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Abstract

In this thesis we aim to advance the variational theory of integral functionals

depending on the symmetrised gradient. New contributions to this theory

are contained in chapters 3, 4 and 5, where we study relaxations of integral

functionals of the form:

F : u 7→
∫

Ω
f
(
x,

1
2
(
∇u(x) +∇u(x)T

))
dx, u : Ω ⊂ Rd → Rd

under various ‘shape’ constraints imposed on the integrand f . Functionals of

this form arise naturally in the mathematical theory of solid mechanics. In

Chapter 3 we investigate the linear growth case, that is we additionally assume

that f satisfies bounds:

m|A| ≤ f(A) ≤M(1 + |A|)

for all symmetric matrices A ∈ Rd×d
sym and some constants 0 < m ≤M . Some-

times this growth is called linear isotropic. In Chapter 4 we deal with the case

of mixed growth, that is we assume that the inequality

m
(
(trA)2 + | devA|

)
≤ f(A) ≤M

(
1 + (trA)2 + | devA|

)
holds for all symmetric matrices A ∈ Rd×d

sym and some constants 0 < m ≤M .

In Chapter 5 we look at the special case of mixed-growth functionals, the

Hencky’s plasticity functional and its inhomogeneous generalisation. The main

result of this chapter is the proof of lower semicontinuity of the aforementioned

inhomogeneous functional in a sufficiently weak topology. This result relies on

the theory of Young measures, which we briefly recall. We also discuss new

developments in this theory and state open problems.

MSC (2010): 49J45 (primary); 28B05, 49S05.

Keywords: relaxation, lower semicontinuity, integral functionals, functions of

bounded deformation, Hencky plasticity.



Chapter 1

Introduction

The prime objective of this work is to advance the variational theory of integral

functionals depending on the symmetrised gradient. By the symmetrised

gradient we understand the symmetric part of the gradient of a vector-valued

function. In applications, this function represents a displacement of a body that

occupies certain region in space and the symmetric gradient is the (linearised)

strain tensor, which expresses the relative change in the position of points within

a body that has undergone the infinitesimal deformation. Such functionals arise

naturally in the mathematical theory of solid mechanics, where they represent

the total energy of the material deformation.

A physically relevant problem is to minimise the deformation energy in

a suitable class of deformations, subject to some boundary datum, which

represents the density of external forces acting on the body. Denoting by F

the energy functional, we can express the minimisation problem more precisely

as follows:

min
{
F [u] : u ∈ X, u = g on ∂Ω

}
, (1.1)

where X is a space of functions u : Ω → Rd, g : ∂Ω → Rd is a boundary

constraint and Ω ⊂ Rd is a domain occupied by the continuum. For practical

problems, it suffices to investigate dimensions d ≤ 3. As we will soon see, the

underlying class of functions X is not only determined by the ‘shape’ of the

functional F , but also by the mathematical ‘machinery’ it offers. A general
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approach to the problem (1.1) is via the so-called Direct Method of the Calculus

of Variations, which essentially means that the minimiser of (1.1) is constructed

by taking a minimising sequence (uj) ⊂ X such that

F [uj]→ inf
X
F as j →∞.

Then, by the interplay between the continuity of F and the compactness of

X we can, in principle, obtain a limit u∞ of the minimising sequence (with

respect to the convergence determined by the compactness), which is the desired

minimiser. In reality, however, the compactness of the space X often forces

us to consider a very weak notion of convergence for the minimising sequence,

which in turn may result in the minimiser to be outside of X. This leads to

the concept of relaxation, which is a natural procedure, when one is interested

in finding a minimiser, but the poor compactness of the underlying function

space X undermines the use of the Direct Method. In this case one may extend

(relax) the functional to a larger space with a better compactness and seek for a

minimiser of the extension, with a property that the minimum of the extension

agrees with the minimum (infimum) of the original problem.

In the subsequent chapters we study relaxations of integral functionals of

the form:

F : u 7→
∫

Ω
f
(
x,

1
2
(
∇u(x) +∇u(x)T

))
dx, u : Ω ⊂ Rd → Rd (1.2)

under various ‘shape’ constraints imposed on the integrand f . Henceforth, we

write Eu(x) for the symmetrised derivative (∇u(x) +∇u(x)T )/2.

In Chapter 2 we assume that the integrand f is a homogeneous function,

i.e. f does not explicitly depend on x, with linear growth bounds:

m|A| ≤ f(A) ≤M (1 + |A|)

for some constants 0 < m ≤ M and all A ∈ Rd×d
sym. Here |A| denotes the

Frobenius norm of a matrix A.

6



In this case it is natural to study (1.2) over the space of integrable functions

u with integrable symmetrised distributional derivative Eu, i.e.

LD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈ L1(Ω;Rd×d

sym)
}
.

Unfortunately, in this space the direct method of the calculus of variations

does not provide any solution to the minimization problem. The culprit is the

lack of reflexivity and consequently, the inability to infer the (weak) relative

compactness from the norm-boundedness of a minimising sequence. In fact,

one can see that the sequence

uj(x) := jx1(0,1/j)(x) + 1(1/j,1)(x), x ∈ (−1, 1)

is bounded in LD((−1, 1)) with respect to the natural norm ‖u‖LD := ‖u‖1 +

‖Eu‖1, but the L1-limit u∞ = 1(0,1) /∈ LD((−1, 1)). The key feature of the

sequence (uj) is that the sequence of derivatives (u′j) develops a singular

behaviour – it concentrates at 0. In other words, the sequence of measures

u′jL
1 (−1, 1) converges weakly* to the Dirac measure δ0, which is singular

with respect to the Lebesgue measure.

Therefore, the functional (1.2) needs to be extended to account for displace-

ment fields u whose linear strains Eu are measures, since in the space of measures

norm-boundedness of a minimising sequence implies weak* relative compactness.

Then the usual Direct Method applies. For this, one introduces the space BD(Ω)

of functions of bounded deformation as the space of all functions u ∈ L1(Ω;Rd)

such that the distributional symmetrised derivative Eu := 1
2(Du + DuT ) is

representable as a finite Radon measure Eu ∈ M(Ω;Rd×d
sym).

The relaxation of F , commonly denoted by F∗, is then defined in an abstract

way as the smallest of the lower limits of F [uh] over all sequences (uh) ⊂ BD(Ω),

converging to some u ∈ BD(Ω) from the larger space, i.e.

F∗[u] := inf
{

lim inf
h→∞

F [uh] : (uh) ⊂ BD(Ω), uh ∗⇁ u in BD(Ω)
}
.

In this definition it is implicitly assumed that F is extended by +∞ outside

of LD(Ω). The choice of convergence in the above definition is effectively
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determined by the available compactness of the larger space.

As it stands, the relaxation in its abstract form is not particularly appealing.

Fortunately, under certain convexity assumption on f , one can prove that

the relaxation of F is also an integral functional. Here, we prove a refined

relaxation theorem in BD, improving the results of [6, 10, 33] to an essentially

optimal (under the following growth conditions) result:

Theorem 1.1. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,∞) be a continuous function such that

1. there exist constants 0 < m ≤M , for which the inequality

m|A| ≤ f(A) ≤M(1 + |A|), A ∈ Rd×d
sym,

holds;

2. f is symmetric-quasiconvex, that is for any bounded Lipschitz domain

ω ⊂ Rd, any symmetric matrix A ∈ Rd×d
sym and any ψ ∈W1,∞

0 (ω;Rd) the

inequality

|ω|f(A) ≤
∫
ω
f(A+ Eψ(y)) d y

holds.

Then, the functional

F [u] :=
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|, u ∈ BD(Ω)

is the relaxation of the functional

F [u] :=
∫

Ω
f(Eu) d x

with respect to the weak* topology in BD(Ω).

Here, the strain Eu is decomposed into Eu = Eau+Esu = EuL d Ω+Esu

according to the Lebesgue decomposition theorem, dEsu
d |Esu| is the polar density

of the singular part Esu with respect to |Esu|, and f# is the upper recession

function of f , i.e.

f#(A) := lim sup
A′→A
s→∞

f(sA′)
s

, A ∈ Rd×d
sym.
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In Theorem 1.1 in [33], only the weak* lower semicontinuity result, and not

a full relaxation result, was established under the assumption that the strong

recession function f∞ (with a limit instead of upper limit) exists. Our result

extends [10] and also Corollary 1.10 in [6] to a relaxation theorem without

any assumption on the recession function. It was possible due to the recent

developments in the theory of functions of bounded deformation (see next

chapter for details), namely the Alberti’s rank-one analogue by [16]. We note

that in view of Theorem 2 in [32], one can construct a function satisfying (1),

for which f∞ does not exist.

In Chapter 4 we investigate the case where the integrand f in (1.2) is a

homogeneous function satisfying mixed-growth bounds:

m
(
(trA)2 + | devA|

)
≤ f(A) ≤M

(
1 + (trA)2 + | devA|

)
(1.3)

for some constants 0 < m ≤ M and all A ∈ Rd×d
sym. The motivation for such

study comes from the classical convex functional of Hencky’s plasticity:∫
Ω
ϕ(dev Eu) + κ

2 (div u)2 dx, (1.4)

where ϕ : SD(d)→ [0,+∞) is a function which grows quadratically on some

compact set and linearly outside of this set, and κ = λ+2µ/3 is the bulk modulus

of the material with the Lamé constants λ and µ. Here, SD(d) denotes the space

of symmetric and trace-free matrices in Rd×d and devA := A−d−1(trA) id is the

deviatoric (trace-free) part of a matrix A ∈ Rd×d. Our aim is to generalize (1.4)

to include possibly non-convex integrands.

A first choice for a function space on which to define the functional (1.2) with

the growth constraints (1.3) is the space of integrable functions u with integrable

symmetrised distributional derivative Eu and square-integrable distributional

divergence, i.e.

LU(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈ L1(Ω;Rd×d

sym), div u ∈ L2(Ω)
}
.

This space of functions, however, shares the same flaws as the space LD(Ω).

To address them, one is naturally led to considering the Temam–Strang space
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U(Ω) of functions of bounded deformation with square-integrable divergence,

i.e.

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}
.

For more information on BD,U and their applications in the theory of plasticity

we refer to [2, 21, 25, 30, 36–39]. In the next chapter we briefly recall results

relevant for this thesis.

The appropriate relaxation F∗ of F for u ∈ U(Ω) is defined as follows:

F∗[u] := inf
{

lim inf
h→∞

F [uh] : (uh) ⊂ U(Ω), uh ∗⇁ u in U(Ω)
}
.

Again, we implicitly extend F by +∞ outside of LU(Ω).

It turns out that it also has an integral form under suitable constraints on

the integrand f :

Theorem 1.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,∞) be a continuous function satisfying the following conditions:

1. there exist constants 0 < m ≤M such that for all A ∈ Rd×d
sym the growth

m
(
(trA)2 + | devA|

)
≤ f(A) ≤M

(
1 + (trA)2 + | devA|

)
holds;

2. f is symmetric-quasiconvex;

3. there exist constants γ ∈ [0, 2) and δ ∈ [0, 1) such that for all A ∈ Rd×d
sym

the inequality

f(A) ≥ f#
dev(devA)−M

(
| trA|γ + | devA|δ + 1

)
(1.5)

holds.

Then, the functional

F [u,Ω] :=
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|, u ∈ U(Ω)

is the relaxation of the functional

F [u] :=
∫

Ω
f(Eu) d x

with respect to the weak* topology in U(Ω), i.e. F∗ = F .
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Here f#
dev is the upper recession function of the restriction fdev of f to the

symmetric deviatoric (d× d)-matrices, i.e.

f#
dev(D) := lim sup

D′→D
s→∞

fdev(sD′)
s

, D ∈ SD(d) .

The integral representation is substantially harder to obtain in the mixed-

growth case than in the linear growth case. The issues arise due to the

incompatibility of the standard blow-up argument with mixed-growth integrands,

see Chapter 4 for details.

In Chapter 5, by using Young measure methods, we establish the following

weak* lower semicontinuity theorem for inhomogeneous (i.e., x-dependent)

energy functionals:

Theorem 1.3. Let Ω ⊂ Rd be a bounded Lipschitz domain and

1. the function g : Ω× Rd×d
sym → [0,+∞) is Carathéodory with linear growth:

m|A| ≤ g(x,A) ≤M(1 + |A|), (x,A) ∈ Ω× Rd×d
sym,

for some constants 0 < m ≤M ;

2. for every x ∈ Ω the map A 7→ g(x, devA) is symmetric-quasiconvex;

3. the strong recession function (g ◦ dev)∞, defined as the limit

(g ◦ dev)∞(x,A) := lim
(x′,A′)→(x,A)

s→∞

g(x′, s devA′)
s

, A ∈ SD(d),

exists and is jointly continuous;

4. the function h : Ω × R → [0,+∞) is Carathéodory, convex and has

quadratic growth

0 ≤ h(x, z) ≤M(1 + |z|2), (x, z) ∈ Ω× R.

Then, the functional

G[u] :=
∫

Ω
g(x, dev Eu) + h(x, div u) d x+

∫
Ω

(g ◦ dev)∞
(
x,

dEsu

d |Esu|

)
d |Esu|

is weakly* lower semicontinuous on U(Ω).

11



Note that here, we need to require the existence of the strong recession

function (g ◦ dev)∞, as the argument is based on the theory of Young measures,

for which the existence of (g ◦ dev)∞ is crucial.
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Chapter 2

Prerequisites

2.1 General notation

By Rd we denote the d-dimensional Euclidean space with d ≥ 1. We write

B(x, r) for an open ball, B(x, r) for a closed ball and ∂B(x, r) for a sphere

centred at x ∈ Rd with the radius r > 0. For any matrix A ∈ Rd×d its deviatoric

projection is defined as devA := A−d−1(trA) id, where id ∈ Rd×d is the identity

matrix. The set of all symmetric and deviatoric matrices in Rd×d is denoted by

SD(d) := {M ∈ Rd×d
sym : trM = 0}.

We also write a� b := (a⊗ b+ b⊗ a)/2 for the symmetrised tensor product.

In this thesis we always assume that Ω ⊂ Rd is an open bounded Lipschitz

domain, unless stated otherwise.

We write Lp(Ω), Lp(Ω;X), Lploc(Ω), etc. for the Lebesgue spaces and Wp,q(Ω),

Wp,q(Ω;X), Wp,q
g (Ω), etc. for the Sobolev spaces with suitable exponents.

2.2 Measure theory

We write B(X) for the Borel σ-algebra on a topological space X. The d-

dimensional Lebesgue measure is denoted by L d and for the L d-measurable

set A ⊆ Rd we occasionally write |A| instead of L d(A).

13



The cone of (finite) Radon measures is denoted by M+(Rd) and its subspace

of probability measures is denoted by M1(Rd). The following theorem provides

a simple criterion for a set function to be a Radon measure (for the proof see

[4, Theorem 1.53]).

Theorem 2.1 (De Giorgi-Letta). Let X be a metric space and let U(X)

denote the set of open subsets of X. Let µ : U(X)→ [0,∞] be a set function

such that

1. µ(∅) = 0;

2. (monotonicity) for A,B ∈ U(X) if A ⊂ B then µ(A) ≤ µ(B);

3. (subadditivity) for A,B ∈ U(X) it holds that µ(A ∪B) ≤ µ(A) + µ(B);

4. (superadditivity) for A,B ∈ U(X) with A∩B = ∅ it holds that µ(A∪B) ≥

µ(A) + µ(B);

5. (inner regularity) µ(A) = sup {µ(B) : B ∈ U(X), B b A}.

Then, the extension of µ to every B ⊂ X defined by

µ(B) := inf {µ(A) : A ∈ U(X), A ⊃ B}

is an outer measure. In particular, the restriction of µ to Borel σ-algebra is a

positive measure.

Let µ be a positive Radon measure in an open set Ω ⊂ Rd and let k ≥ 0.

We define the upper k-density of µ at x ∈ Ω as

Θ∗k(µ, x) := lim sup
r↓0

µ(B(x, r))
ωkrk

,

where ωk := πk/2Γ(1 + k/2) is the Lebesgue measure of the unit ball in Rk.

Similarly, one defines the lower k-density, by replacing the upper limit with the

lower limit.

The following result (see [4, Theorem 2.56] for the proof) asserts that the

upper k-density can be used to estimate the measure µ from below by the

k-dimensional Hausdorff measure H k.
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Proposition 2.2. Let Ω ⊂ Rd be an open set and let µ be a positive Radon

measure in Ω. Then, for any 0 < t < ∞ and any Borel set B ⊂ Ω the

implication

Θ∗k(µ, x) ≥ t ∀ x ∈ B =⇒ µ ≥ tH k B

holds.

We also use vector-valued Borel measures µ : B(Rd) → RN , which are

σ-additive set functions with µ(∅) = 0. The space of all such vector measures

is denoted by M(Rd;RN). The space of local vector measures is denoted by

Mloc(Rd;RN ). For a vector measure µ ∈ M(Rd;RN ) we define its total variation

measure |µ| ∈ M+(Rd) by

|µ|(S) := sup

∑
k∈N
|µ(Sk)| : S =

⋃
k∈N

Sk, {Sk} is a Borel partition of S

 .
The restriction of a measure µ ∈ Mloc(Rd;RN) to a Borel set B ∈ B(Rd) is

defined as µ B(S) := µ(B∩S) for all relatively compact Borel sets S ∈ B(Rd).

For a positive measure µ on a locally compact separable metric space X,

the support of µ, in symbols suppµ, is the closed set of all points x ∈ X such

that µ(U) > 0 for every neighbourhood U of x. For a vector measure ν we

define its support to be the support of its total variation measure |ν|.

Theorem 2.3 (Besicovitch differentiation theorem). Let µ ∈ M(Rd;RN )

be a vector-valued Radon measure and let ν ∈ M+(Rd) be a positive Radon

measure. Then for ν-a.e. x0 ∈ Rd in the support of ν, the limit

dµ
d ν (x0) := lim

r↓0

µ(B(x0, r))
ν(B(x0, r))

exists and is called the Radon-Nikodym derivative of µ with respect to ν.

Moreover, we have the Lebesgue decomposition of µ = dµ
d ν ν + µs, where

µs = µ E is singular with respect to ν and

E = (Rd \ supp ν) ∪
{
x ∈ supp ν : lim

r↓0

|µ|(B(x, r))
ν(B(x, r)) =∞

}
.

15



For the proof, see Theorem 2.22 in [4]. See also Theorem 5.52 in [4] for a

more general version, where a ball B(x0, r) can be replaced with a set x0 + rC

for any open convex set C ⊂ Rd containing the origin.

2.3 Convexity

Various notions of convexity play a central role in the calculus of variations,

as they affect the statement of necessary and sufficient conditions for many

minimisation problems. We briefly recall definitions and basic properties of

the two weaker notions of convexity. These convexity concepts are effectively

symmetric counterparts of the usual quasiconvexity in the sense of [31] and

rank-one convexity.

Definition 2.4. Let f : Rd×d
sym → R be a locally bounded Borel function. We

call f symmetric-quasiconvex, provided that for all bounded Lipschitz domains

ω ⊂ Rd, all test functions ψ ∈ W1,∞
0 (ω;Rd) and all matrices A ∈ Rd×d

sym the

inequality

f(A) ≤ −
∫
ω
f(A+ Eψ(y)) d y (2.1)

holds.

If the function f additionally satisfies an asymptotic growth condition of

the form |f(A)| ≤ C(1 + |A|p), then (2.1) holds for ψ ∈ W1,p
0 (ω;Rd) (cf. [35,

Lemma 5.2(ii)]).

Definition 2.5. Let f : Rd×d
sym → R be a Borel function. Then, the symmetric-

quasiconvex envelope SQf : Rd×d
sym → R ∪ {−∞} is a function defined as

SQf(A) := inf
{
−
∫
ω
f(A+ Eψ(y)) d y : ψ ∈W1,∞

0 (ω;Rd)
}
. (2.2)

Remark 2.6.

1. By the Vitali covering argument one can show that the inequality (2.1)

and the formula (2.2) are independent of the choice of the domain ω (cf.

[35, Lemma 5.2(i)]). See also Proposition 5.11 in [15] for a different proof.
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2. For a non-negative continuous function f with p-growth, 1 ≤ p <∞, the

symmetric-quasiconvex envelope SQf is symmetric-quasiconvex and also

has p-growth (see [35, Lemma 7.1]).

3. For a function f as in (2), the symmetric-quasiconvex envelope of f can

be equivalently expressed as the greatest symmetric-quasiconvex function,

no larger than f , i.e.

SQf(A) = sup {g(A) : g is symmetric-quasiconvex and g ≤ f} .

Example 2.7. Let dist(e, S) := inf {|x− e| : x ∈ S}. A non-trivial example

of a symmetric-quasiconvex function which is not convex is the map

Rd×d
sym 3 A 7→ SQ (dist(A, {F,−F})p) , 1 ≤ p < 2,

where F 6= a� b for any a, b ∈ Rd. Indeed, it is clear that the distance function

dist(·, {F,−F})p is non-negative, continuous and with p-growth. Hence, by

Remark 2.6(2), the function SQ (dist(·, {F,−F})p) is symmetric-quasiconvex.

It can be shown that this function is not convex at the zero matrix (see [35,

Lemma 7.3]).

Definition 2.8. Let f : Rd×d
sym → R be a locally bounded Borel function. We

call f symmetric rank-one convex, if

R 3 t 7→ f(A+ ta� b),

is convex for all A ∈ Rd×d
sym and a, b ∈ Rd.

Remark 2.9.

1. As for the quasiconvexity and the rank-one convexity, it can be shown,

that symmetric-quasiconvexity implies symmetric rank-one convexity.

More precisely, by the one-directional oscillations argument, similar to

the one in the proof of Proposition 5.3 in [35], one can prove that for a

symmetric-quasiconvex function f : Rd×d
sym → R the inequality

f(θA+ (1− θ)B) ≤ θf(A) + (1− θ)f(B)
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holds for A,B ∈ Rd×d
sym with B−A = a�b for some a, b ∈ Rd and θ ∈ [0, 1].

This is equivalent to f being symmetric rank-one convex.

2. Every symmetric rank-one convex function f is (locally) Lipschitz con-

tinuous. If f additionally satisfies p-growth condition (with a constant

M > 0), 1 ≤ p <∞, then the inequality

|f(A)− f(B)| ≤ C(1 + |A|p−1 + |B|p−1)|A−B|, A,B ∈ Rd×d
sym

holds with a constant C = C(d,M) > 0. In particular for p = 1 we have

a global Lipschitz continuity of such f . The proof of these assertions is

contained in [35, Lemma 5.6].

Recall that a function f : RN → R is called positively 1-homogeneous, if for

all A ∈ RN and all t ≥ 0 the equality

f(tA) = tf(A)

holds.

The following convexity result for positively 1-homogeneous functions in

conjunction with the BD-analogue of Alberti’s rank-one theorem (Theorem 2.26)

plays a vital role in the study of relaxations in chapter 4.

Theorem 2.10 (Kirchheim-Kristensen). Let C be an open convex cone

in a normed finite dimensional real vector space V, and let D be a cone of

directions in V such that D spans V.

If f : C → R is D-convex (i.e. its restrictions to line segments in C in

directions of D are convex) and positively 1-homogeneous, then f is convex at

each point of C ∩ D.

More precisely, and in view of homogeneity, for each x0 ∈ C ∩D there exists

a linear function ` : V → R satisfying `(x0) = f(x0) and f ≥ ` on C.

For the proof we refer to [24]. We also record the following simple fact.
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Proposition 2.11. The set of symmetric and deviatoric matrices SD(d) is

spanned by the subset

S :=
{
a� b : a, b ∈ Rd, a · b = 0

}
.

Proof. It is elementary to see that basis for SD(d) consists of matrices (ei +

ei+1)� (ei − ei+1) for i = 1, . . . , d− 1 and ei � ej for i 6= j. �

We draw the following important conclusion from Theorem 2.10 and Propo-

sition 2.11.

Corollary 2.12. A symmetric rank-one convex and positively 1-homogeneous

function f : SD(d) → R is convex at each point of the symmetric rank-one

cone S.

2.4 Abstract relaxation

In this section we introduce the concept of the relaxation of functionals in an

abstract topological space equipped with a metrizable topology.

As a motivating example, suppose that we want to solve a minimisation

problem

min
{∫

Ω
f(x, u(x),∇u(x)) dx : u ∈W1,1(Ω;Rm)

}
, (2.3)

where Ω ⊂ Rd is a Lipschitz domain and the continuous integrand f : Ω ×

Rm × Rm×d → R satisfies linear growth bounds

m|A| ≤ f(x, z, A) ≤M(1 + |A|)

for all (x, z, A) ∈ Ω× Rm × Rm×d and some positive constants 0 < m ≤M . It

turns out that the direct method of the calculus of variations does not provide

a solution to the problem (2.3). This is due to the fact that the Sobolev space

W1,1 is not reflexive, and thus one cannot infer (weak) relative compactness of

minimising sequences from boundedness.

However in this case, due to the bounds on the integrand f , one can see that

a minimising sequence converges weakly* to a function of a bounded variation
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(cf. [4, Proposition 3.13]). This suggests that one should seek some form of

relaxation of the functional F , extended by +∞ beyond W1,1(Ω;Rm), i.e.

F∞[u] :=


∫

Ω
f(x, u(x),∇u(x)) dx for u ∈W1,1(Ω;Rm)

+∞ for u ∈ (BV \W1,1)(Ω;Rm)

to a functional F∗ which is lower semicontinuous with respect to the weak*

topology of BV(Ω;Rm) and such that the equality of infima holds, i.e.

inf
W1,1
F = min

BV
F∗.

Below we present the basic theory of an abstract relaxation, which provides

these features. The remainder of this section is based on [8, Chapter 11].

Let (X, d) be a metrizable topological space and letF : X → R∪{+∞} be an

extended real-valued functional. We define the relaxation F∗ : X → R∪ {+∞}

as

F∗[x] := inf
{

lim inf
j→∞

F [xj] : (xj) ⊂ X, xj  x as j →∞
}
,

where the convergence xj  x is understood with respect to the metric d.

We shall prove in Proposition 2.15 that the relaxation F∗ is lower semicon-

tinuous with respect to the convergence ‘ ’, that is, the inequality

F∗[x] ≤ lim inf
j→∞

F∗[xj] (2.4)

holds for any sequence xj  x. Note, that this is not immediately clear from the

definition of F∗, since we only have the inequality F∗[x] ≤ lim infj→∞F [xj ] for

xj  x and to obtain (2.4) one needs to use a suitable diagonal argument, see

Lemma 2.13 below. Moreover, we prove that the relaxation F∗ is the greatest

lower semicontinuous functional no larger than F . Such a functional is often

called a lower semicontinuous envelope of F .

Lemma 2.13 (Diagonalisation lemma). Let (ak,l)k,l ⊂ X be a doubly-

indexed sequence in a first countable topological space X such that

1. lim
l→∞

ak,l = ak,

2. lim
k→∞

ak = a.
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Then, there exists a non-decreasing map l 7→ k(l), such that

lim
l→∞

ak(l),l = a.

The proof of Lemma 2.13 can be found in [7]. We begin with the following

technical lemma.

Lemma 2.14 (Recovery sequence). Let x ∈ X. Then, there exists a

sequence (xj) ⊂ X such that xj  x and F∗[x] = lim
j→∞
F [xj].

Proof. Fix arbitrary x ∈ X and k ∈ N. By the definition of F∗, there exists a

sequence (x(k)
j )j such that x(k)

j  x as j →∞ and

F∗[x] ≤ lim inf
j→∞

F [x(k)
j ] < F∗[x] + 1

k
.

Let σk : N→ N be an increasing map, which may depend on k, such that

lim inf
j→∞

F [x(k)
j ] = lim

j→∞
F [x(k)

σk(j)].

We thus have

lim
k→∞

lim
j→∞
F [x(k)

σk(j)] = F∗[x].

By Lemma 2.13, applied to the sequence (x(k)
σk(j),F [x(k)

σk(j)])k,j and the first

countable space X×(R∪{+∞}), we can choose a non-decreasing map j 7→ k(j)

such that x(k(j))
σk(j)(j)  x and

lim
j→∞
F [x(k(j))

σk(j)(j)] = F∗[x].

Therefore, the desired recovery sequence is given by xj := x
(k(j))
σk(j)(j). �

Proposition 2.15. The relaxation F∗ is the greatest lower semicontinuous

functional less than F .

Proof. Note that for an arbitrary x ∈ X, taking a constant sequence xj = x

for all j ∈ N in the definition of F∗ yields the inequality F∗[x] ≤ F [x].

We now prove that F∗ is lower semicontinuous. Let (xj)j ⊂ X be a sequence

such that xj  x for some x ∈ X. Let (xk)k := (xjk)k be a subsequence of
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(xj)j such that

lim
k→∞
F∗[xk] = lim inf

j→∞
F∗[xj].

By Lemma 2.14 there exists a recovery sequence (y(l)
k )l ⊂ X such that y(l)

k  xk

for each k ∈ N and such that

F∗[xk] = lim
l→∞
F [y(l)

k ],

hence

lim inf
j→∞

F∗[xj] = lim
k→∞
F∗[xk] = lim

k→∞
lim
l→∞
F [y(l)

k ].

Since

lim
k→∞

lim
l→∞

y
(l)
k = lim

k→∞
xk = x,

by Lemma 2.13 applied to the doubly-indexed sequence (y(l)
k ,F [y(l)

k ])k,l, there

exists a sequence (kl)l such that y(l)
kl
 x as l→∞ and

lim
l→∞
F [y(l)

kl
] = lim inf

j→∞
F∗[xj].

We have

lim inf
j→∞

F∗[xj] = lim
l→∞
F [y(l)

kl
]

≥ inf
{

lim inf
j→∞

F [xj] : (xj)j ⊂ X, xj  x
}

= F∗[x],

which proves the lower semicontinuity of the relaxation F∗.

It remains to prove that if G : X → R ∪ {+∞} is an arbitrary lower

semicontinuous functional such that G ≤ F , then the inequality G ≤ F∗ holds.

This proves that F∗ is the greatest such functional.

Let G be a functional as above and let xj  x in X. Since G is lower

semicontinuous and G ≤ F it holds that

G[x] ≤ lim inf
j→∞

G[xj] ≤ lim inf
j→∞

F [xj].

Taking infimum over all sequences xj  x yields the inequality G[x] ≤ F∗[x],

which ends the proof. �

We end this section with the proof of the following relaxation principle.
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Proposition 2.16. Let F : X → R ∪ {+∞} be a proper, i.e. there exists

x ∈ X such that F [x] <∞, extended real-valued function. Suppose that there

exists a minimising sequence (xj) ⊂ X, i.e. F [xj] → infX F and (xj) is

relatively compact in X. Then

1. infX F = minX F∗,

2. every cluster point x ∈ X of the sequence (xj) is a solution to the min-

imisation problem minX F∗, that is x ∈ arg minX F∗.

Proof. Let x ∈ X be a cluster point of (xj) and let (xjk) be a subsequence of

(xj) such that xjk  x as k →∞. By the definition of F∗ we have

F∗[x] ≤ lim inf
j→∞

F [xj] = inf
X
F .

On the other hand, by Proposition 2.14, for any y ∈ X we can find a recovery

sequence (yj) such that yj  y and

F∗[y] = lim
j→∞
F [yj].

Therefore we obtain

F∗[x] ≤ inf
X
F ≤ F∗[y]

for any y ∈ X, hence x ∈ arg minX F∗. Choosing y = x we conclude that

F∗[x] = minX F∗ = infX F . �

2.5 Function spaces

In this section we recall definitions and basic properties of function spaces used

throughout this thesis.

Functions of bounded deformation

In the applications coming from plasticity theory, see for instance [36, 37, 39],

one is often concerned with the class of functions

LD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈ L1(Ω;Rd×d

sym)
}
,
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where Eu := (∇u + ∇uT )/2 is the distributional symmetrised gradient of a

displacement u : Ω→ Rd. The space LD(Ω) is a Banach space when endowed

with the norm

‖u‖LD := ‖u‖1 + ‖Eu‖1.

However, in general we cannot infer weak relative compactness from bound-

edness, since LD(Ω) is not reflexive. If a bounded sequence in LD(Ω) has

equiintegrable symmetric gradients, then in virtue of the Dunford-Pettis the-

orem, we could infer the weak relative compactness. The equiintegrability,

however, is rare in applications, so we need to consider a larger space instead.

Therefore, we define the space BD(Ω) of functions of bounded deformation [2,

36, 37, 39] as the space of all functions u ∈ L1(Ω;Rd) such that the distributional

symmetrised derivative Eu := (Du+DuT )/2 is representable as a finite Radon

measure Eu ∈ M(Ω;Rd×d
sym), i.e.

BD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈ M(Ω;Rd×d

sym)
}
.

The space BD(Ω) is a Banach space when endowed with the norm

‖u‖BD := ‖u‖1 + |Eu|(Ω),

but the norm topology is too strong for applications in the theory of elasto-

plasticity, hence we usually work in weaker topologies. We distinguish three

such topologies.

Definition 2.17 (Weak* convergence). We say that (uh) ⊂ BD(Ω) con-

verges weakly* to u in BD(Ω) if uh → u strongly in L1(Ω;Rd) and Euh ∗⇁ Eu

weakly* in M(Ω;Rd×d
sym).

The topology of the weak* convergence is useful, due to the following

compactness property (cf. [38]).

Theorem 2.18 (Compactness). Let Ω ⊂ Rd be a bounded Lipschitz domain.

Let (uh) ⊂ BD(Ω) be a uniformly norm-bounded sequence. Then, there exists a

subsequence converging weakly* to some u ∈ BD(Ω).
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We have the following simple fact.

Lemma 2.19. Let (uh) ⊂ BD(Ω) be a sequence such that uh → u strongly in

L1(Ω;Rd) and (uh) is uniformly norm-bounded in BD(Ω). Then, (uh) converges

weakly* to u in BD(Ω).

Proof. Let (uh) be bounded in BD(Ω) and uh → u strongly in L1(Ω;Rd). We

need to establish the convergence Euh ∗⇁ Eu weakly* in M(Ω;Rd×d
sym).

From the boundedness of (uh) in BD(Ω) we have in particular that (Euh)

is bounded in M(Ω;Rd×d
sym). Therefore, up to a (not relabelled) subsequence we

have Euh ∗⇁ µ for some measure µ ∈ M(Ω;Rd×d
sym). For Φ ∈ C1

c(Ω;Rd×d
sym) we

have
d∑

i,j=1

∫
Ω
Φji dµji = lim

h→∞

d∑
i,j=1

∫
Ω
Φji d(Euh)ji

= − lim
h→∞

d∑
j=1

∫
Ω

divΦj ujh dx

= −
d∑
j=1

∫
Ω

divΦj uj dx.

The proof is finished. �

Remark 2.20. The weak* topology is metrisable on bounded sets of BD(Ω)

(see [13] for details).

Definition 2.21 (Strict convergence). A sequence (uh) ⊂ BD(Ω) con-

verges strictly to u in BD(Ω) if uh → u strongly in L1(Ω;Rd), Euh ∗⇁ Eu

weakly* in M(Ω;Rd×d
sym) and |Euh|(Ω)→ |Eu|(Ω).

For a measure µ ∈ M(Rd;Rd) with the Lebesgue decomposition

µ = dµ
d L d

L d + µs

we define a Borel measure 〈µ〉 : B(Rd)→ [0,∞] by

〈µ〉(A) :=
∫
A

√√√√1 +
∣∣∣∣∣ dµ
d L d

∣∣∣∣∣
2

dx+ |µs|(A).
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Definition 2.22 (Area-strict convergence). A sequence (uh) ⊂ BD(Ω)

converges area-strictly to u in BD(Ω) if uh → u strictly and 〈Euh〉(Ω) →

〈Eu〉(Ω).

The last type of convergence is particularly important, as it allows approxi-

mation of functions in BD(Ω) by smooth functions (which is not possible in

the norm topology). The proof of this density result follows along the same

lines as the proof of Lemma 11.1 in [35].

Remark 2.23. Clearly, the weak* convergence is weaker than the strict

convergence, which in turn is weaker than the area-strict convergence.

In order to see that the opposite implications do not hold we consider

sequences (uj), (vj) ⊂ BD((0, 2π)) defined by

uj(x) := 1
j

sin(jx) and vj(x) := x+ uj(x), x ∈ (0, 2π).

Then, we can see that uj ∗⇁ 0 weakly* in BD((0, 2π)), but not strictly, as

|Euj|((0, 2π)) = 4 for each j. We can also see that vj converges to x weakly*

and strictly, but not area-strictly, since the integrand
√

1 + |A|2 is strictly

convex away from 0.

According to the Lebesgue decomposition theorem, we split the measure

Eu into

Eu = EuL d + Esu,

where Eu := dEu
d L d ∈ L1(Ω,L d;Rd×d

sym) is the Radon-Nikodym derivative of Eu

with respect to the Lebesgue measure L d (called the approximate symmetrised

gradient) and Esu ⊥ L d is the singular part of Eu.

We have the following trace theorem in BD(Ω) (cf. [9, 39]).

Theorem 2.24. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then, there

exists a unique linear continuous map γ : BD(Ω) → L1(∂Ω,H d−1 ∂Ω;Rd),

called the trace such that

1. for u ∈ BD(Ω) ∩ C(Ω;Rd) it holds that γ(u) = u|∂Ω,
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2. for u ∈ BD(Ω) and ϕ ∈ C1(Rd) the integration-by-parts formula∫
Ω
u�∇ϕ dx = −

∫
Ω
ϕ dEu+

∫
∂Ω
ϕγ(u)� n d H d−1

holds. Here n : ∂Ω→ Sd−1 denotes an outward pointing unit normal to

the boundary ∂Ω, and H d−1 denotes the (d− 1)-dimensional Hausdorff

measure.

Moreover, the trace γ is continuous with respect to the topology of strict con-

vergence in BD(Ω).

We usually write u|∂Ω instead of γ(u) for the trace of u ∈ BD(Ω).

Theorem 2.25 (Poincaré inequality). For every u ∈ BD(Ω) there exists

a rigid deformation r, i.e. a skew-symmetric affine map r : Rd → Rd of the

form r(x) = Sx+ b, where S ∈ Rd×d
skew and b ∈ Rd, such that

‖u+ r‖Ld/(d−1) ≤ C|Eu|(Ω), (2.5)

where a constant C = C(Ω) > 0 depends only on the domain Ω.

For the proof see [39, Proposition 2.4] or [38, Remark II.2.5]. Moreover, if

u|∂Ω = 0, then (2.5) simplifies to

‖u‖Ld/(d−1) ≤ C|Eu|(Ω). (2.6)

The following BD-analogue of Alberti’s rank-one theorem in BV (cf. [1, 29])

is proved in [16].

Theorem 2.26 (DePhilippis-Rindler). Let Ω ⊂ Rd be an open set and let

u ∈ BD(Ω). Then, for |Esu|-a.e. x ∈ Ω, there exist a(x), b(x) ∈ Rd \ {0} such

that
dEsu

d |Esu|
(x) = a(x)� b(x).

For every u ∈ L1(Ω;Rd) there exists an L d-negligible set Su ⊂ Ω, called

the Lebesgue discontinuity set of u, such that for every x0 ∈ Ω \ Su there exists
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ũ(x0) ∈ Rd for which

lim
r↓0

1
rd

∫
B(x0,r)

|u(x)− ũ(x0)| dx = 0.

The function ũ : Ω \ Su → Rd is called the precise representative of u.

Every function u ∈ BD(Ω) is approximately differentiable at L d-almost

every x0 ∈ Ω \ Su, i.e.

lim
r↓0

1
rd

∫
B(x0,r)

|u(x)− ũ(x0)−∇u(x0)(x− x0)|
r

dx = 0. (2.7)

For the proof, see Theorem 7.4 in [2].

Temam-Strang space

For the theory of elasto-plasticity in the geometrically linear setting the class

of functions defined as

LU(Ω) :=
{
u ∈ LD(Ω) : div u ∈ L2(Ω)

}
becomes a natural choice [14, 21, 23, 38]. Unfortunately, the space LU(Ω)

inherits the poor compactness property of LD(Ω) and again, it is reasonable

to look for a larger space which could be used instead of LU(Ω) to overcome

this issue. Therefore, we define the Temam-Strang space U(Ω) as a subspace of

functions of bounded deformation BD(Ω):

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}
.

The space U(Ω) is usually endowed with the norm

‖u‖U := ‖u‖BD + ‖div u‖2,

which turns it into a Banach space.

Remark 2.27. For u ∈ U(Ω) we have that devEsu = Esu, since the trace

part of Eu is absolutely continuous with respect to the Lebesgue measure L d.

In conjunction with Theorem 2.26, this implies that for u ∈ U(Ω) the polar

of the measure Esu is a symmetric tensor product of two non-zero orthogonal

vectors.
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Similarly to the space BD, one usually works in weaker topologies than the

norm topology. We distinguish three such topologies.

Definition 2.28 (Weak* convergence). We say that (uh) ⊂ U(Ω) con-

verges weakly* to u in U(Ω) if uh → u strongly in L1(Ω;Rd), Euh ∗⇁ Eu

weakly* in M(Ω;Rd×d
sym) and div uh ⇀ div u weakly in L2(Ω).

We have an analogue of Lemma 2.19 for the Temam-Strang space.

Lemma 2.29. Let (uh) ⊂ U(Ω) be a sequence such that uh → u strongly in

L1(Ω;Rd) and (uh) is uniformly norm-bounded in U(Ω). Then, (uh) converges

weakly* to u in U(Ω).

The proof follows along the same lines, so we omit it here.

Definition 2.30 (Strict convergence). We say that a sequence (uh) ⊂ U(Ω)

converges strictly to u in U(Ω) if uh → u strongly in L1(Ω;Rd), Euh ∗⇁ Eu

weakly* in M(Ω;Rd×d
sym), |Euh|(Ω) → |Eu|(Ω) and div uh → div u strongly in

L2(Ω).

Definition 2.31 (Area-strict convergence). We say that (uh) ⊂ U(Ω)

converges area-strictly to u in U(Ω) if uh → u strictly, 〈Euh〉(Ω)→ 〈Eu〉(Ω)

and 〈devEuh〉(Ω)→ 〈devEu〉(Ω).

The following theorem was proved by Jesenko and Schmidt [23]:

Theorem 2.32. Let f : Ω×Rd×d
sym → [0,∞) be a continuous function satisfying

the following conditions:

1. there exist constants 0 < m ≤M such that for all (x,A) ∈ Ω× Rd×d
sym the

growth estimates

m((trA)2 + | devA|) ≤ f(x,A) ≤M(1 + (trA)2 + | devA|) (2.8)

hold;

2. f(x, ·) is symmetric rank-one convex;

29



3. for every fixed D ∈ SD(d) the map x 7→ f#
dev(x,D) is continuous; here

f#
dev is the recession function of the restriction fdev := f |Ω×SD(d) defined

by

f#
dev(x,D) := lim sup

D′→D
s→∞

fdev(x, sD′)
s

. (2.9)

Then, the functional

F [u,Ω] :=
∫

Ω
f(x, Eu(x)) d x, u ∈ LU(Ω)

extends continuously, with respect to the area-strict convergence in U(Ω), to the

functional

F [u,Ω] :=
∫

Ω
f(x, Eu(x)) d x+

∫
Ω
f#

dev

(
x,

dEsu

d |Esu|

)
d |Esu|, u ∈ U(Ω).

Remark 2.33. For u ∈ U(Ω) there exists a sequence (vh) ⊂ LU(Ω) ∩

C∞(Ω;Rd) such that vh → u area-strictly in U(Ω), see [8, Theorem 14.1.4]

(the proof is similar to the proof of Lemma 11.1 in [35], with the strong L2-

convergence of (div vh) being a consequence of the mollification). In virtue of

Theorem 2.32 we have that∫
Ω
f(x, Evh) d x→

∫
Ω
f(x, Eu) d x+

∫
Ω
f#

dev

(
x,

dEsu

d |Esu|

)
d |Esu|.
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Chapter 3

Linear growth functionals

In this chapter we study homogeneous integral functionals of the form:

F [u] :=
∫

Ω
f(Eu(x)) dx

with the linear isotropic growth bounds:

m|A| ≤ f(A) ≤M(1 + |A|)

for some constants 0 < m ≤M .

The function u : Ω→ Rd describes the displacement of a body that occupies

the region Ω ⊂ Rd and the functional F represents the total energy of the

deformation.

A physically relevant problem is to minimise the energy F in a suitable

class of deformations, subject to some boundary datum which represents the

density of external forces acting on the continuum. Mathematically, this can

be formulated as the following minimisation problem:

min {F [u] : u ∈ X, u = g on ∂Ω} , (3.1)

where X is some space of functions u : Ω→ Rd and g : ∂Ω→ Rd is a boundary

datum.

Ideally, we would like to study the minimisation problem (3.1), modelled

over the space X which consists of differentiable functions or at least is a

subspace of LD(Ω) defined in the previous chapter. This, however, is not
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realistic, since in problems coming from the elastoplasticity, we often encounter

discontinuities across the so-called slippage surfaces. No differentiable (or even

Sobolev) function can account for such behaviour.

For the most part of this chapter, we investigate the minimisation problem,

for which the displacement field is not constrained by the boundary datum. It

is, however, possible to account for the Dirichlet boundary condition through

the so-called penalisation term (see Remark 3.14 and Theorem 3.15).

3.1 Recession function

In the sequel we often need to ‘encode’ the information about the asymptotic

behaviour of an integrand f . To this end, we define the (strong) recession

function f∞ : RN → R as:

f∞(A) := lim
A′→A
s→∞

f(sA′)
s

, A ∈ RN (3.2)

if the limit exists and is finite. It is straightforward to see that f∞ is positively

1-homogeneous, i.e.

f∞(tA) = tf∞(A), t > 0, A ∈ RN .

Moreover, for a Lipschitz function f the definition of f∞ reduces to the following:

f∞(A) = lim
s→∞

f(sA)
s

, A ∈ RN . (3.3)

Indeed, by the Lipschitz continuity of f we obtain:

f∞(A) ≤ lim
A′→A
s→∞

f(sA) + sL|A′ − A|
s

= lim
s→∞

f(sA)
s

and similarly we estimate from below to conclude.

The existence of the strong recession function f∞ is a subtle matter. One

can easily construct a continuous function f with linear growth at infinity, for

which

lim inf
A′→A
s→∞

f(sA′)
s

< lim sup
A′→A
s→∞

f(sA′)
s

.
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Indeed, define f(A) := |A| sinA for A ∈ R. Then, for A = ±1 we have

lim inf
s→∞

f(s)
s

= −1 < 1 = lim sup
s→∞

f(s)
s
.

It turns out that even in the presence of quasiconvexity the existence of f∞ is

not guaranteed (cf. [32, Theorem 2]).

Nevertheless, we can always define weaker recession functions f# and f#,

where the limit in (3.2) is replaced by the upper limit and lower limit respectively

and we call f# and f# the upper and lower recession function respectively. It

is also clear that the positive 1-homogeneity property and the simplification

for Lipschitz functions carry over to f# and f#.

For a (symmetric) rank-one convex function f : Rd×d
sym → R with linear growth

at infinity, the upper recession function f# agrees with the lower recession

function f# on matrices from (symmetric) rank-one cone. Indeed, let A = a� b

for some vectors a, b ∈ Rd. Then we have

f(sA)
s

= f(sA)− f(0)
s

+ f(0)
s

=: gs(A) + f(0)
s
.

Clearly, the second term disappears as s → ∞. For the first term, we note

that the (symmetric) rank-one convexity of f implies that gs(A) ≥ gθs(A) for

θ ∈ (0, 1), so the map s 7→ gs(A) is non-decreasing and we have a pointwise

limit

gs(A)↗ sup
t>0

gt(A) as s→∞.

Hence,

lim sup
s→∞

f(sA)
s

= lim inf
s→∞

f(sA)
s

= sup
t>0

gt(A).

Moreover, for a (symmetric-)quasiconvex function f , by Fatou’s lemma, the

upper recession function f# is also (symmetric-)quasiconvex. Unfortunately,

we cannot infer this property for the lower recession function.

3.2 Lower semicontinuity

In this section we prove the following lower semicontinuity result.
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Theorem 3.1. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,+∞) be a continuous function satisfying the following conditions:

1. there exist constants 0 < m ≤M such that for all A ∈ Rd×d
sym the inequality

m|A| ≤ f(A) ≤M(1 + |A|)

holds;

2. f is symmetric-quasiconvex.

Then, the functional

F [u] :=
∫

Ω
f(Eu(x)) d x+

∫
Ω
f#

(
dEsu

d |Esu|
(x)
)

d |Esu|(x), u ∈ BD(Ω)

is weakly* lower semicontinuous in BD(Ω).

Remark 3.2.

1. Theorem 3.1 is an immediate corollary of Theorem 3.3 below, thanks to

the properties of the relaxation outlined in Chapter 2.

2. It is possible to relax the coercivity assumption on the integrand f , and

assume only that f ≥ 0. Then, thanks to Theorem 2.26, the proof of

Theorem 3.1 follows along the same lines as the proof of Theorem 11.7 in

[35]. Nevertheless, the coercivity assumption is important when one is

interested in minimisation problems, so we keep it here.

3. We do not assume the existence of the strong recession function f∞ in

Theorem 3.1. This is the main novelty and a significant improvement

over the previously available weak* lower semicontinuity result in BD for

homogeneous functionals [33]. See also [6].

4. We also remark that a more general non-homogeneous version of Theo-

rem 3.1 is available in [33], however the result presented there is proved

using the theory of generalised Young measures, for which the existence

of f∞ is fundamental.
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Theorem 3.3. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,+∞) be a continuous function satisfying the following conditions:

1. there exist constants 0 < m ≤M such that for all A ∈ Rd×d
sym the inequality

m|A| ≤ f(A) ≤M(1 + |A|) (3.4)

holds;

2. f is symmetric-quasiconvex.

Then, the relaxation of the extended real-valued functional

F∞[u,Ω] :=


∫

Ω
f(Eu(x)) d x for u ∈ LD(Ω)

+∞ for u ∈ BD(Ω) \ LD(Ω),

with respect to the weak* topology in BD(Ω) is given by

F∗[u,Ω] =
∫

Ω
f(Eu(x)) d x+

∫
Ω
f#

(
dEsu

d |Esu|
(x)
)

d |Esu|(x), u ∈ BD(Ω).

In order to prove Theorem 3.3 we begin with a series of lemmas.

Lemma 3.4. Let f : Rd×d
sym → [0,+∞) satisfy conditions (1) and (2) of

Theorem 3.3, let A ∈ Rd×d
sym and let (uh) ⊂ BD(Ω) be a sequence such that

uh
∗⇁ Ax weakly* in BD(Ω). Then,

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x. (3.5)

Proof. Without loss of generality assume that (uh) ⊂ LD(Ω)∩C∞(Ω;Rd). The

proof is divided into two steps. In the first step we prove (3.5) for a sequence

(uh) which has linear boundary values. Then, in the second step we prove,

using a cut-off argument, that the assumption of the linear boundary values

can be dropped.

Step 1. Suppose that uh(x) − Ax is compactly supported inside Ω for all

h ∈ N and take ψh(x) := uh(x)−Ax. Clearly ψh ∈W1,∞
0 (Ω;Rd). Then, by the

symmetric-quasiconvexity of f , we obtain

|Ω|f(A) ≤
∫

Ω
f(A+ Eψh(y)) d y =

∫
Ω
f(Euh(y)) d y
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for all h ∈ N. Therefore

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x.

Step 2. Let uh ∗⇁ Ax weakly* in BD(Ω). The argument below is due to

De Giorgi. Fix n ∈ N and ε > 0 and choose a Lipschitz subdomain Ω0 b Ω

such that |Ω \ Ω0| ≤ ε. Let R := dist(Ω0, ∂Ω) and for i = 1, . . . , n define sets

Ωi :=
{
x ∈ Ω : dist(x,Ω0) < iR

n

}
.

Now, choose cut-off functions ϕi ∈ C1
c(Ω; [0, 1]) such that

1Ωi−1 ≤ ϕi ≤ 1Ωi
and ‖∇ϕi‖∞ ≤

2n
R

and for x ∈ Ω define

u
(i)
h (x) := Ax+ ϕi(x)(uh(x)− Ax).

We have

Eu(i)
h (x) = A+ ϕi(x)(Euh(x)− A) +∇ϕi(x)� (uh(x)− Ax). (3.6)

Note that u(i)
h

∗⇁ Ax weakly* in BD(Ω) as h→∞ and u(i)
h |∂Ω = Ax for every

i = 1, . . . , n. We obtain∫
Ω
f(Eu(i)

h ) d x =
∫

Ωi−1
f(Euh) d x+

∫
Ωi\Ωi−1

f(Eu(i)
h ) d x+

∫
Ω\Ωi

f(A) d x

≤
∫

Ω
f(Euh) d x+

∫
Ωi\Ωi−1

f(Eu(i)
h ) d x+ |Ω \ Ω0|f(A)

≤
∫

Ω
f(Euh) d x+M

∫
Ωi\Ωi−1

|Eu(i)
h | dx+ |Ω \ Ω0|(M + f(A)).

We now estimate the middle integral on the right-hand side using (3.6):∫
Ωi\Ωi−1

|Eu(i)
h | dx

≤ |A| |Ωi \ Ωi−1|+
∫

Ωi\Ωi−1
|ϕi(x)| |Euh(x)− A| dx

+
∫

Ωi\Ωi−1
|∇ϕi(x)� (uh(x)− Ax)| dx

≤ |A| |Ω \ Ω0|+
∫

Ωi\Ωi−1
|Euh − A| dx

+
∫

Ωi\Ωi−1
|∇ϕi(x)� (uh(x)− Ax)| dx.
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Since the embedding BD(Ω) b Lq(Ω;Rd) is compact for 1 ≤ q < d/(d− 1),

in particular we have that uh → Ax strongly in Lq(Ω;Rd) for 1 < q < d/(d− 1).

Hence ∫
Ωi\Ωi−1

|∇ϕi(x)� (uh(x)− Ax)| dx

≤
∫

Ωi\Ωi−1
|∇ϕi(x)| |uh(x)− Ax| dx

≤ 2n
R

∫
Ω
|uh(x)− Ax|1Ωi\Ωi−1(x) d x

≤ 2n
R

(∫
Ω
|uh(x)− Ax|q dx

)1/q
|Ωi \ Ωi−1|1/q

′

≤ c1|Ωi \ Ωi−1|1/q
′

≤ c1|Ω \ Ω0|1/q
′
,

where 1/q + 1/q′ = 1 and c1 = c1(n,R, q) > 0 is a h-independent constant.

Combining the above estimates yields∫
Ω
f(Eu(i)

h ) d x ≤
∫

Ω
f(Euh) d x+M

∫
Ωi\Ωi−1

|Euh − A| dx

+ (M |A|+M + f(A))|Ω \ Ω0|+ c1M |Ω \ Ω0|1/q
′
.

By Step 1 we have

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Eu(i)

h ) d x

≤ lim inf
h→∞

[∫
Ω
f(Euh) d x+M

∫
Ωi\Ωi−1

|Euh − A| dx
]

+ (M |A|+M + f(A))|Ω \ Ω0|+ c1M |Ω \ Ω0|1/q
′
.

Summing up over i = 1, . . . , n, dividing by n, and using the superadditivity of

a lower limit as well as |Ω \ Ω0| ≤ ε yields

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x+ M

n
sup
h

∫
Ω
|Euh − A| dx

+ (M |A|+M + f(A))ε+ c1Mε1/q′ .

Letting n→∞ and ε ↓ 0 yields

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x. �
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Remark 3.5. Clearly, Lemma 3.4 also holds for affine limits.

We now investigate the relaxation F∗ of the functionalF∞, i.e. the functional

defined as

F∗[u,Ω] := inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ BD(Ω), uh ∗⇁ u in BD(Ω)
}
.

Since the topology of weak* convergence in BD(Ω) is metrizable on bounded

sets, it follows that the relaxation F∗ is lower semicontinuous with respect to

this topology (see Section 2.4 for details).

Proposition 3.6. The relaxation F∗ can be equivalently written as

G[u,Ω] := inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ LD(Ω) ∩ C∞(Ω;Rd),

uh
∗⇁ u in BD(Ω)

}
.

Proof. Clearly, it suffices to prove the inequality G ≤ F∗. Take arbitrary

sequence (uh) ⊂ BD(Ω) such that uh ∗⇁ u in BD(Ω). By a similar argument to

the one contained in the proof of Lemma 11.1 in [35], for each h ∈ N we can

find a sequence (v(k)
h )k ⊂ LD(Ω) ∩ C∞(Ω;Rd) such that v(k)

h → uh area-strictly

as k → ∞. We choose a subsequence (v(kh)
h )h such that v(kh)

h
∗⇁ u in BD(Ω)

and

F∞[v(kh)
h ,Ω] ≤ F∞[uh,Ω] + 1

h
.

Indeed, if uh ∈ BD(Ω) for all h ∈ N we have F∞[v(kh)
h ,Ω] ≤ +∞, whereas

if there exists h ∈ N such that uh ∈ LD(Ω), then the above inequality is a

consequence of the area-strict continuity of F∞.

Therefore, since (v(kh)
h )h is admissible in the definition of G, we obtain:

G[u,Ω] ≤ lim inf
h→∞

F∞[v(kh)
h ,Ω] ≤ lim inf

h→∞
F∞[uh,Ω].

Taking infimum over all sequences (uh) yields the desired inequality G ≤ F∗. �

In the remaining part of this chapter we will establish an integral represen-
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tation for F∗, that is

F∗[u,Ω] =
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|. (3.7)

More specifically, we will establish the upper and the lower estimate on the

relaxation F∗ by the right-hand side of (3.7). We begin with the upper estimate.

Let us denote by D(Rd×d
sym) a class of continuous functions f : Rd×d

sym → R

with a linear growth at infinity, i.e. |f(A)| ≤ C(1 + |A|) for some C > 0, and

for which the strong recession function

f∞(A) := lim
A′→A
s→∞

f(sA′)
s

exists. For such functions we have the following continuity result.

Theorem 3.7 (Reshetnyak). Let (µh) ⊂ M(Ω;Rd) be a sequence of measures

such that µh → µ area-strictly for some µ ∈ M(Ω;Rd). Then, for f ∈ D(Rd×d
sym)

it holds that
∫

Ω
f

(
dµh
d L d

)
dx+

∫
Ω
f∞

(
dµsh

d |µsh|

)
d |µsh|

→
∫

Ω
f

(
dµ

d L d

)
dx+

∫
Ω
f∞

(
dµs

d |µs|

)
d |µs|

as h→∞.

For the proof we refer to [28]. Furthermore, it turns out that the admissible

integrands f in Theorem 3.1 can be approximated by functions in D(Rd×d
sym) (cf.

[27, Lemma 2.2]).

Lemma 3.8 (Pointwise approximation). For every continuous function

f : Rd×d
sym → R with linear growth at infinity, there exists a decreasing sequence

(fk) ⊂ D(Rd×d
sym) such that

inf
k
fk = lim

k→∞
fk = f and inf

k
f∞k = lim

k→∞
f∞k = f#,

and the convergence is pointwise.

We are now ready to establish the upper bound.
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Lemma 3.9 (Upper estimate). For u ∈ BD(Ω) the inequality

F∗[u,Ω] ≤
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|.

holds.

Proof. Fix u ∈ BD(Ω). Then, there exists a sequence (uh) ⊂ LD(Ω)∩C∞(Ω;Rd)

such that uh → u area-strictly. Let (fk) ⊂ D(Rd×d
sym) be a sequence as in

Lemma 3.8. By Theorem 3.7 we have for each k ∈ N:

lim
h→∞

∫
Ω
fk(Euh) d x =

∫
Ω
fk(Eu) d x+

∫
Ω
f∞k

(
dEsu

d |Esu|

)
d |Esu|.

By the monotonicity of (fk) we obtain

lim sup
h→∞

∫
Ω
f(Euh) d x ≤

∫
Ω
fk(Eu) d x+

∫
Ω
f∞k

(
dEsu

d |Esu|

)
d |Esu|.

Since the area-strict convergence is stronger than the weak* convergence, by

the definition of F∗, it follows that

F∗[u,Ω] ≤ lim inf
h→∞

∫
Ω
f(Euh) d x ≤

∫
Ω
fk(Eu) d x+

∫
Ω
f∞k

(
dEsu

d |Esu|

)
d |Esu|.

By the monotone convergence theorem, letting k →∞ ends the proof. �

In order to prove the lower estimate, we first prove that for a given u ∈ BD(Ω)

the map V 7→ F∗[u, V ] is the restriction to the open subsets of Ω of some Radon

measure, which we still denote by F∗[u, ·]. Then, we decompose this measure

into the absolutely continuous and singular parts with respect to the Lebesgue

measure, i.e.

F∗[u, ·] = Fa∗ [u, ·] + F s∗ [u, ·], Fa∗ [u, ·]� L d Ω, F s∗ [u, ·] ⊥ L d Ω

and then prove that

Fa∗ [u,B] ≥
∫
B
f(Eu) d x and F s∗ [u,B] ≥

∫
B
f#

(
dEsu

d |Esu|

)
d |Esu|

for any Borel set B ⊂ Ω.

Lemma 3.10. For all u ∈ BD(Ω) the set function V 7→ F∗[u, V ] is a restric-

tion to the open subsets of Ω of a finite Radon measure.
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Proof. Fix u ∈ BD(Ω).

Step 1. Let A′, A′′, B be open subsets of Ω such that A′ b A′′. We first

prove that

F∗[u,A′ ∪B] ≤ F∗[u,A′′] + F∗[u,B]. (3.8)

Fix ε > 0. By the definition of relaxation we can find sequences (uεh) ⊂ LD(A′′)

and (vεh) ⊂ LD(B) such that uεh
∗⇁ u weakly* in BD(A′′), vεh

∗⇁ u weakly* in

BD(B),

F [uεh, A′′] ≤ F∗[u,A′′] + ε,

and

F [vεh, B] ≤ F∗[u,B] + ε.

Henceforth, we omit the dependence of sequences uh and vh on ε. For each

h ∈ N extend the functions uh and vh by zero outside A′′ and B, respectively.

Let

Cε := sup
h∈N

(∫
A′′

1 + |Euh| dx+
∫
B

1 + |Evh| dx
)
<∞.

Fix k ∈ N and an increasing family of sets

A′ = A0 b A1 b . . . b Ak b A′′.

For each i = 1, . . . , k define the cut-off function ϕi ∈ C∞c (Ai; [0, 1]) such that

ϕi ≡ 1 on Ai−1. Next, define functions

wh,i := ϕiuh + (1− ϕi)vh, h ∈ N, i = 1, . . . , k.

It is clear that wh,i ∈ LD(A′ ∪B). We have

F [wh,i, A′ ∪B] =
∫
A′∪B

f(Ewh,i) d x

=
∫

(A′∪B)∩Ai−1
f(Euh) d x+

∫
B\Ai

f(Evh) d x

+
∫
B∩Si

f(Ewh,i) d x,

where Si := Ai \ Ai−1 for i = 1, . . . , k. Hence

F [wh,i, A′ ∪B] ≤ F [uh, A′′] + F [vh, B] +
∫
B∩Si

f(Ewh,i) d x.
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The last integral can be estimated as follows:∫
B∩Si

f(Ewh,i) d x ≤M
∫
B∩Si

1 + |Ewh,i| dx

≤M
∫
B∩Si

1 + Ck|uh − vh|+ |Euh|+ |Evh| dx,

where Ck := sup{‖∇ϕi‖∞ : 1 ≤ i ≤ k}.

Next, for a fixed h ∈ N we can choose ih ∈ {1, . . . , k} such that∫
B∩Sih

1 + |Euh|+ |Evh| dx = min
`∈{1,...,k}

∫
B∩S`

1 + |Euh|+ |Evh| dx.

Then, we have∫
B∩Sih

1 + |Euh|+ |Evh| dx = 1
k

k∑
`=1

∫
B∩Sih

1 + |Euh|+ |Evh| dx

≤ 1
k

k∑
`=1

∫
B∩S`

1 + |Euh|+ |Evh| dx

≤ 1
k

∫
B∩(Ak\A0)

1 + |Euh|+ |Evh| dx

≤ Cε
k
.

Therefore, combining the above estimates yields∫
B∩Sih

f(Ewh,ih) d x ≤M
(
Cε
k

+ Ck‖uh − vh‖1

)
.

Hence

F [wh,ih , A′ ∪B] ≤ F [uh, A′′] + F [vh, B] +MCk‖uh − vh‖1 + MCε
k

≤ F∗[u,A′′] + F∗[v,B] + 2ε+MCk‖uh − vh‖1 + MCε
k

Note that wh,ih → u strongly in L1(A′ ∪B;Rd) and (wh,ih)h is uniformly norm-

bounded in BD(A′ ∪ B). Lemma 2.19 thus implies that (wh,ih)h converges

weakly* to u in BD(A′ ∪B). Moreover, (uh − vh)h converges strongly to zero

in L1(A′ ∪B;Rd). Therefore, we obtain

F∗[u,A′ ∪B] ≤ lim inf
h→∞

F [wh,ih , A′ ∪B]

≤ F∗[u,A′′] + F∗[v,B] + 2ε+ MCε
k

.

Letting k →∞ followed by ε ↓ 0 yields the inequality (3.8).
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Step 2. We now prove that for any open subset A ⊂ Ω it holds that

F∗[u,A] = sup {F∗[u,A′] : A′ b A, A′ open} . (3.9)

Firstly, note that the estimate

F∗[u,A] ≤M
(
L d(A) + |Eu|(A)

)
, (3.10)

holds. Indeed, for u ∈ BD(A) there exists a sequence (uh) ⊂ LD(A)∩C∞(A;Rd)

converging strictly to u. Since the strict convergence is stronger than the weak*

convergence we obtain using the growth bound (3.4):

F∗[u,A] ≤ lim inf
h→∞

F [uh, A]

≤M
(
L d(A) + lim

h→∞
|Euh|(A)

)
= M

(
L d(A) + |Eu|(A)

)
.

Therefore, for a fixed ε > 0 we can choose a compact set K ⊂ A such that

F∗[u,A \K] < ε. Choose open sets A′ and A′′ such that K ⊂ A′ b A′′ b A.

By Step 1 with B = A \K we have

F∗[u,A] ≤ F∗[u,A′′] + F∗[u,A \K] ≤ F∗[u,A′′] + ε.

Letting ε ↓ 0 gives (3.9).

Step 3. Let A,B be open subsets of Ω. We now prove that

F∗[u,A ∪B] ≤ F∗[u,A] + F∗[u,B]. (3.11)

Fix ε > 0. By Step 2 there exists an open set U b A ∪B such that

F∗[u,A ∪B]− ε ≤ F∗[u, U ].

Choose A′ b A open, such that U ⊂ A′ ∪B. By Step 1 we have

F∗[u,A ∪B]− ε ≤ F∗[u,A′ ∪B] ≤ F∗[u,A] + F∗[u,B].

Letting ε ↓ 0 yields (3.11).
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Step 4. Finally, we prove that for open sets A,B such that A ∩B = ∅ the

inequality

F∗[u,A ∪B] ≥ F∗[u,A] + F∗[u,B] (3.12)

holds. We can choose a recovery sequence (uh) ⊂ LD(A∪B) converging weakly*

to u ∈ BD(A ∪B) and such that

lim
h→∞
F [uh, A ∪B] = F∗[u,A ∪B].

Since sets A and B are disjoint we have

F∗[u,A ∪B] = lim
h→∞
F [uh, A ∪B]

≥ lim inf
h→∞

F [uh, A] + lim inf
h→∞

F [uh, B]

≥ F∗[u,A] + F∗[u,B],

hence we proved (3.12). By Theorem 2.1 we infer that the set function V 7→

F∗[u, V ] is a restriction to open sets of a finite Radon measure. �

Remark 3.11. The relaxation F∗ satisfies the following properties.

(1) For a rigid deformation, that is a function R : Rd → Rd of the form

R(x) = Sx+ b, where S ∈ Rd×d
skew and b ∈ Rd, we have the rigid invariance

F∗[u+R,Ω] = F∗[u,Ω].

(2) For x0 ∈ Rd we have the translation invariance

F∗[u(· − x0), x0 + Ω] = F∗[u,Ω].

(3) Let (Rr)r>0 : Rd → Rd be a family of rigid deformations. Then, for a

blow-up of the form

ur(y) = u(x0 + ry)− u(x0)
r

+Rr(y)

where r > 0 and y ∈ (Ω− x0)/r, we have the scaling property

F∗
[
ur,

Ω− x0

r

]
= r−dF∗[u,Ω].
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Proof. Let R : Rd → Rd be a rigid deformation and let (uh) ⊂ LD(Ω) be a

sequence such that uh ∗⇁ u weakly* in BD(Ω). Then, we clearly have the

equality

F [uh +R,Ω] = F [uh,Ω].

Taking the lower limit on both sides, followed by the infimum over all sequences

(uh) yields

F∗[u+R,Ω]

= inf
{

lim inf
h→∞

F [uh,Ω] : (uh) ⊂ LD(Ω), uh ∗⇁ u+R in BD(Ω)
}

= inf
{

lim inf
h→∞

F [uh +R,Ω] : (uh) ⊂ LD(Ω), uh ∗⇁ u in BD(Ω)
}

= F∗[u,Ω].

The proof of translation invariance is analogous. To see that the scaling property

holds, note that

ur(y) = u(x0 + ry)− u(x0)
r

+Rr(y) = 1
r
u(x0 + ry) + R̃r(y),

where R̃r(y) := Rr(y)+u(x0)/r. Hence, by the rigid and translation invariances,

we obtain

F∗
[
ur,

Ω− x0

r

]
= F∗

[
y 7→ u(ry)

r
,
Ω
r

]
= r−dF∗[u,Ω],

where the second equality follows from

r−dF [u,Ω] = F
[
y 7→ u(ry)

r
,
Ω
r

]

by the change of variables. �

Lemma 3.12. Let Q be an open d-cube with side length 1 and faces either

parallel or orthogonal to a, let v ∈ BD(Q) be representable in Q as

v(y) := g(y · a)b+ c(a⊗ b)y +Wy + v̄,

where g : R→ R is a locally bounded and increasing function, a, b ∈ Rd \ {0},

c > 0, W ∈ Rd×d
skew and v̄ ∈ Rd. Let u ∈ BD(Q) be such that supp(u− v) b Q.
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Then, the inequality

F∗[u,Q] ≥ f(Eu(Q))

holds.

Proof. We only treat the case where a, b are not parallel. The case a, b parallel

is in fact easier. In virtue of Remark 3.11, we may without loss of generality

assume that a = e1, b = e2 and Q = (0, 1)d. Then

v(y) = g(y1)e2 + cy2e1 +Wy + v̄.

Let

q := |Dg|(0, 1) = g(1−)− g(0+).

Since u ∈ BD(Q), the function

w(x) := u(x− bxc) + qe2bx1c+ ce1bx2c+Wx+ v̄, x ∈ Rd,

is in BDloc(Rd). Let uh(y) := w(hy)/h. For u0(y) := qe2y1 + ce1y2 +Wy + v̄ it

holds that∫
Q
|uh(y)− u0(y)| d y

= 1
h

∫
Q
|u(hy − bhyc)− qe2(hy1 − bhy1c)− ce1(hy2 − bhy2c)| d y

= 1
hd+1

∫
(0,h)d

|u(x− bxc)− qe2(x1 − bx1c)− ce1(x2 − bx2c)| dx

= 1
h

∫
Q
|w(y)− (qe2y1 + ce1y2 +Wy + v̄)| d y,

hence uh → u0 as h→∞ in L1(Q;Rd). The sequence (uh) is uniformly norm-

bounded in BD(Q), so by Lemma 2.19 we also have that uh ∗⇁ u0 weakly* in

BD(Q).

Let Q1, . . . , Qhd be the canonical decomposition of Q into open cubes with

sides parallel to those of Q and side length 1/h. Then, by the scaling property

of F∗, for all i = 1, . . . , hd it holds that

F∗[uh, Qi] = F∗[uh, (0, 1/h)d] = h−dF∗[u,Q].

Moreover, since supp(u − v) b Q, the measure |Ew| vanishes on every hy-
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perplane of the form xj = k, with k ∈ Z, j = 1, . . . , d. Thus we have that

|Euh|(Q ∩ ∂Qi) = 0 for all i = 1, . . . , hd. By the estimate (3.10) we also have

F∗[uh, Q ∩ ∂Qi] = 0.

Therefore, for any h ∈ N we obtain

F∗[uh, Q] =
hd∑
i=1
F∗[uh, Qi] =

hd∑
i=1

h−dF∗[u,Q] = F∗[u,Q].

By the weak* lower semicontinuity of F∗ we obtain

F∗[u,Q] = lim
h→∞
F∗[uh, Q] ≥ F∗[u0, Q].

Let S ∈ Rd×d
skew be a skew-symmetric matrix defined as

S := q − c
2 (e1 ⊗ e2 − e2 ⊗ e1).

Then, by Remark 3.11 we obtain

F∗[u0, Q] = F∗[q(e2 ⊗ e1)y + c(e1 ⊗ e2)y +Wy + v̄, Q]

= F∗[q(e2 ⊗ e1)y + c(e1 ⊗ e2)y,Q]

= F∗[q(e2 ⊗ e1)y + c(e1 ⊗ e2)y + Sy,Q]

= F∗[(q + c)(e1 � e2)y,Q].

In virtue of Lemma 3.4, for every (vh) ⊂ LD(Q) such that vh ∗⇁ (q+c)(e1�e2)y

weakly* in BD(Q) it holds that

lim inf
h→∞

F [vh, Q] ≥ F [(q + c)(e1 � e2)y,Q].

Taking the infimum over all such sequences yields

F∗[(q + c)(e1 � e2)y,Q] ≥ F [(q + c)(e1 � e2)y,Q].

Since Eu(Q) = Ev(Q) = Eu0(Q) = (q + c)(e1 � e2), we can write

F∗[u,Q] ≥ F∗[u0, Q] ≥ F [(q + c)(e1 � e2)y,Q] = f(Eu(Q)).

This proves the lemma. �
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Lemma 3.13 (Lower estimate). For u ∈ BD(Ω) the inequality

F∗[u,Ω] ≥
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|

holds.

Proof. We treat separately L d-a.e. regular point x0 ∈ Ω and |Esu|-a.e. singular

point x0 ∈ Ω.

Regular points. Fix x0 ∈ Ω such that u is approximately differentiable at x0

and

lim
r↓0

|Eu|(B(x0, r))
ωdrd

= d |Eu|
d L d

(x0) = |Eu(x0)|.

Since u ∈ BD(Ω), these properties hold for L d-almost every x ∈ Ω (see Sections

2.2 and 2.5 for details). For y ∈ B(0, 1) define maps

ur(y) := u(x0 + ry)− ũ(x0)
r

, 0 < r < dist(x0, ∂Ω),

where ũ is the precise representative of u. For u0(y) := ∇u(x0)y we have the

strong convergence ur → u0 in L1(B(0, 1);Rd). Indeed, by the approximate

differentiability we have∫
B(0,1)

|ur(y)− u0(y)| d y

= 1
rd

∫
B(x0,r)

|u(z)− ũ(x0)−∇u(x0)(z − x0)|
r

d z → 0

as r ↓ 0. Moreover, we have strict convergence:

lim
r↓0
|Eur|(B(0, 1)) = ωd lim

r↓0

|Eu|(B(x0, r))
ωdrd

= ωd|Eu(x0)| = |Eu0|(B(0, 1)),

thus (ur) is bounded in BD(B(0, 1)), so we have that ur ∗⇁ u0 weakly* in

BD(B(0, 1)) by Lemma 2.19. In virtue of Proposition 2.15, Lemma 3.4 and

scaling properties of F∗ we obtain

lim inf
r↓0

F∗[u,B(x0, r)]
rd

= lim inf
r↓0

F∗[ur, B(0, 1)]

≥ F∗[u0, B(0, 1)]

≥
∫
B(0,1)

f(Eu0(y)) d y = ωdf(Eu(x0)).
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Therefore, by Proposition 2.2 we obtain

Fa∗ [u,B] ≥
∫
B
f(Eu) d x

for any Borel set B ⊂ Ω.

Singular points. We want to prove that for all Borel sets B ⊂ Ω the inequality

F s∗ [u,B] ≥
∫
B
f#

(
dEsu

d |Esu|

)
d |Esu|

holds. We fix x0 ∈ Ω such that

1. dEsu

d |Esu|
(x0) = a� b for some a, b ∈ Rd \ {0},

2. αr := r−d|Eu|(Q(x0, r))→∞ as r ↓ 0, where Q(x0, r) := x0 + rQ and Q

is a (fixed) open d-cube with a centre 0, side-length 1 and sides either

parallel or orthogonal to a.

These properties hold for |Esu|-a.e. x0 ∈ Ω in virtue of Theorem 2.26 and

Theorem 2.3. It suffices to establish the inequality

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

≥ f#(a� b)

at any |Eu|-Lebesgue point x0 ∈ Ω for which the limit on the left-hand side

exists, which is the case at |Eu|-a.e. x0 ∈ Ω. Define a blow-up sequence

vr(y) := u(x0 + ry)− [u]Q(x0,r)

rαr
+Rr(y), y ∈ Q, 0 < r < dist(x0, ∂Ω),

where Rr : Rd → Rd is a family of rigid deformations and [u]Q(x0,r) :=
−
∫
Q(x0,r) u dx is the average of u over Q(x0, r).

In virtue of Lemma 2.14 in [17], up to a subsequence, the blow-up sequence

(vr) converges weakly* in BD(Q) to the function

v0(y) := h(y · a)b+ c(a⊗ b)y +Wy + v̄,

with a bounded and increasing function h : (−1/2, 1/2)→ R, c > 0, and a rigid

deformation Wy + v̄, where W ∈ Rd×d
skew, v̄ ∈ Rd.

Note that for any Borel set B ⊂ Q we have

Evr(B) = r1−dEu(x0 + rB)
rαr

= Eu(x0 + rB)
|Eu|(Q(x0, r))

(3.13)
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hence |Evr|(Q) = 1. Consequently, by Proposition 1.62(b) in [4], we also have

|Ev0|(Q) ≤ 1.

Fix 0 < t < 1 and let Qt := tQ be a re-scaled cube. There exists a (not

particularly labelled) sequence of radii such that

lim
r↓0

|Eu|(Q(x0, tr))
|Eu|(Q(x0, r))

≥ td. (3.14)

Indeed, if it was not true, then for some 0 < t0 < 1 we could find 0 < r0 < 1

such that

|Eu|(Q(x0, t0r)) ≤ td0|Eu|(Q(x0, r))

for all r < r0. Iterating the above inequality yields:

|Eu|(Q(x0, t
k
0r0)) ≤ tkd0 |Eu|(Q(x0, r0))

for all k ∈ N. Since any 0 < r < r0 is in the interval (tk+1r0, t
kr0] for some

k ∈ N we obtain

|Eu|(Q(x0, r)) ≤ |Eu|(Q(x0, t
k
0r0)) ≤ tkd0 |Eu|(Q(x0, r0)) ≤ |Eu|(Q(x0, r0))

td0r
d
0

rd.

Hence for any 0 < r < r0

αr ≤
|Eu|(Q(x0, r0))

td0r
d
0

which is a contradiction, since αr → +∞ as r ↓ 0. So, (3.14) holds.

Note that (3.14) yields

lim
r↓0
|Evr|(Qt) ≥ td. (3.15)

Then, for any weak* limit ν of |Evr| in Q we get (by Example 1.63 in [4])

that ν(Qt) ≥ td. On the other hand, Evr ∗⇁ Ev0 and Ev0(Q) = a�b
|a�b|ν(Q) by

Theorem 2.3, (3.13) and (1). Moreover

|Ev0|(Q) ≤ ν(Q) = |Ev0(Q)| ≤ |Ev0|(Q),

hence, together with ν ≥ |Ev0| we obtain ν = |Ev0| on Q. Thus |Ev0|(Qt) ≥ td.

Define wr := ϕvr + (1 − ϕ)v0, where ϕ ∈ C1
c(Q; [0, 1]) with ϕ ≡ 1 on the

neighbourhood of Qt. Clearly, the sequence (wr) converges to v0 strongly in
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L1(Q;Rd) and

|E(wr − vr)|(Q) ≤ |E(vr − v0)|(Q \Qt) +
∫
Q
|Eϕ| |vr − v0| d y

≤ |Evr|(Q \Qt) + |Ev0|(Q \Qt) +
∫
Q
|Eϕ| |vr − v0| d y.

Therefore, by (3.15), we have

lim sup
r↓0

|E(wr − vr)|(Q) ≤ 2(1− td).

Similarly,

|Ewr|(Q \Qt) ≤ |Evr|(Q \Qt) + |Ev0|(Q \Qt) +
∫
Q
|Eϕ| |vr − v0| d y

and thus we also have

lim sup
r↓0

|Ewr|(Q \Qt) ≤ 2(1− td).

Using scaling properties of F∗ and the estimate (3.10), we obtain

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

= F∗[αrvr, Q]
αr

≥ F∗[αrwr, Qt]
αr

= F∗[αrwr, Q]
αr

− F∗[αrwr, Q \Qt]
αr

≥ F∗[αrwr, Q]
αr

−M
(
α−1
r |Q \Qt|+ |Ewr|(Q \Qt)

)
.

Since αr → +∞ as r ↓ 0 we obtain

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

≥ lim sup
r↓0

F∗[αrwr, Q]
αr

− 2M(1− td).

By Lemma 3.12 in conjunction with the Lipschitz continuity of f (see Re-

mark 2.9(2)), we obtain

F∗[αrwr, Q] ≥ f(αrEwr(Q)) ≥ f(αrEvr(Q))− αrL|E(wr − vr)|(Q)

for all r > 0. Here L > 0 denotes the Lipschitz constant of f . Therefore

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

≥ lim sup
r↓0

f(αrEvr(Q))
αr

− 2(L+M)(1− td).
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Since

Evr(Q) = Eu(Q(x0, r))
|Eu|(Q(x0, r))

→ dEsu

d |Esu|
(x0) = a� b as r ↓ 0,

we obtain

lim sup
r↓0

f(αrEvr(Q))
αr

= f#(a� b),

We thus have

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

≥ f#(a� b)− 2(L+M)(1− td).

Letting t ↑ 1 concludes the proof. �

Remark 3.14. Consider a larger Lipschitz domain Ω′ ⊂ Rd such that Ω b Ω′.

Extend the function u ∈ BD(Ω) to Ω′ by some function v ∈ BD(Ω′ \ Ω) and

denote this extension by u. Let g ∈ L1(∂Ω; H d−1 ∂Ω;Rd) be a trace of v on

∂Ω. Applying Theorem 3.1 to u and Ω′ yields the weak* lower semicontinuity

of the functional:

F [u] :=
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|

+
∫
∂Ω
f# ((u− g)� nΩ) d H d−1, u ∈ BD(Ω),

where u in the surface energy component, called the penalisation term, is

understood in a sense of trace (see Theorem 2.24) and nΩ : ∂Ω → Sd−1 is

an inward pointing unit normal. Just like in Theorem 3.1, we assume that

f : Rd×d
sym → [0,+∞) is symmetric-quasiconvex with linear growth at infinity.

As a direct consequence of the weak* lower semicontinuity of F and the

Poincaré inequality (2.5), we have the existence of minimisers of the following

minimisation problem:

Theorem 3.15 (Minimisation). Let Ω ⊂ Rd be a bounded Lipschitz domain

and let f : Rd×d
sym → [0,+∞) be a continuous function satisfying the following

conditions:
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1. there exist constants 0 < m ≤M such that for all A ∈ Rd×d
sym the inequality

m|A| ≤ f(A) ≤M(1 + |A|)

holds;

2. f is symmetric-quasiconvex.

Let g ∈ L1(∂Ω; H d−1 ∂Ω;Rd) be a boundary datum. Then, the functional

F [u] :=
∫

Ω
f(Eu) d x+

∫
Ω
f#

(
dEsu

d |Esu|

)
d |Esu|

+
∫
∂Ω
f# ((u− g)� nΩ) d H d−1, u ∈ BD(Ω),

has a minimiser over the space BD(Ω).

3.3 Relaxation

In this section we consider the case, where the integrand f in F is not symmetric-

quasiconvex. We will prove the following relaxation theorem:

Theorem 3.16. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,∞) be a continuous function such that the inequality

m|A| ≤ f(A) ≤M(1 + |A|) (3.16)

holds for all A ∈ Rd×d
sym and some constants 0 < m ≤M . Then, the relaxation

of the extended real-valued functional

F∞[u] :=


∫

Ω
f(Eu) d x for u ∈ LD(Ω)

+∞ for u ∈ BD(Ω) \ LD(Ω),

with respect to the weak* topology in BD(Ω) is given by

F∗[u] =
∫

Ω
SQf(Eu) d x+

∫
Ω

(SQf)#
(

dEsu

d |Esu|

)
d |Esu|, u ∈ BD(Ω),

(3.17)

where SQf denotes the symmetric-quasiconvex envelope of f .

Recall that a function f : Ω → Rd is countably piecewise affine if there

exists a disjoint open partition {Ωk}k∈N of Ω, such that f |Ωk
is affine for every
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k ∈ N. It is well-known (cf. [18, Proposition 2.8]), that every Sobolev function

u ∈ W1,p, 1 ≤ p < ∞, can be approximated by countably piecewise affine

functions (uh) in the corresponding Sobolev norm and such that the boundary

trace of each uh agrees with the boundary trace of u.

In order to prove Theorem 3.16 we will need the following density result.

Lemma 3.17 (Affine density). For u ∈ BD(Ω) there exists a sequence of

countably piecewise affine functions vh : Ω → Rd such that vh|∂Ω = u|∂Ω and

vh → u area-strictly.

Proof. Following the same procedure as in the proof of Lemma 11.1 in [35],

for every u ∈ BD(Ω) one can find a family of smooth maps (uh) ⊂ C∞(Ω;Rd)

such that uh → u area-strictly and uh|∂Ω = u|∂Ω. In particular, for each h ∈ N,

the function uh is in some W1,p(Ω;Rd), so we can find a countably piecewise

affine function v
(h)
k : Ω → Rd such that ‖v(h)

k − uh‖1,p → 0 as k → ∞ and

v
(h)
k |∂Ω = uh|∂Ω. Finally, we select a diagonal subsequence such that v(h)

kh
→ u

area-strictly as h→∞. Clearly, v(h)
kh

has the same trace on ∂Ω as u. �

Proof of Theorem 3.16. By Remark 2.6(2), the symmetric-quasiconvex enve-

lope SQf is symmetric-quasiconvex with linear growth. Let us denote the

right-hand side of (3.17) by G. Then, by Theorem 3.1, the functional G is

weakly* lower semicontinuous in BD(Ω). In virtue of Proposition 2.15 we

conclude that G ≤ F∗. The proof will be finished once we show the opposite

inequality.

Step 1. Firstly, note that

F∗[u] = inf
{

lim inf
h→∞

F∞[uh] : (uh) ⊂ LD(Ω), uh → u in L1(Ω;Rd)
}
. (3.18)

Suppose (3.18) is not true. Then, we could find (uh) ⊂ LD(Ω) such that uh → u

strongly in L1(Ω;Rd) and

F∗[u] > lim
h→∞
F∞[uh] ≥ lim sup

h→∞
m‖Euh‖L1 .

Therefore, the sequence (Euh) is uniformly norm-bounded in L1(Ω;Rd×d
sym) and,
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by Lemma 2.19, uh ∗⇁ u weakly* in BD(Ω), whereby we get that F∗[u] > F∗[u],

which is absurd.

Step 2. In virtue of Lemma 11.1 in [35], we choose a sequence (uh) ⊂ LD(Ω)

such that uh → u area-strictly and uh|∂Ω = u|∂Ω. Fix ε > 0 and let Ωε b Ω

be a Lipschitz subdomain such that supx∈Ωε
dist(x, ∂Ω) < ε. By Lemma 3.17

we may assume that functions (uh) are countably piecewise affine in Ωε, that

is uh(x) = A
(h)
i x + b

(h)
i almost everywhere in Ω(h)

i ⊂ Ωε for some symmetric

matrices A(h)
i ∈ Rd×d

sym and some vectors b(h)
i ∈ Rd. The sets Ω(h)

i constitute

to Vitali’s covering of Ωε. By the formula (2.2) we can choose functions

ψ
(h)
i ∈W1,∞

0 (Ω(h)
i ;Rd) such that∫

Ω(h)
i

|ψ(h)
i (x)| dx ≤ h−1|Ω(h)

i |

and ∫
Ω(h)

i

f
(
A

(h)
i + Eψ(h)

i (x)
)

dx ≤
(
SQf(A(h)

i ) + h−1
)
|Ω(h)

i |.

Let (vh) ⊂ LD(Ω) be a sequence of functions defined as

vh(x) :=


uh(x) + ψ

(h)
i (x), for x ∈ Ω(h)

i ,

uh(x), for x ∈ Ω \ Ωε.

Clearly vh|∂Ω = u|∂Ω and vh → u strongly in L1(Ω;Rd). Hence, by (3.18), we

have

F∗[u] ≤ lim inf
h→∞

F∞[vh].

We have:∫
Ω
f(Evh(x)) d x =

∫
Ωε

f(Evh(x)) d x+
∫

Ω\Ωε

f(Euh(x)) d x

≤
∑
i

∫
Ω(h)

i

f(A(h)
i + Eψ(h)

i ) d x+M
∫

Ω\Ωε

1 + |Euh(x)| dx

≤
∑
i

|Ω(h)
i |SQf(A(h)

i ) + h−1|Ω|+M
∫

Ω\Ωε

1 + |Euh(x)| dx

≤
∫

Ω
SQf(Euh(x)) d x+ h−1|Ω|+M

∫
Ω\Ωε

1 + |Euh(x)| dx.
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Passing to the lower limit as h→∞ yields

F∗[u] ≤ lim inf
h→∞

∫
Ω
SQf(Euh(x)) d x+M(L d + |Eu|)(Ω \ Ωε).

By the approximation argument, analogous to the one in the proof of Lemma 3.9,

we obtain the inequality

lim inf
h→∞

∫
Ω
SQf(Euh(x)) dx ≤

∫
Ω
SQf(Eu) d x+

∫
Ω

(SQf)#
(

dEsu

d |Esu|

)
d |Esu|.

Hence

F∗[u] ≤
∫

Ω
SQf(Eu) d x+

∫
Ω

(SQf)#
(

dEsu

d |Esu|

)
d |Esu|

+M(L d + |Eu|)(Ω \ Ωε).

By letting ε ↓ 0 we obtain

F∗[u] ≤
∫

Ω
SQf(Eu) d x+

∫
Ω

(SQf)#
(

dEsu

d |Esu|

)
d |Esu| = G[u]. �

Conclusion

In this chapter we established the optimal relaxation result for integral function-

als with integrands that have linear growth at infinity. We proved an integral

representation of the relaxation in the case when an integrand is symmetric-

quasiconvex and when this assumption is not satisfied. Our results extend [10]

and also Corollary 1.10 in [6] to relaxation theorems without any assumption

on the recession function. Due to the recent developments in the theory of func-

tions of bounded deformation, we could utilise the classical blow-up argument

in its elementary form to establish these results.
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Chapter 4

Mixed-growth functionals

In this chapter we study homogeneous integral functionals of the form:

F [u] :=
∫

Ω
f(Eu(x)) dx

with the anisotropic growth bounds:

m
(
(trA)2 + | devA|

)
≤ f(A) ≤M

(
1 + (trA)2 + | devA|

)
for some constants 0 < m ≤M .

An example of such functional comes from the perfectly plastic elastic model

known as Hencky’s model [5, 38]:∫
Ω
ϕ(dev Eu) + κ

2 (div u)2 dx, (4.1)

where ϕ : SD(d) → [0,+∞) is a convex function which grows quadratically

on some compact set and linearly outside of this set, and κ = λ+ 2µ/3 is the

bulk modulus of the material, i.e. a measure of how resistant to compression is

the material, with the Lamé constants λ and µ. We will return to the Hencky

functional in the next chapter.

4.1 Recession function

As in the previous chapter, we need a suitable notion of recession function.

For f : Rd×d
sym → [0,∞) we write fdev for the restriction of f to the subspace of
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deviatoric matrices SD(d). We can now define the recession function f#
dev as

the upper limit:

f#
dev(A) := lim sup

A′→A
s→∞

fdev(sA′)
s

The recession function f#
dev shares the same properties as the recession

function from the previous chapter, hence we omit the details here.

4.2 Relaxation

In this section we prove the following result.

Theorem 4.1. Let Ω ⊂ Rd be a bounded Lipschitz domain and let f : Rd×d
sym →

[0,∞) be a continuous function satisfying the following conditions:

1. there exist constants 0 < m ≤M such that for all A ∈ Rd×d
sym the growth

m
(
(trA)2 + | devA|

)
≤ f(A) ≤M

(
1 + (trA)2 + | devA|

)
(4.2)

holds;

2. f is symmetric-quasiconvex;

3. there exist constants γ ∈ [0, 2) and δ ∈ [0, 1) such that for all A ∈ Rd×d
sym

the inequality

f(A) ≥ f#
dev(devA)−M

(
| trA|γ + | devA|δ + 1

)
(4.3)

holds.

Then, the relaxation of the extended real-valued functional

F [u,Ω] :=


∫

Ω
f(Eu(x)) dx for u ∈ LU(Ω)

+∞ for u ∈ U(Ω) \ LU(Ω),
(4.4)

with respect to the weak* topology in U(Ω) is given by

F [u,Ω] :=
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|, u ∈ U(Ω). (4.5)
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Remark 4.2.

1. Since the set S from Proposition 2.11 spans SD(d), the function fdev is

globally Lipschitz. This is a consequence of fdev being separately convex,

i.e. convex in each variable, with linear growth at infinity and Lemma 5.42

in [4];

2. Since fdev is a symmetric rank-one convex function with linear growth

at infinity, the recession function f#
dev is also symmetric rank-one convex

and by (1) we can write:

f#
dev(A) = lim sup

s→∞

fdev(sA)
s

;

3. By Corollary 2.12 the recession function f#
dev is convex at each point of S.

Remark 4.3. The lower bound with subcritical growth in both trace and

deviatoric directions in the condition (3) is essential for the proof. It remains

an open question whether it can be deduced from the conditions (1) and (2).

The proof of Theorem 4.1 is structured as follows. First, in Lemma 4.6

we prove that the conclusion of Theorem 4.1 holds for the linear weak* limits.

This step is essential for the blow-up argument in the proof of the first part of

Proposition 4.13.

Next, we investigate the relaxation F∗ of F defined by

F∗[u,Ω] := inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ U(Ω), uh ∗⇁ u in U(Ω)
}
.

Note that, by the argument similar to the proof of Proposition 3.6, we can

consider the above relaxation along sequences (uh) ⊂ LU(Ω).

We establish that for all u ∈ U(Ω) the map V 7→ F∗[u, V ] is a restriction to

open sets of a finite Radon measure. We then decompose this measure into the

absolutely continuous part Fa∗ and the singular part F s∗ (with respect to the

Lebesgue measure) and prove the lower bounds:

Fa∗ [u,B] ≥
∫
B
f(Eu) d x (4.6)
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and

F s∗ [u,B] ≥
∫
B
f#

dev

(
dEsu

d |Esu|

)
d |Esu| (4.7)

for all Borel sets B ⊂ Ω. For the proof of the regular bound (4.6) we use the

blow-up sequence argument like in the previous chapter, whereas the proof of

the singular bound (4.7) relies on Theorem 2.10.

Finally, together with the upper bound F∗ ≤ F from Proposition 4.12 we

obtain that F∗ = F , thus Theorem 4.1 follows.

Remark 4.4. It does not seem possible to prove Theorem 4.1 using the blow-

up argument for both regular and singular estimates as in the usual BV or

BD lower semicontinuity results [3, 19, 34]. Originally, the blow-up argument

was tailored for the functionals with an isotropic linear growth imposed on the

integrands. This, however, is not the case here, as the admissible integrands in

Theorem 4.1 grow quadratically in the trace direction and the blow-up argument

does not work. The problem is that if one attempts to utilise the blow-up

argument for the singular estimate (4.7), one eventually faces the problem of

controlling the blow-up rate of the divergence terms of the blow-up sequence.

A priori it seems not possible to obtain a sufficient decay of the sequence of

divergences, and so a different strategy based on asymptotic convexity via the

Kirchheim-Kristensen convexity result (Theorem 2.10) needs to be employed.

In order to prove Theorem 4.1 we use cut-off arguments (see Lemmas 4.6

and 4.11). For a given function u ∈ U(Ω) and some smooth cut-off function

ϕ ∈ C1
c(Ω) the product ϕu is in BD(Ω), but not necessarily in U(Ω) (this

property is called non-locality). Indeed, we have

div(ϕu) = ∇ϕ · u+ ϕ div u

and the first term on the right-hand side does not belong to L2(Ω) in general.

The following result due to Bogovskii (see [11, 12] or section III.3 in [22] for

the proof) is essential, since it provides a suitable correction term v such that

ϕu+ v ∈ U(Ω).
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Theorem 4.5 (Bogovskii). Let Ω ⊂ Rd be a bounded Lipschitz domain and

1 < q < ∞. There exists a linear operator B : Lq(Ω) →W1,q
0 (Ω;Rd) with the

following properties:

(i) for every f ∈ Lq(Ω) such that
∫

Ω
f dx = 0 it holds that

divBf = f in Ω;

(ii) for every f ∈ Lq(Ω) the estimate

‖∇(Bf)‖q ≤ C‖f‖q

holds with a translation and scaling invariant constant C > 0, depending

only on Ω and q;

(iii) if f ∈ C∞c (Ω), then Bf ∈ C∞c (Ω;Rd).

We begin with a series of lemmas.

Lemma 4.6. Let f : Rd×d
sym → [0,∞) satisfy conditions (1) and (2) of The-

orem 4.1, A ∈ Rd×d
sym and let (uh) ⊂ U(Ω) be a sequence such that uh ∗⇁ Ax

weakly* in U(Ω). Then,

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x. (4.8)

Proof. Without loss of generality assume that (uh) ⊂ LU(Ω)∩C∞(Ω;Rd). The

proof is divided into two steps. In the first step we prove (4.8) for a sequence

(uh) which has linear boundary values. Then, in the second step we prove,

using a cut-off argument, that the assumption of the linear boundary values

can be dropped.

Step 1. Suppose that uh−Ax is compactly supported inside Ω for all h ∈ N

and take ψh(x) := uh(x) − Ax. Clearly, ψh ∈ W1,∞
0 (Ω;Rd). Then, by the

symmetric-quasiconvexity of f we obtain

|Ω|f(A) ≤
∫

Ω
f(A+ Eψh(y)) d y =

∫
Ω
f(Euh(y)) d y

for all h ∈ N. Therefore,

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x.
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Step 2. Let uh ∗⇁ Ax weakly* in U(Ω). Fix n ∈ N and ε > 0 and choose

a Lipschitz subdomain Ω0 b Ω such that |Ω \ Ω0| ≤ ε. Let R := dist(Ω0, ∂Ω)

and for i = 1, . . . , n define sets

Ωi :=
{
x ∈ Ω : dist(x,Ω0) < iR

n

}
.

Now, choose cut-off functions ϕi ∈ C1
c(Ω; [0, 1]) such that

1Ωi−1 ≤ ϕi ≤ 1Ωi
and ‖∇ϕi‖∞ ≤

2n
R

(4.9)

and for x ∈ Ω define

uh,i(x) := Ax+ ϕi(x)(uh(x)− Ax).

We have

Euh,i = A+ ϕi(Euh − A) +∇ϕi � (uh − Ax) (4.10)

and

div uh,i = trA+ ϕi(div uh − trA) +∇ϕi · (uh − Ax). (4.11)

Note that the last term in (4.11) belongs only to Ld/(d−1)(Ω) by the embedding

BD(Ω) ⊂ Lq(Ω;Rd) for 1 ≤ q ≤ d/(d − 1) (cf. Proposition 1.2 in [39]),

thus uh,i 6∈ U(Ω) for d > 2. In order to overcome this problem we fix some

1 < q < d/(d− 1) and define numbers

ξh,i := 1
|Si|

∫
Si

∇ϕi(x) · (uh(x)− Ax) d x,

where Si := Ωi \ Ωi−1 is the open strip between Ωi−1 and Ωi.

Note that supp∇ϕi ⊂ Si. Define

fh,i := −∇ϕi · (uh − Ax) + ξh,i ∈ Lq(Si). (4.12)

By Theorem 4.5 there exist functions zh,i ∈W1,q
0 (Si;Rd) such that

div zh,i = fh,i in Si

and such that the estimate

‖∇zh,i‖q ≤ Cq‖fh,i‖q (4.13)
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holds. We also extend the functions zh,i by zero outside Si. Let wh,i ∈ U(Ω) be

defined as

wh,i := uh,i + zh,i.

The correction term zh,i ensures that divwh,i ∈ L2(Ω).

Henceforth, for simplicity we write C > 0 for a generic constant that changes

from line to line, possibly depending on Ω,M,A,R, n, q, but never on h, i. Note

that we have the following estimate:

‖fh,i‖q ≤ C‖uh − Ax‖q. (4.14)

This estimate, in conjunction with the Poincaré inequality, (4.13), and the

compactness of the embedding BD(Ω) b Lq(Ω;Rd) (cf. [36]), implies that

zh,i → 0 in W1,q(Ω;Rd) as h→∞. Since wh,i → Ax in L1(Ω;Rd) and (wh,i)h is

bounded in U(Ω) for all i = 1, . . . , n, by Lemma 2.29 it follows that wh,i ∗⇁ Ax

weakly* in U(Ω). Moreover, wh,i|∂Ω = Ax for every i = 1, . . . , n and h ∈ N.

By the upper growth bound (4.2) we obtain∫
Ω
f(Ewh,i) d x =

∫
Ωi−1

f(Euh) d x+
∫
Si

f(Ewh,i) d x+
∫

Ω\Ωi

f(A) d x

≤
∫

Ω
f(Euh) d x+

∫
Si

f(Ewh,i) d x+ |Ω \ Ω0|f(A)

≤
∫

Ω
f(Euh) d x+M

∫
Si

| dev Ewh,i|+ | divwh,i|2 dx

+ C|Ω \ Ω0|.

The estimates (4.13) and (4.14) together with Hölder’s inequality yield∫
Si

| dev Ezh,i| dx ≤ C|Ω \ Ω0|1/q
′ sup

h
‖uh − Ax‖q,

where 1/q + 1/q′ = 1. We have∫
Si

| dev Ewh,i| dx ≤ | devA| |Si|+
∫
Si

|ϕi| | dev Euh − devA| dx

+
∫
Si

| dev[∇ϕi � (uh − Ax)]| dx+
∫
Si

| dev Ezh,i| dx

≤ | devA| |Ω \ Ω0|+
∫
Si

| dev Euh − devA| dx

+
∫
Si

| dev[∇ϕi � (uh − Ax)]| dx+ C|Ω \ Ω0|1/q
′
.
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Since |Ω \ Ω0| ≤ ε, we obtain∫
Si

| dev Ewh,i| dx ≤ C(ε+ ε1/q′) +
∫
Si

| dev Euh − devA| dx

+ 4n
R

∫
Ω
|uh(x)− Ax|1Si

(x) d x

≤ C(ε+ ε1/q′) +
∫
Si

| dev Euh − devA| dx

+ 4n
R

sup
h
‖uh − Ax‖q |Si|1/q

′

≤ C(ε+ ε1/q′) +
∫
Si

| dev Euh − devA| dx.

Next, we estimate the divergence term:∫
Si

| divwh,i|2 dx

≤
∫
Si

| trA+ ϕi(div uh − trA) + ξh,i|2 dx

≤ 3
∫
Si

| trA|2 + | div uh − trA|2 + ξ2
h,i dx

≤ 3| trA|2|Ω \ Ω0|+ 3
∫
Si

| div uh − trA|2 dx+ 12n2

R2|Si|
‖uh − Ax‖2

1

≤ Cε+ 3
∫
Si

| div uh − trA|2 dx+ 12n2

R2|Si|
‖uh − Ax‖2

1,

where we used the inequality

ξ2
h,i = 1

|Si|2
(∫

Si

∇ϕi(x) · (uh(x)− Ax) d x
)2
≤ 4n2

R2|Si|2
‖uh − Ax‖2

1.

Combining the above estimates yields∫
Ω
f(Ewh,i) d x ≤

∫
Ω
f(Euh) d x+M

∫
Si

| dev Euh − devA| dx

+ 3M
∫
Si

| div uh − trA|2 dx+ C(ε+ ε1/q′)

+ 12n2M

R2|Si|
‖uh − Ax‖2

1.
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By Step 1 we have

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Ewh,i) d x

≤ lim inf
h→∞

[ ∫
Ω
f(Euh) d x+M

∫
Si

| dev Euh − devA| dx

+ 3M
∫
Si

| div uh − trA|2 dx+ 12n2M

R2|Si|
‖uh − Ax‖2

1

]

+ C(ε+ ε1/q′).

Since uh → Ax strongly in L1(Ω;Rd), the term

12n2M

R2|Si|
‖uh − Ax‖2

1

vanishes as h→∞. Summing up over i = 1, . . . , n, dividing by n, and using

the superadditivity of a lower limit yields

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Ewh,i) d x

≤ lim inf
h→∞

∫
Ω
f(Euh) d x+ M

n
sup
h

∫
Ω
| dev Euh − devA| dx

+ 3M
n

sup
h

∫
Ω
| div uh − trA|2 dx+ C(ε+ ε1/q′).

Letting ε ↓ 0 and n→∞ yields

|Ω|f(A) ≤ lim inf
h→∞

∫
Ω
f(Euh) d x. �

Remark 4.7. Clearly, Lemma 4.6 also holds for affine limits.

We are now going to prove that the relaxation

F∗[u,Ω] := inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ U(Ω), uh ∗⇁ u in U(Ω)
}

satisfies the lower bound

F∗[u,Ω] ≥
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|. (4.15)

Remark 4.8. Note that the relaxation F∗ can be written as

F∗[u,Ω] = inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ LU(Ω), uh → u in L1(Ω;Rd)
}
.

Indeed, if this was false, we could find a sequence (uh) ⊂ LU(Ω) with uh → u
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strongly in L1(Ω;Rd) such that

F∗[u,Ω] > lim
h→∞
F∞[uh,Ω] ≥ lim sup

h→∞
m (‖div uh‖2 + ‖dev Euh‖1) ,

where the last inequality follows from the lower bound on the integrand f . We

see that (uh) is uniformly norm-bounded in U(Ω), hence uh ∗⇁ u weakly* in

U(Ω) by Lemma 2.29, whereby we get the contradiction F∗[u,Ω] > F∗[u,Ω].

We also have the analogue of Proposition 3.6:

Proposition 4.9. The relaxation F∗ can be equivalently written as

G[u,Ω] = inf
{

lim inf
h→∞

F∞[uh,Ω] : (uh) ⊂ LU(Ω) ∩ C∞(Ω;Rd),

uh
∗⇁ u in U(Ω)

}
.

Remark 4.10. The functional F∗ satisfies the same invariance properties as

its BD counterpart from Chapter 3 (see Remark 3.11).

In order to prove the lower bound, we appeal to Lemma 4.11 below, which

asserts that for a given u ∈ U(Ω) the map V 7→ F∗[u, V ] is the restriction

to the open subsets of Ω of a Radon measure on Ω, which we still denote by

F∗[u, ·]. Then, we decompose this measure into the absolutely continuous and

singular parts with respect to the Lebesgue measure, i.e.

F∗[u, ·] = Fa∗ [u, ·] + F s∗ [u, ·], Fa∗ [u, ·]� L d Ω, F s∗ [u, ·] ⊥ L d Ω

and then prove that

Fa∗ [u,B] ≥
∫
B
f(Eu) d x and F s∗ [u,B] ≥

∫
B
f#

dev

(
dEsu

d |Esu|

)
d |Esu|

for any Borel set B ⊂ Ω.

We begin with the following technical lemma.

Lemma 4.11. For all u ∈ U(Ω) the set function V 7→ F∗[u, V ] is a restriction

to the open subsets of Ω of a finite Radon measure.
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Proof. Fix u ∈ U(Ω).

Step 1. Let A′, A′′, B be open subsets of Ω such that A′ b A′′. We first

prove that

F∗[u,A′ ∪B] ≤ F∗[u,A′′] + F∗[u,B]. (4.16)

Fix ε > 0. By the definition of relaxation we can find sequences (uεh) ⊂ LU(A′′)

and (vεh) ⊂ LU(B) such that uεh
∗⇁ u weakly* in U(A′′), vεh

∗⇁ u weakly* in

U(B),

F [uεh, A′′] ≤ F∗[u,A′′] + ε,

and

F [vεh, B] ≤ F∗[u,B] + ε.

Henceforth, we omit the dependence of sequences uh and vh on ε. For each

h ∈ N extend the functions uh and vh by zero outside A′′ and B, respectively.

Let

Cε := sup
h∈N

(∫
A′′

1 + | div uh|2 + |Euh| dx+
∫
B

1 + | div vh|2 + |Evh| dx
)
<∞.

(4.17)

Fix k ∈ N and an increasing family of open sets

A′ = A0 b A1 b . . . b Ak b A′′.

For each i = 1, . . . , k choose the cut-off function ϕi ∈ C1
c(Ai; [0, 1]) such that

ϕi ≡ 1 on Ai−1. Next, define maps w̃h,i ∈ L1(A′ ∪B;Rd) via

w̃h,i := ϕiuh + (1− ϕi)vh, h ∈ N, i = 1, . . . , k.

It is clear that w̃h,i ∈ LU(Ai−1), but w̃h,i 6∈ LU(A′ ∪B), since

div w̃h,i = ϕi div uh + (1− ϕi) div vh +∇ϕi · (uh − vh)

and the last term on the right-hand side belongs only to Ld/(d−1)(A′ ∪B). To

overcome this problem, as before we fix some 1 < q < d/(d− 1) and define

ξh,i := 1
|Si|

∫
Si

∇ϕi(x) · (uh(x)− vh(x)) d x,
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where Si := Ai\Ai−1 for i = 1, . . . , k. Note that supp∇ϕi b Si. By Theorem 4.5

applied in Si and with the right-hand side

fh,i := −∇ϕi · (uh − vh) + ξh,i ∈ Lq(Si),

there exist functions zh,i := Bfh,i ∈W1,q
0 (Si;Rd) such that

div zh,i = fh,i on Si

and the estimate

‖∇zh,i‖q ≤ C‖fh,i‖q (4.18)

holds. We also extend zh,i by zero outside Si. Define

wh,i := w̃h,i + zh,i.

The correction term zh,i guarantees that wh,i ∈ LU(A′ ∪B). Indeed,

divwh,i = ϕi div uh + (1− ϕi) div vh + ξh,i1Si
,

which clearly belongs to L2(A′ ∪B). We have

F [wh,i, A′ ∪B] =
∫
A′∪B

f(Ewh,i) d x

=
∫

(A′∪B)∩Ai−1
f(Euh) d x+

∫
B\Ai

f(Evh) d x

+
∫
B∩Si

f(Ewh,i) d x,

where we used the fact that the corrector zh,i vanishes outside of Si. Hence,

F [wh,i, A′ ∪B] ≤ F [uh, A′′] + F [vh, B] +
∫
B∩Si

f(Ewh,i) d x.

The last integral can be estimated as follows:∫
B∩Si

f(Ewh,i) d x ≤M
∫
B∩Si

1 + | divwh,i|2 + |Ewh,i| dx

≤ 3M
∫
B∩Si

1 + | div uh|2 + | div vh|2 + ξ2
h,i

+ Ck|uh − vh|+ |Euh|+ |Evh|+ |Ezh,i| dx,
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where Ck := sup {‖∇ϕi‖∞ : 1 ≤ i ≤ k}. We have for 1 ≤ i ≤ k that

ξ2
h,i = 1

|Si|2
(∫

Si

∇ϕi(x) · (uh(x)− vh(x)) d x
)2

≤ C2
k

|Si|2
‖uh − vh‖2

1

≤ C2
k |Si|−2/q‖uh − vh‖2

q.

Here and in all of the following the norms are with respect to the domain A′∪B.

Since |Si| > 0 for all i ∈ {1, . . . , k}, we get

ξ2
h,i ≤ C2

k

(
min

`∈{1,...,k}
|S`|

)−2/q

‖uh − vh‖2
q ≤ C̃Ω,q,k‖uh − vh‖2

q.

By the estimate (4.18) and Hölder’s inequality we obtain similarly∫
B∩Si

|Ezh,i| dx ≤ ‖∇zh,i‖q |B ∩ Si|1/q
′ ≤ C̃Ω,q,k‖uh − vh‖q,

where 1/q + 1/q′ = 1. Note that for every h ∈ N there exists ih ∈ {1, . . . , k}

such that∫
B∩Sih

1 + | div uh|2 + | div vh|2 + |Euh|+ |Evh| dx

≤ 1
k

∫
B∩(Ak\A0)

1 + | div uh|2 + | div vh|2 + |Euh|+ |Evh| dx

≤ Cε
k
,

where Cε is defined in (4.17). Therefore, combining the above estimates yields∫
B∩Sih

f(Ewh,ih) d x ≤ CΩ,M,q,k

(
‖uh−vh‖2

q+‖uh−vh‖1 +‖uh−vh‖q
)

+ 3MCε
k

.

Hence,

F [wh,ih , A′ ∪B]

≤ F [uh, A′′] + F [vh, B]

+ CΩ,M,q,k

(
‖uh − vh‖2

q + ‖uh − vh‖1 + ‖uh − vh‖q
)

+ 3MCε
k

≤ F∗[u,A′′] + F∗[u,B] + 2ε

+ CΩ,M,q,k

(
‖uh − vh‖2

q + ‖uh − vh‖1 + ‖uh − vh‖q
)

+ 3MCε
k

.
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Note that wh,ih → u strongly in L1(A′ ∪ B;Rd) and (wh,ih)h is uniformly

norm-bounded in U(A′ ∪B). Lemma 2.29 thus implies that (wh,ih)h converges

weakly* to u in U(A′ ∪B). Moreover, (uh − vh)h converges strongly to zero in

Lq(A′ ∪B;Rd). Therefore, we obtain

F∗[u,A′ ∪B] ≤ lim inf
h→∞

F [wh,ih , A′ ∪B]

≤ F∗[u,A′′] + F∗[u,B] + 3MCε
k

+ 2ε.

Letting k →∞ followed by ε ↓ 0 yields the inequality (4.16).

Step 2. We now prove that for any open subset A ⊂ Ω it holds that

F∗[u,A] = sup {F∗[u,A′] : A′ b A, A′ open} . (4.19)

It can be easily seen that

F∗[u,A] ≤M
(
(1 + | div u|2)L d(A) + |Eu|(A)

)
, (4.20)

where M > 0 is the constant from the upper growth bound on the integrand

of F .

Therefore, for a fixed ε > 0 we can choose a compact set K ⊂ A such that

F∗[u,A \K] ≤ ε. Choose open sets A′ and A′′ such that K ⊂ A′ b A′′ b A.

By Step 1 with B = A \K we have

F∗[u,A] ≤ F∗[u,A′′] + F∗[u,A \K] ≤ F∗[u,A′′] + ε

Letting ε ↓ 0 gives (4.19).

Step 3. Let A,B be open subsets of Ω. We now prove that

F∗[u,A ∪B] ≤ F∗[u,A] + F∗[u,B]. (4.21)

Fix ε > 0. By Step 2 there exists an open set U b A ∪B such that

F∗[u,A ∪B]− ε ≤ F∗[u, U ].

Choose A′ b A open, such that U ⊂ A′ ∪B. By Step 1 we have

F∗[u,A ∪B]− ε ≤ F∗[u,A′ ∪B] ≤ F∗[u,A] + F∗[u,B].

Letting ε ↓ 0 yields (4.21).
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Step 4. Finally, we prove that for open sets A,B such that A ∩B = ∅ the

inequality

F∗[u,A ∪B] ≥ F∗[u,A] + F∗[u,B] (4.22)

holds. We can choose a sequence (uh) ⊂ LU(A ∪ B) converging weakly* to

u ∈ U(A ∪B) and such that

lim
h→∞
F [uh, A ∪B] = F∗[u,A ∪B].

Since sets A and B are disjoint we have

F∗[u,A ∪B] = lim
h→∞
F [uh, A ∪B]

≥ lim inf
h→∞

F [uh, A] + lim inf
h→∞

F [uh, B]

≥ F∗[u,A] + F∗[u,B],

hence we proved (4.22). By Theorem 2.1 we infer that the set function V 7→

F∗[u, V ] is a restriction to open sets of a finite Radon measure. �

Proposition 4.12 (Upper estimate). The relaxation F∗ satisfies the upper

bound

F∗[u,Ω] ≤
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|.

Proof. By Remark 2.33 we can find a sequence (uh) ⊂ LU(Ω) ∩ C∞(Ω;Rd)

converging area-strictly to u ∈ U(Ω). Since the area-strict convergence is

stronger than the weak* convergence, by the definition of F∗, it follows that

F∗[u,Ω] ≤ lim inf
h→∞

F [uh,Ω] =
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|,

where the equality follows from Remark 2.33. �

The conclusion of Theorem 4.1 will follow once we prove the lower bound.

Proposition 4.13 (Lower estimate). For u ∈ U(Ω) the inequality

F∗[u,Ω] ≥
∫

Ω
f(Eu) d x+

∫
Ω
f#

dev

(
dEsu

d |Esu|

)
d |Esu|

holds.
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Proof. We treat separately L d-a.e. regular point x0 ∈ Ω and |Esu|-a.e. singular

point x0 ∈ Ω.

Regular points. The proof is based on a blow-up argument. Fix x0 ∈ Ω such

that

1. u is approximately differentiable at x0,

2. lim
r↓0

|Eu|(B(x0, r))
ωdrd

= d |Eu|
d L d

(x0) = |Eu(x0)|,

3. x0 is an L d-Lebesgue point of div u.

Since u ∈ U(Ω), these properties hold for L d-almost every x ∈ Ω. In particular

(1) is a consequence of Theorem 7.4 in [2], whereas (2) follows from Theorem 2.3.

For y ∈ B(0, 1) define maps

ur(y) := u(x0 + ry)− ũ(x0)
r

, 0 < r < dist(x0, ∂Ω),

where ũ is the precise representative of u. For u0(y) := ∇u(x0)y we have the

strong convergence ur → u0 in L1(B(0, 1);Rd). Indeed, by the approximate

differentiability we have∫
B(0,1)

|ur(y)− u0(y)| d y

= 1
rd

∫
B(x0,r)

|u(z)− ũ(x0)−∇u(x0)(z − x0)|
r

d z → 0

as r ↓ 0. Moreover, we have strict convergence:

lim
r↓0
|Eur|(B(0, 1)) = ωd lim

r↓0

|Eu|(B(x0, r))
ωdrd

= ωd|Eu(x0)| = |Eu0|(B(0, 1)),

thus (ur) is bounded in BD(B(0, 1)). Note that for ϕ ∈ L2(B(0, 1)) we have∣∣∣∣∣
∫
B(0,1)

ϕ(y)(div ur(y)− div u0(y)) d y
∣∣∣∣∣

≤ ‖ϕ‖2

∫
B(0,1)

| div u(x0 + ry)− div u(x0)|2 d y

= ωd‖ϕ‖2 −
∫
B(x0,r)

| div u(z)− div u(x0)|2 d z.

The right-hand side vanishes as r ↓ 0 by the Lebesgue point property (3). Hence,

ur
∗⇁ u0 weakly* in U(B(0, 1)). In virtue of Proposition 2.15, Lemma 4.6 and
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the scaling properties of F∗ we obtain

lim inf
r↓0

F∗[u,B(x0, r)]
rd

= lim inf
r↓0

F∗[ur, B(0, 1)]

≥ F∗[u0, B(0, 1)]

≥
∫
B(0,1)

f(Eu0(y)) d y

= ωdf(Eu(x0)).

Therefore, by Proposition 2.2 we obtain

Fa∗ [u,B] ≥
∫
B
f(Eu) d x

for any Borel set B ⊂ Ω.

Singular points. We want to prove that for all Borel sets B ⊂ Ω the inequality

F s∗ [u,B] ≥
∫
B
f#

dev

(
dEsu

d |Esu|

)
d |Esu|

holds. In order to do that we fix x0 ∈ Ω such that

dEsu

d |Esu|
(x0) = a� b, a, b ∈ Rd \ {0}, a ⊥ b.

This property holds for |Esu|-a.e. x0 ∈ Ω by Theorem 2.26 (see also Re-

mark 2.27). It suffices to establish the inequality

lim
r↓0

F∗[u,B(x0, r)]
|Eu|(B(x0, r))

≥ f#
dev(a� b)

at any |Eu|-Lebesgue point x0 ∈ Ω for which the limit on the left-hand side exists.

By the coercivity of F and a diagonal argument similar to the one contained in

the proof of Lemma 2.14, we can choose a sequence (uh) ⊂ LU(B(x0, r)) such

that uh ∗⇁ u weakly* in U(B(x0, r)) and

lim
h→∞
F [uh, B(x0, r)] = F∗[u,B(x0, r)].
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We then have

F∗[u,B(x0, r)]

= lim
h→∞
F [uh, B(x0, r)]

= lim
h→∞

∫
B(x0,r)

f(Euh) d x

= lim
h→∞

∫
B(x0,r)

f(Euh)− f#
dev(dev Euh) d x+

∫
B(x0,r)

f#
dev(dev Euh) d x

=: lim
h→∞

(
I

(1)
h,r + I

(2)
h,r

)
.

In virtue of (4.3) we have

I
(1)
h,r =

∫
B(x0,r)

f(Euh)− f#
dev(dev Euh) d x

≥ −M
∫
B(x0,r)

| div uh|γ + | dev Euh|δ + 1 dx.

We can assume that

| dev Euh|δ ⇀ ξ weakly in L1/δ(B(x0, r))

for some ξ ∈ L1/δ(B(x0, r)).

For 0 ≤ γ < 2 by Hölder’s inequality we obtain∫
B(x0,r)

| div uh|γ dx ≤ sup
h
‖div uh‖γ2 |B(x0, r)|1−γ/2.

Thus,

lim
h→∞

I
(1)
h,r ≥ −CM,γ

(
|B(x0, r)|1−γ/2 + |B(x0, r)|+

∫
B(x0,r)

ξ dx
)
.

Therefore,

lim
r↓0

lim
h→∞

I
(1)
h,r ≥ 0.

By Proposition 2.11 the set

S :=
{
a� b : a, b ∈ Rd, a · b = 0

}
spans the space of symmetric and deviatoric matrices SD(d). Moreover, the

recession function f#
dev is positively 1-homogeneous and convex at points of

S (see Remark 4.2). In virtue of Theorem 2.10 for each orthogonal a, b ∈ Rd

there exists a linear function ` : SD(d)→ R such that f#
dev(D) ≥ `(D) for all
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D ∈ SD(d) and f#
dev(a � b) = `(a � b). For all but finitely many r > 0 we

can assume that Λ(∂B(x, r)) = 0, where Λ ∈ M+(Ω) is the weak* limit of (a

subsequence of) the measures |`(dev(Euh))|L d. Therefore, we have

lim
h→∞

I
(2)
h,r = lim

h→∞

∫
B(x0,r)

f#
dev(dev Euh) d x

≥ lim sup
h→∞

∫
B(x0,r)

`(dev Euh) d x

= `(devEu(B(x0, r))),

where the last equality follows from the linearity of `. Combining the above

estimates yields

lim
r↓0

F∗[u,B(x0, r)]
|Eu|(B(x0, r))

≥ lim sup
r↓0

`(devEu(B(x0, r)))
|Eu|(B(x0, r))

= lim sup
r↓0

`

(
dev

(
Eu(B(x0, r))
|Eu|(B(x0, r))

))

= `

(
dev

(
lim
r↓0

Eu(B(x0, r))
|Eu|(B(x0, r))

))

= ` (dev(a� b))

= `(a� b)

= f#
dev(a� b).

This finishes the proof. �

Conclusion

In this chapter we established the relaxation result for integral functionals with

symmetric-quasiconvex integrands satisfying the mixed-growth condition. We

proved an integral representation of the relaxation with respect to the weak*

convergence in the Temam-Strang space. This result extends the previous result

by Jesenko and Schmidt in [23]. Our proof is a mixture of the standard blow-up

argument and the convexity argument based on the Kirchheim-Kristensen

result [24]. This argument was possible due to the subcritical assumption (3)

in Theorem 4.1. It remains an open question, whether this condition can be

deduced from conditions (1) and (2) of the aforementioned theorem.
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Chapter 5

Inhomogeneous Henky’s model

5.1 Introduction

Recall that the classical minimisation problem in the theory of Hencky plasticity

(cf. [5, 38]) involves the following convex functional:∫
Ω
ϕ(dev Eu) + κ

2 (div u)2 dx, (5.1)

where ϕ : SD(d)→ [0,+∞) is a convex function which grows quadratically on

some compact set and linearly outside of this set, and κ = λ+ 2µ/3 is the bulk

modulus of the material with the Lamé constants λ and µ.

In this chapter we generalise the energy functional to the following inhomo-

geneous one:

G[u] :=
∫

Ω
g(x, dev Eu) + h(x, div u) d x, (5.2)

where the functions g and h satisfy certain continuity, convexity and growth

properties (see Theorem 5.1 for the precise formulation).

As in Hencky’s plasticity, a natural underlying function space for the func-

tional G is the space LU(Ω). Unfortunately, it is not possible to apply the

direct method to G in this space. By Theorem 2.32, the functional G extends

continuously, with respect to the area-strict convergence, to the functional

76



defined on the Temam-Strang space U(Ω):

G[u] :=
∫

Ω
g(x, dev Eu) + h(x, div u) d x+

∫
Ω

(g ◦ dev)#
(
x,

dEsu

d |Esu|

)
d |Esu|,

(5.3)

where

(g ◦ dev)#(x,A) := lim sup
(x′,A′)→(x,A)

s→∞

g(x′, s devA′)
s

, A ∈ SD(d) .

The main result of this chapter is the following weak* lower semicontinuity:

Theorem 5.1. Let Ω ⊂ Rd be a bounded Lipschitz domain and

1. the function g : Ω× Rd×d
sym → [0,+∞) is Carathéodory with linear growth:

m|A| ≤ g(x,A) ≤M(1 + |A|), (x,A) ∈ Ω× Rd×d
sym,

for some constants 0 < m ≤M ;

2. for every x ∈ Ω the map A 7→ g(x, devA) is symmetric-quasiconvex;

3. the strong recession function (g ◦ dev)∞, defined as the limit

(g ◦ dev)∞(x,A) := lim
(x′,A′)→(x,A)

s→∞

g(x′, s devA′)
s

, A ∈ SD(d),

exists and is jointly continuous;

4. the function h : Ω × R → [0,+∞) is Carathéodory, convex and has

quadratic growth

0 ≤ h(x, z) ≤M(1 + |z|2), (x, z) ∈ Ω× R.

Then, the functional

G[u] :=
∫

Ω
g(x, dev Eu) + h(x, div u) d x+

∫
Ω

(g ◦ dev)∞
(
x,

dEsu

d |Esu|

)
d |Esu|

(5.4)

is weakly* lower semicontinuous on U(Ω).

Remark 5.2. Note that in Theorem 5.1 the upper recession function g# is

replaced with the strong recession function in the functional G. This requirement

comes from the theory of generalised Young measures, which is used here to

prove Theorem 5.1, and cannot be dropped.
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5.2 Young measures

In this section we briefly recall basics of the theory of generalised Young

measures. This exposition is based on [27, 35], where one can find all the proofs

of results mentioned here.

In all the following we assume that Ω ⊂ Rd is an open bounded Lipschitz

domain, unless stated otherwise.

For a function f ∈ C(Ω× Rd×d
sym) and a function g ∈ C(Ω× Bd×dsym) we define

a linear operator S : C(Ω× Rd×d
sym)→ C(Ω× Bd×dsym)

(Sf)(x, Â) := (1− |Â|)f
(
x,

Â

1− |Â|

)

for (x, Â) ∈ Ω× Bd×dsym, and its inverse S−1,

(S−1g)(x,A) := (1 + |A|)g
(
x,

A

1 + |A|

)

for (x,A) ∈ Ω× Rd×d
sym. Clearly S−1Sf = f and SS−1g = g.

Now we define a space of admissible integrands,

E(Ω;Rd×d
sym) :=

{
f ∈ C(Ω× Rd×d

sym) : Sf ∈ C(Ω× Bd×dsym)
}
. (5.5)

Here Sf ∈ C(Ω× Bd×dsym) is to be understood as the statement that Sf extends

to a bounded and continuous function on Ω× Bd×dsym. Note that the recession

function f∞ (if it exists) is a unique extension of the function Sf to Ω× Bd×dsym,

i.e. for (x,A) ∈ Ω× ∂Bd×dsym,

lim
(x′,A′)→(x,A)
|A′|<1

(1− |A′|)f
(
x′,

A′

1− |A′|

)
= f∞(x,A).

Therefore, one can equivalently express the fact that f ∈ C(Ω× Rd×d
sym) lies in

E(Ω;Rd×d
sym) by requiring f∞ to exist.

Definition 5.3 (Young measure). A generalised Young measure on an

open set Ω ⊂ Rd with values in Rd×d
sym is a triple ν := (νx, λν , ν∞x ) with

1. a parametrized family of probability measures (νx)x∈Ω ⊂ M1(Rd×d
sym), called

the oscillation measure;
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2. a positive finite measure λν ∈ M+(Ω), called the concentration measure;

3. a parametrized family of probability measures (ν∞x )x∈Ω ⊂ M1(∂Bd×dsym),

called the concentration-direction measure,

such that the following conditions hold:

1. the map x 7→ νx is weakly* L d Ω-measurable, i.e. the function x 7→

〈f(x, ·), νx〉 is L d Ω-measurable for all bounded Borel functions f :

Ω× Rd×d
sym → R;

2. the map x 7→ ν∞x is weakly* λν-measurable (defined analogously to (1));

3. the map x 7→ 〈| · |, νx〉 is in L1(Ω).

We denote by Y(Ω;Rd×d
sym) the set of all such generalised Young measures.

The generalised Young measures ν ∈ Y(Ω;Rd×d
sym) are dual objects to func-

tions f ∈ E(Ω;Rd×d
sym) via the duality pairing

〈〈f,ν〉〉 :=
∫

Ω
〈f(x, ·), νx〉 dx+

∫
Ω
〈f∞(x, ·), ν∞x 〉 dλν(x)

:=
∫

Ω

∫
Rd×d

sym
f(x,A) d νx(A) d x

+
∫

Ω

∫
∂Bd×d

sym
f∞(x,A) d ν∞x (A) dλν(x).

Definition 5.4 (Generation). Let (γj) ⊂ M(Ω;Rd×d
sym) be a sequence of Radon

measures. We say that γj generates a generalised Young measure ν ∈ Y(Ω;Rd×d
sym)

(in symbols γj Y→ ν), if for all f ∈ E(Ω;Rd×d
sym),

f

(
x,

d γj
d L d

)
L d Ω + f∞

(
x,

d γsj
d |γsj |

)
|γsj |

∗⇁ 〈f(x, ·), νx〉L d Ω + 〈f∞(x, ·), ν∞x 〉λν in M(Ω).
(5.6)

Definition 5.5 (Elementary Young measure). Let γ ∈ M(Ω;Rd×d
sym) be a

Radon measure. Then, the triple δ[γ] := (δA, |γs|, δB) ∈ Y(Ω;Rd×d
sym) with

A := d γ
d L d

∈ L1(Ω,L d Ω;Rd×d
sym), B := d γs

d |γs| ∈ L1(Ω, |γs|;Rd×d
sym)

is called the γ-elementary Young measure.

Note that the convergence (5.6) can be now rephrased as 〈〈f, δ[γj ]〉〉 → 〈〈f,ν〉〉

for all f ∈ E(Ω;Rd×d
sym).
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The following result is a cornerstone of the generalised Young measure

theory.

Theorem 5.6 (Fundamental Theorem). Let (γj) ⊂ M(Ω;Rd×d
sym) be a uni-

formly bounded (in the total variation norm) sequence of Radon measures.

Then, there exist a (not relabelled) subsequence of (γj) and a Young measure

ν ∈ Y(Ω;Rd×d
sym) such that γj Y→ ν.

It turns out that it suffices to test the Young measure convergence γj Y→ ν

with a countable family of functions in E(Ω;Rd×d
sym) of a particular form.

Lemma 5.7 (Density). There exists a countable set of functions {fk} =

{ϕk ⊗ hk : k ∈ N} ⊂ E(Ω;Rd×d
sym), where ϕk ∈ C(Ω) and hk ∈ C(Rd×d

sym),

such that the knowledge of 〈〈fk,ν〉〉 completely determines the Young measure

ν ∈ Y(Ω;Rd×d
sym). Moreover, the functions hk can be taken Lipschitz continuous.

We have the following extended Young measure limit representation.

Proposition 5.8 (Extended representation). Let (γj) ⊂ M(Ω;Rd×d
sym) be

a sequence of Radon measures generating a generalised Young measure ν ∈

Y(Ω;Rd×d
sym). Let f : Ω× Rd×d

sym → R be a Carathéodory function such that the

recession function f∞ exists and is jointly continuous. Then

lim
j→∞
〈〈f, δ[γj]〉〉 = 〈〈f,ν〉〉. (5.7)

As a consequence of Theorem 4.1, we can establish the following Jensen-type

inequalities.

Proposition 5.9. Let (uj) ⊂ U(Ω) be a sequence such that uj ∗⇁ u weakly*

in U(Ω). Let Euj Y→ ν for some Young measure ν = (νx, λν , ν∞x ) ∈ Y(Ω;Rd×d
sym),

where

λν = λaν + λsν with λaν � L d Ω, λsν ⊥ L d Ω

and let (div uj) generate a classical Young measure (µx)x∈Ω (see [35] for details).
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Then, it holds that

g ◦ dev(Eu) + h(div u) ≤ 〈g ◦ dev, νx〉+ 〈(g ◦ dev)∞, ν∞x 〉
dλaν
d L d

+ 〈h, µx〉 (5.8)

for L d-a.e. x ∈ Ω and

(g ◦ dev)∞
(

dEsu

d |Esu|

)
|Esu| ≤ 〈(g ◦ dev)∞, ν∞x 〉λsν as measures, (5.9)

for all continuous functions g ∈ C(Rd×d
sym) and h ∈ C(R) such that

1. g ◦ dev is symmetric-quasiconvex and the recession function (g ◦ dev)∞

exists,

2. h is convex and bounded from below.

Proof. This proposition follows directly from the Jensen-type inequalities for

BD-Young measures, see Theorem 4 in [33] (for ν) together with the classical

Jensen inequality (for µ). �

We are now ready to prove Theorem 5.1.

Proof. Let uj ∗⇁ u weakly* in U(Ω). Selecting a subsequence if necessary, we

can assume that (Euj)j generates a generalised Young measure ν ∈ Y(Ω;Rd×d
sym)

and that (div uj)j generates a classical Young measure (µx)x∈Ω.

Then,

lim inf
j→∞

G[uj] ≥ lim inf
j→∞

〈〈g ◦ dev, δ[Euj]〉〉+
∫

Ω
〈h(x, ·), µx〉 dx

=
∫

Ω
(〈g ◦ dev(x, ·), νx〉+ 〈h(x, ·), µx〉) d x

+
∫

Ω
〈(g ◦ dev)∞(x, ·), ν∞x 〉 dλν(x)

=
∫

Ω

[
〈g ◦ dev(x, ·), νx〉+ 〈(g ◦ dev)∞(x, ·), ν∞x 〉

dλν
d L d

(x)

+ 〈h(x, ·), µx〉
]

dx+
∫

Ω
〈(g ◦ dev)∞(x, ·), ν∞x 〉 dλsν(x)

≥
∫

Ω
g ◦ dev(x, Eu) + h(x, div u) d x

+
∫

Ω
(g ◦ dev)∞

(
x,

dEsu

d |Esu|

)
d |Esu|

= G[u],
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where, by a slight abuse of notation, we write g ◦ dev(x,A) := g(x, devA).

The first equality follows from Proposition 5.8, and the second inequality is

a consequence of Proposition 5.9. Since the above holds for any subsequence,

this ends the proof of the lower semicontinuity of G in U(Ω). �

5.3 Young measures revisited

In this chapter we applied techniques from the theory of Young measures to

the mixed growth functional. This functional, however, has a very concrete

form, where deviatoric part and trace part are additive components.

A natural question is whether one can apply the theory of Young measures

to more general (inhomogeneous) functionals with mixed growth integrands,

similar to the ones investigated in Chapter 4. The development of generalised

Young measure theory for mixed-growth integrands is not a trivial matter. In

fact problems already arise at the level of the functional analytic framework

(cf. [27]). Since we are interested in the case of U-Young measures, we can use

the existing framework of BD-Young measures – every U-Young measure (i.e.

a generalised Young measure generated by a sequence in U) is necessarily a

BD-Young measure.

In this section we present a few results regarding U-Young measures, which

may shed some light on the path to further developments.

We begin with the definition.

Definition 5.10. We say that ν is a U-Young measure, in symbols ν ∈

UY(Ω;Rd×d
sym), if there exists a bounded sequence (uj) ⊂ U(Ω) such that for all

f ∈ E(Ω;Rd) the convergence 〈〈f, δ[Euj]〉〉 → 〈〈f,ν〉〉 holds.

Firstly, we want to establish that there are ‘good’ generating sequences

for U-Young measures. The following lemma asserts that Young measures

generated by sequences in LU(Ω) and sequences in U(Ω) coincide.

Lemma 5.11. UY(Ω;Rd×d
sym) = LUY(Ω;Rd×d

sym).
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Proof. It suffices to prove that UY(Ω;Rd×d
sym) ⊂ LUY(Ω;Rd×d

sym). Let ν ∈

UY(Ω;Rd×d
sym) be a U-Young measure such that Euj Y→ ν for some sequence

(uj) ⊂ U(Ω). For each j ∈ N we can find a smooth function vj ∈ LU(Ω) ∩

C∞(Ω;Rd) such that∣∣∣∣∣
∫

Ω
fk(x, Euj) d x+

∫
Ω
f∞k

(
x,

dEsuj
d |Esuj|

)
d |Esuj| −

∫
Ω
fk(x, Evj) d x

∣∣∣∣∣ ≤ 1
j

for k ≤ j. This is a consequence of Theorem 3.7 and the fact that smooth

functions are area-strictly dense in U(Ω). Hence

lim
j→∞

∫
Ω
fk(x, Evj) d x = 〈〈fk,ν〉〉

for all k ∈ N. In virtue of Lemma 5.7, Evj Y→ ν, so ν ∈ LUY(Ω;Rd×d
sym). �

The following proposition is due to M. Jesenko and B. Schmidt:

Proposition 5.12. Let ν ∈ UY(Ω;Rd×d
sym) be a U-Young measure. Then, there

exists a bounded sequence (uj) ⊂ LU(Ω) such that Euj Y→ ν and (| div uj|2) is

equiintegrable.

Proof. Let (uj) ⊂ LU(Ω)∩C∞(Ω;Rd) be a bounded sequence such that Euj Y→

ν for some ν ∈ UY(Ω;Rd×d
sym). By the embedding BD(Ω) ⊂ Ld/(d−1)(Ω;Rd), we

have that (uj) ⊂ Ld/(d−1)(Ω;Rd). By the Helmholtz decomposition, we can

write

uj = vj +∇ϕj,

where vj ∈ Ld/(d−1)(Ω;Rd) with div vj = 0 and ϕj ∈ W1,d/(d−1)
0 (Ω). Since

(div uj) is uniformly L2-bounded and div uj = ∆ϕj, we obtain that ϕj ∈

(W1,d/(d−1)
0 ∩W2,2)(Ω) and supj‖ϕj‖2,2 <∞.

Let wj := ∇ϕj. Then, up to a subsequence, wj ⇀ w weakly in W1,2(Ω;Rd)

for some w ∈ W1,2(Ω;Rd). According to the decomposition lemma (cf. [20,

Lemma 1.2], [26]) there exists a further subsequence (wjk) and a sequence

(w̃k) ⊂ w + W1,2
0 (Ω;Rd) such that

1. w̃k ⇀ w in W1,2(Ω;Rd),

2. (|∇w̃k|2) is equiintegrable,
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3. limk→∞ |{x : wjk 6= w̃k or ∇wjk 6= ∇w̃k}| = 0.

Next, define a sequence

ũk := vjk + w̃k.

It is clear that (ũk) is a bounded sequence in LU(Ω) with (div ũk)2 = (div w̃k)2

being equiintegrable. It remains to prove that Eũk Y→ ν.

By Lemma 5.7, there exists a countable family of functions of the form

ξ ⊗ h with ξ ∈ C(Ω) and h : Rd×d
sym → R Lipschitz continuous, which determines

the generated BD-Young measure. We thus have

lim
j→∞
〈〈ξ ⊗ h, δ[Euj]〉〉 = 〈〈ξ ⊗ h,ν〉〉.

On the other hand

lim
k→∞

∫
Ω
|h(Eujk(x))− h(E ũk(x))| dx

≤ lim
k→∞

∫
Ω
Lip(h)|Eujk(x)− E ũk(x)| dx

≤ Lip(h) lim
k→∞

∫
{∇wjk

6=∇w̃k}
|∇wjk(x)−∇w̃k(x)| dx

= 0,

where Lip(h) denotes the Lipschitz constant of h. The last equation follows

from the fact that (∇wjk −∇w̃k) is bounded in L2(Ω;Rd×d) and is therefore

equiintegrable. Consequently, (Eũk) generates the same U-Young measure as

the initial sequence. �

Proposition 5.13. Let ν ∈ UY(Ω;Rd×d
sym). Then,∫

Ω

∫
Rd×d

sym
f(x,A) d νx(A) d x <∞, (5.10)

for any Carathéodory function f : Ω× Rd×d
sym → [0,+∞) satisfying

0 ≤ f(x,A) ≤M(1 + | trA|2), M > 0

for x ∈ Ω and A ∈ Rd×d
sym.
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Proof. Let (uj) ⊂ LU(Ω) be a bounded sequence such that Euj Y→ ν and

(| div uj|2) is equiintegrable. Fix k ∈ N and define functions:

fk(x,A) :=


f(x,A) for | trA| ≤ k,

1+k2

1+| trA|2f(x,A) for k < | trA|.

Then, for each k ∈ N, fk is a Carathéodory function, fk ↑ f and f∞k ≡ 0, since

0 ≤ fk(x,A) ≤M(1 + k2)

for any x ∈ Ω and A ∈ Rd×d
sym. We also have the estimate:

|fk(x,A)− f(x,A)| ≤ 1{trA: | trA|>k}(trA) | trA|
2 − k2

1 + | trA|2 f(x,A)

≤M1{trA: | trA|>k}(trA)(| trA|2 − k2)

and so we obtain

|〈〈fk − f, δ[Euj]〉〉| =
∣∣∣∣∫

Ω
fk(x, Euj)− f(x, Euj) d x

∣∣∣∣
≤M

∫
{x∈Ω: | divuj(x)|>k}

(| div uj|2 − k2) d x

≤M sup
j

∫
{x∈Ω: | divuj(x)|>k}

(| div uj|2 − k2) d x.

By the equiintegrability of (| div uj|2) we obtain:

sup
j

∫
{x∈Ω: | divuj |>k}

(| div uj|2 − k2) d x→ 0 as k →∞. (5.11)

By the monotone convergence theorem we obtain:

lim
k→∞
〈〈fk,ν〉〉 = 〈〈f,ν〉〉. (5.12)

Next, by Proposition 5.8, we obtain:

lim
j→∞
〈〈fk, δ[Euj]〉〉 = 〈〈fk,ν〉〉. (5.13)
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We have

|〈〈f, δ[Euj]〉〉 − 〈〈f,ν〉〉| ≤ |〈〈f, δ[Euj]〉〉 − 〈〈fk, δ[Euj]〉〉|

+ |〈〈fk, δ[Euj]〉〉 − 〈〈fk,ν〉〉|+ |〈〈fk,ν〉〉 − 〈〈f,ν〉〉|

≤ sup
l
|〈〈f, δ[Eul]〉〉 − 〈〈fk, δ[Eul]〉〉|

+ |〈〈fk, δ[Euj]〉〉 − 〈〈fk,ν〉〉|+ |〈〈fk,ν〉〉 − 〈〈f,ν〉〉|.

By (5.13), for a fixed k ∈ N, the second term on the right-hand side vanishes

as j →∞. By (5.11) and (5.12) respectively the first and the last term vanish

as k →∞. Therefore

lim
j→∞
〈〈f, δ[Euj]〉〉 = 〈〈f,ν〉〉. (5.14)

Since (uj) is uniformly norm-bounded in LU(Ω), expanding double brackets

yields:∫
Ω

∫
Rd×d

sym
f(x,A) d νx(A) d x ≤ 〈〈f,ν〉〉 ≤M sup

j

∫
Ω

1 + | div uj|2 dx <∞. �

Remark 5.14. It is possible to prove Proposition 5.13 in a different way.

Indeed, let (uj) ⊂ LU(Ω) be such that Euj Y→ ν for some ν ∈ UY(Ω;Rd×d
sym).

Since (uj) is uniformly norm-bounded in LU(Ω), we have

sup
j

∫
Ω
f(x, Euj(x)) d x <∞.

Fix h ∈ N and define fh(x,A) := min{h, f(x,A)}. Then, by the classical Young

measures convergence, we have

lim
j→∞

∫
Ω
fh(x, Euj(x)) d x =

∫
Ω

∫
Rd×d

sym
fh(x,A) d νx(A) d x.

Since f ≥ fh, we have

lim inf
j→∞

∫
Ω
f(x, Euj(x)) d x ≥

∫
Ω

∫
Rd×d

sym
fh(x,A) d νx(A) d x.

By the monotone convergence theorem, letting h→∞ yields

lim inf
j→∞

∫
Ω
f(x, Euj(x)) d x ≥

∫
Ω

∫
Rd×d

sym
f(x,A) d νx(A) d x.

The proof is finished.
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The following conjecture is the ultimate, yet elusive goal of the theory of

U-Young measures.

Conjecture 5.15 (Characterisation). Let ν ∈ BDY(Ω;Rd×d
sym) be a BD-

Young measure with λν(∂Ω) = 0. Then, ν is a U-Young measure if and only

if

1.
∫

Ω

∫
Rd×d

sym
| trA|2 d νx(A) d x <∞,

2. supp ν∞x ⊂ {m ∈ SD(d) : |m| = 1} for λν-a.e. x ∈ Ω.

In virtue of Proposition 5.13, we see that the first condition of the ne-

cessity part of Conjecture 5.15 follows. It seems natural to expect that the

concentration-direction measure ν∞x is supported in the unit sphere of symmet-

ric and deviatoric matrices, as Proposition 5.12 suggests that the concentration

in the trace direction does not occur.
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