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We apply two independent data analysis
methodologies to locate stable climate states in
an intermediate complexity climate model and
analyse their interplay. First, drawing from the theory
of quasi-potentials, and viewing the state space as an
energy landscape with valleys and mountain ridges,
we infer the relative likelihood of the identified
multistable climate states and investigate the most
likely transition trajectories as well as the expected
transition times between them. Second, harnessing
techniques from data science, and specifically
manifold learning, we characterize the data landscape
of the simulation output to find climate states
and basin boundaries within a fully agnostic and
unsupervised framework. Both approaches show
remarkable agreement, and reveal, apart from the
well known warm and snowball earth states, a third
intermediate stable state in one of the two versions
of PLASIM, the climate model used in this study.
The combination of our approaches allows to identify
how the negative feedback of ocean heat transport
and entropy production via the hydrological cycle
drastically change the topography of the dynamical
landscape of Earth’s climate.
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1. Introduction
The climate, an extremely high-dimensional complex system, is composed of five interacting
subdomains: a gaseous atmosphere, a hydrosphere (water in liquid form), a lithosphere (upper
solid layer), a cryosphere (water in solid form) and a biosphere (ecosystems and living organisms)
[1]. The climate is driven by the inhomogeneous absorption of incoming solar radiation and
can be treated as a highly non-trivial dynamical system that features spatio-temporal variability
on a vast range of scales. The system is at an approximate non-equilibrium steady state due
to the resulting interplay of forcings, dissipation, positive and negative feedbacks, instabilities
and saturation mechanisms [2]. The presence of periodic as well as irregular fluctuations in the
boundary conditions does not allow the climate to reach an exact steady state [3,4].

A straightforward attempt to mathematically formulate the dynamics of the climate system
is by defining a set of partial differential equations (PDEs) that describe the budget of mass,
momentum and energy. As this set of PDEs is impossible to solve analytically, they are usually
simulated numerically. Depending on the number of resolved variables, this procedure is
extremely challenging both from a technological and scientific point of view, and requires a
diversified approach. Therefore, a hierarchy of climate models can be established [5–8]. At the
lowest level of such a hierarchy one can find simple zero or one-dimensional Energy Budget
Models (EBMs) that describe in a highly simplified manner the fluxes of energy inside the climate
system and and at its boundaries [9–11], as well as low-dimensional models that represent
fundamental processes of the large-scale oceanic [12–14] and atmospheric dynamics [15–17].
Next come the so-called intermediate complexity models, which provide a parsimonious yet
Earth-like representations of the dynamics of climate, see e.g. [18–25]. Finally, modern state-of-
the-art climate models, similar to the ones featured in the latest Intergovernmental Panel on
Climate Change (IPCC) report [26] are based on applying a series of necessary truncations and
approximations in such a set of PDEs [27]. In general, the impact of the neglected scales of motions
on the explicitly resolved scales is approximated via suitably developed parametrizations, which
include deterministic, stochastic and possibly non-Markovian components [28,29].

(a) Global stability properties of the climate system
The current astronomical configuration of Earth supports the present-day Warm (W) climate, and
a frozen one, termed Snowball (SB), which exhibits global glaciation, extremely low temperatures
and limited climatic variability. Geological and paleomagnetic evidence suggests that during the
Neoproterozoic era (in particular around 630 and 715 Ma), the Earth exhibited at least two major
long-lasting global glaciation periods, thus entering twice into the snowball climate state [30,31].
Simple energy balance models are able to reproduce the associated multistability of the climate
system [9–11], which is mainly affected by the so-called ice-albedo feedback. The importance of
such a mechanism is confirmed by studies performed with higher complexity models [30,32–35],
including fully coupled climate models [36].

If we now focus on the current climate or the climate of the recent past (thus within the W
state), the Earth is well known to feature further elements of multistability associated with critical
transitions among stable states. Examples of geographically localized phenomena affecting the
climate system featuring such a behaviour—the so-called tipping elements [37]—include the
dieback of the Amazon forest [38], the shut-down of the thermohaline circulation of the Atlantic
ocean [39], the methane release resulting from the melting of the permafrost [40] and the
collapse of the atmospheric circulation regime associated with the Indian monsoon [41]. A critical
transition taking place for one climatic subsystem may trigger the tipping of another element: this
is the phenomenon of the so-called cascading tipping points [42,43].

Transitions between metastable states might be facilitated by mechanisms like stochastic
resonance [44], which has been recently reframed according to the formalism adopted here for
treating non-equilibrium systems [45]. Indeed, stochastic resonance is thought to act in the climate
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system at different spatial and temporal scales, ranging from ultralong [46–48], to intermediate
[49–52], to short ones [53–55].

In this work, we explore the multistability of a climate model through methods borrowed from
non-equilibrium statistical physics, dynamical systems, and data science, thus pushing forward
the scientific programme presented in [4,56]. We then take inspiration from the Waddington’s
‘epigenetic landscape’ metaphor in evolutionary biology [57–60]. The phase space of the climate
model can be explored by adding suitably defined stochastic forcing. As a result, the competing
metastable climatic states can be viewed as vast valleys of a quasi-potential landscape Φ,
separated by mountain ridges, corresponding to unstable climates [56,61]. The stochastic forcing
allows for exploring the landscape and, in particular, makes it possible to observe transitions
between the metastable states.

Unfortunately, the actual evolution of the climate system cannot be fully regarded as the
idealized stochastic motion in a fixed non-equilibrium quasi-potential landscape described above
because geological, biological, astronomical and astrophysical factors modulate the landscape on
a vast range of time scales. Nonetheless, the quasi-potential landscape viewpoint can be extremely
useful to understand its multistability at an instance in time.

(b) Outline of the paper
In this paper, we will study the transitions between competing metastable states of PLASIM [25],
a simplified climate model that has shown extreme flexibility in describing the dynamics of a
vast range of climate conditions, including very exotic ones [62–67]. The model features O(105)
degrees of freedom (d.f.). We consider two set-ups of the model—one allowing for the ocean to
transport heat from low to high latitudes (set-up A), previously used in [66], and one where only
the atmosphere is able to perform large-scale heat transport (set-up B), previously used in [65].
The main limitation of the model is its lack of explicit representation of the deep ocean circulation,
which is very relevant for climate on multidecadal to millennial time scales.

We explore the phase space of the model by allowing the solar irradiance S∗ to randomly
fluctuate around the present-day mean value of S∗ = 1365 W/m2, thus triggering transitions
among the competing climate states. Following [56,61], we construct the quasi-potential of the
stochastically perturbed system [68–71], and we compute by stochastic averaging the mean
transitions paths among attractors, which are composed of instantonic and relaxation trajectories.

The identification of the competing attractors is approached in two ways. First, we use
standard forward numerical modelling and identify different asymptotic states, which are
associated, when the dynamics is deterministic, with separate basins of attraction. Second,
competing attractors are automatically detected through data-driven methods applied to the
output of long stochastic integrations of the model. Such methods have been used for studying
metastable states in biomolecules, and allow one to reconstruct very effectively the quasi-potential
Φ of the system, partially taking care of the curse of dimensionality [72–75]. We anticipate that
whereas in set-up A we find the two usual W and SB states, set-up B has a third stable climate
state (to be termed ‘cold climate’ (C) in the following), with an ice-free latitudinal band at
roughly ± 20◦ around the Equator featuring mild surface temperatures, a vigorous atmospheric
circulation and non-trivial hydrological cycle. Such a third state resembles previously suggested
exotic climatic configurations such as the slushball Earth [32] and the Jormungand state [34]. The
C state corresponds to a shallow minimum of the quasi-potential and disappears when ocean
transport is included in the system, which acts as a strong stabilizing mechanism. The presence
of the C state has important implications both on the statistical mechanics of the system and on
the topology of the transition paths between the W and the SB states.

The paper is structured as follows. Section 2 contains the mathematical framework behind
our analysis. Section 3 provides a description of the climate model used in this study. Section 4
contains the description and critical analysis of the results. Section 5 is dedicated to drawing
the conclusion of this work and to presenting future research perspectives. The electronic
supplementary material attached to this paper contains extra information on the numerical
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simulations, on the computation of the average transition paths, as well as a brief and informal
description of the mathematics of the transfer operator and of its finite-size representation.
Additionally, it includes links to a set of movies related to the numerical simulations performed
in this study.

2. Qualitative and quantitative aspects of the multistability of the climate
system

(a) Dynamical landscape of the climate system
Let us consider a deterministic dynamical system defined by the following set of ordinary
differential equations:

dx
dt

= F(x, t), x(t = 0) ≡ x0, (2.1)

where x(t) ∈ R
N describes the state of the system at time t with initial condition x0, and F(x, t) ∈ R

N

is a smooth vector field. The initial condition x0 determines the asymptotic state of its orbit.
We assume that the system is forced and dissipative, so that N− volumes in phase space are
contracted by the flow. If equation (2.1) possesses more than one asymptotic state, defined by the
attractors Ωj, j = 1, . . . , J, the system is multistable. The phase space is partitioned between the
basins of attraction Bj of the attractors Ωj and the boundaries ∂Bl, l = 1, . . . , L separating such
basins, which possess a set of saddle points Πl, l = 1, . . . , L. Such saddle points attract initial
conditions on the basin boundaries [76–78] and can be computed using the so-called edge tracking
algorithm [79], which was used in an EBM by Bódai et al. [80]. Chaotic unstable saddles, then
termed Melancholia (M) states, have been constructed with the edge tracking algorithm for a
simplified climate model built by coupling a primitive equation atmosphere with a diffusive
ocean [35].

Escaping an attractor is possible if the system undergoes a properly defined stochastic forcing
[81–83] . By subjecting equation (2.1) to a Gaussian random noise and considering it in Itô form,
we write the stochastic differential equation

dx = F(x) dt + σs(x) dW, (2.2)

where dW is the increment of an M-dimensional Wiener process, F(x) is in this context usually
referred to as the drift term, C(x) = s(x)s(x)T ∈ R

N×N is the noise covariance matrix where in
general the volatility matrix s(x) ∈ R

N×M, and |σ | > 0 determines the strength of the noise.
In the present work, we introduce stochasticity in the form of a fluctuating solar constant,

which amounts to considering only one independent Brownian motion, so that s(x) ∈ R
N×1 and

C(x) is rank one. Additionally, only the d.f. directly associated with the incoming solar radiation
are directly impacted by the stochastic forcing. As clarified in [56], we expect that the applied noise
percolates to all d.f.’s of the system as a result of non-degenerate interplay between stochastic
forcing and the deterministic component of the dynamics given by the drift term, so that we can
assume that we are dealing with a hypoelliptic diffusion process [84]. Hence, we expect that for
|σ | > 0 the invariant measure of the system is smooth.

We now follow [69–71,85], consider the weak-noise limit, and express the stationary solution
of the Fokker–Planck equation [86] corresponding to equation (2.2) as a large deviation law

ρσ (x) ∼ Z(x) exp
(

−2Φ(x)
σ 2

)
, (2.3)

where Z(x) is a pre-exponential factor and Φ(x) is the quasi-potential, a non-equilibrium
generalization of the notion of free energy. Φ(x) can be obtained as a nontrivial solution of the the
Hamilton–Jacobi equation [70,87] Fi(x)∂iΦ(x) + Cij(x)∂iΦ(x)∂jΦ(x) = 0. See [68,85] for a detailed
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discussion on the regularity of Φ, and [88] for an alternative approach based on variational
arguments. It is possible to write the drift vector field as the sum of two vector fields:

Fi(x) = Ri(x) − Cij(x)∂jΦ(x), Ri(x)∂iΦ(x) = 0. (2.4)

A different strategy for attaining the decomposition of the drift term into a symmetric and an
antisymmetric component has been proposed by Ao [89] and Yuan et al. [90].

In the case one switches off the noise, Φ acts as a Lyapunov function whose decrease with
time describes the convergence of an orbit to an attractor. Indeed, Φ has local minima at the
deterministic attractors Ωj, j = 1, . . . , J, and has a saddle behaviour at the saddles Πl, l = 1, . . . , L.
If an attractor or a saddle is chaotic, Φ has constant value over its support, which can then be a
strange set [69,85].

A special class of trajectories, named instantons, define, in the zero-noise limit, the most
probable way to exit an attractor [82,91]. An instanton connects an attractor Ω to a point
x within the same basin of attraction and can be obtained by minimizing the action of the
stochastic field theory associated with the system [88,92–94]. The instantonic trajectory obeys
the equation of motion dxi/dt = Ri(x) + Cij(x)∂jΦΩ (x), which has a reversed component of the
gradient contribution with respect to the drift field, see equation (2.4). If R(x) vanishes, instantonic
trajectories follow the same path (in reverse direction) with respect to relaxation trajectories,
which is a basic characterization of equilibrium systems and detailed balance.

Within the basin of attraction of Ω one can define the local quasi-potential ΦΩ (x) as the action
for the instanton linking Ω and x [88]. Escapes from an attractor Ω occur via the saddle Π situated
at the corresponding basin boundary having the lowest value of the barrier height �ΦΩ→Π =
ΦΩ (Π ) − ΦΩ (Ω) [78] and are Poisson-distributed events, where the probability that an orbit does
not transition up to time t is, similarly to the classic Kramers’ Law [95], is given by

P(t) = 1
τ̄σ

exp
(

− t
τ̄σ

)
, with τ̄σ ∝ exp

(
2�ΦΩ→Π

σ 2

)
. (2.5)

Unfortunately, in the case of multistable systems, one cannot, in general, simply read off the
barrier height �ΦΩ→Π from the Φ(x) of equation (2.3), because glueing together the various local
quasi-potentials does not give the global quasi-potential Φ(x) [71,85]. The local and global notions
of quasi-potential can be brought to a common ground if the system is at equilibrium so that no
global probability fluxes are present. Equivalence between the information provided by the local
and global quasi-potentials is also realized if the system is not an equilibrium one but only two
competing states are present with a single saddle embedded in the boundary between the two
basins of attraction, as in the cases analysed in [56,61]. In general, we will resort to measuring
separately the invariant measure (2.3) and the barrier heights (2.5).

(b) Exploring the topography of the quasi-potential
To study the topography of Φ, one can neglect the pre-exponential factor Z(x) in equation (2.3)
and project the invariant measure ρσ (x) on a—possibly small—number n of pre-selected variables
defined by the function s = S(x) ∈ R

n. This gives

Φ(s) ∼ −σ 2

2
log ρσ (s) = −σ 2

2
log

∫
dxδ(S(x) − s)ρσ (x). (2.6)

If n is small, ρσ (s) can be efficiently estimated, e.g. by computing a histogram. Its minima and
saddle points can then be found straightforwardly, even by visual inspection. However, this
approach has a key drawback: the choice of the variables used for the projection is arbitrary, and
multiple attractors may appear erroneously merged for a too low-dimensional choice, see below.

To circumvent this problem, one can follow an approach borrowed from manifold learning,
which allows estimating the quasi-potential as a function of a large number of variables and
studying its topography directly in such a space. As shown below, this allows identifying the
deterministic attractors of a system of the form given in equation (2.2) without preselecting a
small number of putative important variables, i.e. it is applicable even when n 	 1.
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This procedure is rooted on a general property of dynamical systems. Even if the dynamics
takes place in an N-dimensional space, where N can be very large, the trajectory is often contained
in an embedding manifold of dimension d where typically d 
 N [96]; in the case of deterministic
chaos, this information in encoded by the Kaplan–Yorke dimension [97]. This makes the estimate
of ρσ restricted to the manifold numerically and algorithmically possible. However, this manifold
is typically twisted and curved, and it is very difficult (or even impossible, if the topology of the
manifold is non-trivial) to define a global coordinate chart. We can, instead, estimate Φ directly
on the embedding manifold as in equation (2.6) without defining explicitly the function S(x).

Consider a trajectory xt, where t labels the different configurations. Consider the Euclidean
distance rt,t′ = ‖xt − xt′ ‖ between pairs of configurations. Even if this distance is defined in a
N-dimensional space, if xt and xt′ are so close that one can neglect the curvature, rt,t′ approximates
a metric on the manifold. Building on this approximation, one first estimates d from the statistics
of the ratio between the distance of the nearest neighbour rt,(1) of each data point t and the distance
of its second nearest neighbour rt,(2). One can prove that μt = rt,(2)/rt,(1) is Pareto distributed [72]:
μt ∼ PD(d), except for a correction which depends on the curvature of the manifold and on the
variation of the invariant measure on the scale of distance rt,(2). These errors vanish in the limit
of infinite sample size [72]. This allows inferring the value of d from the empirical probability
distribution of μ; see closely related results in [98,99].

The next step is estimating the quasi-potential Φt ∼ −(σ 2/2) log(ρσ (xt)). This is done using the
approach in [73], a generalization of the k-nearest neighbour density estimator [100] in which the
probability density is estimated implicitly on the embedding manifold and the optimal k becomes
configuration-dependent. The optimal k is defined by finding, via a statistical test, the largest
neighbourhood of xt in which the density can be considered constant with a given statistical
confidence. We denote by Nt this neighbourhood and by k̂t the optimal value of k for configuration
t. Φt is then obtained by maximizing a likelihood with respect to two variational parameters [73]:

Φt = argmax
φ

max
a

⎛
⎝−φk̂t + a

k̂t(k̂t + 1)
2

−
k̂t∑

l=1

e−φ+alvt,l

⎞
⎠ (2.7)

where, denoting by Ωd the volume of a d-sphere of unitary radius and by rt,(l) the distance between
xt and its lth nearest neighbour, vt,l = Ωd(rd

t,(l) − rd
t,(l−1)). Notice that if one takes a = 0 equation (2.7)

gives Φt = − log(k̂t/Vk̂t ), where Vk̂t = ∑k̂t
l=1 vt,l is the volume enclosed in a d-sphere of radius equal

to the distance between the configuration t and its k̂tth neighbour. Therefore, in these conditions,
the quasi-potential is estimated as minus the logarithm of the density estimated by a standard k-
NN estimator. The a-dependent term allows taking into account linear variations of the density in
the neighbourhood. Importantly, this procedure provides, within the same statistical framework
used for defining the likelihood in equation (2.7), an estimate of the error on Φt, which we denote
by εt.

The final step is inferring the topography of the quasi-potential from the estimates Φt. This
is done through an unsupervised extension of density peak clustering [74,75]. Configuration t is
assumed to be a local minimum of Φ if the following two properties hold: (I) Φt < Φt′ ∀ xt′ ∈Nt,
namely if xt is a minimum in Nt, (II) xt /∈Nt′ ∀ t′ : Φt′ < Φt, namely if xt does not belong to the Nt′

neighbourhood of any configuration with lower Φ. An integer label c is assigned to each of the n
local minima found in this manner. The labels of the other configurations are found iteratively, by
assigning to each point the same label of its nearest neighbour of smaller Φ [75]. The set of points
with the same label c is denoted by Ac and is assumed to correspond to a basin of attraction. The
saddle points between the attractors are then found. A configuration xt ∈Ac is assumed to belong
to the border with a different attractor Ac′ if there exists a configuration xt′ ∈Nt ∩ Ac′ such that
rt,t′ = minxt"∈Ac rt",t′ . The saddle point between Ac and Ac′ is the point of minimum Φ belonging
to the border between the two attractors.

Finally, the statistical reliability of the attractors is assessed as follows. Denote by Φc the
minimum value of Φt in the attractor c, by εc its error, by Φc,c′ the value of Φt of the saddle point
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between Ac and Ac′ and by εc,c′ its error. If Φc,c′ − Φc′ < Z
√

ε2
c + ε2

c,c′ , the attractor c′ is merged
with attractor c since the value of the quasi-potential at its minimum and at the saddle point are
indistinguishable at a statistical confidence defined by Z [74]. The process is repeated until all the
attractors satisfy this criterion, and are therefore statistically robust with a confidence Z.

The whole procedure enables us to detect metastable states that might be masked in a
low-dimensional projection of the invariant measure. In the case the analysed data have been
produced using a numerical model (as is the case here), it is possible to have conclusive results on
the correctness of a candidate attractor by running noiseless forward simulations from the best
estimate of its position (and nearby points) and observe whether it indeed persists indefinitely.

3. The climate model
We perform the numerical simulations using PLASIM, an open-source intermediate complexity
climate model developed at the University of Hamburg [25]. PLASIM has a total of O(105)
d.f., and retains some of the most important features of the climate, but is considerably less
sophisticated and cheaper to run than the present state-of-the-art Earth System Models that
reach more than O(108) d.f. [27]. PLASIM is extremely flexible and has been used for studying
a rather wide range of climatic conditions [62–67], hence providing the perfect testing ground for
novel theoretical investigations in climate science. PLASIM is well known to feature multistable
dynamics, which has been thoroughly discussed in previous studies [8,33,63].

The dynamical core of PLASIM is responsible for describing the mass and the budgets
of momentum, energy and water in the atmosphere. The primitive equations are solved by
the spectral transform method [101] in the horizontal, by finite differences in the vertical and
for the time advancing scheme, a semi-implicit time stepping is used [102]. Further to that,
unresolved physical processes, e.g. horizontal and vertical diffusion, long- and short-wave
radiation, interaction with clouds, moist processes and dry convection, precipitation, boundary
layer fluxes of latent and sensible heat, and a land surface with biosphere are among the many
to be effectively parametrized into the model. In that way, PLASIM simulates with a fair degree
of accuracy all the necessary components of a realistic Earth-like climate system, with the notable
exception of a dynamical component able to simulate the deep oceanic circulation; see discussion
below. As it will become apparent below, the presence in PLASIM of a reasonably realistic
representation of the hydrological cycle is key to introducing a new layer of complexity in the
present study compared to what had been explored in previous investigations of the global
stability properties of the climate systems [35,56,61].

Our experimental configuration uses a present-day geography and consists of a 50 m deep one-
layer slab ocean model, which includes a thermodynamic sea ice module [103]. The resolution
of the model is T21 in the horizontal direction, corresponding to a 5.6◦ × 5.6◦ grid cell, with
10 atmospheric levels in the vertical, while the time-step is 45 min. Finally, we fix the CO2
concentration to 360 ppm, while daily and seasonal cycles have been purposefully neglected to
further remove any explicit time dependency of the evolution equations.

We configure two experimental set-ups that differ in terms of the oceanic heat transport. In
set-up A the horizontal ocean diffusion is active and its parametrization requires choosing a
specific value for the horizontal diffusivity constant. This set-up allows for a simple yet effective
representation of the impact of the large-scale ocean transport on the climate as a whole, and has
been used in a recent study where response theory was used to perform climate projections [66].
In set-up B, the horizontal ocean diffusivity is set to 0, which implies that the negative feedback
associated with the large-scale oceanic heat transport is switched off. A similar configuration as
in set-up B has been previously employed to study the thermodynamic properties of the climate
in response to controlled changes of the solar constant [33] or of the CO2 concentration [62,65].

Following [56,61], the stochastic forcing needed to explore the phase space of the system
is introduced as random fluctuations of the solar irradiance around its present-day value
S∗

0 = 1365 W/m2. Each year, a different value is prescribed according to S∗ = S∗
0 + η , where η is a
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random number drawn from a normal distribution with vanishing mean and standard deviation
δS = σS∗

0. We consider a vast range of values for σ , ranging from 0.01 to 0.26, and perform multiple
simulations with duration ranging from hundreds to tens of thousands of years, in order to
explore the local and the global properties of the phase space of the system. Note that when
weaker noise is considered, the exploration of the phase space requires longer simulations, as the
transitions between the basins of attraction become exponentially rarer, see discussion below.

4. Results

(a) Set-up A: atmospheric and oceanic large-scale energy transport
(i) The two competing climate states

In set-up A, the representation of the large-scale oceanic energy transport is, euphemistically,
oversimplified compared to what really occurs in Earth, as our model cannot represent the
process of deep water formation and the large-scale ocean circulation [104–106]. Nonetheless,
the presence of horizontal heat diffusion performed by the ocean has the merit of introducing
an additional mechanism—on top of atmospheric transport fuelled by baroclinic instability—that
contributes to reducing the large-scale temperature difference between low and high latitudes
[1,107–109]. Using a large set of initial conditions ranging from very cold to very warm and
taken from the restart files of the simulation contained in [33], we found empirical evidence of
(only) two competing asymptotic states corresponding to the W and SB climates, in agreement
with a plethora of previous investigations, see §1. The lack of a realistic dynamic ocean implies
that PLASIM misses the multidecadal, ultra-low frequency relaxation and oscillatory modes
associated with the advective feedbacks of the ocean near the W climate, see discussion in [110].
Additionally, as discussed in §5, the presence of a dynamic ocean might lead to additional features
in the quasi-potential near the W climate, associated with tipping points. Instead, one expects that
the lack of a dynamic ocean is less critical near the SB climate, because no large-scale circulation
is present when the surface of the Earth is entirely frozen.

In figure 1, we present the zonally averaged annual mean of a 40-year long time-series
of several observables, computed when steady-state conditions are realized in the absence of
stochastic forcing (σ = 0). We compare here zonally averaged fields of the W climate (red lines)
and of the SB (blue lines); additional information on globally averaged quantities are presented
in table 1. Figure 1a shows the climatology of the zonal mean surface temperature. In agreement
with previous studies performed on PLASIM [8,33,63], the SB state features global glaciation and
extremely low temperatures at all latitudes, while the W state is similar to the present-day climate;
see also the map of sea ice cover in figure 2, where the limit of sea ice approximately coincides
with the isoline of 0◦C in the surface temperature shown in figure 1a.

Figure 1b shows the annual mean budget of the precipitation minus evaporation rate
(P–E) as well as the annual zonally averaged precipitation. The SB climate is almost entirely dry,
because a very cold atmosphere can retain only a tiny amount of water vapour, as a result of the
Clausius–Clapeyron relation [1]. The W climate has the familiar maximum of precipitation in the
equatorial belt and secondary peaks in the mid-latitudes, resulting from convective precipitation
and synoptic disturbances, respectively. The P-E field describes the scenario of net water vapour
transport from the tropics into the equatorial belt and into the mid-latitudes [1].

Figure 1c shows the zonally averaged net energy budget at the top of the atmosphere (TOA),
which is the sum of the incoming shortwave radiation and the outcoming longwave radiation
and scattered shortwave radiation. Note that the fluxes are positive (negative) when entering
(leaving) the planet. At steady state, the zonal TOA energy imbalance is compensated by the
divergence of the meridional atmospheric enthalpy transport [1,107,108]. Such a transport is
much stronger for the W state, where large contributions come from baroclinic eddies and
from the large-scale transport of water vapour. Baroclinic eddies are located in the region of
the jet, where zonal winds in the upper troposphere at 300 hPa (near the tropopause, where
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Figure 1. Climatology of the zonal averages of (a) surface temperature, (b) P-E (solid lines) and Precipitation (P, dashed lines),
(c) TOA net radiation, (d) magnitude of zonal wind speed at 300 hPa (solid lines) at 1000 hPa (near surface, dashed lines) versus
the latitudeφ. Blue lines: SB state. Red lines: W state. (Online version in colour.)
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Figure 2. Sea ice coverage comparison between (a) snowball and (b) warm climates, where the colour coding is white for ice,
blue for sea and red for land. We depict the land-map used by our model. (Online version in colour.)

Table 1. Main climatic features of the stable climates for the two experimental configurations in absence of stochastic forcing
(σ = 0), where A refers to set-up A, and B to set-up B; W for warm state, C for cold state and SB for snowball state; LEC stands
for Lorenz energy cycle.

[〈TS〉] (◦C) �TEP (◦C) sea ice (%) LEC (W m−2)

A W 15.0(2) 26.4(3) 5.5(1) 3.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A SB −55.2(3) 25.7(5) 100 1.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B W 4.4(3) 40.0(5) 27.7(1) 4.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B C −28(2) 53(1) 70(2) 3.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B SB −52.5(5) 25.9(5) 100 1.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the peak intensity is found)—figure 1d—and their existence is made possible by the conversion
of available potential into kinetic energy via baroclinic instability, which is associated with the
presence of a substantial meridional temperature difference between low and high latitudes.
The vigorous circulation of the W state corresponds to a powerful Lorenz energy cycle [111]
(≈3.4 W m−2). Instead, the meridional enthalpy transport and the zonal circulation of the SB state
are extremely weak, corresponding to very modest meridional temperature gradients [8,33,63].
The SB state features a very weak Lorenz energy cycle (≈ 1.0 W m−2), as weak meridional
temperature gradients lead to a scarce reservoir of available potential energy and shuts down
the mechanism of baroclinic instability. Correspondingly, surface winds are much weaker in the
SB than in W climate (figure 1d).

(ii) Noise-induced transitions

In what follows, we will apply a very severe coarse-graining to the phase space of the model.
Indeed, we perform a projection on the plane spanned by the globally and 30-day averaged
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surface temperature [〈TS〉] and 30-day averaged Equator minus Poles surface temperature
difference �TEP = 〈TEq〉 − 〈TPo〉, where we denote the spatial average of the field X by [X], and
the temporal average by 〈X〉. Specifically, TEq = [TS]30◦N

30◦S and TPo ≡ ([TS]90◦S
30◦N + [TS]30◦S

90◦S)/2. Such
a projection allows retaining a minimal yet still physically relevant description of the system
[35,56,61,80]. Indeed, variations in the globally averaged surface temperature reflect, to a first
approximation, changes in the energy budget of the planet (warming versus cooling), while �TEP
controls the large-scale energy transport performed by the geophysical fluids [1,108].

The asymptotic state of the system in absence of stochastic forcing corresponds to one of the
attractors described above and is determined by the initial condition. Transitions between the
attractors can be induced by noise. Figure 3a portrays the normalized projection of the invariant
measure of the stochastically forced system (σ = 18%) on the phase space spanned by [〈TS〉] and
�TEP, while figure 3b portrays the quasi-potential estimated using equations (2.3) and (2.6):

Φ([〈TS〉], �TEP) ∼ −σ 2

2
log ρσ ([〈TS〉], �TEP), (4.1)

where the global minimum is set to 0. The noise level given by σ = 18% is the lowest
allowing for a detailed global exploration of the phase space within a—for us—reasonably long
(O(3 × 104 y) simulation, as one observes a good number (O(40)) of transitions between the
competing states. We find that the basin of the W attractor is deeper (lower values of the quasi-
potential) compared to the basin of the SB attractor. By using equation (2.5) and performing an
exponential fit of the average residence times in the two attractors for different values of the
noise intensity, we obtain �ΦW→SB ≈ 700(40) and �ΦSB→W ≈ 240(50). The good quality of the fit
confirms that the weak-noise approximation is valid; see figure 3c

It is then worth looking at the paths of the SB → W and W → SB transitions. In the weak-noise
limit, the stochastic average of the escape trajectories gives the instantonic path for the portion of
trajectory connecting the initial attractor to an M state, and the relaxation path for the remaining
part of the trajectory, which connects the M state to the final attractor. The red (blue) line in
figure 3b indicate the stochastic averages of the SB → W (W → SB) transition trajectories. The
procedure for computing the average paths is described in detail in the electronic supplementary
material.

As discussed above, escape trajectories and relaxation trajectories are expected to follow
different paths in general non-equilibrium systems. We are indeed able to find such an essential
feature of non-equilibrium systems, as clearly detailed in figure 3b. In simpler set-ups with a
unique saddle, the crossing point between the red and the blue line must correspond to the
position of the M state [56,61]. Here the crossing between the two transition paths as observed
in figure 3b is an artefact of looking at that specific two-dimensional projection; the three-
dimensional projection of the phase space in figure 3d instead reveals that the SB→W and the
W→SB transition paths do not intersect because they go through two different M states. This is a
major difference with respect to the analysis performed in [56,61]. We have a clear indication that
in the model used here large-scale currents are present in the phase space, which characterize
non-equilibrium conditions; see [112] for an application of this concept in a climatic context.

It is reasonable to ascribe such a difference to the fact that here we are able to include
a large class of processes associated with the transport of water and with its phase changes
between solid, liquid and gaseous forms. Indeed, the hydrological cycle is to a great extent
responsible for the irreversibility of atmosphere [2,113,114] and, at more quantitative level,
overwhelmingly contributes to the total entropy production of the geophysical fluids compared
to the dissipation of kinetic energy and the turbulent exchange of sensible heat [62,63,115,116].
We argue that the lack of a comprehensive treatment of water in the model used in [56,61] leads
to an underestimation of the actual entropy production of the system, which makes it closer
to equilibrium than the model considered here. According to a statistical mechanics angle, one
sees this as associated with the absence (or significant reduction) of probability currents, which
are largely suppressed by the presence of a single saddle separating the competing basins of
attraction.
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Figure 3. Set-up A. (a) Two-dimensional projection of the invariantmeasure on ([〈TS〉],�TEP);σ = 18%. (b) Quasi-potential
Φ , whose globalminimum is set to 0. The blue (red) line corresponds to stochastically averaged transition paths for theW→SB
(SB→W) transitions. The coloured ellipses indicate the location of the deterministic attractors corresponding to SB state (cyan)
and W state (magenta). (c) Average escape time versus the inverse squared %σ , where dashed black and straight grey lines
correspond to fitting equation (2.5). (d) Transition paths SB→W (red) and W→ SB (blue) in the three-dimensional space
spanned by [〈TS〉],�TEP, and the arctic sea ice percentage for σ = 18%. The shading indicates the density of the projected
invariantmeasure, while a two-dimensional projection of the transition paths in each plane is added. (Online version in colour.)

The presence of clear distinction between the SB→W and the W→SB transition paths indicates
that the global thawing and the global freezing of the planet are fundamentally different
processes; see the movies that can are linked from the caption of figure S4 in the electronic
supplementary material. The thawing proceeds as follows. First, because of persistent positive
anomalies of the solar irradiance, the global temperature of the planet grows without much
changes in �TEP, as the atmospheric circulation is extremely weak and the oceanic transport is
absent. Then, the equatorial belt starts to melt and, due to the local large decrease of the albedo
and subsequent intense warming, �TEP increases substantially—see the almost vertical portion
of the red line in figure 3b. This leads to a strong enhancement of the meridional heat transport
performed by the atmosphere and by the ocean, which causes the thawing of the sea ice at higher
latitudes until the sea ice line reaches very high latitudes compatible with the W climate.

The global freezing of the planet, instead, proceeds in the following way. The cause of the
freezing is, obviously, the presence of a (rare) persistent negative anomaly of the solar irradiance.
The reduction of incoming solar radiation has an amplified effect at high latitudes, because of the
ice-albedo feedback, leading to an increase of �TEP. The increase in �TEP causes a strengthening
in the meridional heat transport, which acts as a stabilizing feedback—see the diagonal portion of
the blue line in figure 3b. Nonetheless, if the anomaly in the solar irradiance is sufficiently strong
and persistent, the sea ice line moves equatorward, until the equatorial belt freezes and undergoes
further extreme cooling because the albedo becomes very high, leading eventually to a very low
value of �TEP in the final SB state.
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Figure 4. First two subdominant eigenvectors of the finite state projectedMarkov operator for set-up A andσ = 18%. (a) First
subdominant mode (τ2 ≈ 30 y) describing the transitions between the two competing metastable states; see also a clear
signature of persistent colddepartures of the system—within theWbasin of attraction—fromtypicalwarmconditions leading
to the transitions. (b) Second subdominant mode (τ3 ≈ 11 y) describing the low-frequency variability within the W basin of
attraction. Note the lack of time scale separation between these two modes. (Online version in colour.)

(iii) Relaxation Modes

As detailed in the electronic supplementary material, by constructing a finite-state Markov chain
model of the projected ([〈TS〉], �TEP) space, one can extract further useful information about the
slow dynamics of the system. We study the statistics of the transitions of the state of the system for
the case σ = 18% on a time scale of 30 days. The dominant eigenvector of the Markov chain is the
projection of the invariant measure given in figure 3a. The subdominant eigenvectors describes
how a generic initial measure relaxes to the invariant one. We remark that, despite the very severe
projection, the Markov chain model features positive metric entropy, which measures the rate of
creation of information, and positive entropy production, which unequivocally indicates non-
equilibrium conditions and is associated with the presence of currents [117].

The two leading subdominant eigenvectors of the finite-state Markov chain approximation of
the projection of the 30-days transfer operator in the ([〈TS〉], �TEP) plane for the case σ = 18% are
presented in figure 4. The eigenvector shown in panel (a) is associated with the coarse grained,
slow process of transition between the two metastable states. The spectral gap of the Markov
chain is given by the corresponding eigenvalue ≈ −1/350 = −1/τ2, where τ2 ≈ 30 y is the life
time of the eigenvector. One of two peaks is negative and the other one is positive, as the mode
describes a zero-sum probability transfer. Additionally, this eigenvector has a very clear signature
of persistent excursions of the system in the far cold region of the warm attractor. This might be
interpreted as a signature of the preferential regions where transitions between the SB and W
states take place, compare with figure 3b.

Instead, figure 3b by and large describes the slowest intrawell variability, which takes place
in the W basin of attraction: the two closely spaced peaks of opposite sign are on the opposite
sides of the peak of the W basin of attraction, with the zero isoline cutting across the peak of
the warm attractor; compare with figure 3a. This eigenvector is associated with the process of ice
formation and melting and has a lifetime τ3 ≈ 11 y. A smaller peak is present in correspondence to
the SB basin of attraction, indicating that this eigenvector captures some W → SB escape process;
compare with figure 3b.

(b) Set-up B: atmospheric-only large-scale energy transport
(i) The three competing climate states

In [118], it was found that multistability appeared in a non-equilibrium fluid system when
considering low values of the viscosity. Here we find something qualitatively similar. Excluding
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Figure 5. Climatology of the zonal averages of (a) surface temperature, (b) P-E (solid lines) and Precipitation (P, dashed lines),
(c) TOA net radiation, (d) magnitude of zonal wind speed at 300 hPa (solid line) and at 1000 hPa (near surface, dashed lines)
versus the latitudeφ. Blue lines: SB state. Red lines: W state. Green lines: C state. (Online version in colour.)

the large-scale heat oceanic transport amounts to removing a very powerful negative feedback
of mixing, i.e. a mechanism of stabilization for the climate that efficiently redistributes energy
throughout the system. This changes qualitatively the global stability properties of the system
compared with the case of set-up A. Indeed, in set-up B, using again a large set of initial conditions
ranging from very cold to very warm, we find empirical evidence of three competing climate
states, whose basic features are reported in table 1, and we refer to the eelctronic supplementary
material, figure S2 for further evidence. One of the climates is the fully glaciated SB state, which
features very low �TEP and extremely low global temperature, close to −50◦C. The second
climate resembles the W state found in set-up A, featuring an above 0◦C global temperature, with
�TEP ≈ 40◦C and roughly 27% sea ice coverage. Between the two, lies the C state, which is not
fully ice covered, and even though it has [〈TS〉] ≈ −30 ◦C, the fact that �TEP ≈ 50 ◦C suggests the
presence of a warm latitudinal band at subtropical latitudes. The presence of an ice-free latitudinal
band has huge implications in terms of habitability [30,119]. We remark that such a climate state
had not been detected in earlier investigations performed with a virtually identical model set-
up [33]. The discovery of the C state has come from considering very unstable initial conditions
near the boundary separating the basins of attraction of the W and SB state. Empirically, one
discovers that the basin of attraction of the C state is very small compared with those of the
SB and W states; see also the electronic supplementary material, figure S3. The quasi-ephemeral
nature of the C state becomes clearer when looking at the stochastically perturbed simulations, as
discussed later.

In figure 5, we compare the climatology of the three climates (W in red, C in green and SB in
blue) resulting from a 40-year average in steady state conditions, in absence of stochastic forcing
(σ = 0). The SB state is very similar to the one obtained with set-up A, as the ocean plays a
negligible role in a fully glaciated planet, and will not be further discussed here. The W state is
similar with its counterpart in set-up A, albeit considerably colder, and, correspondingly, with
a weaker hydrological cycle. We can interpret this as resulting from the ice-albedo feedback.
Indeed, the presence of a weaker heat transport towards high latitudes due to removing the
action of the ocean leads to a larger sea ice surface—compare figure 2b with figure 6c—which
contributes to lowering the planetary albedo, thus enhancing the input in the energy channel at
TOA. Owing to the Boltzmann radiation feedback, the steady state must then be characterized by
a lower average temperature compared to set-up A. Finally, the presence of larger temperature
differences between high and low latitudes lead to a stronger atmospheric variability, as baroclinic
conversion is more efficient and can draw from a larger reservoir of available potential energy.
This is associated with a stronger Lorenz energy cycle compared to set-up A, see table 1; see a
discussion of the climatic effects of modulating the meridional oceanic heat transport in the W
state in [109].

Figure 5a shows the climatology of the zonal mean surface temperature. We remark that in the
C state the subtropical band [−20◦ N, 20◦ N] features above-freezing temperature, while lower
temperatures and prevailing sea ice is present at higher latitudes, as shown in figure 2. Despite
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Figure 6. Sea ice coverage comparison between (a) snowball, (b) cold and (c) warm climates. Note that the W state of set-up
B has more sea ice than the W state of set-up A. (Online version in colour.)

PLASIM’s simplified dynamics, the C state shares features of the previously mentioned Slushball
state [120] and, especially, of the Jormungand state [34], where the presence of ice-free equatorial
band is associated with the dynamics of continental ice sheets and of the interplay of sea ice cover,
surface albedo, and atmospheric circulation, respectively. Figure 5b shows the zonally averaged
P-E and precipitation climatology. The C state features an intense precipitation in the equatorial
belt, driven by the strong convection occurring there, but the P-E field indicates that the water
vapour is locally recycled and no large-scale transport takes place, as opposed to the W state.

Figure 5c shows the zonally averaged net TOA energy budget. One can infer that the
meridional atmospheric enthalpy transport has comparable intensity in the W and C climates,
yet the peaks of the transport—indicated by vanishing values of the TOA budget [1,107,108]—
are confined to lower latitudes in the latter case. This indicates a vigorous heating realized at
≈ ±30oN. Correspondingly, the jet stream for the C state is located at lower latitudes compared to
the W climate (figure 5d), while it is more intense, as the local meridional temperature gradient
throughout the atmosphere is larger. This corresponds to a large temperature difference between
low and high latitudes at surface, see table 1.

Finally, the C state features a strong Lorenz energy cycle (≈ 4.0 Wm−2), thanks to the presence
of a large reservoir of available potential energy that can be converted to kinetic energy by
baroclinic instability. The intensity of the Lorenz energy cycle of the C state is especially
remarkable given that the atmospheric circulation is very weak poleward of 50◦ latitude.

(ii) Noise-induced transitions

The presence of three instead of two deterministic attractors makes set-up B considerably more
complex than set-up A; for example, now the existence of extra M states connecting SB with C and
W with C has to be taken into account, on top of those connecting SB with W already seen in set-
up A. Figure 7a shows the projection of the invariant measure in the reduced phase space given by
([〈TS〉], �TEP) obtained for σ = 12%, while in figure 7b we show the corresponding estimate of the
quasi-potential. We remark that in set-up B a lower noise intensity is needed to excite transitions
with frequency comparable to what obtained in set-up A, for the basic reason that we are missing
the global stabilizing feedback given by the ocean heat transport. This corresponds to having
weaker diffusion in the Fokker–Planck operator describing the evolution of probabilities. The
location of the deterministic attractors is shown with ellipses of different colour, where magenta,
green and cyan correspond to W, C and SB climate states, respectively.

The location of the C state is not directly visible in the projected invariant measure or in the
quasi-potential, in the form of a local maximum and minimum, respectively. The operation of
performing a projection to such a low-dimensional space is mainly responsible for such a loss of
information. This issue is addressed specifically in §4c. Additionally, as we shall see below, the
third attractor corresponds to a much shallower local minimum of the quasi-potential compared
to the W or SB states. As a result, the C local minimum is (at least in the considered projection)
washed out when considering a noise intensity of σ = 12%, and it is hard to keep track of orbits
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Figure 7. Set-up B. (a) Two-dimensional projection of the invariant measure on ([〈TS〉],�TEP); σ = 12%. The stochastically
averaged escapes from the C state with σ = 6% are included. (b) Quasi-potentialΦ , whose global minimum is set to 0. The
blue (red) line indicates the stochastically averaged transition paths for theW→SB (SB→W) transitions. The ellipses indicate
the location of the deterministic attractors of the SB (cyan), C (green) and W (magenta) state. (Online version in colour.)

persisting significantly near C, see equations (2.3)–(2.5). This implies the presence of an additional
scale relevant for understanding the multistability of the system, along the lines of what discussed
in §5. Here one faces a typical dilemma in terms of optimal use of computational resources.
Considering a weaker noise would in principle facilitate the detection of the C state, and, in
general, of the finer features of the phase space of the system. On the other hand, the exploration
of the phase space of the system becomes more difficult, as the stochastic orbit is trapped for a
very long time near either the W or the SB state, and the visits to the C state (unless the initial
condition is set very close to it, as done below) are extremely unlikely. Hence, it is hard to obtain
a reasonably good estimate of the invariant measure given finite computational resources. Note
also that, as discussed in [56], in the zero noise limit the invariant measure concentrates on the
state featuring the lowest value of the quasi-potential (the SB state, in this case). As discussed in
§4c, harnessing methods of data science, and specifically manifold learning, allow us to sort out
such a conundrum and to automatically detect with high statistical significance also the C state in
the case σ = 12%.

As mentioned above, the presence of ocean diffusion triggers the ice-albedo feedback in a
direction that favours warming. Accordingly, in set-up B, the minimum of the quasi-potential
corresponding to the SB state is deeper than the one corresponding to the W state. This can
be seen in figure 8a, where the W → SB and SB → W mean escapes times are presented as a
function of the inverse squared noise amplitude. Using equation (2.5), we obtain the following
estimates for the depth of the local quasi-potentials: �ΦW→SB ≈ 290(10) and �ΦSB→W ≈ 500(10).
As opposed to set-up A, in set-up B the pre-exponential factors of the expectation value of
escape times is vastly different. Note that, neglecting the C state, the population of the SB and
W state is inversely proportional to the corresponding escape times. As a result, despite being
associated with a shallower local minimum of the quasi-potential, the fraction of population in
the W state is larger when considering relatively strong noise intensity, whereas eventually, the
SB state dominates in the weak-noise limit. Despite the profound dynamical differences between
set-up A and B, the estimates of the instantonic and relaxation paths between the SB state and the
W state are qualitatively similar; compare figures 3b and 7b. Furthermore, the interpretation of
the different physical mechanisms controlling the SB→W and W→SB transitions paths for set-up
B is fundamentally the same as for set-up A.

The more complex geometry of the phase space of set-up B is made apparent by the fact that
the transitions between the W and SB states can be either direct or, instead, the paths deviate
considerably as the orbit is temporarily trapped near the C state. The reader is encouraged
to watch the movies that are linked from the caption of figures S5 and S6 in the electronic
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Figure 8. Average escape time versus the inverse squared %σ in set-up B. (a) Comparison of W→SB (filled blue circles) and
SB→W (filled red squares) and corresponding exponential fit, grey straight and black dashed lines. (b) Comparison of C→SB
(filled blue squares) and C→W (filled red circles) and corresponding exponential fit, grey straight and black dashed lines. The
fits have been performed using equation (2.5). (Online version in colour.)

supplementary material. Such a trapping is always extremely short-lived compared to the other
relevant time scales associated with the transition between the two other metastable states.

The next step is to provide a characterization of the quasi-potential near the C state, and,
specifically, to estimate the C→SB and C→W barriers for the local quasi-potential. We then
investigate the properties of the system near the C state. Following [61], we bypass the problem
of estimating reliably the invariant measure near the C state and investigate the escape process
from the C state by considering a large number of independent trajectories initialized in the
deterministic C attractor and apply a weaker random forcing with σ = (1% − 10%). We then
collect the statistics of escape times and keep a separate track for trajectories ending up in the
W versus in the SB state through the corresponding M states. Using equation (2.5), we are able
to estimate the two quasi-potential barriers �ΦC→SB and �ΦC→W. We see in figure 8b that
�ΦC→SB ≈ 16(2) (blue filled squares) is about one order of magnitude smaller than the W → SB
and SB → W barriers. Interestingly, the energy barrier �ΦC→W ≈ 0.45(4) (red filled circles) turns
out to be much smaller than �ΦC→SB, which explains why below a certain noise level, i.e. σ ≈ 4%
we practically get no transitions towards the SB attractor, with all escape trajectories ending in
the W basin of attraction. Also, for the C→W transitions, we clearly observe from figure 8b that
for σ larger than σ ≈ 5% there is a different scaling that can be attributed to the prefactor in
equation (2.5), which indicates that the weak-noise limit is not achieved for these values of σ

for these escape processes. Further comments on the escape trajectories from the C state can be
found in the electronic supplementary material.

(iii) Relaxation modes

Finally, we study the two subdominant eigenvectors of the finite-state Markov chain
approximation of the projection of the transfer operator in the ([〈TS〉], �TEP) plane for the case
σ = 12%, see figure 9. As in set-up A, the Markov chain model features positive metric entropy
and positive entropy production. We get a broad agreement with the results of set-up A also in
terms of interpretation of the meaning of the eigenvectors, but a more clear separation of scales
between the two corresponding eigenvalues is present in this case. Figure 9a portrays the first
subdominant eigenvector. The spectral gap of the Markov chain is given by the corresponding
eigenvalue ≈ −1/3500 = −1/τ2, where τ2 ≈ 290 y is the life-time of the eigenvector, which matches
the life time of the SB state. Because of such a long time scale, and of the fact that the transition
time is very short compared to the residence time, we lose any feature of the transition path, as
opposed to set-up A. The eigenvector shown in figure 9b has a life-time τ3 ≈ 10 y and portrays the
low-frequency variability in the W basin of attraction, which can lead to occasional transitions
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Figure 9. First two subdominant eigenvectors of the finite state projectedMarkov operator for set-up B andσ = 12%. (a) First
subdominantmode (τ2 ≈ 290 y) describing the transitions between theWand SB states. (b) Second subdominantmode (τ3 ≈
10 y) describing the low-frequency variability within the W state. (Online version in colour.)

towards the SB state; compare the W → SB transition path in figure 7b. We find no signature of
the presence of the C state, whose life time is much smaller than 10 years for this level of noise.
This clarifies that for this level of noise the C state is almost entirely washed out.

(c) Automatic determination of the metastable states
The basic issue we want to address now is that, while in figure 7 the SB and W state clearly appear
as corresponding to local maxima of the projected invariant measure, this is not the case for the
C state, in this as well as in many other two-dimensional projections we have tested. Indeed, it
has been impossible with the tools developed so far to find any direct evidence of the C state in
the stochastic simulation performed with a noise level that was sufficiently strong to allow for the
exploration of the full phase space of the system. As described in §4b, the discovery of the C state
has been serendipitous and based on the exploration of the phase space via forward deterministic
simulations. We next show what can be obtained by applying the suite of data driven methods
[72,73,75] presented in §2b to the output of some given numerical simulations taken as pseudo-
observations of an in principle unknown model.

We first consider a numerical integration of the model in set-up B lasting 6 × 104 years and
performed with σ = 12%. From the complete trajectory of O(105) d.f. recorded with having
temporal resolution of one time step, we construct a severely coarse-grained version of the phase
space by a set of 30-day averaged air temperatures measured every 10 months (hence, decimated
with respect to the standard 30-day averaged dataset in previous sections) at three different
pressures (300, 500 and 1000 hPa) and 32 different latitudes, for a total of n = 96 variables. The
quasi-potential as a function of these variables is, in principle, a 96-dimensional function, which
cannot be visualized or estimated in a simple manner.

By using the approach outlined in §2b, we study the topography of this function. We
first estimate the intrinsic dimension of the manifold containing the data, which turns out
to be approximately 11, significantly smaller than the number of variables.1 This number is
approximately scale invariant: indeed the estimated value does not change significantly if the
dataset is significantly undersampled. Since the intrinsic dimension of the embedding manifold
is relatively low and well defined, one can estimate the quasi-potential Φt in each time frame
t using equation (2.7), without defining explicitly the approximately 11 coordinates mapping
the manifold. Using these estimates, one finds the candidates for the various attractors, which

1Note that we should not in any way interpret this number as representative of the actual effective dimension of the attractor
of the climate system, because the coarse graining procedure applied in space and time filters out almost entirely the
dynamics—which is prevalent in this climate model as well as in reality—occurring over time scales shorter than one season
and featuring longitudinally symmetric structure [4].
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Figure 10. The topography of the quasi-potential in high-dimension. Panels (a,b): the analysis is performed for set-up B and
σ = 12% in the coordinate space of the zonally averaged air temperature at 300, 500 and 1000 hPa at 32 latitudes between
−86◦ and 86◦ (96 variables). Panels (c,d): the analysis is performed on the time series of the zonally averaged zonal and the
meridional wind, same locations as in (a,b). (192 variables). Panels (a,c) portrays the ([〈TS〉],�TEP) projection of the estimated
basins of attraction of the quasi-potential. The core sets are coloured in blue (SB state), orange (C state) and red (W state). The
green points are the core set of spurious attractors found by the algorithm. The black points are configurations which do not
belong to any core state. Panels (b,d) portray the average value plus/minus one standard deviation of the variables, restricted to
the core sets of the SB (blue), W (red) and C (orange) states, as shaded area. The time averages of the same variables, computed
for the corresponding deterministic attractors, is shown in dark solid lines of the same colour, respectively. Themeridional wind
is not shown. (Online version in colour.)

correspond to the local minima of Φ. With a statistical confidence level of 99%, corresponding
to Z = 2.576, we find four states, with a core population of 39 171, 12 099, 112 and 11 frames,
respectively. The configurations corresponding to the four minima of Φ were then evolved
without stochastic forcing in order to obtain the corresponding asymptotic states, While the first
three states are in the basin of attraction of the SB, W and C attractors, correspondingly, the
fourth state is found to be unstable, as it forward evolution converges to the W attractor. This
indicates that the fourth state is an artifact of finite sampling, or of the variations of the Z(x) (see
equation (2.3)), which, in the estimate of Φt, are neglected. The configurations assigned to the
core set of the three remaining states are represented in figure 10a in the same projection used in
figure 7. In this projection the C and W states strongly overlap, and no barrier is visible between
the two.

In figure 10b, we plot the average and the standard deviation, estimated for the core
set of each state, of the 96 air temperature variables used in the analysis. Note that such
average values agree remarkably well with the time-averages one obtains by considering the
corresponding deterministic attractors, represented as continuous lines in figure 10. Remarkably,
the distributions are significantly well separated for almost all the variables. This demonstrates
that the W and C state are indeed non-overlapping in the 96-dimensional space of these variables.
This also shows that the data-driven approach presented here is able to reconstruct accurately the
statistical properties of the competing deterministic metastable states.

We have then repeated the exercise by considering the n = 192 variables describing the 30-day
averaged meridional and zonal wind at the same latitudes and pressure levels as before. The
intrinsic dimension of this dataset is approximately 16, slightly larger than for the other variables.
In this space, at a statistical confidence of 99% the algorithm can detect only two states, the W
and the SB states. At a 98% confidence the C states appears (orange points in figure 10c), together
with another state, represented in green. The latter state is spurious, since simulations performed
with σ = 0 starting from the estimated minimum rapidly converge to the SB state. In this space
the C state is much more similar to the W state, as shown in figure 10d: the average zonal wind
differs significantly only in the mid-latitudes of the Southern Hemisphere at all levels and in the
mid-latitudes of the Northern Hemisphere only at 500 hPa. Note also in this case the excellent
agreement obtained with the average statistics computed for the corresponding deterministic
attractors.
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Figure 11. The quasi-potential and the residence times for set-up A and σ = 18%. Panel (a): the states obtained analysing
the coordinate space of the air temperatures at three different pressures at 32 latitudes (the same variables used in the analysis
in figure 10a). The analysis is performed with Z = 5. At higher statistical significance the green state disappears. Panels (b,c):
the empirical cumulative distribution C(x) of the normalized escape time x = tesc/〈tesc〉, where 〈tesc〉 is the average of all the
observations. Panel (b): the SB state. Panel (c): the W state. Blue and red lines: the green state in panel a is not considered
meaningful. Purple and orange lines: the green state is considered meaningful. The dashed black lines correspond to the ideal
case in which x ∼ exp(−x), and therefore log(1 − C(x))= −x. (Online version in colour.)

We have also performed the same analysis on a simulation evolved for 32 780 years using
the model in set-up A and with σ = 18%. At high statistical significance, we detect two states
corresponding to the W and the SB climates. At lower statistical significance other states appear,
see figure 11a. The (spurious) green state occupies a similar regions as the C state found in set-up
B, see figure 10a. However, the air temperature field is different in the two cases, as the spurious
state is consistently colder at all atmospheric levels, even if a good degree of agreement exists
in the meridional structure. Correspondingly, a good correspondence between the two states is
found when looking at the zonal winds, see figure S9 of the electronic supplementary material. We
may then interpret the spurious state as a dynamical remnant—possibly a ghost state [121]—of
the C state found for set-up B. Indeed, the spurious state is not an attractor, as it evolves towards
the W state if one removes the stochastic forcing. The dynamics of an ensemble of trajectories
initiated near the green dots is by and large controlled by two subdominant eigenvectors depicted
in figure 4a,b.

These results indicate that our approach allows identifying the correct metastable states of
a complex high-dimensional dynamic model, but these states come with an uncertainty, which
partially derives from statistical errors. If less samples are available, the states will be recognized
by a lower statistical confidence, as quantified by the parameter Z. For example, if one decimates
the frames by a factor four and repeats the analysis in figure 10a, the state corresponding to
the state corresponding to the C attractor can be detected only at a lower statistical confidence
(Z = 2.3). Uncertainty also arises from the approximations intrinsic in the quasi-potential
estimator, which neglects the pre-exponential factor Z(x). Finally, an error is introduced by the
correlation between the frames, which are generated by a dynamic model and sampled with
a time lag of a few months. However, one can rather straightforwardly recognize the spurious
states, even without performing a simulation at σ = 0, by estimating, on the same trajectories
which brings to their identification, the probability distribution of the first escape times. This
distribution is estimated by assuming that the system performs a transition between two states
when it visits a core configuration belonging to a state which is different from the state of the last
core configuration visited in the past [122]. In this manner, one splits the trajectory in segments,
each labelled with a different state, whose length is an estimate of the escape time tesc. If the set of
states defines (at least approximately) a Markov model, tesc should be exponentially distributed.
In figure 11b,c, we plot a function of the empirical cumulative probability distribution of tesc

which, if tesc ∼ Exp, should coincide with the black dashed lines. If one considers as meaningful
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also the green state in figure 11a one obtains a set of tesc from the W and the SB state whose
distribution significantly deviates from an exponential (purple and orange lines figure 11b,c).
If instead one does not consider the green state as meaningful, the distribution of the escape
times from the W and SB state is almost perfectly exponential (blue and red lines), as far as one
can judge from the relatively small number of transition events observed in the trajectory. This
analysis indicates that our approach allows identifying the correct metastable states of the system
even from relatively short trajectories, in which only O(10) transitions are observed. The states can
be identified in a fully unsupervised manner, analysing only the trajectory or by running short
relaxation dynamics with σ = 0.

5. Conclusion
Achieving a deeper understanding of the nature of the Earth’s multistability and related tipping
points is one of the key contemporary scientific challenges because it is essential for better framing
the co-evolution of climatic conditions and of the biosphere throughout the Earth’s history, and,
in the present context, for better constraining the current planetary boundaries through a careful
examination of the safe operating space for humanity [123].

Systems undergoing stochastic dynamics and featuring competing multistable states can be
effectively described by taking advantage of the formalism of the quasi-potential landscape,
which generalizes the notion of the free energy to non-equilibrium systems. Local minima in
the quasi-potential describe competing metastable states, and are separated by local maxima and
saddles—M states—that define possible gateways for transitions. To demonstrate our framework
in the case of the climate we employ two versions of an open source climate model, PLASIM,
which has an appropriate mix of precision, flexibility and efficiency in simulating the present
climate as well as very exotic climatic conditions. The first version (set-up A) features a simplified
but meaningful representation of the oceanic energy transport from low to high latitudes, whereas
in the second one (set-up B) large-scale energy transport is provided solely by the turbulent
atmosphere. Set-up A demonstrates the well-known competing climatic states corresponding
to the present warm (W) conditions and the so-called snowball (SB) climate. Set-up B, instead,
contains an unexpected additional intermediate stable climate (C) where the sea is partially ice-
free in the equatorial band. The lack of a powerful mechanism of energy redistribution across
the climate makes this additional state possible. Despite PLASIM’s relative simplicity, the C state
should not be regarded as a pure mathematical curiosity corresponding to a pathological solution:
exotic climate states rather similar to the C state obtained here have been obtained in other climate
models and are deemed extremely relevant in paleoclimatic terms because they provide a scenario
able to explain the survival of life during the Neoproterozoic glaciations.

The phase space of the model can be explored when stochastic forcing—here in the form of a
yearly fluctuating solar irradiance—is introduced, leading to transitions between the competing
metastable states. We compute the quasi-potential function, which describes, on the one side, the
invariant measure of the system and, on the other side, in its local version, controls the probability
of transition of the stochastically forced trajectory from one to another basin of attraction. We are
able to estimate in both set-ups the optimal escape paths—the instantons—and the corresponding
relaxation trajectories linking the W and SB states, and are then able to verify the non-equivalence
between the two, which is an essential feature of non-equilibrium properties.

Instantons describe how transitions take place in the zero-noise limit and are more of a
mathematically elegant construction than a physically relevant object in our investigations, as
we need to consider noise of moderate yet non-negligible intensity in order to observe reasonably
frequent transitions between the SB and W attractors. Additionally, studying the transfer operator
in a suitably projected space sheds light on how the system relaxes to its invariant measure. We
are able to find clear evidence of both interwell relaxation processes, which describe transitions
between competing metastable states, and are the noisy version of instantons, and intrawell
relaxation processes, which would conventionally be labelled as ultralow frequency variability
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within the W state associated with large-scale melting and thawing of sea ice and corresponding
large temperature fluctuations.

A non-trivial result we obtain is that the instantons escaping the SB and the W attractors do
not meet at one of the M states separating the two corresponding basins of attraction. This can
be best appreciated visually by watching the movies included in the electronic supplementary
material. In fact, the transitions take place through two separate saddles. This has two important
implications (a) the dynamics on the basin boundary is, by itself, multistable; and (b) one
has large-scale non-vanishing currents in the phase space. This is a strong signature of the
non-equilibrium nature of the system. The existence of separate paths for the SB-to-W and W-
to-SB states marks a relevant difference with previous studies. The presence of more evident
macroscopic signature of non-equilibrium conditions can be attributed to the presence in this
model of an active hydrological cycle, which is the major agent of entropy production in the
climate system.

The C state in set-up B corresponds to a comparably shallower minimum of the quasi-
potential, which can be explored only considering significantly weaker noise than needed to
explore globally the phase space of the system. We discover that the most natural, preferential
escape route from the C state is towards the W state. The C state is only barely metastable, as even
internally generated noise of the numerical discretization can destabilize it, even if only rarely and
over ultra long time scales, as discussed in the ESM. The position in phase space of the C state
and its properties indicate that it is likely that the C state is the leftover of the M state between the
SB and W climate obtained as we progressively switch off the horizontal diffusivity of the ocean,
because this leads to a less efficient redistribution of energy in the system,

We have complemented the top-down approach based on numerical modelling with bottom-
up data-driven methods that allow for the automatic detection of the competing metastable states
from the analysis of a single long stochastic trajectory and to reconstruct the quasi-potential
using an arbitrarily high-dimensional input dataset. Using this approach, we have been able
to reconstruct the dynamical landscape of the climate model in both set-ups and gain a better
understanding of how transitions between the competing metastable states occur. Remarkably,
by suitable averaging over many realizations, we have been able to reconstruct the climates of the
competing (deterministic) metastable states.

(a) Outlook: multiscale multistability
The quasi-potential landscape viewpoint might provide a useful way for describing the
multistability of the climate in a hierarchical fashion. We present in figure 12a an illustration
of this perspective, where the possible states of the climate are described by the vector X. The
quasi-potential Φ features troughs, saddles and ridges at different scales.

The intensity of noise allowing for exploring transitions between competing states decreases
dramatically as we go from level 1 to level 3, because the local minima become shallower. Going
to even smaller scales, one would find additional (shallower) corrugations of Φ. Multistability in
the climate system is often revealed by the presence of hysteresis loops obtained when suitable
parameters of the system are changed, usually quasi-adiabatically [33,39,124]. Figure 12b shows
schematically how the multistability portrayed in figure 12a appears when applying suitable
protocols of parametric modulations to the system.

The above description could potentially be a fundamental mathematical structure linking the
global multistability of the climate system with the geographically localized tipping elements
and the so-called cascading tipping points, and might be useful for understanding the associated
multiscale hysteretic behaviour of the climate system when parameters are suitably modulated.
We stress that in the current work we have been able to explore only the highest hierarchical level
of multistability. A more complete climate model and a suitable, different choice of stochastic
forcing would be needed for exploring the small-scale local minima of the quasi-potential
associated, e.g. with competing climate states that exchange stability at tipping points like the
ocean associated with the AMOC shutdown. In this case, one would need a model able to resolve
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Figure 12. Schematic representation of the multiscale nature of multistability in the climate system. (a) Quasi-potential Φ
as a function of the state of the system X . (b) Corresponding hysteresis loops as a function of a parameter P. The white boxes
indicate the zoomed-in current state of the system (reddot), going from1 to 3 towards smaller and smaller scales. (Online version
in colour.)

explicitly the large-scale ocean circulation and possibly consider random perturbations to the
hydrological cycle acting in the North Atlantic sector.

We envision the combination of the top-down and bottom-up approach as a possible way
forward to study the multiscale nature of the multistability of the climate system, as well
as of other systems of comparable complexity. This research work paves the way for further
investigation into some fundamental properties of the climate system and goes in the direction
of clarifying its intransitive versus quasi-transitive versus transitive nature [125] when different
time scales are considered. Additionally, it indicates a way for fostering the development of
climate models of different level of complexity: indeed, we want them to be able to capture
the qualitative features of climate, by allowing for the presence of a complex dynamical
landscape featuring hierarchically arranged—according to the desired level of envisaged detail
and granularity—competing metastable states, associated with the ensuing tipping points.

The viewpoint presented here seems also promising for investigating a separate, extremely
relevant aspect of atmospheric dynamics, namely the existence in the atmosphere of different
regimes of operation, which define the presence of substantial low-frequency variability on
subseasonal time scales [4,126]. This boils down to the fact that, at coarse-grained level, due to
extreme dynamical heterogeneity [127], one is practically looking at a multistable system, where
one can define and detect transitions between different metastable states [128].

Finally, we remark that white Gaussian noise might not necessarily be the only suitable way to
treat stochasticity in the climate system [129]. The theory of escapes from attractors in the presence
of Lévy noise has been developed [130,131] and very recently applied to simple geophysical
models [132]. It is well known that the mechanisms of escape are rather different than in the
standard Gaussian scenario pursued in this paper. It seems then of great relevance to consider the
effect of Lévy noise forcing in a more complex climate model like the one considered here.
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