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The unit equation over
cyclic number fields of prime degree

Nuno Freitas, Alain Kraus and Samir Siksek

Let ` 6= 3 be a prime. We show that there are only finitely many cyclic number fields F of degree ` for
which the unit equation

λ+µ= 1, λ, µ ∈O×F

has solutions. Our result is effective. For example, we deduce that the only cyclic quintic number field for
which the unit equation has solutions is Q(ζ11)

+.

1. Introduction

Let F be a number field. Write OF for the integers of F, and O×F for the unit group of OF . A famous
theorem of Siegel [1929] asserts that the unit equation,

λ+µ= 1, λ, µ ∈O×F , (1-1)

has finitely many solutions. Unit equations have been the subject of research for over a century. Effective
bounds for the number and heights of the solutions have been supplied by many authors [Evertse and
Győry 2015, Chapter 4]. One of the most elegant such results is due to Evertse [1984], and asserts
that (1-1) has at most 3× 73r+4s solutions, where (r, s) is the signature of F. The latest effective bounds
on the heights of solutions are due to Győry [2019]. Moreover, de Weger [1989] has given a rather
efficient algorithm for determining the solutions to (1-1) which combines Baker’s bounds for linear forms
in logarithms with the LLL algorithm. De Weger’s algorithm has since been refined by a number of
authors, for example [Alvarado et al. 2019; von Känel and Matschke 2016; Smart 1998]. A related
problem (with connections to Lehmer’s Mahler measure conjecture) is to study, for a unit α of infinite
order, the number of integers n such that 1−αn is also a unit. This problem is considered by Silverman
[1995] who shows that the number of such n is O(d1+7/ log log d) where d is the degree of Q(α).

It is natural to consider the existence of solutions to (1-1). Nagell [1969b] called a unit λ ∈ O×F
exceptional if 1− λ ∈O×F . The number field F is called exceptional if it possesses an exceptional unit.
Thus λ is exceptional if and only if (λ, 1−λ) is a solution to the unit equation (1-1), and F is exceptional
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if and only if the unit equation has solutions. In a series of papers spanning over 40 years, starting
with [Nagell 1928] and culminating in [Nagell 1969a], Nagell determined all exceptional number fields
where the unit rank is 0 or 1. For example, Nagell [1969a, Section 2] found that the only exceptional
quadratic fields are Q(

√
5) and Q(

√
−3) which contain exceptional units (1+

√
5)/2 and (1−

√
−3)/2

respectively, and the only exceptional complex cubic fields are the ones with discriminants −23 and −31.
Nagell [1969a, Sections 3–5] also showed that the only exceptional real cubic fields (whence the unit
rank is 2) are of the form Q(λ), where λ is a root of

fk(X)= X3
+ (k− 1)X2

− k X − 1, k ∈ Z, k ≥ 3
or of

gk(X)= X3
+ k X2

− (k+ 3)X + 1, k ∈ Z, k ≥−1;

in both cases λ is an exceptional unit. It turns out the fields Q(λ) defined by the fk(X) are non-Galois,
whereas the ones defined by the gk(X) are cyclic (and so Galois), having discriminant (k2

+ 3k+ 9)2. By
a cyclic number field we mean a finite Galois extension of Q whose Galois group is cyclic.

An interesting problem is determining whether a family of number fields has exceptional members.
Beyond the work of Nagell, there are relatively few works on this problem. A beautiful example of
such a result is due to Triantafillou [2020]: if 3 totally splits in a number field F and 3 - [F :Q] then F
is nonexceptional. Another example of such a result is found in [Freitas et al. 2020]: if F is a Galois
p-extension, where p ≥ 5 is a prime that totally ramifies in F, then F is nonexceptional.

In this note we consider the problem of determining exceptional number fields that are cyclic of
prime degree.

Theorem 1. Let ` 6= 3 be a prime. Then there are only finitely many cyclic number fields F of degree `
such that F is exceptional.

For `=2 the theorem is due to Nagell [1969a] who showed, as observed above, that the only exceptional
quadratic fields are Q(

√
5) and Q(

√
−3). For `= 3 the theorem is false. Indeed, as already observed the

fields defined by the polynomials gk are cyclic cubic and exceptional, and Nagell [1969a, Théorème 7]
showed that this family contains infinitely many pairwise nonisomorphic members. For `≥ 5, Theorem 1
is an immediate consequence of the following more precise theorem.

Theorem 2. Let `≥ 5 be a prime, and write

R` = Res(X2`
− 1, (X − 1)2`− 1), (1-2)

where Res denotes the resultant. Then R` 6= 0. Let

S` = {p | R` : p is a prime ≡ 1 (mod `)}. (1-3)

Let F be a cyclic number field of degree `, and suppose the unit equation (1-1) has solutions. Write1F for
the discriminant of OF , and NF for the conductor of F. Then there is a nonempty subset T ⊆ S` such that

1F =
∏
p∈T

p`−1, NF =
∏
p∈T

p. (1-4)
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We recall that the conductor of a finite abelian extension F/Q is the smallest n such that F ⊆Q(ζn),
where ζn = exp(2π i/n). Theorem 2 is effective, in the sense that given a prime `≥ 5, it gives an effective
algorithm for determining all exceptional cyclic number fields of degree `. Indeed, the theorem yields
a finite list of cyclic fields of degree ` that could be exceptional, and for each such cyclic field we can
simply solve the unit equation using de Weger’s aforementioned algorithm to decide if it exceptional or
not. We illustrate this by establishing the following corollary.

Corollary 1. The only exceptional cyclic quintic field is F =Q(ζ11)
+.

The proof of Corollary 1 is found in Section 5.

Remark. Let F be the collection of all exceptional cyclic fields of prime degree 6= 3. It is natural in
view of the above results to wonder if F is finite or infinite. We believe that F is infinite, as we now
explain. First let p ≥ 5 be a prime, and let F =Q(ζp)

+. We will show that F is exceptional by exhibiting
a solution to the unit equation (1-1). Let λ= 2+ ζp + ζ

−1
p and µ=−1− ζp − ζ

−1
p . Then λ, µ belong

to OF and satisfy λ+µ= 1. We need to show that λ, µ are units in OF and for this it is in fact enough
to show that they are units in Z[ζp]. Recall that the unique prime ideal above p in Z[ζp] is generated
by 1− ζ j

p , where j is any integer 6≡ 0 (mod p), and thus the ratio (1− ζ j
p )/(1− ζ k

p) is a unit for any pair
of integers j, k 6≡ 0 (mod p). Note that

λ= (1+ ζp)(1+ ζ−1
p )=

(1− ζ 2
p)(1− ζ

−2
p )

(1− ζp)(1− ζ−1
p )

, µ=−ζ−1
p (1+ ζp + ζ

2
p)=−ζ

−1
p

(1− ζ 3
p)

(1− ζp)
,

showing that λ, µ are units. Hence F = Q(ζp)
+ is exceptional for all p ≥ 5. Note that F is cyclic of

degree (p−1)/2. Recall that a Sophie Germain prime is a prime ` such that p= 2`+1 is also prime. For
any Sophie Germain prime `≥ 5, the number field F =Q(ζp)

+ with p = 2`+ 1 is an exceptional cyclic
field of degree ` and so belongs to F. It is conjectured that there are infinitely many Sophie Germain
primes [Shoup 2009, page 123], and this conjecture would imply that F is infinite.

We thank the referees for their comments.

2. Ramification in cyclic fields of prime degree

Lemma 1. Let ` be a prime. Let F be a cyclic number field of degree `. Write 1F for the discriminant
of OF . Let p be a prime that ramifies in F. Then the following hold.

(i) p totally ramifies in F.

(ii) If p 6= ` then ordp(1F )= `− 1.

Proof. Let I ⊆Gal(F/Q) be an inertia subgroup for p. Since p ramifies, I 6= 1. As Gal(F/Q) has prime
order, I =Gal(F/Q). Hence p is totally ramified in F, and we can write pOF = p` where p is the unique
prime ideal above p.
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We now prove (ii). Suppose p 6= `, therefore p is tamely ramified in F. Write DF for the different
ideal for the extension F/Q. As the ramification degree is `, we conclude [Neukirch 1999, page 199]
that ordp(DF )= `− 1. However [Neukirch 1999, page 201], the discriminant and different are related by
|1F | = NormF/Q(DF ). Hence ordp(1F )= `− 1. This completes the proof. �

Lemma 2. Let m, n be positive integers with m | n. Let ` be a prime and let F be a cyclic number field of
degree `. If F ⊆Q(ζn) and ` - [Q(ζn) :Q(ζm)] then F ⊆Q(ζm).

Proof. Suppose F ⊆ Q(ζn) but F 6⊆ Q(ζm). As F has prime degree ` we have F ∩Q(ζm) = Q. Thus
[F ·Q(ζm) : Q(ζm)] = [F :Q] = `. However, Q(ζm)⊆ F ·Q(ζm)⊆Q(ζn). Therefore ` | [Q(ζn) :Q(ζm)],
giving a contradiction. �

Lemma 3. Let ` be a prime and let F be a cyclic number field of degree `. Suppose ` - 1F . Then the
conductor of F is squarefree, and divisible only by primes p ≡ 1 (mod `).

Proof. Let n be the conductor of F. The primes that ramify in F are precisely the primes dividing the
conductor [Neukirch 1999, Corollary VI.6.6]. As ` -1F we see that ` - n.

We would like to show that n is squarefree. Suppose that n is not squarefree. Then we may write
n= pr n′ where p is a prime, r ≥ 2, and p - n′. Let m= pn′. We denote Euler’s totient function by ϕ. Then

[Q(ζn) :Q(ζm)] =
ϕ(n)
ϕ(m)

=
(p− 1)pr−1ϕ(n′)
(p− 1)ϕ(n′)

= pr−1.

This is not divisible by ` and so by Lemma 2, F ⊆ Q(ζm). But m < n, contradicting the fact that n is
the conductor of F. It follows that n is squarefree.

Next let p | n and write n = pm with p - m. Then

[Q(ζn) :Q(ζm)] = p− 1.

By Lemma 2 and the definition of conductor we have ` | (p− 1). �

3. The unit equation and ramification

We now prove one of the claims in Theorem 2.

Lemma 4. Let ` 6= 3 be a prime. Let R` be given by (1-2), then ` - R`. In particular, R` 6= 0.

Proof. Suppose ` | R`. Then the polynomials X2`
− 1 and (X − 1)2`− 1 have a common root θ ∈ F`. But

in F`[X ] we have

X2`
− 1= (X2

− 1)` = (X − 1)`(X + 1)`, (X − 1)2`− 1=
(
(X − 1)2− 1

)`
= X`(X − 2)`.

Hence θ ∈ {1,−1} ∩ {0, 2} ⊂ F`. As ` 6= 3 this intersection is empty, giving a contradiction, so ` - R`. �

Remark. Lemma 4 is false for `= 3. Indeed, (1+
√
−3)/2 is a common root to X6

−1 and (X−1)6−1,
thus R3 = 0.
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For the remainder of this section F will be a cyclic number field of prime degree `≥ 5. By Lemma 1,
every rational prime p which ramifies in F is in fact totally ramified, and so there is a unique prime p

of F above p. The prime p must have inertial degree 1, and so OF/p∼= Fp.

Lemma 5. Let λ ∈O×F . Let b ∈ Z satisfy λ≡ b (mod p). Then b` ≡±1 (mod p).

Proof. As p is the unique prime above p we have pσ = p for all σ ∈ G = Gal(F/Q). Applying σ to
λ≡ b (mod p) gives λσ ≡ b (mod p). Hence

±1= NormF/Q(λ)=
∏
σ∈G

λσ ≡ b` (mod p).

Since b` is a rational integer, b` ≡±1 (mod p). �

Lemma 6. Suppose the unit equation (1-1) has a solution. Let R` be as in (1-2). Then every prime p
ramifying in F satisfies p | R`.

Proof. Let (λ, µ) be a solution to the unit equation. Let p be a prime ramifying in F and let p

be the prime above it. Write λ ≡ b (mod p) and µ ≡ c (mod p) with b, c ∈ Z. By Lemma 5,
b2`
≡ 1 (mod p) and c2`

≡ 1 (mod p). However, λ+ µ = 1. Hence c ≡ 1− b (mod p). Therefore
(b− 1)2` = (1− b)2` ≡ c2`

≡ 1 (mod p). Hence, the polynomials X2`
− 1 and (X − 1)2` − 1 have a

common root in Fp, showing that p | R`. �

4. Proof of Theorem 2

We now prove Theorem 2. Thus let F be a cyclic number field of prime degree `≥ 5 such that the unit
equation (1-1) has solutions. Let R` be given by (1-2). From Lemma 4 we know that R` 6= 0. Let S` be
given by (1-3).

Claim. Every prime p ramified in F belong to S`.

Proof. First note that every ramified p divides R` by Lemma 6. Next note that ` - R` by Lemma 4.
Thus ` is unramified in F, and so ` -1F . Now Lemma 3 tells us that every ramified p ≡ 1 (mod `). This
completes the proof of the claim. �

Let T be the set of primes dividing the discriminant 1F . This is also the set of primes dividing the
conductor NF (see for example [Neukirch 1999, Corollary VI.6.6]). We know from the claim that T is a
subset of S`. Moreover, by a famous theorem of Minkowski [Neukirch 1999, Theorem III.2.17] there are
no number fields of discriminant ±1, and thus T 6=∅.

Next, by part (ii) of Lemma 1, and Lemma 3, we have

1F = g ·
∏
p∈T

p`−1, NF =
∏
p∈T

p, (4-1)

where g =±1. However, as F is Galois of odd degree, it is totally real, and therefore the discriminant is
positive, so g = 1. This completes the proof.
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field defining polynomial

F11 =Q(ζ11)
+ x5

− x4
− 4x3

+ 3x2
+ 3x − 1

F31 x5
− x4
− 12x3

+ 21x2
+ x − 5

F341,1 x5
+ x4
− 136x3

− 300x2
+ 2016x + 3136

F341,2 x5
+ x4
− 136x3

+ 41x2
+ 3039x + 1431

F341,3 x5
+ x4
− 136x3

+ 723x2
− 1053x + 67

F341,4 x5
+ x4
− 136x3

− 641x2
− 371x + 67

Table 1. Cyclic number fields F with conductor dividing 341= 11× 31.

5. Proof of Corollary 1

Let F be an exceptional cyclic quintic field. We apply Theorem 2 with `= 5. Then

R5 = Res(X10
− 1, (X − 1)10

− 1)=−210736858987743=−3× 119
× 313.

Thus S5 = {11, 31}. We obtain three possibilities for the conductor NF : 11, 31, 341= 11× 31. Thus F
is a degree 5 subfield of Q(ζ11), Q(ζ31) or Q(ζ341). These respectively have Galois groups isomorphic to
Z/10Z, Z/30Z and Z/10Z×Z/30Z. By the Galois correspondence, Q(ζ11) and Q(ζ31) both have a unique
subfield of degree 5, which we denote by F11 =Q(ζ11)

+ and F31. The group Z/10Z×Z/30Z has six
subgroups of index 5, and so we obtain six subfields of Q(ζ341) of degree 5. However, two of these are F11

and F31, so we only obtain four new fields which we denote by F341,1, F341,2, F341,3, F341,4. We found defin-
ing polynomials for all these number fields in [Jones and Roberts 2014], which we reproduce in Table 1.

We used the unit equation solver in the computer algebra package Magma [Bosma et al. 1997]. This
is an implementation of the de Weger algorithm for solving unit equations with improvements due to
Smart [1998]. Applying the solver to our six number fields we find that the unit equation (1-1) does not
have solutions for F = F31 and F = F341,i with i = 1, . . . , 4. It does however have 570 solutions for
F = F11 =Q(ζ11)

+.
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[Evertse and Győry 2015] J.-H. Evertse and K. Győry, Unit equations in Diophantine number theory, Cambridge Studies in
Advanced Mathematics 146, Cambridge Univ. Press, 2015. MR Zbl

[Freitas et al. 2020] N. Freitas, A. Kraus, and S. Siksek, “On asymptotic Fermat over Zp-extensions of Q”, Algebra Number
Theory 14:9 (2020), 2571–2574. MR Zbl
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