier and periodic oscillations, is well studied
in the context of Bose–Einstein condensates (BECs) in both theory [2, 20,
90] and experiments [22, 4, 65, 114, 104]. In this article, we discuss the
dynamics when a BEC JJ is pushed to its limit and “goes bad”. Namely, we
study the regime where the periodic oscillations in the superfluid density
break down and quantum turbulence arises in the system.

Current methods to create vortex turbulence include optical spoons [69]
and shaking confining traps [77]. Both of these mechanisms have drawbacks,
the methods require much energy to create a single vortex in fluids with high
density. Moreover, if the density is low the resulting vortices annihilate very
quickly; therefore, the creation rate will be similar to the annihilation rate.
We propose a method to create vortex dipoles with initial imbalance and
sustain them by using a Kibble-Zurek [56, 128] like mechanism to prolong
the vortex turbulence, that is, create vortices in a region of low density and
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then increase the density in a controlled manner to maintain the topological
defects and decrease the relative strength of the acoustic waves.

The Josephson junction consitsts of a barrier or weak link separating two
wells of superfluid or superconductor. We consider two wells separated by
a potential barrier with an initial density imbalance between the wells. As
the system evolves the fluid moves through or over the barrier, which leads
to oscillatory dynamics. We show that when the initial density imbalance
is pushed to high values, the regime of regular oscillations break down.
The system then enters into chaotic behaviour with interesting nonlinear
dynamics consisting of chaotic motion of vortices coupled with turbulent
acoustic waves following the break down of a soliton train caused by a
dispersive shock [75]. Studies on critical parameters for vortex generation
have been undertaken [124]. However, these do not consider high numbers
of vortices an turbulence.

In place of the predictions by Josephson, we see interesting turbulence
characterised by a separation of acoustic and vortex turbulence. Such
chaotic dynamics appear when an initial train of solitons are formed then
break down, causing the generation of vortices. This is due to the instability
of quasi-1D solitons.

We demonstrate that the Josephson junction is a nonlinear system and
that by tuning experimental parameters, we can produce rich and control-
lable non-linear behaviour, which gives an ideal set up for turbulence. Read-
ily available experimental apparata in BECs [22, 77], atomic vapors [51] and
photorefractive crystals [73] can implement such a system. We show that
a crucial element in the turbulent dynamics in such a system is due to the
interaction of vortex dipoles with the barrier. These are responsible for
the separation of turbulence within the two wells, with one retaining most
the vortices and the other containing weak acoustic wave turbulence [80].
Certain parameters (for instance the incidence angle) control the ability for
vortices to cross the barrier [74, 106].
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II The mathematical model

To model theoretically the JJ we perform direct numerical simulations
(DNS) of the Gross–Pitaevskii (GP) equation. The GP equation describes
the dynamics of a BEC made of dilute ultra-cold gas of bosons [45, 89]. For
simplicity we consider the case of a quasi-two dimensional BEC, that is we
simulate the GP equation in two spatial dimensions as well as time. Lengths
are expressed in units of the healing length ξ = ~/

√
2mρ0g2D where ρ0 is

the mean density, g2D is the effective two-dimensional interaction constant
between bosons of mass m, and µ is the chemical potential of the system.
Time is rescaled by ξ/c, where c =

√
ρ0g2D/2m is the speed of large scale

density/phase fluctuations (sound) in the bulk. The external potential V
is given in units of ρ0g2D. The non-dimensional form of the GP equation
reads as follows:

i
∂ψ

∂t
=
(
−∇2 + V (x, t) + |ψ(x, t)|2

)
ψ(x, t) . (3.1)

The complex wave function ψ(x, y, t) is the BEC order parameter. The BEC
order parameter can be expressed in fluid like variables via the Madelung
transformation ψ =

√
ρ(x, t)eiφ(x,t), where ρ(x, t) = |ψ(x, t)|2 and v(x, t) =

2∇φ(x, t) are the density and velocity of the superfluid respectively. In our
dimensionless variables we rescale density by the initial density ρ0.

Our aim is to model an elongated JJ domain, large with respect to the
healing length, in order to observe the formation of several quantised vor-
tices and, eventually, fully developed quantum turbulence. We thus choose
a two-dimensional spatial domain x = (x, y), with x = [−256ξ, 256ξ] and
y = [−128ξ, 128ξ], setting a computational uniform grid of spacing 0.25ξ.
We have Dirichlet boundary conditions with ψ = 0 at the boundary, this is
effectively confining the fluid in an abrupt rectangular tap with an external
potential at the boundary with infinite strength. The JJ barrier is mod-
elled using an external potential VJJ(x, t) that separates the domain into
two equally sized boxes, labelled BL and BR corresponding to the position
left or right of the potential. The potential is given by a Gaussian function
centred at x = 0 and stretched along the entire y-axis. To create the initial
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superfluid density imbalance needed to trigger the JJ oscillations at t?, an
extra non-zero external potential (almost) uniform Vd is present in the right
box. Mathematically, the JJ barrier thus results in

VJJ(x, y, t) = V0e
− x

2

σ2 + Vd tanh(x)H(t? − t) , (3.2)

where V0 and σ control the intensity and the width of the JJ barrier, re-
spectively, Vd sets the initial density imbalance and H(·) is the Heaviside
step function. In all the simulations reported in this work we keep σ = 1.2

so that the width of the barrier is always similar to the healing length in
the system.

To create the initial condition, we use imaginary time propagation for
t < t?. This method involves evolving the GP model with the substitution
t = −iτ while imposing conservation of the superfluid density to effectively
minimise the energy of the system. Once the desired energy stagnation has
been reached, we call the obtained state the ground state, set t = t? and
evolve the system in real-time. Because of the sudden jump in the VJJ at t =

t?, the initial condition is no longer the ground state; therefore, dynamics
follow. The GP equation (3.1) is integrated using the 4th order central
finite difference method in space and a Runge-Kutta 4th order method
time-stepping scheme. Due to the nature of the method, only waves with
wavelength of the order of half the healing length or higher are well resolved;
smaller waves will be numerically dissipated. This natural dissipation of
high energy high-frequency waves is ideal for such a study as dissipation
occurs in experiments similarly due to the interaction with the thermal cloud
and/or bosons losses due to finite-amplitude confining potential [24, 66].

III Results

III.i Measurable quantaties

We define the relative superfluid density imbalance

Z(t) =
NL(t)−NR(t)

NL(t) +NR(t)
(3.3)
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using the total superfluid mass

Ni =

∫
Bi

|ψ(x, y, t)|2dxdy (3.4)

per box Bi where i is an index for the box left or right of the separat-
ing potential, Note that the total density N = NL + NR is an integral of
motion and it is numerically conserved in all simulations up to numerical
dissipation. Analogously, the energy per box reads

Ei(t) =

∫
Bi

|∇ψ(x, y, t)|2 + V (x, y)|ψ(x, y, t)|2 +
1

2
|ψ(x, y, t)|4dxdy . (3.5)

The total energy E = EL +ER is also an integral of motion, but due to the
intrinsic high-frequency numerical dissipation, its value decreases in time
as much as 28% when Z0 = 0.49 around 10% when Z0 = 0.88. For the
results in section III.iii, where there is no acoustic turbulence, the energy is
conserved to 0.0015%. The energy is naturally decomposed in (3.5), with
the second term corresponding to energy from the external potential and
the third term the internal energy of the fluid. We can further decompose
the first term into kinetic and quantum energy by applying the Madelung
transformation ψ =

√
ρeiφ to the first term

|∇ψ|2 = |∇φ|2ρ+ |∇√ρ|2, (3.6)

where the first term corresponds to the kinetic energy density and the
second term is the so called quantum energy density. By performing a
Helmholtz decomposition on the kinetic energy density we can further de-
compose into the compressible and incompressible energies. That, is εkin =

εckin+εikin,where the incompressible component of the energy corresponds to
the vector field satisfying ∇· (√ρv)i = 0. Further details on the calculation
can be found in [86]. Thus the energy can now be written
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Ei(t) =

∫
Bi

εckin + εikin + |∇√ρ|2 + V (x, y)|ψ(x, y, t)|2 +
1

2
|ψ(x, y, t)|4dxdy .

(3.7)
The total incompressible energy Ein

kin =
∫
BL+BR

εinkindxdy is a measure of
the energy in large scale incompressible potential flow and vortices, whereas
the total compressible energy Ec

kin =
∫
BL+BR

εckindxdy is the energy in the
acoustic component.

It is also convenient to define the local healing length for each box as

ξi(t) =

√
L2

Ni(t)
(3.8)

and we will call the natural healing length of the system ξ, that is, the
healing length if the initial density imbalance is set to zero. The length of
each box in units of ξ is given by L.

Finally, it is instructive to measure the total number of vortices

NV (t) = NVL(t) +NVR(t) (3.9)

in the system versus time, with NVL and NVR the number for the left and
right boxes respectively. Each quantised vortex is numerically identified
using the pseudo-vorticity defined as follows,

ωρs =
1

2
∇× j, (3.10)

with

j = ρv = − i
2

(ψ∗∇ψ − ψ∇ψ∗) (3.11)

(3.12)

where j is the density flux. Then we find the maxima in simply connected
regions ignoring the field below a chosen cut-off value, see [116] for further
details. Ghost vortices are phase fluctuations in large regions where ψ is
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close to zero, these do not show the same dynamics as hydrodynamical vor-
tices. We add an extra filter to our vortex tracker, namely we only consider
vortices with substantial density surrounding them, this is to remove the
ghost vortices and to track only the hydrodynamic vortices. The numerical
scheme calculates the average density around any point identified by the
vortex tracking routine and discards the vortex if the average is below a
threshold value.

III.ii Creation of vortices

In the GP model, 1D dark or grey solitons are unstable to transverse per-
turbations in two spatial dimensions, the instability is known as the snake
instability. This instability is a result of the speed of a soliton being pro-
portional to its amplitude. The instability can be understood as a result
of smaller solitons having larger speeds. A small transverse perturbation
introduces a local difference in speed of the soliton. Such a difference in
speed will cause the soliton to bulge in the direction of motion if the pertur-
bation is negative, or the opposite direction if the perturbation is positive.
For instance, if we introduce a bulge in the direction of motion, since the
soliton will move perpendicular to its tangent there will be a focussing effect
on either side of the perturbation. Since the speed of the soliton is reduced
when its amplitude increases, the focused parts of the solitons slow down
producing an inverted bulge. The process then continues along the length
of the soliton with bulges and inverted bulges forming along the soliton,
for more details and mathematical analysis see [61]. When a grey-soliton’s
amplitude becomes as large as the density around it, i.e. points at which
ψ = 0 will appear: phase defects in the form of vortices are nucleated. In
this section we will discuss how we take advantage of this instability to
produce vortices.

The potential is such that a train of solitons is produced within a disper-
sive shock wave in the right well which has low density NL(0) < NR(0), this
can be seen in Fig. 3.1 which shows an example simulation for the entire
domain. Fig. 3.1(a) shows the production of the train of solitons, seen as
the stripes in the low density region. The solitons will then decay by the
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snake instability into alternating signed vortices, the process begins at the
boundary and can be seen in Fig. 3.1 (b) with later stages in Fig. 3.1 (c).
Due to the large number of vortices and to the fact that the local density
is small, the initial vortices have large cores and do not interact like hydro-
dynamic vortices. These vortices are often referred to as ghost vortices and
are not counted by the tracking algorithm. The continuous flow of solitons
carrying density into the right well reduces the local healing length, which
in turn transitions the ghost vortices towards hydrodynamic vortices. Af-
ter the ghost vortices are produced in Fig. 3.1 (b), we see chaotic motion
with a proliferation of hydrodynamic vortices in Fig. 3.1 (c) when the den-
sity becomes larger due to the fluid flux from the left box. As the process
continues, the healing length tends to ξ in both boxes, the healing length
when NL = NR. Some opposite signed vortices annihilate which results
in continuous decay of the total number of vortices. As a result, the re-
maining vortices become even better formed as hydrodynamic because the
mean distance between them becomes much greater than ξ. Later stages of
the dynamics are shown in Figs. 3.1(c-d) where many of the vortices have
decayed.
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Figure 3.1: Density fields for simulation with V0 = 1.5/µ,
σ = 1.2/ξ and Z0 = 0.88. Panel (a): t = 20ξ/c; (b): t =
90ξ/c, Panel (c): t = 150ξ/c, Panel (d): at t = 3000ξ/c.
The red box in (a) indicates the region which we zoom in on
in Fig. 3.2. Positive vortices are shown with the white circle

and negative with a black circle.
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In order to show the snake instability better, we present an example of
the early stage 2D density and phase fields with potential strength V0 =

1.5/µ and initial imbalance Z0 = 0.88. We zoom in on the subregion of BR

in Fig. 3.2 (a), the region depicted by the red rectangle in Fig. 3.1 (a).
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Figure 3.2: Zoom on density and phase fields in simulation
with V0 = 1.5/µ, σ = 1.2/ξ and Z0 = 0.88. Panels (a-d):
density field, (e-h): phase field. The zoomed window is the
red rectangle in Fig. 3.1(a). Panels (a,e): t = 30ξ/c, (b,f):

t = 60ξ/c, (c,g): t = 100ξ/c, (d,h): t = 150ξ/c.
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The train of quasi 1D solitons within a dispersive shock region is seen
in Fig. 3.2 (a). Fig. 3.2 (b) shows the snake instability forming on the
solitons. As they travel, the solitons begin to snake until they break up into
a chain of ghost vortices with circulations of alternating signs, which then
interact to form vortex turbulence. The ghost vortices can be seen in the
corresponding phase plots. For instance, in Fig. 3.2 (f) we see discontinuities
in the phase where the phase winds from −π to π around them. The ghost
vortices correspond to the dark (blue) circles in Fig. 3.2 (b). They are not
counted as in the number of vortices or marked by the black and white
circles corresponding to the well-formed hydrodynamic vortices.

In the case of many atoms, where the Laplacian term in the Gross-
Pitaevskii equation can be neglected, we can analytically find the stationary
profile for the wave function. The latter is known as the Thomas-Fermi (TF)
profile. We choose to take a slice along y = 0 as there is no y- dependence on
the potentials. When the fluid has enough energy to flow over the barrier,
that is when the TF profile |ψ(x)TF |2 > 0 for all x, the dynamics are
different to that of the classical Josephson junction as the flow is not only a
consequence of tunnelling but also due to the fluid which has enough energy
to pass the barrier. The stationary TF profile is given by:

ψTF =

√
ρ0 − V0e

x2

σ2 − Vd tanh(x) if ρ0 − V0e
x2

σ2 − Vd tanh(x) > 0,

|ψTF |2 = 0 otherwise.

Thus the barrier TF width, WTF , is given by:

WTF = σ

√
ln

(
V0

ρ0 + Vd

)
. (3.13)

From this we can see that flow has no tunnelling when V0 < ρ0 + Vd. Once
the vortices are introduced, confining them to the right box only should
make them interact more due to the smaller inter-vortex distance. The
main process in which vortices spread out is by forming dipoles which move
away from the vortex bulk at a nearly constant speed. These vortices can
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penetrate the barrier in certain cases, namely when V0 is small and/or the
vortex dipole is fast. The barrier width WTF will also affect the ability for
vortices to penetrate the barrier. Such dependences of the penetrability on
the barrier and vortex properties are not obvious, so we will now present
a study to classify and quantify different outcomes of the dipole-barrier
interactions.

III.iii Vortex dipole scattering off the barrier

The interaction between quantised vortices and the JJ barrier plays a vital
role in the dynamics discussed in section III.ii and is an interesting problem
in itself. The barrier can trap vortices as well as assist in their annihilation.
In certain regimes of 2D vortex turbulence, vortices tend to couple into
vortex dipoles [80]. This process is the result of random vortex motion; it
includes inter-vortex collisions which can re-couple or scatter vortex pairs.
As a result of this motion some vortex pairs will move away from the tur-
bulent bulk. As we have boundaries, the vortices will be incident either on
the outer boundaries or the barrier. If the dipole is incident on the outer
boundary it, will get split into the two vortices moving along the boundary
in opposite directions. If the dipole is incident on the barrier, it can be
transmitted, annihilated or trapped, depending on the barrier height and
the dipole size.

In this subsection we present a study of a vortex dipole interacting with
a JJ barrier where no initial density imbalance between the the left and right
boxes is present, that is, Z0 = 0 and Vd = 0. Initially, we position a vortex
dipole centred at (−25ξ, 0), and define θ as the angle between the x-axis and
the direction of propagation of the vortex dipole. Clearly by symmetry, we
expect the dynamics to be mirror-symmetric with respect to the x−axis i.e.
with respect to the change θ → −θ. The vortices are initially separated by
a distance of d0, and the vortex with positive circulation is in the upper-half
plane so that the dipole moves towards the positive x-direction. Examples of
the resulting vortex trajectories are shown in the different panels of Fig. 3.3.
In Fig. 3.3 we see that in all examples the vortices lose energy to sound
during the interaction with the barrier. We quantify the amount of sound
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emitted by calculating the change in the incompressible energy

∆Ei(t) = Ei(0)− Ei(t) =

∫
BL+BR

(
εikin(x, y, 0)− εikin(x, y, t)

)
dxdy.

We measure this change in energy at a final time tf after the interaction
has happened. As a criteria for determining tf we choose the following
three criteria: (i) the vortex dipole passed the line x = 25ξ corresponds to
Fig. 3.3 (a,d); (ii) either vortex becomes within 5ξ of the system boundary
corresponds to Fig. 3.3 (b); (iii) if case (i) and (ii) are not fulfilled we
allow a maximum time of tf = 750ξ/c. We assume that the vortices have
annihilated if they do not fulfil case (i) or (ii) after such a long time, so case
(iii) corresponds to vortex annihilations an example is shown in Fig. 3.3 (c).

Fig. 3.3 shows four different examples of the dipole-barrier scattering for
different values of the scattering parameters V0, d0 and θ. The images show
the superfluid density plots after the scattering with the dipole with the tra-
jectories overlaid. For the dipole-barrier scattering experiments presented
in this subsection we have chosen to shorten the Lx side and increase the
Ly side of the JJ system, compared with the one presented for instance in
Fig. 3.1, in order to give the vortices more space to interact with the bar-
rier. Fig. 3.3 (a) shows a the path two vortices take when passing a barrier.
Notice that the vortices after the interaction are closer together. As the
vortices’ motion was perpendicular to the barrier there was no deflection.
Fig. 3.3 (b) shows the case of a dipole not being able to pass the barrier.
This corresponds to case (ii). The vortices separate from one another and
move along the barrier. The vortices effectively see images of themselves in
the barrier. This motion is similar to that when a vortex-pair is incident
on an external boundary, where the boundary conditions are similar to that
of an infinite barrier. Fig. 3.3 (c) shows an annihilation, this is case (iii).
Fig. 3.3 (d) shows the vortices being deflected during the interaction with
the barrier. In this example the vortices were not moving perpendicular to
the barrier but had an incidence angle θ = 0.4π.
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Figure 3.3: Examples of vortex-barrier interactions. Panel
(a): Vortices crossing the barrier at V0 = 0.8/µ and d0 =
8/ξ. Panel (b): Vortices trapped by the barrier at V0 =
1.9/µ and d0 = 8/ξ. Panel (c): Vortices annihalting V0 =
1.2/µ d0 = 6/ξ; (d): Vortices passing with aninitial angle of
incedence of 0.4π, V0 = 1.15/µ and d0 = 10/ξ. The white
line corresponds to the vortex trajectory and the black line

corresponds to the antivortex.
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We perform two sets of simulations for two different incidence angles
θ = 0, 0.4π, sweeping over different vortex separations d0, and vortex barrier
heights V0. We observe and classify for each set of parameters, what kind
of dipole barrier interaction takes place, (i), (ii) or (iii), and also measure
sound released in the interaction. The results are presented in Fig. 3.4.
Firstly we calculate whether or not a vortex dipole of separation d0 will
pass the JJ barrier of given strength V0; the cases when the dipoles pass are
marked with asterisks.

If the dipole cannot pass, this can be due to two reasons: the dipole is
annihilated by the barrier producing sound (case (iii) marked by squares) or
the interaction of the dipole and the barrier is not over when the boundary
effects become relevant(case (ii) marked by circles). In the latter case, it is
not possible to say whether the dipole would have annihilated in an infinite
domain or not, hence it is a consequence of the finiteness of the system. We
see that when annihilations happen, there is more sound energy (measured
by the change in the incompressible energy) released from dipoles with larger
separations. Fig. 3.4 shows that there are clear connected regions in which
each of the possible cases happens.

As we mentioned in the introduction our aim is to explore the best
parameters for vortex turbulence. Annihilations are key events which de-
termine the vortex decay rate, which will be further discussed in section
III.ii. We see that the barrier can cause annihilations. In Fig. 3.4 (a) we
see that the annihilations are numerous and they also correspond to a high
emission of sound. As well as removing vortices from the system, the extra
sound is known to increase the vortex decay rate [79]. On the other hand,
the highly energetic sound produced can penetrate the barrier and be spread
over the adjacent box which is void of vortices. As a result, the sound is
distributed over twice the area (both the wells). Thus, the second well acts
as a sound absorber i.e. as an effective heat sink. By introducing a finite
angle of incidence θ, the amount of vortex annihilations is greatly reduced.
At the same time vortex splitting becomes much more frequent. However,
the amount of vortices that pass the barrier does not change much. We see
that small dipoles (d0 < 7) are annihilated by the barrier in the region of
the barrier strength V0 ∼ 1. For the region V0 = 1.3−1.6 with large dipoles
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(d0 > 7) we see that the dipoles separate. Compared to the splitting region
in Fig. 3.4(a) in this case they emit much more sound.

The vortex-barrier interaction discussed here is more simple than the
interaction when the densities are unequal, the background condensate is
saturated with sound, and there are more than two vortices involved in the
interaction. The results are informative as a rough measure of the vortices
ability to cross the barrier.
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Figure 3.4: Panel (a): parameter sweep of initial dipole
separation and barrier height for angle of incidence θ = 0.
Scaled colour indicates the approximated compressible en-
ergy at t = tf . Overlaid points show if the dipole passed
(asterisks), annihilated (squares) or interacted with bound-
ary (circles). Barrier width σ = 1.2. Panel (b): similar

parameter sweep for θ = 0.4π.
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III.iv Vortex turbulence

Optimal parameters

We now discuss the optimal choice of parameters to produce vortex turbu-
lence. Our aim is not only to produce the highest number of vortices, but
to also minimise the secondary by-products of the method, namely, sound
and large density waves. We also introduce the mean number of vortices
over time

N̄v =
1

T

∫ T

0

Nv(t)dt, (3.14)

and for the left and right box, N̄VL and N̄VR respectively. We use the
mean (opposed to the maximum) as a measure as it also takes into account
the sustainability of the vortex turbulence. We not only want to create many
vortices we want them to persist for as long as possible. Another measure
we use to classify the quality of the turbulence is the amount of interfering
compressible waves, these account for the large scale density sloshing and
the small scale acoustic component. Obviously, it is desirable to minimise
such compressible motions.

The mean number of vortices produced by the proposed method depends
both on the barrier strength and the initial imbalance. In Fig. 3.5 we show
the effects of varying the two control parameters, the barrier strength V0

and the initial imbalance Z0. In Fig. 3.5 (a) we see that for a large im-
balance (Z0 = 0.88) increasing V0 monotonically reduces the mean number
of vortices, and for a large enough V0 no vortices will be produced; this is
due to the barrier disrupting the creation of solitons by reducing the rate
at which fluid can cross the barrier. On the other hand, for a lower initial
imbalance (Z0 = 0.49), Fig. 3.5 (a) shows that there is a clear maximum
for the mean number of vortices in BR at around V0/µ = 0.6. This is due
to the mechanism discussed in section I: a steady influx of density ‘freezes’
the vortices in the right well and the potential reduces oscillations of the
density imbalance which would otherwise strongly interact with the vor-
tices. For a high initial imbalance (Z0 = 0.88), the mean number of vortices
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is higher without a barrier as shown in Figs. 3.5 (a). However, as we will
discuss below, the vortices are accompanied by more small-scale (acoustic)
and large scale (sloshing) compressible waves, which is an undesirable effect
if we want ‘clean’ vortex turbulence. Even when the initial imbalance is
high in Fig. 3.5 (a) and there is no barrier (V0 = 0), the vortices are evenly
distributed over both boxes. As a consequence the amount of vortices in
the right box BR, is not so much larger than the cases with higher values
of V0.
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Figure 3.5: Panel (a): the mean number of vortices against
barrier height for two values of initial imbalance Z0 = 0.49
(full line) and 0.88 (dashed line). The circle (black), square
(red) and diamond (blue) correspond to vortices in BL+BR,
BR and BL respectively. Panel (b): two values of barrier
height V0 = 0.6/µ (full line) and 0.9/µ (dashed line) against
the mean number of vortices for the entire domain BL+BR
(black circles), the right box only BR (red squares) and the
left box BL (blue diamonds). Panel (c): the compressible
energy as a percentage of the total energy against the initial
imbalance for two barrier strengths V0 = 0.6/µ (full line)

and 0.9/µ (dashed line).
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When V0 is fixed, by increasing the initial imbalance we reach a plateau
in the mean number of vortices in Fig. 3.5 (b). This plateau, along with
the increase in compressible energy in Fig. 3.5 (c), indicates that after a
certain imbalance the energy is more swiftly converted into compressible
sound waves. Using this insight, we propose that it is preferable to choose
a lower imbalance such that the vortex dynamics are cleaner, that is, there
is less acoustic turbulence and large-scale density sloshing interacting with
the vortices.

A secondary effect also complements the longevity of the vortex turbu-
lence. The highly-energetic small scale sound, produced during the vortex
creation and subsequent interactions, can easily pass the barrier. The sound
energy from the vortex turbulence of the right well is then distributed over
twice the area, reducing the interaction with the vortices and, therefore,
slowing down their annihilation rate.

In the absence of a barrier, many vortices are produced; however, we
identify two critical issues with the turbulence that follows. The first is
that the local healing length oscillates for a long time, see Fig. 3.6 (a).
The fluctuation of the local healing length causes vortices to annihilate.
Secondly, the large density waves are seen to interact with vortices, this
adds additional complexity to the interactions, and it is not clear what
the effect on the vortex interactions this will have. Introducing a barrier
addresses both of these problems as seen in Fig. 3.6. When a barrier is
present, as in Fig. 3.6 (b), the oscillations are dampened, with only small
oscillations remaining once the boxes have equilibrated. This is due to the
amplitude of the large wave simultaneously being reflected and transmitted
on each barrier interaction. This multiplies the number of waves decreases
the size of the local wave amplitude. Also, it causes the density to fill the
right box more smoothly. The smoother descent is due to barrier reflecting
more of the wave when the barrier is stronger. That is, the amplitude of the
transmitted wave is reduced on each wave-barrier interaction, therefore, the
density flux across the barrier is also reduced; this essentially dampens the
overshooting of the oscillations. This can be seen in Fig. 3.6 (c) where we
plot the standard deviation of the oscillations, σ, against barrier strength:
this reduces quickly when the barrier strength increases and a transition
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seems to occur at a value close to V0/µ = 1. We choose the time period to
measure the standard deviation over to be the same for each simulation. The
period is chosen to be after the all the simulations have reached Z(t) = 0

for the first time.
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Figure 3.6: Panels (a): Evolution of relative density Z(t)
for parameters V0 = 0.0, σ = 1.2 and Z0 = 0.49. Panel (b):
the same for V0 = 1.5, σ = 1.2 and Z0 = 0.49. Panel (c):
the standard deviation of Z(t) after ts = 4200ξ/c for a range
of different barrier heights. The blue line with circles is for

Z0 = 0.49 and the red with squares Z0 = 0.88.

Vortex decay rates

Recent discussions [8, 27, 62], indicate that the number of vortices in a
homogeneus condensate decay as t−1/3, this corresponds to four-vortex in-
teractions. The arguments in [8, 27, 62] use a simple logistic equation for
the number of vortices Nv,
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Figure 3.7: Log-log plots of number of vortices against
time. For low initial imbalance, (a-c), Z0 = 0.49 and barrier
height: (a) V0 = 0.0; (b) V0 = 0.6 and (c) V0 = 1.5. For
high initial imbalance, (d-f), Z0 = 0.88 and barrier height:
(c) V0 = 0.0; (e) V0 = 0.6 and (f) V0 = 1.5. The black full
line is shows t−2/3 law, the dotted to t−1/2 and the dashed
line – t−1/3. The vertical black line shows the time when
Z(t) < 0.05 for the first time. The red lines corresponds to
the number of vortices in the right box, the blue the left box

and the black the total number of vortices.

dNv

dt
= −CNα

v , (3.15)

where α here corresponds to the number of colliding vortices causing an
annihilation and C is a constant. Equation (3.15) is a crude approximation
which does not take into account any correlation between the vortices, nor
does it take into account spatial inhomogeneity in the system. Following
this approach, for two-vortex annihilations we have Nv is proportional to
t−1, for three-vortex interactions – to t−1/2 and four-vortex interactions – to
t−1/3. More specifically, one could present a more general model for vortex
decay:
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dNv

dt
= −

Np∑
i=1

CiN
i
v. (3.16)

Such a model allows for Np competing processes of vortex decay. One
would expect that the constants, with respect to time, Ci each have a de-
pendence on the compressible energy in the fluid as well as other properties
which may influence decay such as barriers. We note that finding the precise
set of Cis for our experiments would require much more data, instead we
present a fit of equation (3.15) as an indicator of the vortex decay processes
present.
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Figure 3.8: Vortex number decay fitted with t−β . Panel
(a): The decay rate β in the entire domain (black circles)
and right box (red squares) as we increase initial imbalance
with V0 = 0.6/µ (full line) 0.9/µ (dashed line). Panel (b):
The decay rate α in the entire domain (black circles) and
right box (red squares) as we increase barrier height with
initial imbalance Z0 = 0.49 (full line) 0.88 (dashed line).
The grey dotted horizontal lines are markers for −1/3, −1/2

and −2/3.

In our system, the decay of vortices from BR can happen in four ways:
(1) vortices annihilate via vortex-vortex interaction; (2) vortices annihilate
at the barrier or boundary, see Fig. 3.3 (c); (3) vortices pass the barrier and
enter to BL, see Fig. 3.3 (a,b,d) (however, the barrier can be chosen such
that the vortices cannot penetrate or so that only vortex dipoles of a certain
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size can exist in the left well, this is discussed further in section III.iii); (4)
vortices annihilate from interacting with the background sound.

Figure 3.9: Vortices annihilating at the barrier. Density
plots with parameters V0 = 1.2/µ, σ = 1.2/ξ and Z0 =
0.49/µ. The time is indicated in the figures. The white line
is the trajectory of the vortex and the black lines are the
antivortex trajectories. The filled circles are the positions of
the vortices in each frame. The arrows indicate the direction
of motion of the vortice and the ellipses the sound waves post

collision.

Fig. 3.7 shows examples of the evolution of the number of vortices in a
log-log plot. In the figure the red line represents the number of vortices in
the right box NVR , the blue the number in the left box NVL and the black
the total in the entire domain NVR + NVL . We overlay a vertical line for
which the imbalance has become almost zero (Z < 0.05) for the first time
in each simulation, this is an indicator of when the initial vortex creation
period has ended.

We first focus on the decay rate in the later stages of the dynamics where
we expect to see the exponents predicted above. We present in Fig. 3.7 cases
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with two values of initial imbalance, Z0 = 0.49 (a-c) and Z0 = 0.88 (d-f). In
the cases with no barrier (a, e) we see that the vortices move freely between
the two boxes. In Fig. 3.7 (a) in particular, we do not produce enough
vortices to see vortex turbulence, thus we do not see a clear decay rate. In
Fig. 3.7 (e) homogeneous vortex turbulence develops quickly with an almost
equal amount of vortices in each box. In this case we see a decay closer to
t−1/3 which is predicted for a four-vortex process. In Fig. 3.7 (f), for small
value of V0, see also a decay closer to t−1/3, whereas a t−1 decay is seen
for higher barrier height in Fig. 3.7 (g), which corresponds to a two-vortex
collision in the logistic equation.

Clearly the amount of vortices in the left box decreases with the barrier
height. It also appears that the number of vortices in the right box remains
almost the same whilst the number in the left tends to zero. We also
note that for cases with a high initial amount of vortices there is a steeper
decay rate. We propose that some transition in the dominant type of the
vortex collision occurs at a vortex density which is dependent on the mean
density of the vortices. Indeed, it is natural to think that the higher-order
vortex collision (e.g. four-wave) dominates over the lower-order collision
(e.g. three-wave) for higher vortex densities and vice versa. The mean
vortex density is dependent on the barrier height in a non-trivial way as
shown in section III.iii.

It is difficult to distinguish the best fit from the decay in Fig. 3.7 by visual
inspection. We instead calculate the the best fit numerically and present
the results in Fig. 3.8. We choose a value ts such that all the simulations
are safely in the late stage vortex decay regime and calculate the best fit of
the exponent over the same range in all the simulations.

In Fig. 3.8 (a) we present the exponent plotted against increasing initial
imbalance Z0. We notice that the decay rate is faster for a higher imbal-
ance. We conjecture that this is due to the higher mean vortex density as
well as an increased acoustic component (see Fig. 3.5 (c)) which interacts
with the vortices helping them to annihilate. In Fig. 3.7 (b) as the barrier
height increases the total number of vortices (black line) and the vortices
in the right box (red line) converge due to all of the vortices being in the
right box. We also see in Fig. 3.8 (a) and (b) that the decay rate fluctuates.
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However, for most of the parameters, it seems to be steeper than t−1/2 and
shallower than t−1 which may be due to the combination of all of the anni-
hilation mechanisms. For instance, the decay rate may be explained by the
interaction with the boundary and barrier, which can aid annihilation. For
instance in Fig. 3.9 we see a vortex dipole scatter of a third vortex (a three-
vortex precess) until the dipole is small enough such that the boundary or
the barrier will annihilate them (a two-vortex process). Also in Fig. 3.9
(c,d) the red ellipses show the dynamics during (c) and after (d) the inter-
action with the barrier. We highlight that the rarefaction pulse caused by
the annihilation is directed into the left box, thus the pulse is not likely to
interact with other vortices causing more annihilations. We note that by
increasing dipole size, we do not necessarily increase the chance of annihi-
lation; see Fig. 3.4 (a). If we take V0 = 1.6/µ we see that smaller dipoles
are trapped whereas larger dipoles annihilate.

IV Conclusions

In this paper, we have explore the use of a Josephson junction set-up for
generating BEC vortex turbulence. We have shown that the generation and
decay of vortices in a Josephson junction BEC configuration, can be altered
by controlling the barrier height and the initial density imbalance parame-
ters, which can be readily applied to existing experimental apparatus. We
discussed the critical advantage of this method for generating vortex tur-
bulence is the creation of vortices in low-density regions, with the density
then being increased to solidify (shrink) the vortex cores. We have pro-
vided ranges of parameters to tune the barrier to produce a certain optimal
number of vortices and also shown parameters which allow for vortex pene-
tration. We showed that for a higher imbalance we produce more vortices.
However, most of these vortices decay quickly leaving much of acoustic noise
and large-scale density sloshing, and for this reason it may be preferential
to have a smaller initial imbalance. For instance, if one would like to create
vortices confined to a single box with the acoustic component less than 10%
of the total energy one would choose an initial imbalance of Z0 = 0.6, with
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a barrier with strength (measured in chemical potential µ) in the range of
µ to 1.5µ with the width of the order of the healing length. Although our
simulations are larger than current experiments, there are experiments that
are not so much smaller [41, 52].
Another disadvantage of the vortex turbulence without the barrier is the
large wave-vortex interaction. A key consideration is the control of the
amount of sound energy released as part of the snake instability. Such
sound can be shared over the two boxes while confining the vortices to one
box, and thereby separate the vortices and sound in physical space better
so that the sound does not adversely affect the vortex dynamics. We show
that the interaction of vortices with a quasi-1D barrier is non-trivial and
that the barrier also can work as another effective mechanism for vortex
dissipation. This is particularly interesting in terms of using such a barrier
to filter vortex turbulence and produce vortices of a certain size, a more
detailed study will be the subject of future work. In this work we focused
on the vortex turbulence; however, the acoustic turbulence present is also
worth further study.
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Chapter 4

Modelling particle motion in
GPE

I Introduction

Superfluidity occurs in a wide variety of systems both terrestrial, e.g., 4He-
II, 3He-B (B-phase), Bose-Einstein condensates (BECs) of alkali atoms,
exciton-polariton condensates [21] in laboratory experiments, and exotic as-
trophysical objects, such as neutron stars [14, 118]. Moreover, a monochro-
matic light while passing through a non-linear media, e.g., photo-refractive
crystals [73], has been shown to exhibit a flow that is essentially superfluid.
The unusual flow properties of these superfluid flows have held the attention
of experimentalists and theorists alike. For example, helium II can sustain
rotational motion only through formation of quantised vortices, wherein the
circulation along paths enclosing vortices is restricted to multiples of h/m4,
where h is the Planck’s constant and m4 is the mass of a 4He atom [32].
These quantised vortices in helium II are angstrom size in diameter, and
they occur either as closed loops or filaments that must end at the boundary
of the fluid.

Quantised vortices display rich dynamical behaviour [120]: For exam-
ple, in three dimensional (3D) rotating superfluid systems, above the vortex
nucleation threshold, the number of vortices increases with rotation speed,
and can form a vortex lattice. At still higher rotation speed the system
transitions to a turbulent state [113]. It is a non-equilibrium state involving
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processes that span a broad range of length- and time-scales, and is char-
acterised by the presence of a dynamic random tangle of interacting vor-
tices [38, 84, 85]. These quantised vortices upon close approach can undergo
reconnections [18, 93], a topology changing process that further drives the
system to a turbulent state. Reconnection events excite Kelvin waves on the
vortices, and the non-linear interaction of these waves gives rise to a cascade
process that transfers energy to smaller length scales, which is ultimately
radiated as sound [60, 9, 39, 98]. Turbulence in these superfluid systems
can also be excited by stirring, shaking, moving objects, etc. [71, 101, 49].
Moreover, a turbulent state can also be realised in two-dimensional (2D)
superfluids[78, 30], where point-like vortices move chaotically[82, 52], and
can organise to produce large scale flows. The subject has seen a spurt of
activity, both numerical and experimental, to find its universal features and
provide a comparison with its classical counterpart [19, 96, 99].

However, it must be emphasised the experimental study of the funda-
mental processes involved in superfluid turbulence is a difficult task and
requires state of the art facilities [32, 10]. In particular, visualisation of the
quantised vortices has been a challenge because of extremely low tempera-
tures and small system sizes. The flow visualisation methods available for
classical fluids are difficult to adapt to superfluid helium [47].

Use of particles to probe superfluid flows involving vortices was sug-
gested in Ref. [31]. A great deal of information about quantised vortices,
including their existence, in helium II has been obtained, in the past, by the
use of moving ions [121]. More recently, solid-hydrogen particles were used
to visualise quantised vortices in helium II at temperatures ∼ 2K [17, 33].
These particles were also used to study vortex reconnection events [18] and
Kelvin waves [39] on vortices in superfluid helium. Note that in these ex-
periments, even though particles used were roughly 104 times the vortex
diameter, they managed to capture the essential physics.

Now much smaller particles in the form of metastable 4He∗2 excimer
molecules, ∼ 100nm in size, are available that can be used as vorticity
tracers. More specifically, in the T = 0 limit, in the absence of normal fluid
and at temperatures above 1K they act as tracers of the normal component
of the fluid [127].
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Notwithstanding the significant experimental progress in the use of par-
ticles to characterize superfluid turbulence, the exact level of intrusion of
the particle on the vortex motion remains unclear. Therefore, it is impor-
tant to explore and understand these issues by building simplified models to
study particle-vortex dynamics both theoretically and numerically[16, 115].

In this work, we focus on the Magnus force that acts on a particle trapped
on a translating vortex. To do so, we make use of both the Gross-Pitaevskii
equation (GPE) description of superfluids [45, 89] and the suitably adapted
classical treatment of point vortices in 2D. In our GPE description, we make
use of a recently developed minimal model [97, 88, 100], wherein we couple
the equations of motion of particles with the GP classical wave function ψ.
We demonstrate that the Magnus force description borrowed from the the-
ory of ideal hydrodynamic flow works and also provides a good description
of the dynamics of particle loaded vortices in superfluids. We first study a
particle loaded vortex-antivortex pair configuration and carry out system-
atic direct numerical simulations (DNS) of the GPE based minimal model.
We compare these GPE DNS results with a Magnus force model that we
have derived (see below), both in the simplified analytically tractable case
of constant background flow and a more realistic situation wherein the back-
ground flow is allowed to vary in response to the particle loaded vortices (or
other external vortices). We then extend our study of the particle loaded
vortex-antivortex pair to more complex vortex configurations, where: (i)
each vortex is multiply charged; (ii) free external vortices are present in the
neighbourhood. We will argue that under certain circumstances, the effects
can be observed in superfluid helium experiments. Moreover, our study in-
dicates that particles can be a useful tool for future studies of vortex motion
in Bose-Einstein condensates (BECs).

The advantage of our analytical and semi-analytical models is that they
can be applied, and work better, for setups with the particles much larger
than the healing length, whereas it would be virtually impossible to simulate
such systems with huge scale separations in DNS. Such models will be useful,
for example, in investigations of the effect of hydrogen ice tracers whose
typical diameter is the order of a few micro-meters [17], while the vortex
core diameter is of the order of an angstrom ( = 10−10m). In this situation,
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we can think of a classical flow with a thin boundary layer so that classical
textbook solutions relating the force on a moving object with the circulation
around the object can be used [3]. This indicates that the Magnus model
will work better in describing the motion of large particles relative to vortex
core size. However, the validity of such a model in quantum fluids can not be
taken for granted due to the presence of the compressibility, acceleration as
well as a flow non-uniformity over the distances comparable to the particle
sizes. We emphasise that the GP equation is only a phenomenological model
for superfluid helium; however, the results from this chapter indicate that
the dynamics should be present in superfluid helium.

In this chapter, we demonstrate that the Magnus force model works very
well even for situations well beyond the formal limits of applicability of the
ideal flow descriptions, e.g. when the size of the particle is no so much
bigger than the healing length, and the velocity is not so much smaller than
the speed of sound.

II Model and Numerical Methods

II.i Gross-Pitaevskii equation coupled with particles

We use the GP theory to model the superfluid flow and study its interac-
tion with particles. The GP framework provides a good hydrodynamical
description of a weakly interacting superfluid at low-temperatures and is
able to reproduce the qualitative features of the strongly interacting super-
fluid helium. Within this framework, the state of the system is specified by
the complex scalar field ψ(r, t).

The particles that we consider are active; they are affected by flow and
act back on it too. In earlier works[97, 88, 100] we introduced a Lagrangian
for this combined system, wherein particles were represented by specifying
the potential VP . This procedure yields the following GP equation for the
spatiotemporal evolution of ψ(r):

i~
∂ψ

∂t
= − ~2

2mb

∇2ψ − µψ + g|ψ|2ψ +

N0∑
j=1

VP(r− qj)ψ, (4.1)
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where ~ = h/2π is the reduced Planck’s constant, mb the mass of bosons
constituting the superfluid, g the effective interaction strength among these
bosons, µ the chemical potential and qj the position of the jth particle (i.e.
center of the potential).

Our modelling of the particles by specifying VP allows us to control their
characteristics, e.g. shape and size. For the purpose of present study, we
use the Gaussian potential

VP = V0 exp
(
− r2

2d2
p

)
; (4.2)

here V0 is the strength of the potential and dp is the measure of its width.
Furthermore, we include a two-particle, short-range repulsion potential.

Thus, the Newtonian dynamics of the particles is governed by the following
equation,

mjq̈j = f0,j + Gj, (4.3)

wheremj is the mass of the jth particle, which we assume to be same for all,
mj = m0, vector f0,j is the force exerted by the superfluid onto the particle,

fj =

∫
A
|ψ|2∇VP(r− qj) dr, (4.4)

A is the area occupied by the particle (determined by a cutoff of the poten-
tial (4.2)), andGj = (Gx, Gy) = êx

∑N0

i=1,i 6=j
∆Er

12
SR

|(qi−qj)·êx|12
+êy

∑N0

i=1,i 6=j
∆Er

12
SR

|(qi−qj)·êy |12

is the inter-particle short-range repulsion force, where rSR and ∆E are pa-
rameters corresponding to a length and repulsion energy scale respectively.

II.ii Numerical methods, units and parameters

To study the dynamics of particles in complex superfluid flows, we solve
Eqs. (4.1) and (4.3) numerically. In order to do so, we perform direct
numerical simulations (DNSs) of the GP by using the Fourier pseudospectral
method on a square, periodic simulation domain A of side L with N2

c grid
points [96]. In this method, we evaluate the linear terms in Fourier space
and the nonlinear term in real (physical) space, which we then transform
to Fourier space. For the Fourier-transform operations, we use the FFTW
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library [1]. A fourth-order, Runge-Kutta scheme is used to evolve these
equations in time. Further details can be found in [100].

We define the length scale ξ = ~/√mbgρ0, known as the healing length
and the speed of sound c =

√
gρ0/mb. The mean density can be also

calculated ρ0 =
∫
A |ψ|2 dr/A. We then choose to rescale the parameters in

(4.1) with the following scalings: µ̃ = µ/(gρ0), ṼP = VP/(gρ0), ψ̃ = ψ/
√
ρ0,

r̃ = r/ξ and t̃ = tc/ξ, we arrive at the dimensionless equation which we
simulate:

i
∂ψ̃

∂t̃
= −1

2
∇̃2ψ̃ − µ̃ψ̃ + |ψ̃|2ψ̃ +

N0∑
j=1

ṼP(r− qj)ψ. (4.5)

From here on we drop the tildes for simplicity of notation. Taking into
account that we are in dimensionless units, in our calculations we can set
ρ0 = c = ξ = µ = 1 by choosing our initial conditions. In dimensionless
units we also choose the parameters L = 177.78, with the grid spacing
dx = L/Nc, and the number of collocation pointsNc = 256. For the external
potential we choose the parameters V0 = 10, and dp = 1.5. To calculate the
initial conditions we solve the real Ginzburg-Landau equation (RGLE), this
minimises the energy of the fluid in the presence of the potentials modelling
the particles.

II.iii Magnus force model

Lift force or the Magnus effect is a well-studied phenomenon in classical
fluid dynamics [112]. In a fluid flow with a uniform upstream velocity
uflow, a cylindrical disk with circulation Γ around it experiences a lift force
ρΓuflow × êz , where ρ is the fluid density and êz is the unit vector along
the cylinder corresponding to the vorticity direction. This phenomenon in
a superfluid was first observed by Vinen [117] by measuring modifications
to frequency of a vibrating wire submerged in He II, which also allowed
to demonstrate the quantisation of the circulation around the wire. In
the present work, the fluid flow relative to a solid object is induced not by
mechanical properties of the solid object itself (e.g., its elasticity), but rather
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by an external vortex (or multiple vortices) not trapped by this particular
object.

Here, we want to explore the dynamics of an assembly of particles
trapped on 2D vortices in superfluids. In particular, we want to eluci-
date the role of the Magnus force acting on these particles. To this end,
we develop a Magnus force model (MFM) to describe this system. The
Magnus force induced acceleration of the jth particle trapped on a vortex
(circulation strength Γ) at the location (xj, yj) is given by

ẍj = A(ẏj − vj) +Gx/(m0 +m′), (4.6)

ÿj = A(uj − ẋj) +Gy/(m0 +m′), (4.7)

where the overhead dots indicate time derivative; (uj, vj) is the flow velocity
at the position of the particle collectively induced by the other (excluding
the jth) vortices. The model describes the motion of the particle induced
from two competing Magnus forces. The first induced by external flows
and the second induced by the particle’s motion relative to the surrounding
fluid. In our description of the particle dynamics, we ignore the variation
of the flow velocity over a distance comparable to the particle radius. Such
an approximation is valid when the distance between the particles is large
compared to both the particle radius and the healing length. The parameter
A = Γρ/(m0 +m′) is the natural oscillation frequency of the vortex trapped
particle in our system. m0 is the physical mass of the particle and m′ the
hydrodynamical added masses (see below).

Note that in (4.6) and (4.7) we have introduced a short-range repulsion
G between the particles, which acts only when the particles come to dis-
tances comparable to their size. Strictly speaking the approximation that
the velocity around a particle is uniform fails at such short distances; how-
ever, our goal in this paper is to test the model beyond its formal limits
of applicability in order to test its robustness. The added mass can be
computed using the unsteady Bernoulli equation (derived from the GPE),

∂φ

∂t
+

1

2
(∇φ)2 −

N0∑
j=1

VP(r− qj) =
1

2

∇2√ρ
√
ρ
− p

ρ
, (4.8)
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where φ = argψ, which relates to the superfluid velocity v via v = ∇φ,
density ρ = |ψ|2 and the first term on the right hand side in Eq. (4.8)
is the quantum pressure term. Note that in this model the dynamics are
compressible and that ρ = ρ(x, t).

Let us assume for the moment that the potential representing the particle
is hard, i.e., it has a well defined boundary (an extension to the case of “soft”
particle potential is made later). In such a case, the superfluid density ρ
is zero within the particle boundary and it “heals” to its bulk value over
a boundary layer that is approximately healing length wide. Now, if the
particle radius R � ξ, then we can regard the particle and its boundary
layer as a single moving control volume. This allows us to neglect the
quantum pressure at the boundary of the considered control volume, and
we can write

p = −ρ
(
∂φ

∂t
+

1

2
|∇φ|2

)
, (4.9)

i.e. the classical expression for irrotational ideal fluids. Thus, we can ap-
ply the classical textbook calculations for both the Magnus force and the
added mass by integrating the pressure distribution over the control volume
boundary[63]. If the particle under consideration is a 2D disk of radius R,
then the ∂φ

∂t
term gives rise to the added mass m′ = ρπR2.

Our method of treating the dynamics of particle loaded vortices self-
consistently takes into account the variations in the background flow velocity
around the particles because of the dynamically varying separation between
the vortices. It is important to appreciate the fact that the Magnus force
description given by Eqs. (4.6) and (4.7) depends on the motion of the
particle relative to the fluid and the resulting force is perpendicular to the
motion. In the other words, there would be no Magnus force if the particle
motion was tracing the fluid paths (this regime would be realised by the
limit of very small and light particles).

In our GP simulations, we use a Gaussian potential, which has a soft
boundary, to represent particles; therefore, we need an estimate of an ef-
fective radius to compute the added mass m′. A consequence of the soft
boundary is that the fluid can penetrate a region of the potential, but is



Chapter 4. Modelling particle motion in GPE 71

slowed down by the increasing strength of the potential until the reflection
point. An explicit calculation of the effective radius is a non-trivial exer-
cise. Therefore, we compute it in an ad-hoc manner by making use of the
Thomas-Fermi (TF) profile of the superfluid density around the particle
potential. The TF profile is the density of a time-independent solution of
Eq. (4.5) in which we remove the Laplacian term, this approximates the
density depletion due to the particle on the surrounding fluid with no ki-
netic energy. This approximation is valid when the number of bosons is
very large. The TF profile |ψTF |2 in the presence of a single particle is then
given by

|ψTF |2 =

(
1− V0e

−r2

2d2p

)
H(r −RTF ), (4.10)

where H denotes the Heavyside step function and RTF the radius of the
region within which the profile is zero. In Fig. 4.1 we show a slice of the
TF profile, along with the initial condition. The initial condition is a slice
across the particle as calculated by solving the RGLE with the potentials
modelling the particles. The radius RTF , computed from the Eq. (4.10), is
given by

RTF = dp
√

2 log(V0). (4.11)

The TF profile allows us to obtain an estimate of the displaced mass of the
superfluid due to the particle (while fluid density is held fixed at ρ0). We
use this displaced mass as the added mass, as this captures the features of
the soft potential. Thus,

m′ = 2π

∫ ∞
0

(1− |ψTF |2)rdr. (4.12)

To be more clear here, the added mass can be decomposed into two
parts: m′1, the contribution governed by the geometry of the particle, while
assuming incompressibility; m′2, the contribution coming from the boundary
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layer. We express this as follows:

m′ = m′1 +m′2 = πR2
TF + 2π

∫ ∞
RTF

V0e
− r2

2d2p rdr (4.13)

= πR2
TF + V0d

2
pe
−R

2
TF
2d2p

= d2
p(2π log(V0) + 1). (4.14)

It is worth emphasising that the added mass depends on the geometry
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Figure 4.1: Density profile of particle and TF profile: The
density profile of the simulated particle is blue (dashed), The
TF profile is red, both with the same parameters, V0 = 10gρ0

and dp = 1.5ξ.

of the particle, and in the case of an arbitrarily shaped particles further
considerations are required compared to what we wish to address in the
present study. For the parameters used in this study, we find m′ to be
46.69.

We use the added massm′ of the displaced superfluid from the TF profile
to define the ratio

M≡ m0

m′
, (4.15)

which allows us to distinguish between heavy (M > 1), neutral (M = 1)
and light (M < 1) particles. We emphasise here that the added mass in



Chapter 4. Modelling particle motion in GPE 73

general differers from the displaced mass; however, for disk shaped particles
they are identical. This is important as the added mass can depend on the
geometry of the particle. Consider a triangle shaped particle. The added
mass will be smaller on the vector pointing to the vertices of the triangle
and much larger for the edges. This is the same as saying a triangle is more
aerodynamic in some directions.

We express the MFM equations in a more compact form as

z̈j = iA(wj − żj) +G/(m0 +m′), (4.16)

where zj = xj + iyj, wj = uj + ivj and G = Gx + iGy.
We can easily extend our 2D MFM to 3D by using the Local Induction

Approximation (LIA) of the Biot-Savart law, wherein a vortex element s of
a vortex line at the arc length ζ and time t has velocity[94]

ṡ(ζ, t) = βs′ × s′′, (4.17)

where the overhead dot and prime correspond to derivatives with respect to
the time and arclength, respectively; β = log(l/ξ) and l is a suitable cut-off
length scale that is approximately equal to the mean curvature radius.

Therefore, in 3D the dynamics of the vortex-line, with uniform mass
distribution, is given by

q̈ = As′ × (q̇− ṡ(ζ, t)), (4.18)

where q(ζ, t) is the position of the particle. This equation corresponds to a
vortex line with test particles densely filling its core. Another interpretation
could be normal fluid trapped into the superfluid vortex core. Similar to the
2D case, in 3D we can include a short range repulsion between the particles.

The LIA is derived from the more general Biot-Savart law. Using the
Biot-Savart description with our model requires more complexity. This is
due to the vortex arclength not being conserved in the Biot-Savart descrip-
tion. Thus, a separate equation for the mass density along the vortex line
would be required.
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Figure 4.2: (Color online) Schematic diagram illustrates
the initial configuration, wherein a vortex-antivortex pair
loaded with particles is translating along the x-axis. Parti-
cles are shown by blue disks. The circle with anticlockwise
(clockwise) arrow represents a vortex (an antivortex) with
circulation vector pointing out of (in) the plane. The cen-
ters of the particles (the coincident vortices) are separated

by a distance d0.

II.iv Simplified Magnus force model for particle loaded

vortex-antivortex pair

A vortex-antivortex pair of size d0 is the simplest multi-vortex configuration
that occurs in a periodic, 2D domain. This vortex-antivortex pair translates
at a speed u = Γ/(2πd0) in a direction perpendicular to the line joining the
two vortices (See Fig. 4.2). Therefore, the dynamics of the two particles P1

and P2 trapped on the vortex and antivortex, respectively, serves to provide
a simple demonstration of the Magnus effect.
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To simplify our discussion, we assume that the y-component of the ve-
locity of the underlying flow experienced by the particles is zero, i.e. v = 0

in Eqs. (4.6) and (4.7). Also, we consider a large vortex-antivortex pair,
d0 � Rp, that allows us to neglect the short-range repulsion. As our vortex-
antivortex pair is symmetric about the x-axis (See Fig. 4.2), in what follows
we discuss the dynamics (trajectory) of only one particle. The equation of
motion for the particle is then given by

ẍ = −Aẏ, (4.19)

ÿ = −A(u(y)− ẋ). (4.20)

To further simplify the discussion, we impose a condition that the horizontal
component u(y) = constant during the dynamical evolution of this system,
thereby furnishing a readily solvable set of coupled ODEs. Hereafter, we
refer to this model as the simple Magnus force model (SMFM). In SMFM,
with the initial conditions

x(0) = x0 y(0) = y0 (4.21)

ẋ(0) = 0 ẏ(0) = 0,

the particle trajectory is of the following form:

x(t) = x0 + ut− u

A
sin(At), (4.22)

y(t) = y0 −
u

A
(1− cos(At)). (4.23)

Note that this rather restrictive description is valid only when the oscilla-
tions of the particles are small.

In the present study, we compare the predictions of the MFM and SMFM
against the GP description to illustrate the Magnus effect. Therefore, it is
important to recognise the fact that due to the periodicity of the phase of
the wave function representing the vortex-antivortex pair within the GP
description in a 2D periodic domain, the motion of the pair is altered as
compared to that in the ideal fluid. We discuss this in detail in section
III, where we provide a detailed comparison of the vortex-antivortex pair



Chapter 4. Modelling particle motion in GPE 76

dynamics in the GPE and the ideal fluid case (Weiss-McWilliams formula).

III Weiss-McWilliams formulae for ideal fluids

and GP system

The adaptation of the Weiss-McWilliams formula for the translational ve-
locity of a vortex-antivortex pair in an ideal fluid to the GPE system with
a periodic domain requires a modification because of the periodicity of the
phase of the wave function in the latter. Below we demonstrate this for a
vortex-antivortex pair, which we then generalize to the case of N -pairs.

Consider a vortex-antivortex pair, translating along the x-axis with vor-
tex at (x, π + d/2) and antivortex at (x, π − d/2). Now let us consider the
circulation along three lines Ci for i = 1, 2, 3, as shown in Fig. 4.3:

Ci(d) =

∫ 2π

0

u(x, yi)dx, (4.24)

where 0 < d < 2π; 0 ≤ y1 < π − d/2; π − d/2 < y2 < π + d/2

and π + d/2 < y3 ≤ 2π. These contours can be closed by joining x = 0

and x = 2π, without generating any contribution to the circulation, as
guaranteed by the periodic boundary condition. Thence,

C1 − C2 = −Γ, (4.25)

C2 − C3 = Γ, (4.26)

C1 = C2 − Γ = C3, (4.27)

for the contours enclosing vortices. The circulation can now be solely ex-
pressed as a function of the y-position of the contour and the separation
between the vortices:∫ 2π

0

u(x, y)dx = C(y, d) =

∫ 2π

0

−∂h
∂y
dx (4.28)
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where h is the stream function and u = −∂h/∂y. Let us define the mean
velocity

ū =
1

(2π)2

∫ 2π

0

C(y, d)dy (4.29)

=
1

(2π)2

∫ 2π

0

∫ 2π

0

u(x, y)dxdy. (4.30)

From the periodicity of stream function it follows that the mean velocity is
zero. The integral in (4.30) can be then computed as a sum of the areas
multiplied by the circulation, that is,(

π − d

2

)
C1 + C2d+

(
π − d

2

)
C3 = 2πC1 + Γd

= 0, (4.31)

by using equation (4.27). Thus C1 = −Γd/(2π) for a system with a periodic
stream function. Note that the Euler equations are Galilean invariant and
any constant velocity can be added to the system which corresponds to
moving to a different inertial frame. However, the requirement that the
streamfunction is periodic fixes the frame of reference such that the mean
velocity is zero. This is the choice of frame in Ref. [119]. Such a choice is
inconsistent with the periodicity of the wave function, as it would result in
a phase change which is not an integer multiple of 2π (for Γ = 2π, C1 =

d 6= 2πn). Therefore, if we want to use the Weiss-McWilliams prescribed
velocity (ideal fluid case), we must work in a frame in which the phase of
the wave function is periodic. Thus, we must add a constant background
velocity equal to C1/2π.

Note that in order to be consistent with the contents of the main text,
in our discussion here, we have used a vortex-antivortex pair that is only
separated along the y-direction. However, our arguments are still valid if
the vortices are separated in the x-direction as well. In which case, we
simply have to repeat the argument with vertical contours which separate
the vortices to find the contribution to the y-component of the velocity.

Moreover, our discussion here is generalisable to the case of 2N vortices,
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with an equal number of vortices and antivortices. This is so because the
system is linear, i.e., the contribution to the velocity field is additive. Also,
the argument is valid, as the sum of the periodic phases will also be periodic.
Therefore, for a system of 2N vortices, the additional background velocity
ub is

ub =
2N∑
i

Γi
(2π)2

êz × xi, (4.32)

where xi is the position of the ith vortex, which is, up to a constant, the
total momentum of the point vortex system.

Figure 4.3: Schematic of two vortices separated by dis-
tance d. Overlaid with the contours on which we calculate

the x-contributions of the circulation.

For an odd number of vortices, the system will have a net circulation.
Therefore, to make arguments as, we now have to work in a rotating frame of
reference. This is same as adding a constant background vorticity, such that
the frame has net circulation zero. The ratio between the angular velocity
of the rotating frame and the vorticity is a half. Other valid configurations
could include constant vorticity such as shear. In this case, such formulation
is consistent when periodicity is imposed in sheared coordinates.

In Fig. 4.4 we show the comparison of the vortex-antivortex pair velocity
as obtained from the GPE DNS (dashed red curve) and the adapted Weiss-
McWilliams formula (blue curve). For very small pair size, we observe a
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Figure 4.4: Velocity of the vortex-antivortex pair as a
function of its size. The red dashed curve represent the
data obtained from the GPE simulations, whereas the blue
solid line indicates the velocity given by the adapted Weiss-
McWilliams formula, see text for more details. The black
dashed horizontal line indicates upair = 0 and the black
dashed vertical line marks the mid point of the periodic do-

main.

disagreement, as now the vortex core size is important. At still very small
sizes, vortices annihilate and become a localised density perturbations. The
original Weiss-Mcwilliams (ideal fluid) x-directional velocity of a vortex pair
(as in 4.3) is given by

uWMc(d) = − Γ

4π

∞∑
n=−∞

sin(d)

cosh(2πn)− cos(d)
. (4.33)

Therefore, the expression obtained by adapting this to the case of the GPE
in a periodic domain is given by

upair(d) = − Γ

4π

(
∞∑

n=−∞

sin(d)

cosh(2πn)− cos(d)
+
d

π

)
. (4.34)

For our purposes, we calculate the velocity until it has converged within
10−9, this corresponds to retaining 9 terms, i.e. n = −4 to n = 4. Therefore,
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to the leading order

upair(d) =
Γ

4π

(
1 + cos(d)

sin(d)
+
d

π

)
, (4.35)

and its derivative with respect to separation is

∂upair(d)

∂d
= − Γ

4π

(
1 + cos(d)

sin2(d)
+

1

π

)
. (4.36)

This has a minimum at d = π, thus the approximation of constant
velocity across the particle is most suitable close to half the domain size,
L/2.
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Figure 4.5: Derivative of velocity with respect to separa-
tion against separation.

IV Results

IV.i Dipole configuration

We first discuss the discuss the dynamics of the particle loaded vortex-
antivortex pair, starting with an initial configuration as shown in Fig. 4.2. In
Fig. 4.6, we show the pseudo-color plots of the density field ρ(r) overlaid with
trajectories of the two particles, along with SMFM predictions (blue dashed
curves) given by Eq.(4.22) and Eq.(4.23). We find that the particles follow
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Figure 4.6: Trajectories of loaded vortex dipole. Pa-
rameters: mass ratio M = 17.15 and initial separation
d0 = 52.50ξ. Pseudo-color density (|ψ(r, tf )|2) plots with
simulated (red) and predicted with MFM (blue dashed) tra-

jectories overlaid.

a nearly cycloid trajectory, in good agreement with the SMFM predictions.
The cycloid trajectory of the particles is characterised by the displacement
amplitude in the y-direction δa and the periodic lengthXp in the x-direction.
These two quantities are easily deduced from the SMFM (Eqs. (4.22) and
(4.23) ) yielding δa = 2u/A and Xp ' u2π/A; note the dependence on the
flow velocity u.

To better appreciate this dependence, we approximate the flow velocity
u by the following three values, with upair given by Eq. (4.33).

1. u = upair(d0);

2. u = upair(d0 − 2δ0), where δ0 = 2upair(d0)/A is the amplitude of case
(1);

3. u is the mean of the estimates obtained from (1) and (2) above.

In Fig. 4.7 (a) and (b) we show the plots of δa/d0 and Xp/ξ, respectively,
vs. M obtained from the GPE simulations (curves with circles as markers)
and the use of the above three test cases for u in SMFM; we do this for



Chapter 4. Modelling particle motion in GPE 82

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

/d
0

(a)

0 10 20 30 40 50
0

20

40

60

80

X
p
/

(b)

Figure 4.7: Amplitude and period analysis of SMFM. All
blue (top four) lines correspond to a separation d0 = 52.50ξ
and red lines (bottom four) to d0 = 72.41ξ with the circles
representing simulated data in both (a,b). The other types
of line correspond to the fit for a velocity upair(d0) (square,
case 1 in text), for velocity upair(d0 − 2δα) (asterisk, case 2
in text) and average of the other two (cross, case 3 in text).
Panel (a): the amplitude δα of the cycloid in units of initial
separation against mass ratioM. Panel (b): the period Xp

against mass ratioM.

two initial values of d0 = 52.30ξ (blue curves) and d0 = 72.41ξ (red lines).
This exercise reveals a clear dependence of the results on the choice of u;
thereby suggesting that in any modelling scheme based on the MFM model,
the flow velocity u must be updated in a self-consistent manner. Note that
the case (1) is the velocity at the initial time, this also corresponds to the
minimum velocity, as the particles are at maximum separation. Case (2),
which tends to overshoot, is based on the approximate minimum distance,
thus resulting in maximum velocity. Case (3) is a simple average, we see
that this predicts well the parameters of the cycloid trajectories for all the
simulations.

Also note that in Fig. 4.7 the data for d0 = 52.50 ξ and M > 30.87 is
absent, as for these values of the parameters the amplitude of the cycloid
motion becomes larger than half the initial vortex-antivortex pair size and
results in a collision of the two particles, thereby annihilating the vortices.
Later (in Fig. 4.10) we show that the model fits well up until the collision.

Now let us recall an assumption of our model, that the flow is uniform
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across the particle. This assumption is good as long as the vortex-antivortex
pair size is large. However, as the size decreases, the finite size of the
particles becomes increasingly important due to the external flow varying
over the particle. Despite these restrictions, the analytic model provides a
good phenomenological description of the dynamics of the particle loaded
vortices.

To improve the simplified model we remove the assumption that the
velocity is constant throughout the dynamics, namely, we let the velocity
vary depending on the current separation of the particles. We solve the
MFM Eqs. (4.6) and (4.7) numerically, while accounting for the variation
in u ≡ upair(d(t)) as the vortex-antivortex pair size varies; this allows us to
improve the accuracy. We compare the trajectories of the particles obtained
directly from the GP simulations with those predicted by the MFM. We
solve the coupled ODEs of the MFM by using the specialised ODE solver
ODE45 in MATLAB. We also include the short range repulsion forces as
now they are relevant for the cases where our model is tested beyond the
formal limit of applicability, namely, when the inequality ξ � R � d does
not hold.

For comparing the above two solutions, we define an average error

ε =
Nt∑
i=1

((xs(ti)− xp(ti))2 + (ys(ti)− yp(ti))2)1/2/Nt, (4.37)

where (xs, ys) are the GP simulated coordinates of the particle and (xp, yp)

are the coordinates from the simulated ODE. We choose Nt points on each
trajectory which are evenly spaced in time. The measure of error, ε, is the
average distance the predicted value is away from the true value over the
entire run, we present this in units of ξ.

In Fig. 4.8, we present two examples (d0/ξ = 52.50 and 72.41) of di-
rect comparison between the particle trajectories obtained from the GP
simulations and those predicted by the MFM. Note that we only show the
trajectory of the particle trapped on a vortex with positive circulation be-
cause of the symmetry. The mismatch between the trajectories gives a
visual indication of the error.



Chapter 4. Modelling particle motion in GPE 84

Figure 4.8: Trajectory of the loaded upper vortex in the
dipole. Example of DNS trajectories (red) compared to pre-
dicted trajectories (blue dashed). Two cases show d0 =
52.50ξ (bottom curve), 72.41ξ (top curve) withM = 17.15.

The final time of the simulation is tf = 100.

We perform numerical simulations for a large range of particle masses
M∈ [5, 50] for the same two initial separations, keeping the total time of the
dynamics fixed at tf = 100ξ/c. We then compute the error ε and present the
results in Fig. 4.9 (a). We observe that the error for all simulations stays of
the order of a healing length. Surprisingly, we see that as the mass grows the
error decreases for the pair with larger initial separation. As we increase the
mass, we expect that the particle is less sensitive to compressibility effects.
We also note that for a greater mass, the amplitude of the cycloid for a given
initial position is larger. We see the effect of this on the pair with smaller
initial separation. The error grows rapidly as the mass approachesM = 30

at this point, the particles collide, causing the vortices to annihilate. In
general, the model predicts the behaviour of more massive particles more
accurately as long as the inequality ξ � R� d holds. However, increasing
the mass causes larger amplitudes, subsequently causing the inequality to
break.

In another protocol, we keep the mass fixed atM = 17.15 and vary the
initial size of the vortex-antivortex pair. The nonlinear shape to this error
is again due to competing assumptions of our model. For low separations
the finite size of the particle becomes important, thus we see high error. We
conjecture that the minimum that follows is due to the change in velocity
due to the separation, (∂u/∂d)2R, becoming small compared to the velocity,
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Figure 4.9: Error with simple dipole configuration. Panel
(a): two cases show d0 = 52.50ξ (blue) and 72.41ξ (red) for
a range of different masses. For values of M, greater than
30.87 the particles have collided for d0 = 52.50ξ (blue), so
they have been omitted. Panel (b): For M = 17.15 with a

range of different initial distances.

see Fig. 4.5 in Section III. The error always stays of the order of a healing
length. This clearly demonstrates the usefulness of a simple ODE based
MFM model, which is easily solved numerically and able to capture the
phenomenological motion of the vortices loaded with particles. Moreover,
it predicts their motion to high accuracy.

Above examples show that the MFM model provides good description
for a simple configuration. Now we extend its use to predict more complex
configurations.

As mentioned earlier, one of the limitations of our model is that it does
not capture the possible annihilation of vortices during a collision event.
This process plays an essential role in the dynamical evolution of an as-
sembly of vortices in 2D in the presence of particles, which can potentially
increase the annihilation rate [100]. This has implications for the quench
(relaxation) dynamics of the 2D superfluid system, which undergoes the
Berezinskii-Kosterlitz-Thouless (BKT)[15, 58] phase transition (transition
in long range order of the fluid) via a vortex annihilations. Consequently,
the increased annihilations in 2D and vortex reconnections in 3D will have
a strong influence the velocity statistics in a turbulent state.

In Fig. 4.10 we show that the model describes the dynamics well up until
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Figure 4.10: Collision of loaded vortices. Parameters:
mass ratio M = 36.02 and separation d0 = 52.5ξ. Psuedo-
color density (|ψ(r, tf )|2) plots with DNS (red) and MFM
(blue dashed) trajectories overlaid with time presented in
the each panel. Sound produced during annihilation can be
seen as variations in the psuedo-color density. The MFM

trajectories are only presented up until the collision.

a collision in which the vortices annihilate. The annihilation is followed by
linear motion of the particles, with the particles conserving their momentum
from the collision. Although the current models do not account for the
annihilations, this feature can be added in a ad hoc manner, for example as
in Ref. [7]. To add this we require further study of the collisions to define
some particle separation cut off value for which the vortices annihilate. In
order to define such a cut off we need to study the different possible dynamics
during such a collision and to further understand the exchange of momentum
of the particles and the role of the acoustic component. However, this is
beyond the scope of the current work.

IV.ii More complex configurations

We studied the case of particles on vortices in a dipole configuration in
detail. We now want to briefly consider further configurations to see how
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the model performs in more complex set-ups.
It is well known that vortices with more than one quanta of circulation

are unstable [95, 76] and move apart due to the emission of sound due to
the rotational acceleration. There have been studies on the role of static
potentials in stabilising the vortices [109, 48]; however, this can be extended
to cases with external flows and dynamic potentials like the particles pre-
sented here. We show that the particles can be used to add stability and to
create a localised region in a flow with circulation larger than one quanta.

We consider a vortex-antivortex pair configuration similar to that in
Fig. 4.2, but where each vortex has two quanta of circulation and a particle
trapped on it. Such a system exhibits an exciting dynamics, it remains
stable, i.e. both vortices remain on the particle, up until the collision. We
show the collision of the particles in Fig. 4.10, where on colliding only one
of the pairs is annihilated via the emission of an unstable Robert-Jones[53]
soliton. The other pair remains on the particles, continuing to propagate,
with the dynamics being captured by the MFM. Figure 4.11 shows that
the MFM can successfully model the post-collision dynamics. We initialise
the MFM with a position and velocity taken from the simulated GP data
after the collision. Even in the presence of considerable background sound
waves, we obtain an excellent agreement with the GP dynamics, with the
error being ε = 2.74 ξ. The fact that the collisional interaction exhibits
annihilation of only a single vortex-antivortex pair merits further investiga-
tion, as it is not trivial to understand why the entire vortical charge on the
particle was not annihilated. This example also emphasises how particles
can change the dynamics of a simple configuration, and that reconnection
events may be more common when vortices are loaded with particles.

To further increase the complexity, we consider a final example in which
free vortices (i.e. vortices not loaded with particles) are positioned in front
of a vortex-antivortex pair loaded with particles, in the latter each vortex
has two quanta of circulation. We compute the motion of the free vortices
using (4.33) such that the velocity contributions from the vortices loaded
with particles are the same as if they were free vortices. The motion of the
particles is once again calculated by numerically solving the Eqs. (4.6) and
(4.7); however, the velocity field is more complicated now. This model is
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Figure 4.11: Multiple vortices on particles: Pseudo-color
density (|ψ(r, tf )|2) plots with DNS (red) and MFM (blue
dashed) trajectories overlaid at different times as presented
in the panel. The MFM trajectories are only calculated
post-collision. Initially each particle has two vortices or two
quanta of circulation on its core. The Robert-Jones soliton

is shown by large density change in (b) and (c).
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more general as it can handle a combination of free vortices and vortices
trapped on particles; we will refer to this as PV+MFM (Point vortex and
Magnus force model). We employ a simple Euler method to advance in
time, with the velocity field coupling the two motions. The model predicts
well the general motion not only of the particle, and also the free vortices as
seen in Fig. 4.12. The average error of the model is 3.57ξ, and one can see
in FIG. 4.12 that with the additional complexity the dynamics are captured
phenomenologically.
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Figure 4.12: Free vortices and loaded vortices. Param-
eters: mass ratio is M = 17.15 and initial separation
d0 = 52.5ξ. Pseudo-color density (|ψ(r, tf )|2) plots with
DNS (red) and PV+MFM (blue) trajectories of particles
and free vortices overlaid. The smaller disks in the pseudo-
color density plots are free vortices. The DNS (red) and
PV+MFM (blue) are overlaid and are difficult to distinguish

(see color online).
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V Conclusions

We have shown that the particles trapped on vortex cores experience a
Magnus force in the presence of neighbouring vortices or a relative back-
ground flow. For simple configurations, where the flow velocity is known,
this method can be employed to efficiently predict particle trajectories. It is
also possible to generalise our model in the presence of many free vortices by
accounting for their motion using the usual point vortex expressions. The
MFM predictions are good enough, as long as we can ignore the finite size
of the particles, e.g., for large size vortex-antivortex pairs, where it fits well
even for massive particles. The model performs well outside of its formal
limits of applicability.

The MFM description naturally extends to 3D by combining the model
with the LIA, we hope to further develop the method beyond LIA and
incorporate the full BS description in future work. Our model can be gen-
eralised to include cases in which annihilation takes place and of course,
describes well the post-collision dynamics. Further work could focus on
how the attractive forces added to vortices can increase vortex annihila-
tions and further aid phase transitions like the BKT phase transition. The
development of a simple theoretical framework which accounts for the mo-
tion of particles in the presence of vortices would significantly improve the
ability to study the effect of particles in superfluid turbulence. We could
algorithmically add annihilations of vortices and vortices on particles much
using similar methods which are commonly used[6]; this will be the subject
of future work. To do this, we would need to choose some physical cut-off
value of the particle separation for which vortices annihilate. This could be
found by further studies into the annihilation of vortices in the presence of
external potentials. However, with the current model we have a fast and
accurate way to simulate 2D turbulence interacting with tracer particles.
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Chapter 5

Steady states in Leith’s model of
turbulence

I Introduction

Leith’s model of turbulence is a nonlinear degenerate inhomogeneous parabolic
equation with absorption of the form [64, 81, 28]:

∂E

∂t
=

1

8

∂

∂k

(
k

11
2 E

1
2
∂

∂k

(
k−2E

))
− νkzE, (5.1)

where E ≡ E(k, t) is the one-dimensional energy spectrum, k is the absolute
value of the wave number, ν = const > 0 is a viscosity coefficient and
z = const > 0 is the degree of the viscous dissipation. The usual kinematic
viscosity corresponds to z = 2, friction dissipation—to z = 0, hyper-viscous
dissipation (often used in numerics)—to z > 2. We will be interested in the
stationary version of this equation:

1

8

∂

∂k

(
k11/2E1/2 ∂

∂k

(
E/k2

))
= νkzE. (5.2)

Quantity

ε(k) = −1

8
k11/2E1/2 ∂

∂k

(
E/k2

)
(5.3)

has the meaning of the energy flux through k. Clearly ε(k) is always a
monotonically decreasing function for ν > 0 and constant for ν = 0.

Transient solutions of the inviscid Leith model, i.e. equation (5.1) with
ν = 0, arising from an initial spectrum compactly supported at low k were
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investigated in [81, 28]. These solutions precede the formation of a steady
cascade in the full Leith model. It was shown that this regime becomes self-
similar just before the breaking of the energy conservation (which occurs
once the cascade has proceeded far enough to generate a finite flux of energy
to k = ∞). This regime is interesting because it does not exhibit the
scaling inherited from the Kolmogorov spectrum. Namely, the transient
spectrum was found to have a power-law asymptotics with an exponent
which is smaller than the Kolmogorov index. The self-similar solutions
which were analyzed numerically in [81] have a “sharp" nonlinear front which
accelerates explosively reaching k = ∞ at a finite time t = t∗. In [43] they
recovered this result analytically and established the existence of a self-
similar solution with a power-law asymptotic on the low-wavenumber end
and a sharp boundary on the high-wavenumber end which propagates to
infinite wavenumbers in a finite-time t∗. It was shown that such a self-similar
solution is realised by a heteroclinic orbit of the corresponding dynamical
system. It was proven that this solution has a power-law asymptotic with
an anomalous exponent x∗ which is greater than the Kolmogorov value,
x∗ > 5/3, and less than value x2 ≈ 1.95 corresponding to a Hopf bifurcation.
The existence of weak solutions (the spectrum evolving from an arbitrary
finitely supported initial data) of the initial-boundary value problem was
proven and convergence to the self-similar solution as t→ t∗ was established.
In paper [23], the symmetry analysis was applied to describe all essentially
different invariant solutions of the Leith model with or without viscosity.

The present paper is devoted to the study and full classification of the
stationary solutions of the Leith model (5.1). In absence of viscosity, the
general stationary solution was found in [81, 28]:

EP,Q(k) = ck2(Pk−11/2 +Q)2/3, (5.4)

where c = (24/11)2/3 and P and Q are arbitrary constants. For Q = 0,
this gives the pure Kolmogorov cascade solution, whereas for P = 0 this
is a pure thermodynamic spectrum. For the general solution, both the
constant flux energy ε(k) = P = const 6= 0 and a thermodynamic part
Q 6= 0 are present as a nonlinear combination which is a nonlinear mixture
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of the Kolmogorov cascade (dominating at small k) and a thermal Rayleigh-
Jeans spectrum (dominating at large k). Respectively, solution EP,Q with
P,Q 6= 0 was called a “warm cascade" spectrum in [81, 28]. Such a warm-
cascade solution describes a bottleneck phenomenon of spectrum stagnation
near the dissipative scale. It is a prototype of the bottleneck phenomenon in
the numerical simulations of the Euler (inviscid) turbulence using spectral
methods, where the energy spectrum accumulates at high wavenumbers
near the truncation wavenumber [25]. It also similar to a real physical
bottleneck phenomenon in superfluid turbulence—an energy accumulation
at the classical-quantum crossover scale, an effect predicted in [68].

The bottleneck effect was shown to exist, although in a much milder
form, in viscous (Navier-Stokes) fluids too, even without a cut-off wave
number [34]. It was explained in Ref. [34] by using the fact that the Navier-
Stokes are nonlocal in the k-space.

In the present paper we will study the stationary solutions of the viscous
Leith model, i.e. solutions of equation (5.1). We will see that the inviscid
warm-cascade spectra (5.4) still play an important role in some relevant
asymptotic regimes. However, we will see that in absence of a maximum
(cut-off) wave number such spectra (or any milder bottleneck) require pres-
ence of an extra energy source at k = ∞. This results agrees with the
view of Ref. [34], nonlocality of interaction in the k-space is important—the
property absent in the Leith model. However, we will see that the warm-
cascade described by the Leith model is still relevant to the situations where
a maximum (cut-off) wave number is naturally present.

The present paper is structured as follows. In Section II, we perform the
change of independent and dependent variables which transforms the sta-
tionary viscous Leith’s type model into an autonomous nonlinear ordinary
differential equation. The corresponding dynamical system is presented and
its fixed points are found and classified. This is followed by an analysis of
the inviscid asymptotics and the power-law scalings, and the behavior of
solutions near a sharp front, where both the stationary spectrum E(k) and
the flux of energy are vanishing. Section III is devoted to a qualitative anal-
ysis of the dynamical system based on phase portraits for different values of
z found numerically. The solutions are interpreted in terms of their physical
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meanings as low and high Reynolds number direct and inverse energy cas-
cades. Appendix B is devoted to rigorous proofs of the assertions made in
Section III, including the formulation of relevant types of Cauchy problems,
studying their solvability and identifying several classes of qualitatively dif-
ferent solutions, their dependence on z and on the initial conditions. The
full classification is given in terms of the three sets of the qualitatively dif-
ferent orbits existing for any z. A summary and discussion of results is
given in Section IV.

II Autonomous dynamical system and its ba-

sic solutions

II.i The stationary model as an autonomous dynamical

system

To introduce into consideration the autonomous dynamical system, we change
variables as

s = ln (k/k0) , E = k2z−3f 2, (5.5)

where k0 is the left or right (depending on the particular problem) boundary
of the considered k-range. Then equation (5.2) is transformed into the
following autonomous ODE,

2f
d2f

ds2
+ 4

(
df

ds

)2

+ (12z − 19) f
df

ds
+Df 2 = 8νf, (5.6)

where
D = (3z − 2) (2z − 5) .

For the flux (5.3), we have in terms of f and s:

ε(s) = −1

8
e(3z−2)s

[
(2z − 5)f 3 + f 2 df

ds

]
. (5.7)

Since ε(k) is always a monotonically decreasing function for ν > 0, ε(s) is
also always a monotonically decreasing function for ν > 0.
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We can write equation (5.6) in the form of a dynamical system in 2D

phase space by introducing a new variable g via

df

ds
= (f + g) . (5.8)

Then from (5.8) and (5.6) we have

2f
dg

ds
+ 2f (f + g) + 4 (f + g)2 + (12z − 19) f (f + g) +Df 2 = 8νf. (5.9)

Notice that (5.9) is singular at f = 0. To remove the singularity, we intro-
duce a new “time” variable τ by

d

dτ
= f

d

ds
,

and as a result the dynamical system reads

df

dτ
= (f + g) f, (5.10)

dg

dτ
+ 2 (f + g)2 +

(
6z − 17

2

)
f (f + g) +

D

2
f 2 = 4νf. (5.11)

For equilibria we have either f = 0, g = 0 or

f + g = 0, Df 2 = 8νf.

Therefore, we always have fixed point P1 = (0, 0), and sometimes also
fixed point P2 = 8ν

D
(1,−1). The latter exists only for D > 0 since from

the physics f must be a non-negative function. A linearised version of the
dynamical system near the fixed point P1 = (0, 0) reads

d

dτ

(
f

g

)
= 4ν

(
0 0

1 0

)(
f

g

)
(5.12)
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with degenerate eigenvalues λ1 = λ2 = 0 and a single eigenvector (0, 1).
Correspondingly, near P2 we have the following linearised system,

d

dτ

(
f

g

)
=

8ν

D

(
1 1

−1
2
D − A −A

)(
f

g

)
, (5.13)

where A = 6z − 17
2
. The eigenvalues are given by

λ± =
4ν

D

(
19

2
− 6z ±

√
24z2 − 76z + 281/4

)
.

The expression under the square root is always positive. However, P2 exists
only for z < 2/3 and z > 5/2. We have stability if z > 19/12 and instability
otherwise. Thus, P2 is an unstable node for z < 2/3 and a stable node for
z > 5/2.

II.ii Asymptotes to inviscid solutions

Let us assume that z is of order one and not too close to 2/3 or 5/2. Then it
is clear from (5.11) that the viscous term can be neglected if f � ν or/and
|g| � ν. Thus, the general stationary solution for regions f � ν or/and
|g| � ν is given by the warm-cascade spectrum (5.4). If both P and Q are
positive then such a spectrum grows unbounded at both small and large
k. However, we will see later that solutions with either P or Q (but not
both simultaneously) negative are also of interest. Cases P < 0, Q > 0 and
P > 0, Q < 0 correspond to solutions that have a sharp front on the left
and the right sides of the k-range respectively. Both types are bounding
solutions for orbits in the case with ν > 0 and same values of P and Q at
large f .

II.iii Power law scalings

For reference, let us first find power-law solutions in the inviscid case (ν =

0), i.e. E(k) ∼ k−x. We have

f = k
3−2z

2 E1/2 = k
3−2z−x

2 (5.14)
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and respectively

g = ∂sf − f =
1− 2z − x

2
k

3−2z−x
2 . (5.15)

This corresponds to f(s) in the form f ∼ eps with p = (3 − x − 2z)/2.
Then from (5.6) with ν = 0 we have: 6p2 + (12z − 19) p + D = 0, i.e.
p = (19 ± 11)/12 − z. Here, the plus sign corresponds to the thermody-
namic and the minus to the Kolmogorov spectra. For Kolmogorov solution
(corresponding to Q = 0 in the mixed solution (5.4)):

fP,0 = e(2/3−z)s = k2/3−z. (5.16)

In this case fP,0 is an increasing function of k if z < 2/3, constant for
z = 2/3, and decreasing otherwise. For thermodynamic solution (P = 0):

f0,Q = e(5/2−z)s = k5/2−z. (5.17)

In this case f0,Q is an increasing function of k if z < 5/2, constant for
z = 5/2, and decreasing otherwise.

Pure power-law Kolmogorov and thermodynamic spectra are not solu-
tions when ν 6= 0. However, in this case there also exists a power law
solution—it corresponds the fixed point P2. For such a “viscous scaling” we
have f constant so that x = 3 − 2z. If the viscous scaling is steeper than
Kolmogorov, it will be observed on the low-k side of the spectrum. This
occurs for 3− 2z > 5/3 i.e. for z < 2/3.

For the ratio we have g/f = (1− 2z − x)/2. For Kolmogorov solution:

gP,0/fP,0 = −1/3− z. (5.18)

For thermodynamic solution:

g0,Q/f0,Q = 3/2− z. (5.19)
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II.iv A sharp-front solution

Let us analyse the behaviour of solutions of equation (5.2) under the as-
sumption that there exists a finite point k∗ where the stationary spectrum
E(k) and the energy flux ε, are vanishing, which implies

E(k∗) = dE(k)/dk|k=k∗
= 0. (5.20)

Let us seek a solution of equation (5.2) for k < k∗ in the form

E(k) = A(k − k∗)y. (5.21)

Assuming that k∗ − k � k∗, in the leading order in (k∗ − k)/k∗ by direct
calculation we have

y(3y/2− 1)k11/2−2
∗ A1/2(k − k∗)3y/2−2 = 8νkz∗(k − k∗)y. (5.22)

From here it follows that y = 4 and A = 4ν2k2z−7
∗ /25. Therefore the

function
E(k) =

4ν2k2z−7
∗

25
(k − k∗)4 (5.23)

satisfies equation (5.2) and the condition (5.20). For the phase variables f
and g we have respectively

f = k
3−2z

2
∗ A1/2(k − k∗)2, (5.24)

g ≈ ∂sf = 2A1/2k
5−2z

2
∗ (k − k∗) = −(νf/5)1/2. (5.25)

This solution corresponds to the motion in a small vicinity of fixed point P1

on its slow manifold (both its stable and the unstable parts). It is not cap-
tured by the linear analysis near P1 because such motion is nonlinear due to
the zero eigenvalue. Note that there is no k∗ dependence in this expression.
Solutions with different k∗ (and therefore with different energy flux) corre-
spond to the same orbit, namely the slow manifold of P1. The different
energy flux corresponds to different choices of the initial wave number. For
example, we fix the flux if we specify condition f(k0) = f0: then the value
f0 will correspond to a unique starting point on the slow manifold. Thus,
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the “time" to the collapse is uniquely determined by the starting point on
the slow manifold i.e. s∗ = ln(k∗/k0) will be a unique function of f0.

Note that there is also another orbit connecting to the fixed point from
the positive side. Asymptotic consideration similar to the one above give
for this orbit

g ≈ ∂sf = 2A1/2k
5−2z

2
∗ (k − k∗) = (νf/5)1/2, (5.26)

where now the cut off is on the left side, k∗ < k.

III Phase analysis of orbits: qualitative con-

siderations and overview of results

The easiest way to understand the main features of the steady state solu-
tions for different parameter values is to consider the phase space plots of
the respective dynamical systems. There are three qualitatively different
cases: z < 2/3, 2/3 < z < 5/2 and z > 5/2; see Figures 5.1, 5.2 and
5.3 respectively. As we said before, there are two fixed points for z < 2/3

and z > 5/2, (P1 = (0.0) and P2 = (8ν/D,−8ν/D), and only one for
2/3 < z < 5/2, (P1 = (0.0)). The Kolmogorov and the thermodynamic
scalings correspond to straight lines with slopes −1/3 − z and 3/2 − z re-
spectively. Since z > 0, the Kolmogorov slope is always negative and below
the thermodynamic one (the latter is positive for z < 3/2 and negative
otherwise). It is also instructive to mark the line g = −f where the orbits
are vertical (have an infinite slope), i.e. f(s) reaches a local maximum or
minimum. This line passes through P2 when the latter exists.

III.i Separatrices

The most physically important orbits are represented by separatrices. These
solutions are generic in the sense that they correspond to a single energy
source at one of the ends of the k-range and no sinks (i.e. the energy is
dissipated by the viscosity only).
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Figure 5.1: Case z < 2/3. Phase portrait for z = 0, ν =
1/4. The solid straight line shows the Kolmogorov scaling,
the dashed line—thermodynamic, and the dotted line is f =

−g.

There are two separatrices in the case 2/3 < z < 5/2: the stable manifold
of P1 asymptoting to the Kolmogorov line at infinity, S1, and the unstable
manifold of P1 asymptoting to the thermodynamic line, U1. There are
three separatrices in each of the z < 2/3 and z > 5/2 cases. One of them
is a heteroclinic orbit connecting P1 and P2. For z < 2/3, the other two
separatrices are represented by the unstable manifold of P2 asymptoting to
the Kolmogorov line, U2, and the unstable manifold of P1 asymptoting to
the thermodynamic line, U1. For z > 5/2, the other two separatrices are
represented by the stable manifold of P2 asymptoting to the thermodynamic
line, S2, and the stable manifold of P1 asymptoting to the Kolmogorov line,
S1.

Let us analyse solutions corresponding to the separatrices.

Case z < 2/3.

We start with the case z < 2/3. Orbit U2 corresponds to a direct energy
cascade from low to high k: it starts with the dissipative scaling near P2,
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Figure 5.2: Case 2/3 < z < 5/2. Phase portrait for
z = 2, ν = 1/4. The solid straight line shows the Kolmogorov
scaling, the dashed line—thermodynamic, and the dotted

line is f = −g.

E ∼ k2z−3, where the energy flux is gradually weakening, followed by tran-
sition to the Kolmogorov scaling, E ∼ k−5/3, at high k where the energy
flux saturates to a constant k-independent value; see Figure 5.4, left. The
−5/3 scaling will continue to infinite k corresponding to the fact that the
dissipation is negligible in this range. A solution of this kind was first found
in [67]. Note that orbit U2 corresponds to an energy source at the low k

boundary strong enough for f to be greater than 8ν/D (i.e. to the right of
P2). We will refer to this solution as high-Reynolds-number direct cascade.

Remark III.1. At large k (corresponding to large f in this case) the dis-
sipation is negligible and the solution tends to one of the inviscid solutions
(5.4). Importantly, the solution in this case is pure Kolmogorov, Q = 0.
Indeed, any finite Q would lead to deviation from the Kolmogorov line at
k →∞, which is not the case here.

Orbit H (a heteroclinic orbit connecting P1 and P2) corresponds to
forcing with f < 8ν/D—we will call it the low-Reynolds-number direct
cascade; see Figure 5.4, left. This solution also starts with the dissipative
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Figure 5.3: Case z > 5/2. Phase portrait for z = 3, ν =
5/8 The solid straight line shows the Kolmogorov scaling, the
dashed line—thermodynamic, and the dotted line is f = −g.

scaling near P2, E ∼ k3−2z, where the energy flux is gradually weakening.
However, this scaling does not transition to the inviscid −5/3 scaling (as
in of the high-Reynolds-number case) but drops to zero, together with the
energy flux, at a finite wave number k∗. This corresponds to arrival of H
at fixed point P1 and described by solution (5.24) in the vicinity of k∗.

Remark III.2. Importantly, viscous scaling will show up on the spectra
for the direct or inverse energy cascade only for very special initial data
corresponding to f0 = f |s=0 close to 8ν/D, i.e. such that E(k0) is close
to k2z−3

0 (8ν/D)2. For a generic case this condition is not satisfied, i.e. the
starting point on orbits U2 or H is far from P2 and there is no viscous
scaling range on the spectrum.

Finally, orbit U1 corresponds to an inverse energy cascade; see Figure 5.4,
right. Here, the energy forcing is at high (or infinite) wave number k0 and
the energy flux ε(k) is negative at k < k0, gradually decreasing in magnitude
toward lower k’s and turning into zero, together with the spectrum itself, at
a finite k∗. At high k, the dissipation is negligible and the spectrum tends
to the warm-cascade solution (5.4), dominated by the thermodynamic part,
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Figure 5.4: Sketches of spectra in case z < 2/3. Left panel
corresponds to the direct cascade: solid line is the high-
Reynolds-number spectrum described by orbit U2; dashed
line is the low-Reynolds-number spectrum described by orbit
H. Right panel corresponds to the inverse cascade described
by orbit U1 (similar spectrum is associated to orbit U1 for

2/3 < z < 5/2).

but with a finite flux correction which is negative and almost k-independent
in the high-k range, ε(k) → P = const < 0. On the dimensional grounds
we can estimate:

P ∼ Q
2−3z
5−2z ν

11
5−2z . (5.27)

Case 2/3 < z < 5/2.

This case is the simplest because there is no P2 equilibrium. Orbit S1

corresponds to a direct energy cascade. It starts with the Kolmogorov
scaling at low k’s (there viscosity is negligible) and terminates, with zero
flux, at a finite right boundary k = k∗ (corresponding to the arrival at P1);
see Figure 5.5, left. In the low-k range the Kolmogorov scaling has a finite
thermal correction with Q < 0.

Orbit U1 corresponds to an inverse-cascade spectrum which terminates,
with zero flux, at a finite left boundary k = k∗; see Figure 5.4, right. At
large k the spectrum asymptotes to a warm-cascade spectrum dominated
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by the thermodynamic part, but with a finite flux P . The value of P can
be estimated as before by equation (5.27).

k∗

lnE

ln k0

E ∼ k−5/3

E ∼ k2

lnE

0 ln kk∗

E ∼ k2z−3

Figure 5.5: Sketches of spectra in case z > 5/2. Left panel
corresponds to the direct cascade described by orbit S1 (sim-
ilar spectrum is associated to orbit S1 for 2/3 < z < 5/2).
Left panel corresponds to the inverse cascade: solid line is
the high-Reynolds-number spectrum described by orbit S2;
dashed line is the low-Reynolds-number spectrum described

by orbit H.

Case z > 5/2.

For z > 5/2, the orbit S1 behaves qualitatively similar to the behaviour of
S1 in the case 2/3 < z < 5/2; see Figure 5.5, left. Orbits S2 and H describe
a high-Reynolds and a low-Reynolds number inverse cascades respectively;
see Figure 5.5, right. The energy source is located at the right boundary of
the k-range, k0, near which it has the dissipative scaling E ∼ k2z−3 if (and
only if) E(k0) is close to k2z−3

0 (8ν/D)2 (c.f. case z < 2/3). At small k the
dissipation is negligible and the solution is close to pure thermodynamic.
We have P = 0 because otherwise the flux part would win at k → 0 in the
warm-cascade solution (5.4), which is not the case here. The low-Reynolds
number inverse cascade does not transition to the thermodynamic scaling:
it terminates, with zero spectrum and flux, at a finite left boundary k = k∗.
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III.ii Orbits other than separatrices

The other orbits are less interesting because they correspond to more artifi-
cial boundary conditions with extra sources and sinks, but we will consider
them too for completeness. Orbits from part I of the phase space (be-
low the lower separatrix/separatrices) correspond to warm direct-cascade
spectra that turn into zero at finite right boundary k = k∗ with a finite
positive value of the energy flux, which implies presence of a point sink at
k∗; see Figure 5.6, top left. Orbits from part III (above the upper sepa-
ratrix/separatrices) correspond to warm inverse-cascade spectra that turn
into zero at finite left boundary k = k∗ with a finite negative value of the
energy flux, which, again, implies presence of a point sink at k∗; see Fig-
ure 5.6, top right. Orbits from part II (in between of the lower and the
upper separatrices) which have their two ends on the opposite sides of the
thermodynamic line correspond to spectra with two point sources located
at both ends of the k-range (energy fluxes converging toward the centre of
this range are dissipated by the viscosity); see Figure 5.6, bottom. If both
ends of the type II orbit are below (above) the thermodynamic line then
the we get a warm direct (inverse) cascade spectrum with a point sink and
the right (left) end of the k-range. Obviously, if one of the orbit’s ends is
exactly on the thermodynamic line, there are no point sinks. This special
case is relevant to some numerical simulations, as will be discussed in the
Conclusions section.

IV Conclusions

In this paper we have presented an exhaustive study and full classification
of all possible stationary solutions of the Leith model of turbulence with
dissipation represented by equation (5.1) by the phase plane analysis of
the corresponding dynamical system. Different solutions are realised de-
pending on the degree of the dissipation z, the effective Reynolds number
fD/8ν, position of the forcing (at the left and right boundaries for the direct
and inverse cascades respectively), absence or presence of extra dissipation
or/and forcing at the boundaries (dual cascades diverging to the centre of



Chapter 5. Steady states in Leith’s model of turbulence 106

ln k

E ∼ k2z−3

lnE

0

E ∼ k−5/3

k∗1 k∗2

point sinks

k∗2

lnE

0 ln k

E ∼ k2z−3

E ∼ k2

point sinks

k∗1

E ∼ k2z−3

lnE

0 ln k

E ∼ k2

energy flux energy flux

E ∼ k−5/3

Figure 5.6: Sketches of spectra corresponding to orbits
which are not separatrices. Top left panel corresponds to
high-Reynolds (solid line) and Low-Reynolds number di-
rect cascades (dashed line) described by the part I orbits
in case z < 2/3. Spectra for z > 2/3 are similar except
E ∼ k2z−3 part is absent. Top right panel corresponds to
high-Reynolds (solid line) and Low-Reynolds number inverse
cascades (dashed line) described by the part III orbits in case
z > 5/2. Spectra for z < 5/2 are similar except E ∼ k2z−3

part is absent. Bottom panel corresponds to dual (converg-
ing) cascade spectra described by the part II orbits in cases
2/3 < z < 5/2 (solid line), z < 2/3 (dashed line) and z > 5/2

(dash-dotted line).
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the k-range, point sinks instantly absorbing the remaining flux). Such so-
lutions may or may not have a finite front, they may asymptotically tend
to inviscid “warm cascade" solutions at k → ∞ with a finite constant flux
P and/or temperature Q, they may exhibit viscous scaling at high or low
ends of the k-range. Many possible physical situations were linked to three
types of the boundary value problems—Problem 1, 2 and 3. In spite of the
behavioural richness, the solutions may be divided into three distinct classes
corresponding to the orbits the phase plane divided by separatrices which
connect fixed points of the corresponding dynamical system with each other
or with infinity.

The most physically relevant solutions are represented by the separatri-
ces themselves. Let us mention another interesting solution corresponding
to a warm direct cascade with Q > 0 such that the energy flux ε is zero at
the right boundary. This is a typical solution in numerical simulations of
turbulence by pseudo-spectral methods, implying there is a maximal wave
number at which the energy flux is reflected. In our classification such solu-
tions are to be found by solving Problem 3: e.g. one of such solutions could
be obtained by first picking an arbitrary orbit from Part II of the phase
plane, then picking its left end arbitrarily, and then placing its right end
onto the thermodynamic line (see the discussion in section III).

In section III we gave a qualitative description of the solutions, includ-
ing the phase portraits and sketches of typical spectra. In section B we
presented rigorous proofs of the statements made in section III. The table
below provides a brief summary of our solutions with emphasis on their
physical meanings.

In future, it remains to be shown that the steady state solutions found in
the present paper are attractors of the evolving system. It is also interesting
to study scenarios of reaching the steady states. Based on a numerical
evidence, the authors of papers [81, 28] suggested that the steady state
in the direct cascade forms as a reflection wave propagating from high to
low k’s in which the Kolmogorov scaling is gradually replacing an initially
steeper transient power law. This seems to be the typical behaviour for finite
capacity turbulent systems [110], and it is also observed in integral/kinetic
equation closures [40]. However, such a scenario has not been explained
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analytically yet, and this would be an important subject for future work.

Orbits Physics Problems
U1, z <

5
2

Warm inverse cascade, zero flux at a sharp
left end.

2

S1, z >
2
3

Negative-Q direct cascade, zero flux at a
sharp right end.

1

U2, z <
2
3

High-Re cold direct cascade; (possibly) the
dissipative scaling near the left end and Kol-
mogorov near the right end.

3

S2, z >
5
2

High-Re inverse cascade; (possibly) the dis-
sipative scaling near the right end and ther-
modynamic near the left end with ε → 0 at
k → 0.

3

H, z < 2
3

Low-Re direct cascade, zero flux at a sharp
right end. No scaling ranges.

1

H, z > 5
2

Low-Re inverse cascade, zero flux at a sharp
left end. No scaling ranges.

2

OI , any z Direct cascade, point sink at a sharp right
end.

1

OIII , any z Inverse cascade, point sink at a sharp left
end.

2

OII , any z Direct cascade, finite spectrum and point
sink at right end, or inverse cascade, finite
spectrum and point sink at left end, or con-
verging direct and inverse cascades, point
sources at both ends, or inverse cascade, fi-
nite spectrum and zero flux at the left end,
or direct cascade, finite spectrum and zero
flux at the right end.

3
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Chapter 6

Conclusions, Discussions and
Future work

We have shown that the introduction of an external potential can model
experimental apparatus and can be used to study turbulence. The inter-
actions of vortices with external potentials such as stationary vortex-like
defects in Chapter 2, active defects such as particles Chapter 5 and barriers
in Chapter 3 create interesting nonlinear dynamics.

One key element discussed is the emission of sound in vortex-potential
interactions. This is a mechanism for energy to cascade to smaller scales.
Further, we saw that impurities, barriers and particles all facilitated vortex
annihilations. We saw that vortex annihilations were accompanied by a
rarefaction pulse which then, via interacting further with potentials or a
field of compressible sound waves, breaks into small scales. We see then
that the effect is magnified as the intensity of the sound field causes a faster
vortex decay rate.

In Chapter 2, we showed that vortices can be annihilated by a small
vortex sized potential. The potential also trapped and scattered the vor-
tices. We compared directly to the case of scattering from a vortex. We saw
that the potential could play the role of a catalyst for vortex annihilations.
As experimental apparatus is likely to have defects, this could change the
decay rates and spectra considerably.

By Creating an unstable large scale structure (a step in the wave func-
tion) we were able to create turbulence in Chapter 3. This Large scale
structure decayed into smaller structures, either via a train of solitons or
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large scale sloshing both of which nucleated vortices. In this chapter, we
saw that the inclusion of a barrier could affect the time it takes for the
energy to pass through the scales. Non-trivial parameters exist for the bar-
rier to prolong vortex turbulence. In some cases, we had a finite capacity
dissipation for some range of wavenumbers in the form of a real-space heat
sink, i.e. an extra well. The vortices decayed faster in the simulations in
which the acoustic component was more occupied. Finally, we saw that the
vortex barrier interaction is highly non-trivial and again can cause annihi-
lations. The barrier in 3 is essentially the potential in 2 extended along a
line. Here we saw the same effect of scattering; however, in this case, only
when there was an angle of incidence (as changing the impact parameter
would not break a symmetry).

In Chapter 4 we make the potential active and we model particle motion
immersed in a superfluid. Again this can be compared to Chapter 2 as
essentially we are allowing the particle to be moved by the flow of the
superfluid. We test outside of its formal limits, a simplistic model for the
dynamics of a particle with a vortex trapped on its core. This follows from
the observation that vortices trap particles by natural dynamics in Chapter
2. The model explains excellently the dynamics of the vortices loaded with
a particle. We propose future work in using an extended model, which
can account for un-trapping events and annihilations for a large number of
both free and trapped particles and vortices. Another key observation was
that the inclusion of particles could increase annihilations due to the large
amplitude oscillations of massive particles.

The analytical and semi-analytical models in Chapter 4 have a clear
advantage in that they can be applied for set-ups with the particles much
larger than the healing length. Such models will be useful, in investigations
of superfluid with tracers where often particles are much larger than vortices.
We propose that the studies in Chapter 4 show the validity of such a model
in quantum fluids and that the Magnus force model works very well even
for situations well beyond the formal limits of applicability of the ideal flow
descriptions.

We saw via the Madelung transformation that GP dynamics are different
from in classical fluids due to the quantum pressure. However, another
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difference is the lack of viscosity in superfluids. The analysis of the effect
of viscosity on stationary energy spectra of an approximation of NS shows
that the viscosity can significantly affect the possible solutions. We also
highlight how natural numerical cut-offs (dissipation in finite-difference and
reflection in pseudo-spectral schemes) can affect the observed spectra.
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Appendix A

Additional Calculations

I Madelung transform

In this section we show how the GP equation can be expressed in classical
fluid variable, namely, ρ the fluid density and u the fluid velocity. We start
with the defocussing NLS,

i
∂ψ

∂t
+∇2ψ − |ψ|2ψ = 0, (A.1)

with no external potential. We then consider −iψ∗× (A.1) + c.c.:

0 = −iψ∗
(
iψt +∇2ψ − ψ|ψ|2

)
+ c.c

= ∂t (ψψ∗)− i
(
ψ∗∇2ψ − ψ∇2ψ∗

)
= ∂t (ψψ∗)− i∇ · (ψ∗∇ψ − ψ∇ψ∗) (A.2)

Now we substitute in for ψ the new variables via the Madelung transforma-
tion:

ψ =
√
ρ eiφ, (A.3)

such that |ψ|2 = ψψ∗ = ρ and
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(ψ∗∇ψ − ψ∇ψ∗) =
√
ρe−iφ (∇√ρ+ i

√
ρ∇φ) eiφ (A.4)

−√ρeiφ (∇√ρ− i√ρ∇φ) e−iφ (A.5)

= i2ρ∇φ = iρu (A.6)

where we have set u = 2∇φ. Substituting (A.3) and (A.6) into (A.2):

∂t (ρ) +∇ · (ρu) = 0 (A.7)

we arrive at the continuity equation i.e. the evolution equation for ρ.

To find the evolution equation for u consider −(A.1)/ψ+c.c.:

0 = −iψt
ψ
− ∇

2ψ

ψ
+ |ψ|2 + c.c. (A.8)

= −i∂t (ln (ψ))− ∇
2ψ

ψ
+ |ψ|2 + c.c. (A.9)

= −i∂t (ln (ψ)− ln (ψ∗))− ∇
2ψ

ψ
− ∇

2ψ∗

ψ∗
+ 2|ψ|2 (A.10)

= −i∂t
(
ln
(
ψ

ψ∗

))
− ∇

2ψ

ψ
− ∇

2ψ∗

ψ∗
+ 2|ψ|2 (A.11)

From (A.3) we can see that:

ln
(
ψ

ψ∗

)
= 2iφ. (A.12)

∇2ψ = ∇ ·
(
∇√ρeiφ + i

√
ρ∇φeiφ

)
(A.13)

= ∇2 (
√
ρ) eiφ + 2∇√ρ · ∇ (iφ) eiφ + i

√
ρ∇2φeiφ +

√
ρ (i∇φ)2 eiφ

(A.14)
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∇2ψ

ψ
=
∇2√ρ
ρ

+ 2
∇√ρ · ∇ (iφ)

√
ρ

+ i∇2φ− (∇φ)2 (A.15)

∇2ψ

ψ
+
∇2ψ∗

ψ∗
= 2
∇2√ρ
ρ
− 2 (∇φ)2 (A.16)

Bringing (A.11), (A.12) and (A.16) together we arrive at:

2∂tφ+
u2

2
+ 2ρ− 2

∇2√ρ
√
ρ

= 0 (A.17)

Now we calculate the divergence of (A.17) and apply, once again, u =

2∇φ and arrive at the evolution equation for u:

∂u + (u · ∇)u + 2∇ρ︸︷︷︸
A

− 2∇
(∇2√ρ
√
ρ

)
︸ ︷︷ ︸

B

= 0. (A.18)

The term which makes the evolution equation (A.18) different from the
euler equations is labelled B, this term corresponds to the “quantum pres-
sure". If B was not present the adiabatic index is found by considering the
term labelled A. In the usual Euler equations the “classical pressure" ap-
pears as P/ρ, since A is the corresponding term here the adiabatic pressure
must be ρ2 thus the index is 2. If the non-linear term is discarded the term
A would disappear.

II Conservation calculations

To show that mass is conserved we shall take the derivative and show that
it is zero:
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Ṁ =

∫
V

∂|ψ|2
∂t

dx =

∫
V

ψ
∂ψ∗

∂t
+ ψ∗

∂ψ

∂t
dx (A.19)

= i

∫
V

∇ · (ψ∗∇ψ − ψ∇ψ∗) dx (A.20)

= i

∫
∂V

(ψ∗∇ψ − ψ∇ψ∗) · ndS (A.21)

= 0. (A.22)

The second step was Gauss’ theorem and the final step is due to the bound-
ary conditions stated either being periodic or the wavefunction going to
zero.

We can apply the same method to show energy conservation in a domain
with periodic or zero boundary conditions:

Ḣ = ∂t

∫
V

[
|∇ψ|2 +

1

2
|ψ|4

]
dx (A.23)

=

∫
V

[
(∇ψ) · ∇∂tψ∗ + (∂tψ

∗)ψ|ψ|2
]
dx + c.c. (A.24)

= [∇ψ∂tψ∗]∂V +

∫
V

[
−∇2ψ∂tψ

∗ + (∂tψ
∗)ψ|ψ|2

]
dx + c.c. (A.25)

=

∫
V

(∂tψ
∗)
[
−∇2ψ + ψ|ψ|2

]
dx + c.c. (A.26)

=

∫
V

(∂tψ
∗) [i∂tψ] dx + c.c. (A.27)

=

∫
V

i|∂tψ|2 − i|∂tψ|2dx = 0. (A.28)

The first operation was integration by parts and the boundary terms
vanish due to the zero or periodic boundary conditions. The fourth oper-
ation was substituting in the rhs of the GP equation in place of the time
derivative.
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III Vortex tracking methods

We define the pseudo-vorticity:

j = ρv =
1

2i
(ψ∗∇ψ − ψ∇ψ∗) (A.29)

ωρs =
1

2
∇× j (A.30)

This is ideal as the pseudo-vorticity is regular at the vortex core, whereas
the vorticity is not. To track the vortices we implement a simple algorithm:

Algorithm 1 Vortex tracking
Require: ψ - wavefunction, θω - pseudo-vorticity threshold, C - core size

and θρ - density threshold
1: Calculate pseudo-vorticity: ωρs(ψ)
2: Compute maximum M>

ω and its position
3: i = 0
4: while Mω > θω do
5: if |ψ(Pω)|2 < θρ then
6: i = i+ 1
7: V +

p (i) = Pω
8: end if
9: ωρs(ωρs(ψ(Pω + C)) > θ) = 0

10: Compute maximum M>
ω and its position Pω

11: end while
12: Compute minimum M<

ω and its position Pω
13: i = 0
14: while M<

ω < −θω do
15: if |ψ(Pω)|2 < θρ then
16: i = i+ 1
17: V −p (i) = Pω
18: end if
19: ωρs(ωρs(ψ(Pω + C)) < −θ) = 0
20: Compute minimum M<

ω and its position
21: end while
22: return V −p ,V +

p
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IV Added mass

A common technique used to calculate the added forces on an object moving
or accelerating through a fluid is often referred to as the "Added mass". The
idea is to think of the additional forces solely as an additional mass of an
object moving in a vacuum. To derive the hydrodynamic mass we consider
the forces acting on an object as it accelerates through a fluid. Consider
a sphere with surface element δS in 3D accelerating in any direction with
acceleration U̇ . We denote the radius R of the sphere. Then the force acting
on this body will be

F =

∫
p dS, (A.31)

with p denoting the pressure of the fluid given by the unsteady (due to the
motion of the obstacle) Bernoulli equation:

p = −ρ
(
∂φ

∂t
+

1

2
|∇φ|2

)
(A.32)

The velocity potential for axisymmetric flow around a sphere can be found
by solving the Laplace equation with suitable boundary conditions and is
given by φ = Ucos(θ) R

3

2r2
[13]. In spherical coordinates (r, θ, φ), we choose

the axis such that F is in the same direction as the acceleration:

F =

∫
−ρ
(
∂φ

∂t
+

1

2
|∇φ|2

)
dS (A.33)

=

∫
−ρ
(
∂φ

∂t
|r=R +

1

2
|∇φ|2|r=R

)
2πR2 cos(θ) sin(θ)dθ (A.34)

= −2

3
ρπR3U̇ (A.35)
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and in 2D where the velocity potential is φ = Ucos(θ)R
3

r
[13]:

F =

∫
−ρ
(
∂φ

∂t
+

1

2
|∇φ|2

)
dS (A.36)

=

∫
−ρ
(
∂φ

∂t
|r=R +

1

2
|∇φ|2|r=R

)
cos(θ)dθ (A.37)

= −ρπR2U̇ (A.38)

In the 2D case the added mass is then ma = ρπR2.
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Appendix B

Rigorous analysis of solutions to
Leith model

.i Boundary value problems

For equation (5.2) we are interested in studying the following boundary
value problems. Find solutions of equation (5.2) supplemented by the con-
ditions

E(k0) = E0, E(k∗) = 0, k∗ > k0 (B.1)

such that E(k) > 0 for k ∈ [k0, k∗) (which corresponds to s = ln k/k0 < 0)
and

E(k0) = E0, E(k∗) = 0, 0 < k∗ < k0 (B.2)

for k ∈ [k∗, k0) which corresponds to s < 0. We will refer to these as
Problem 1 and Problem 2 respectively. In an addition, we also consider
Problem 3:

E(k0) = E0, E(k1) = E1. (B.3)

We show that not for all combinations E0, E1, k∗ and k1 Problems 1-3 are
solvable.

It will be convenient to write equation (5.6) in an equivalent form:

F̂ (f) ≡ 2
d

ds

(
f 2 df

ds

)
+ (12z − 19) f 2 df

ds
+Df 3 − 8νf 2 = 0. (B.4)

Notice that equation (B.4) admits the translation group of transformations
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of independent variable s → s + b where b is a constant with the infinites-
imal operator X = ∂

∂s
. For the original equation (5.2) this symmetry is

transformed into the scaling symmetry. Therefore we set k0 = 1 for the first
boundary condition in (B.1). In terms of f(s) the boundary value prob-
lems are formulated as solving equation (B.4) with the following boundary
conditions. Problem 1f:

f(0) = f0 > 0, f(s∗) = 0, s∗ > 0, (B.5)

Problem 2f:
f(0) = f0 > 0, f(s∗) = 0, s∗ < 0, (B.6)

and Problem 3f:
f(0) = f0 > 0, f(s1) = f1 > 0. (B.7)

To study these boundary value problems, we apply the well-developed meth-
ods of the theory of nonlinear ODEs, see e.g. [92]. First of all, we notice that
solutions of these problems are (if exist) unique. Also, it is easy to establish
that the Kolmogorov solution denoted by fP,0 is a super solution of equation
(B.4), i.e. F̂ (fP,0) ≤ 0. The same is true for the thermodynamic spectrum
f0,Q and for the general solution of the inviscid form of equation (B.4),

fP,Q(s) = c1/2e(5−2z)s/2
(
Pe−11s/2 +Q

)1/3
. (B.8)

.ii Case z < 2/3

Let us consider the case z < 2/3 which means that D > 0 and 12z−19 < 0.
We will consider equation (B.4) and the phase portrait of the dynamical
system (5.10), (5.11) to establish which data guarantees solvability of the
Problems 1 and 2. Instead of directly using the boundary conditions (B.5)
and (B.6) let us employ a shooting method. Namely, let us supplement
equation (B.4) by the initial conditions

f(0) = f0 > 0,
d

ds
f

∣∣∣∣
s=0

= 0. (B.9)
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These initial conditions mean that we study the orbits of the dynamical
system which start on the line f + g = 0 of the phase plane (f, g). Note
that the direction of velocity (df/dτ, dg/dτ) on the line f + g = 0 is ver-
tically down for f > fD and vertically up for f < fD, where fD = 8ν/D.
Recall that equation (B.4) has an exact positive solution f(s) ≡ fD which
corresponds to the unstable node P2 on the phase plane.

We begin with a preliminarily analysis of the behavior of orbits of the
dynamical system (5.10), (5.11).

Lemma .1. The orbits of the dynamical system (5.10), (5.11) intersecting
the line f + g = 0 with f ≥ 48ν/5D do not approach the fixed point P1.
Instead, these orbits approach, in finite time, the g-axis without intersecting
it, so that f → 0, g → −∞ as s→ s∗ > 0.

To prove this Lemma, we consider an integral identity obtained by
multiplying equation (B.4) by f 2df/ds, integrating over [0, s] and setting
df/ds = 0 at s = 0:

2

(
f 2 df

ds

)2

(s) + (12z − 19)

∫ s

0

f 4

(
df

dη

)2

dη + Φ(f) = Φ(f0). (B.10)

where Φ(f) = D
6
f 6 − 8ν

5
f 5. Function Φ(f) has zeros at f = 0 and f = 48ν

5D
;

Φ(f) < 0 for f ∈ (0, 48ν
5D

), and Φ(f) > 0 for f > 48ν
5D

. The minimum of Φ(f)

is achieved at f = 8ν
D
. First, let us show that at least for f0 ≥ 48ν/5D

the corresponding solutions are decreasing functions up to the intersection
with the s-axis. Indeed, since f0 ≥ 48ν/5D > 8ν/D the solutions are
decreasing functions for small s because f(s) has a local maximum at s = 0:
f ′(0) = 0, f ′′(0) = g′(0) < 0. Now suppose that f(s) also has a positive
minimum at s > 0 (including the case f(s) → const > 0 as s → ∞): then
the first term in (B.10) is zero, the second term is negative and, therefore,
Φ(f(s)) > Φ(f0). But this means that f(s) > f0 which contradicts the
assumption that this is a minimum, i.e. has to be less than the maximum.
Therefore, there can be no positive minima, as required.

Now let us show that f can vanish at finite point s = s∗ only. Assume
that s∗ = ∞: then df/ds → 0 as s → ∞ and the first term of the left-
hand side of (B.10) tends to zero. So do the third and the fourth terms
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on the left-hand side, whereas the second term is bounded from above by a
negative number (in principle it could be −∞ if the integral was divergent).
But then we arrive at a contradiction as the right-hand side in (B.10) is
positive. Therefore s∗ <∞.

By the same argument we see that at the point s∗ <∞ where f(s∗) = 0

we must have lims→s∗(f 2df/ds) = const 6= 0 and, therefore, lims→s∗ df(s)/ds =

−∞. In view of the formula df/ds = f + g we get that g(s) → −∞ as
s→ s∗ (τ → τ ∗). Therefore the corresponding orbits of the dynamical sys-
tem (5.10), (5.11) cannot approach the equilibrium P1 (where df(s)/ds =

0), but instead asymptote to the g axis with g → −∞.

Corollary .1. At least for f0 ≥ 48ν/5D there exits s∗ < ∞ such that the
boundary value problem (B.4), (B.5) is solvable. Flux ε defined by (5.3) and
(5.7) tends to a positive constant as s→ s∗.

Corollary .2. The boundary value problem (B.4), (B.5) with s∗ = ∞ has
no solutions at least for f0 ≥ 48ν/5D.

Remark .1. We show later that the orbits for all f0 > fD asymptote to the
g-axis, (f, g)→ (0,−∞).

On the orbits asymptoting to the g-axis the flux ε defined by (5.7) is
positive at each s. We see that ε > 0 for df/ds < 0, which includes the line
g + f = 0 and below. For the orbits that go to P1 (i.e. the heteroclinic
orbit H) we have ε(s∗) = 0 since at this point f = df(s)/ds = 0. For
f0 ≥ 48ν/5D we showed that lims→s∗(f 2df/ds) = const < 0 (actually, the
same is true for all orbits with f0 > 8ν/D). Thus for small f (and therefore
large negative df/ds ≈ g) we have from (5.7):

lim
s→s∗

ε(s) = Ae(3z−2)s∗ , A = const > 0. (B.11)

Therefore, ε(s∗) > 0, as required. Moreover, ε(s∗) is a decreasing function
of s∗.

Remark .2. Each orbit of (5.10), (5.11) is invariant under shifts along
the trajectory τ → τ + a or the translation symmetry (with respect to
s → s + b) of equation (B.4). According to formula E(k) = k2z−3f 2,
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the translation symmetry generates a one-parametric family of solutions
E(k, b) = eb(z−3/2)E(bk) for each known solution E(k). In the other words,
each orbit on the (f, g) plane corresponds to not just one, but to a one-
parametric family of solutions.

To prove the existence of separatrices, we present a technical result
concerning the direction of the vector field on the Kolmogorov line fK :

g+(1/3+z)f = 0 and thermodynamic line fT : g+(z−3/2)f = 0. Notice
that fK is located above of the line f+g = 0 and below the thermodynamic
line which is located in the first quadrant of the phase plane for z < 2/3.
We write g = g(f) where

dg

df
= −2(f + g)

f
− (6z − 17/2)− D

2(f + g)
+

4ν

f + g
≡ G(f, g).

Lemma .2. G(f,−(1/3 + z)f) > −(1/3 + z) for the Kolmogorov line and
G(f,−(z − 3/2)f) > −(z − 3/2) for the thermodynamic line.

By simple calculations, we have G(f,−(1/3 + z)f) = −(1/3 + z) +

4ν/((2/3 − z)f) for the Kolmogorov line and G(f,−(z − 3/2)f) = −(z −
3/2)+4ν/((5/2−z)f) for the thermodynamic line. Geometrically Lemma .2
states that along fK and fT the flow is directed into the domains g+(1/3+

z)f > 0 and g + (z − 3/2)f > 0 respectively.
Now we show the existence of a heteroclinic connection between the fixed

points P2 with P1.

Lemma .3. There exists an orbit H (a heteroclinic connection) of (5.10),
(5.11) which emerges out the unstable node P2 and goes to the equilibrium
P1 with time.

Consider a Cauchy problem for equation (B.4) supplemented with the
initial data

f(0) = f0 ≡ fD − ε,
d

ds
f

∣∣∣∣
s=0

= fm < 0, m = 1, . . . (B.12)

for arbitrary small ε > 0. Notice that vertical line f = fD − ε intersects
the Kolmogorov line on the phase plane and also the orbits obtained in
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Lemma .1. First of all, we indicate that for sufficiently small values of |fm|
the orbits, which correspond to solutions of (B.4), (B.12), intersect the line
g + f = 0 since the direction of the velocity field (df/ds, dg/ds) is directed
into g + f > 0 for f < fD. Therefore, these solutions achieve local minima.
At the same time, there exists fm such that the corresponding solutions de-
crease monotonically with time vanishing at some finite points. Indeed, the
line f = fD − ε always intersects the orbits obtained in Lemma .1 and fm,
together with f0, fix the coordinates of these intersections. For complete-
ness, we notice that if we take fm positive and sufficiently large such that we
are located above of the Kolmogorov line then solutions of (B.4), (B.12) are
increasing functions, see Lemma .2. Therefore, there exists families of orbits
with different behaviours on the phase plane and it should be a separatrix
which separates them. To prove it, let us consider the set A = {fm, fm < 0}
with the properties: the corresponding solution of the Cauchy problem has
a positive minimum at s = smin. This set is not empty and not a single
element set. Moreover, A is bounded below, see the discussion above. It
means that inf A exists, which we denote by fA, and the solution we denote
by f(s; fA). We denote the corresponding orbit by H. According to the
definition of the infimum any vicinity of fA produces solutions both in and
outside of A, i.e. df/ds = 0 at the boundary s = s∗ which, by definition,
is where f = 0. (We discard possibility for f(s; fA) → const < ∞ with
df/ds→ 0 at s→∞, as there are no fixed points in the system other than
P1 and P2.) However, the point where f = df/ds = 0 is P1 and, therefore,
orbit H goes to P1 and reaches it (as it follows from the asymptotics of
solution near P1 found in section II.iv) in finite s = s∗.

If we now change τ to the inverse time τ̂ = −τ then H goes to the
stable node P2. It follows from the Poincaré-Bendixon theorem. Indeed,
let us consider a finite area of the (f, g)-plane: the g-axis, the Kolmogorov
line, a horizontal line somewhere below P2, g = gb const < −fD and the
vertical line f = −gb. Easy calculation shows that on the boundary of
this domain vector field (df/dτ̂ , dg/dτ̂) is either directed into this domain
or along the boundary. Note that there is only one orbit passing through
P1 within the specified domain–the orbit H. The other orbit passing P1
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is describes motion toward this fixed point (in the reverse time) from out-
side of the specified domain. This follows from the local structure of this
trajectory (and of H) f ∼ g2, see equations (5.26) and (5.25). Thus, H
cannot return to P1 as this would imply leaving the specified domain first,
which is impossible by the construction—i.e. H is not a homoclinic orbit.
Therefore, H approaches the stable (in the reverse time) node P2 and this
is a heteroclinic connection.

Corollary .3. There exists a solution of Problem 1f which vanishes together
with the flux ε defined by (5.7) at a finite point s = s∗. This solution is
represented by the orbit H.

Indeed, since for H we have f = df/ds = 0 at s = s∗, the right-hand
side of (5.7) is zero.

Existence of the orbit H allows us to generalize Lemma .1 to all f0 > fD

as stated in Remark .1. Indeed, such orbits are bound by H on one side
and by the orbits with f ≥ 48ν/5D which approach the g-axis. Thus they
also asymptote to the g-axis.

Now let us prove that there exists an orbit U2 which originates at the
fixed point P2 and asymptotes to the Kolmogorov line fK for large τ , see
Figure 5.1.

Lemma .4. There exists an orbit U2 which emerges out the unstable node
P2 and transitions to the Kolmogorov line as τ →∞

Consider a Cauchy problem for equation (B.4) supplemented with the
initial data

f(0) = f0 = fD + ε,
d

ds
f

∣∣∣∣
s=0

= fm, m = 1, . . . . (B.13)

Here ε > 0 is arbitrarily small. Note that vertical line f = fD + ε inter-
sects the Kolmogorov line on the phase plane. Let us consider the solution
f(s; fm) of (B.4), (B.13). Assume that f(s; fm) is large at sufficiently large
s, namely that there exists s0 > 0 such that f(s; fm) � fD for s > s0 so
that the right-hand side of (B.4) is negligible compared to the last term on



Appendix B. Rigorous analysis of solutions to Leith model 126

the left-hand side, and in the leading order we have an inviscid equation:

2
d

ds

(
f 2 df

ds

)
+ (12z − 19) f 2 df

ds
+Df 3 = 0. (B.14)

Solutions of this equation are

fP,Q(s) = c1/2e(5−2z)s/2
(
Pe−11s/2 +Q

)1/3
. (B.15)

They correspond to the warm-cascade solutions (5.4). In view of the theo-
rem of continuous dependence of solutions on the right-hand side applied to
equation (B.4), we have that for f(s0)/fD → ∞, f(s) converges to fP,Q(s)

for s ≥ s0 at least in the Hölder norm C2+α, 0 < α < 1 on each compact
interval. Therefore f(s; fm) converges to fP,Q(s) for s ≥ s0.

Function fP,Q(s) is the two-parametric general solution of the inviscid
form of the inviscid equation (B.14), where c > 0 and P , Q are constant
parameters. Parameter P is the flux ε which is constant on fP,Q(s). Case
Q = 0 gives the Kolmogorov solution fP,0 parametrized by P , whereas for
P = 0 we get the thermodynamic solution f0,Q parametrized by temper-
ature Q. For different values of the parameters P and Q we have both
increasing and decreasing behavior of fP,Q(k). It follows from (B.15) that
the Kolmogorov solution fP,0 is positive everywhere and is a solution of
the minimal growth among solutions fP,Q(s). If P and Q have different
signs, fP,Q(s) vanishes at s = (2/11) ln(−P/Q). Therefore for the growing
f(s; fm) the corresponding orbits either asymptote to the Kolmogorov line
or pass above this line asymptoting to the thermodynamic line as τ → ∞,
as the Q-term in (B.15) is always dominant for large s.

Consider the set C = {df(0)/ds = fm} with the properties: correspond-
ing solutions of the Cauchy problem (B.4), (B.13) have one positive maxi-
mum at s = smax. On the phase plane (f, g) the points of local maximum
of f(s; fm) are located on line f +g = 0 for f > fD and go along this line as
fm grows. Clearly, values of fm such that the corresponding orbits intersect
line g+f = 0 exist: for example one can take an initial point very close and
just above line g+ f = 0. Thus, set C is not empty. Also, set C is bounded
from above: at the very least it is bounded by the value fm corresponding
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to the Kolmogorov line. Indeed, the orbits cross the Kolmogorov line from
the lower to the upper side, and, therefore, once crossing it will never cross
back, see Lemma .2. Therefore, supC < ∞ exists, let us denote it by fC ,
and the solution f(s; fC) of (B.4), (B.13) is a positive increasing function
defined for s ≥ 0. Orbit U2, corresponding to f(s; fC), asymptotes to the
Kolmogorov line on the phase plane as s → ∞. Indeed, f(s; fC) presents
the minimally monotonically growing solution as s → ∞ in the sense for
fm = fC − δ with arbitrary small δ > 0 the corresponding solution of the
Cauchy problem is not a monotonically increasing function. For positive
δ → 0 we have smax → ∞ and f(smax) → ∞ so that for s ∼ smax the
solution converges to an inviscid solution fP,Q(s) with a finite positive P
and negative Q → 0 (see remark .3 below). For negative δ → 0 we have
no maximum, but for large s the solution also converges to an inviscid so-
lution fP,Q(s), now with a finite positive P and positive Q→ 0. Therefore,
f(s; fC)→ fP,0(s) for s→∞. By construction, orbit U2 is above of the line
g + f = 0. Also, it remains below the Kolmogorov line, because crossing
this line and then asymptoting back to it would contradict the monotonous
decrease of ε(s) property.

Let us now show that orbit U2 emerges out of the unstable node P2.
Consider a finite domain bounded by the Kolmogorov line, line g + f = 0

for f ≥ fD, orbitH for f < fD and a vertical line f = fD+ε. For the inverse
time τ̂ = −τ , the vector field (df/dτ̂ , dg/dτ̂) is directed either inwards or
parallel to the boundaries of this domain (e.g. for the Kolmogorov line see
Lemma .2). Thus, by the Poincaré-Bendixon theorem the orbit U2 must
approach P2. U2 cannot approach P1 since the only orbit in the fourth
quadrant that goes to P1 is H (see section II.iv).

Remark .3. We established that there exist a monotonically growing solu-
tion f(s; fC) and converging to fP,0(s) in the Hölder norm C2+α as s→∞.
Respectively, the flux ε(s; fC) calculated for f(s; fC) converges to the flux
εP,0(s) for the Kolmogorov solution fP,0 as s→∞. Direct calculation shows
that εP,0(s) ≡ P is a positive constant for all s. Thus ε(s; fC) → P as
s → ∞. Let us now take fm ∈ C sufficiently close to fC: there ex-
ists an interval [am, bm], am > 0, bm < ∞ where f(s; fm) � fD or/and
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|g(s; fm)| � fD. Hence the difference |f(s; fm) − fP,Q(s)| is small in the
norm of the Hölder space C2+α[am, bm] for some choice of the parameters P
and Q, where Q is always a negative quantity. Therefore the flux ε(s) tends
to constant P and fP,Q(s) is an asymptotic of f(s; fm).

Let us denote by OI the set of orbits which located below of H∪U2∪P2.
By OII we will denote the set of orbits which emerge out P2 and located
above of H ∪ U2 ∪ P2. As we will shortly show, the latter set is bounded
from above on the (f, g)-plane by yet another separatrix, U1. The set of
orbits in the first quadrant of the (f, g)-plane above U1 will be called OIII .

The flux ε is positive on the g-axis and on the line g + f = 0 of the
fourth quadrant. All orbits from OII can be obtained by starting from
different initial points on the Kolmogorov line. Moving backwards in time
one can see, by the Poincaré-Bendixon theorem using the domain bounded
by H ∪ U2 ∪ P2 and the Kolmogorov line, that the orbits converge onto
P2. Moving forwards in time we get solutions f(s) that grow monotonously
and, therefore, at large s converge to fP,Q(s) with Q > 0. Note that, in
spite of the two parameters in fP,Q(s), the respective family of orbits is
one-parametric due to the translational symmetry mentioned in Remark .2.
But the Q-part always wins in fP,Q(s) over the P -part at large s, so all these
orbits asymptote to the thermodynamic line. This applies to the limiting
orbit starting at P1. In fact we already know, that when run backwards
in time the trajectory starting at P1 also ends at starting at P2—like any
orbit from the OII set: this is orbit H. Thus we have proven the following
lemma concerning the orbit starting at P1 and running forward in time.

Lemma .5. There exists an orbit U1 of the dynamical system (5.10), (5.11)
which emerges out the fixed point P1 and asymptotes to the thermodynamical
line.

Remark .4. Orbit U1 starts with zero flux at P1, ε(0) = 0, and asymptotes
to fP,Q(s) with Q > 0 and P < 0. Thus, U1 lies above the thermodynamic
line (on which ε(s) = 0).

Note that this remark does not contradict the preceding lemma because
at large s the Q-term is dominant over the P -term in fP,Q(s) for any finite
P and Q.
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Thus, U1 represents an inverse energy cascade solution vanishing, to-
gether with the flux, at a finite wave number. The fact that ε(0) = 0 follows
from (5.7) upon substitution f = df/ds = 0. The fact that ε → P < 0 for
s→∞ follows from the fact that ε(s) is always a monotonically decreasing
function of s.

Corollary .4. U1 realises a solution of Problem 2f which vanishes, together
with f 2df/ds and ε, at s = s∗∗, s∗∗ < 0.

This statement follows from the shift invariance of the solutions. Chang-
ing s → s + s∗∗, we shift the point where s = 0 to somewhere on U1 away
from P1. This will generate the required solution of Problem 2f which
vanishes at s = s∗∗ with zero flux.

Now, let us consider set OIII . It is clear that the OIII-orbits represent
monotonously increasing f(s) which asymptotes to the inviscid fP,Q(s) so-
lutions with Q > 0 and P < 0 for s→∞. However, OIII are very different
from OII near the left boundary of the s-interval.

Indeed, since f(s) is monotonously growing, moving backwards in time
the OIII-orbits will reach small values of f such that f � fD and f � g.
Then the dynamical system (5.10) and (5.11) reduces to:

df

dτ
= gf,

dg

dτ
= −2g2,

solving which we have

g =
1

2(τ − τ ∗) , f = C(τ − τ ∗)1/2, τ > τ ∗, (B.16)

where C is a positive constant.
Thus, the OIII-orbits have a sharp left boundary s∗ < 0, i.e. correspond

to solutions of Problem 2f on s∗ < s < 0 such that f(s) → 0 as s → s∗.
In fact, f(s) vanishes at a finite point that follows from (B.16). Indeed, in
terms of f(s) the obtained solution reads:

f(s) = (4C/9)|s− s∗|3/4. (B.17)
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Note that at s∗ we have f 2df/ds = C2/2, which means that ε(s∗) is a finite
negative number, see (5.7). Therefore, any OIII-orbit also corresponds to an
inverse energy cascade situation, but now with a finite amount of (negative)
flux left at the point s∗ where the spectrum turns into zero. For realisability
of such a solution one has to put a point sink of energy at the boundary
s = s∗.

We will now put together the classification of the orbits.

Theorem .1. H ∪ U2 ∪ P2 and U1 divide the phase plane (f, g) (f > 0,
−∞ < g < ∞) into the parts I, II and III with the different behaviours
of orbits. In part I orbits emerge out of P2 and always asymptote to the
negative part of the g-axis. In part II orbits emerge out of P2, the fourth
quadrant intersecting the f -axis (never intersecting g-axis), and asymptote
to the thermodynamic line as τ → ∞. In part III orbits emerge with
(f, g)→ (0,+∞), go down along the g-axis, and then turn up asymptoting
to the thermodynamic line as τ →∞.

Now we will consider how the orbits classified in Theorem .1 could be
linked to solutions of Problems 1, 2 and 3, or equivalently 1f, 2f and 3f. It
is clear that there exist parameters of these problems for which solutions
exist. Below we will show that not for all values of parameters there exist
a solution.

Theorem .2. There exist choices of parameters (E0, k∗) (of (f0, s∗)) for
which Problem 1 (Problem 1f) is not solvable.

The Problem 1 is equivalent to the Problem 1f, so we will stick here to
the Problem 1f. Initial condition f(0) = f0 corresponds to the points on
the vertical line f = f0 on the (f, g)-plane. Only orbits from the OI family
and the orbit H are relevant to the Problem 1f, as only these orbits describe
solutions vanishing at a finite right boundary, s∗ > 0. It is clear that s∗
is a monotonously increasing function of g0 for fixed f0. Indeed, larger g0

for fixed f0 mean smaller negative values of df/ds(0). If such solutions had
smaller s∗ than the values of s∗ corresponding to larger negative df/ds(0)

then the two solutions would have to intersect at some s > 0, which is im-
possible due to uniqueness of solution of the Problem 1f (arising by choosing
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the intersection point at the right boundary). Secondly, for g0 → −∞ at
fixed f0 we have s∗ → 0, which follows from the inviscid asymptotics of the
solution valid at large |g|. Consider the case f0 < fD. From what we just
said it follows that s∗ is bounded from above by a finite value corresponding
to s∗ of the solution generated by the heteroclinic orbit H; let us call it s∗H .
Thus we have proven that for any f0 < fD there exist 0 < s∗H < +∞ such
that the Problem 1f does not have solution with pair (f0, s∗) if s∗ > s∗H

and have solution if s∗ ≤ s∗H . Now consider the case f0 ≥ fD. In this case
the value of possible s∗ is not bounded: it tends to infinity when (f0, g0)

approaches to U2. Thus we have proven that for any f0 ≥ fD the Problem 1f
has solution with pairs (f0, s∗) for any s∗ > 0.

Theorem .3. There exist choices of parameters (E0, k∗) (of (f0, s∗)) for
which Problem 2 (Problem 2f) is not solvable.

The relevant orbits for this case are the ones from OIII and the separatrix
U1. In the same way as in the previous theorem, one can show that s∗ is
a monotonously increasing function of g0 for fixed f0, and that s∗ → 0 for
g0 → +∞ at fixed f0. But for any fixed f0, the value of s∗ is bounded from
below by some finite s∗ < 0 corresponding to U1; let us call it s∗U . Thus
we have proven that for any f0 there exist −∞ < s∗U < 0 such that the
Problem 2f does not have solution with pair (f0, s∗) if s∗ < s∗U and has
solution if s∗ ≥ s∗U .

Remark .5. If we are interested in solutions with finite s∗ at which both
f = ε = 0 then physically it makes sense to generalise the Problem 1f (2f)
by postulating f(s) ≡ 0 in the range s∗ > s∗H (s∗ < s∗U).

Theorem .4. There exist choices of parameters (E0, E1, k1) (of (f0, f1, s1))
for which Problem 3 (Problem 3f) is not solvable.

This is the most general problem and relevant solutions may be given
by orbits from all three parts of the phase plane. Clearly, in the limit
f1 → 0 Problem 3f transforms into Problem 1f, and in the limit f0 → 0

and after shifting s → s − s1 it transforms into Problem 2f. Therefore by
continuity we conclude from the previous two theorems that Problem 3f
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has no solutions for sufficiently large s1 and small f0 or/and f1. However,
for fD < f0 < f1 Problem 3f is solvable for any s1. This follows from the
monotonously increasing (decreasing) and unbounded dependence of s1 on
g0 when the latter is above (below) U2 when f0 and f1 are fixed. Indeed,
s1 → 0 for g0 → ±∞ and s1 → +∞ for (g0, f0) → U2. In particular, for
large f or/and g the solutions become fP,Q and, using equation (B.8), we
find P and Q for any (f0, f1, s1):

P = c−3/2
[
f 3

0 − f 3
1 e

3(z−5/2)s1
]
/
(
1− e−11s1/2

)
, (B.18)

Q = c−3/2
[
f 3

0 − f 3
1 e

(3z−2)s1
]
/
(
1− e11s1/2

)
. (B.19)

.iii Case z > 5/2

In this case, f(s) for the Kolmogorov and the thermodynamic spectra are
decreasing. Since z > 5/2 then D > 0 and equation (B.4) again admits an
exact positive solution f(s) = fD = 8ν/D.

The following technical Lemma will be used later.

Lemma .6. Solutions of the Cauchy problems for equation (B.4) are always
bounded functions together with f 2|df/ds|.

It is easily established from the integral relation arising from (B.4):

2

(
f 2 df

ds

)2

(s) + (12z − 19)

∫ s

0

f 4

(
df

dη

)2

dη + Φ(f(s)) =

Φ(f0) + 2

(
f 2 df

ds

)2

(0). (B.20)

Since now 12z − 19 > 0, it follows from (B.20) that

Φ(f(s)) < |Φ(f0)|+ 2

(
f 2 df

ds

)2

(0). (B.21)

Therefore f(s) < K where the constant K depends on f(0), df(0)/ds, ν
and z. The same holds for f 2|df/ds| because Φ(f(s)) ≥ Φ(fD).
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Lemma .7. The orbits of the dynamical system (5.10), (5.11) which in-
tersect the line g + f = 0 cannot approach the g-axis for g ≤ 0 as time τ
evolves.

Indeed, according to the formula (5.7), ε ≤ 0 above and on the thermo-
dynamic line (this includes line g + f = 0) and ε > 0 otherwise (including
the g-axis for g < 0). But, according to equation (5.2), dε/dk ≤ 0 (hence
dε/ds ≤ 0). Therefore the orbits starting on the line g + f = 0 cannot also
approach the g-axis where ε > 0 for g ≤ 0.

Remark .6. The flux ε for orbits which go to the stable node P2 takes
arbitrary negative values as k →∞.

Lemma .8. There exist orbits (named by OI-set) of the dynamical sys-
tem (5.10), (5.11) which approach the g-axis for g < 0 of the phase plane
(f, g). These orbits are always below of the Kolmogorov line.

The velocity field (df/dτ, dg/dτ) on the g-axis for g < 0 are directed
down along this axis. By starting from different initial points near by the
g-axis, we get orbits which asymptote to this axis with time as follows from
the representation (B.16). If we change τ to the reverse time τ̂ = −τ
then these orbits go to infinity never intersecting the Kolmogorov line since
the velocity field G(f,−(1/3 + z)f) < 0 i.e. is directed into the region
g + (z + 1/3)f < 0.

Lemma .9. There exists an orbit S1 of the dynamical system (5.10), (5.11)
which goes from infinity to the fixed point P1.

Again, let us consider a Cauchy problem for the equation (B.4) with the
initial data

f(0) = f0 ≡ fD − ε
df

ds

∣∣∣∣
s=0

= fm < 0 (B.22)

and proceed as in the case with z < 2/3. Consider the set B = {fm <

0} with the properties: the corresponding solutions of the Cauchy prob-
lem (B.4), (B.22) achieve a positive minimum at s = smin. It is clear that
this set is not empty.
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Consider an algebraic second-order curve g = g(f) determined by the
condition dg/dτ = 0. From (5.11) we have:

g = g(f) : 2 (f + g)2 +

(
6z − 17

2

)
f (f + g) +

D

2
f 2 − 4νf = 0. (B.23)

This curve goes through the fixed point P1. There exists a branch g = g1(f)

of g = g(f) which is located below of the Kolmogorov line since dg/dτ > 0

along fK . The velocity field (df/dτ, dg/dτ) restricted on g1(f) has the
components: df/dτ < 0 and dg/dτ = 0. Hence the orbits starting at
g ≤ g1(f) will always remain in the region g ≤ g1(f), which implies df/ds =

g + f < 0, i.e. f(s) is a monotonously decreasing function. Therefore
fB = inf B exists: we have fB ≥ g1(f0) + f0.

Repeating the same arguments as the ones we used before for the case
z < 2/3, we get that there exists a solution of (B.4), (B.22) with the follow-
ing property: the minimum of f(s; fB) is achieved at a point s∗ where again
f = df/ds = 0. Therefore there exists a solution of Problem 1f such that
f 2df/ds = 0 at s = s∗. This solution on the phase plane corresponds to an
orbit S1 which goes to P1. If we change the time on the inverse time τ̂ then
S1 emerges out the fixed point P1 and goes to infinity never intersecting
the Kolmogorov line (see Lemma .8) and, therefore, never intersecting the
line g + f = 0 (c.f. Lemma .7). This orbit corresponds to a monotonously
increasing f(τ̂) which asymptotes to the pure Kolmogorov inviscid solution
fP,0. Here, Q = 0 follows from the fact that S1 remains below the Kol-
mogorov line (implying Q ≤ 0) and the fact that for Q < 0 the solution
fP,Q would not be monotonously increasing.

Thus, the orbit S1 corresponds to a direct energy cascade whose energy
flux is gradually decreased by the viscous dissipation, so that both the
spectrum and the energy flux turn into zero at a finite wave number k∗ =

k0e
s.

Lemma .10. There exists an orbit H of the dynamical system (5.10), (5.11)
connecting P1 with P2 (a heteroclinic connection).

Recall that there are always two (and only two) orbits connecting to P1,
see section II.iv. One of them, entering into P1, is the orbit S1 discussed
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above. Let us call the other orbit by H—it is emerging out of P1 into
the first quadrant. By Lemma .6, f(s) for such an orbit is bounded. By
the same Lemma, |g(s)| is bounded too provided that f is bounded from
below, which is indeed the case, if we start on H stepping slightly away
from P1. In this case f cannot approach zero at g < 0 because this would
mean achieving a positive flux ε which is impossible since the staring flux
is negative and ε(s) cannot increase. Neither f can approach zero at g > 0

because the vector field there is directed toward positive f . Thus, both f(s)

and |g(s)| are bounded, and the orbit H goes to the fixed point P2 by the
Poincaré-Bendixon theorem.

Lemma .11. The orbits starting at the line g + f = 0 approach the g-axis
for g > 0 in the reverse time, τ̂ →∞, for f0 ≥ fD.

In order to prove Lemma .11, we consider the Cauchy problem for equa-
tion (B.4)

f(0) = f0,
df

ds

∣∣∣∣
s=0

= 0, s < 0. (B.24)

The proof is similar to the case of z < 2/3 and is based on the same integral
identity (B.10), but now for s < 0. In fact, all orbits f0 ≥ fD approach the
g-axis as they approach the g-axis for f0 ≥ 48ν/5D and cannot intersect
the orbit H. Asymptotic analysis of (5.10), (5.11) near the g-axis for g > 0

gives again f → (4C1/9)|s− s∗|3/4 as s→ s∗ for a finite s∗ and constant C1

i.e. f(s) vanishes at a finite point.

Lemma .12. There exists an orbit S2 of the dynamical system (5.10), (5.11)
which goes from infinity to the fixed point P2. Orbit S2 asymptotes to the
thermodynamic line in the reverse time, so that f → f0,Q as τ̂ →∞.

Any orbit starting on or above the thermodynamic line and with f0 > 0

will end at P2. This can be shown in the same way as in the proof that
H goes to P2 in Lemma .10. Reversed in time, all these orbits go to the
regions where either f →∞ or/and |g| → ∞, so that f → fP,Q with Q > 0

and P either positive, or negative, or zero. The orbit corresponding to
P = 0 is S2: it emanates from P2 and asymptotes to the thermodynamic
line. Orbits with P > 0 asymptote to the Kolmogorov line, because for any
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finite positive P and Q the P -part wins in fP,Q(s) at s → −∞. We will
call the set of these orbits OII . Orbits with P < 0 correspond to f(s) that
vanishes at finite s = s∗ < 0. We will call the set of these orbits OIII .

Remark .7. The orbits from OIII are located above the thermodynamic
line and, therefore, characterised by the flux ε which is negative. The orbits
which approach the g-axis for g < 0 (we will call then the OI-set) lie below
the Kolmogorov line can be characterised, for large f or/and g, by negative
temperature Q. Note that for the same orbit, the value of Q is usually
different near the g-axis from its value for large f .

Summarising, we have the following classification of the orbits.

Theorem .5. S1 and H ∪ S2 ∪ P2 divide the phase plane (f, g) (f > 0,
−∞ < g <∞) into parts I, II and III with different behaviors of orbits. In
part I (below S1) the orbits always approach the g-axis for g < 0. Between
S1 and H ∪ S2 ∪ P2, i.e. in II, the orbits go from infinity along S1 to the
stable node P2. Some of these orbits have an intermediate asymptotics—the
S2 orbit. Part III contains the orbits located above H ∪ S2 ∪ P2. For the
reverse time τ̂ , the orbits emerge out the unstable node P2 and go to the
first quadrant approaching the g-axis.

Similarly to how it was done in the case z < 2/3, one can prove that
the Problems 1, 2 and 3 (and respectively 1f, 2f and 3f) are not solvable for
some sets of parameters.

.iv Case 2/3 < z < 5/2

We have the following three possibilities: 12z − 19 > 0, 12z − 19 < 0 and
12z − 19 = 0.

Consider the case of 12z − 19 ≥ 0 and give a qualitative analysis of the
behavior of orbits. If we start on the line g + f = 0 then we have from the
integral identity (B.10):

Φ(f(s)) ≤ Φ(f0). (B.25)

Since Φ(f(s)) is a negative monotonously decreasing function, it follows
from (B.25) that f(s) > f0 > 0. The maximum principle guarantees that no
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local maximum of f(s) can be achieved on the interval (0,∞). Indeed, since
D < 0, according to (B.4) the second derivative of f(s) cannot be negative
at points where df(s)/ds = 0. Therefore the solutions f(s) monotonously
increase. This can also be easily observed from the phase analysis of the
dynamical system (5.10), (5.11). Consider the angle Γ : {g = 0, g + f = 0},
g < 0 of the plane (f, g). The direction of the velocity field (df/dτ, dg/dτ)

restricted on the line g + f = 0 is directed into Γ. Therefore orbits cannot
leave Γ with time.

Lemma .13. There exist orbits which approach the g-axis for g < 0. Also
there exist an orbit S1 which goes to the fixed point P1. This orbit is located
below the Kolmogorov line.

Consider the dynamical system (5.10), (5.11) and the algebraic curve
(B.23). This curve goes through the fixed point P1. Consider the angle
Λ : {f = 0, g + f = 0} with g < 0. The vector field (df/dτ, dg/dτ) on the
g-axis has components (0,−g2) and dg/dτ > 0 on g + f = 0 except the
fixed point P1. Therefore there exists a branch g = g1(f) of g = g(f) which
is located inside of Λ. The velocity field (df/dτ, dg/dτ) restricted on g1(f)

has the components: df/dτ < 0 and dg/dτ = 0. Hence (df/dτ, dg/dτ) is
directed into Ψ1 : {f = 0, g = g1(f)} and orbits do not leave Ψ1. This
means that there exists a set of initial data

f(0) = f0,
df

ds

∣∣∣∣
s=0

= fm, fm < 0 (B.26)

such that solutions of (B.4), (B.26) are monotonously decreasing functions
(because region Ψ1 is below the line f + g = 0). Local solvability of the
problem (B.4),(B.26) follows from the theory of ODE. Thus, there exist
two families of orbits. The first family OI presents orbits which cross the
curve g1(f) = 0 approaching the g-axis. The second family OII consists
of the orbits which go into Γ. Therefore, there must be an orbit S1 which
splits OI and OII . The existence of S1 can be proven by using the same
arguments as before. Consider a Cauchy problem for the equation (B.4)
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with the following condition:

f(0) = f0,
df

ds

∣∣∣∣
s=0

= fm < 0 (B.27)

with arbitrary f0 > 0. Define set E = {fm} with the properties: the
corresponding solution of the Cauchy problem has a positive minimum at
some s = smin. This set is not empty and bounded from below in view
of the discussion above. Denote by fE = inf E and let f(s; fE) be a so-
lution of (B.4), (B.27). As before (c.f. the proof of Lemma .3), we con-
clude that there exists a finite s∗ such that f(s∗; fE) = 0 together with
f 2(s; fE)df(s; fE)/ds|s=s∗ . This solution corresponds to the orbit S1 which
goes to P1. The orbit S1, and therefore all the orbits from OI , are always
below the Kolmogorov line because the velocity field is crossing this line in
the upward direction (i.e. when traced back in time S1 will not cross the
Kolmogorov line).

Lemma .14. There exist orbits which approach the g-axis for g > 0 as the
reverse time τ̂ → ∞. Also there exists an orbit U1 which emerges out the
fixed point P1. This orbit asymptotes to fP,Q with Q > 0 and P < 0, and
lies above of the thermodynamic line.

Consider orbits from OII . These orbits go to infinity and, after crossing
the line f + g = 0, the corresponding f(τ) monotonously grow to infinity.
The orbits cross the thermodynamic line and then asymptote towards it
as τ → ∞. In reverse time f(τ̂) also grows monotonously to infinity after
crossing the line f + g = 0. The orbits cross the Kolmogorov line and then
asymptote towards it as τ̂ →∞. Thus for each OII-orbit asymptotically the
value of the energy flux tends to a positive constant at the right boundary
of the s-interval and to a negative constant at the left boundary. Physically,
this corresponds to a system with two energy sources at both ends of the
wave number range which produce energy fluxes from the boundaries toward
the middle of the wave number range, gradually decreased by the viscosity
and turning into zero at some point within the wave number range.

The vector field (df/dτ, dg/dτ) restricted on the g-axis for g > 0 towards
to the fixed point P1. Therefore there exist orbits which approach the g-axis
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with g > 0 as the reverse time τ̂ →∞. We shall denote these orbits by OIII .
The orbits from OIII asymptote to the thermodynamic line as τ →∞. The
proof is the same as in the case of z < 2/3. Notice that (df/dτ, dg/dτ)

restricted on the second branch g = g2(f) of the algebraic curve (B.23) is
directed into Ψ2 : {g = g2(f), f = 0} and g = g2(f) is above of the line
g + f = 0. This means that orbits from OIII are always inside Ψ2. OII

and OIII present orbits with different behaviours. The existence of an orbit
which splits up OII and OIII can be proven by using the same argument as
in Lemma .5. We denote this orbit by U1 and in terms of the reverse time τ̂
the orbit U1 realizes a solution of Problem 2f such that s∗ < 0, |s∗| <∞ and
f 2(s)df(s)/ds vanishes at s = s∗. The family OIII corresponds to solutions
of Problem 2f which vanish at finite times with f 2df/ds 6= 0 at these points.
Here again we use the asymptotic solution f(s) ≈ (4C1/9)|s − s∗|3/4 near
the g-axis with g > 0.

The case 12z − 19 < 0 is considered similar with the same classification
theorem for orbits of the dynamical system. Summarizing the results, we
have the following classification of the orbits.

Theorem .6. The orbits S1 and U1 divide the phase plane on I, II and
III parts with different behaviors of orbits. The orbits from I go along the
separatrix S1 approaching the g-axis at g < 0 with a finite flux, ε > 0. Part
II consists of the orbits located between S1 and U1, the latter representing
asymptotes for each of these orbits as τ̂ →∞ and τ →∞ respectively. For
these orbits ε < 0 as τ → ∞ and ε > 0 as τ̂ → ∞. The set III represents
orbits emerging at the first quadrant and approaching U1 with time. For the
reverse time τ̂ these orbits approach the g-axis at g > 0 as τ̂ → ∞ with a
finite flux, ε < 0.

Similarly to how it was done in the case z < 2/3, one can prove that
the Problems 1, 2 and 3 (and respectively 1f, 2f and 3f) are not solvable for
some sets of parameters.

Remark .8. Generalising Remark .5 for any z: one can extend the Problem
1f (2f) in which f(s∗) = ε(s∗) = 0 by postulating f(s) ≡ 0 for s which is
greater (less) than the maximal (minimal) allowed s∗.
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