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Abstract

Large deviation theory and instanton calculus for stochastic systems are widely
used to gain insight into the evolution and probability of rare events. At its
core lies the fact that rare events are, under the right circumstances, dominated
by their least unlikely realization. Their computation through a saddle-point
approximation of the path integral for the corresponding stochastic field the-
ory then reduces an inefficient stochastic sampling problem into a deterministic
optimization problem: finding the path of smallest action, the instanton. In the
presence of heavy tails, though, standard algorithms to compute the instanton
critically fail to converge. The reason for this failure is the divergence of the
scaled cumulant generating function (CGF) due to a non-convex large devia-
tion rate function. We propose a solution to this problem by ‘convexifying’ the
rate function through a nonlinear reparametrization of the observable, which
allows us to compute instantons even in the presence of super-exponential or
algebraic tail decay. The approach is generalizable to other situations where
the existence of the CGF is required, such as exponential tilting in importance
sampling for Monte-Carlo algorithms. We demonstrate the proposed formal-
ism by applying it to rare events in several stochastic systems with heavy tails,
including extreme power spikes in fiber optics induced by soliton formation.
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1. Introduction

In many situations of physical relevance, rare events are tremendously important despite their
infrequent occurrence: heat waves, stock market crashes, or earth quakes all occur with small
probability but devastating consequences. Unfortunately, due to their rareness, these events
are hard to observe in experiment or numerical simulation, and require special treatment. Rare
event algorithms [1] are typically based on one of the two following ideas: either to increase the
rate of occurrence of the rare event by biasing the underling system (importance sampling), or
to substitute all possible ways of observing a rare event by its most common realization (large
deviations/instanton theory). Under the hood both are connected to the exponentially tilted
measure and the cumulant generating function (CGF). As we will see, when naively imple-
menting standard schemes, both become ill-defined when the underlying probability densities
become heavy-tailed. Examples of fat tailed distributions are ubiquitous in physical systems
of relevance, such as the energy dissipation in fluid turbulence and the phenomenon of inter-
mittency [2], the momentum of atoms in optical lattices [3], wealth distributions in economies
[4, 5] or stock price changes in finance [6, 7].

Here, we focus on numerical algorithms connected to instanton theory and its rigorous
counterpart, large deviation theory (LDT), to recover the tails of probability distributions in
a stochastic system. A large deviation principle (LDP) states that the probability of rare events
decays exponentially, and its exponential scaling is given by the minima of the corresponding
rate function / [8, 9]. Roughly speaking, let P° be a family of probability measures on a suitable
measurable space (X, X). We say P° satisfies an LDP with rate function 7 : X — R if for all
subsets 2 C X, we have [10],

P (Q) < exp (-5‘ in£[(x)> , (1)

where < denotes log-asymptotic equivalence in the limit e — 0.

In a physical sense, the probability P°(€2) can formally be written as a path integral, and
the estimate (1) becomes a saddle point approximation or Laplace method. In LDT, the
Gartner—Ellis theorem [11] provides a direct formula for the rate function /. Roughly speak-
ing, if the limiting behavior of a scaled CGF is well-defined, then its Legendre—Fenchel (LF)
transform is the rate function of the LDP of the process under consideration. The LF transform
of a real-valued function f(x) defined on R” is defined as

MOE sup ((x.y) = f), 2)

where (x,y) = xTyis the inner product on R”. Let z° be a sequence of random variables in R",
with probability measures P°, and assume that its scaled CGF, defined as the limit,

- =)
G\ = !%15 log E [e } , (€))

exists for each A € R” and is differentiable in \. Then, the Gartner—Ellis theorem states that
the family of probability measures {P°} satisfies an LDP, where the rate function 7 is the LF
transform of G, i.e. [ = G*.

Intuitively, one can interpret A as a Lagrange multiplier to condition on an outcome
7= li_%l z°. Crucially, though, if the probability measure P* is super-exponential, or has even

heavier tails, the expectation in equation (3) diverges and the CGF is no longer defined. Notably
this does not mean that the corresponding rare events are special in any way, but merely that
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the duality between the parameter A and rare event observable z is broken. As a consequence,
no tilt exists to realize an outcome z, and standard rare events algorithms fail.

In what follows, we will show how a nonlinear tilt allows to modify the connection between
tilt A and outcome z, so that heavy tails can be probed regardless of the non-convexity of their
rate function. In particular, we will suggest a numerical algorithm to estimate the tail scal-
ing for heavy-tailed probability densities by computing the corresponding instanton. To our
knowledge, this procedure has not been described in the literature before. We note, though,
that the duality between the CGF and the rate function is of central importance in statistical
mechanics to describe the connection between free energy and entropy. Concretely, in the ther-
modynamic limit, the canonical ensemble and the microcanonical ensemble are not equivalent
at nonconcave regions of a corresponding microcanonical entropy function. To overcome this
issue, a generalized canonical ensemble that is universally equivalent to the microcanonical
ensemble, regardless of the properties of the entropy, can be established by a penalty function
of the exponent of Boltzmann distribution of the microstates of the system. Examples are the
so-called Gaussian ensemble [12, 13], or the Betrag ensemble [14], which in spirit are similar
to a convexification of the observable as proposed in this paper.

Here, we will concentrate specifically on the case of small noise sample-path large devia-
tions for stochastic differential equations (SDEs), which will be introduced in section 2. We
focus on the numerical computation of the instanton in section 2.1, and highlight the con-
nection to a change of measure in path-space in section 2.2. We demonstrate the problem
in the heavy-tailed case by reviewing the convex analysis for the Gartner—Ellis theorem in
section 3, and propose a solution modifying the instanton computation to yield finite outcomes
for heavy tails and non-convex rate functions in section 3.1. To demonstrate the applicabil-
ity of our approach, we show several examples of instantons for heavy-tailed distributions in
section 4: toy models with super-exponential (section 4.1) and powerlaw tails (section 4.2),
and a banana-shaped potential (section 4.3), and finally high-amplitude events in fiber-optics
described by the focusing nonlinear Schrodinger (NLS) equation (section 4.4). We summarize
our findings in section 5.

2. Instantons and Freidlin—Wentzell theory
Consider a stochastic system,
dX; = b (X7) dr + Veo dW,,  X; = xo, 4)

where X € R” is a family of random processes indexed by the noise strength €. The deter-
ministic drift b : R" — R” satisfies the Lipschitz condition, dW, is an n-dimensional Brownian
increment, and the noise covariance y = oo is assumed to be invertible for o € R™". Intu-
itively, equation (4) describes the temporal evolution of a system perturbed by stochasticity,
where we later assume the fluctuations to be small, ¢ < 1. This situation is ubiquitous in many
application areas, where for example € plays the role of the temperature in a chemical reaction,
or the inverse number of particles in a thermodynamic system.

With vanishing noise, € = 0, the solution x € R” of the unperturbed (deterministic) system

x(1) = b (x(), x(f0) = Xo, (&)

converges to one of its attractors for long times. For example, consider a point attractor, or
asymptotically stable fixed points, x € R", with basin of attraction B, such that x(f) — x for
t — oo for all initial conditions x( in B. Solutions of the stochastic system (4) converge to
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solutions of the deterministic system (5) in probability, P( lil’{)l 12a<x X; — x(t)| =0)=1[10].
e—0 1p<t<y

This is an instance of the law of large numbers, stating that for small noise and large times we
expect solutions of the stochastic system to end up near the attractors of the deterministic
one.

Nevertheless, for any non-zero e < 1 there is a small but non-vanishing probability of find-
ing the system far from the attractor. This can only happen if the noise conspires in just the
right way to overcome the deterministic dynamics, and is consequently a rare event. Concretely,
consider any domain D C R” attracted to X, i.e. D C B. We are interested in the chance of tra-
jectories X; departing from X and eventually leaving D. These trajectories belong to the set

A= {p € Cyyy RN |p(t0) = %, (1)) =z ¢ D}, (6)
and we want to quantify the probability
plz) =P[X° €A,] ase—0, 7)

which is a question about the probability of large deviations. Under the stated conditions, there
is atrajectory ¢* € A; such that the probability measure over A, accumulates near ¢* fore — 0,
namely if N (¢*) is any neighborhood of ¢*,

limP (X7 € A\N (¢)]

=0 PX°EN()] 0- ®)

In other words, in the small noise limit we will almost surely find our sample trajectory close

to ¢*, such that max X; — go;‘| < 0, for an arbitrary small J.
Iy SIS

In order to find this most likely trajectory ¢*, Freidlin—Wentzell theory [10] states that ¢*
is actually the minimizer of large deviation rate function S(p) associated with the stochastic
system (4), given by

1
Sp) = 5

2/ g = b ()I} dt, 9)

0]

where the integral exists, and S() = oo otherwise. The norm || f Hi = (f.x"'f) is induced
by the noise covariance . With this rate function we can quantify the probability (7) of
departing the domain D as

}Lrge log p(z) = —I(z) = =S (¢*) (10)
where
©" = argmin S () . an
PEA;

The problem of finding the rare event probability is now reduced to finding the minimizer ¢*.

In analogy to the principle of least action in classical mechanics or quantum mechanics, the
rate function is often termed action, and the corresponding minimizer ¢* is called instanton.
The integrand of S can be understood as a Lagrangian,

1
L, @) = 5l¢ = b @I (12)

so that the maximum likelihood pathways leaving the attractors of (4) correspond to semi-
classical trajectories of the field theory defined by L.
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2.1. Instanton equations and large deviation Hamiltonian

It is helpful, both to increase understanding, and to simplify the numerical implementation, to
rephrase the optimization problem (11) into the corresponding Hamiltonian formulation. To
this end, we introduce the large deviation Hamiltonian H(p,19) as the Legendre transform of
the Lagrangian L (¢, ),

H (p,9) = sup (0, ¢) — L(p, ), (13)
13

which, for the Lagrangian (12), corresponds to

1
H(p, V) = (b(p), V) + 5(?9, x). (14)

Here ¥ = OL/0¢ is the conjugate momentum of ¢ [15]. Now, the minimizer ¢* can also be
expressed as the solution of Hamilton’s equations,

@ = OyH(p,9) = b (p) + xV,

. . (15)
0 = —0,H(p,9) = — (Vb () 0.

with boundary conditions,

Plty) = ¥, p(t) = z. (16)

Equations (15) and (16) are often termed instanton equations.

The fact that we are looking only for trajectories that will eventually leave the attractor,
p* € A,, implies that the optimization problem (11) is a constrained one, i.e. we are looking
only for solutions of the instanton equations conditioned on the endpoint z. Practically, this
constrained optimization problem can be transformed into an unconstrained one,

" = argmin (S(p) — (N, @(t) —2)), (17)
eCryry (RY)

by using a Lagrange multiplier A € R" to enforce the final constraint [16]. Note that the
variation of this unconstrained action,

[65(p) — (A ()] _. =0, (18)
results in the same instanton equations, (15), but with different boundary conditions
o (to) =0, J(t) = A (19)

A more detailed derivation of the boundary conditions (16) and (19) is given in appendix A.1.
We can solve the instanton equation (15) iteratively with these latter conditions, by solving
the p-equation forward in time, and using the result to solve the ¥-equation backward in time,
until convergence [17, 18]. Note that this choice of temporal direction of integration is not only
the one suggested by the boundary conditions, but is further the numerically stable choice of
direction for the drifts » and Vb".

As we will see below, the mapping between Lagrange multipliers A and final points z is
nontrivial, and it is not clear a priori how to choose the correct \ to obtain a final configu-
ration z = ¢*(¢;). If we are interested in p°(z) for a whole range of z, we can instead choose
to simply solve the instanton equations for a range of A to cover a range of z without specif-
ically needing to know the duality mapping A(z). Exactly this procedure is often used in the
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literature to work out probability distributions of stochastic systems, from Burgers [17, 19],
plasma turbulence [20], or Ginzburg—Landau [21] equations to the Kardar—Parisi—Zhang [22]
and Kipnis—Marchioro—Presutti model [23].

Crucially, however, the existence of a corresponding dual A for a given final pointz = ¢ ()
is not necessarily guaranteed, as the next section clarifies. As a consequence, the above
methodology might fail, in particular in situations with heavy tails.

2.2. Exponentially tilted measures

Interestingly, there is a probabilistic interpretation of the introduction of the Lagrange multi-
plier A to the optimization problem (18) in the form of the exponentially tilted measure [24,
25], as for example employed in importance sampling for Monte-Carlo (MC) estimators [1].
Intuitively, by the procedure of tilting, one replaces the original random process (4) by a modi-
fied one, under which the rare events under consideration become more likely, while correcting
for this modification a posteriori when computing their probability. As a consequence, with
tilting, the rare event probability, or expectations over its realizations, can be estimated more
efficiently, and with possibly smaller variance.

To be more precise, we denote by p, the measure exponentially tilted towards the outcome
z, defined for our purposes as

exp (e~ (X, 2))
E, [exp (7' (A, 2)
where IE, [.] is the expectation under the original measure p. In equation (20), the probability

measure p, of events resulting in z, i.e. trajectories in A; (6), have been awarded extra weight
by the Radon—Nikodym derivative of p, with respect to p, which is:

() = )] p(2), (20)

@ _dp@  exp(e ' (\2))

p@  dp)  E,lexp(e ' (\2)] 2D
Rearranging equation (20) gives:

p@=exp(c {(\2) -G} p@, (22)
where

G\ =clogE, [exp (s (A 2))], (23)

is the scaled CGF, G : R" — R. This change of measure is optimal, in the sense of maximizing
the tilted probability p,, at the choice A = \; with

A, =argmax {(\, z) — G(\)}. (24)
XeRn

This can be seen, given the Gartner—Ellis theorem, I(z) = G(A\)* = supycp.((A, 2) — G()\)), by
realizing that

log pr(z) =e ! (<>\z, 7) — G()\z)) +log p(2)

=e'sup {{(\z) =GNV} +log p(2)
AeR?

= ' T@) +1log plr) =% 0, (25)
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where the last line is just the definition of the LDP, € log p(z) = —I(z) for ¢ — 0.
Itis in this sense that the optimal tilting parameter of the end-point distribution corresponds
to the Lagrange multiplier in the instanton equations constraining the endpoint to z.

3. Convex analysis and the Gartner—Ellis theorem

In order to use the described methodology to find the instanton for a rare outcome z, or equiv-
alently make sense of the corresponding exponentially tilted measure p,(z), we must demand
that the mapping z — A(z) is a bijection: for every outcome z there must be a unique tilt A such
that the instanton ¢, solution of (15) with boundary conditions (19), is a unique solution with
@(t)) = z. If that is the case then we can estimate the probability

P(z) = exp(—e 'S(¢") = exp(—eU(z)). (26)

The precise properties of the duality mapping between tilting parameter A and outcome z can
be understood by the interplay between the Gartner—Ellis theorem and convex analysis. We
have,

G\ = sup ((\z) —1(2))

R
=(Nz) —1(z(WN), (27)

where the solution z (\) of the form
Vi) = A, (28)

does only hold when the rate function s strictly convex. If instead the rate function is not strictly
convex (i.e. has concave, and/or affine linear regions or is even just asymptotically linear), the
LF transform is applied only to the region at which / (z) admits supporting hyperplanes. If
there exists A € R” such that [26],

IM=>1@+ Xy—2, VyeR’ (29)

then we say / admits a supporting hyperplane at z, where the slope of the supporting hyperplane
is A. In this sense, we can define non-convex regions to be the ones that do not admit any
supporting hyperplane, so do not have any corresponding A. Note that the absence of these
hyperplanes can affect the LF transform /* (z) = G () in two different ways,

Case I: having an asymptotically linear part of 7 (z) leads to a divergent LF transform G ().

Case II: having a concave or affine linear part of 7 (z) leads to an existent but nondifferen-
tiable
LF transform G ().

Both cases will be discussed specifically in the applications in section 4.
Assuming for now there are supporting hyperplanes (i.e. existent A\) for all z € R", then
equation (28) leads to,

N =(VD'W, (30)

i.e. VI must be invertible for z(\) to be so. Up to a choice of sign, this implies that V1 is strictly
monotonically increasing (SMI), which is equivalent to / being a strictly convex function [24].
Also note that if z(\) is invertible, this implies that G () is a differentiable function, since
equation (27) gives,
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VG =z(\) + (VO™ = (VzO\))'VI (V)
=z(\)), 31)

where equation (28) is used. What we have demonstrated above is nothing but the well-
known fact that the LF transform of a convex, differentiable function G()) is strictly convex.
This perspective, though, makes it clear that the existence of a tilting parameter (Lagrange
multiplier) A to enforce an outcome z depends on the finiteness and differentiability of the
scaled CGF. In other words, both exponential tilting, and finding a Lagrange parameter to
constrain the endpoint to z, depends on the rate function being strictly convex. Only if this is
the case, it is possible to compute a unique instanton in order to estimate /(z) and therefore
P(2), (26).

Since in the low noise limit we have p(z) ~ exp(—e’ll(z)), it is easy to construct cases
where the rate function /(z) is not strictly convex. In fact, every situation where the tails of p(z)
are fat, i.e. exponential (/(z) ~ z), stretched exponential (I(z) ~ z%, o < 1), or even algebraic
(I(z) ~ alog(z), a < 0) tails will break the above assumption.

The main contribution of this paper is the realization that the introduction of a nonlinear
map F : R" — R” allows us to loosen the restriction of the convexity of /(z). The idea is to
define a nonlinear tilt through F via exp(e~' (A, F(z))), such that the map A\ — z()) is replaced
by anew map A — F o z(\). We are free to choose any appropriate F. As we will see next, this
allows us to suitably reparametrize the space of outcomes, so that the effective rate function
I o F~!is strictly convex.

3.1. Nonlinear tilt

In analogy to equation (22) and the description in sections 2.2 and 3, we can now define the
nonlinearly tilted measure

expe Y\, F(2)))
E, exp(e~'(\, F(2)))

= exp (¢ '((\ F(D) — GF(\)) pl2), (32)

) = P2

where the nonlinearly tilted CGF is given by

Gr(\) = sup ((\,F (2)) — 1 (2))

zeR"

(AMF @) =1z, (33)

(compare equation (27)) which is assumed to be finite and differentiable. Its gradient fulfills

VGr () = F(z(V) + (VZO) (VFEO)'A — (Vz(\) ' VIz(\)
=F(z(\), (34)

where the last equality is due to z (\) being the solution of VI (z) = ATV F(z) in equation (33).

This proposed remapping can be chosen to overcome the above problem by creating a new
function G (), which plays the role of the CGF, while simultaneously being a bounded and
differentiable function. At the same time, o F~! (y) can be understood as the effective rate
function, since equation (33) can be written as,

Gr = sup ((Ay)—ToF (). (35)
F1(yeRrn
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Obviously, the right choice of F depends on the nature of the tail scaling at hand. We will derive
the necessary properties of F (.) next.

3.2. Properties of the reparametrization and the nonlinearly tilted instanton

In the following, we denote by y € R” the reparametrized outcome, y = F(z). Our goal is to
choose F such that F' o z(\) = y(\) is a bijection. From above, it is clear that

N = VIR)(VF(@)™. (36)

Following the same argument as in section 3, y(\) is bijective if

e Fis a diffeomorphism, and
e [ o F~!(y) is strictly convex, i.e.

(v,Hess(I o F-H(y)v) >0 Vv eR" (37)

Assuming these conditions on F implies that the gradient of the reparametrized rate function
1o F~(y), given by A o F~! (y), is an SMI function, implying that it is invertible. The desired
bijective mapping then becomes A — F (z(\)) = VGp (\) (compare equation (34)). For a non-
convex /, intuitively, F must be chosen to suitably reparametrize the space of outcomes for the
effective rate function to become strictly convex. For example for the n = 1 case with heavy
tails, one might imagine a strong enough compression of the observable z such that a fat tail
becomes non-fat.

To harness this nonlinear tilt in the computation of instantons for distributions with heavy
tails, we need to modify the approach outlined in section 2.1 as follows: the variation of the
unconstrained action (18) now reads

(65 (2) — (A, VF(pe))dp)] . =0, (38)
Consequently, the boundary conditions of the instanton equations are modified to
@ (o) =0, U (1) = AVF(p(1)), (39)

which will yield an instanton trajectory (" thatreaches z, ¢(¢1) = z, despite the fact that the rate
function 1(z) = S(¢%) is not convex around z. Since F is continuous, the probability measure
P? o F~'(y) in the limit € — 0 is the same as P* (z), according to the contraction principle [9,
10].

Note that this reparametrization through F is introduced solely to adequately define the tilted
measure, or equivalently numerically compute the instanton without encountering divergences.
Afterwards, the reparametrization can be reverted to obtain the probability distribution in the
original coordinates z.

As additional remark, methods that compute the instanton by solving the global optimiza-
tion problem, for example by solving the associated Euler—Lagrange equations instead of
integrating the instanton equations [27, 28], do not require the above treatment: the tilting
parameter disappears in these cases as the boundary conditions are fixed in the field variable
instead of the conjugate momentum. Therefore, in principle, these methods can be chosen in the
non-convex case. The solution of the instanton equations, though, is generally preferred [29]
due to numerically efficiency, and sometimes even required (such as when the noise covariance
in (4) is not invertible).
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4. Applications

We will now consider a number of examples that show how to compute tail probabilities in
stochastic systems. To demonstrate the wide applicability of our approach, we consider several
cases that highlight different complications. We start with two toy models that feature stretched
exponential (section 4.1) or powerlaw tails (section 4.2). Then, in section 4.3, we consider a
two-dimensional system with a bent (‘banana-shape’) potential, where the non-convexity is not
due to heavy tails, but due to the shape of the unimodal invariant probability density. Lastly,
we demonstrate the practical applicability of our method by considering an example motivated
from fiber optics in section 4.4. Here we compute the probability of measuring extreme power
spikes at the end of extended optical fibers, where the probability distribution of the input signal
is known. Due to soliton formation, this distribution features heavy tails for long fiber lengths
(L > 10 m), so in order to compute probabilities via an instanton approach, our corrections
are necessary.

4.1. Stretched exponential

Consider the stochastic gradient flow,
dX: = —VUX5)dr +V2edW,, 1€ [10,1,]. (40)

The potential U : R* — R determines completely the stationary probability distribution func-
tion (PDF)

p(@) =Z " exp (= U (), (41)

with normalization constant Z. We further assume that U has a unique minimum, i.e. we are
only considering unimodal distributions. For large times, ; — t) = T — oo, the distribution of
endpoints of X7 = z will converge to p,.(z). From the perspective of LDT, comparing (26) to
(41), the rate function for the final point distribution is equivalent to the potential, I(z) = U(z),
and

li_I}?Bl& log p(z) = —U(2). (42)

Therefore, in order to approximate the tails of the stationary distribution, we can compute the
instanton ¢* ending at z and estimate p._(z) &~ exp(—& 'S(p*)).
We choose n = 1 and consider the non-convex potential,

4 «
U@=< < J, 0<ac<l, 43)
1+ |7

which corresponds to a stretched exponential stationary distribution: at the tails, the dominant
exponent is «v, and p..(z) ~ exp(—e~'|z|”) for large z, as shown in figure 1. For this distribu-
tion, E[exp(¢ ' \z)] diverges for large \ as in case I, and hence numerical methods to find the
instanton fail in the tail.

This can be seen in figure 2: we employ the numerical scheme by Chernykh—Stepanov
(C-S) [17, 19] to compute the instanton starting at ¢*(#p) = 0 and ending at ¢*(#;) =z
(see appendix A.2 for details). The iterative algorithm converges towards the minimizer of
the action, and once converged, we can estimate the probability of reaching z by p(z) ~
exp(—&~'S(*)). As expected, though, computing the instanton (light blue dots) fails beyond
the inflection points at z ~ £1.26, i.e. the points at which the second derivative of U(z) changes

10
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«
Figure 1. The potential U (z) = (z*/(1 + \zf ,0 < a < 1, for the gradient flow SDE
(40) leads to heavy (stretched exponential) tails of the stationary density p, (z) as «

decreases.
10!
1071
ON.
3 10
Q
s Instanton
10 e Instanton (rescaled)
— exact
10-7

Figure 2. Stationary density with exponential tails (equations (41) and (43) for
€ = 0.25,a = 1). Probing the tails with the traditional instanton method (light blue)
leads to numerical divergence around the non-convex tail region. Reparametrizing the
observable via F(z) = sign(z) log |z| convexifies the tail, so that the instanton (dark blue)
correctly predicts the exact tail probabilities (solid black).

sign. Here, the tails become stretched exponentials: no choice of A leads to endpoints z of the
instanton beyond these, as the linear tilt diverges and the CGF is undefined. Instead, we need
to choose a non-linear tilt, such as

F(z) = sign(z) log|z|, z € R\{0}, (44)

for which even in the tails the reparametrized expectation E[exp(e "' \F (Xf1 ))] < oo remains
bounded. Note that other choices of F(z) would be possible. For the choice (44), the derivative
of the CGF Gr(\) is a bijection, so that every value of A has a corresponding z. This map is
explicitly given by

AR = Ao F ' () =¥ (4+¢Y) /(1+e¥)°, (45)

1
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Figure 3. Convexity condition for the stretched exponential tails: the second derivative
of the rate function becomes negative beyond the inflection points at z ~ 41.26. The
nonlinearly tilted rate function, instead, remains strictly convex in the whole domain,
(o F~ 1" >0.

(for z > 0, and negative for z < 0).

With this choice, the instanton prediction for the stationary PDF is almost exact far into
the heavy tails (dark blue dots vs black solid in figure 2). Here, we again employ the iterative
instanton computation, but are solving the instanton equations with the boundary condition (39)
instead. The underlying reason for convergence is that the reparametrization with F convexifies
the rate function, i.e. creating supporting lines with slopes \ for all the domain of 7 o F~!. As
shown in figure 3, while the second derivative of the rate function becomes negative beyond the
inflection points, the second derivative of the nonlinearly tilted rate function remains positive
throughout. This corresponds precisely to the necessary condition (37), and therefore implies
that bijectivity.

For the numerics in this example, we chose o = 1 and a noise parameter € = 0.25, with
N, = 10° timesteps, and a time interval of T = 6.

4.2. Powerlaw distribution

Even heavier tails are given by power law distributions,
p@~ 7, B >0, (46)

which are associated with a multitude of phenomena in wide areas of science, in part due
to their connection to scale invariance, self-similarity, universality classes and criticality in
phase transitions. Here, we construct a simple SDE in n = 1 dimensions which has a powerlaw
invariant density. Consider

pX7

1T 0P dt + v2edW,. (47)
t

dx; =

It can easily be shown that the invariant density for the process (47) is given by
(@) =27 L+ )0, (48)

where Z is a normalization constant. For z > 1 and € = 1, this takes the limiting form (46), but
is regularized for small z. Again, we are interested in computing tail probabilities for this toy

12
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Figure 4. Convexity condition for the powerlaw test case: the second derivative of the
rate function is negative in the tails beyond the inflection points at z = 41 (light blue).
The nonlinearly tilted rate function is strictly convex in this region instead (dark blue).

model, by computing the instanton ¢* realizing large values of z, which yields the respective
probability by evaluating the corresponding action.
As in section 4.1, the LDT rate function, given here by

I(z) = %5 log(1 + 2%), (49)

does not admit supporting lines in the tails, and consequently its LF transform is undefined
(case I as well). This is reflected in the fact that the moment generating function

E exp(e '\z) = Z*I/ expe '\ + 22) /> dz, (50
R

diverges. We can convexify the rate function (49) by reparametrizing via
F(z) = sign(z) log log|z|, ze€ R\[-1,1], (51)

which is an even more drastic tail compression than needed for the stretched exponential. Here,
again the choice of F(z) is arbitrary, and only subject to the convexity condition (37). Note
further that here we only convexify in the tails, |z] > 1, where the problem occurs, and do not
attempt to find a global map. Indeed, for this choice of F, the reparametrized rate function
I o F~'(y) is convex in the tails, as shown in figure 4: its second derivative remains positive in
the tails, which is not true for the original rate function /(z). It therefore fulfills the convexity
condition given in (37). Consequently, we can explicitly map A to z via

A2 = Ao F () = Bel )/ (14, (52)

(forz > 1 and negative for z < —1). Numerically, as before, we solve the optimization problem
posed by the instanton equations with tilted boundary conditions (39) to obtain instantons ¢*
for events with large z. The corresponding action, S(¢™), yields the tail probability. This com-
putation is shown in figure 5: the naive instanton computation (light blue) leads to numerically
diverging results in the tail region, |z| > 1, which are captured accurately by the reparametrized
instanton (dark blue). Parameters are 5 = 2, ¢ = 0.25, N, = 10, and T = 10.

13



J. Phys. A: Math. Theor. 54 (2021) 175001 M Algahtani and T Grafke

10t
101
T o
Q
s Instanton
10 e Instanton (rescaled)
exact
1077

Figure 5. Stationary density with powerlaw tails (8 = 2, = 0.25). Naively comput-
ing the instanton for tail events fails beyond z =1 (light blue). The nonlinear tilt
F(z) = sign(z) loglog|z| yields probabilities of events with z > 1 within the non-convex
powerlaw tail (dark blue) in good agreement with the theoretical result (black solid).

4.3. Banana potential

In higher dimensions, non-convexity can manifest in more subtle ways than in 1D. Consider
for example the 2D system,

dX; = b(X7)dt + Vv2e dW,, (53)
where,
_ 2
bx) = —2 X1 (1 2 ()C22 xl)) . (54)
x2 - xl

This system is a gradient flow for the potential U(x) = x? + (x — x7)?, so that again we have
that the rate function for the stationary distribution is equivalent to this potential, /(z) = U(z),
i.e.

Q=23+ (n-2) (55)

The system has a unique stable fixed point at the origin, which is the deepest point of a
banana-shaped valley (the set of points {(xl, xX2) |x2 = x%}) of the potential, as can be seen
in figure 6 (left). The rate function 7 (z) (55) does not admit supporting hyperplanes in the
region {z = (a,b) |b > a*}, as can be checked by solving (29). As a consequence, this leads
to a situation where no tilt variable A € R? exists to reach an outcome z within that region.

Unlike the previous examples, the challenge in this case is therefore not the far tails of the
stationary density, but actually probing the core of the distribution. The non-convexity of the
rate function of the previous examples amounted to the divergence of its LF transform, the
CGeF (case I), while here the non-convexity leads to the non-differentiability of the CGF (case
D).

To fix this non-differentiability of the CGF G()), we propose a nonlinear reparametrization
that satisfies the criteria of section 3.2. Consider

F(z) = { a 2}. (56)

2 — 1
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6 I IOF71

Figure 6. Left: contour plot of the rate function (55) shows a banana-alike valley sur-
rounding a non-convex plateau. The black dashed line represents the position of the
marginal shown in figure 7. Right: the rate function composed with the inverse of the non-
linear observable (56) deforms the landscape so that the rate function becomes strictly
convex.

This reparametrization ‘straightens the banana’, i.e. it deforms the space of outcomes such that
the rate function becomes strictly convex, as figure 6 (right) shows. Using this reparametriza-
tion produces a continuous and differentiable CGF of the observable F, resulting from the LF
transform of 7 o F~1 (y),

GrN) = sup ((\y)—ToF '),
F~1(y)eR?

1
e, o7

which allows Lagrange multipliers to reach any outcome z, in particular ones within the
nonconvex region.

As numerical experiment, we choose to look at the marginal stationary distribution z in z;
direction for a fixed value of z, = 3, i.e. ju(z) = p™(z, 3). Since at any fixed value z, > 0 we cut
through the non-convex region z, > z3, the marginal distribution z(z) looks like a double-well
potential. We stress, though, that the whole system indeed has only a single fixed point. We then
solve the optimization problem posed by the instanton equations with linear tilt, and compare
to the minimization problem with nonlinear tilt. As shown in figure 7, the linearly tilted instan-
ton computation produces acceptable results in the tails of the probability density (light blue
dots), it fails to converge within the non-convex region —1 < z < 1: since in that region there
are no supporting planes of the rate function (55), there is no A € R? corresponding to the
slope of the supporting plane at that z, and consequently no tilt exists to produce the desired
outcome z.

For the reparametrized observable (56), on the other hand, the effective rate function
I o F~(y) is convexified and admits supporting planes at every z. Indeed, as demonstrated
in figure 7, the reparametrized optimization problem leads instanton trajectories reaching
outcomes (shown as dark blue dots) within the non-convex region —1 < z < 1.

As a final remark, convexifying the rate function by the above method, even though it
guarantees the existence of a tilt for every outcome, might nevertheless lead to numerical
convergence issues. For example, in regions where the original rate function was convex,
the rescaled optimization problem might be harder to solve, or necessitate more iterations
or smaller time-steps. Similarly, even in the convexified region, the problem might become
ill-posed, for example for z; < 1 and z, > 2, where the observable is approximately linear.
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Figure 7. The marginal distribution u(z) = p>(z, %) [as denoted by the blacked dashed
line in figure 6 (left)]. Instantons with linear tilt (light blue) fail to reach the region
—1 < z < 1 without supporting hyperplanes of the rate function / (z) (55). Performing
a reparametrization using the observable (56) produces an strictly convex effective rate
function / o F~! (y) that admits supporting hyperplanes everywhere. The corresponding
instanton actions successfully capture the non-convex region (dark blue).

4.4. Nonlinear Schrédinger equation

As a practical example for our proposed method, we consider the formation of extreme events
in nonlinear wave equations [30—33]. In the field of nonlinear optics and photonics it has been
established that heavy tailed statistics frequently occur [34]. Physical mechanisms such as
soliton formation [35, 36] and nonlinear amplification [37] are responsible for the emergence
of extreme power spikes out of incoherent, Gaussian initial conditions, and have been subject
to investigation by a multitude of rare event algorithms [38, 39].

Here, we consider the one-dimensional propagation of an optical pulse along a fiber,
described by the NLS equation

1
—i0,1) = 58?1/) + 02, b(x=0,1) = (1), (58)

for a complex wave envelope v : [0, L] x [0, T] — C. Boundary conditions are given at loca-
tion x = 0 at the beginning of the fiber for all times ¢ € [0, T, and the output is measured at the
end of the fiber at x = L. The input signal is considered random, with a Gaussian distribution
of known energy spectrum. Specifically, we are mimicking an experimental setup such as [40]
of a partially coherent light source, where the input signal is designed as a Gaussian shape in
frequency space with covariance

1
Xn ~ exp(—iwﬁ/Auz), |n| <N, (59)
with spectral bandwidth 1/Av and truncation frequency wy, so that the input signal is given
by
N .
dot) = > e /Xubn (60)
n=—N
where ¢, are i.i.d. mean zero, unit variance complex Gaussian random variables.
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For this setup, we are interested in the probability of measuring large spikes in the optical
power A(x, 1) = |¢(x, £)|* at the fiber end, x = L. Within the presented instanton formalism, this
can be achieved by tilting the distribution of initial conditions towards a high-power outcome
at the fiber end, and estimating the tail probability by its most likely (‘instantonic’) realization.
The corresponding LDP is given by

p(@) = PIA(L, T/2) > z] < exp(—1(2)), (61)

for a power spike of size z taken arbitrarily at the center of the temporal domain, r = T/2. Due
to the Gaussianity of the initial conditions, the rate function /(z) simply is [39]

. I .
10=_int,, (5l€F - 2ol 7/ ) 62
Here, ¢ determines the source signal y(¢) through (60), while, A(z) can be interpreted
as a Lagrange multiplier enforcing the power constraint [1)|> = z at the end of the fiber.
Equation (62) is therefore simply saying that the rate function is given by the most likely ran-
dom configuration ¢ that determines a source signal with high power output. Note that, similar
to the examples above, the tilt in (62) is linear, and we can therefore expect the expectation

E exp(=A[¢(L. T/2))), (63)

over light source signals to diverge for fiber lengths L long enough for solitons to emerge and
for the tails of the power distribution to become fat.

Since the probability of high power output signals at the fiber end is not known analytically,
the only option we have to get comparison data is to perform MC simulations to sample the
power distribution. To this end, we simulate the evolution of a wave packet along the fiber with
a random input signals with energy spectrum (59) by numerically integrating equation (58).
This equation is non-dimensionalized, with x, # and v normalized by characteristic parameters
Loy, To and Py respectively, such that

x = %/Lo, t=T/T, W =0/\/Po, (64)

where X, f and zﬁ are the corresponding dimensional variables. These parameters Ly, 7y and
Py also determine the dispersion 3, and nonlinearity v properties of the optical fiber via

B> =Ty / Lo, v =1/(LoPo). (65)

We chose these parameters according to the experimental setup in [40], where they are given
as

Lo = 160.3m, 7o = 1.8778ps, Py =2.6W. (66)

Therefore, the optical fiber has dispersion parameter 3, = 0.022 ps> m~! and nonlinearity
constant y = 0.0024(Wm)~!. The spectral bandwidth 1/Av is taken to be (Av = 0.5 THz).
We pick fiber lengths between 10 m and 60 m, periodic boundary conditions in time treated
pseudo-spectrally, and integrate with a second-order Runge—Kutta exponential time differenc-
ing method (ETDRK?2) [41] in the spatial variable. The discretization is Ax = 6.24 x 1073,
At =1.3 x 1072, T = 106, and frequency cut-off N = 45. As expected, and shown in figure 8,
the tails of the PDF of optical power become heavier with increasing fiber length L. Its sam-
ples number is 10°, where the property of A being statistically homogeneous in time is used to
improve the statistics.
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Figure 8. (a) PDF of optical power A(x, ) = |¢(x, 1)|* at the end of the fiber. Compared
are MC simulations (light color) with instanton prediction (dark color) for different fiber
lengths, L € {10 m,...,60 m}. The tails become fatter with increasing L. A vertical
marker is inserted at the maximal power achievable with the naive instanton method,
highlighting how fat tails prevent useful instanton predictions. (b) The same, but for
the instanton with nonlinear tilt, equation (71). The LDP computation now reaches
far into the fat tails. The vertical markers of the naive instanton are copied over here
for comparison, highlighting the increased tail reach (e.g. by more than a factor 3 for
L = 60 m). Only lengths L > 30 m are shown.

To compare these brute-force sampling estimates to the instanton prediction, we have to
solve the optimization problem (62). This is done by defining the cost functional

1
E© = 31€* =A@, 7/2),

(67)

for a given A and performing gradient descent, where the gradient is given by

dE/dé = € — NI(L, T/2)d[(L. T/2)|/d,

(68)

with Jacobian J(x, 1) = di(x, r)/d€. This gradient can be evaluated by simultaneously integrat-

ing the NLS equation (58) and the evolution equation of the Jacobian,
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8XJ:i<;8tZJ+wZJ+2¢ZJ>, (69)

(where a is the complex conjugate of a € C). The iterative gradient descent algorithm yields the
optimal choice £* that will lead to the desired outcome of the final power exceeding the power
threshold z. As can be seen in figure 8(a), the corresponding prediction for the probability,
exp(—I(z)) (from equation (61)) correctly describes the tail decay of high power events at the
fiber end, but crucially only as long as the rate function admits supporting lines, i.e. remains
convex. Therefore, the instanton prediction is basically useless for optical fibers longer than
L = 30 m. As a side note, the gradient computation could instead be performed in the adjoint
formalism, leading to two coupled forward—backward equations similar in spirit to the instan-
ton equation (15), but identically yielding meaningful results only in the convex region of the
rate function.

Now, applying the idea from above, we can instead nonlinearly tilt the probability distribu-
tion of input signals towards high power outcomes. For this, we choose instead the nonlinearly
tilted rate function

1
I(x)= inf <—|§2 — AWF(L, T/2)> , (70)
£eCaN+! 2
with
F(z) =log loglz], |z| > 1. (71)

For this tilt, the cost functional becomes

1
E@©) = 3P = AF(U(L T/2)), (72)
and the gradient is
dE/d§ = £ — M(L, T/2)dF((L, T/2))/dy, (73)

instead. The results of this are shown in figure 8(b) for the four longest fiber lengths of 30—60 m
in 10 m increments, where the tails are fattest. In the revised formalism (dark color), the non-
linearly tilted instanton prediction is able to reach far into the stretched tail and gives the right
order of magnitude for the probability of power spikes obtained from sampling (light color).
The end of the region of convergence for the naive instanton is shown for comparison (vertical
markers).

Note that due to the choice of reparametrization F in (71), the nonlinearly tilted instanton
prediction is restricted to the region of normalized power [)|> > 1, but of course this is exactly
the tail region that we care about.

5. Conclusion

Estimating the probability of tail events can efficiently be done via LDT and instanton calculus,
which transforms an inefficient sampling problem into a deterministic optimization problem.
Unfortunately, for systems with heavy tails, or more generally non-convex rate functions, stan-
dard mechanisms of exponentially tilting the measure, or numerically solving the optimization
problem, fail. The reason is the absence of a bijective map between Lagrange multiplier (tilt-
ing parameter) and desired outcome, caused by the breakdown of their Lagrange duality, or
equivalently by the non-convexity of the rate function.

19



J. Phys. A: Math. Theor. 54 (2021) 175001 M Algahtani and T Grafke

We put forward the idea of a nonlinear tilt that reparametrizes the output space, effectively
convexifying the rate function of the observed probability distribution. We discuss the nec-
essary conditions required for this reparametrization to yield a unique outcome variable and
ensure a bijective mapping between tilt and outcome: it needs to be a diffeomorphism cho-
sen such that its composition with the rate function is strictly convex. Note further that the
reparametrization can be chosen locally, i.e. the conditions on the nonlinear observable need
only apply in a subdomain of the events of interest.

Finding such nonlinear observable can be subtle, especially when the system is highly
nonlinear, influencing the rate function landscape. However, drawing inspiration from toy
problems with stretched exponential and algebraic tails, which can be treated analytically,
yields candidate reparametrizations for physically relevant problems. We show the applica-
bility to real-world problems by demonstrating how instantons determine the probability of
extreme optical power events in a fiber optical cable, where solitons lead to a heavy-tailed
power distribution at the fiber end.
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Appendix.

A.1. Instanton equations with two different sets of boundary conditions

In this section, we will explain in more detail the difference between the derivation of instanton
equations with boundary conditions (16) and (19). The goal is to find the minimizer of the rate
function, equation (11), where ¢ must belong to A, (6), which is a set that enforces the bound-
ary conditions (16). The formula for the rate function is giving by (9), where the integrand is
the Lagrangian L (¢, ), which can be written in terms of the Hamiltonian H (¢, 99) as follows,

S(@):/ L(@Aﬁ)df:/ [(9.9) — H (p,9)] dr, (A.D)

fo fo

with the Hamiltonian H(y, 1)) given by equation (14). With this, the variation of the rate
function yields

h 05\ OH (4, v
ool [ [(2)-222)
=g 9=0* 1 4 @
+ <¢_ ng’ 19)) &9] d = 0. (A2)

After performing integration by parts on the first term of equation (A.2), this results in
)= -0H(p,9),  ¢=0H(p9), (A3)

which are the instanton equation (15) written in terms of the Hamiltonian (14). These two
coupled equations solved with the boundary conditions induced by the set A, correspond to the
boundary value problem given in equation (16).
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Algorithm 1. C-S algorithm.

Choose:

A n € 10,17, [to, 1], At, N = ";,"%TOL
Set:

k=0, =x, 9%@t) =0

repeat

Given <p" and 15(1:11) = )\VF(cpk(t:tl)), integrate 5‘(1) backward in time
Given 9 and p(t=ty) = X, integrate ¢(¢) forward in time
Update:
G =ng+ A -t
FH =g+ (1 =)k
k—k+1
until max [ "1 — f| /|| < TOL
Terminate.

The boundary value problem defined in equation (19) is different. Here, the constraint is
instead encoded in the Lagrange multiplier, which ends up modifying the boundary conditions
of the instanton equations, as we will show next. Starting from equation (17), the variation of
the rate function (compare it with (A.2)) becomes

n 9o\ OH(p9) 9ol
55(p, ) =/ [(<z9,a@>— ALY g()aa—n))
p=gr=v Ju v v 4 (A.4)
X 8 + <¢— %) 519] dr = 0.
This now results in,
0 = —0,H(p, ), ¢ = OyH(p,9), subjecttod (1) = A, (A.5)

while the derivation of the instanton equations remains unchanged. The main difference is the
fact that the final time condition ¢ (¢;) has been encoded in the rate function as a Lagrange
multiplier, resulting in a final time condition on the conjugate momentum ¥, equation (19).

The instanton equations with this second set of boundary conditions defined in (A.5) can
be solved very efficiently by an adjoint formulation of gradient descent (‘C—S’ scheme), while
using the original conditions, equation (16), would necessitate solving the instanton equations
with comparably inefficient shooting methods.

A.2. Chernykh—Stepanov numerical scheme

In this subsection we lay out implementation details of the recursive C—S scheme. It can be
used to solve the instanton equation (15) with boundary conditions given in (19), or, for our
purposes, the tilted boundary conditions of equation (39).

The main idea is to solve for ¥/ (f) backward in time and, subsequently, using this solution
1J, to solve for ¢ (¢) forward in time. This choice of integration direction is not only consistent
with the given boundary values, but turns out to be the numerically stable choice for the right-
hand-sides of the instanton equations.

The whole scheme is explained in pseudocode as algorithm 1. Note that it is analogous to
the adjoint formalism of a gradient descent in numerical optimization, where ¥J is considered
as the adjoint variable [29]. The interpolated update with 7 is only needed in case of numerical
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instabilities. In this case, the variable 77 can be interpreted as step size of the gradient descent,
and could instead be chosen via e.g. Armijo line search. For the tolerance TOL of the exit
criterion, we choose TOL = 1078, A practical limitation of this scheme is the fact that when-
ever we are interested in statements about the stationary densities of our process, we would
be forced to let 1, — ty = T — oo, which can only be approximated numerically (by taking a
large enough 7). A more sophisticated solution to this problem is to replace the physical time
parameter ¢ by a geometric parameter [18]. However, such a treatment was not needed in this

paper.
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