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Nonexistence of spectral gaps in Hölder spaces for
continuous time dynamical systems

Ian Melbourne∗ Nicolò Paviato † Dalia Terhesiu‡

27 February 2021

Abstract

We show that there is a natural restriction on the smoothness of spaces
where the transfer operator for a continuous dynamical system has a spectral
gap. Such a space cannot be embedded in a Hölder space with Hölder exponent
greater than 1

2 unless it consists entirely of coboundaries.

1 Introduction

Decay of correlations (rates of mixing) and strong statistical properties are well-
understood for Axiom A diffeomorphisms since the work of [2, 9, 10]. Mixing rates
are computed with respect to any equilibrium measure with Hölder potential. Up to
a finite cycle, such diffeomorphisms have exponential decay of correlations for Hölder
observables. In the one-sided (uniformly expanding) setting, this is typically proved
by establishing quasicompactness and a spectral gap for the associated transfer op-
erator L. Such a spectral gap yields a decay rate ‖Lnv−

∫
v‖ ≤ Cve

−an for v Hölder,
where ‖ ‖ is a suitable Hölder norm and a, Cv are positive constants. Decay of corre-
lations for Hölder observables is an immediate consequence of the decay for Ln. This
philosophy has been extended to large classes of nonuniformly expanding dynamical
systems with exponential [13] and subexponential decay of correlations [14].

For continuous time dynamical systems, the usual techniques [5, 7, 8] bypass
spectral gaps; the only exceptions that we know of being Tsujii [11, 12]. However, the
result in [11] is for suspension semiflows over the doubling map with a C3 roof function,
where the smoothness of the roof function is crucial and very restrictive. A spectral
gap for contact Anosov flows is obtained in [12]; unfortunately it seems nontrivial
to extend this to nonuniformly hyperbolic contact flows (or uniformly hyperbolic
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contact flows with unbounded distortion), see [1] which proves exponential decay
of correlations for billiard flows with a contact structure but does not establish a
spectral gap. Indeed, apart from [11, 12], there are no results on spectral gaps of
transfer operators for semiflows and flows.

The results of Tsujii [11, 12] provide a spectral gap in an anisotropic Banach space.
In this paper we obtain a restriction on the Banach spaces that can yield a spectral
gap. We work in the following general setting:

Let (Λ, d) be a bounded metric space with Borel probability measure µ, and let
Ft : Λ → Λ be a measure-preserving semiflow. We suppose that t → Ft is Lipschitz
a.e. on Λ. Let Lt : L1(Λ) → L1(Λ) denote the transfer operator corresponding to Ft
(so

∫
Λ
Ltv w dµ =

∫
Λ
v w ◦Ft dµ for all v ∈ L1(Λ), w ∈ L∞(Λ), t > 0). Let v ∈ L∞(Λ)

and define vt =
∫ t

0
v ◦ Fr dr for t ≥ 0.

Theorem 1.1 Let η ∈ (1
2
, 1). Suppose that Ltv ∈ Cη(Λ) for all t > 0 and that∫∞

0
‖Ltv‖η dt <∞. Then vt is a coboundary:

vt = χ ◦ Ft − χ for all t ≥ 0, a.e. on Λ

where χ =
∫∞

0
Ltv dt ∈ Cη(Λ). In particular, supt≥0 |vt|∞ <∞.

Here, |g|∞ = ess supΛ |g| and ‖g‖η = |g|∞ + supx 6=y |g(x)− g(y)|/d(x, y)η.
Theorem 1.1 implies that any Banach space admitting a spectral gap and embed-

ded in Cη(Λ) for some η > 1
2

is cohomologically trivial. However, for (non)uniformly
expanding semiflows and (non)uniformly hyperbolic flows of the type in the aforemen-
tioned references, coboundaries are known to be exceedingly rare, see for example [3,
Section 2.3.3]. Hence, Theorem 1.1 can be viewed as an “anti-spectral gap” result for
such continuous time dynamical systems.

2 Proof of Theorem 1.1

Let v ∈ L∞(Λ), with Ltv ∈ Cη(Λ) for all t > 0 and
∫∞

0
‖Ltv‖η dt < ∞ where

η ∈ (1
2
, 1). Following Gordin [6] we consider a martingale-coboundary decomposition.

Define χ =
∫∞

0
Ltv dt ∈ Cη(Λ), and

vt =

∫ t

0

v ◦ Fr dr, mt = vt − χ ◦ Ft + χ,

for t ≥ 0. Let B denote the Borel σ-algebra on Λ.

Proposition 2.1 (i) t→ mt is Cη a.e. on Λ.

(ii) E(mt|F−1
t B) = 0 for all t ≥ 0.
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Proof (i) For 0 ≤ s ≤ t ≤ 1 and x ∈ Λ,

|ms(x)−mt(x)| ≤ |vs(x)− vt(x)|+ |χ(Fsx)− χ(Ftx)|
≤ |s− t||v|∞ + |χ|η d(Fsx, Ftx)η.

Since t 7→ Ft is a.e. Lipschitz, it follows that t 7→ mt is a.e. Cη.

(ii) Let Utv = v ◦ Ft, and recall that LtUt = I and E(·|F−1
t B) = UtLt. Then

Ltmt = Lt(vt − Utχ+ χ) =
∫ t

0
LtUrv dr − χ+

∫∞
0
LtLrv dr

=
∫ t

0
Lt−rv dr − χ+

∫∞
0
Lt+rv dr =

∫ t
0
Lrv dr − χ+

∫∞
t
Lrv dr = 0.

Hence E(mt|F−1
t B) = UtLtmt = 0.

Proof of Theorem 1.1 Fix T > 0, and define

MT (t) = mT −mT−t = mt ◦ FT−t, t ∈ [0, T ].

Also, define the filtration GT,t = F−1
T−tB. It is immediate that MT (t) = mt ◦ FT−t is

GT,t-measurable. Also, for s < t we have MT (t)−MT (s) = mT−s−mT−t = mt−s◦FT−t,
so

E(MT (t)−MT (s)|GT,s) = E(mt−s ◦ FT−t|F−1
T−sB) = E(mt−s|F−1

t−sB) ◦ FT−t = 0

by Proposition 2.1(ii). Hence MT is a martingale for each T > 0. Next,

|MT (t)|∞ = |mt ◦ FT−t|∞ ≤ |mt|∞ ≤ |vt|∞ + 2|χ|∞ ≤ T |v|∞ + 2|χ|∞.

Hence MT (t), t ∈ [0, T ], is a bounded martingale.
By Proposition 2.1(i), MT has Cη sample paths. Since η > 1

2
, it follows from

general martingale theory that MT ≡ 0 a.e. Taking t = T , we obtain mT = 0 a.e.
Hence vT = χ ◦ FT − χ a.e. for all T > 0 as required.

For completeness, we include the argument that MT ≡ 0 a.e. We require two
standard properties of the quadratic variation process t 7→ [MT ](t); a reference for
these is [4, Theorem 4.1]. First, [MT ](t) is the limit in probability as n→∞ of

Sn(t) =
n∑
j=1

(MT (jt/n)−MT ((j − 1)t/n))2.

Second (noting that MT (0) = 0),

[MT ](t) = MT (t)2 − 2

∫ t

0

MT dMT ,

where the stochastic integral has expectation zero. In particular, E([MT ]) ≡ E(M2
T ).

Since MT has Hölder sample paths with exponent η > 1
2
, we have a.e. that

|Sn(t)| = O(tηn−(2η−1))→ 0 as n→∞.

Hence [MT ] ≡ 0 a.e. It follows that E(M2
T ) ≡ 0 and so MT ≡ 0 a.e.
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