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Chapter 1

Introduction

“To understand [why black-body radiation is connected to electron diffraction] it

is necessary to go back to the early 1920’s, perhaps the most exciting period in the

whole of physics, and I venture to say the most baffling to those who experienced it”

- Sir George Thomson

The Early History of Electron Diffraction [1]

“Where one door is shut, another is opened”, the wise words first written by de

Cervantes in his seminal book Don Quixote [2]. If only the reality of a researcher

was based upon a two-door system. Behind the open door lay a myriad of hidden

passageways leading to dead ends, more doors (some locked, bricked up or broken)

and the odd u-turn. Generally, when a new technique arrives which unlocks more

information it can take time to figure out how to use it. It is not clear which paths

will lead to fruition and which will result in a dead end. Perhaps the most well-

known example is the successful sequencing of the human genome. It may take

decades before this achievement reaps its full scientific benefit.

While convergent beam electron diffraction (CBED) has been an extremely

useful technique since its inception in the late 1930s (Section 1.2.2), it has a signifi-

cant limitation. The geometry of selected area electron diffraction (SAED) is based

upon a parallel beam, created using an aperture in a conjugate image plane (a vir-

tual aperture - Fig 1.1 SAED), resulting in a spot pattern. The geometry of CBED

however, is based upon a convergent beam, creating discs (Fig. 1.1 CBED). While

this means the technique can probe nanometre areas of the sample, above a certain

angle of convergence the intensities within portions of each disc will overlap. This

can be useful for techniques like coherent - CBED [3] or position averaged CBED

(PACBED) [4]. It is however generally seen as a problem (the ‘overlap problem’).
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Figure 1.1: top) simplified ray diagrams for named electron diffraction techniques.
The back focal plane (BFP) is conjugate with the screen. bottom) example diffrac-
tion patterns for each ray diagram. The purple, orange and black discs correspond
to their corresponding colours in the ray diagrams. The (PACBED) pattern has
been taken from LeBeau et al. [4]

Tanaka, Ueno and Harada presented a partial solution using the large an-

gle convergent beam electron diffraction (LACBED) technique [5]. By converging

the beam above or below the specimen they could select one beam (diffracted or

transmitted) using the selected area aperture. This technique has been particularly

successful at studying imperfect crystal structures [3]. However, the technique re-

quired a skilled microscopist, and could only record one g-vector disc, or g-pattern,

at a time. A full set of patterns could be recorded but the process would be very

time consuming, and the operator could never be sure each g-pattern originated

from the same area of sample.

A full solution was found through two, nearly parallel studies. Koch used

hardware control of the microscope to introduce the large-angle rocking-beam elec-

tron diffraction technique [6]. Beanland et al. [7] on the other hand, used computer

software control. By automatically tilting, recording and stitching a set of CBED

patterns together over a wide convergence angle, a full LACBED pattern (contain-

ing all g-patterns) could be stitched together – the digital-LACBED (D-LACBED)

technique [7] (see Chapter 2). The technique probes a vastly superior portion of

reciprocal space compared to CBED patterns (Fig 1.1), is easy to use and patterns

can be collected in minutes.

This thesis will explore some of the possible applications of D-LACBED’s

expanded dataset to determine paths that may lead to the most ‘open doors’. In
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order to understand which of the methods we should initially explore, which door to

open first, we must look back at the history of electron diffraction. This will show

how past examples of information expansion led to new applications.

1.1 Parallel beam diffraction methods

As for many notable discoveries in science, that of electron diffraction was somewhat

unintended [1]. Up until the mid-1920’s electrons were predominantly thought of as

particles due to the work by JJ Thomson [8] and other researchers [9, 10] (having

previously been thought of as waves ie. cathode rays). It was through the work of de

Broglie [11, 12] on black-body radiation where he postulated wave-particle duality

(using the now famous de Broglie relation) that attention fell on the possible wave-

particle duality of electrons. After the accidental creation of large single crystals

in very low energy electron reflection of nickel producing diffraction like patterns in

1925 [1] and the resulting proposition for the wave-nature of electrons by Elsasser

[13], Davisson and Germer [14,15] published the first evidence of electron diffraction

by reflection using low energy electrons. This was confirmed by G. P. Thomson and

Reid [16] as well as Kikuchi [17, 18] for high energy electron diffraction. Each was

later described theoretically through dynamical diffraction theory by Bethe [19] and

extended by Blackman [20] for the reflection and transmission case respectively.

Both pieces of experimental and theoretical work led to two separate fields: Low

energy electron diffraction for the characterisation of crystal surfaces [21] and high

energy electron diffraction (now part of transmission electron microscopy or TEM)

for bulk single crystals [22] which we are interested in for this thesis.

Early transmission electron microscopes (TEMs) were rudimentary, custom

made machines [23]. Selected area diffraction was first proposed by Boersch [24,25]

in 1936 to show Abbe’s theory of optics held for the electron microscope. It took

over a decade before the selected area aperture was introduced to TEMs [26, 27].

Around the early 1950s, the aperture was built into commercial transmission electron

microscopes meaning SAED was used to study crystals for the first time [28–33].

This allowed diffraction through individual, isolated grains of the specimen, leading

to its now very broad usage in electron microscopy.

The advent of SAED and CBED (see Section 1.2) meant unit cell scale struc-

tural analysis of single crystals was now possible. Pioneered by Vainshtein and col-

leagues [34] from the 1940’s to 70’s, numerous unknown structures of both inorganic

and organic substances were solved by several electron diffraction methods through

structure solution.
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1.1.1 Structure solution

Originating from X-ray crystallography a structure solution method uses the inten-

sity and position of the experimental diffraction intensities to directly obtain the

electron density of the crystal. This is possible under the kinematic approximation

Iḡ = |Fḡ|2 (1.1)

which states that the integrated intensities of the diffraction peaks, Iḡ (where

ḡ is a reciprocal lattice vector) are proportional to the square modulus of the X-

ray structure factors Fḡ which are the Fourier components of the electron density

in the crystal structure. Because the phase of the structure factors cannot be di-

rectly measured, the well-known phase problem in crystallography, several phasing

methods exist to extract them, for example: direct or Patterson methods [35]. In

X-ray diffraction, where the kinematic approximation applies, these have been used

to extract complete structure factors allowing electron density maps and therefore

(if the space group is known – Section 1.2.1) atomic positions to be obtained.

These methods can also be applied to SAED patterns to extract X-ray struc-

ture factors. In electron diffraction the Fourier components Vḡ describe the electron

potential rather than the electron density (see Section 2.4). However, they can be

converted to X-ray structure factors Fḡ using the Mott-Bethe relation in reciprocal

space or to an electron density function using Poisson’s equation [36] in real space.

However, since electrons mostly scatter dynamically (i.e. more than once) due to

their much stronger interaction with matter than X-rays [37], only quasi-kinematic

intensities are possible for materials thicker than one atomic layer – and even then

only for thin specimens. Since a general direct relation between dynamical intensities

and structure factors does not currently exist [38], structure solution using electron

diffraction fell out of favour during the latter half of the 20th century, despite the

success of Vainshtein.

Two developments near the end of the 20th century reinvigorated the desire

for structure solution from electron diffraction spot patterns. The first was the

introduction of the zone axis precessional electron diffraction (PED) method by

Vincent and Midgley [39]. Through simple hardware add-ons they were able to

collect integrated electron spot patterns by tilting the parallel incident beam through

a hollow cone around a zone-axis. By the early 2000’s it was shown that PED data

could be used within direct methods [40] and robust examination of the technique

had taken place [41]. To the point it was subsequently commercialised as an add-on

system for TEMs [42]. It is now a reliable technique for structure solution as well
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as a number of other analysis methods [43–45].

The second development was due to the widespread introduction of personal

computers and charge coupled device (CCD) cameras to transmission electron mi-

croscopes. Processing of data could now happen as the experiment was taking place.

In the mid-1980s, Hovmöller and collaborators demonstrated it was possible to use

image processing of high resolution electron microscopy data [46] to obtain atomic

positions of several inorganic crystals [47,48]. It was later shown that the technique

could be more accurate if combined with diffraction data [49] for both light [50]

and heavy elements [51] including complex structures [52]. However, complicated

structures require multiple datasets with separate projections in order to obtain 3D

information of the sample. It is very time-consuming and requires a highly skilled

operator [53]. X-ray diffractometers on the other hand require the opposite. They

are easy to use and 3D information can be obtained in minutes. If electron diffrac-

tion was ever to compliment X-ray diffraction a much easier to use technique was

required.

In 2007 Kolb et al. [54] demonstrated electon diffraction tomography (EDT)

[55]. Using computer control of the microscope the sample holder is tilted through

a predetermined set of angles. Scanning transmission electron microscopy is then

used at every tilt interval to take an image. This means the beam can be re-shifted

back to the same area of sample. The 3D reciprocal space data gives better 3D real

space data as well as averaging out some of the dynamical effects (as long as the

specimen is thin). The introduction of tomography to electron diffraction initiated

a boom (hundreds of publications) in structure solution studies for a wide range of

complex materials including zeolites [56–60], porous materials in general [61], or-

ganics [62, 63] (such as pharmaceuticals [64]) as well as many more [65–67]. Two

other prominent tomographic techniques were developed after Kolb’s initial paper,

precessional electron diffraction tomography (PEDT) [68] and rotational electron

diffraction (RED) [53]. PEDT uses goniometer tilts in between PED pattern acqui-

sitions (also effective for thick samples), RED rotates the goniometer along a specific

rotation direction between zone axes utilising beam tilt for even finer sampling. De-

velopment has continued on all three techniques, each becoming more precise and

robust as the years progress [69, 70]. New variations on tomographic methods are

also continuously being made [71]. It is now the ‘go to’ technique for structure

solution of nanostructures unable to be evaluated by X-ray powder diffraction.
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1.1.2 Structure refinement

Studies utilising structural refinement using parallel beam methods are far less com-

mon than structure solution studies. This is the next stage of structural determi-

nation once the atomic potential is known. A theoretical model of the potential

(the structure factors) is used to simulate a complimentary diffraction pattern usu-

ally using either the Bloch wave or multislice method (see Chapter 2). Through

minimisation algorithms via a fitting function between the experimental and sim-

ulated patterns certain parameters of the model can be found. For instance, the

structure of the atomic potential can be refined (atomic coordinates - Chapter 3,

temperature factors – Chapter 4, unit cell and occupancy – Chapter 5) usually used

to discover deviations from previously known structures or new structural phases.

Specific structure factors can be refined to ascertain deviations from the modelled

neutral atom values – therefore uncovering the bonding influences between atoms.

Finally, experimental conditions can be refined, for instance thickness of the sample

(Chapter 5).

The small total number of intensities in parallel beam methods, even with

EDT, does not provide as many as convergent beam methods where refinement

studies are more prevalent [72] (This Section compared to Section 1.2.2). EDT

methods do sample a wider angular range. The reason for the prevalence of CBED

to be used for structural refinement is unclear. Perhaps distortion correction is easier

with the features present in CBED patterns. Nevertheless, since dynamical intensity

varies dramatically over a wide range of variables and experimental conditions (see

Chapter 5) the greater number of intensities over wider angles seems likely to lead

to a greater achievable accuracy.

Dynamical refinements are necessary for both SAED and PED patterns as in-

tensities can change significantly over many parameters and experimental conditions

(see Chapter 5). Kinematical refinements have been carried out using PED data to

give reasonable results ([73] and references therein), however it is clear dynamical

intensity calculations are required [41, 73–75]. While there have been studies with

successful dynamical refinements of SAED [76, 77] and PED [78] data using multi-

slice [79] and Bloch wave [80] simulations throughout the 2000s, the most thorough

study on dynamical refinement was undertaken by Palatinus et al in 2015 [81, 82].

They refined, using PEDT data, the atomic positions and occupancies of several

complex inorganic single crystals, including kaolinite which has up to 39 degrees

of freedom. With average deviations of 0.02Å compared to reference X-ray data.

This work, using the greater amount of information available in tomographic data

lead to several recent successful refinements of previously unknown structures and

phases [83–86].
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1.2 Convergent beam diffraction methods

Due to observations of Kossel patterns from X-ray diffraction and the divergence of

a parallel beam to wider angles to form Kikuchi lines [17], Kossel asked Möllenstedt

to build a microscope capable of producing electron interference from a convergent

beam for his master’s thesis [87]. Möllenstedt achieved the first CBED patterns

in 1938 [88] with state of the art instrumentation, including a wine bottle electron

gun [87,89] (Figure 1.2).

Use of the technique was very stagnant in the early years due to the poor data

quality – caused in particular by poor vacuums leading to high sample contamination

by the intense convergent beam [72]. Nevertheless, the dynamical diffraction theory

including two and three beam methods1 developed throughout the 1950’s and 1960’s,

with an emphasis on symmetry determination. Perhaps the most powerful method

of CBED.

1.2.1 Qualitative CBED

The dynamical scattering of electrons combined with the convergent beam geometry

produces discs of varying intensity. Unlike spot pattern methods, qualitative analysis

of the symmetry within each individual disc as well as the pattern as a whole is

possible. This has many advantages, for example the easy determination of non-

centrosymmetric crystals [90,91].

Determining the symmetry of a crystal helps to confine the possible atom

locations for structure solution. Work began to firstly determine how to take the

2D symmetries present in a CBED pattern and relate it to the 3D symmetry within

the crystal (point group). Through the work of Goodman [92], Tinnappel [93] and

the comprehensive study by Buxton [94] it was shown any crystallographic point

group could be found from at most two or three orientations of CBED patterns if

completed systematically [95].

Under the correct conditions, translational symmetry elements, only viewable

due to dynamical diffraction, can be characterised using CBED patterns. Gjönnes-

Moodie lines [96–99] form from the destructive interference when screw axes, glide

planes or both align to produce zero intensity within kinematically forbidden reflec-

tions. The characterisation of these symmetry elements helps to determine the vast

majority of the 230 space groups [100,101].

The ability to probe very small areas meant that symmetries could be found

1A comprehensive review of two and three beam dynamical theory can be found in Spence and
Zuo [36]
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Figure 1.2: a) schematic of the 1937 convergent-beam electron interference instru-
ment designed by Möllenstedt b) specimen holder and c) convergent beam diffraction
pattern of a 10nm thick silver specimen captured with the aforementioned instru-
ment. All figures taken from [87]
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of separate grains leading to a whole multitude of studies [102] such as twinning,

phase transformations and piezoelectric/pyroelectric effects [95]. Studies involv-

ing symmetry determination using CBED are still present at the time of writ-

ing [103–105], albeit with much less abundance. Recent advances include quan-

titative characterisation using image processing methods [106].

1.2.2 Quantitative CBED

The Quantitative use of CBED patterns began with the work of Macgillavry [107]

using two-beam dynamical theory to attempt extraction of structure factors from

Möllenstedt ’s original CBED patterns (see Fig. 1.2). After numerous attempts of

structure factor extraction from CBED patterns using two-beam theory [108], a new

method emerged in the late 1960’s. Uyeda et al. [109] and Hoier [110] used the ratios

between Kikuchi lines in Kikuchi patterns to determine the accelerating voltage of

the transmission electron microscope (see Chapter 5). As a consequence of this

work it was discovered that the intensities at the Bragg condition of second order

conditions becomes vanishingly small at specific voltages [111, 112]. The critical

voltage technique has been used for scattering factors [113, 114], lattice parameter

changes [114] and Debye-Waller factor (DWF) determination [115]. It is extremely

sensitive to low order structure factors which can be extracted using three beam

theory [36]. This would eventually lead to the structural refinement of low-order

structure factors using CBED patterns in the 1980’s and 1990’s.

One of the first comprehensive attempts to solve a complete structure

(AuGeAs) using CBED was by Vincent et al. [116,117]. They determined the space

group from CBED patterns, the lattice parameters from spot patterns and then

higher-order Laue zone (HOLZ) lines for better accuracy. Using a trial and error

methodology in comparison to a structure of the same space group and lattice pa-

rameters (NiP2), they ruled out potential structures with bond length arguments

and a technique of quasi-kinematic HOLZ reflection refinement (developed by the

Bristol group in the previous few years) until the final structure was found. Inci-

dentally it was this search for quasi-kinematic intensities in electron diffraction that

led to the PED method.

As computer memory, speed and cost decreased during the late 1980s and

early 90s, interest in refining structure factors using quantitative CBED rose. Spence

and Zuo produced a number of comprehensive studies using the Bloch wave method

to simulate and the simplex method to automatically refine structure factors from

CBED data. They used the systematic geometry and the sensitivity of three-phase

9



invariants2 to extract full structure factors [119]. Bird and Saunders used an alter-

native zone axis orientation with a quasi-Newtonian algorithm to achieve a similar

feat [120]. Each method used line scans or ‘rocking curves’ extracted from the CBED

discs.

It was perhaps the work of Høier et al. [121] and Tsuda et al. [122] in the

mid 1990’s which showed the potential the Quantitative CBED (QCBED) method

had when compared to other electron diffraction refinement techniques. Høier and

colleagues were the first group to use a two-dimensional image of intensities in a

multi-parameter refinement. Tsuda and Tanaka produced a comprehensive study on

strontium titanate refining the atomic coordinates and DWFs – instead of structure

factors themselves. Both studies showed the QCBED technique had the potential

to be a panacea method i.e. the broad range of dynamical intensities provided in a

CBED pattern could be used to determine many different structural properties of

a crystal. In contrast to the previous methods of refinement (critical voltage and

HOLZ reflection) where the limited amount of information available meant only

specific parameters could be measured.

To the present day, the QCBED technique has been used to determine a

range of quantitative parameters ([123] and references therein) including bonding

[124–130], lattice parameters [123], atomic positions [131, 132] and Debye-Waller

factors [133–136]. However, the method has not ‘taken off’ in the same fashion

as tomography in parallel beam methods. Saunders [137] postulates that zone axis

CBED patterns do not cover enough of reciprocal space to refine the required number

of structure factors to build a complete picture of the bonding charge distribution.

The ‘overlap problem’ only adds to this issue, restricting the technique to materials

with small lattice parameters [36].

Perhaps the most tantalising prospect for Quantitative CBED lies in direct

inversion of the patterns [138]. First identified by Bird et al. [139] and Peng et

al. [140] a general method to obtain structure factors (with phase intact) from the

intensities was proposed almost at the same time by Allen [141] and Spence [142].

While progress has been made since [143–145], it is currently unable to be used

practically [38].

2For the interested reader, three-phase invariants have also been used in CBED structure solution
to directly determine potential structure factor phases – a comprehensive review is given in Guo [118]
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1.3 Potential uses for D-LACBED

From the previous two sections we can conclude three initial routes for D-LACBED

investigations. Symmetry analysis, structure solution and structure refinement.

1.3.1 Symmetry analysis

In materials with even moderate lattice parameters (>1 nm) the diameter of the

CBED discs may be too small to qualitatively determine the symmetry. For example,

in a recent study of rubidium doped potassium titanyl phosphate (RKTP) [146] D-

LACBED was used to confirm the electron beam had created a domain that was a

twin of the original structure. From the CBED pattern in Fig. 1.3 we see that the

moderately long lattice parameters (a = 1.28 nm, b = 0.64 nm, c = 1.06 nm) in

RKTP produces a dense reciprocal lattice in the [010] direction (minimum g-vectors:

200 = 0.16 Å-1, 001 = 0.10 Å-1) with limited CBED disc area.

It is therefore not only difficult to determine any symmetry within the pattern

but also the centre of the zone axis. This can be rectified using the D-LACBED

technique.

As shown in Fig. 1.4 D-LACBED patterns were taken on the bulk and newly

created domain, where the flipping of the entire pattern (vertical mirror) clearly

displays twinning. D-LACBED has an advantage over LACBED in this regard.

The technique is arguably easier to use and the entire set of g-patterns are collected

at once, meaning symmetry concerning the entire pattern can be analysed.

Figure 1.3: CBED pattern of RKTP in the [010] direction
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Figure 1.4: Dark-field TEM and D-LACBED analysis of beam induced domain mo-
tion on a RKTP sample. In the top frame, a surface dimple marks the location
of a former domain which has retracted off of the sample’s top edge after uniform
irradiation. D-LACBED analysis confirms the domain is continuous across this re-
gion. The bottom panel shows the retracted domain. D-LACBED analysis confirms
a symmetry reversal (vertical mirror) across the imaged domain wall. From [146]
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1.3.2 Structure solution

A form of D-LACBED has been recently used to help confine possible structure

factor phases using the three-phase invariant geometry from dynamical three beam

theory [118, 147]. The large convergence angle makes it easier to identify three-

beam conditions, which are generally off zone axis orientation where four or more

beam dynamical conditions are present. If a general direct inversion theory were

to materialise (discussed in Section 1.2.2) it may be possible to completely solve

structures (ab initio and refinement) from a single zone axis pattern.

1.3.3 Structure of this thesis

We see from the history of parallel and convergent beam electron diffraction that

as the datasets become larger and more diverse the more precise and accurate the

structural refinements become. While successful refinement studies have been car-

ried out in both incident beam geometries, it has yet to have the same impact as

structure solution and symmetry analysis. Given, to the authors knowledge, no pre-

vious studies of structural refinement using LACBED patterns exist we choose this

route for the thesis. We describe the methodology we use to complete a successful

refinement in Chapter 2. We then look at the simplest question in structural refine-

ment: where are the atoms? Where we look at atomic refinement in Chapter 3. In

Chapter 4 we move on to analysing further properties in the crystal structure, even-

tually deciding upon a thorough analysis of the Debye-Waller factor. In Chapter 5

we apply context to the obtained results, by conducting a study on the sensitivity

of D-LACBED patterns through simulation.
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Chapter 2

From sample preparation to

structural refinement

“While fancy-ass instruments such as aberration corrected microscopes with

sophisticated detectors make PED work better, all that is necessary is a microscope

that has well-implemented shift-tilt purity controls with sufficient range, a pair of

post-specimen deflectors, and an electron film magazine”

- Chris Own

Systems Design and Verification of the Precession Electron Diffraction

Technique [41]

The paper by Beanland et al. [7] is the only piece of literature explicitly de-

scribing the digital - large angle convergent beam electron diffraction (D-LACBED)

technique to this date. Submitted in 2013, many changes and improvements have

been made since. Most were made to accommodate structure refinement, the basis

of this thesis and the paper by the author and colleagues, published in 2019 [148].

The details of the changes in technique were only briefly mentioned. No paper exists

yet for the simulation software felix [149]. Therefore, this chapter will focus solely

on the D-LACBED technique and the theory used in felix to achieve the results we

see in the following chapters and the accompanying paper [148]. The other proce-

dures or knowledge required for this study will be briefly mentioned and referenced,

although detailed explanations will be omitted due to their prevalence within the

literature.

The chronology of this chapter will follow the experimental procedure from

preparing a sample to the refinement algorithm we use as shown in Figure 2.1. The

sample preparation and alignment procedures are very similar to standard TEM and
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Figure 2.1: Schematic showing the experimental procedure to obtain a refined struc-
ture of a single crystal specimen.

CBED methodologies. See Williams and Carter [150] for a comprehensive review.

For the collection of D-LACBED data we shall focus on the Digital MicrographTM

(DM) scripts we use for the zone axis patterns (ZAPs) we see in this thesis. For

a review on the geometry of CBED patterns, and their use in quantitative CBED

refinement see Spence and Zuo [36, 151]. The refinement procedure will briefly

outline the Bloch wave theory we use to simulate the D-LACBED patterns as well

as the maximum gradient refinement algorithm we use. A detailed derivation of

Bloch wave theory is provided by Metherell [152].

2.1 Sample preparation

The TEM samples for this thesis were prepared using conventional methods [150,

153, 154]. This included gluing to a copper grid, mechanical grinding with lapping

papers and ion beam thinning [155] using a GatanTM Precision Ion Polishing System

(PIPS). For ion beam thinning the two argon ion guns were set at angles of 4 degrees

above and below the sample plane. The ions were accelerated at 6kV until a hole

appeared, then 2kV for approximately 10 mins to remove any surface damage or

contaminants.

Depending on the experiment the samples were transplanted into either a

GatanTM double tilting or heating holder and then inserted into the JEOLTM 2100

microscope. If the samples were still not clean, they were annealed in situ or to

approximately 50°C in a baking station overnight.
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2.2 Alignment

The alignment process follows conventional CBED procedure [156] for the most part.

However, a few considerations should be made for D-LACBED which are described

below in section 2.3 with more detail, including DM scripts, given in Appendix D.

All alignments were performed at 40 or 50kX magnification. The camera

length was chosen as 25cm and 50cm for the Gatan Orius and OneView cameras

respectively. These values gave optimal resolutions for D-LACBED patterns. A high

enough camera length so that the distortions within the patterns can be detected

and therefore corrected but low enough that we are able to collect a D-LACBED

dataset with a large convergence angle.

After the user has manually aligned the microscope for a conventional CBED

pattern a beam and image shift calibration is performed using computer control of

the microscope (Sections 2.3.1 & 2.3.2 respectively). These calibrations are required

because of the displacement of the incident beam due to the spherical aberration of

the pre-field and post-field objective lenses. These displacements are cancelled for

the most part by the pivot point alignment (‘tilt compensators’) of the microscope

at small beam tilts, but above a moderate value of tilt they grow in proportion with

the cube of the beam tilt angle. Since in practice the displacements depend upon the

tilt compensator settings and the excitation of the objective lenses, it is generally

necessary to perform a measurement of the displacements for a range of beam tilts

immediately before a D-LACBED experiment. The beam shift deflector is used to

apply an equal and opposite displacement so that the electron beam remains in the

same place on the specimen, to a precision of 1 or 2 nm.

Although similar phenomena might be expected to affect the position of the

beam in the diffraction pattern, in practice these are small enough to be ignored for

the tilt ranges employed here. Also, as long as the shift compensator is properly

aligned the use of the beam shift deflector has no appreciable effect on the 000 beam

position in the diffraction pattern.

2.3 D-LACBED data collection

A sequential tilt series of the beam along a serpentine raster (Fig 2.2b) is used to

collect a stack of CBED images. The raster is set so that the CBED discs overlap

on sequential images, so that they can be stitched together to form the D-LACBED

pattern (Fig 2.4).
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2.3.1 Focused beam and image shift correction

As mentioned in Section 2.2, we see significant shifts of both the focused beam [7]

and image on the specimen and image plane respectively (up to ∼ 100 nm) as the

electron beam is tilted. Therefore, two separate DM scripts (Calibration 1 & 2 -

see Appendix D) are used to measure and correct for the shift seen in both cases

as the beam undergoes the serpentine raster used in D-LACBED collection. The

focused beam should then remain in one spot on the sample for the entirety of data

collection (See the videos in the supplementary information of Beanland et al. [7]).

The focused beam shift calibration (D-ED Calibration1) works with no sam-

ple in the field of view, and measures the position of the focused electron probe in

the image for an array of incident beam tilts. It also measures the displacement

of the 000 disc in the diffraction pattern produced by a unit change in the x- and

y-beam tilt digital-to-analogue converters (DACs), the displacement of the electron

probe in the image plane produced by a unit change in the x- and y-beamshift DACs,

and the radius of the 000 CBED disc, is set to be the maximum tilt distance (80%

of the camera width). This sets out the basic geometry of both the calibration and

data collection raster shown in Fig. 2.2.

A pre-determined 8x8 tilt increment series is mapped on to pixel locations in

the camera image to create the alignment raster. During both calibrations the beam

will be tilted to produce the positions shown in Fig 2.2a. Using linear interpolation1

this will be used to translate the recorded shift corrections to any pixel location

within the camera image.

The image shift calibration (D-ED Calibration2) requires the incident elec-

tron spread beam over the full field of view and the presence of a distinct feature on

the sample at exact focus. The second calibration measures (using cross-correlation)

the displacement of the image on the camera (corresponding to a shift of the diffrac-

tion pattern in the back focal plane) during the same array of beam tilts. The shift

is measured using a cross-correlation between a reference and shifted image. They

are both Sobel filtered to reduce the effect of uneven illumination induced by coma

at large beam tilts, which can cause problems in cross correlation. The Sobel filter

removes this broad variation in background intensity and accentuates the sample

boundaries within the image.

If the user has microscope has been aligned correctly the recorded shifts

should roughly form a ‘star shape’ (see Fig 2.3), where the large beam shifts in the

corners of the star indicate the highest tilt angles along the diagonals of the square

tilt calibration raster.

1While a good approximation, the shift is visibly cubic at higher tilt angles as mentioned previ-
ously in section 2.2. This will be included in future scripts.
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Figure 2.2: a) Schematic showing position of an array of 000 CBED discs during
the first tilt calibration raster b) Schematic showing position of the 000 CBED
disc in the serpentine raster used in D-LACBED data collection. Colours simply
indicate different CBED disc positions. Numbers next to discs indicate its place in
the series. The orange box in (a) shows the area of shift corrections (utilising linear
interpolation) used for the raster in (b). Scalings are approximate.

Figure 2.3: Sample recording of image plane shift positions on the camera from
D-ED Calibration2 script
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2.3.2 CBED stack collection

Once aligned and calibrated the collection of the CBED disk tilt series can begin.

The smaller the radii of the CBED discs and the larger the number of tilts per raster

length (the maximum allowed is determined by the camera length – which in turn is

restricted by the camera field of view/resolution) the longer the collection process.

Most D-LACBED data collections are complete within 10 minutes.

The camera continuously runs at the user specified exposure (in our case

0.01 seconds), but a frame is only grabbed once the tilt has been executed. Most of

the delay between frame acquisition is caused by latency between the GatanTM DM

script command and the JEOLTM software which controls the lenses. A significant

speed up is possible if the commands were controlled through hardware additions

rather than software (like in precessional electron diffraction - PED [39]). However,

it would make the technique less portable. When each disc within over every frame in

the CBED tilt series is stitched together they form our D-LACBED patterns covering

a much larger angle of incidence than their individual CBED pattern counterparts

as shown in Fig. 2.4.

Future improvements could include a spiral raster, where the tilt series starts

in the centre and works out to the outer edge in a spiral sequence. Because data

quality generally worsens the longer the beam is on the sample (time taken depen-

dent on sample) due to beam damage and contamination (most prominent tends to

be contamination leading to an increase in background contrast) from the elec-

tron beam [157] the higher quality data would reside in the centre of the pat-

tern which contains most of the dynamical scattering. At the moment the raster

takes a ’top down’ approach. Thus if the sample becomes more and more dam-

aged/contaminated the bottom of the pattern will show these effects more promi-

nently than the top. This intensity change could ’break’ known symmetry in the

pattern. By using a spiral raster sample damage and contamination present in the

outer edges of the pattern is more likely to be symmetrical, potentially preserving

the symmetry of the pattern.

The quality of the pattern is linked to the speed of collection, therefore any

improvements linked to the focused beam spending less time on the sample are

beneficial. This includes a faster camera, hardware additions mentioned earlier or

continuous collection using post-processing to frame grab.
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Figure 2.4: Figure 2 from Beanland et al. [7] (a) Sixteen CBED patterns from [110]
silicon with varying beam tilts. The 000 (red), 111 (blue) and 220 (yellow) beams
are highlighted in each. (b) Digital reconstruction of LACBED patterns from many
individual CBED patterns, highlighting the components from the patterns in (a).
(c) The on-axis CBED pattern.
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2.3.3 D-LACBED image processing

The raw D-LACBED patterns are created form the CBED stack using the DM

script D-ED Process. To ascertain the reciprocal lattice vectors, each of the CBED

images within the tilt series are shifted (using the calibrated measurements of CBED

pattern displacement with beam tilt) so that the central 000 discs are all aligned

in the middle. The intensities within the entire stack are summed to produce the

averaged CBED image we see in Fig 2.5a. It has some similarities to spot PED

diffraction patterns, but over a full square solid angle instead of a hollow one. The

averaged CBED image reduces the error in measuring the g-vector basis of the

reciprocal lattice from the diffraction pattern. The unit cell dimensions are checked

against the reference structure for the material under investigation. However, for

each study in this thesis we have used the unit cell parameters from the reference

structure (X-ray and neutron source). Electron diffraction unit cell measurements

from reciprocal lattice spacings are far less precise than their X-ray equivalents due

to distortion. We have also found unit cell parameter refinement using D-LACBED

patterns is only precise to around 1pm, on the order of 100-1000 times worse than X-

rays. Methods to obtain precise unit cell parameters in-situ (from electron diffraction

data) are discussed in Chapter 5. The average CBED image could potentially be

used to obtain an initial structure solution before a refinement as, like PED, the

average intensity of each CBED can be modelled as pseudo-kinematical. It is a

possibility to explore in the future.

The CBED discs corresponding to the minimal g-vectors are identified by

the user if the automatic procedure fails to pick up the CBED disks correctly. The

indecies are obtained from an indexing software such as CrystalMaker [158]. The g-

vectors are then swapped to make a right-handed pair which will form the reciprocal

lattice basis. If the lattice is not centred (i.e. a 90 degree angle is present in the

pattern that is not captured by the smallest pair of g-vectors), the user identifies

the face centred g-vector. These are stored for later use in the alignment script. For

future efficiency, the disc indicies could potentially be obtained from the average

CBED pattern using kinematical theory.

The background is subtracted through measurement of the background over

a small area in between each disc in the average CBED pattern. Ideally a measure-

ment would be taken for every tilted CBED image, however this is currently too

computationally expensive using DM scripts. A 2D cubic spline is used to extrap-

olate the background intensity between each of the measured points in the average

CBED image to it’s entirety. We now have the background intensity for every pixel

in the image which is subsequently subtracted from each of the CBED images in
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the tilt series (Fig. 2.6).

After background subtraction, a percentage of every CBED disc (usually

75%) is cut out of each image and placed in separate g-pattern images. This is

done sequentially. The overlapping intensities between each CBED spot are then

averaged together to produce the raw D-LACBED g-patterns (Fig 2.5b).

A montage is also created by pasting all of the raw D-LACBED g-pattern

into one image as seen in Fig 2.5c. To do so the basis g-vectors are lengthened and

are therefore no longer absolute. Their ratios and angle are however maintained.

The montage is useful to observe the quality of the data (through any unexpected

symmetry breaking in the pattern caused by contamination and/or distortion).

The raw D-LACBED images are sufficient for symmetry analysis. For quan-

titative analysis we can use the symmetry of the D-LACBED patterns to average the

data. This reduces the error caused by distortion, contamination or small thickness

differences. Manual averaging requires days of processing. The D-ED Align script

achieves this in minutes.

Firstly, the centre of the 000 D-LACBED g-pattern is found by creating a

180°rotated copy. Then, through cross-correlation, the distance between the original

and rotated image centres can be found, and therefore the image centre location.

This is possible due to the two-fold rotational symmetry implicit in every zero-order

Laue zone (ZOLZ) D-LACBED g-pattern [94]. The current rectangular images are

cropped to squares relative to the g-pattern centres.

Each g-pattern is then rotated so that the 1st g-vector basis in the right-

handed pair lies horizontally (g-vectors are re-selected if one is face centred). The

centres of every g-pattern are now found to average each individual g-pattern with

its rotated 2-fold symmetric compatriot.

If enough mirror symmetry is present in the pattern the linear distortion and

skew of the 000 g-pattern in the x and y direction is measured with a cross-correlation

using a copy that is stretched and skewed until the best fit is found. This is then

applied to every g-pattern. If there isn’t enough symmetry the stretch and skew

is found later using a thickness refined simulation using the separate D-ED Stretch

script.2

The D-LACBED g-patterns are then averaged according to any rotational

and/or mirror symmetry present in the montage. After cropping to a user spec-

ified size and convergence angle estimated the D-LACBED data is now ready for

structural refinement.

2There is another subsequent calibration script called D-ED SubPixel which use a thickness
refined simulated D-LACBED pattern to align the pattern centres of the experimental and simulated
g-patterns.
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Figure 2.5: a) Average CBED pattern, b) raw 000 D-LACBED g-pattern and c)
montage from [22̄1] alpha-corundum)
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Figure 2.6: Zone axis CBED patterns from [22̄1] alpha-corundum a) without and b)
with background subtraction. The dynamic range in both images has been equally
shifted to low intensity values to see the diffuse scattering

The cropped and processed experimental images seen in Figure 2.7b are read

into the program felix [149], a Fortran MPI [159] parallelised program capable of

running on supercomputers.

2.4 Simulation

To simulate our D-LACBED patterns we may choose one of two methods. The first

is the Multislice method [160–162]. This is where we split the crystal potential into

two dimensional slices and project the potential onto the next slice in the crystal.

Using wave-optics, we can propagate the wavefunction of the electron from one slice

to the next. The second is the Bloch wave method, which uses the periodicity of the

crystal in conjunction with the Schrödinger equation to obtain a linear combination

of electron wavefunctions bound by the periodicity of the crystal. These are then

solved using the eigenfunction method.

We have chosen to use the Bloch wave method. This is because we are

initially interested in defect free single crystals. While the multislice algorithm is

quicker [163, 164] and represents the full distribution of electrons in our diffrac-

tion pattern, i.e. intensity from inelastic effects can be modelled, the Bloch wave

method is both easily parallelisable and can easily accommodate standard unit cell

axes [165]. The Bloch wave method can also calculate HOLZ scattering, of which

multislice struggles [162]. While HOLZ scattering is neglected in this thesis, the
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Figure 2.7: a) Raw, uncropped D-LACBED g-pattern vs. b) symmetrically averaged
and distortion corrected g-pattern.

arguments in Chapter 5 suggest higher order g-vectors may hold key influence for

future D-LACBED refinement.

We therefore give a brief summary of the Bloch wave problem, set out for

parallel programming of D-LACBED patterns. We assume absorption (the reduction

of Bragg intensity due to inelastic scattering) is always present, meaning we shall

not refer to the special quantum mechanical properties of the Bloch wave matrices

found in most texts. For the interested reader reviews can be found by Shmueli et

al. [165] , Self et al. [163], Kirkland [164], Spence and Zuo [36,151], Metherell [152],

Humphreys [166] and Hirsh et al. [167], based on the original paper by Bethe [19]

extended by MacGillavry [107], Heidenreich [168] and Kato [169] (for the hardcore

enthusiasts).

We must first model the properties of the incident fast electrons in the vac-

uum of the TEM. Our electron waves incident on the sample have wavevector,

K̄0 = 1/λ, with wavelength λ. Our electron is travelling at around 70% the speed of

light at an accelerating voltage of, A = 200kV . We must therefore make relativis-

tic corrections to both the rest mass m0 and wavelength of the travelling electron

according to Fujiwara [170].

m = m0

(
1−

(v
c

)2
)− 1

2

(2.1a)
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λ =
h

2|e|m0A
(

1 + |e|A
2m0c2

) 1
2

(2.1b)

Where m is our relativistically corrected mass, v is the velocity of our electron, c is

the speed of light, h is Planck’s constant and |e| is the magnitude of the electrons

charge. Since our electrons have a fixed kinetic energy E = |e|A (there is a very

small increase when the electron passes through the potential of the crystal) and we

are only interested in elastic scattering in the Bloch wave method, the Heisenberg

uncertainty principle states that we cannot know the time our fast electron passes

through the transmission electron microscope [152]. We can therefore use the time-

independent Schrodinger wave equation to describe the motion of our fast electrons

throughout their travel in the TEM vacuum(
− h̄2

2m
∇2 − |e|V (r̄)

)
Ψ0(r̄) = EΨ0(r̄) (2.2)

where h̄ = h/2π is the reduced Planck’s constant, V (r̄) is a yet to be assigned

potential describing the periodic real space crystal lattice3 and Ψ0(r̄) is the incident

wavefunction of the electron. In free space there is no crystal potential, so our

electron experiences no potential energy |e|V (r̄) = 0 Our incident wavefunction,

Ψ0(r̄) is therefore chosen to have solutions to Eq. 2.2 in the form of an infinite

plane wave

Ψ0(r̄) = exp(2πiK̄0 · r̄) (2.3)

where we have used the imaginary number i.

To model our electron wavefunction through the crystal we first assume our

crystal model has no boundary conditions, i.e. the periodic crystal lattice extends

to infinity. The boundary conditions (the crystal surfaces) will be added later. We

define a modified potential energy of the fast electron within the periodic structure

of the crystal U(r̄) = (2m|e|/h2)V (r̄) to simplify insertion into the Schrodinger

equation. The modified potential energy can be represented as a Fourier series with

Fourier amplitudes (or modified structure factors) Uḡ and phase exp(2πiḡ · r̄)

U(r̄) =
∑
ḡ

Uḡ exp(2πiḡ · r̄) (2.4)

where the (2m|e|/h2) has been absorbed into the Uḡ term to create the modified

3 r̄ = mā+ nb̄+ pc̄ for the rth atom in the unit cell with vectors ā,b̄ and c̄ where m,n and p are
constants. It is this vector which varies during atomic refinement.
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structure factor4. The modified potential is a summation over the currently infinite

number of Bragg reflecting planes in the crystal which we represent by introducing

a reciprocal lattice with basis ḡ (See introductory solid state textbooks [171–173]

for comparison between real and reciprocal space lattice).

The modified structure factors describe the amount of scattering to each

reflection due to the crystal structure with unit cell volume Ω

Uḡ =

(
2m|e|
h2

)(
h2

2πm0eΩ

)∑
i

[
fei(q̄) + if ′ei(q̄)

]
exp(−2πiḡ · r̄)OiTi (2.5)

This is achieved through summation of all the individual atoms (index i)

elastic and absorptive electron scattering factors fei(q̄) and f ′ei(q̄) respectively (where

q is over any g-vector undefined by the crystal lattice), the site occupancy Oi and

each atoms deviation from its mean position due to temperature Ti within the unit

cell.

There are a number of tabulations for the elastic scattering factors fei(q̄)

available in the literature [164,174–176] which are included in felix. For this thesis,

the majority of calculations were with Kirkland’s tabulations [164]. The absorp-

tive scattering factors originate from the complex model of the potential, Uḡ =

(U r
ḡ + iUa

ḡ ), where we have a real potential U r
ḡ (of only elastic scattered electrons)

and an absorptive potential Ua
ḡ (defining the loss of elastically scattered electrons

in the diffraction pattern due to inelastic processes). It has been shown that most

of the lost electrons is caused by thermal diffuse scattering (TDS) [177,178]. Other

contributions do exist (ionisation [179,180], Compton scattering [181] etc.) but are

complex to model [182]. Therefore they are not included in this thesis. They do

however provide an avenue for future studies. The TDS absorption can be modelled

using the Einstein approximation as inelastic scattering factors, f ′ei(q̄), of varying

complexity [183–187]. We have used the Bird and King [183] model due to its sim-

plicity. We have not, however, used their tabulated values, instead fully calculating

each absorptive scattering factor in each simulation for increased precision. This is

4Under normal circumstances, a potential independent of a scatterer is defined, ie.V (r̄) =∑
ḡ Vḡ exp(2πiḡ · r̄) instead of a potential energy, (2m|e|/h2)V (r̄). The structure of a crystal found

through separate scattering experiments can then be easily compared through the structure factors
Vḡ. In electron diffraction we can include the 2m|e|/h2 factor within the structure factors because
electron diffraction experiments are usually conducted at fixed standard accelerating voltages, e.g.
80 kV, 100 kV, 200 kV etc. (which determines the velocity and therefore relativistic mass of the
electron). Our modified structure factors Uḡ are therefore not ‘genuine’ structure factors as they
depend on experimental conditions, but can easily be converted to the standard convention for
comparison with other experiments or even for X-rays and other types of scattering [36]
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a substantial calculation, requiring a 2D numerical integration over the entirety of

reciprocal space, therefore it is MPI parallelised.

The temperature factors Ti describe the loss of intensity of the Bragg beams

due to the thermal motion of the atom about its mean lattice position

Ti = exp(−Biq̄
2) (2.6a)

Bi = 8π2〈u2〉 (2.6b)

where Bi is the isotropic DWF and 〈u2〉 is the mean squared displacement for

each atom. It is derived by introducing a displacement vector ū to the phase term

exp(−2πiḡ · r̄+ ū) in Eq. 2.5 [188]. A review on the effect of the DWF in diffraction

patterns can be found in Warren (Chapter 11) [189]. For most studies in this thesis

we use the independent atom model (IAM) and harmonic (Einstein) approximation

to calculate the isotropic version of the DWF. We show in Chapter 4 how this model

starts to break down as the crystal structure becomes more complicated.

For both the atomic coordinate and DWF refinements in Chapters 3 & 4

respectively, the structure factors Uḡ are recalculated after every iteration as the

variables r̄ and Bi are optimised (See section 2.6 for refinement algorithm).

We can reduce the possible number of vectors for atomic coordinate refine-

ment by using the space group symmetry of the unit cell. Only certain movements

of atoms down specific vectors will be allowed. This is determined by each atom’s

Wyckoff position, which have been tabulated in felix (currently only for corundum

- however the structure is in place for future tabulations of any material).

So far, we have modelled the electron in free space with an ambiguous direc-

tion K̄0 as well as the infinite potential of the crystal sample with the expectation

of an electron passing through but without a wave-equation describing it. To this

point, each processor has been carrying out the same calculation ie. the code is

running in serial. It is possible to split the structure factor calculation into sepa-

rate parallel calculations for each g-vector. However, the previous calculations are

all computationally inexpensive. Setting up in parallel requires needlessly complex

communication between processors for a negligible increase in computation time.

We shall see that the model for the wave equation in a crystal (with so-

lutions ΨB(r̄)) for a D-LACBED pattern is computationally expensive but easily

parallelisable. We can describe our D-LACBED pattern as a collection of spot pat-

terns separated out into pixels of the final image (Fig 2.8 top). Each pixel p has a

separate incident wavefunction Ψp
0(r̄) with wavevector K̄p

0 , wave equation calcula-

tion and resulting exit wavefunction ψp
g(z) leading to the pixel intensity Ipg for each
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g-vector. We have therefore used MPI to assign cores separate sets of pixel calcula-

tions to send back to the host processor to assemble each image independently (Fig

2.8 bottom), bypassing the overlap problem (See Chapter 1).

Since each pixel calculation is independent the pixel notation p will be

dropped in the following explanation of the Bloch wave problem. We shall focus on

the calculation of one arbitrary pixel in the D-LACBED pattern.

We now modify our free space Schrodinger wave equation (Eq. 2.2) to in-

clude our periodic potential energy of the crystal from Eq. 2.4 and rearrange (see

Appendix C).

(∇2 + 4π2k2
0)ΨB(r̄) = −4π2U(r̄)ΨB(r̄) (2.7)

where we have introduced the magnitude of a new incident wavevector k̄0 due to the

slight increase in the electron’s energy as it travels through the negative potential

of the crystal. We have chosen Bloch wave solutions for our wavefunction ΨB(r̄).

Like in free space they are also plane waves, however their form is restricted by the

periodicity of the potential, and can therefore also be represented as a Fourier series

ΨB(r̄) = bj(k̄j , r̄) =
∑
ḡ

Cḡj exp
[
2πi(k̄j + ḡ) · r̄

]
(2.8)

Where in principle the sum is over the infinite number reciprocal lattice

vectors. For practical purposes the user in felix specifies an upper limit to the

number of reciprocal lattice vectors. This is achieved by ranking each reflection due

to its distance from the zeroth g-vector [190]. Each Bloch wave bj(k̄j , r̄) indicates

one of many degenerate states j (with wavevector k̄j) of slightly differing kinetic

energy but same total energy defining a dispersion surface (See Figure 2.9). The

Bloch wave coefficients Cḡj determine the contribution each degenerate state has

to the total wavefunction ΨB(r̄), and are one of the unknowns to be found by the

eigenfunction method. The Bloch wavevectors k̄j are also unknown5.

Inserting Eq. 2.7 into Eq. 2.8

5Note: we have now described three sets of k-vectors describing three separate total wavefunc-
tions of the fast electron. The wavefunction through free-space: Ψ0(r̄) with wavevector K̄0, the
Bloch wavefunction through an infinite periodic potential: ΨB(r̄) with modified incident wavevec-
tor k̄0 and scattered Bloch wavevectors k̄j where j = 1, 2, 3, . . . , n for n Bloch waves and finally the
g-dependent exit Bloch wavefunction: ψḡ(z) with wavevectors (implicit in Eq. 2.20) k̄ḡn where n
is the integer g-vector index.
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Figure 2.8: top) Schematic of the simulation set up in felix over the central 2D pixel
line of a D-LACBED image (red line on bottom images). The blue and orange lines
indicate the direction of incident wavefunctions (with wavevectors K̄1

0 and K̄2
0 ) for

the 1st and 2nd pixels respectively. After transmission through the sample (see Figure
2.9) with thickness t, the lines indicate the exit wavefunctions with wavevectors k̄1

g0

and k̄2
g0 for g0 (g = 0), k̄1

g1 and k̄2
g1 for g1. The purple lines show the pth wavefunction

in each case. bottom) Sample simulated D-LACBED g-patterns of [001] Copper.
The red line is analogous to the red line in the top image. The green and yellow
highlights show example assignments of pixel allocations for each processor up to
the nth core
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Figure 2.9: Reciprocal space representation of the Bloch wave problem through
an infinite potential for the two-beam case. n represents the vector normal to the
specimen surface. Other variables are defined within the text
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∑
ḡ

(
k2

0 − |k̄j + ḡ|2
)
Cḡj exp

[
2πi(k̄j + ḡ) · r̄

]
=

−

[∑
h̄6=0

Uh̄ exp
(
2πih̄ · r̄

)][∑
ḡ

Cḡj exp
[
2πi(k̄j + ḡ) · r̄

]]
(2.9)

where we have introduced the reciprocal g-vector series h̄ to discern between the two

series on the right-hand side of Eq. 2.9. The zeroth structure factor term U0 has

been absorbed into the incident wavevector magnitude k0 for a small computational

advantage. By re-indexing and equating exponential coefficients [164] we arrive at

the well-known Bloch wave dispersion relation [36]

(
k2

0 − |k̄j + ḡ|2
)
Cḡj +

∑
h̄6=ḡ

Uḡ−h̄Ch̄j (2.10)

We wish to make k2
0 − |k̄j + ḡ|2 linear in order to make Eq. 2.10 solvable

by the eigenfunction method. Therefore, we make two approximations. The high

energy approximation, k̄j = k0 +γj where we assume that the range of degeneracies

for each Bloch state j is very small (k0 ∼ |k̄j |). Also, the x & y electron wave

vector components (and their derivatives) must be continuous at the surface of the

specimen. We are only allowed a change of the z-component from our incident

wavevector k0,z to our Bloch wavevector k̄j due to the mean inner potential U0.

Our Bloch wavevector can therefore be approximated using the incident wavevector

plus a small term, γj (γj � k0 - see Fig 2.9 for geometric interpretation), in the

z-direction, k̄j = k0 + γj ẑ where ẑ is a unit vector. We also only consider zeroth

order g-vectors using the ZOLZ approximation ḡ · ẑ = 0.

Through these two approximations we can write [167]

k2
0 − |k̄j + ḡ|2 = −2γj k̄0 · ẑ − 2(k̄0 · ḡ)− g2 (2.11)

= −2γjk0,z + 2k0sḡ (2.12)

where [165]

sḡ = − 1

2k0

(
2(k̄0 · ḡ) + g2

)
(2.13)

The deviation parameter sḡ is the distance from the reciprocal lattice point to the

Ewald sphere (defined by the incident k-vector, K̄). It is used as a beam selection
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parameter to discard g-vectors in Eq. 2.10 which have negligible contributions to

the total wavefunction [190]. With the addition of Bethe parameters [190, 191] the

size of our eigenvalue problem can be reduced dramatically with minimal loss of

accuracy.

With the advent of Eq. 2.11 we can now form the Bloch wave matrix equation

from Eq. 2.10

∑
h̄

[
Uḡ−h̄ + 2k0sḡ

]
Ch̄j = 2k0,zγjCḡj (2.14)

Or in matrix notation



0 U−ḡ1 U−ḡ2 · · ·

Uḡ1 2k0sḡ1 Uḡ1−ḡ2 · · ·

Uḡ2 Uḡ2−ḡ1 2k0sḡ2 · · ·
...

...
...

. . .





Cḡ0j

Cḡ1j

Cḡ2j

...


= 2k0,zγj



Cḡ0j

Cḡ1j

Cḡ2j

...


(2.15)

Using the numerical procedure LAPACK [192] we obtain the eigenvectors,

the set of Cḡj , and eigenvalues 2k0,zγj . We can now solve for an electron travelling

through an infinite periodic potential.

To obtain solutions for our total wavefunction ΨT (r̄) describing a fast electron

through a finite periodic potential in the TEM, we impose boundary conditions. In

effect the sample acts as a filter, only allowing certain forms of plane wave through

dependent on the structure and orientation of the crystal. To do this we introduce an

excitation coefficient αj for the total wavefunction at the entrance surface ΨTU (r̄).

We can also introduce a separate thickness-based coefficient ψḡ(z) to represent the

total wavefunction at any thickness throughout the sample for each g-vector ΨTL(r̄).

This has been called the ‘Darwin’ representation [167] of the total wavefunction

ΨTU (r̄) =
∑
j

αjbj(k̄j , r̄) (2.16a)

ΨTL(r̄) =
∑
ḡ

ψḡ(z) exp
[
2πi(k̄0 + ḡ) · r̄

]
(2.16b)

Since both Eq. 2.16a and Eq. 2.16b are equally valid representations of the

wavefunction at any point in the crystal we can equate them both to obtain the

total wavefunction
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ΨT (r̄) =
∑
j

αjbj(k̄j , r̄) =
∑
ḡ

ψḡ(z) exp
[
2πi(k̄0 + ḡ) · r̄

]
(2.17)

Equate exponential coefficients and rearrange for ψḡ(z)

ψḡ(z) =
∑
j

αjCḡj exp(2πiγjz) (2.18)

We can now obtain the wavefunction for each g-vector at the exit thickness

t once we solve for the excitation coefficients using the special circumstance where

z = 0. We take the inverse of the Bloch wave coefficient matrix and apply to both

sides to obtain an expression for the excitation coefficients

αj =
∑
j

C−1
ḡj ψḡ(0) (2.19)

where ψḡ(0) is unity for g = 0 and zero for all other g-vectors6. By inserting into

Eq. 2.18 we obtain the Bloch wave

ψḡ(z) =
∑
j

Cḡj exp(2πiγjz)C
−1
ḡj ψḡ(0) (2.20)

the intensity of each pixel is then determined by the relation

Ipḡ = |ψp
ḡ(z)|2 (2.21)

where we have re-introduced the pixel notation p.

2.5 Fit-index calculation

We now require a method to fit our simulated D-LACBED images with our ex-

perimental ones. We have chosen to use a zero-mean normalised cross correla-

tion (ZNCC) [193]. Fits were obtained for each D-LACBED pattern individually,

removing any dependence on relative intensities of different reflections.

To give some resemblance to the R-factor commonly used to indicate ex-

periment/simulation fit quality in structure solution methods the fit index for n

experimental patterns x and simulated patterns y, each with N pixels is

6At the top surface of the crystal (where the electron beam enters) all diffracted beams have
zero intensity while the transmitted beam has an intensity of unity.
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f =
n∑

j=1

(
1−

N∑
i=1

(xi,j − x̄j)(yi,j − ȳj)
σxjσyjN

)
j

(2.22)

where the first sum is over all patterns and the second sum is the ZNCC: xj and yj

are the means of the jth experimental and simulated patterns respectively; xi,j and

yi,j are their pixel values; σxj and σyj are their standard deviations. Eq. 2.22 gives

f = 0 for a perfect fit.

The ZNCC has the advantage of being insensitive to background offsets and

scaling. This is achieved by bringing both simulated and experimental patterns (Fig

2.10b) onto the same mean (Fig 2.10c) and scale (Fig 2.10d).

The simulated 000 g-pattern is not blurred in Fig 2.10, with a noticeable

difference to the experimental g-pattern. This is accounted for by adding a Gaussian

Figure 2.10: a) simulated (top) and experimental (bottom) 000 D-LACBED images
of Copper in the [001] direction. The red and blue lines indicate the pixels used
for the line plots in b,c and d. b) line plot (left) of the raw D-LACBED images
with associated histogram (right). The red and blue dotted lines indicate mean
values of 9733 and 7770 for the simulated and experimental images respectively.
c) line and histogram plot from b, but with each image mean subtracted from the
intensity values. The black dotted line indicates zero mean for both images d) line
and histogram plot from c, but with the intensity values divided by the standard
deviation of each image. The black dotted line is again the zero mean.
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blur to the simulated image before obtaining the ZNCC. See Chapter 5 for more

detail.

Currently, each g-pattern is weighted evenly i.e. each g-pattern gives the

same contribution to the averaged global fit value. It is shown in Chapter 5 that in

future perhaps more weighting should be given to higher order g-patterns.

2.6 Minimisation algorithm

In the very first iterations of felix we used the simplex algorithm [194] to refine

crystal structural parameters. However, this proved to be a very inefficient procedure

for D-LACBED refinement. We found the global minima in 2D fit spaces to be

approximately parabolic (see Figs 4.2 & 4.3). Therefore, we used three simulations

to apply Cramer’s rule [195,196] in order to extrapolate the minimum of a parabola

in the negative gradient direction. We then simulate at that point and repeat the

process until a user set difference is met between sequential parabola minimums.

This method was applied for the copper data in Chapter 4. For greater than two

dimensions we use n+ 1 points (where n is the number of dimensions) to determine

which direction between the points has the maximum gradient. A 2D parabola is

then calculated along that direction and the process is repeated. This method was

applied to the corundum, gallium arsenide and indium phosphide data in Chapters

3,4 & 5 respectively. More recently, we have found that under certain circumstances

the maximum gradient method can be ineffective due to the topology of the fit

space (for example ‘valleys’ to the global minimum). This provides scope for future

alterations to the maximum gradient algorithm. So far we have found singular,

parabolic global minimums for the every refineable variable. Howver, should a

circumstance arise with a more complex fit space/global minima the minimisation

algorithm can be changed (e.g. a genetic algorithm).
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Chapter 3

Atomic refinement

“It would be very pleasing, given that electron diffraction can give us the unit cell

and the crystal symmetry so easily, to be able to determine atomic positions too.

There is clearly enough information present to be able to do so.”

- J.A. Eades

Microdiffraction’s Contribution to Microcharacterization [197]

Measurement of crystal structure usually takes place in two stages: first,

structure solution, in which the unit cell and symmetry of the material is determined,

as well as the atoms in the unit cell and their approximate locations; followed

by structure refinement, in which time-averaged atomic coordinates and thermal

vibration parameters are optimised to give the best fit to experimental data. The

CBED technique has been used abundantly in the past for most types of structural

refinement study as mentioned in Chapter 1. Although, surprisingly there have been

no atomic coordinate refinement (ACR) studies using CBED in the previous decade.

Reasons for this are difficult to discern. Atom coordinates determined from

structure refinement and solution studies using electron diffraction have been around

for at least the last thirty [117] and sixty [34] years respectively. In the evolution

of such techniques there has been a trend to obtain greater amounts of information

for better results. The introduction of ‘diffraction tomography’ (EDT [54,198,199],

PEDT [68,70,81,82], RED [53,70,200], cRED [64,69,201]) is a clear example. It is

therefore strange that the technique which currently produces the greatest amount

of information at a zone axis, CBED, has not been completely utilised.

The most recent and thorough study of CBED ACR to date (in 2004), Ogata

et al. [202] refines 21 independent atomic coordinates in BaTiO3, a jump of 20 from

the authors previous paper on LaCrO3 [132]. The introduction of parallel computing
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was given as the reason for the increased capability of their refinement. However,

there appears to have been no CBED ACR studies since. Studies on Debye-Waller

and refinement of individual structure factors using CBED are abundant in com-

parison [136]. Most work uses computationally heavy dynamical theory, sometimes

with double-digit degrees of freedom. Perhaps a perceived lack of competitiveness

with X-ray diffraction may be a possible reason. Or it may simply be a loss of in-

terest in ACR [129] due to the previous success of CBED for electrostatic potential

and/or electron density studies.

Here, we explore ACR refinement using D-LACBED data from

alpha-corundum (α-Al2O3). We find that D-LACBED data can produce accurate

and precise results within 1 picometre of the nominal values with a well-defined

global minimum. In the following sections we explore how the increase in information

provided by D-LACBED data improves ACR in comparison to CBED and suggest

ways a convergent beam could be employed for similar studies in the future.

3.1 Alpha-corundum

Alpha-corundum, the thermodynamically stable phase of aluminium oxide, is a well-

studied material [203] with very well-characterised fractional atomic coordinates

[204, 205] and electron density [127, 206]. It has a trigonal structure (space group

R3̄c, Figure 3.1) and is one of a class of materials with composition X2O3, where X

is a metal. For each material, the metal atomic coordinate is slightly different from

that of aluminium in α-Al2O3. Sapphire, the term sometimes used interchangeably

with corundum, describes in fact the weakly doped varieties of alpha-corundum; the

most prominent example is ruby (chromium doped α-Al2O3).

The atomic coordinates in the alpha-corundum basis have only two degrees of

freedom (i.e. coordinates not fixed by symmetry), one each for Aluminium [0, 0, zAl]

and Oxygen [xO, 0, 1/4]. Although D-LACBED using only ZOLZ data is insensitive

to atomic coordinates along the beam direction, due to the symmetry of the space

group, refinement of these coordinates always changes coordinates of some atoms

that are perpendicular to any zone axis we select. High quality room temperature

X-ray data from Kondo et al. [204] (here referred to as SK) gives the fractional co-

ordinates zAl = 0.352156(17) and xO = 0.69364(7) respectively and these values are

taken here as reference values. The simple and well-studied nature of the structure

along with the future possibility to measure small atomic displacements in the X2O3

series, means α-Al2O3 is an ideal test case for ACR using D-LACBED.
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Figure 3.1: Crystal structure of α-Al2O3. The symmetry of the space group R3̄c
dictates that the aluminium atom can only move along the c direction with the
oxygen atom only along the a or b vectors dependent on the Wyckoff position (See
[203])

3.2 D-LACBED

The first two goals were to ascertain the accuracy of a single D-LACBED zone axis

pattern (ZAP) and the suitability of the IAM for ACR. While evidence suggests

the IAM does suffice [207], most other electron diffraction techniques currently use

tomographic or multiple zone axes to determine atomic coordinates (see Chapter 1).

However, no other technique has the superior angular range D-LACBED provides.

A D-LACBED ZAP will therefore give the baseline accuracy.

A TEM sample of corundum was made using standard procedures.

D-LACBED data were collected from the [22̄1] zone axis at room temperature

(we will call it the A221 dataset – Figure 3.2) with a smallest Bragg angle of

2θ102̄ = 7.2mrad at 200 kV. 961 CBED patterns were collected in approximately

3.2 minutes with a CBED disc beam half-convergence angle of 1.7 mrad, giving

D-LACBED g-patterns extending beyond 50 mrad. The reconstructed images had

dimensions of 296 x 296 pixels. A221 provides the basis for the entirety of this
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chapter. After processing, the DWF (BAl = 0.15Å2 and BO = 0.44Å2 – see Section

4.4), thickness (87.3 nm) and D-LACBED g-pattern half-convergence angle (27.57

mrad) were refined using the simple gradient descent algorithm within felix [149]

(described in Section 2.6).

Refinement of the atomic coordinates from this gave zAl = 0.3525(4) and xO

= 0.693(1) [148] 1, i.e. an approximate difference of 0.4 pm and 0.2 pm respectively

from the literature values (see Figure 3.7 - bond lengths and angles can be found in

Appendix A). As shown in Figure 3.3 the data gives a unique best fit of f = 0.6%

(a ‘perfect’ match gives a 0% fit value).

This is the best fit that has been achieved with D-LACBED experimental

data so far. For comparison, fit values for the copper data in Chapter 4 had values

in the range of 3−10%. This shows that for at least relatively simple structures the

IAM model is sufficient for sub-picometre precision atomic coordinate refinement.

Strikingly, the final atomic coordinate values suggest that a D-LACBED ZAP probes

enough of reciprocal space for sub-pm accuracy, well within the accuracy of the other

electron diffraction ACR techniques [81,82,202].

To illustrate the sensitivity and goodness of fit of the full D-LACBED data to

atomic coordinates we show the changes in the patterns using a form of differential

in Figs 3.4, 3.5 and 3.6 that is appropriate for our use of the ZNCC as a fit index.

(Intensity differences are calculated between simulations for small changes δx0 and

δzAl, 1pm each, for Figs 3.4 and 3.5, between the experimental and refined simulation

for Figure 3.6). Each pattern’s mean is subtracted, and intensity normalised to give

a standard deviation of unity. The scales of δI/δx0, δI/δzAl and the residual are

thus in units of standard deviation. It is clear from the δI/δx0 and δI/δzAl images

that all patterns display strong sensitivity to sub-picometre atomic displacements of

both atoms. Some regions in a few of the patterns are very strongly affected (often

close to, or at, the pattern centre), while other regions are relatively insensitive.

The intricate changes of intensity are quite different for the two parameters, which

results in the ability to refine them essentially independent of each other.

Importantly, even with highly sensitive data, the maximum residual in Fig.

3.6 does not exceed 1 standard deviation (σ). We see in Section 5.3 the precision of

the D-LACBED patterns is approximately a picometre per 1σ of max normalised

difference or ‘delta’ intensity, emphasising the excellent fit achieved. The remain-

1After publication we decided to undertake the precision analysis presented in Chapter 5 where
we have used conservative error values of ± 0.5 standard deviations from the maximum normalised
difference or ’delta’ in simulated montages. This is based upon the difficulty of determining the
complex effect of the many influences on the patterns (this includes limitations within the simulated
model, such as bonding - as well as optical errors e.g. distortion.) This is something to be examined
for the future
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Figure 3.3: fit index f as a function of xO and zAl.

ing residuals seen could be due to several factors. The pattern of intensity seen in

some g-patterns is asymmetric, even though both the experimental and simulated

data are not, suggesting very small uncorrected distortions or sub-pixel shifts. The

limitations of our distortion correction methods are discussed in Chapter 2. The re-

maining intensity difference could be put down to limitations within the simulation

as well as in the background correction. Even a small level of charge transfer (which

we don’t account for) between the atoms may affect the atomic potential. Limita-

tions or small errors in the background correction may also lead to small systematic

errors in calculation.

In the context of dynamical diffraction Figure 3.7 shows a highly accurate and

precise result. It is clear there is still work to be done to achieve the precision and

accuracy of X-ray and neutron scattering techniques. D-LACBED as a technique

is very young and there are plenty of improvements to be made (see Chapter 2).

However, it already matches or exceeds the accuracy of other electron diffraction

techniques [43] which have been used to solve highly complex structures requiring

far more reflections [73,84,86,208–210].

42



Figure 3.4: α-Al2O3 [22̄1] δI/δx0 to G3

Figure 3.5: α-Al2O3 [22̄1] δI/δzAl to G3
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Figure 3.6: α-Al2O3 [22̄1] residual (using delta method) of best-fit simulation to
experiment.

Figure 3.7: Refined values of xO and zAl in α-Al2O3 from studies using X-ray (black),
neutron (blue) and electron (red) radiation. Error bars for This Study too large for
graph (see text)
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3.3 CBED

Given the acceptable accuracy of previous CBED ACR studies [132, 202, 207], one

may wonder the reason for using the D-LACBED technique instead of CBED. What

advantages does D-LACBED data have over CBED data? In order to examine this

question each of the g-patterns from the A221 dataset were cropped down to 104

x 104 pixels to produce data with a similar information content to a conventional

CBED pattern with a beam half-convergence angle of 4.92 milliradians. Although,

unlike a conventional CBED pattern each g-pattern is a separate image and square,

rather than a series of discs in one image (see Figs. 3.8 & 3.11 - CBED). Due to the

displacement of the Bragg condition from the centre of the pattern with increasing

g-vector magnitude, there is very little intensity in g-patterns past the first order in

these cropped areas (compare cyan and orange squares in Figure 3.8). Therefore,

only the 000 and first order g-patterns were used in refinement.

Atomic coordinate refinement in felix using the cropped data gave zAl =

0.353 and xO = 0.691, i.e. 1.13 and 1.27 pm from SK respectively. The accuracy

of this result is in line with Ogata et al. SrTiO3 ACR [202] and within the typical

average distance from reference atoms obtained from dynamical PEDT [82] (both on

much more complex materials). So far atomic refinement using CBED, as expected,

Figure 3.8: The A221 dataset up to second order. Blue and orange squares show
the cropped region used to approximate a single CBED dataset; the intensity within
the orange squares is low and subsequently were not used in refinement.
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seems feasible. However, the favourable refinement conditions should be noted.

We have chosen the longest first order g-vector as our basis. This means in a

conventional CBED pattern some discs would be overlapping slightly. Also, in a true

CBED pattern distortion correction would have to be applied differently, without

the benefit of high convergence angle D-LACBED data. While methods exist [125],

it is unclear whether this would produce better or worse results. The thickness

value was fixed at 87.3 nm previously obtained from the initial DWF refinement

using the full A221 dataset. The starting refinement position was chosen close to

the SK refinement values. It is uncertain how accurate the initial estimate must be

for a successful refinement, especially for materials with many degrees of freedom.

This will be covered in the next section.

3.4 D-LACBED g-vector series

Given the trend within parallel beam electron diffraction techniques to explore a

greater area of reciprocal space for more accurate and reliable results, and the im-

proved accuracy from our CBED to D-LACBED dataset, it is interesting to see

the effects of a larger dataset size on ACR. Increasing the effective convergence

angle of the incident beam gives more information both in the number of intensities

(dependent on Bragg condition) and g-patterns (as long as the the Ewald sphere is

tilted far enough to intersect more reflections). The uppermost limit is then only

determined by the camera field of view for any given crystal along a particular zone

axis2. There is some loss of data during the processing stage , where each g-pattern

is cropped relative to the size and centre of the central D-LACBED image. At high

index g-patterns, the result is a partial or complete loss of data since most diffracted

intensity lies outside the image boundary. We can start to see this effect along the

(110) systematic row in Figs 3.2, 3.4, 3.5 and 3.6.

Starting with just the central 000 g-pattern of the A221 D-LACBED data

set we ran ACR over an increasing number of g-patterns limited by the reciprocal

vector range, Gx, where x is the order number (see Figure 3.9). For example, a

refinement up to G1 will involve the central image as well as the first order 11̄4̄, 102̄

and 110 g-patterns (symmetrically related g-patterns were also included).

All datapoints in Figure 3.10 are within 1.5 pm of SK’s result, a reasonable

range for an atomic refinement study. The CBED refinement gives the worst result.

Interestingly the G0 refinement gives a closer match to SK than G1. This may be

2Technically the camera length gives the ultimate limit to the number of intensities, however
this is tied in to the resolution of the camera. This is discussed in Chapter 2 & 5
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Figure 3.9: α-Al2O3 [22̄1] D-LACBED data colour coded for various Gx : G0 = red,
G1 = purple, G2 = blue, G3 = orange

because the central image is used as the reference for the distortion correction, it

is the least likely g-pattern to have distortion errors. Also, high index g-patterns

with a large proportion of background to Bragg intensity will be more susceptible to

distortion or small misalignment with the simulated g-patterns. Only a small area

of the dark field g-patterns have a high level of Bragg intensity which generally has

relatively sharp gradients to the almost zero-level background. Therefore any distor-

tions or g-pattern misalignments could contribute to a more erroneous result.. This

may be the cause for the discrepancy, however further investigation is required. For

quick and efficient ACR, all three g-vector simulations produce acceptable results.

The fit values given in the Fig. 3.10 caption for G1 and G2 are very similar

and noticeably lower than G0. Contrary to the slightly worse fit (i.e. higher per-

centage) we might expect when initially including more intensities. In the ZNCC

we compare all the intensities, including the background (null) intensity which gives

an almost perfect fit (limited by experimental noise). Therefore, if we account for

the almost perfect fit to background intensity between simulation and experiment

in the dark field patterns, we may expect fits to become better compared with the

bright field 000 g-pattern as observed. Simply, the background fit is enhancing the

total correlation. The relatively large (0.3%) decrease in fit index from the inclusion

of the dark field g-patterns indicate this. A thorough study of other zone axis data

in corundum and/or with different materials will help to confirm this argument..
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Figure 3.10: Comparison of refined zAl and xO values between CBED (0.9%), G0

(0.9%), G1 (0.6%) and G2 (0.6%) datasets. Fit values, f , are in brackets

The CBED and G0 refinement in Figure 3.10 may be of particular inter-

est to beam sensitive material studies where the short electron beam illumination

timescales required to sample undamaged material render D-LACBED inadequate.

Conventional CBED and LACBED [5] could be used in its place, since it is possible

to record a single pattern in a short time. Figure 3.10 also raises the fundamental

question of the benefit of more information in D-LACBED ACR, besides an almost

negligible increase in accuracy.

To better understand the limitations of CBED data, we explored the fit

values around the refined fractional coordinates. This should provide evidence on

the sensitivity of each dataset to inaccurate initial models. The fit indices over a

grid of 32x32 simulations for each dataset seen in Figs. 3.8 and 3.9 are shown in

Fig. 3.11.

It is clear from Figure 3.11 that an initial model with fractional coordinates

within ±0.02 and ±0.05 (±26 and ±24pm) of the global minimum for zAl and xO

respectively will result in a successful refinement using any of the datasets.
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Figure 3.11: left) Set of four datasets right) Their corresponding fit spaces. An
evenly spaced grid of 32 by 32 simulations were carried out and a 2D spline applied
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Figure 3.12: Corundum projection down the [22̄1] direction. 036 lattice planes have
been overlaid.

The CBED and G0 datasets both show the small areas which will result

in a successful refinement. Local minima are prevalent throughout the fit space

that could trap a refinement using gradient descent algorithm. The correct solu-

tion however has a deep and well-defined minimum that could be found by other

minimisation methods.

We see a marked improvement in the area that would give a successful start-

ing position for gradient descent as we increase the number of g-patterns to 9 (4

independent) in G1 and 25 (9 independent) in G2. Importantly, the local minima

present in both the CBED and G0 fit areas either disappear or become much shal-

lower, while the global minimum remains steep in relation. The global minimum
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curve also appears to be more symmetrical – the gradients of zAl and xO fits either

side of the absolute minimum point appear to become more equal. A reduction in

the change of gradient for both directions is also apparent. An increase in conver-

gence angle (i.e. comparing the CBED and G1 datasets) seems to have a similar

effect to the number of g-patterns.

The increase in symmetry of the fit spaces seen in Fig. 3.11 may have further

implications. The unit cell dimension along the z-direction is approximately twice

as long as the dimension in the x & y directions. A movement down the z fractional

coordinate of the aluminium atom in picometers corresponds to approximately twice

the distance for the same movement in x & y fractional coordinate. We should

therefore see a ’valley’ for all our fit spaces along the x-z direction - which while

crude, is seen in the fit spaces up to G1. However in the G2 and G3 plots (Fig. 3.3)

the valley seems to progressively disappear. This suggests that reflections down the

systematic row n(012) may be more sensitive to the positions, as the planes in the

corundum structure are linked to this ratio. To confirm this, fit spaces omitting the

n(012) systematic row of reflections as well as their corresponding structure factors

should enhance the valley seen in the fit spaces of Fig. 3.11.

We can see from Fig. 3.12 and the aluminium delta plot (Fig. 3.5) that the

036 planes look to be sensitive to zAl. However, as mentioned previously, portions

of all g-patterns within Fig. 3.5 seem to show strong sensitivity to zAl. Perhaps

most notably, an accurate result can be obtained using only the straight through

D-LACBED g-pattern - emphasising the prevalence of dynamical contributions to

the intensity within every D-LACBED g-pattern.

From comparison of Figures 3.4 & 3.5 we seem to see the distribution of

delta values in zAl to be nearer each maximum than the values in xO. This may

indicate why we see the symmetrical fit space in Fig. 3.3. Down the [22̄1] direction,

D-LACBED patterns may be twice as sensitive to the aluminium position than the

oxygen one. Exploration of different zone axes will help determine whether this is

the case (see Section 3.5).

Experimentally, it seems advantageous to collect D-LACBED data with as

large a convergence angle and as many g-patterns as possible. While shown to

improve the accuracy a little, the greatest benefit of an increase in data is the

improved reliability of the refinement obtained by removing or reducing the local

minima, i.e.

i) The initial model does not need to be as accurate to produce a successful

refinement
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ii) If the refinement does become stuck in a local minimum, they are easier to

characterise based on their reduced gradients and depths

For a multidimensional problem with many free parameters, identifying and

avoiding local minima may be crucial. While the addition of information flattens

out the parameter space making it easier to identify the global minimum once found,

Fig. 3.11 shows it may not significantly increase the area where the gradient descent

can find the global minima.

Nevertheless, the fit space shows a very slight average gradient towards the

global minimum, indicated by the reduction in the maximum fit in Figure 3.11 from

the CBED to G2 datasets. Since one would expect the fit to get worse the further

the aluminium and oxygen atoms get from the unique solution, a secondary overall

fit curve may be present in all datasets, spanning the entire unit cell. This may

become more pronounced at higher convergence angles and g-patterns. It would

be interesting to perform a grid simulation over the full unit cell for zAl and xO

to examine this relationship. It is likely that the trend of reduction and flattening

of local minima will continue with a greater and more diverse dataset. Therefore,

collecting multiple zone axis data will likely improve the accuracy as well as allow

more error in the initial model.

This study has only considered the sensitivity of the sets of g-vector orders.

An investigation of the sensitivity of individual g-patterns or indeed areas of intensity

within the patterns will help future studies in ACR. For example, it may be the

case where certain g-patterns are particularly sensitive to certain atomic coordinate

movements or transitions.

Another avenue to explore is improvement of the minimisation algorithm.

The location of the best-fit solution only improves a small amount with a greater

amount of data. A genetic algorithm, or other approach capable of avoiding local

minima, would be able to find the global minimum.

Crucially it seems D-LACBED data provides a smooth fit space, broad

enough to ensure that the global minimum can be found. This is important for

multidimensional refinements where the chance of refining to a local minimum is

greatly increased.
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3.5 Future work

To solidify D-LACBED ACR as a technique, data from other zone axes of corundum

can be refined to explore the sensitivity of different zone axes as well as test the

reproducibility. The aim should perhaps not be to find the zone axis which gives the

greatest sensitivity to atomic positions, but rather the worst. For instance, a series

of zone axes at an increasing angular difference to the [001] direction (e.g. [013], [012]

and [011]) for corundum will be progressively less ’blind’ to the free z-coordinate of

the aluminium atom. A G3 fit space similar to the one shown in Fig. 3.11 should

give an indication of the extent of dynamical diffraction in D-LACBED patterns.

We should expect a ’valley’ along the well defined oxygen position. The position and

shape of this valley will indicate the dynamical sensitivity of D-LACBED patterns.

A study like this may show the advantages of D-LACBED over CBED for atomic

refinement. It would be interesting to observe the < 001 > fit space with HOLZ

structure factors included. This would confirm such directions are truly ’blind’ to

atomic position refinement.

A study of the least sensitive atomic refinement zone axis in corundum should

provide better context for future atomic refinement studies using D-LACBED. A

baseline precision will be determined i.e. if it is shown that picometre precision

(the standard for other electron diffraction techniques - see Chapter 1) can still be

achieved with the least sensitive zone axes future studies may need to only avoid

blind zone axes.

There is also value in attempting to find the most sensitive zone axes. The

Kondo paper [204] describes a very small (sub-pm) movement of the aluminium

atom along the z-axis in relation to temperature. At the moment D-LACBED data

from the [22̄1] zone axis does not seem to be precise enough to determine these

small deviations in structure. A zone axis like the [110] may provide an interesting

comparison, both in the accuracy of the final refinement result and the shape of the

fit space (which may help identify senitive reflections).

A material like chromium oxide could then be studied, which has the exact

same structure (with chromium on aluminium sites) apart from very small differ-

ences in atomic coordinate. It was hoped this would be a part of the thesis, but due

to time constraints the study was postponed.

The next stage may involve a more complex material with large lattice pa-

rameters, degrees of freedom and charge transfer between atoms. The large lattice

parameter ensures CBED is unviable, the degrees of freedom tests the viability of

the ZAP and the strong bonding influences will test the capability of the IAM. The
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material should also be well studied to ensure comparable accuracies.

Further to the above, to ascertain the limit and test the ultimate accuracy

of D-LACBED, a study similar to SK’s [204] could be undertaken, where the po-

sition of the aluminium atom in corundum changes very slightly in accordance to

temperature.

In the long term, a technique similar to EDT (or Automated DT) [54,198,199]

could be developed to probe more reciprocal space. A series of CBED patterns could

be taken in a ‘line’ along one rotational axis of goniometer tilts in the following

process. Once a location on the sample for data collection has been identified the

first CBED pattern is taken. The convergence angle of the CBED patterns would be

adjusted so each disc is just about touching. The goniometer is tilted along a chosen

axis to just inside the half-convergence angle (dependent on precision of goniometer).

Scanning transmission electron microscopy mode (at low magnification) could then

be used to reproduce an image and therefore show the previous CBED site. The

microscope is then realigned as shown in Kolb et al. [54,198,199]. A second CBED

pattern is then taken in the same location. This process is repeated for x tilts.

Once completed, each CBED disk in the tilt series can be stitched together to

produce a CBED ‘line’ through reciprocal space. Unlike RED or PEDT, there is no

need to tilt the beam at any point. There are no ‘missing wedges’ either along the tilt

direction as the reciprocal space has been probed entirely by the focused beam of the

CBED pattern. The technique could possibly be extended to different geometries to

produce very large angle D-LACBED patterns, potentially over multiple zone axes.

However, many limitations already come to light: the offset of alignments

due to changing height, thickness and time on the sample, the data set would be

huge and most likely require a large amount of memory and processing power, and

potentially many other problems. It is however a direction to travel down towards

further probing of reciprocal space.

Another possible future route is using D-LACBED patterns for structure

solution before eventual refinement. Past studies of CBED have used the three-

phase invariant geometry inherent in dynamical diffraction to extract the phases

of the structure factors [211–213]. D-LACBED was then recently used by Guo et

al. [118, 147]. Potentially, estimations of the unit cell and structure factor phases

could lead to initial guesses of the atom coordinates. These coordinates could then

be refined to a proper solution. The three-beam phase invariant method relies

on quite strict geometry however, often off zone-axis. The phases are also quite

imprecise. A general method for extracting the structure factor phases from ED

patterns was first proposed by Allen et al. [141, 143] and Spence [142], however to

this date a concrete generalised theory remains elusive [38].
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Chapter 4

Debye-Waller factor refinement

“ [Fejér] goes on to challenge Bocher’s other claims, and in fact politely calls

Bocher a liar. For those interested in how a gentleman did this in 1914, we quote

(translated from the German). ‘I could therefore with pleasure verify that after the

publications of Herr T.H. Gronwall (1912) and myself (1913), certain questions

can in fact today be handled with the greatest ease, for which however in the year

1906 every trace of a hint was lacking.’ ”

- Edwin Hewitt & Robert E. Hewitt

The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis [214]

Knowledge of the atom positions forms the basis for further exploration of

a crystal structure. The analysis can either extend to the refinement of the un-

derlying functions within each of the electron structure factors, Eqs. 4.1 & 4.2, or

to the Fourier components as a whole. For the latter, electron structure factors

can give insights into charge density (and therefore bonding) using the Mott-Bethe

relationship [215], where lower order structure factors taken from reference X-ray

datasets are refined using CBED ZAP’s [125–127,129,216–218]. However, it is pos-

sible the combination of disparate data – i.e. from different samples and techniques

– may introduce discontinuities in the Fourier series and thus artefacts in real space

(the Gibbs-Wilbraham phenomenon is discussed later in Section 4.4.1) which can

be of the same magnitude as the bonding effects being sought [219]. Therefore, we

have decided to explore the underlying functions within the structure factors. The

proficiency of D-LACBED to determine atomic positions was shown in the previ-

ous chapter and the model we use for inelastic scattering (Bird & King [183], see

Chapter 2) does not require any variables to be refined. Therefore, the only other

property to explore is the temperature factor.
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Revisiting equation 2.5 from Chapter 2 we have

Uḡ =

(
2m|e|
h2

)(
h2

2πm0eΩ

)∑
i

[
fei(q̄)+if ′ei(q̄, 〈ū〉)

]
exp

[
−2πiḡ ·(r̄+〈ūj〉)

]
Oi (4.1)

where Uḡ is the modified structure factor, m0 is the rest mass of the fast electron and

m0 is it’s associated relativistically corrected mass, e is it’s charge, h is Planck’s con-

stant, Ω is the unit cell volume, fei(q̄) is the electron’s scattering factor, f ′ei(q̄, 〈ūi〉)
is the electron’s absorptive scattering factor, 〈ūi〉 is the thermal displacement vector

where 〈. . .〉 indicates time averaging, ḡ is the reciprocal lattice vector with r̄ its

associated real space vector and Oi is the occupancy.

The Einstein model of independent, harmonic thermal vibrations, allows 〈ūi〉
to be converted to an isotropic temperature factor, exp(−Biq̄

2), where the DWF,

B = 8π2〈u2〉 is determined by the mean square thermal displacements 〈u2〉, i.e.

Uḡ =

(
2m|e|
h2

)(
h2

2πm0eΩ

)∑
i

[
fei(q̄) + if ′ei(q̄, B)

]
exp

[
− 2πi(ḡ · r̄i)

]
exp(−Biq̄

2)Oi

(4.2)

Here we test the ability of D-LACBED to measure the Debye-Waller factor

for simple well-known materials. We study Copper, a simple metal where the IAM

(which does not account for bonding and anharmonicity) will likely work. We then

move on to GaAs, a covalently bonded material with some ionic character [220], to

see how the IAM is affected. We compare our results to the X-ray analysis on GaAs

by Stevenson [221] which suggests an accurate measurement of the DWF requires a

cubic anharmonic correction and consideration of bonding.

4.1 Copper

The simplest possible test of the capabilities of D-LACBED would be a material that

has a limited number of parameters that can be refined and conforms reasonably

well to the assumptions of the theoretical model (i.e. spherical, neutral atoms that

are well-described by calculated scattering factors, with harmonic thermal vibra-

tions). Most monatomic metals fit this description and we choose copper here due

to its ready availability. The copper sample was prepared using standard methods

(Chapter 2) the only difference a brief (∼20 second) etching in nital solution before

microscope insertion to remove any oxidation layers.
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Figure 4.1: Room temperature D-LACBED from Cu (a) Nine patterns from Cu
[001], angular range 41.3 mrad. The cyan lines highlight the 400 type deficit lines,
the yellow oval highlights a ’flower petal’ band (see text) (b) Thirteen patterns from
Cu [114], angular range 44.2 mrad. The red lines highlight the 15̄1 type deficit
features. The yellow hexagon highlights the ’lozenge’ (see text). All patterns are
normalised for display here to the visible display range and have applied gamma 1.5
to allow features in darker parts of the image to be seen more easily.

The atomic coordinates of this fcc crystal are fixed, leaving only Debye-

Waller factor as a measurable parameter. We collected data from [001] and [114]

zone axes as examples of relatively dense low-index diffraction patterns and more

sparse mid-index patterns respectively. The small lattice parameter of Cu results

in relatively large Bragg angles (e.g. 2θ002 = 13.8 mrad), allowing large conver-

gence angles without overlapping discs in the CBED pattern. We thus used a beam

half-convergence angle of 5.9 mrad, requiring only ∼ 120 CBED patterns to pro-

duce D-LACBED data extending beyond 40 mrad. Figure 4.1 shows some of the

D-LACBED patterns collected from Cu at room temperature (303 K) from the [001]

and [114] zone axes. Data similar to Fig. 4.1 was collected at 373K and then at

temperature increments of 100K to a maximum of 753K.

It was found that optimised simulations required > 210 Bloch waves for [001],

but only > 120 for [114] data (see Section 5.10). The 400x400 pixel simulations at

a single thickness required 1 minute 10 sec for Cu [001] and 50 seconds for Cu [114]

using 256 cores.
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The fit to simulation was refined by varying the isotropic Debye-Waller factor

B. The plots in Figs. 4.2 & 4.3 shows the fit index (Eq. 2.22 – Chapter 2) for

the different temperatures as a function of B. This demonstrates a well-behaved

parameter space with a single minimum; fit indices were typically below 5% but

increased slightly for higher temperatures. The simple gradient-descent algorithm

from felix (Chapter 2 & [149]) was used, typically requiring less than ten iterations

to obtain a precision of 0.01Å2.

Experimental 000 patterns and best fit simulations for the Cu [001] and

[114] data are also shown in Fig. 4.2 & 4.3 respectively. We see thermal scattering’s

primary effect, the intensity out of the Bragg condition and into diffuse background,

through the subtle weakening of sharp features as the temperature increases. For

example the horizontal and vertical 400-type (Fig 4.2) or diagonal 15̄1 type (Fig

4.3) deficit lines (Fig. 4.1). These types of lines have been used for measurement

of the DWF via the critical voltage method [115,222], normally using second order

reflections. See Chapter 1 for more detail. The most obvious change with increasing

temperature however, is the darkening of the ‘flower petal’ bands in the [001] data

(see Fig. 4.1). We can also attribute this to increased thermal scattering, but on

the absorptive potential (see equation 4.2).A larger amount of thermal scattering

gives increased absorption near the centre of each g-pattern where strong channelling

occurs. That is, as the electron beam propagates through the crystal, channelling

(and the scattering of the electron beam to high angles i.e. absorption) occurs more

strongly along atom columns with a smaller interatomic distance along the direction

of propagation. Since this distance is larger for higher index beams, the darkening

of the central bands is less obvious in the mid-index [411] data, although we see it is

still significant in the central lozenge-shaped region (see Fig. 4.1) along the precise

zone axis.

Simulated 000 patterns at fixed specimen thickness with B (1) to (4) are

also shown in Fig. 4.2. The difference images beneath show the changes that affect

the fit index f , i.e. variations in relative intensity when each pattern is normalised

to the same range, rather than changes in absolute intensity. This is useful here

since it corresponds to the normalised cross-correlation used to calculate the fit

index (Chapter 2). These complicated fringe patterns exhibit both increases and

decreases in relative intensity. Additionally, the 400-type deficit lines show a relative

decrease in intensity at low B that becomes a relative increase at higher B, showing

an interplay between absorption and thermal effects. The initial darkening of the

line is caused by absorptive scattering, which affects large g-vectors more readily

than small ones at reduced values of B [183]. At higher temperatures however,
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Figure 4.2: Upper: the experimental 000 D-LACBED patterns and best fit simu-
lations at different temperatures for Cu [001]. Centre: fit indices f (all patterns)
for a range of simulations at each temperature. Lower: simulated 000 patterns
(1)− (4) and the difference between them, where yellow shows a decrease, and blue
an increase, in relative intensity with increasing Debye-Waller factor B.

59



Figure 4.3: Upper: the experimental 000 D-LACBED patterns and best fit simu-
lations at different temperatures for Cu [114]. The small purple circles show the
fading of the 15̄1 deficit feature as temperature increases Lower: fit indices f (all
patterns) for a range of simulations at each temperature.

60



Figure 4.4: Experimental determinations of Debye-Waller factor B in copper D-
LACBED data from [001] (solid stars, green) and [114] (hollow stars, red). Errors
are smaller than the data points, typically ∼ 0.01Å2. Many previous measurements
of B using X-ray diffraction and the Mössbauer effect are shown in black and white
(from ref. [223])

these diffraction features become continuously weaker (brighter) as expected from

Eq. 4.2. It would be interesting to explore simulations using more recent models

of absorption that include ionisation and Compton scattering for their effect on

D-LACBED patterns (see Section 2.4)

The measured Debye-Waller factors for copper as a function of temperature

are shown in Fig. 4.4, together with historical data collated by Shukla [223]. Excel-

lent agreement is found, showing that D-LACBED data gives accurate temperature

factors in this simple metal. Nevertheless, there is a small disagreement between

measurements from the [001] and the [114] measurement, particularly at higher tem-

peratures. It is well-known that the deviation of the data in Fig. 4.4 from a straight

line is mainly due to anharmonic thermal vibrations, which become more significant

at higher temperatures [224]. This cannot be captured by the single DWF, which
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only describes harmonic vibrations; attempts to fit experimental data from an an-

harmonic material using a Debye-Waller factor will effectively give slightly differing

answers for different g-vectors. This can be used to advantage in measurements us-

ing the Mössbauer effect [224], where comparison of Debye-Waller factors obtained

with first and second order diffraction can be used to calculate anharmonic com-

ponents. Such an approach is unlikely to be successful in the case of D-LACBED

data, since dynamical diffraction mixes intensities between the different reflections

(for example, in Fig. 4.1a the transfer of the ‘flower petal’ shaped intensity from

the centre of the 200 type patterns to the centre of the 000 pattern is quite clear).

Here, the DWFs are derived from a fit to all the D-LACBED patterns at a zone axis

and are thus some kind of average measurement. Nevertheless, since the patterns

all lie in the ZOLZ, the [001] and [114] D-LACBED data cover different parts of

reciprocal space and it is perhaps not surprising that small differences in measured

Debye-Waller factors appear when anharmonic thermal vibrations are known to be

present.

4.2 Gallium Arsenide

We thus examine a material that has smaller, but still significant, bonding effects

without the complication of any atomic coordinate refinement, i.e. GaAs. The

smallest Bragg angle in the GaAs [11̄0] pattern is 2θ111 = 7.7 mrad at 200 kV,

requiring much smaller convergence angles than Cu to avoid overlapping discs in

the CBED pattern. We used a beam half-convergence angle of 1.16 mrad and

1681 CBED patterns to produce D-LACBED data extending beyond 40 mrad. The

reconstructed D-LACBED patterns had dimensions of 320x320 pixels. Figure 4.5

shows eighty-five patterns taken at room temperature (29°C) and 200°C. The vertical

(110) mirror symmetry reduces the number of unique patterns to forty-nine.

Optimising the fit between simulation and experiment for BGa and BAs using

two-dimensional gradient descent gives a unique solution at BGa = 0.83(2), BAs =

0.68(2)Å2 for the room temperature data with a fit f = 4.61% and BGa = 1.01(2),

BAs = 0.80(2)Å2 (f = 4.96%) at 200°C. The normalised differentials δI/δBGa and

δI/δBAs for the central few D-LACBED patterns are shown in Figs. 4.6d and 4.6e

with the full symmetrically independent patterns in Figs. 4.7 & 4.8 respectively.

The influence of DWFs here on the ZNCC, while significant, is roughly two orders of

magnitude smaller than the effect of atomic coordinates in the corundum refinement.

As observed for the above refinements, changes in the parameters BGa and BAs

produce a complicated pattern of increases and decreases in intensity resulting in an
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Figure 4.5: Eighty-five D-LACBED patterns from [11̄0] GaAs. Left: room temper-
ature (29°C). Right: 200°C. Each pattern has an angular width of 46.2 mrad
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effective independence of the fits shown in Figs. 4.6a and 4.6b. Typically, fewer than

twenty iterations were required to find the best fit to a precision better than 0.01

Å2. While the time to obtain a result is acceptable for this simple two-parameter

problem, it is still quite long if more complex problems are to be tackled. Thus, we

tested the reproducibility of the result using the 200°C data binned by 2 (160x160

pixels) and binned by 4 (80x80 pixels), giving simulation times of ∼22 seconds and

∼12 seconds respectively using the same simulation conditions. These gave BGa =

1.04, BAs = 0.78 Å2 and BGa = 1.11, BAs = 0.88 Å2 respectively, i.e. an error of

up to 10% for a reduction in time of roughly eight times.

Comparison of these results with literature values (Fig. 4.6c) shows consid-

erably worse agreement than was obtained in the case of Cu. The most accurate

measurement of Debye-Waller factors in GaAs using X-ray diffraction gives BGa

= 0.622(3), BAs = 0.483(5) Å2 at room temperature [221]. It was noted in this

X-ray study by Stevenson that the inclusion of a cubic anharmonic parameter, β,

significantly affected both BGa and BAs. We therefore decided to include β using

Dawson’s structure factor formulism [225] (Terms beyond cubic anharmonicity were

found to produce negligible effects [226]). However, we found an insignificant change

in both fit and Debye-Waller factor. It is possible the reason is because Stevenson’s

analysed many diffraction spots (5058). The majority of these had high-order g-

vectors, where the intensities are known to be less sensitive to bonding, and more

sensitive to the DWF (and therefore anharmonic effects). In our study however, all

g-vectors are associated with low-order g-vectors where bonding is known to have

a large influence, especially in electron diffraction. It was shown in Stevenson that

bonding had to be considered for the quasi-forbidden reflections, h+ k+ l = 4n+ 2,

in order to ascertain accurate structure factors (with correct DWFs).

Interestingly, all experimental measurements are clustered along a single

trend line and our measurement is fairly close to another measurement made by

electron diffraction [130]. Figs. 4.6f and 4.9 show the difference between best-fit

simulation and experiment at room temperature. We take the systematic nature of

the residual intensity to indicate that refinement against parameters such as bonding

would produce a better fit.
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Figure 4.7: Enlargement of Fig 4.6d (δI/δBGa in units of standard deviation)
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Figure 4.8: Enlargement of Fig 4.6e (δI/δBAs in units of standard deviation)
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Figure 4.9: Enlargement of Fig 4.6f (Residual between best-fit simulation and ex-
periment)
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Figure 4.10: X-ray, neutron, theoretical and electron (black, green, orange and
purple respectively) Debye-Waller factor measurements for InP (left) [235,238,239]
and Corundum (right) [204, 236, 237, 240–244] at room temperature. The Pre-1990
XRD values (grey) were taken from Ballirano et al. [241]

4.3 Alpha-corundum and Indium Phosphide

In Chapter 5 we shall examine the accuracy of D-LACBED for thickness determina-

tion using an InP [100] dataset. During this study a Debye-Waller factor refinement

out to G3 was also carried out. The values obtained were BIn = 1.0830 and BP =

0.8716 Å2 respectively. A similar refinement was carried out on the α-Al2O3 A221

dataset (used in Chapter 3) which gave values of BAl = 0.15 and BO = 0.44 Å2.

Like GaAs (Fig 4.6c), we see a marked difference between the nominal and our mea-

sured values in Fig. 4.10. For InP, which has the same structure (Zinc-blende) of

GaAs, we see a similar degree of error following the familiar trend seen in the GaAs

analysis. This suggests the mechanism causing the discrepancy may be the same

in both materials. Any correction applied to the DWF measurement of the GaAs

dataset would also likely correct the InP measurement. For corundum, which has a

different structure (space group = R3̄c) to InP & GaAs, the measurement is closer

to the nominal values (Kondo et al.,Toebbens et al., Pillet et al. etc. [204,236,237]

- Fig 4.10) but is on the periphery of the trend seen from the other analyses in this

chapter and is therefore worth further study.
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4.4 Discussion

Often, the goal of CBED studies has been to obtain information about fi, in par-

ticular structure factors that indicate deviations from spherical atomic symme-

try [126, 245–247]. It is well-known that one has to go beyond the neutral atom

approach for CBED fitting. The examples here show there is much to be gained

by examining the other parameters that influence dynamical electron diffraction

patterns.

Since both electron orbitals and thermal vibrations are averaged over the

timescale of the measurement, it is not generally possible to separate their influence

on the data. The presence of strong bonding effects is probably the reason for

the inaccurate measurement of Debye-Waller factors in GaAs, InP and α-Al2O3

here. There are opportunities to apply multipole modelling [248, 249] or Hirshfield

refinement [250] methods to electron data. While the initial investigations here of

anharmonic vibrations in GaAs was shown to have limited influence on the measured

DWF from D-LACBED data, further investigation should conclude whether this is

the case. Other factors that can influence the result include shortcomings within the

Bird and King absorption model and e.g. deviations from perfect crystal symmetry

due to the presence of point defects.

Before the CBED pattern tilt series is stitched together in the D-LACBED

technique (Chapter 2), the diffuse background found outside every CBED disk is

measured and used to subtract the intensity caused by inelastic scattering within

it. However, after application the patterns remain blurred. This is due to the

PSF, symmetry averaging and any limitations found in the background subtraction

process (e.g. inelastic effects such as plasmons known to produce intensity inside

the disk which is uncorrelated to outside it). To compensate, a gaussian blur was

applied to the simulated data with radius determined through refinement with the

experimental dataset, before fitting in felix. While the blur was found to have a

limited effect on atomic refinement, we see later it has appreciable effects in DWF

refinement (Chapter 5). This may explain the small difference in DWF between this

study and Muller et al. [130] in GaAs, and also a portion of the difference between

the different zone axes in copper.

Since the literature for the DWF of GaAs is more thorough than InP or

corundum, it makes sense to further explore analysis on the GaAs data before con-

tinuing to the other two materials. A key point of interest lies in the comparison of

the GaAs and InP quasi-forbidden reflections (h + k + l = 4n + 2). The bonding

correction first applied by Saravanan [228] in GaAs and then corrected by Steven-
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son [221], was used on these reflections, which only appear in X-ray diffraction due

to the difference in atomic number between the two atom types. Since the atomic

number is vastly different in InP (In=49, P=15) and only slightly different in GaAs

(Ga=31, As=33), comparison of these D-LACBED g-patterns between InP and

GaAs may provide insight into the effect of bonding on the DWF.

4.4.1 The Gibbs-Wilbraham phenomenon

In an ideal experiment one would measure all Fourier components Uḡ up to infinite

ḡ. In reality, of course, only a finite number of g-vectors can be sampled. A disconti-

nuity in a Fourier series (such as abrupt truncation) produces oscillatory artefacts in

the real space reconstruction of the crystal potential. Unfortunately, these artefacts

are quite stubborn and a large number of Fourier components is required to reduce

their amplitude, a problem known as the Gibbs-Wilbraham phenomenon [214]. This

problem can restrict X-ray diffraction [249], but is even more serious for electron

diffraction, which generally is very limited in the number of g-vectors that can be

accurately sampled [126]. All refinements based on electron diffraction to date have

used a small number of CBED patterns in comparison with X-ray data. The number

of g-vectors accessible in a single CBED pattern is very limited indeed – only one

or two diffracted beams can be set in the Bragg condition and dark field pattern

centres [94] (see Chapter 3) are rarely accessed. Despite this limitation, precise mea-

surement of individual structure factors was demonstrated by Zuo and Spence in

the 1980s [36,37,119,245,251–253], and it has become common practice to measure

a handful of the lowest-order structure factors – which are most sensitive to bonding

effects – and use X-ray or neutron diffraction to supply hundreds or thousands of

higher order structure factors to complete the picture [37, 126, 246, 254]. However,

the combination of disparate data – i.e. from different samples and techniques –

may introduce discontinuities in the Fourier series and thus artefacts in real space,

which can be of the same magnitude as the bonding effects being sought [219].

Conversely, a theoretical model of the potential is not restricted in the same way

and it is straightforward to use functions that are continuous and unbounded. We

avoid the Gibbs phenomenon in this chapter by fitting experimental functions to 4.2

rather than extracting individual Fourier components i.e. the diffracted intensities

predicted by a model are adjusted to fit experiment through variation of structural

parameters [255]. While simplistic here, it has been used with more sophistication

in X-ray and neutron diffraction for many years in studies of atomic bonding, [256]

by modelling electron shells with pseudopotentials [248]. Currently, there is no

equivalent framework for electron diffraction.
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Chapter 5

D-LACBED Sensitivity

“Hindsight is a wonderful thing, foresight is better...”

- William Blake

Unknown

The results from Chapters 3 and 4 were taken throughout the PhD. Naturally,

changes were made to the technique, image processing and simulation as an ongoing

process. As more was learned about the advantages and limitations of D-LACBED,

additions and changes were made to the scientific procedure (the current version is

given in Chapter 2).

For this Chapter we wish to examine the sensitivity of the technique using

simulations to put the previous results into context and indicate possible directions

for future work to D-LACBED procedure. This is to ensure the technique is repro-

ducible. We also look at factors that could induce error such as the point spread

function (PSF) and Bloch wave convergence.

5.1 Simulation Sensitivity

When conducting a structural refinement of a parameter, ideally one would limit the

degrees of freedom to the parameter(s) under question. The remaining parameters

are fixed at their nominal values obtained from previous research at the most agreed

upon value. This method is the most practical way of obtaining quantitative results,

as otherwise the problem size simply becomes so vast a result would take far too

long to obtain.

Therefore, selection of the variables to refine becomes key. A researcher

undertaking a structural refinement study using D-LACBED would wish to obtain

an accurate and precise result without needing to vary too many indirect parameters.
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To determine how to select the parameters to refine, the sensitivity of

D-LACBED patterns to every parameter must be investigated. This is more difficult

than it first appears. The sensitivity of a single parameter can be deduced by

calculating the deltas between two D-LACBED patterns at slightly different values.

However, equating this difference to other parameters (potentially on a completely

different measurement scale) becomes an issue e.g. how does a small change in

accelerating voltage compare to a small change in Debye-Waller factor? And what

should the small change for each be?

For this study we have tried to use the accepted precisions found within the

literature. For length scales 1 picometre has been used. This includes unit cell

size, atomic coordinates and DWF (for the DWF we used a mean displacement of

1 picometre, and then calculated the resulting mean squared displacement). For

thickness and accelerating voltage we decided to use 1 nm1 and 1 kV respectively

(see [122] as example precision). For the convergence angle we have decided to use

a change of one pixel as the limiting factor.

The delta (or normalised difference) images for a select number of reflections

of the corundum A221 dataset can be found in Fig. 5.1. Chosen because it gave the

most precise and accurate result so far. The unit cell, atomic refinement and DWF

(to a point) delta patterns should be directly comparable as each have been changed

by the same length scale within the unit cell. Accelerating voltage, thickness and

convergence angle cannot be directly comparable. Thickness while given in a length

scale, does not equate to a unit cell measurement, and is not within the dynamical

Bloch wave matrix calculation. Rather it can be more thought of as the number

of unit cells in the Bloch wave calculation. The dynamic range is determined by

finding the absolute maximum delta for each parameter, given in units of standard

deviation.

From Fig. 5.1 we see a low-high g-vector divide from several of the parame-

ters: thickness/accelerating voltage , occupancy, unit cell and DWF. At low index

g-patterns such as the 000 and 012 reflections, most of the patterns show very similar

deltas. The g-patterns display the same features (especially near the centre) with

similarly scaled normalised intensities. At high g’s we see this relationship break

down. If we look at the 3̄ 3 12 reflection we see significantly different features in

each. We find that as the g-vector increases so does the qualitative difference of

g-patterns thus meaning each parameter becomes ever more independent of each

1Some of the thickness refinements in previous chapters have used 1Å precision, in line with
previous quantitative convergent beam electron diffraction (QCBED) studies (e.g. [122]), we have
found that the sensitivity of the D-LACBED patterns is on the nanometer scale. An angstrom
scale precision gives unviable errors (1590% increse in Table 5.2
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Figure 5.1: delta images for a selection of g-patterns using the alpha-corundum
dataset in Chapter 3 (A221) over a range of parameters (see text for details). The
scale bar units are given in standard deviation.
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Parameter Current Preci-
sion

Calculated
precision at 1σ

Percentage in-
crease

convergence
angle

0.01 0.01 0%

atomic coordi-
nates

1.00 pm 1.15 pm 15%

thickness 1.0 nm 1.69 nm 69%

occupancy 0.01 0.02 100%

unit cell 1.00 pm 3.39 pm 239%

accelerating
voltage

1.00 kV 8.52 kV 752%

DWF 0.01Å2 0.09Å2 800%

Table 5.2: Max deltas from Fig 5.1 adjusted to 1 standard deviation for comparison
of parameters

other. The sensitivity of each of these parameters seems to increase with g-vector.

This is evident in Table 5.1. The maximum quantitative delta values down the 1̄14

and 012 systematic rows seem to increase with g-vector for most parameters (barring

atomic coordinates).

This suggests that the dominant low order structure factors, associated with

low-order reflections change similarly, and the unique characteristics of each param-

eter within the structure factor equation are difficult to determine. At high-order

structure factors, the uniqueness of the parameters become more noticeable. This

is perhaps because in low index g-patterns there are many dynamical contributions

to intensity from high index structure factors. In high index g-patterns however the

same may not apply, ie. there are not many dynamical contributions from low order

structure factors. Comparison of future simulations excluding certain low-order or

high order structure factors to Fig. 5.1 may indicate whether this is the case. Nev-

ertheless, for future D-LACBED refinement outside of atomic coordinate, the most

number of g-vectors should be found. In terms of a fitting function, a weighting

term for high order indexes would likely improve the efficiency and independence of

each of the parameter refinements. Perhaps leading to an increase in accuracy.

The convergence angle and atomic coordinate delta pattern features are dif-

ferent irrespective of index and shall be discussed later in the chapter.

To compare each parameters sensitivity to each other, a reference maximum
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pixel delta value (1 standard deviation) is selected. The change in parameter needed

to obtain this max delta value gives an indication of the sensitivity. For difference

simulations which have not achieved a max normalised pixel difference of 1, a linear

gradient is assumed to extrapolate the value. Comparison can then be made with

the accepted literature precision to determine the sensitivity. This is shown in Table

5.2.

Table 5.2 also gives an indication of the precision we should expect from

each parameter through a range of 1 standard deviation (σ). It is likely a bench-

mark smaller than 1σ is detectable in D-LACBED refinements, and therefore means

smaller precisions are possible compared to the ones we present in Table 5.2. It is

however a good statistical starting point to compare each of the parameters. The

current precision is based upon values used in previous chapters, nominal literature

values or our own estimations. The percentage increase gives an indication of how

our expectation of precision is compared with the one obtained at 1σ.

It is important to notice the disparity between the DWF and atomic coordi-

nates. Given both are on similar length scales, we see atomic coordinates are on the

order of 10x more sensitive than DWFs. This is in good agreement with the original

normalised difference plots seen in Chapters 3 & 4 for two different materials. The

sensitivity of each parameter is discussed in Sections 5.2 through to 5.8.

5.2 Convergence angle

The convergence angle determines how much reciprocal space is probed for the

selected zone axis direction. A decrease in the convergence angle will result in

a decrease in the radius of the D-LACBED g-patterns. For the experimental g-

patterns, we see a simple reduction of the image size. For simulated images with

fixed resolution and image size however, a change in convergence angle produces

a change in the magnification centred on the central pixel of the 000 g-pattern as

well as each individual g-pattern image. This phenomenon is seen clearly using

the three central Bragg peaks in the 3̄ 3 12 reflection of Fig 5.1. The three central

blue peaks (representing the loss of intensity from the initial convergence angle) shift

towards the 000 pattern as well as outwards to their new position seen as the central

orange peaks. High index g-patterns show the highest degree of difference as the

intensity along the Bragg condition is closer to being a single line. This means these

g-patterns are extremely sensitive to the ZNCC. A change in convergence angle

will shift the intensity immediately on to the background resulting in a large ZNCC

value. As seen in table 5.2, the ZNCC more than suffices to determine a precise
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value. In addition, one may only need to refine against a small portion of a high

index g-pattern to determine an accurate convergence angle. If initially estimated

from the average CBED stack (Chapter 2), the convergence angle could then be

refined by cropping a high-index g-pattern to only the narrow Bragg line intensity.

This would save both on computational memory and processing time, meaning it

could potentially take place on a normal desktop. Future tests will show if this is

possible.

The sensitivity of the convergence angle refinement is tied in to the resolu-

tion of the experimental image. An experimental image with a low resolution and

high convergence angle will suffer feature loss due to pixellation. Currently with

relatively low convergence angles this has not been a problem. However, a resolu-

tion/convergence angle limit exists for D-LACBED patterns which may be useful to

determine if very large angle D-LACBED is ever used.

5.3 Atomic coordinates

The sensitivity ofD-LACBED patterns to atomic coordinate refinement was covered

in Chapter 3. Therefore, our focus shall remain on the comparison with other pa-

rameters. From Table 5.2, we see D-LACBED patterns are the most sensitive to

atomic coordinate changes out of the parameters we wish to measure (the conver-

gence angle is an experimental condition). The atomic coordinate g-patterns in Fig

5.1 show many complicated feature changes, irrespective of the index. These fea-

tures tend to be narrow, with intensity variation throughout the pattern, indicating

both peak shift and intensity changes. Ideal for a ZNCC. This is unlike DWFs

or occupancy g-patterns which produce broad peak changes with even intensity il-

lumination. High index g-patterns (2̄28,3̄ 3 12,232) seem to show the strongest

sensitivity when considering the entire g-pattern, however certain features of low

index patterns still show strong sensitivity, e.g the central part of the 1̄14 pattern.

Perhaps most importantly, the features in the atomic coordinate delta g-patterns

are almost completely different from any of the other parameters. This indicates

that atomic coordinate refinement has a high level of independence from every other

parameter refinement. This was observed during analysis of the atomic coordinate

refinements of corundum in Chapter 3. Changes of the Debye-Waller factors (up to

40-50 percent) produced negligible differences to the final coordinate values. In a

similar fashion we found that large changes in the applied blur radius also seemed

to produce negligible differences. This suggests that atomic coordinate refinement

does not require an energy filtered microscope. However, we can see that the thick-
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ness, occupancy and convergence angle should be paid close attention due to their

relative proximity within Table 5.2 if operating at the current chosen precisions.

We noticed that changes in the sub-pixel alignment or stretch distortion

correction in the atomic coordinate refinements in Chapter 3 produced a significant

change in the final coordinate values. It was hoped simulations of both distortions

could be carried out to show the effect, but time unfortunately ran out. This is

something in the future to explore.

5.4 Thickness Determination

CBED has been frequently used to determine the crystal thickness in a variety of

electron diffraction studies [119, 120, 202, 257–263]. This is because of the highly

sensitive thickness fringes [264] (see Fig 5.6b inset for example [130]) found in the

patterns. While there are several methods to use these fringes to determine the

thickness [257,258,265–269] dating back to the 1940’s [270,271], the common method

in QCBED is to use thickness as a refineable parameter using either rocking curves

or the whole pattern [37, 130, 207, 252]. However, as highlighted in Koch [6] and

seen in Muller [130] (Fig 5.6b) QCBED thickness refinement is often restricted to

thick, small lattice parameter crystals (if the thickness is not the primary scientific

aim of the study, due to the overlap problem - See Chapter 1). Otherwise position

averaged convergent beam electron diffraction (PACBED) has been shown to be a

useful technique for thickness determination. The overlap problem may cause the

thickness fit space to have too many local minima, perhaps even to the point where

thickness determination is unviable. For the purposes of this study thickness is an

experimental condition and so, like the convergence angle, we would ideally like the

thickness to be easily determined and highly reliable. We therefore chose to conduct

a separate study using InP, to highlight the effectiveness and ease of D-LACBED at

determining the thickness.

5.4.1 Indium phosphide

The dataset of InP (Fig 5.3) was taken to test the capabilities of the newly acquired

Gatan OneView camera. The camera has a larger field of view in comparison to the

previous Gatan Orius allowing wide beam half-convergence angles (26.10 mrad for

InP) without loss of resolution. This dataset will therefore best highlight the benefits

of the D-LACBED technique for thickness refinement in comparison to CBED. We

show that D-LACBED gives a well-defined global minimum, and reduces the number

of local minima in comparison to CBED.
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The zinc-blende structure of InP is the same as GaAs, indium replaces the

gallium positions and phosphorus replaces arsenic. Because all the atoms remain

fixed due to symmetry, the only quantitative parameter to refine is the DWF, which

was done in the previous chapter.

Thickness refinement is not an independent mode in felix as it is a relatively

inexpensive calculation. Instead it is consistently refined during other refinement

modes. This ensures the thickness is decoupled as much as possible from other

parameters. Only one Bloch wave calculation is needed to obtain the thickness fit

parameter space shown in Fig 5.4a.

Fortunately, the thickness of GaAs from the CBED Muller data ([130] & Fig

5.3 right) were very similar to the InP D-LACBED data so was used for compar-

ison2. We see from Fig 5.4 the significant effect of the convergence angle. While

both fit spaces contain global minima, the D-LACBED minimum is much broader,

meaning it would be easier to find. We only see one local minimum at 275 nm, easily

characterisable due to the very shallow gradient compared to the global minimum.

The gradient of the fit space at thinner sections is greater than at thicker ones. This

is likely due to the broad thickness fringes seen at thinner simulations rather then

the narrow fringes seen at thicker simulations. If the amplitude of the fringes are

assumed to be the same we can see that a fringe wavelength much larger than the

correct wavelength will produce a worse fit than a much smaller fringe wavelength.

For an efficient algorithm, thickness refinements should begin at low thicknesses.

The high fit values and initial gradient may be able predict where the global min-

imum will be found, as a relationship may exist between the initial fit gradient at

low thicknesses and the correct fringe frequency. The thickness refinement can then

be constrained quickly due to the easily identifiable, broad global minimum.

The CBED global minimum on the other hand has many local minima, im-

portantly with similar gradients, which makes characterisation difficult. In a sim-

ulation method like multislice where thickness is more computationally expensive,

this would make characterisation of the global minima difficult. Even with Bloch

wave simulations we can see that materials with larger lattice parameters my indeed

produce many deep local minima, where a unique solution is unclear.

To determine the reasons for the smoother parameter space, a DI/DT plot

similar to Fig 5.1 was made for InP. We see from both figures 5.5 and 5.1 that thick-

ness has a profound effect on the diffraction pattern intensities. The peaks within

2Ideally, we would crop down the InP dataset for the best comparison. However due to issues
with the supercomputer this could not be achieved in time. Since GaAs has the same structure as
InP we believe there should not be too much difference between the fit spaces, even with a different
fitting function.
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Figure 5.2: D-LACBED experimental dataset of InP from the [001] zone axis. The
figure contains only the positive index g-patterns of the dataset.

81



Figure 5.3: left) Simulations of InP D-LACBED patterns over a range of thicknesses
and their corresponding fit values to the experimental image (See Fig. 5.2) right)
Figure 10 taken from Muller et al. [130] of a CBED thickness scan of GaAs data.
The inset shows the 4̄00 disc.

the normalised difference image in Fig. 5.5 are mostly narrow in nature indicating

a shift of peaks rather than a change in amplitude. The peaks are broader near

the centre of the g-patterns and along the Bragg condition where thickness fringes

are not found. It is upon close inspection of the 022 reflection in Fig. 5.5 that we

clearly see the advantage of the wide convergence angles D-LACBED provides. We

see clear but faint delta thickness fringes outside of the intense Bragg condition,

extending throughout the entirety of the g-pattern. As the thickness changed, the

narrow faint fringes wavelength and subsequent position changed significantly, indi-

cating high sensitivity. In an experimental image a large proportion of these fringes

are hidden by the diffuse background. As shown in Table 5.2 the thickness fringes

near the Bragg condition suffice for nanometre precision. However, it is encouraging

to see that a higher precision is possible if energy filtering and inelastic modelling

of the diffuse background is implemented.

Since the thickness is known to be more sensitive to peak position than

amplitude, a Sobel, or similar edge finding filter could be applied in order to make

the measurement more independent from other parameters, especially if there is

plenty of diffuse scattering. From Fig. 5.1 we see the centre of the thickness delta

images look similar to other parameters.

We note that the voltage delta g-patterns in Figure 5.1 are almost identical

to the thickness delta g-patterns apart from a scaling factor. A change in the elec-

tron wavelength produces the same result as a change in the thickness using ZOLZ

structure factors. The inclusion of HOLZ reflections will perhaps show the difference
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between the two parameters. This means that in order to determine the thickness

without a statistical error the voltage of the microscope must be determined accu-

rately.

Figure 5.4: DI/DT plot of InP. Units of scale bar are in standard deviation
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Figure 5.5: InP DI/DT 022 g-pattern from Fig 5.4. Clear and faint delta thickness
fringes are prevalent throughout the background of the image (e.g. the darkened
area around the ”022” label)
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5.5 Accelerating voltage determination

The operating voltage for the entirety of the D-LACBED studies has remained

fixed at 200kV, the standard for inorganic single crystal electron diffraction studies.

However, it is known the operating voltage set by the microscope software may not

correspond to the applied voltage [272]. Because of this, past studies have used

the ratios of voltage sensitive HOLZ line crossing points in experimental CBED

patterns, to determine the actual voltage [122,130,273].

As shown in Table 5.2, a small change in voltage influences D-LACBED pat-

terns to the approximate level of a small DWF change (using only ZOLZ structure

factors). In the previous section, we saw from Fig. 5.1 the variations in voltage

and thickness influence the simulated patterns almost identically. Therefore, pre-

cise and accurate measurement of the voltage is important for accurate thickness

measurement.

Rao [272] demonstrated from the [37 37 4] zone axis of silicon, that the

crossing points of the (1̄ 3 1̄3) (3 1̄ 1̄3) and (10 1̄0 8) (1̄0 10 8) HOLZ lines in

the central disk could be used to precisely and accurately determine the microscope

voltage. Using single crystal silicon prepared through standard sample preparation

methods (Chapter 2) we imaged the same zone axis (Fig. 5.7 left), albeit at room

temperature. Rao noted room temperature measurements would result in blurred

HOLZ lines due to too much TDS (even with an energy filter) for accurate mea-

surement of the voltage. However, with the aid of background subtraction and line

guides, we found the lines were clear enough to estimate the voltage (Fig. 5.6 right).

The HOLZ line pattern was simulated using the software TEM strain [274].

The lines were produced using the kinematic approximation, validated by a subse-

quent dynamical simulation. Simulations at four different voltages were carried out,

their A,B ratios measured (Fig 5.6) and plotted, as shown in Fig 5.7. We assumed

linearity over a short voltage range and used the plotting software Origin to fit the

data with a linear least squares, Levenburg-Marquart algorithm. Using the A,B

ratio from the experimental CBED disk we then determined the voltage of the 2100

microscope to be 200.7 (±0.5) kV. While some human error has to be taken into

account due to still present blurring of the HOLZ lines, the minimum ratio (i.e.

measured from the edge of the seen lines) is still over 200 kV. Therefore, we can say

with confidence the microscope is slightly over 200kV.

However, the accelerating voltage is known to fluctuate per session. Hope-

fully once HOLZ structure factors have been implemented into felix, the voltage re-

finement can be taken straight from the D-LACBED g-patterns (for patterns where

HOLZ lines are visible).
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Figure 5.6: left) Experimental central CBED disk of the [37 37 4] zone axis of silicon.
The thin cyan lines highlight the location of the HOLZ lines. The thin red line is
a crossing point guide. right) Simulated Kikuchi and HOLZ line pattern at 200kV
under the same conditions. In both figures lengths A & B correspond to the ratios
of HOLZ line crossing points (7 9 11) & (9 7 11), (10 1̄0 8) & (1̄0 10 8), (1̄ 3 1̄3)
& (3 1̄ 1̄3) (from left to right)

Figure 5.7: A and B simulated ratios (see Fig 5.6) at set voltages using the central
disk of the silicon [37 37 4] zone axis. Black line is a least squares fit. Blue dashed
lines show measured experimental ratio and associated voltage (200.74 ± 0.53 kV).
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5.6 Occupancy

This thesis does not cover the use of D-LACBED for compositional analysis, so

therefore this section will be short. The low index delta g-patterns for the DWF

and occupancy are very similar. Both the occupancy and DWF act as a multiplica-

tive factor on each of the structure factors. At low index g-patterns and therefore

structure factors it seems both have a very similar effect on the intensity. As dis-

cussed in Chapter 4, the Debye-Waller factor scales with g-vector. It is at these high

index g-vectors where we see the difference between the two patterns.

From Table 5.2 we see that the occupancy delta images are on a similar

level of sensitivity as thickness, which as shown in Section 5.4 can be resolved ac-

curately, therefore it is well within possibility that D-LACBED could be used for

compositional analysis.

Our simulations increased the occupancy to beyond 1.0 the normal physical

limit. A greater than one occupancy was chosen here in order to more easily compare

with the other parameters. An occupancy decrease would reverse the parity of the

intensities we see in Fig. 5.1. While unphysical we have observed this phenomenon

frequently for refinements of occupancy in the ACR and DWF studies. It is possible

the occupancy value may be compensating for the lack of bonding and/or insufficient

electron density in the IAM. Although this has very little grounding and requires

much more investigation.

5.7 Unit Cell

Most of the past measurements of the unit cell using electron diffraction has been

achieved using HOLZ reflection/line refinement [123]. Since we do not currently

have the capability to simulate HOLZ reflections we shall focus on ZOLZ changes

from unit cell difference images.

Each of the unit cell parameters were increased by one picometre. In parallel

illumination, the diffraction spot spacing is related to the lattice parameter lengths

dependent on zone axis. In a CBED disk this is also true, but since it is an image

rather than a spot pattern, the relative spacings of the point intensities in each of the

discs will decrease or increase dependent on the lattice spacings. This has a similar

effect to the convergence angle as we can see in Fig 5.1 hence why both sets of delta

patterns look similar, are asymmetric and entire Bragg condition shifts are observ-

able at high indexes. However, we also see that there are other intensity changes.

At low g’s, the entire pattern sees an even spread of intensity, unlike in the conver-
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gence angle patterns where only the edges see significant change. Feature changes

are also apparent indicating a unit cell refinement will display some independence

from a convergence angle refinement and could therefore be used. However, it seems

unlikely the precision or accuracy equal that of HOLZ pattern refinement.

5.8 Debye-Waller factor

The DWF was covered in Chapter 4. We learn from Table 5.2 that it is possibly

the least sensitive of all the parameters in D-LACBED patterns. This is given

some context by the wide range of measurements from other techniques seen in the

literature eg. Figure 4.6c. The delta peaks in the g-patterns are broad in nature

meaning little or no peak shifts. This is expected as the DWF only affects the

amplitude of peaks within diffraction patterns. It is again at high g-patterns where

we see the most amount of difference between DWF and other parameters indicating

that a high-g weighted ZNCC might be the best form of fitting function.

During the DWF refinements of copper in Chapter 4 we frequently encoun-

tered large errors related to the amount of gaussian blur and distortion (both sub-

pixel shifts of the entire g-patterns and linear stretches within the g-patterns) ap-

plied. We found the blur (giving a rough approximation of the diffuse background)

and distortion correction could change the refined DWF by as much as 10-15 per-

cent. It was hopeful that these effects could be simulated and shown, however due

to lack of time this was not possible. It is recommended the background and dis-

tortion should be looked at closely if accurate and precise DWF’s are desired using

D-LACBED.

The whole g-pattern sub-pixel shift distortion can be easily corrected using

the convolution form of the ZNCC rather than the point form currently used in felix.

For the point form it is assumed the images are already aligned perfectly, therefore

only one correlation value is output. Since the ZNCC was originally purposed for

template matching [275], the correlation calculation can be performed over multiple

sub-pixel (using bicubic interpolation) shifts. This effectively removes the sub-pixel

shift processing step. While the ZNCC is an inexpensive computational calcula-

tion, care should be taken to avoid unreasonable numbers of sub-pixel instances.

i.e. a constant number of ZNCC calculations over multiple refinement steps may

contribute to significant refinement times.
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Figure 5.8: a) Bright field image at 6000x magnification of the JEOLTM 2100+
beam stopper. b) it’s associated binary image after thresholding (upscaled)

5.9 Point spread function

The introduction of CCD cameras to the TEM was made much later than the

inclusion of the CCD detector in other arenas [276]. A scintillator layer is required

directly in front of the camera, to turn each incident electron into several photons

for CCD detection [277]. This process however, results in a spread of photons and

thus causes a blurring of the image: the camera PSF. It is however measurable.

The final blurred image can be described as a convolution of the actual image with

a rotationally symmetric PSF.

There are two main methods to determine the PSF or its Fourier equivalent,

the modulation transfer function (MTF), of the scintillator crystal: the noise method

[278, 279] and the edge method [279, 280]. There are many studies exploring the

different ways of implementing each and their advantages and disadvantages [281–

287].

We have decided to use the method first presented by Thust [288] and then

automated by Van den Broek et al. [289]. This is because of its ease of use without

loss of accuracy. The method involves taking an image of the beam stopper over

parallel illumination. Through upsampling and thresholding, a binary image of the

beamstopper is produced to represent the non-blurred ‘ideal’ image (Fig. 5.8b).

The MTF of the scintillator crystal can be found by minimising the MTF function

applied to the Fourier transformed ideal binary image with the Fourier transform

of the recorded ‘actual’ blurred image (Fig. 5.8a).

Using the program MTFEstimate [289] the MTF was measured and shown in
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Figure 5.9: a) Average of 1D MTF measurements from beam stopper images (Fig.
5.10a) up to the maximum spatial frequency (νs) of 1.0 and b) it’s associated Fourier
transformed 1D PSF function (both the MTF and PSF are rotationally symmetric)

Fig. 5.9a. This is an average of six separate MTF measurements from 5 or 6 second

exposure beam stopper images to average out noise contributions. Once Fourier

transformed we obtain the PSF shown in Fig. 5.9b. Only the spatial frequencies up

to 0.75 νs were selected due to excessive noise above this value. It is however above

the Nyquist frequency (0.5 νs). While the bars are too small to see in the figure at

higher pixel values, the tails are quite long and Lorentzian as mentioned by Thust

and Van den Broek et al. [288, 289]. However, most of the blur is characteristic

over only two or three pixels. The amplitude of the PSF is higher than the plot

shown in Thust, this is probably due to the noise found in the MTF. We found as

we increased number of spacial frequencies used from the MTF the PSF amplitude

decreased. Therefore, a non-linear least squares fit and/or further averaging of

beam stopper images will reduce the noise level and ensure higher frequencies can

be measured.

A non-linear least squares fit was planned for the MTF scintillator measure-

ment, however there was difficulty in fitting to the proposed function identified by

Van den Broek et al. (the sum of an exponential and gaussian). Since this is re-

quired to implement the MTF to the D-LACBED images, the study was stopped

here. Once a fit is obtained, the rotationally symmetric MTF of the scintillator can

be multiplied to the Fourier transform of a simulated D-LACBED image (The MTF

by pixellation does not apply as long as both simulated and experimental images are

the same size) to show whether the extent of MTF blurring when compared to the

experimental image. Several important questions on the effectiveness of background

subtraction, symmetrising data, whether energy-filters and diffuse scattering models

are needed, can then be examined.
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5.10 Simulation Bloch wave convergence

The poor scaling of simulation time t the number of Bloch waves N (t proportional to

N3) mandates some effort to use the minimum possible number of Bloch waves while

maintaining the necessary accuracy in calculated diffracted intensities [190,191]. We

find that improvements in accuracy accrue logarithmically with N (Fig. 5.10). We

use the difference between a reference pattern with N = 250 Bloch waves (Nweak =

Nstrong) and simulations with different N to determine the behaviour of different

zone axes. Fig. 5.10 shows the largest difference found in any pixel of the complete

simulation, as a percentage of the maximum intensity of each D-LACBED pattern.

For Cu [001] in Chapter 4, 25 D-LACBED patterns with dimensions 400x400 were

simulated, giving 4.0× 106 pixels, while for Cu [114] 13 D-LACBED patterns were

simulated giving 2.1×106 pixels. Least-squares fits to the measurements can then be

extrapolated to find the minimum value of N that gives the required accuracy (here

set to be one grey level in an 8-bit image, or 1/256). The difference in behaviour of

the [001] and [114] data is due to the different densities of points in the ZOLZ section

through the reciprocal lattice; g-vectors in the [114] pattern are larger, meaning that

fewer Bloch waves are necessary to capture the behaviour up to a given scattering

angle.

Ideally the ratio of weak beams to strong beams and their subsequent selec-

tion criteria would be studied (as achieved in Birkeland et al. [191]). This has been

planned for the future.
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Figure 5.10: Simulation tests for the [001] and [114] Cu D-LACBED data of Fig. 4.1,
showing the maximum difference (arbitrary units using 16-bit images) in intensity
of any pixel with respect to a reference simulation using 250 Bloch waves. Each line
is a least squares fit which is extrapolated to meet the desired criterion for accuracy
(horizontal dotted line).
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5.11 Summary

We find that D-LACBED patterns are up to 10 times more sensitive to atomic coor-

dinate changes than DWF changes, bringing context to the previous two Chapters.

From Table 5.2 we see that atomic coordinate refinements should be able to reach

sub-pm precision. We see from Fig. 5.1 that atomic coordinate refinements are

almost completely independent from all the other parameters. We hypothesis that

atomic coordinate refinement will most likely produce accurate and precise results

without the need for energy filters but will perhaps need distortion correction for

highly accurate results.

It is possible to refine other parameters including the DWF, but for highly

accurate and precise results a large dataset is needed perhaps utilising a fitting

function weighted to high index g-patterns. The camera PSF is known to have an

influence on the CCD in electron diffraction studies and was found to be similar

to other camera PSFs. The analysis of the PSF on D-LACBED images will open

further investigation on the effectiveness of the background subtraction and the

effect of diffuse scattering on the data. A Bloch wave convergence condition was

deduced and used for an initial investigation for the number of beams required to

reach an acceptable simulated D-LACBED pattern.
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Chapter 6

Conclusions and future work

”As a coda should be, this part of our essay is short”

- Edwin Hewitt & Robert E. Hewitt

The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis [214]

D-LACBED provides a solution to the ‘overlap problem’ in CBED, increasing the

amount of information possible for zone axis patterns. We find that D-LACBED is

indeed more accurate and precise than conventional CBED for structural refinement,

in line with the history of electron diffraction.

This is especially the case for atomic positional refinement. In Chapter 3 we

showed that the dynamical information of a D-LACBED zone axis pattern contained

enough 3D information to obtain atomic coordinates with excellent agreement (sub-

picometre range) to X-ray measurements. We explored potential future methods

to achieve the accuracies of X-ray diffraction, once thought improbable due to the

dynamical nature of electrons [290].

Exploration of well-studied materials in the future should add a greater

weight of argument for the use of D-LACBED in ACR studies. The process may

start with studies over several zone-axes of a single material (e.g. corundum) to

examine how orientation affects the refined atomic positions.It could then be ex-

tended to similar structures with different atoms of slightly different positions to

explore the sensitivity of the technique (e.g. chromium oxide). After such studies,

the consistency of the technique would be clear. This could then be extended to

well-studied complex materials, known to have several minor atomic displacements

leading to property changes (e.g. perovskites). This will determine if the technique

is capable at handling the many displacements required for most modern atomic

position refinement studies.
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In Chapter 4 we explored the refinement of the DWF. We found that while

the IAM model used to refine DWFs from D-LACBED patterns achieved accurate

results for simple metals like copper, materials like GaAs with a greater amount

of interaction between atoms (through anharmonicity and bonding) required more

accurate models. If the Gibbs-Wilbraham phenomenon is explored in more depth,

D-LACBED could be used to refine structure factors as a whole. Which would be a

very useful experimental counterpart to density functional theory studies of bonding

in single crystal materials. There is also future scope using GaAs to explore the

model of structure factors. For instance, using pseudopotentials [248] to model the

charge transfer between atoms. If a value for the DWF can be obtained for GaAs

which agrees with the literature, then exploration of materials with more complex

bonding between atoms (e.g. strontium titanate) could be possible.

In Chapter 5 we looked at the sensitivity of D-LACBED Bloch wave sim-

ulations within the context of structural parameters. We found that in general,

g-patterns at higher indices seemed to be more sensitive to changes of structure and

could possibly be used for weighting of future refinements.

It has been shown in Chapter 2 that a significant amount of image processing

is implemented to correct the distortions and blur seen in each of the D-LACBED

patterns. It has been mentioned but not fully explored in Chapter 5 that uncorrected

distortions or blur can significantly contribute to errors in structural refinements.

While there are plenty of other contributions to error (i.e. simulation model, dislo-

cations etc.) the distortion and blur are easier to identify, correct and perhaps most

importantly made reliable. If structural refinement measurements are to approach

the precision of X-ray and neutron ones, distortion and blur correction are essential

areas to explore.

In this thesis we only explore singular zone axes chosen because of their

ease of access. We see from the discussion in Chapter 3 that certain g-patterns

may be more sensitive to atomic position, and postulate searching for the least

sensitive zone axes may give an indication of the extent of dynamical scattering in D-

LACBED patterns. Exploration of different zone axes allows better understanding

of dynamical effects to structural refinements. For instance in Chapter 4 the [110]

direction of gallium arsenide is known to have strong dynamical scattering in the

n111 systematic row g-patterns. A structural refinement of the DWF on a zone axis

without strong dynamical g-patterns may help to determine whether these strong

dynamical couplings at low-order g-patterns help or hinder the result. Perhaps the

conclusion drawn in Chapter 5 that more sensitive g-patterns are at higher indicies

may mean mid-range zone axes are best for DWF refinements where perhaps more
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reflections display ’uniqueness’.

Comparison of D-LACBED structural refinements have only been to ex-situ

data so far. It may be useful to conduct an experiment using several techniques

similar to D-LACBED (e.g. SAED, PED, CBED, LACBED etc.) on the same area

of of sample (i.e. in situ) and comparing structural refinement results over many

variables. This will give a more reliable indication of the strengths and weaknesses

of D-LACBED.

From this thesis we see that D-LACBED could potentially be used for a wide

range of structural refinement studies at the nano-level, similarly to parallel beam

methods in structural solution studies. Experimentally, there is plenty of future

scope to improve the efficiency, ease of use and post-processing of the technique,

potentially leading to acquisition of high-quality datasets in seconds.

It is perhaps the simulation where the major limitation of the technique lies.

As the size of data sets and camera resolutions increase, the required number of

pixels to simulate does also. The structural refinements carried out in this thesis

use computationally heavy dynamical theory, which require supercomputers and

can take hours to complete. There is only minor scope to improve the efficiency

of these calculations through traditional methods [291]. This is compared to X-ray

kinematical refinements where a full structure can be output in minutes.

A solution may lie in machine learning. Already used within the electron

microscopy community [292–294], machine learning has the capability to reduce

the time of complex calculations from hours to minutes or seconds, without loss of

accuracy (it may even improve accuracy [295]). If a general solution is found for

direct inversion in dynamical diffraction and the application of computer control to

transmission electron microscopes continues to improve, the tantalising prospect of

a full structure calculation (solution and refinement) may be possible from a single

zone axis pattern and achievable in minutes.

At the moment it is unclear whether D-LACBED will be a part of the future

of electron microscopy, however, it is clear big data in electron microscopy is here

to stay.
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Appendix A

Corundum bond lengths and

angles
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Bond Bond Angle (This
thesis)

Bond Angle (Kondo)

O1 - Al - O2 79.587° 79.642°

O1 - Al - O6 90.675° 90.779°

O2 - Al - O6 86.372° 85.378°

O4 - Al - O5 101.284° 101.161°

O4 - Al - O1 164.119° 164.239°

Table A.1: Bond angle comparison between this thesis and reference values (Kondo
et al. [204]) for the AlO6 octahedra seen in fig A.1. The top triplet bond lengths
are: 1.850 Å (This study) & 1.854 Å (Kondo). The bottom triplet bond lengths
are: 1.976 Å (This study) & 1.971 Å (Kondo)

Figure A.1: AlO6 octahedra within corundum structure - see Fig. 3.1. The bonds
within each of the top and bottom triplets are equal in length

98



Appendix B

Guide for D-LACBED

alignment

B.1 Sample preparation

Sample preparation is one of the major influencers on the quality of the final data.

A well-made flat (i.e. parallel surfaced) sample, with few defects, contaminants and

large average grain size will produce adequate data even with poor calibration and

alignment. Further, when ion milling, if the energy is switched from 6kV to 2kV

as soon as a hole appears in the sample there are more likely to be flat areas to

take D-LACBED data from (a larger hole is more likely to produce a wedge shape

sample), thereby reducing the time of the experiment.

B.2 Alignment

During collection of D-LACBED data the author has discovered many tips which

may help future users.

(i) A large sample area of even thickness without bending is ideal for D-LACBED

(however it is possible to take data in and around 20nm regions – dependent on

the type of microscope). Choose an experimental site before any alignments,

otherwise you may find that you need to redo them. Currently a distinct

feature (like a hole, or abnormally shaped edge) produces the best image shift

correction, therefore a sample area near a distinct feature is preferable.

(ii) During collection of the data, the incident electron beam is automatically tilted

and shifted. Therefore, it is good practice to check the tilt, shift and voltage
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centre alignments multiple times throughout the alignment process.

(iii) To align for the intermediate lens astigmatism, move the beam off the sample

and the spread it as widely as possible for parallel illumination. Switch to

diffraction mode and adjust the diffraction focus until a caustic is seen within

the diffraction disc. To correct for the astigmatism, make the caustic circular1.

Do this alignment before the diffraction focus alignment so it does not have to

be repeated.

(iv) Determination of the correct diffraction focus using a CBED pattern was ini-

tially found to be quite difficult. Eventually it was discovered that Kikuchi

lines are good indicators of focus. If acquiring a zone axis pattern, tilt to just

off zone axis for the sharpest Kikuchi lines. Adjust the focus until the Kikuchi

lines are at their sharpest.

(v) With small CBED discs, sometimes it is difficult to find the centre of the zone

axis pattern. Using dark field tilt mode (normally used for dark field imaging)

the area around the zone axis can be explored without consequence to previous

alignments (as long as the user switches back to bright field tilt mode when

tilting to the zone axis).

1Notes for the rookie microscopist: If the transmission electron microscope has an angled
phosphor screen, a perfectly round circle on the angled screen is not a round circle on the flat
screen/camera. The author forgot about this many times!
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Appendix C

Derivation of periodic

Schrödinger equation

In Chapter 2, we use the Schrödinger equation (Eq. 2.2)(
− h̄2

2m
∇2 − |e|V (r̄)

)
ΨB(r̄) = EΨB(r̄) (C.1)

with Bloch wave solutions, to describe a wavefunction of fast electrons through a

periodic potential (Eq. 2.7). Here we show how this is derived.

The kinetic energy E = h2k2
0/2m, is inserted into Eq. C.1(

− h̄2

2m
∇2 − |e|V (r̄)

)
ΨB(r̄) =

h2k2
0

2m
ΨB(r̄) (C.2)

Multiply Eq. C.2 by 2m

(
−h̄2∇2 − 2m|e|V (r̄)

)
ΨB(r̄) = h2k2

0ΨB(r̄) (C.3)

Divide Eq. C.3 by h2

(
− ∇

2

4π2
− 2m|e|V (r̄)

h2

)
ΨB(r̄) = k2

0ΨB(r̄) (C.4)

Multiply Eq. C.4 by 4π2

(
−∇2 − 4π2 2m|e|V (r̄)

h2

)
ΨB(r̄) = 4π2k2

0ΨB(r̄) (C.5)

Expand brackets

−∇2ΨB(r̄)− 4π2 2m|e|V (r̄)

h2
ΨB(r̄) = 4π2k2

0ΨB(r̄) (C.6)
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Swap signs and rearrange

∇2ΨB(r̄) + 4π2k2
0ΨB(r̄) = −4π2 2m|e|

h2
V (r̄)ΨB(r̄) (C.7)

Using (2m|e|/h2)V (r̄) = U(r̄), we arrive at Eq 2.7

(
∇2 + 4π2k2

0

)
ΨB(r̄) = −4π2U(r̄)ΨB(r̄) (C.8)

102



Appendix D

Listing of D-LACBED code

D.1 Calibration 1

// $BACKGROUND$ 

  //***            Calibrate tilts1            ***\\ 

 //** Richard Beanland r.beanland@warwick.ac.uk **\\ 

//*         Coding started June 2012              *\\ 

  

// 1.0, 23 June 2012 

// 1.1 - added fast data collection March 2013 

// 1.2 - fast data collection as a subroutine April 

2013 

// 1.3 - bug fixes April/May 2013 

// 1.4 - added image shift calibration Summer 2014 

// 1.5 - bug fixes Oct 2016 

// 2.0 - split off from shift calibration Nov 2016 

// 2.1 - updated for OneView camera Dec 2018 

 

//Global variables 

 number true=1, false=0; 

 number Camb=4096, Camr=4096//Global values, for 

oneViewIS camera 

 number binning=8;//Could be a dialogue 

 number expo=0.01;//Could be a dialogue 

 number _t=0; 

 number _l=0; 

 number _b=Camb/binning;  

 number _r=Camr/binning; 

 number rspot=2 

 number sleeptime=0.0;//delay while waiting for 

microsope to respond 

 image img1,img0,img2,imgCC;//live image, reference 

image, sobel filtered and cross-correlation 

respectively 

 object img_src 

 

//*******************************// 

/////////////////////////// 

// Subroutines. 

/////////////////////////// 

//*******************************// 

//UpdateCameraImage 

//RemoveOutliers 

//GetCoordsFromNTilts 

//EMChangeMode 

//EMBeamCentre 

//Tiltsize 

//Shiftsize 

//DiscSize 

//Sobel 

 

 

//Function UpdateCameraImage 

//Gets next available frame from the camera  

void UpdateCameraImage(object img_src, image img) 

{ 

  // Wait for next frame 

  number acq_params_changed=0; 

  number max_wait = 0.1; 

  if 

(!img_src.IMGSRC_AcquireTo(img,true,max_wait,acq_params

_changed)) 

  {    

 while 

(!img_src.IMGSRC_AcquireTo(img,false,max_wait,acq_param

s_changed)) 

 { 

 } 

  }  

}//End of UpdateCameraImage 

 

 

//FUNCTION remove outliers 

//Remove outliers in the selection by comparing with an 

identical image with median filer applied 

void RemoveOutliers(image img, number thr) 

{ 

  image medImg:=img[]; 

  medImg=medianFilter(img,3,1); 

  // replace ONLY those pixels in IMG which are >thr in 

comparison with median image 
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  img=tert((abs(img-medImg)>thr),medImg,img); 

  //tidy up 

  medImg.DeleteImage(); 

}//end of RemoveOutliers 

 

 

//Function GetCoordsFromNTilts 

//Gets x-y coords from the index currentPoint 

void GetCoordsFromNTilts(number nTilts, number 

currentPoint, number &i, number &j) 

{ 

  number side=2*nTilts+1; 

  j=floor(currentPoint/side)-nTilts; 

  i=((currentPoint%side)-nTilts)*((-1)**(j%2));//NB % 

means modulo, flips sign every row 

}//End of GetCoordsFromNTilts 

 

 

//Function EMChangeMode 

//Asks user to change mode - will keep doing so until 

they comply 

//Space bar to exit loop 

void EMChangeMode(string mode_want) 

{ 

  string mode_is=EMGetImagingOpticsMode(); 

  number clickedOK=true; 

  while (!(mode_is==mode_want))//not in diffraction 

mode 

  { 

   clickedOK=true; 

   external sem=NewSemaphore(); 

   try 

   { 

     ModelessDialog("Please put the microscope in 

"+mode_want+" mode","OK",sem); 

     GrabSemaphore(sem); 

     ReleaseSemaphore(sem); 

     FreeSemaphore(sem); 

   } 

   catch 

   { 

     FreeSemaphore(sem); 

     clickedOK=false; 

     break; 

   } 

   mode_is=EMGetImagingOpticsMode(); 

  } 

  // Give user some way out  

  if (spacedown()) throw("User aborted") 

}//End of EMChangeMode 

 

 

//Function EMBeamCentre 

//Puts the beam in the centre of the image given 

measured position x0,y0 

void EMBeamCentre(string Tag_Path) 

{ 

  number ShiftX0,ShiftY0,xShpX,xShpY,yShpX,yShpY;  

  EMGetBeamShift(ShiftX0,ShiftY0); 

  //Get beam shift calibration 

  GetPersistentNumberNote(Tag_Path+"xShpX",xShpX); 

  GetPersistentNumberNote(Tag_Path+"xShpY",xShpY); 

  GetPersistentNumberNote(Tag_Path+"yShpX",yShpX); 

  GetPersistentNumberNote(Tag_Path+"yShpY",yShpY); 

  number x0,y0;//coords of untilted beam 

  number maxval=img1.Max(x0,y0); 

  number x1=(_r/2)-x0;//x1,y1 are the no. of pixels to 

move [x,y] 

  number y1=(_b/2)-y0; 

  number xCentre=round(ShiftX0+x1*xShpX+y1*yShpX); 

  number yCentre=round(ShiftY0+x1*xShpY+y1*yShpY); 

 EMSetBeamShift(xCentre,yCentre); 

 sleep(sleeptime); 

}//End of EMBeamCentre 

 

 

//Function Tiltsize 

//Changes tilt increment dTilt to be 1/4 of image 

height 

number TiltSize(number dTilt, number &T1X, number &T1Y, 

number &T2X, number &T2Y) 

{ 

 //auto-correlation to find the coords of untilted beam 

x0y0 

 number tiltX0,tiltY0;  

 EMGetBeamTilt(tiltX0,tiltY0); 

 UpdateCameraImage(img_src,img1); 

// sleep(sleeptime); 

// UpdateCameraImage(img_src,img1);//zero tilt image 

 img0=img1;//put into img0 

 imgCC=img1.CrossCorrelate(img0); 

 number x0,y0;//coords of untilted beam 

 number maxval=imgCC.Max(x0,y0); 

 //tilt the input guessed dTilt along X-DAC 

 EMSetBeamTilt(tiltX0+dTilt,tiltY0); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime);//give the microscope time to respond 

 UpdateCameraImage(img_src,img1);//X-DAC tilted image 

 imgCC=img1.CrossCorrelate(img0); 

 number x,y;//coords of tilted beam 

 maxval=imgCC.Max(x,y); 

 number tPix=((x-x0)**2+(y-y0)**2)**0.5;//the spot 

movement in pixels 

 //calculate accurate dTilt 

 dTilt=dTilt*0.25*_b/tPix; 

  

 //Now measure tilt(pixels) per DAC 

 EMSetBeamTilt(tiltX0+dTilt,tiltY0); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1);//X-DAC tilted image 

 imgCC=img1.CrossCorrelate(img0); 

 maxval=imgCC.max(x,y); 

 T1X=(x-x0)/dTilt; 

 T1Y=(y-y0)/dTilt; 

 EMSetBeamTilt(tiltX0,tiltY0+dTilt); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1);//Y-DAC tilted image 

 imgCC=img1.CrossCorrelate(img0); 

 imgCC.UpdateImage(); 

 maxval=imgCC.Max(x,y); 

 T2X=(x-x0)/dTilt; 

 T2Y=(y-y0)/dTilt; 

  

 //reset tilt to zero again 

 EMSetBeamTilt(tiltX0,tiltY0); 

 sleep(sleeptime); 

  

 return dTilt 

}//End of TiltSize 

 

 

//Function Shiftsize 

//Changes shift increment dShift to be 1/4 image height 

number ShiftSize(number dShift, number &Sh1X, number 

&Sh1Y, number &Sh2X, number &Sh2Y) 

{ 

 //auto-correlation to find the coords of unshifted 

beam x0y0 

 number shiftX0,shiftY0;  

 EMGetBeamShift(shiftX0,shiftY0); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1);//zero shift image 

 img0=img1;//put into img0 

 imgCC=img0.CrossCorrelate(img0); 

 number x0,y0;//coords of unshifted beam 

 number maxval=imgCC.Max(x0,y0); 

 //Shift the input guessed dShift along X-DAC 

 EMSetBeamShift(shiftX0+dShift,shiftY0); 

 sleep(sleeptime);//have to give the microscope time to 

respond 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

104



 UpdateCameraImage(img_src,img1);//shifted image 

 imgCC=img1.CrossCorrelate(img0); 

 number x,y;//coords of shifted beam 

 maxval=imgCC.Max(x,y); 

 number tPix=((x-x0)**2+(y-y0)**2)**0.5;//the spot 

movement in pixels 

 //calculate accurate dShift 

 dShift=round(dShift*0.25*_b/tPix); 

  

 //now measure shift(pixels) per DAC 

 EMSetBeamShift(shiftX0+dShift,shiftY0); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1);//X-DAC shifted image 

 imgCC=img1.CrossCorrelate(img0); 

 maxval=imgCC.Max(x,y); 

 Sh1X=(x-x0)/dShift; 

 Sh1Y=(y-y0)/dShift; 

 EMSetBeamShift(shiftX0,shiftY0+dShift); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1); 

 sleep(sleeptime); 

 UpdateCameraImage(img_src,img1);//Y-DAC shifted image 

 imgCC=img1.CrossCorrelate(img0); 

 maxval=imgCC.Max(x,y); 

 Sh2X=(x-x0)/dShift; 

 Sh2Y=(y-y0)/dShift; 

 

 //reset tilt to zero again 

 EMSetBeamShift(shiftX0,shiftY0); 

 sleep(sleeptime); 

  

 return dShift 

}//End of ShiftSize 

 

 

//Function DiscSize 

//Gives radius of CBED disc 

number DiscSize(image cbed)//, number &x0, number &y0) 

{ 

 result("Finding radius of CBED disc...\n"); 

 number imgX,imgY; 

 cbed.GetSize(imgX,imgY); 

 image disc = cbed.ImageClone()*0; 

 number Rmax=round(min(imgX,imgY)/10); 

 number Rr=0,Cc1=0,Cc2,dCc=1; 

  

 while (dCc>0) 

 { 

  Rr+=1 

  disc=tert(iradius<Rr,1,0);//trial image 

  Cc2=max(disc.CrossCorrelate(cbed));//cross correlate 

  dCc=Cc2-Cc1;//if better than the last one, dCc is 

+ve, otherwise exit 

  Cc1=Cc2; 

 } 

 return Rr-1 

}//End of DiscSize 

 

 

//Function Sobel 

//3x3 Sobel filter (should be ^0.5 at the end, but not 

done for speed) 

void Sobel(image img) 

{ 

 number imgX,imgY; 

 img.GetSize(imgX,imgY); 

 image diffX=img.ImageClone()*0; 

 image diffY=diffX; 

 //x gradient 

 diffX[1,1,imgY-1,imgX-1]  =  3*img[0,0,imgY-2,imgX-2]; 

 diffX[1,1,imgY-1,imgX-1] += 10*img[1,0,imgY-1,imgX-2]; 

 diffX[1,1,imgY-1,imgX-1] +=  3*img[2,0,imgY  ,imgX-2]; 

 diffX[1,1,imgY-1,imgX-1] -=  3*img[0,2,imgY-2,imgX  ]; 

 diffX[1,1,imgY-1,imgX-1] -= 10*img[1,2,imgY-1,imgX  ]; 

 diffX[1,1,imgY-1,imgX-1] -=  3*img[2,2,imgY  ,imgX  ]; 

 //y gradient 

 diffY[1,1,imgY-1,imgX-1]  =  3*img[0,0,imgY-2,imgX-2]; 

 diffY[1,1,imgY-1,imgX-1] += 10*img[0,1,imgY-2,imgX-1]; 

 diffY[1,1,imgY-1,imgX-1] +=  3*img[0,2,imgY-2,imgX  ]; 

 diffY[1,1,imgY-1,imgX-1] -=  3*img[2,0,imgY  ,imgX-2]; 

 diffY[1,1,imgY-1,imgX-1] -= 10*img[2,1,imgY  ,imgX-1]; 

 diffY[1,1,imgY-1,imgX-1] -=  3*img[2,2,imgY  ,imgX  ]; 

 img=diffX*diffX+diffY*diffY; 

}//End of Sobel 

 

 

//*******************************// 

/////////////////////////////////// 

// Main program 

/////////////////////////////////// 

//*******************************// 

number tstart = GetHighResTickCount(); 

 

//Start in diffraction mode  

EMChangeMode("DIFF") 

 

//Get Basic stuff to start 

number spot=EMGetSpotSize()+1; 

number mag=EMGetMagnification(); //Sometimes gives null 

answer, why?? 

number camL=EMGetCameraLength(); 

//And prompt input for alpha 

number alpha=3; 

if (!GetNumber("Alpha?",alpha,alpha)) exit(0) 

//set up tag and file paths 

string 

Tag_Path="DigitalDiffraction:Alpha="+alpha+":Binning="+

binning+":CamL="+CamL+"mm:"; 

string pathname=PathConcatenate( 

GetApplicationDirectory("common_app_data",0),"Reference 

Images\\"); 

string file_name=pathname+"D-

ED_TiltCal_A"+Alpha+"_B"+binning+"_C"+CamL+".dm4"; 

string datetime; 

//number of points +/- to measure 

number nTilts=8; 

//make or load calibration data, image TiltCal 

GetPersistentStringNote(Tag_Path+"Date",datetime); 

image TiltCal; 

number data_type=2; 

//datetime==""; 

//if (datetime=="") 

//{ 

  result("No tilt calibration: making new calibration 

file"); 

  TiltCal := NewImage("Tilt/shift 

calibration",data_type,(2*nTilts)+1,(2*nTilts)+1,4); 

//} 

//else 

//{ 

//  result("\nLast calibration "+datetime+"\n"); 

//  TiltCal := NewImageFromFile(file_name); 

//} 

 

//update tags 

number f; 

string date_; 

GetDate(f,date_); 

string time_; 

GetTime(f,time_); 

datetime=date_+"_"+time_; 

result ("\nStarting tilt calibration "+datetime+"\n"); 

SetPersistentStringNote(Tag_Path+"Date",datetime); 

SetPersistentNumberNote(Tag_Path+"Spot size",spot); 

SetPersistentNumberNote(Tag_Path+"nCals",nTilts); 

 

// Stop any current camera viewer 

number close_view=1, stop_view=0; 

try 

{ 

  cm_stopcurrentcameraViewer(stop_view); 

} 

catch 

{ 
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  throw("Couldn't stop camera properly, try again!"); 

} 

 

//set up images to contain data 

number nPts=((2*nTilts)+1)**2; 

//set up arrays holding shift correction 

image Xsh=RealImage("X-shift with 

tilt",4,(2*nTilts)+1,(2*nTilts)+1 ); 

//Xsh.DisplayAt(655,30); 

//Xsh.SetWindowSize(200,200); 

image Ysh=RealImage("Y-shift with 

tilt",4,(2*nTilts)+1,(2*nTilts)+1 ); 

//Ysh.DisplayAt(875,30); 

//Ysh.SetWindowSize(200,200); 

 

//Start the camera running in fast mode 

//Use current camera 

object camera = CMGetCurrentCamera(); 

// Create standard parameters 

number kUnprocessed = 1; 

number kDarkCorrected = 2; 

number kGainNormalized = 3; 

number processing = kGainNormalized;  

// Define camera parameter set 

object acq_params = 

camera.CM_CreateAcquisitionParameters_FullCCD(processin

g,expo,binning,binning); 

acq_params.CM_SetDoContinuousReadout(true); 

acq_params.CM_SetQualityLevel(0);//what does this do? 

object acquisition = 

camera.CM_CreateAcquisition(acq_params); 

object frame_set_info = 

acquisition.CM_ACQ_GetDetector().DTCTR_CreateFrameSetIn

fo(); 

img_src = 

alloc(CM_AcquisitionImageSource).IMGSRC_Init(acquisitio

n,frame_set_info,0); 

CM_ClearDarkImages()//why? 

 

// Create and display live image 

img1:=acquisition.CM_CreateImageForAcquire("Live"); 

img1.DisplayAt(10,30); 

img1.SetWindowSize(500,500); 

 

//Set up reference image img0 

img0:=img1.ImageClone(); 

img0.DisplayAt(15,30); 

img0.SetWindowSize(200,200); 

img0.SetName("Reference"); 

//and img2 to display the measured beam positions 

img2:=img1.ImageClone()*0; 

img2.DisplayAt(525,30); 

img2.SetWindowSize(500,500); 

img2.SetName("Progress"); 

//and cross correlation image imgCC 

imgCC:= img1.CrossCorrelate(img0); 

imgCC.DisplayAt(445,30); 

imgCC.SetWindowSize(200,200); 

imgCC.SetName("Cross correlation");  

 

 

//////////////////// 

// Start acquisition  

//NB define variables outside try/catch 

number 

Rr,T1X,T1Y,T2X,T2Y,dTilt,detT,xTpX,xTpY,yTpX,yTpY;  

number 

Sh1X,Sh1Y,Sh2X,Sh2Y,dShift,detSh,xShpX,xShpY,yShpX,yShp

Y; 

number ShiftX0,ShiftY0,TiltX0,TiltY0,pt,maxval;  

number i,j,tX,tY,x,y,dx,dy,tIncX,tIncY,prog; 

try 

{ 

  img_src.IMGSRC_BeginAcquisition() 

  UpdateCameraImage(img_src,img1); 

  sleep(sleeptime); 

  UpdateCameraImage(img_src,img1); 

  //put the untilted image into img0 

  img0=img1; 

  

  //Get radius of CBED disc 

  Rr=DiscSize(img0); 

  result ("Disc radius="+Rr+" pixels\n"); 

  SetPersistentNumberNote(Tag_Path+"Disc Radius",Rr); 

 

  //Set magnitude of tilt 

  // dTilt gives diffraction pattern shift 1/4 of 

camera height 

  //[T1X,T1Y] is the beam tilt in pixels [X,Y] per x 

DAC 

  

dTilt=TiltSize(500000/CamL,T1X,T1Y,T2X,T2Y);//40000/Cam

L is initial guess 

  result ("Set beam tilt: "+T1X+","+T2X+"\n") 

  detT=T1X*T2Y-T2X*T1Y;//determinant 

  xTpX= T2Y/detT;//EMSetBeamTilt(xTpX,xTpY) shifts the 

disc 1 x-pixel  

  xTpY=-T1Y/detT; 

  yTpX=-T2X/detT;//EMSetBeamTilt(yTpX,yTpY) shifts the 

disc 1 y-pixel  

  yTpY= T1X/detT; 

  //Save them to the global tag group 

  SetPersistentNumberNote(Tag_Path+"xTpX",xTpX); 

  SetPersistentNumberNote(Tag_Path+"xTpY",xTpY); 

  SetPersistentNumberNote(Tag_Path+"yTpX",yTpX); 

  SetPersistentNumberNote(Tag_Path+"yTpY",yTpY); 

  

  //Go to imaging mode 

  EMChangeMode("MAG1") 

   

  //Calibrate beam shift - assume it is linear so a 

single measurement of x and y DAC shift is fine. 

  //[Sh1X,Sh1Y] is the beam shift in pixels [X,Y] per x 

DAC  

  dShift=ShiftSize(10,Sh1X,Sh1Y,Sh2X,Sh2Y);//first 

guess at shift increment is 20, changed to 1/4 of 

camera height 

  detSh=Sh1X*Sh2Y-Sh2X*Sh1Y;//determinant 

  xShpX= Sh2Y/detSh;//EMSetBeamShift(xShpX,xShpY) 

shifts the beam 1 x-pixel  

  xShpY=-Sh1Y/detSh;                    

  yShpX=-Sh2X/detSh;//EMSetBeamShift(yShpX,yShpY) 

shifts the beam 1 y-pixel  

  yShpY= Sh1X/detSh; 

  //Save them to the global tag group 

  SetPersistentNumberNote(Tag_Path+"xShpX",xShpX); 

  SetPersistentNumberNote(Tag_Path+"xShpY",xShpY); 

  SetPersistentNumberNote(Tag_Path+"yShpX",yShpX); 

  SetPersistentNumberNote(Tag_Path+"yShpY",yShpY); 

   

  //Centre beam shift and display start point 

  UpdateCameraImage(img_src,img1); 

  sleep(sleeptime); 

  UpdateCameraImage(img_src,img1); 

  EMBeamCentre(Tag_Path); 

  EMGetBeamShift(ShiftX0,ShiftY0); 

  result ("Centred beam shift: 

"+ShiftX0+","+ShiftY0+"\n"); 

  SetPersistentNumberNote(Tag_Path+"ShiftX0",ShiftX0); 

  SetPersistentNumberNote(Tag_Path+"ShiftY0",ShiftY0); 

  EMGetBeamTilt(TiltX0,TiltY0); 

  result ("Initial beam tilt: "+TiltX0+","+TiltY0+"\n") 

  SetPersistentNumberNote(Tag_Path+"TiltX0",TiltX0); 

  SetPersistentNumberNote(Tag_Path+"TiltY0",TiltY0);  

 

  ///////////////// 

  //Map beam shift as a function of tilt 

  //Go to first point 

  pt=0; 

  GetCoordsFromNTilts(nTilts,pt,i,j); 

  //increment in position of disc, in pixels 

  tIncX=(_r/(2*nTilts))*0.8;//max beam tilt is 80% of 

diffraction pattern width from centre 

  tIncY=(_b/(2*nTilts))*0.8;//max beam tilt is 80% of 

diffraction pattern height from centre 
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  tX=TiltX0 + (i*xTpX + j*yTpX)*tIncX;//convert from 

pixels to DAC for point i,j 

  tY=TiltY0 + (i*xTpY + j*yTpY)*tIncY; 

  EMSetBeamTilt(tX,tY); 

  sleep(sleeptime); 

  UpdateCameraImage(img_src,img1); 

  sleep(sleeptime); 

  UpdateCameraImage(img_src,img1);//throw this image 

away 

  //measure beam shifts and put into XSh,ySh 

  while (pt<nPts) 

  { 

    //set tilt 

    GetCoordsFromNTilts(nTilts,pt,i,j); 

    tX=TiltX0 + (i*xTpX + j*yTpX)*tIncX; 

    tY=TiltY0 + (i*xTpY + j*yTpY)*tIncY; 

    EMSetBeamTilt(tX,tY); 

    sleep(sleeptime); 

    //get image 

    UpdateCameraImage(img_src,img1); 

    sleep(sleeptime); 

    UpdateCameraImage(img_src,img1); 

    img0=img1; 

    img0.RemoveOutliers(50); 

    //measure beam position 

    maxval=img0.max(x,y); 

//    result ("max "+x+","+y+"\n") 

    //mark&save it 

    img2[y-rspot,x-rspot,y+rspot,x+rspot]=100; 

    img2.UpdateImage(); 

    dx=x-(_r/2); 

    dy=y-(_b/2); 

//    result ("X shift 

"+(i+nTilts)+","+(j+nTilts)+","+dx+"\n") 

    Xsh.SetPixel(i+nTilts,j+nTilts,-dx);//NB negative 

of measured value so shift cancels tilt 

    Ysh.SetPixel(i+nTilts,j+nTilts,-dy);  

    pt++; 

  } 

  //Put XSh and YSh into TiltCal layers 0 and 1 for 

saving 

  TiltCal[0,0,0,(2*nTilts)+1,(2*nTilts)+1,1]=Xsh;  

  TiltCal[0,0,1,(2*nTilts)+1,(2*nTilts)+1,2]=Ysh; 

  result ("Beam shift calibration collected\n") 

} 

catch 

{// We are here because an error happened, stop the 

acquisition 

  img_src.IMGSRC_FinishAcquisition(); 

} 

//stop acquisition 

img_src.IMGSRC_FinishAcquisition(); 

 

//Save calibration 

SetPersistentStringNote(Tag_Path+"Calibration file 

path",pathname); 

TiltCal.SetStringNote("Info:Path",pathname) 

TiltCal.SaveAsGatan(file_name) 

//Add tags & save Calibration (stack of 4 images) 

TiltCal.CM_WriteAcquisitionTagsToImage(camera,acq_param

s) 

TiltCal.SetStringNote("Info:Date",datetime) 

TiltCal.SetNumberNote("Info:Camera Length",CamL) 

TiltCal.SetNumberNote("Info:Magnification",mag) 

TiltCal.SetNumberNote("Info:Alpha",Alpha) 

TiltCal.SetNumberNote("Info:Spot size",spot); 

TiltCal.SetNumberNote("Info:Disc Radius",Rr); 

TiltCal.SetNumberNote("Tilts:xTpX",xTpX); 

TiltCal.SetNumberNote("Tilts:xTpY",xTpY); 

TiltCal.SetNumberNote("Tilts:yTpX",yTpX); 

TiltCal.SetNumberNote("Tilts:yTpY",yTpY); 

TiltCal.SetNumberNote("Shifts:xShpX",xShpX); 

TiltCal.SetNumberNote("Shifts:xShpY",xShpY); 

TiltCal.SetNumberNote("Shifts:yShpX",yShpX); 

TiltCal.SetNumberNote("Shifts:yShpY",yShpY); 

 

//tidy up 

//reset tilts to original values 

EMSetBeamTilt(TiltX0,TiltY0); 

img0.DeleteImage(); 

img1.DeleteImage(); 

img2.DeleteImage(); 

imgCC.DeleteImage(); 

//End of main program 

 

number tend = GetHighResTickCount(); 

result ("Elapsed time = 

"+CalcHighResSecondsBetween(tstart,tend)+" seconds\n"); 

result ("Calibration complete, ding dong\n\n") 
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D.2 Calibration 2

// $BACKGROUND$ 

  //***            Calibrate tilts2            ***\\ 

 //** Richard Beanland r.beanland@warwick.ac.uk **\\ 

//*         Coding started June 2012              *\\ 

  

// 1.0, 23 June 2012 

// 1.1 - added fast data collection March 2013 

// 1.2 - fast data collection as a subroutine April 

2013 

// 1.3 - bug fixes April/May 2013 

// 1.4 - added image shift calibration Summer 2014 

// 1.5 - bug fixes Oct 2016 

// 2.0 - split off from tilt calibration Nov 2016 

 

//Global variables 

 number true=1, false=0; 

 number Camb=4096, Camr=4096//Global values, for 

oneViewIS camera 

 number binning=8;//Could be a dialogue 

 number expo=0.005;//Could be a dialogue 

 number _t=0; 

 number _l=0; 

 number _b=Camb/binning;  

 number _r=Camr/binning; 

 number rspot=2 

 number sleeptime=0.00;//delay while waiting for 

microsope to respond 

 image imgRef,img0,img1,img2,imgCC;//reference, sobel 

filtered, live, progress and cross-correlation image 

respectively 

 object img_src 

 

//*******************************// 

/////////////////////////// 

// Subroutines. 

/////////////////////////// 

//*******************************// 

//UpdateCameraImage 

//RemoveOutliers 

//GetCoordsFromNTilts 

//EMChangeMode 

//EMBeamCentre 

//Tiltsize 

//Shiftsize 

//DiscSize 

//BlurG 

//Sobel 

 

 

 

//*******************************// 

/////////////////////////////////// 

// Main program 

/////////////////////////////////// 

//*******************************// 

number tstart = GetHighResTickCount(); 

 

//Get Basic stuff to start 

number spot=EMGetSpotSize()+1; 

number mag=EMGetMagnification(); //Sometimes gives null 

answer, why?? 

//Switch to in diffraction mode  

EMChangeMode("DIFF") 

number camL=EMGetCameraLength(); 

EMChangeMode("MAG1") 

 

//And prompt input for alpha 

number alpha=3; 

if (!GetNumber("Alpha?",alpha,alpha)) exit(0) 

//set up tag and file paths 

string 

Tag_Path="DigitalDiffraction:Alpha="+alpha+":Binning="+

binning+":CamL="+CamL+"mm:"; 

string pathname=PathConcatenate( 

GetApplicationDirectory("common_app_data",0),"Reference 

Images\\"); 

string file_name=pathname+"D-

ED_TiltCal_A"+Alpha+"_B"+binning+"_C"+CamL+".dm4"; 

string datetime; 

 

//make or load calibration data, image TiltCal 

GetPersistentStringNote(Tag_Path+"Date",datetime); 

image TiltCal; 

if (datetime=="") 

{ 

  throw("No tilt calibration: Run TiltCalibration 

first!"); 

} 

else 

{ 

  result("\nLast calibration "+datetime+"\n"); 

  TiltCal := NewImageFromFile(file_name); 

} 

 

//update tags 

number f; 

string date_; 

GetDate(f,date_); 

string time_; 

GetTime(f,time_); 

datetime=date_+"_"+time_; 

result ("\nStarting shift calibration "+datetime+"\n"); 

SetPersistentStringNote(Tag_Path+"Date",datetime); 

//load tilt calibration 

number Rr,xTpX,xTpY,yTpX,yTpY,nTilts,TiltX0,TiltY0; 

GetPersistentNumberNote(Tag_Path+"Disc Radius",Rr); 

GetPersistentNumberNote(Tag_Path+"Spot size",spot); 

GetPersistentNumberNote(Tag_Path+"nCals",nTilts); 

GetPersistentNumberNote(Tag_Path+"xTpX",xTpX); 

GetPersistentNumberNote(Tag_Path+"xTpY",xTpY); 

GetPersistentNumberNote(Tag_Path+"yTpX",yTpX); 

GetPersistentNumberNote(Tag_Path+"yTpY",yTpY); 

GetPersistentNumberNote(Tag_Path+"TiltX0",TiltX0); 

GetPersistentNumberNote(Tag_Path+"TiltY0",TiltY0); 

EMSetBeamTilt(TiltX0,TiltY0); 

result ("Initial beam tilt: "+TiltX0+","+TiltY0+"\n") 

 

 

// Stop any current camera viewer 

number close_view=1, stop_view=0; 

try 

{ 

  cm_stopcurrentcameraViewer(stop_view); 

} 

catch 

{ 

  throw("Couldn't stop camera properly, try again!"); 

} 

 

//set up images to contain data 

number nPts=((2*nTilts)+1)**2; 

//set up arrays holding shift correction 

image Xsh=RealImage("X-shift with 

tilt",4,(2*nTilts)+1,(2*nTilts)+1 ); 

//Xsh.DisplayAt(655,30); 

//Xsh.SetWindowSize(200,200); 

image Ysh=RealImage("Y-shift with 

tilt",4,(2*nTilts)+1,(2*nTilts)+1 ); 

//Ysh.DisplayAt(875,30); 

//Ysh.SetWindowSize(200,200); 

 

//Works in imaging mode 

 EMChangeMode("MAG1") 

 external sem = NewSemaphore(); 

 try 

 { 

   ModelessDialog("Please spread the beam, large 

condenser aperture, feature in the centre","OK",sem) 

   GrabSemaphore(sem) 

   ReleaseSemaphore(sem) 

   FreeSemaphore(sem) 

 } 

 catch 

 { 

   FreeSemaphore(sem) 

   break; 

108



 } 

 

//Start the camera running in fast mode 

//Use current camera 

object camera = CMGetCurrentCamera(); 

// Create standard parameters 

number data_type=2; 

number kUnprocessed = 1; 

number kDarkCorrected = 2; 

number kGainNormalized = 3; 

number processing = kGainNormalized;  

// Define camera parameter set 

object acq_params = 

camera.CM_CreateAcquisitionParameters_FullCCD(processin

g,expo,binning,binning); 

acq_params.CM_SetDoContinuousReadout(true); 

acq_params.CM_SetQualityLevel(0);//what does this do? 

object acquisition = 

camera.CM_CreateAcquisition(acq_params); 

object frame_set_info = 

acquisition.CM_ACQ_GetDetector().DTCTR_CreateFrameSetIn

fo(); 

img_src = 

alloc(CM_AcquisitionImageSource).IMGSRC_Init(acquisitio

n,frame_set_info,0); 

CM_ClearDarkImages()//why? 

 

// Create and display live image 

img1:=acquisition.CM_CreateImageForAcquire("Live"); 

img1.DisplayAt(10,30); 

img1.SetWindowSize(500,500); 

//Set up reference image imgRef 

imgRef:=img1.ImageClone(); 

//imgRef.DisplayAt(225,30); 

//imgRef.SetWindowSize(200,200); 

//imgRef.SetName("Reference"); 

//Set up filtered image img0 

img0:=img1.ImageClone(); 

img0.DisplayAt(10,570); 

img0.SetWindowSize(600,600); 

img0.SetName("Sobel filtered"); 

//and img2 to display the measured beam positions 

img2:=img1.ImageClone()*0; 

img2.DisplayAt(530,30); 

img2.SetWindowSize(500,500); 

img2.SetName("Progress"); 

//and cross correlation image imgCC 

imgCC:= img1.CrossCorrelate(img0); 

//imgCC.DisplayAt(445,30); 

//imgCC.SetWindowSize(200,200); 

//imgCC.SetName("Cross correlation");  

 

 

//////////////////// 

// Start acquisition  

//NB define variables outside try/catch 

number 

Sh1X,Sh1Y,Sh2X,Sh2Y,dShift,detSh,xShpX,xShpY,yShpX,yShp

Y; 

number ShiftX0,ShiftY0,pt,maxval;  

number i,j,tX,tY,x,y,dx,dy,prog; 

//increment in position of disc, in pixels 

number tIncX=(_r/(2*nTilts))*0.8;//max beam tilt is 80% 

of diffraction pattern width from centre 

number tIncY=(_b/(2*nTilts))*0.8;//max beam tilt is 80% 

of diffraction pattern height from centre 

 

try 

{ 

  img_src.IMGSRC_BeginAcquisition() 

  //Set up reference image in imgRef, 3x3 Sobel filter 

applied 

  UpdateCameraImage(img_src,img1); 

  UpdateCameraImage(img_src,img1); 

  img1.RemoveOutliers(50); 

  imgRef=img1.BlurG(2).Sobel(); 

  imgCC=imgRef.CrossCorrelate(imgRef); 

  maxval=imgCC.Max(x,y); 

  img2[y-rspot,x-rspot,y+rspot,x+rspot]=1; 

  

  //Go to first point 

  pt=0; 

  GetCoordsFromNTilts(nTilts,pt,i,j); 

  tX=TiltX0 + (i*xTpX + j*yTpX)*tIncX;//convert from 

pixels to DAC for point i,j 

  tY=TiltY0 + (i*xTpY + j*yTpY)*tIncY; 

  EMSetBeamTilt(tX,tY); 

  UpdateCameraImage(img_src,img1);//throw this image 

away 

UpdateCameraImage(img_src,img1);   

//measure image shifts and put into XSh,ySh 

  while (pt<nPts) 

  { 

    OpenAndSetProgressWindow("Measuring image 

displacement","Image "+(pt+1)+" of "+nPts," "+prog+" 

%"); 

    //set tilt 

    GetCoordsFromNTilts(nTilts,pt,i,j); 

    tX=TiltX0 + (i*xTpX + j*yTpX)*tIncX; 

    tY=TiltY0 + (i*xTpY + j*yTpY)*tIncY; 

    EMSetBeamTilt(tX,tY); 

    //get image 

    UpdateCameraImage(img_src,img1); 

    UpdateCameraImage(img_src,img1); 

    img1.RemoveOutliers(50); 

    img0=img1.BlurG(2).Sobel(); 

    //measure beam position 

    imgCC=img0.CrossCorrelate(imgRef); 

    maxval=imgCC.max(x,y); 

//    result(pt+"; displacement=["+x+","+y+"]\n"); 

    //mark&save it 

    img0[y-rspot,x-rspot,y+rspot,x+rspot]=max(img0); 

    img2[y-rspot,x-rspot,y+rspot,x+rspot]=max(img2); 

    img0.UpdateImage(); 

    dx=x-(_r/2); 

    dy=y-(_b/2); 

    Xsh.SetPixel(i+nTilts,j+nTilts,-dx);//NB negative 

of measured value so shift cancels tilt 

    Ysh.SetPixel(i+nTilts,j+nTilts,-dy);  

    pt++; 

  } 

  //Put XSh and YSh into TiltCal layers 2 and 3 for 

saving 

  TiltCal[0,0,2,(2*nTilts)+1,(2*nTilts)+1,3]=Xsh; 

  TiltCal[0,0,3,(2*nTilts)+1,(2*nTilts)+1,4]=Ysh; 

} 

catch 

{// We are here because an error happened, stop the 

acquisition 

  img_src.IMGSRC_FinishAcquisition(); 

} 

img_src.IMGSRC_FinishAcquisition(); 

 

//Save calibration 

SetPersistentStringNote(Tag_Path+"Calibration file 

path",pathname); 

TiltCal.SetStringNote("Info:Path",pathname) 

TiltCal.SaveAsGatan(file_name) 

//Add tags & save Calibration (stack of 4 images) 

TiltCal.CM_WriteAcquisitionTagsToImage(camera,acq_param

s) 

TiltCal.SetStringNote("Info:Date",datetime) 

TiltCal.SetNumberNote("Info:Camera Length",CamL) 

TiltCal.SetNumberNote("Info:Magnification",mag) 

TiltCal.SetNumberNote("Info:Alpha",Alpha) 

TiltCal.SetNumberNote("Info:Spot size",spot); 

TiltCal.SetNumberNote("Info:Disc Radius",Rr); 

TiltCal.SetNumberNote("Tilts:xTpX",xTpX); 

TiltCal.SetNumberNote("Tilts:xTpY",xTpY); 

TiltCal.SetNumberNote("Tilts:yTpX",yTpX); 

TiltCal.SetNumberNote("Tilts:yTpY",yTpY); 

TiltCal.SetNumberNote("Shifts:xShpX",xShpX); 

TiltCal.SetNumberNote("Shifts:xShpY",xShpY); 

TiltCal.SetNumberNote("Shifts:yShpX",yShpX); 

TiltCal.SetNumberNote("Shifts:yShpY",yShpY); 
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D.3 Collect

// $BACKGROUND$ 

  //***  Collect Digital Diffraction Pattern  ***\\ 

 //** Richard Beanland r.beanland@warwick.ac.uk **\\ 

//*        Coding started March 2011              *\\ 

  

// Version 1.4a, 13 Apr 2012 

// Orius SC600A on 2100 LaB6 

// 1.5 - serpentine raster, 17 May 2012 

// 1.7 - collect into memory and process, 26 Feb 2013 

// 1.8 - added image shift calibration Summer 2014 

// 1.8a - created Interp function 

// 2.0 - added material and other tags 

 

//Realignment 11/4/14  

//TEM mode Camera length 25cm IL1=520A ***for all 

Alphas*** 

//Alpha1, Camera length 20 cm, IL1=4AE5 

//Alpha9, Camera length 20 cm, IL1=5040 

//Alpha1, Camera length 25 cm, IL1=4B25 

//Alpha3, Camera length 20 cm, IL1=5171(51A7) 

 

 

//Global variables 

 number true = 1, false = 0; 

 number Camb=4096, Camr=4096//Global values, for 

OneViewIS camera 

 number binning=8;//Could be a dialogue 

 number expo=0.01;//Could be a dialogue 

 number sleeptime=0.00;//delay while waiting for 

microsope to respond 

 number _t = 0; 

 number _l = 0; 

 number _b = Camb/binning;  

 number _r = Camr/binning; 

 image img1;//live image 

 object img_src 

 

//*******************************// 

/////////////////////////// 

// Subroutines. 

/////////////////////////// 

//*******************************// 

//GetCoordsFromNTilts 

//UpdateCameraImage 

//Interp 

 

//Function Interp 

//Gives linear interpolation between four values in a 

2x2 image A 

number Interp(image A, number dX, number dY) 

{ 

  //Coefficients _a,_b,_c,_d for linear interpolation 

  //f=a+bx+cy+dxy 

  number _a=A.GetPixel(0,0); 

  number _b=(A.GetPixel(1,0)-_a); 

  number _c=(A.GetPixel(0,1)-_a); 

  number _d=(_a-A.GetPixel(0,1)-

A.GetPixel(1,0)+A.GetPixel(1,1)); 

  number corA=_a+_b*dX+_c*dY+_d*dX*dY; 

  return corA 

}//End of Interp 

 

//*******************************// 

/////////////////////////////////// 

// Main program 

/////////////////////////////////// 

//*******************************// 

 

//////////////////// 

//Check microscope status before starting 

string mode=EMGetImagingOpticsMode(); 

if (!(mode=="DIFF"))//mag mode 

{ 

  throw ("TEM not in diffraction mode") 

} 

 

//////////////////// 

//Set up parameters with user input 

number f; 

string date_; 

GetDate(f,date_); 

string time_; 

GetTime(f,time_); 

string datetime=date_+"_"+time_; 

result("Starting acquisition "+datetime+"\n"); 

datetime=""; 

// Get alpha 

number alpha=3; 

if (!GetNumber("Alpha?",alpha,alpha)); 

exit(0); 

//Check Calibration 

number mag=EMGetMagnification(); //Sometimes gives null 

answer, why?? 

number camL=EMGetCameraLength(); 

string 

Tag_Path="DigitalDiffraction:Alpha="+alpha+":Binning="+

binning+":CamL="+CamL+"mm:"; 

GetPersistentStringNote(Tag_Path+"Date",datetime); 

if (datetime=="") 

{ 

  throw("No tilt calibration - please recalibrate"); 

} 

else 

{ 

  result("\nLast calibration "+datetime+"\n"); 

} 

//////////////////// 

//Load calibration 

number 

Rr,spot,nCals,xTpX,xTpY,yTpX,yTpY,xShpX,xShpY,yShpX,ySh

pY; 

string pathname,file_name,material; 

GetPersistentNumberNote(Tag_Path+"Disc Radius",Rr); 

GetPersistentNumberNote(Tag_Path+"Spot size",spot); 

GetPersistentNumberNote(Tag_Path+"nCals",nCals); 

GetPersistentNumberNote(Tag_Path+"xTpX",xTpX); 

GetPersistentNumberNote(Tag_Path+"xTpY",xTpY); 

GetPersistentNumberNote(Tag_Path+"yTpX",yTpX); 

GetPersistentNumberNote(Tag_Path+"yTpY",yTpY); 

GetPersistentNumberNote(Tag_Path+"xShpX",xShpX); 

GetPersistentNumberNote(Tag_Path+"xShpY",xShpY); 

GetPersistentNumberNote(Tag_Path+"yShpX",yShpX); 

GetPersistentNumberNote(Tag_Path+"yShpY",yShpY); 

GetPersistentStringNote(Tag_Path+"Calibration file 

path",pathname); 

file_name=pathname+"D-

ED_TiltCal_A"+Alpha+"_B"+binning+"_C"+CamL+".dm4"; 

GetPersistentStringNote(Tag_Path+"Material",material); 

if (material=="") 

{ 

if (!GetString("Material?",material,material)); 

exit(0); 

} 

//Set tilt increment to give a displacement of 40% of 

disc diameter 

number tInc=Rr*0.8;//in pixels 

SetPersistentNumberNote(Tag_Path+"TiltIncrement",tInc); 

//NB sets a limit on the max number of tilts since the 

beam shift calibration 

//is only correct for up to 80% of the diffraction 

pattern width. 

image TiltCal := NewImageFromFile(file_name); 

image 

Xsh=TiltCal[0,0,0,(2*nCals)+1,(2*nCals)+1,1]+TiltCal[0,

0,2,(2*nCals)+1,(2*nCals)+1,3]; 

Xsh.SetName("X-shift with tilt"); 

//Xsh.DisplayAt(655,30); 

//Xsh.SetWindowSize(200,200); 

image 

Ysh=TiltCal[0,0,1,(2*nCals)+1,(2*nCals)+1,2]+TiltCal[0,

0,3,(2*nCals)+1,(2*nCals)+1,4]; 

Ysh.SetName("Y-shift with tilt"); 

//Ysh.DisplayAt(875,30); 

//Ysh.SetWindowSize(200,200); 

number xCal=(0.8*_r)/(2*nCals);//distance between 

calibration points 
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number yCal=(0.8*_b)/(2*nCals);//in units of pixels in 

the diffraction pattern 

//Get nTilts 

number nTilts=99; 

string prompt = "Number of beam tilts (+ & -): "; 

result(prompt+" "); 

if (!GetNumber(prompt,nTilts,nTilts)) 

exit(0) 

//check that max number of beam tilts doesn''t go 

outside 80% of image 

if (nTilts*tInc > nCals*xCal)//NB work on smallest 

camera dimension 

{ 

  nTilts=floor((nCals*xCal)/tInc); 

} 

result(nTilts+"\n") 

number nPts = (2*nTilts+1)**2; 

//////////////////// 

//Get initial state 

number TiltX0,TiltY0,ShiftX0,ShiftY0 

EMGetBeamTilt(TiltX0,TiltY0) 

result("Initial beam tilts: TiltX = "+TiltX0+", TiltY = 

"+TiltY0+"\n") 

EMGetBeamShift(ShiftX0,ShiftY0); 

result("Initial beam shift: ShiftX = "+ShiftX0+", 

ShiftY = "+ShiftY0+"\n") 

 

//////////////////// 

// Stop any current camera viewer 

number close_view=1, stop_view=0; 

cm_stopcurrentcameraViewer(stop_view); 

 

//////////////////// 

//Start the camera running in fast mode 

//Use current camera 

object camera = CMGetCurrentCamera(); 

// Create standard parameters 

number kUnprocessed = 1; 

number kDarkCorrected = 2; 

number kGainNormalized = 3; 

number processing = kGainNormalized;  

// Define camera parameter set 

object acq_params = 

camera.CM_CreateAcquisitionParameters_FullCCD(processin

g,expo,binning,binning); 

acq_params.CM_SetDoContinuousReadout(true); 

acq_params.CM_SetQualityLevel(0);//what does this do? 

object acquisition = 

camera.CM_CreateAcquisition(acq_params); 

object frame_set_info = 

acquisition.CM_ACQ_GetDetector().DTCTR_CreateFrameSetIn

fo(); 

img_src = 

alloc(CM_AcquisitionImageSource).IMGSRC_Init(acquisitio

n,frame_set_info,0); 

CM_ClearDarkImages()//why? 

// Create and display fast image 

img1:=acquisition.CM_CreateImageForAcquire("Acquired"); 

img1.DisplayAt(15,30); 

img1.SetWindowSize(800,800); 

number data_type=img1.GetDataType(); 

number imgX,imgY 

img1.Get2DSize(imgX,imgY); 

 

//////////////////// 

// Create 3D destination data stack 

image CBED_stack := NewImage("CBED 

Stack",data_type,imgX,imgY,nPts); 

CBED_stack = 0; 

CBED_stack.DisplayAt(835,30) 

CBED_stack.SetWindowSize(800,800) 

 

//////////////////// 

//Go to first point 

number i,j,pX,pY; 

number pt=0; 

GetCoordsFromNTilts(nTilts,pt,i,j); 

//tilts to be applied, in pixels 

pX=i*tInc; 

pY=j*tInc; 

//tilt to be applied, in DAC numbers 

number tX=TiltX0 + xTpX*pX + yTpX*pY; 

number tY=TiltY0 + xTpY*pX + yTpY*pY; 

//linear interpolation for beam shift correction 

number dX=pX/xCal % 1;//fractional coords  

number dY=pY/yCal % 1; 

//The 4 surrounding shift calibrations 

image 

xX=XSh[floor(pY/yCal)+nCals,floor(pX/xCal)+nCals,floor(

pY/yCal)+nCals+2,floor(pX/xCal)+nCals+2]; 

image 

yY=YSh[floor(pY/yCal)+nCals,floor(pX/xCal)+nCals,floor(

pY/yCal)+nCals+2,floor(pX/xCal)+nCals+2]; 

//interpolated values 

number corX=Interp(Xx,dX,dY); 

number corY=Interp(yY,dX,dY); 

//shift correction vector 

number sX=ShiftX0 + corX*xShpX + corY*yShpX; 

number sY=ShiftY0 + corX*xShpY + corY*yShpY; 

//set tilt and shift 

EMSetBeamShift(sX,sY); 

EMSetBeamTilt(tX,tY); 

sleep(sleeptime); 

number sleepcounter=0.00 

//////////////////// 

// Start acquisition  

//NB define variables outside try/catch 

number prog 

try 

{ 

 img_src.IMGSRC_BeginAcquisition() 

 

 while(pt < Npts) 

 { 

   prog=round(100*(pt+1)/nPts); 

   OpenAndSetProgressWindow("Data collection","Image 

"+(pt+1)+" of "+nPts," "+prog+" %"); 

   GetCoordsFromNTilts(nTilts,pt,i,j); 

   //tX and tY as a fraction of image width 

   pX=i*tInc;//in pixels 

   pY=j*tInc; 

   //tilt correction vector 

   tX=TiltX0 + xTpX*pX + yTpX*pY; 

   tY=TiltY0 + xTpY*pX + yTpY*pY; 

   //linear interpolation for beam shift correction 

   dX=pX/xCal % 1; 

   dY=pY/yCal % 1; 

   

xX=XSh[floor(pY/yCal)+nCals,floor(pX/xCal)+nCals,floor(

pY/yCal)+nCals+2,floor(pX/xCal)+nCals+2]; 

   

yY=YSh[floor(pY/yCal)+nCals,floor(pX/xCal)+nCals,floor(

pY/yCal)+nCals+2,floor(pX/xCal)+nCals+2]; 

   corX=Interp(Xx,dX,dY); 

   corY=Interp(yY,dX,dY); 

   //shift correction vector 

   sX=ShiftX0 + corX*xShpX + corY*yShpX; 

   sY=ShiftY0 + corX*xShpY + corY*yShpY; 

   //set tilt and shift 

   EMSetBeamShift(sX,sY); 

   EMSetBeamTilt(tX,tY); 

   UpdateCameraImage(img_src,img1); 

   UpdateCameraImage(img_src,img1); 

   CBED_stack[0,0,pt,imgX,imgY,pt+1]=img1; 

   pt++; 

 } 

} 

catch 

{// We are here because an error happened, stop the 

acquisition 

 img_src.IMGSRC_FinishAcquisition(); 

} 

//reset tilts to original values 

EMSetBeamTilt(TiltX0,TiltY0); 

EMSetBeamShift(ShiftX0,ShiftY0); 
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D.4 Process

// $BACKGROUND$ 

  //***  Process Digital Diffraction Pattern  ***\\ 

 //** Richard Beanland r.beanland@warwick.ac.uk **\\ 

//*        Coding started March 2013              *\\ 

  

// 2.8, 17 Apr 2013 

// Orius SC600A on 2100 LaB6 

// Complete new version to match compensated data 

collection 

// 2.9 bug fixes April/May 2013 

// 2.10 added image shift compensation 

// 3.0 added several subroutines for cubic spline of 

background 

// 3.1 background fit done on average CBED image rather 

than central CBED pattern 

 

//Global variables 

number true = 1, false = 0; 

number pi=3.1415926535897932384626433832795; 

 

 

//*******************************// 

/////////////////////////// 

// Subroutines. 

/////////////////////////// 

//*******************************// 

//CalculateSplineConstants 

//CubicSpline 

//SplineRows 

//SplineInterp 

//DiscMask 

//ROIpos 

//UserG 

//okGdialog 

//GetCoordsFromNTilts 

//AddYellowArrow 

//GetMeanG 

//GetG_vectors 

 

 

// Function CalculateSplineConstants 

image CalculateSplineConstants(image dataset) 

// Calculates the cubic spline constants - by David 

Mitchell 

{ 

 number n, sizex, sizey, minx, maxx, yspline, i, 

prevval, thisx,m,j 

 dataset.getsize(sizex,sizey) 

 // the number of data points 

 n=sizex-1 

 minmax(dataset[0,0,1,sizex], minx, maxx) 

 

 // Arrays to store the data points 

 // note the data start at pixel position 1 - pixel 

position 0 is not used 

 image x=realimage("",4,sizex+1, 1) 

 image a=realimage("",4,sizex+1, 1) 

 image xa=realimage("",4,sizex+1, 1) 

 image h=realimage("",4,sizex+1, 1) 

 image xl=realimage("",4,sizex+1, 1) 

 image xu=realimage("",4,sizex+1, 1) 

 image xz=realimage("",4,sizex+1, 1) 

 image b=realimage("",4,sizex+1, 1) 

 image c=realimage("",4,sizex+1, 1) 

 image d=realimage("",4,sizex+1, 1) 

 image constantarray=realimage("",4,sizex+1,5) // 

stores all the constants and the x values 

 

 // set the x and y arrays to the respective values in 

the dataset passed in 

 x[0,1,1,sizex+1]=dataset[0,0,1,sizex] 

 a[0,1,1,sizex+1]=dataset[1,0,2,sizex] 

 m=n-1 

 for(i=0; i<m+1;i++) 

 { 

   h[0,i+1,1,i+2]=getpixel(x,i+2,0)-getpixel(x, i+1,0) 

 } 

 for(i=1; i<m+1;i++) 

 { 

   

xa[0,i+1,1,i+2]=3*(getpixel(a,i+2,0)*getpixel(h,i,0)-

getpixel(a,i+1,0)*(getpixel(x,i+2,0)-

getpixel(x,i,0))+getpixel(a,i,0)*getpixel(h,i+1,0))/(ge

tpixel(h,i+1,0)*getpixel(h,i,0)) 

 } 

 setpixel(xl,1,0,1) 

 setpixel(xu,1,0,0) 

 setpixel(xz,1,0,0) 

 for(i=1;i<m+1;i++) 

 { 

   xl[0,i+1,1,i+2]=2*(getpixel(x,i+2,0)-

getpixel(x,i,0))-getpixel(h,i,0)*getpixel(xu,i,0) 

   xu[0,i+1,1,i+2]=getpixel(h,i+1,0)/getpixel(xl,i+1,0) 

   xz[0,i+1,1,i+2]=(getpixel(xa,i+1,0)-

getpixel(h,i,0)*getpixel(xz,i,0))/getpixel(xl,i+1,0) 

 } 

 setpixel(xl,n+1,0,1) 

 setpixel(xz,n+1,0,0) 

 setpixel(c,n+1,0,getpixel(xz,n+1,0)) 

 for(i=0;i<m+1;i++) 

 { 

   j=m-i 

   c[0,j+1,1,j+2]=getpixel(xz,j+1,0)-

getpixel(xu,j+1,0)*getpixel(c,j+2,0) 

   b[0,j+1,1,j+2]=(getpixel(a,j+2,0)-

getpixel(a,j+1,0))/getpixel(h,j+1,0)-

getpixel(h,j+1,0)*(getpixel(c,j+2,0)+2*getpixel(c,j+1,0

))/3 

   d[0,j+1,1,j+2]=(getpixel(c,j+2,0)-

getpixel(c,j+1,0))/(3*getpixel(h,j+1,0)) 

 } 

 // Copy the a, b, c and d images to the array image 

and return it 

 constantarray[0,0,1,sizex+1]=a[0,0,1,sizex+1] 

 constantarray[1,0,2,sizex+1]=b[0,0,1,sizex+1] 

 constantarray[2,0,3,sizex+1]=c[0,0,1,sizex+1] 

 constantarray[3,0,4,sizex+1]=d[0,0,1,sizex+1] 

 constantarray[4,0,5,sizex+1]=x[0,0,1,sizex+1] 

  

 return constantarray 

  

}//End of calculatesplineconstants 

 

 

// Function CubicSpline 

number CubicSpline(image constantarray, number xvalue, 

number extrapolate) 

//Input an array of spline constants, an x value 

// from which to interpolate a yvalue, and a boolean 

(interpolate). If interpolate is set to 1 then 

// interpolation outside the range will be performed, 

otherwise values outside this range return a zero. 

// the function returns the interpolated y value. As 

the constants are only calculated once in the 

// other function, the computation in this function is 

very fast and suitable for use in a loop 

// to calculate a range of y values 

{ 

 number minx, maxx, sizex, sizey, yspline, i, n 

 getsize(constantarray, sizex, sizey) 

 // Get the minimum and maximum values in the x data -

bottom row of the array from position 1 to n 

 minmax(constantarray[4,1,5,sizex], minx, maxx) // 

ignore position 0 

 // Check that the passed in xvalue is within the range 

of the xvalues in the data set supplied 

 // If the extrapolate option is turned off (0) then 

the function returns a y value of zero 

 if(extrapolate==0) // do not extrapolate, any out of 

range values of x result a y value of zero 

 { 

   if(xvalue<minx || xvalue>maxx) 

   { 

     yspline=0 

     return yspline 

   } 
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 } 

 // loop through the x data (row 5 - position 4 in the 

constantarray) to find which interval the passed in 

xvalue lies in 

 n=sizex-2 // note - 2 because pixel position 0 is 

unused. 

 for(i=1;i<n;i++) 

 { 

   if(xvalue<getpixel(constantarray,1,4)) break 

   if(xvalue>=getpixel(constantarray,i,4) && 

xvalue<getpixel(constantarray,i+1,4)) break 

 } 

 // Calculate the distance between the lower bound x 

data point for the interval and the passed in xvalue 

 number xcalc=xvalue-getpixel(constantarray,i,4) 

 // Compute the spline a=row 0, b=row 1, c=row 2 and 

d=row 3 

 // y=a +bxcalc+c*ccalc^2+dxdcalc^3 

 

yspline=getpixel(constantarray,i,0)+getpixel(constantar

ray,i,1)*xcalc+getpixel(constantarray,i,2)*xcalc**2+get

pixel(constantarray,i,3)*xcalc**3 

 

 return yspline 

 

}//end of CubicSpline 

 

 

// Function SplineRows 

image SplineRows(image RowsOut, image BackNumbers, 

number gmag) 

// Calculates a set of cubic splines for several rows 

of measurement 

//Input is the array of background measurements and an 

image to be filled with 

//a cubic spline in one dimension. gmag the magnitude 

of the g-vector 

// 

{ 

 number nMeas1,nMeas2,LenSp,ind,jnd,yspline,s0,s1,s,ra; 

 image SplineConstants; 

 BackNumbers.GetSize(nMeas1,nMeas2); 

 RowsOut.GetSize(LenSp,nMeas2); 

 image Spline := RealImage("SplineFit",4,LenSp,1); 

 //data to send to spline constant calculation routine, 

top row 

 image SplineInput := RealImage("spline 

input",4,nMeas1,2); 

 SplineInput[0,0,1,nMeas1]=round(icol*gmag); 

 //Calculate cubic spline for rows and put into RowsOut 

 for (jnd=0; jnd<nMeas2; jnd++) 

 { 

   //fill in the bottom row of the input array and 

calculate the spline 

   SplineInput[1,0,2,nMeas1]=BackNumbers[icol,jnd]; 

   

SplineConstants=SplineInput.CalculateSplineConstants() 

   //SplineConstants.DisplayAt(100,100); 

   for(ind=0; ind<LenSp;ind++) 

   { 

     yspline=SplineConstants.CubicSpline(ind,0) 

     Spline.setpixel(ind,0,yspline) 

   }  

   //Spline.UpdateImage(); 

   //put it in the appropriate row 

    RowsOut[icol,jnd]=Spline; 

  } 

 

 return RowsOut 

  

}//End of SplineRows 

 

 

// Function SplineInterp 

image SplineInterp(image BackOut, image SplineRow, 

image SplineCol, number g1mag, number g2mag ) 

//Takes two SplineRow images and produces a 2D 

interpolation of them 

{ 

 number 

LenSp1,LenSp2,nMeas1,nMeas2,ind,jnd,knd,l,r,row,ra,Ishi

ft; 

 image avSpline:=RealImage("average 

spline",4,round(g1mag),1); 

 //avSpline.DisplayAt(565,30); 

 //avSpline.SetWindowSize(200,200); 

  

 BackOut.GetSize(LenSp1,LenSp2); 

 nMeas1=round(LenSp1/g1mag)+1; 

 nMeas2=round(LenSp2/g2mag)+1; 

 //result("nMeas:"+nMeas1+","+nMeas2+"\n") 

  

 for (jnd=0; jnd<nMeas2-1; jnd++) 

 {  

   for (ind=0; ind<nMeas1-1; ind++) 

   { 

     l=round(ind*g1mag); 

     r=l+round(g1mag); 

     if (ind==nMeas1-2)//shift for last column 

     { 

       r=r-1; 

       l=l-1; 

     } 

     //Work out average spline curve row by row 

     for (knd=0; knd<round(g2mag); knd++) 

     { 

       //current row in BackOut 

       row=round(jnd*g2mag)+knd; 

       row=(row>LenSp2)*LenSp2+(row<LenSp2)*row;//do 

not go outside the image 

       //result("row="+row+"\n"); 

       //linear ratio 

       ra=((round(g2mag)-knd)/round(g2mag)); 

       //Weighted average 

       avSpline=ra*SplineRow[jnd,l,jnd+1,r]+(1-

ra)*SplineRow[jnd+1,l,jnd+2,r]; 

       //Shift in intensity for this row 

       

Ishift=(SplineCol.GetPixel(ind,row)+SplineCol.GetPixel(

ind+1,row)-avSpline.GetPixel(0,0)-

avSpline.GetPixel(round(g1mag)-1,0))/2; 

       BackOut[row,l,row+1,r]=avSpline+Ishift 

     } 

   } 

 } 

 return BackOut 

}//End of SplineInterp 

 

 

// Function DiscMask 

image DiscMask(image LocalMask, number Rdisc, number 

g1X, number g1Y, number g2X, number g2Y) 

// Makes a mask to cover the CBED discs 

{ 

 LocalMask=1; 

 number LrX=round((abs(g1X)+abs(g2X))/2); 

 number LrY=round((abs(g1Y)+abs(g2Y))/2); 

 image Disc:= RealImage("Disc",4,2*Rdisc,2*Rdisc); 

 Disc=tert( (iradius<Rdisc), 0,1);//black disc 

 number t,l,b,r,tt,ll,bb,rr 

 //Note two possible cases, origin on the left (g1Y<0) 

or the top (g1Y>0) 

  

 //half disc on left 

 tt=(round(LrY-(g1Y+g2Y)/2)-Rdisc)*(g1Y<0)+(round(LrY-

(g1Y-g2Y)/2)-Rdisc)*(g1Y>0); 

 bb=(round(LrY-(g1Y+g2Y)/2)+Rdisc)*(g1Y<0)+(round(LrY-

(g1Y-g2Y)/2)+Rdisc)*(g1Y>0); 

 t=(tt>0)*tt+(tt<0)*0; 

 l=0; 

 b=(bb<(2*LrY+1))*bb+(bb>(2*LrY))*2*LrY; 

 r=Rdisc; 

 LocalMask[t,l,b,r]=LocalMask[t,l,b,r]*Disc[t-

tt,RDisc,b-bb+2*RDisc,2*RDisc]; 

  

 //half disc on right 

113



 tt=(round(LrY+(g1Y+g2Y)/2)-

Rdisc)*(g1Y<0)+(round(LrY+(g1Y-g2Y)/2)-Rdisc)*(g1Y>0); 

 

bb=(round(LrY+(g1Y+g2Y)/2)+Rdisc)*(g1Y<0)+(round(LrY+(g

1Y-g2Y)/2)+Rdisc)*(g1Y>0); 

 t=(tt>0)*tt+(tt<0)*0; 

 l=2*LrX-Rdisc; 

 b=(bb<(2*LrY+1))*bb+(bb>(2*LrY))*2*LrY; 

 r=2*LrX; 

 LocalMask[t,l,b,r]=LocalMask[t,l,b,r]*Disc[t-tt,0,b-

bb+2*RDisc,RDisc]; 

  

 //half disc on top 

 ll=(round(LrX+(g1X-g2X)/2)-Rdisc)*(g1Y<0)+(round(LrX-

(g1X+g2X)/2)-Rdisc)*(g1Y>0); 

 rr=(round(LrX+(g1X-g2X)/2)+Rdisc)*(g1Y<0)+(round(LrX-

(g1X+g2X)/2)+Rdisc)*(g1Y>0); 

 t=0; 

 l=(ll>0)*ll+(ll<0)*0; 

 b=Rdisc; 

 r=(rr<(2*LrX)+1)*rr+(rr>(2*LrX))*2*LrX; 

 LocalMask[t,l,b,r]=LocalMask[t,l,b,r]*Disc[RDisc,l-

ll,2*RDisc,r-rr+2*RDisc]; 

  

 //half disc on bottom 

 ll=(round(LrX-(g1X-g2X)/2)-

Rdisc)*(g1Y<0)+(round(LrX+(g1X+g2X)/2)-Rdisc)*(g1Y>0); 

 rr=(round(LrX-(g1X-

g2X)/2)+Rdisc)*(g1Y<0)+(round(LrX+(g1X+g2X)/2)+Rdisc)*(

g1Y>0); 

 t=2*LrY-Rdisc; 

 l=(ll>0)*ll+(ll<0)*0; 

 b=2*LrY; 

 r=(rr<(2*LrX)+1)*rr+(rr>(2*LrX))*2*LrX; 

 //result("t,l,b,r="+t+","+l+":"+b+","+r+","+"\n"); 

 LocalMask[t,l,b,r]=LocalMask[t,l,b,r]*Disc[0,l-

ll,RDisc,r-rr+2*RDisc]; 

  

 //Radius 

 LocalMask=tert(iradius<1*Rdisc,LocalMask,0) 

  

 return LocalMask 

}//End of DiscMask 

 

 

//Function ROIpos 

//Gives top,left,bottom,right of an ROI drawn by a user 

void ROIpos(image img, string prompt, number &t, number 

&l, number &b, number &r) 

{ 

 number IsizX,IsizY,clickedOK; 

 img.GetSize(IsizX,IsizY); 

 ImageDisplay img_disp = img.ImageGetImageDisplay(0); 

 roi theROI = NewROI(); 

 theROI.ROISetRectangle(t,l,b,r); 

 img_disp.ImageDisplayAddROI(theROI); 

 clickedOK = true; 

 external sem = NewSemaphore(); 

 try 

 { 

  ModelessDialog(prompt,"OK",sem); 

  GrabSemaphore(sem); 

  ReleaseSemaphore(sem); 

  FreeSemaphore(sem); 

 } 

 catch 

 { 

  FreeSemaphore(sem); 

  clickedOK = false; 

  break; 

 } 

 img_disp.ImageDisplayDeleteROI(theROI); 

 if(clickedOK) 

 { 

  theROI.ROIGetRectangle(t,l,b,r); 

 } 

}//End of function ROIpos 

 

//Function AddText 

void AddText(image img, number x, number y, string 

text) 

{ 

 number bigly=50 

 component imgdisp=img.imagegetimagedisplay(0); 

 component words=NewTextAnnotation((x+5),(y-

bigly/2),text,bigly) 

 words.ComponentSetForegroundColor(1,1,0) 

 words.componentsetfontfacename("Microsoft Sans Serif") 

 imgdisp.ComponentAddChildAtEnd(words) 

}//end of AddText 

 

 

//Function AddBlueCircle 

void AddBlueCircle(image img, number t, number l, 

number b, number r) 

{ 

 component imgdisp=img.imagegetimagedisplay(0); 

 component ov=NewOvalAnnotation(t,l,b,r); //create a 

circle defined by top, left etc. 

 ov.ComponentSetForegroundColor(0,0,1);   //make the 

circle blue 

 imgdisp.ComponentAddChildAtEnd(ov);      //add the 

circle to the image 

}//end of AddBlueCircle 

 

 

//Function AddYellowArrow 

void AddYellowArrow(image img, number x0, number y0, 

number x1, number y1) 

{ 

 component imgdisp=imagegetimagedisplay(img,0); 

 component arrowannot=NewArrowAnnotation(y0,x0,y1,x1); 

// create a single-headed arrow bounded by the 

rectangle defined by top, left etc. 

 arrowannot.ComponentSetForegroundColor(1,1,0); // make 

the arrow yellow 

 arrowannot.ComponentSetDrawingMode(1); // turn 

background fill to on 

 arrowannot.ComponentSetBackgroundColor(0,0,0); // set 

the background fill to black 

 imgdisp.ComponentAddChildAtEnd(arrowannot); // add the 

arrow to the image 

}//end of AddYellowArrow 

 

 

//Function DeleteStuff 

//Deletes circles, lines and text from an image 

void DeleteStuff(image img) 

{ 

 component imgdisp=imagegetimagedisplay(img,0); 

 number i,n,j 

 for (i=0; i<15; i++) 

 { 

   n=imgdisp.componentcountchildrenoftype(i); 

//   result(i+": "+n+" kids\n"); 

   for (j=0; j<n; j++) 

   { 

     component 

id=imgdisp.componentgetnthchildoftype(i,0) 

     id.componentremovefromparent() 

   } 

 } 

}//End of DeleteStuff 

 

 

//Function UserG 

//Gives top,left,bottom,right of an ROI drawn by a user 

void UserG(image Avg, number Rr, number &g1X, number 

&g1Y, number &g2X, number &g2Y, number &pXavg, number 

&pYavg,) 

{ 

 number t,l,b,r,IsizX,IsizY; 

 string prompt; 

 image AvgTemp 

 Avg.GetSize(IsizX,IsizY); 
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 //Clean up average image 

 Avg.DeleteStuff(); 

 //Get g-vectors manually 

 prompt = "Position ROI on central beam and hit OK"; 

 result(prompt+"..."); 

 number i=0; 

 number j=0; 

 t=pYavg+g1Y*i+g2Y*j-Rr; 

 l=pXavg+g1X*i+g2X*j-Rr; 

 b=pYavg+g1Y*i+g2Y*j+Rr; 

 r=pXavg+g1X*i+g2X*j+Rr; 

 Avg.ROIpos(prompt,t,l,b,r); 

 result("  done\n"); 

 pXavg=(l+r)/2; 

 pYavg=(t+b)/2; 

 //First diffraction vector 

 prompt = "Position ROI on 1st g and hit OK"; 

 result(prompt+"...") 

 i=2; 

 j=0; 

 t=pYavg+g1Y*i+g2Y*j-Rr; 

 l=pXavg+g1X*i+g2X*j-Rr; 

 b=pYavg+g1Y*i+g2Y*j+Rr; 

 r=pXavg+g1X*i+g2X*j+Rr; 

 Avg.ROIpos(prompt,t,l,b,r); 

 number order=2; 

 if (!GetNumber("Diffraction order?",order,order)) 

exit(0) 

 result("  done\n") 

 g1X=(((l+r)/2)-pXavg)/order; 

 g1Y=(((t+b)/2)-pYavg)/order; 

 //Second diffraction vector 

 prompt = "Position ROI on 2nd g and hit OK"; 

 result(prompt+"...") 

 i=0; 

 j=2; 

 t=pYavg+g1Y*i+g2Y*j-Rr; 

 l=pXavg+g1X*i+g2X*j-Rr; 

 b=pYavg+g1Y*i+g2Y*j+Rr; 

 r=pXavg+g1X*i+g2X*j+Rr; 

 Avg.ROIpos(prompt,t,l,b,r); 

 order=2; 

 if (!GetNumber("Diffraction order?",order,order)) 

exit(0) 

 result("  done\n") 

 g2X=(((l+r)/2)-pXavg)/order; 

 g2Y=(((t+b)/2)-pYavg)/order; 

 //show discs and g-vectors on average image 

 for (i=-2; i<3; i++) 

 { 

  for(j=-2; j<3; j++) 

  { 

   Avg.AddBlueCircle(pYavg+g1Y*i+g2Y*j-

Rr,pXavg+g1X*i+g2X*j-

Rr,pYavg+g1Y*i+g2Y*j+Rr,pXavg+g1X*i+g2X*j+Rr); 

  } 

 } 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g1X),(pYavg+g1Y) ); 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g2X),(pYavg+g2Y) ); 

 Avg.AddText((pXavg+g1X),(pYavg+g1Y),"1"); 

 Avg.AddText((pXavg+g2X),(pYavg+g2Y),"2"); 

}//End of function UserG 

 

 

//Function GetMeanG 

void GetMeanG(image MagTheta, image &Cluster, number 

&MeanMag, number &MeanTheta, number &MeanVx, number 

&MeanVy, number &nMeas) 

{ 

 //incoming mean values are a single vector 

 //outgoing mean values are an average of the vectors 

deemed to be in the cluster 

 //incoming mag/theta is the same for +/- vectors 

[since tan(q+pi)=tan(q)] 

 //so flip the vectors if the x-component has an 

opposite sign 

 number tolMag=5;//tolerance in pixels to say it's in a 

cluster 

 number tolAng=5;//tolerance in degrees to say it's in 

a cluster 

 number 

n,nVecs,i,dTheta,dMag,ThetaSum,VxSum,VySum,x,y,signX; 

 Cluster.Get2DSize(n,nVecs); 

 nMeas=0; 

 number MagSum=0; 

 for (i=0; i<nVecs; i++) 

 { 

  dMag=abs(MeanMag - MagTheta.GetPixel(0,i)); 

  dTheta=abs(MeanTheta - MagTheta.GetPixel(1,i) ); 

  if ( (dTheta<tolAng )&&(dMag<tolMag ) ) 

  { 

    nMeas++; 

    MagSum+=MagTheta.GetPixel(0,i); 

    ThetaSum+=MagTheta.GetPixel(1,i); 

    x=MagTheta.GetPixel(2,i); 

    y=MagTheta.GetPixel(3,i);// 

    signX=abs(x)/x; 

    VxSum+=x*(abs(MeanVx)/MeanVx)*signX;//second part 

here reverses 

    VySum+=y*(abs(MeanVx)/MeanVx)*signX;//sign if x is 

opposite sign 

    Cluster[i,0,i+1,1]=1;//it is in the cluster 

    MeanMag=MagSum/nMeas; 

    MeanTheta=ThetaSum/nMeas; 

    MeanVx=VxSum/nMeas; 

    MeanVy=VySum/nMeas; 

  } 

 } 

}//End of GetMeanG 

 

//Function GetG_vectors 

//Gets the two smallest g-vectors [g1X,g1Y],[g2X,g2Y], 

given an image Avg and disc radius Rr 

//will return null values if there are not enough peaks 

to analyse 

void GetG_vectors(image Avg, number Rr, number &g1X, 

number &g1Y, number &g2X, number &g2Y, number &pXavg, 

number &pYavg,) 

{ 

 number npeaks=25;//maximum number of peaks to measure 

in the cross correlation 

 number IsizX,IsizY; 

 Avg.GetSize(IsizX,IsizY); 

 IsizX=IsizX/2;//using an average image twice the width 

of the CBED stack 

 IsizY=IsizY/2;//using an average image twice the 

height of the CBED stack 

 //start by getting a cross-correlation image 

 //image of a blank disk, radius Rr 

 image Disc:=realimage("Disc",4,2*IsizX,2*IsizY); 

 Disc=tert(iradius<Rr,1,0); 

 //Disc.DisplayAt(225,30); 

 //Disc.SetWindowSize(200,200); 

  

 //Cross correlation between average image and the 

blank disc image 

 //gives the position of the central beam 

 image AvCC:=Avg.CrossCorrelate(Disc); 

 number maxval,xp,yp; 

 maxval=AvCC.max(xp,yp); 

 pXavg=xp; 

 pYavg=yp; 

 result("000 beam is at ["+pXavg+","+pYavg+"]\n"); 

  

 //////////THIS WILL PROBABLY HAVE TO BE A USER 

INPUT///////// 

 number dSize=3.5//a multiplying factor for the disc 

size when deleting peaks which have already been 

measured. Ideally dSize*Rr should be half of the 

smallest g-vector. 

 number DdSize=round(dSize*Rr); 

 Disc.deleteimage();//tidy up 

 //delete all info below 2% of best correlation 

 number _top=max(AvCC)*0.02; 
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 AvCC=tert( (AvCC>_top),AvCC,0.001);//make background 

not quite zero (mainly for debug, so can see the 

deleted peaks) 

 //AvCC.DisplayAt(445,30); 

 //AvCC.SetWindowSize(200,200); 

 

 //x- and y-coords as column vectors 

 image X:= RealImage("X-coords",4,1,npeaks); 

 //X.DisplayAt(665,30); 

 //X.SetDisplayType(5);//show as spreadsheet 

 image Y:= RealImage("Y-coords",4,1,npeaks); 

 //Y.DisplayAt(885,30); 

 //Y.SetDisplayType(5);//show as spreadsheet 

 image TempImg=realimage("Deleting 

disc",4,2*DdSize,2*DdSize);//A dark... 

 TempImg=tert(iradius<dSize*Rr,0,1);//...circle 

 //TempImg.DisplayAt(225,230); 

 number i; 

 number Nmax=nPeaks; 

 number flag=0; 

 for (i=0; i<nPeaks; i++) 

 {//get peak position, in descending order of 

correlation/intensity 

  if (max(AvCC)>_top) 

  {//only keep going if there are peaks to be found 

    maxval=AvCC.max(xp,yp); 

    X.SetPixel(0,i,xp);//x-coord of peak 

    Y.SetPixel(0,i,yp);//y-coord of peak 

    Avg.AddBlueCircle(yp-Rr,xp-Rr,yp+Rr,xp+Rr); 

    //result("Spot "+i+" = "+maxval+", at 

"+xp+","+yp+"\n"); 

    SetSelection(AvCC,(yp-DdSize),(xp-

DdSize),(yp+DdSize),(xp+DdSize)); 

    AvCC[]*=TempImg;//this peak is done, delete it 

    ClearSelection(AvCC); 

  } 

  else 

  {  //No peaks left 

    if (flag==0) 

    { 

      Nmax=i;//reduce number of peaks 

      flag=1; 

    }  

  } 

 } 

 nPeaks=nMax; 

  if (nPeaks<3) 

 {//there are not enough detected spots, return null 

values 

   //g1X=0; 

   //g1Y=0; 

   //g2X=0; 

   //g2Y=0; 

   return 

 } 

 //Find difference vectors Vx, Vy, by replicating X and 

Y into square matrices Xx, Xy, and subtracting the 

transpose 

 image Xx:= RealImage("Xx",4,npeaks,npeaks)// 

 image Vx:= RealImage("Vx",4,npeaks,npeaks) 

 image Yy:= RealImage("Yy",4,npeaks,npeaks) 

 image Vy:= RealImage("Vy",4,npeaks,npeaks) 

 Xx=X[0,irow]; 

 Vx=Xx[irow,icol]-Xx; 

 Yy=Y[0,irow]; 

 Vy=Yy[irow,icol]-Yy; 

 //Polar coordinates, Vmag and Vtheta 

 image Vmag:= RealImage("Vmag",4,npeaks,npeaks); 

 Vmag=(( (Vx*Vx)+(Vy*Vy) 

)**0.5)*(irow>=icol);//irow>icol gives bottom left 

diagonal half; 

 image Vtheta:= RealImage("Vtheta",4,npeaks,npeaks); 

 number big=1000000;//an arbitrary number larger than 

anything else 

 Vx=tert((Vx==0),big,Vx);//get rid of divide by zero 

error 

 Vtheta=atan(Vy/Vx)*(irow>=icol); 

 Vtheta=Vtheta*180/pi; 

 //Sort by magnitude ascending into new column vector 

MagTheta 

 number nVecs=(npeaks*npeaks-npeaks)/2;//number of 

different vectors 

 image MagTheta:= RealImage("Mag-Theta-X-Y",4,4,nVecs); 

 //MagTheta.DisplayAt(645,30); 

 //MagTheta.SetName("Mag-Theta-X-Y"); 

 //MagTheta.SetDisplayType(5);//show as spreadsheet 

 //MagTheta.SetWindowSize(120,500); 

 Vmag=tert((Vmag==0),big,Vmag);//replace zeroes with 

this big number 

 number Mag=Vmag.min(xp,yp);//lowest magnitude in the 

list 

 i=0; 

 while (Mag < big)//go through list until all are 

replaced by the large number  

 { 

  MagTheta[i,0,i+1,1]=Vmag[yp,xp,yp+1,xp+1];//first 

col=magnitude 

  MagTheta[i,1,i+1,2]=Vtheta[yp,xp,yp+1,xp+1];//second 

column=theta 

  MagTheta[i,2,i+1,3]=Vx[yp,xp,yp+1,xp+1];//third 

column=Vx 

  MagTheta[i,3,i+1,4]=Vy[yp,xp,yp+1,xp+1];//fourth 

column=Vy 

  Vmag[yp,xp,yp+1,xp+1]=big;//this point is done, 

eliminate from Vmag 

  i=i+1; 

  Mag=Vmag.min(xp,yp); 

 } 

 //set sign of theta [not needed, just flip them in the 

sum 

 

//MagTheta[0,1,nVecs,2]=MagTheta[0,1,nVecs,2]*MagTheta[

0,3,nVecs,3]/abs(MagTheta[0,3,nVecs,4]);//second 

column=theta 

 

 //Find clusters - similar g-vectors in mag-theta space 

 image Cluster:= RealImage("Cluster",4,1,nVecs); 

 //Cluster.DisplayAt(645,30); 

 //Cluster.SetName("Cluster"); 

 //Cluster.SetDisplayType(5);//show as spreadsheet 

 //Cluster.SetWindowSize(120,500); 

 image gVectors:= RealImage("g's",4,5,nVecs); 

 //gVectors.DisplayAt(855,30); 

 //gVectors.SetName("g-vectors"); 

 //gVectors.SetDisplayType(5);//show as spreadsheet 

 //gVectors.SetWindowSize(120,500); 

 number MeanMag=MagTheta.GetPixel(0,0);//start with mag 

of first point 

 number MeanTheta=MagTheta.GetPixel(1,0);//and with 

angle of first point 

 number MeanVx=MagTheta.GetPixel(2,0);//and with X of 

first point 

 number MeanVy=MagTheta.GetPixel(3,0);//and with Y of 

first point 

 number j=1; 

 number k=0; 

 number nMeas=1;//number of measured points to give an 

average g-vector 

 //Go through and get clusters 

 while (sum(Cluster)<nVecs) 

 { 

  

GetMeanG(MagTheta,Cluster,MeanMag,MeanTheta,MeanVx,Mean

Vy,nMeas); 

  gVectors[k,0,k+1,1]=MeanMag; 

  gVectors[k,1,k+1,2]=MeanTheta; 

  gVectors[k,2,k+1,3]=MeanVx; 

  gVectors[k,3,k+1,4]=MeanVy; 

  gVectors[k,4,k+1,5]=nMeas; 

  //Find next unmatched point 

  i=0; 

  while (j==1) 

  { 

   i++ 

   j=Cluster.GetPixel(0,i); 

  } 
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  j=1; 

  MeanMag=MagTheta.GetPixel(0,i);//next point 

  MeanTheta=MagTheta.GetPixel(1,i);//next point 

  Cluster[i,0,i+1,1]=1;//next cluster 

  k++ 

} 

 //Output - the two smallest g-vectors 

 g1X=gVectors.GetPixel(2,0); 

 g1Y=gVectors.GetPixel(3,0); 

 g2X=gVectors.GetPixel(2,1); 

 g2Y=gVectors.GetPixel(3,1); 

 result("Found "+nPeaks+" different CBED disks,\n") 

 result("giving "+k+" different g-vectors\n") 

 //show g-vectors on average image 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g1X),(pYavg+g1Y) ); 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g2X),(pYavg+g2Y) ); 

 

}//End of GetG_vectors 

 

//Function GetGids 

//Gets HKL of g-vectors from user 

void GetGids(number &g1H, number &g1K, number &g1L, 

number &g2H, number &g2K, number &g2L, number &g1Ag2, 

number &g1Mg2, number &gC) 

{ 

 if (!GetNumber("First g index H?",g1H,g1H)) exit(0); 

 if (!GetNumber("First g index K?",g1K,g1K)) exit(0); 

 if (!GetNumber("First g index L?",g1L,g1L)) exit(0); 

 if (!GetNumber("Second g index H?",g2H,g2H)) exit(0); 

 if (!GetNumber("Second g index K?",g2K,g2K)) exit(0); 

 if (!GetNumber("Second g index L?",g2L,g2L)) exit(0); 

 result("g1: "+g1H+","+g1K+","+g1L+"\n"); 

 result("g2: "+g2H+","+g2K+","+g2L+"\n"); 

 if (!GetNumber("Angle between them?",g1Ag2,g1Ag2)) 

exit(0); 

 if (!GetNumber("Ratio of magnitudes 

g1/g2?",g1Mg2,g1Mg2)) exit(0); 

 result("Ratio of g-vector magnitudes = "+g1Mg2+", 

angle= "+g1Ag2+" degrees\n"); 

 if (!GetNumber("Centring g-vector (0,1,2)?",gC,gC)) 

exit(0); 

 if (gC==0) result("The pattern is not face-

centred\n"); 

 if (gC==1) result("g1 is a face-centring vector\n"); 

 if (gC==2) result("g2 is a face-centring vector\n"); 

}//End of function GetGids 

 

 

//*******************************// 

/////////////////////////////////// 

// Main program 

/////////////////////////////////// 

//*******************************// 

result("\nD-ED Process v3.3.0\n") 

 

number f_; 

string date_; 

GetDate(f_,date_); 

string time_; 

GetTime(f_,time_); 

string datetime=date_+"_"+time_; 

result("\nStarting processing "+datetime+"\n") 

 

/////////////// 

// Get 3D data stack 

image CBED_stack := GetFrontImage(); 

number IsizX,IsizY,nPts; 

CBED_stack.Get3DSize(IsizX,IsizY,nPts); 

number data_type = CBED_stack.GetDataType(); 

number 

Rr,tInc,CamL,mag,Alpha,spot,xTpX,xTpY,yTpX,yTpY,xShpX,x

ShpY,yShpX,yShpY; 

string material; 

//get image tags 

{ 

CBED_stack.GetStringNote("Info:Date",datetime); 

CBED_stack.GetNumberNote("Info:Camera Length",CamL); 

CBED_stack.GetNumberNote("Info:Magnification",mag); 

CBED_stack.GetNumberNote("Info:Alpha",Alpha); 

CBED_stack.GetNumberNote("Info:Spot size",spot); 

CBED_stack.GetNumberNote("Info:Disc Radius",Rr); 

CBED_stack.GetStringNote("Info:Material",material); 

CBED_stack.GetNumberNote("Tilts:xTpX",xTpX); 

CBED_stack.GetNumberNote("Tilts:xTpY",xTpY); 

CBED_stack.GetNumberNote("Tilts:yTpX",yTpX); 

CBED_stack.GetNumberNote("Tilts:yTpY",yTpY); 

CBED_stack.GetNumberNote("Tilts:Increment",tInc); 

CBED_stack.GetNumberNote("Shifts:xShpX",xShpX); 

CBED_stack.GetNumberNote("Shifts:xShpY",xShpY); 

CBED_stack.GetNumberNote("Shifts:yShpX",yShpX); 

CBED_stack.GetNumberNote("Shifts:yShpY",yShpY); 

if (material=="") 

{ 

if (!GetString("Material?",material,material)); 

exit(0); 

} 

result("Material is "+material+"\n"); 

//Disc movement between images in pixels 

result("tilt increment="+tInc+"\n"); 

} 

 

/////////////// 

//Make sum of all individual images 

number nTilts=((nPts**0.5)-1)/2;//***//***// 

result("Data contains +/- "+nTilts+" beam tilts\n") 

result("CBED disc radius is "+Rr+" pixels\n") 

number _i,_j,prog; 

//average CBED is Avg 

image Avg:=RealImage("Average_CBED",4,2*IsizX,2*IsizY); 

//number of CBED patterns contibuting to each pixel of 

Avg is stored in AvgC 

image AvgC:=RealImage("counts of CBED 

image",4,2*IsizX,2*IsizY); 

result("Creating average CBED pattern...") 

//run through CBED stack 

number disX,disY,pt;//vector describing displacement of 

a tilted CBED pattern 

number minX=IsizX,minY=IsizY;//most negative 

displacement values 

for (pt=0; pt<nPts; pt++) 

{ 

  prog=round(100*(pt+1)/nPts) 

  OpenAndSetProgressWindow("Average CBED 

pattern","Image "+(pt+1)+" of "+nPts," "+prog+" %"); 

  GetCoordsFromNTilts(nTilts,pt,_i,_j); 

  disX=-round(_i*tInc)+round(0.5*IsizX); 

  if (disX<minX) minX=disX; 

  disY=-round(_j*tInc)+round(0.5*IsizY); 

  if (disY<minY) minY=disY; 

  

Avg[disY,disX,IsizY+disY,IsizX+disX]+=CBED_stack[0,0,pt

,IsizX,IsizY,pt+1]; 

  AvgC[disY,disX,IsizY+disY,IsizX+disX]+=1; 

  Avg.UpdateImage(); 

} 

//make average 

Avg=tert( (Avg>0), Avg/AvgC,0); 

//fill outside with representative background value 

number rBack=Avg.GetPixel(minX+5,minY+5); 

//result("\nrBack="+rBack+"\n"); 

//result("minX="+minX+", minY="+minY+"\n"); 

Avg=tert( (Avg>0), Avg, rBack); 

result("  done\n"); 

Avg.DisplayAt(30,30); 

Avg.SetWindowSize(600,600); 

 

/////////////// 

//Find g-vectors 

number 

g1X,g1Y,g1mag,g2X,g2Y,g2mag,pXavg,pYavg,ratio,theta; 

Avg.GetG_vectors(Rr,g1X,g1Y,g2X,g2Y,pXavg,pYavg); 

number pX=pXavg-round(0.5*IsizX);//there is a 

difference between the centre  
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number pY=pYavg-round(0.5*IsizY);//in the avg image and 

the CBED stack 

//Check for failure to get g-vectors 

if (g1X**2 > (IsizX**2)/4) g1X=0 

if (g1Y**2 > (IsizX**2)/4) g1Y=0 

if ( ((g1X+g1Y+g2X+g2Y)==0) ) 

{ 

  result("Cannot find g-vectors!"); 

} 

else 

{//output g-vector statistics 

  Avg.AddText((pXavg+g1X),(pYavg+g1Y),"1"); 

  Avg.AddText((pXavg+g2X),(pYavg+g2Y),"2"); 

  g1mag=(g1X**2+g1Y**2)**0.5; 

  g2mag=(g2X**2+g2Y**2)**0.5; 

  result("g1 = ["+g1X+","+g1Y+"], magnitude 

"+g1mag+"\n"); 

  result("g2 = ["+g2X+","+g2Y+"], magnitude 

"+g2mag+"\n"); 

  ratio=g1mag/g2mag;; 

  theta=180*acos((g1X*g2X+g1Y*g2Y)/(g1mag*g2mag))/pi; 

  result("Ratio of g-vector magnitudes = "+ratio+", 

angle= "+theta+"\n"); 

} 

 

/////////////// 

//Check g-vectors are acceptable, if not do them 

manually 

number t,l,b,r; 

string prompt; 

while(!TwoButtonDialog("Are the measured g-vectors 

good?","Yes","No") ) 

{ 

  Avg.UserG(Rr,g1X,g1Y,g2X,g2Y,pXavg,pYavg); 

  pX=pXavg-round(0.5*IsizX); 

  pY=pYavg-round(0.5*IsizY); 

  g1mag=(g1X**2+g1Y**2)**0.5; 

  g2mag=(g2X**2+g2Y**2)**0.5; 

  result("000 beam is at ["+pX+","+pY+"]\n"); 

  result("g1: "+g1X+", "+g1Y+", magnitude 

"+g1mag+"\n"); 

  result("g2: "+g2X+", "+g2Y+", magnitude 

"+g2mag+"\n"); 

  ratio=g1mag/g2mag;; 

  theta=180*acos((g1X*g2X+g1Y*g2Y)/(g1mag*g2mag))/pi; 

  result("Ratio of g-vector magnitudes = "+ratio+", 

angle= "+theta+"\n"); 

} 

 

/////////////// 

//g-vector calculations 

//make sure a perfect alignment (g1Y=0) never happens 

if (g1Y==0) g1Y=g1Y+0.000000001 

number dot=(g1X*g2X+g1Y*g2Y)/(g1mag*g2mag);//gives 

cos(theta) 

number cross=(g1X*g2Y-g1Y*g2X)/(g1mag*g2mag);//g1 x g2 

gives sin(theta) 

number swap; 

number redo=0;//flag to redraw annotations 

if (sgn(dot)<0)//90<theta<270 

{//if the angle between g1 and g2 is not clockwise 

0<theta<180 degrees, swap them 

  result("Swapping g-vectors to make a right-handed 

pair\n") 

  result("Note the new values: x=right, y=down\n"); 

  if (sgn(cross)<0)//180<theta<270 

  {//change the sign of g2 

    g2X=-g2X; 

    g2Y=-g2Y; 

    //result("changed sign of g2\n") 

  } 

  else//90<theta<180 

  {//g1=-g2(old),g2=g1(old) 

    swap=g1X; 

 g1X=-g2X; 

 g2X=swap; 

 swap=g1Y; 

 g1Y=-g2Y; 

 g2Y=swap; 

 swap=g1mag; 

 g1mag=g2mag; 

 g2mag=swap; 

    //result("g1(new)=-g2(old),g2(new)=g1(old)\n") 

  } 

  redo=1; 

} 

else 

{ 

  if (sgn(cross)<0)//270<theta<360 

  {//swap g1 and g2 

    result("Swapping g-vectors to make a right-handed 

pair\n"); 

    result("Note the new values: x=right, y=down\n"); 

    swap=g1X; 

 g1X=g2X; 

 g2X=swap; 

 swap=g1Y; 

 g1Y=g2Y; 

 g2Y=swap; 

 swap=g1mag; 

 g1mag=g2mag; 

 g2mag=swap; 

    //result("g1(new)=g2(old),g2(new)=g1(old)\n") 

    redo=1; 

  } 

} 

//make g1X positive 

if (g1X<0) 

{ 

  result("Swapping g-vectors to make a right-handed 

pair\n"); 

  result("Note the new values: x=right, y=down\n"); 

  g1X=-g1X; 

  g1Y=-g1Y; 

  g2X=-g2X; 

  g2Y=-g2Y; 

  redo=1; 

} 

//redraw discs and g-vectors on average image 

if (redo==1) 

{ 

 Avg.DeleteStuff(); 

 number i,j 

 for (i=-2; i<3; i++) 

 { 

  for(j=-2; j<3; j++) 

  { 

   Avg.AddBlueCircle(pYavg+g1Y*i+g2Y*j-

Rr,pXavg+g1X*i+g2X*j-

Rr,pYavg+g1Y*i+g2Y*j+Rr,pXavg+g1X*i+g2X*j+Rr); 

  } 

 } 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g1X),(pYavg+g1Y) ); 

 Avg.AddYellowArrow( 

pXavg,pYavg,(pXavg+g2X),(pYavg+g2Y) ); 

 Avg.AddText((pXavg+g1X),(pYavg+g1Y),"1"); 

 Avg.AddText((pXavg+g2X),(pYavg+g2Y),"2"); 

} 

//recalculate dot & cross products 

dot=(g1X*g2X+g1Y*g2Y)/(g1mag*g2mag);//gives cos(theta) 

cross=(g1X*g2Y-g1Y*g2X)/(g1mag*g2mag);//g1 x g2 gives 

sin(theta) 

theta=(acos(dot)*sgn(cross)); 

//result("theta="+180*theta/pi+"\n"); 

result("g1 = ["+g1X+","+g1Y+"]:  g2 = 

["+g2X+","+g2Y+"]\n"); 

//Angle phi between g1 and the x-axis 

number dotX=g1X/g1mag;//gives cos(phi) 

number crossX=-g1Y/g1mag;//g1 x [100] gives sin(phi) 

number phi=(acos(dotX)*sgn(crossX)) 

//result("phi="+180*phi/pi+"\n"); 

 

//Get g-vector details 

number nG1=3; 
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if (!GetNumber("Number of spots for 1st g (+/-

)?",nG1,nG1)) exit(0); 

number nG2=3; 

if (!GetNumber("Number of spots for 2nd g (+/-

)?",nG2,nG2)) exit(0); 

//Diameter of circular selection 

number Wfrac=75 

if (!GetNumber("Percentage of spot used, 67-

100%?",Wfrac,Wfrac)) 

exit(0); 

number g1H=1; 

number g1K=0; 

number g1L=0; 

number g2H=0; 

number g2K=1; 

number g2L=0; 

number g1Ag2=90;//nominal angle between g1 and g2 

number g1Mg2=1;//nominal ratio of magnitudes, g1/g2 

number gC=0;//for centred patterns, 0=no centring, 

otherwise the g-vector in the centre 

GetGids(g1H,g1K,g1L,g2H,g2K,g2L,g1Ag2,g1Mg2,gC); 

while(!TwoButtonDialog("Are the g-vector HKLs 

correct?","Yes","No") ) 

{ 

 result("Repeating g-vector HKLs\n")  

 GetGids(g1H,g1K,g1L,g2H,g2K,g2L,g1Ag2,g1Mg2,gC); 

} 

//Put tags into Avg 

{ 

Avg.SetStringNote("Info:Date",datetime); 

Avg.SetNumberNote("Info:Camera Length",CamL); 

Avg.SetNumberNote("Info:Magnification",mag); 

Avg.SetNumberNote("Info:Alpha",Alpha); 

Avg.SetNumberNote("Info:Spot size",spot); 

Avg.SetNumberNote("Info:Disc Radius",Rr); 

Avg.SetStringNote("Info:Material",material); 

Avg.SetNumberNote("g-vectors:nG1",nG1); 

Avg.SetNumberNote("g-vectors:nG2",nG2); 

Avg.SetNumberNote("g-vectors:g1X",g1X); 

Avg.SetNumberNote("g-vectors:g1Y",g1Y); 

Avg.SetNumberNote("g-vectors:g2X",g2X); 

Avg.SetNumberNote("g-vectors:g2Y",g2Y); 

Avg.SetNumberNote("g-vectors:g1H",g1H); 

Avg.SetNumberNote("g-vectors:g1K",g1K); 

Avg.SetNumberNote("g-vectors:g1L",g1L); 

Avg.SetNumberNote("g-vectors:g2H",g2H); 

Avg.SetNumberNote("g-vectors:g2K",g2K); 

Avg.SetNumberNote("g-vectors:g2L",g2L); 

Avg.SetNumberNote("g-vectors:g1Ag2",g1Ag2); 

Avg.SetNumberNote("g-vectors:g1Mg2",g1Mg2); 

Avg.SetNumberNote("g-vectors:gC",gC); 

Avg.SetNumberNote("g-vectors:pXavg",pXavg); 

Avg.SetNumberNote("g-vectors:pYavg",pYavg); 

} 

 

 

/////////////// 

// Background calculation 

//the number of background measurements needed for g1 

and g2 

number nMeas1=2*nG1+2;//from -nG1 to +nG1, plus the 

zero column and the final row 

number nMeas2=2*nG2+2; 

//size of spline fits are |g1|*(nMeas1-1) & (nMeas2-

1)*|g2| 

number LenSp1=round(g1mag*(nMeas1-1)); 

number LenSp2=round(g2mag*(nMeas2-1)); 

//size of LocalBackImg 

number LrX=round((abs(g1X)+abs(g2X))/2); 

number LrY=round((abs(g1Y)+abs(g2Y))/2); 

number Rdisc=round(min(g1mag,g2mag)/2); 

 

//images for calculation of 2D background 

image LocalBackImg := RealImage("Local 

area",4,2*LrX,2*LrY);//image for measurement of local 

background 

image LocalMask:= RealImage("Local 

mask",4,2*LrX,2*LrY);//same size image LocalMask 

image BackNumbers := RealImage("Background 

measurements",4,nMeas1,nMeas2);//image to store array 

of background measurements 

image BackNumbers1 := RealImage("Background 

flip",4,nMeas1,nMeas2);//to generate numbers for zero 

measurements 

image BackNumbersTr:= RealImage("Transposed 

measurements",4,nMeas2,nMeas1);//transposed version for 

column calculation 

image Rows := RealImage("Spline 

rows",4,LenSp1,nMeas2);//interpolated on rows 

image RowsTr := RealImage("Tr(Spline 

rows)",4,nMeas2,LenSp1);//transposed rows 

image Cols := RealImage("Spline 

columns",4,nMeas1,LenSp2);//interpolated on columns 

image ColsTr := RealImage("Tr(Spline 

columns)",4,LenSp2,nMeas1);//transposed to use row calc 

image Back := 

RealImage("Background",4,LenSp1,LenSp2);//average 

image BackTr := RealImage("Background (Cols 

only)",4,LenSp2,LenSp1);//transposed interpolated 

number LenW1=round(LenSp1+abs(LenSp2*cos(theta))); 

image BackShear := RealImage("Background 

sheared",4,LenW1,LenSp2);//first shear the image 

image BackFlip := RealImage("Background 

flipped",4,LenW1,LenSp2);//horizontal flip needed for 

theta>90 

number LenW2=round(LenSp2*sin(theta)); 

image BackWarp := RealImage("Background 

warped",4,LenW1,LenW2);//second compress it, maintains 

g2 length 

image BackRot = BackWarp.Rotate(phi);//rotated to match 

the image 

BackRot.SetName("Background rotated"); 

number RsizX,RsizY; 

BackRot.GetSize(RsizX,RsizY); 

//Make the mask 

DiscMask(LocalMask,Rdisc,g1X,g1Y,g2X,g2Y); 

number X,Y,ind,jnd,knd,t1,l1,b1,r1,inside,row,ra,Ishift 

//LocalMask.DisplayAt(550,50); 

//Back.DisplayAt(30,30); 

//Back.SetWindowSize(300,300); 

//BackTr.DisplayAt(30,350); 

//BackTr.SetWindowSize(300,300); 

//BackShear.DisplayAt(330,30); 

//BackShear.SetWindowSize(300,300); 

//BackFlip.DisplayAt(330,350); 

//BackFlip.SetWindowSize(300,300); 

//BackWarp.DisplayAt(660,30); 

//BackWarp.SetWindowSize(300,300); 

//BackRot.DisplayAt(660,350); 

//BackRot.SetWindowSize(300,300); 

 

 

/////////////// 

// Measure background values from array of areas 

between discs in average image 

BackNumbers=0;//reset measurements 

number gNo=0; 

for (ind=-nG1; ind<nG1+2; ind++) 

{  

  for (jnd=-nG2; jnd<nG2+2; jnd++) 

  { 

    prog=round(100*( gNo/((2*nG1+1)*(2*nG2+1)) )); 

    OpenAndSetProgressWindow("Measure 

background...","Image "+gNo+" of 

"+(2*nG1+1)*(2*nG2+1)," "+prog+" %"); 

   //GetCoordsFromNTilts(nTilts,pt,_i,_j); 

    //appropriate point -(g1+g2)/2 from disk jnd,ind 

    X=round(pXavg+ind*g1X+jnd*g2X-(g1X+g2X)/2); 

    Y=round(pYavg+ind*g1Y+jnd*g2Y-(g1Y+g2Y)/2); 

    t=Y-LrY; 

    b=Y+LrY; 

    l=X-LrX 

    r=X+LrX; 

    

inside=!((l<0)+(r>2*IsizX)+(t<0)+(b>2*IsizY));//could 
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be more sophisticated here and use part of the mask 

when it goes outside the image 

    if (inside)//mask off CBED discs and get mean value 

of what remains 

    { 

      LocalBackImg=Avg[t,l,b,r]*LocalMask; 

      //Put the measurement into BackNumbers 

      

BackNumbers.SetPixel(ind+nG1,jnd+nG2,sum(LocalBackImg)/

sum(LocalMask)); 

    } 

    gNo++; 

  } 

} 

 

/////////////// 

// Make 2D cubic Splines 

{ 

OpenAndSetProgressWindow("Making 2D cubic 

spline...","rows"," "); 

//Construct a background in an orthogonal image 

//Make an set of spline rows 

Rows.SplineRows(BackNumbers,g1mag); 

//Make a (transposed) set of spline columns 

BackNumbersTr=BackNumbers[irow,icol]; 

OpenAndSetProgressWindow("Making 2D cubic 

spline...","columns"," "); 

ColsTr.SplineRows(BackNumbersTr,g2mag); 

//transpose back to columns again 

Cols=ColsTr[irow,icol]; 

//Combine the two 1D solutions for each reflection 

OpenAndSetProgressWindow("Making 2D cubic 

spline...","rows+columns"," "); 

//use row splines for the image and column splines to 

match intensities 

Back.SplineInterp(Rows,Cols,g1mag,g2mag); 

//use column splines for the image and row splines to 

match intensities (all transposed) 

RowsTr=Rows[irow,icol]; 

OpenAndSetProgressWindow("Making 2D cubic 

spline...","columns+rows"," "); 

BackTr.SplineInterp(ColsTr,RowsTr,g2mag,g1mag); 

//take the average of the two solutions 

Back=(Back+BackTr[irow,icol])/2; 

OpenAndSetProgressWindow("Making 2D cubic 

spline...","scaling"," "); 

} 

 

/////////////// 

// Warp to match g-vectors 

//Deform the background image to match the g-vectors 

{ 

if (theta<pi/2) 

{//deformations leave the top left pixel [0,0] 

unchanged 

  BackShear=Back[icol-irow*cos(theta),irow];//shear 

  

BackWarp=BackShear[icol,irow/sin(theta)];//+squash=rota

tion 

} 

else 

{//the same with flips to leave the top right pixel 

unchanged 

  BackFlip=Back[LenSp1-icol,irow]; 

  BackShear=BackFlip[icol-irow*cos(pi-theta),irow]; 

  BackFlip=BackShear[LenSp1+LenSp2*cos(pi-theta)-

icol,irow]; 

  BackWarp=BackFlip[icol,irow/sin(theta)]; 

} 

BackRot=BackWarp.Rotate(phi); 

} 

 

/////////////// 

// Subtract from CBED stack 

{ 

for (pt=0; pt<nPts; pt++) 

{ 

  prog=round(100*(pt+1)/nPts); 

  OpenAndSetProgressWindow("Background removal","Image 

"+(pt+1)+" of "+nPts," "+prog+" %"); 

  //get the coordinates to put the backround into. 

  GetCoordsFromNTilts(nTilts,pt,_i,_j); 

  //Datum background point is given by -nG1,-nG2 

  X=floor(pX+_i*tInc-(nG1+0.5)*g1X-(nG2+0.5)*g2X); 

  Y=floor(pY+_j*tInc-(nG1+0.5)*g1Y-(nG2+0.5)*g2Y); 

  //offset of origin in rotated background 

  if (phi<0)//NB we avoid rotations larger than +/-90 

by choosing g-vectors correctly 

  { 

    X=X-round(LenW2*abs(sin(phi))); 

  } 

  else 

  { 

    Y=Y-round(LenW1*abs(sin(phi))); 

  } 

  //check edges of ROI in CBED stack 

  t=(Y>0)*Y+(Y<0)*0; 

  l=(X>0)*X+(X<0)*0; 

  

b=((Y+RsizY)<IsizY)*(Y+RsizY)+((Y+RsizY)>=IsizY)*(IsizY

); 

  

r=((X+RsizX)<IsizX)*(X+RsizX)+((X+RsizX)>=IsizX)*(IsizX

); 

  //check edges of ROI in BackRot 

  t1=(Y>0)*0+(Y<0)*(-Y); 

  l1=(X>0)*0+(X<0)*(-X); 

  b1=((Y+RsizY)<IsizY)*RsizY+((Y+RsizY)>=IsizY)*(IsizY-

Y); 

  r1=((X+RsizX)<IsizX)*RsizX+((X+RsizX)>=IsizX)*(IsizX-

X); 

  //result("t,l,b,r="+t+","+l+":"+b+","+r+","+"\n"); 

  

//result("t,l,b,r1="+t1+","+l1+":"+b1+","+r1+","+"\n"); 

  

CBED_stack[l,t,pt,r,b,pt+1]=CBED_stack[l,t,pt,r,b,pt+1]

-BackRot[t1,l1,b1,r1]; 

} 

//subtract from avg 

X=floor(pXavg-(nG1+0.5)*g1X-(nG2+0.5)*g2X)-

round(LenW2*abs(sin(phi)))*(phi<0); 

Y=floor(pYavg-(nG1+0.5)*g1Y-(nG2+0.5)*g2Y)-

round(LenW1*abs(sin(phi)))*(phi>0); 

//check edges of ROI in CBED stack 

t=(Y>0)*Y+(Y<0)*0; 

l=(X>0)*X+(X<0)*0; 

b=((Y+RsizY)<2*IsizY)*(Y+RsizY)+((Y+RsizY)>2*IsizY)*(2*

IsizY); 

r=((X+RsizX)<2*IsizX)*(X+RsizX)+((X+RsizX)>2*IsizX)*(2*

IsizX); 

//check edges of ROI in BackRot 

t1=(Y>0)*0+(Y<0)*(-Y); 

l1=(X>0)*0+(X<0)*(-X); 

b1=((Y+RsizY)<2*IsizY)*RsizY+((Y+RsizY)>2*IsizY)*(2*Isi

zY-Y); 

r1=((X+RsizX)<2*IsizX)*RsizX+((X+RsizX)>2*IsizX)*(2*Isi

zX-X); 

//Avg[t,l,b,r]=Avg[t,l,b,r]-BackRot[t1,l1,b1,r1]; 

} 

 

/////////////// 

// Create 3D data stack for D-LACBED images 

result("Creating stack of D-LACBED images..."); 

image DLACBEDimg:=NewImage("D-

LACBED_Stack",data_type,IsizX,IsizY,((2*nG1+1)*(2*nG2+1

))); 

DLACBEDimg=0; 

DLACBEDimg.DisplayAt(0,625); 

DLACBEDimg.SetWindowSize(200,200); 

 

//Create scratch image for calculation of average 

image ScratImg := RealImage("Average",4,IsizX,IsizY) 

number Rr2=round(Wfrac*Rr/100); 

//other images for cut and copy 

image TempImg := RealImage("Disk",4,2*Rr2,2*Rr2); 

image vTempImg := RealImage("Temp",4,2*Rr2,2*Rr2); 
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vTempImg=tert((iradius<Rr2), 1,0); 

 

//loop over DLACBED stack and build the patterns 

gNo=0; 

for (ind=-nG1; ind<nG1+1; ind++) 

{  

  for (jnd=-nG2; jnd<nG2+1; jnd++) 

  {  

    prog=round(100*( (gNo+1)/((2*nG1+1)*(2*nG2+1)) )) 

    OpenAndSetProgressWindow("Creating D-LACBED 

patterns","Image "+(gNo+1)+" of "+(2*nG1+1)*(2*nG2+1)," 

"+prog+" %"); 

    //loop over CBED stack 

    for (pt=0; pt<nPts; pt++) 

    { 

      GetCoordsFromNTilts(nTilts,pt,_i,_j); 

      //appropriate vector for disk 

      X=round(pX+_i*tInc+(ind*g1X)+(jnd*g2X)); 

      Y=round(pY+_j*tInc+(ind*g1Y)+(jnd*g2Y)); 

      inside=!((X-Rr2<0)+(X+Rr2>IsizX)+(Y-

Rr2<0)+(Y+Rr2>IsizY)); 

      if (inside) 

      { 

        TempImg=CBED_stack[X-Rr2,Y-Rr2,pt, 

X+Rr2,Y+Rr2,pt+1];//The disk of interest 

        TempImg=tert( (iradius<Rr2), 

TempImg,0);//Cropped to be circular 

        DLACBEDimg[X-Rr2,Y-Rr2,gNo, X+Rr2,Y+Rr2,gNo+1] 

+= TempImg;//Add it to the LACBED pattern 

        ScratImg[Y-Rr2,X-Rr2,Y+Rr2,X+Rr2] += 

vTempImg//Update mask which keeps count of the number 

of images in one pixel 

        TempImg=tert( (vTempImg>TempImg), vTempImg, 

TempImg) 

      } 

    } 

   ScratImg+=(ScratImg==0);//make pixels with zero 

values equal 1 

   DLACBEDimg[0,0,gNo, IsizX,IsizY,gNo+1] /= 

ScratImg;//divide by mask 

   ScratImg=0; 

   gNo++; 

  } 

} 

 

DLACBEDimg.SetLimits(DLACBEDimg.min(),DLACBEDimg.max()) 

//Tidy up 

TempImg.DeleteImage(); 

vTempImg.DeleteImage(); 

CBED_stack.DeleteImage(); 

 

//Put tags into LACBED stack 

{ 

DLACBEDimg.SetStringNote("Info:Date",datetime); 

DLACBEDimg.SetNumberNote("Info:Camera Length",CamL); 

DLACBEDimg.SetNumberNote("Info:Magnification",mag); 

DLACBEDimg.SetNumberNote("Info:Alpha",Alpha); 

DLACBEDimg.SetNumberNote("Info:Spot size",spot); 

DLACBEDimg.SetNumberNote("Info:Disc Radius",Rr); 

DLACBEDimg.SetStringNote("Info:Material",material); 

DLACBEDimg.SetNumberNote("g-vectors:nG1",nG1); 

DLACBEDimg.SetNumberNote("g-vectors:nG2",nG2); 

DLACBEDimg.SetNumberNote("g-vectors:g1X",g1X); 

DLACBEDimg.SetNumberNote("g-vectors:g1Y",g1Y); 

DLACBEDimg.SetNumberNote("g-vectors:g2X",g2X); 

DLACBEDimg.SetNumberNote("g-vectors:g2Y",g2Y); 

DLACBEDimg.SetNumberNote("g-vectors:g1H",g1H); 

DLACBEDimg.SetNumberNote("g-vectors:g1K",g1K); 

DLACBEDimg.SetNumberNote("g-vectors:g1L",g1L); 

DLACBEDimg.SetNumberNote("g-vectors:g2H",g2H); 

DLACBEDimg.SetNumberNote("g-vectors:g2K",g2K); 

DLACBEDimg.SetNumberNote("g-vectors:g2L",g2L); 

DLACBEDimg.SetNumberNote("g-vectors:g1Ag2",g1Ag2); 

DLACBEDimg.SetNumberNote("g-vectors:g1Mg2",g1Mg2); 

DLACBEDimg.SetNumberNote("g-vectors:gC",gC); 

} 

result("  done\n"); 

 

/////////////////////////////////// 

//Montage of D-LACBED images 

result("Creating Montage of D-LACBED images..."); 

//each D-LACBED image is (2*nTilts+3)*tInc*Rr wide 

number wid=2*(nTilts+1)*tInc+2*Rr;//border of Rr 

//F is the relative size of D-LACBED vs original disc 

size 

//smallest g is sG (=1 or 2) 

number sG = (2-

(g2X>g1X))*(abs(g1X)>abs(g1Y))*(abs(g1X)>abs(g1Y));//bo

th g's are closer to horizontal 

sG=sG+(2-

(g2Y>g1Y))*(abs(g1X)<abs(g1Y))*(abs(g1X)<abs(g1Y));//bo

th g's are closer to vertical 

sG=sG+(2-

(g2mag>g1mag))*((abs(g1X)>abs(g1Y))*(abs(g1X)<abs(g1Y))

+(abs(g1X)<abs(g1Y))*(abs(g1X)>abs(g1Y))) 

number F=(wid-

2*Rr)/max(abs(g1X),abs(g1Y))*(sG==1)+(wid-

2*Rr)/max(abs(g2X),abs(g2Y))*(sG==2);//Scaling factors 

between CBED image and montage image 

number Fsiz=((4*nG1+1.5)*(wid-

2*Rr))*(sG==1)+((4*nG2+1.5)*(wid-2*Rr))*(sG==2);//Image 

size 

//result("Scaling factors "+wid+":"+F+"\n") 

//The 000 image will be in the centre 

number Lx=round(Fsiz/2); 

number Ly=round(Fsiz/2); 

//result("F,Lx,Ly: "+F+", "+Lx+", "+Ly+"\n") 

image Montage := RealImage("D-

LACBED_montage",4,Fsiz,Fsiz); 

Montage.displayat(440,30); 

Montage.SetWindowSize(0.75*IsizX,0.75*IsizY); 

number a2X,a2Y,t2,l2,b2,r2,a1X,a1Y; 

gNo=0; 

for (ind=-nG1; ind<nG1+1; ind++) 

{  

  for (jnd=-nG2; jnd<nG2+1; jnd++) 

  { 

    //a2 is the centre of the rectangle where the D-

LACBED image comes from in the stack 

    a2X=round(pX+ind*g1X+jnd*g2X); 

    a2Y=round(pY+ind*g1Y+jnd*g2Y); 

    //result("centre: "+a2X+","+a2Y+"\n") 

    //Bounding rectangle for each D-LACBED image 

    t2=round( (a2Y-wid)*(1-((a2Y-wid)<0)) );//could 

also be *(!((a2Y-wid)<0)) 

    l2=round( (a2X-wid)*(1-((a2X-wid)<0)) ); 

    b2=round( (a2Y+wid)*(1-((a2Y+wid)>IsizY)) + 

((a2Y+wid)>IsizY)*IsizY); 

    r2=round( (a2X+wid)*(1-((a2X+wid)>IsizX)) + 

((a2X+wid)>IsizX)*IsizX); 

    //result("copy from: 

"+t2+","+l2+","+b2+","+r2+"\n") 

    //a1 is the location of the rectangle where the D-

LACBED image will go in the montage 

    a1X=round(Lx + (ind*g1X*F+jnd*g2X*F)); 

    a1Y=round(Ly + (ind*g1Y*F+jnd*g2Y*F)); 

    //result("centre: "+a1X+","+a1Y+"\n") 

    t1=round(a1Y-a2Y+t2); 

    l1=round(a1X-a2X+l2); 

    b1=round(a1Y+b2-a2Y); 

    r1=round(a1X+r2-a2X); 

    //result("paste to: "+t1+","+l1+","+b1+","+r1+"\n") 

    inside=!((l1<0)+(r1>Fsiz)+(t1<0)+(b1>Fsiz)); 

    //inside=(t1>0)*(l1>0)*(b1<FsizY)*(r1<FsizX); 

    if (inside) 

    { 

      //Montage[t1,l1,b1,r1] = DLACBEDimg[l2,t2,gNo 

,r2,b2,gNo+1]; 

      Montage[t1,l1,b1,r1] = tert( 

(DLACBEDimg[l2,t2,gNo 

,r2,b2,gNo+1]==0),Montage[t1,l1,b1,r1],DLACBEDimg[l2,t2

,gNo ,r2,b2,gNo+1]) 

    } 

    gNo++ 

  } 
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D.5 Align

// $BACKGROUND$ 

  //***            D-LACBED aligner           ***\\ 

 //** Richard Beanland r.beanland@warwick.ac.uk **\\ 

//*         Coding started Jan 2018               *\\ 

  

// 1.0, 27 Jan 2018 

//1.2.8 19 Apr 2018 using parabola to find the best 

angle and shear 

 

//Global variables 

number true = 1, false = 0; 

number pi=3.1415926535897932384626433832795; 

number tiny=0.000001//a small number 

number window=80;// size of window around pattern 

centre for cross correlation 

image mask:=RealImage("Mask",4,window,window); 

mask=exp(-(iradius/(0.3*window))**2); 

number te,le,be,re;//the edges of the data 

 

/////////////////////////// 

// Subroutines. 

/////////////////////////// 

//FindEdges 

//Merge0 

//Merge2 

//Parabola 

//PatternCentre 

//SymmetryMatrix 

//ApplySym 

//SymmetryAdd 

//BlurG 

//Sobel 

//linwarp 

//FindEdges 

//skewfit 

//rotfit 

//Median 

 

 

//Function Merge0 

//Shifts image 2 and puts it in image 1 with sub-pixel 

accuracy, linear interpolation 

//adapted from Merge2 

image Merge0(image img1, image img2, number x, number 

y, number SumNo) 

{ 

 //stupidly this code shifts the image the wrong way 

 number negX=-x 

 number negY=-y 

 number sizX,sizY; 

 img1.GetSize(sizX,sizY); 

 img1*=SumNo;//weight the destination image by the 

number averaged 

 image countSum=SumNo*tert((img1==0),0,1);//mask for 

averaging 

 number fx=floor(negX); 

 number fy=floor(negY); 

 //result("x,y:"+x+","+y+","+fx+","+fy+"\n"); 

 //bounding rectangle for copy from img2 

 number t1=abs(round(-fy*(fy<0)));//abs needed to avoid 

problems with -0(?!) 

 number l1=abs(round(-fx*(fx<0))); 

 number b1=round(sizY-fy*(fy>0)); 

 number r1=round(sizX-fx*(fx>0)); 

 number h=b1-t1; 

 number w=r1-l1; 

 //result("tlbr1:"+t1+","+l1+","+b1+","+r1+"\n"); 

 //numbers for linear interpolation 

 number dx = negX - floor(negX); 

 number dy = negY - floor(negY); 

 number tla = (1-dx) * (1-dy); 

 number bra = dx * dy; 

 number bla = (1-dx)*dy; 

 number tra = dx * (1-dy); 

 //Add 4x image2 into temp image using linear 

interpolation  

 image temp=img1[t1,l1,b1,r1]*0 

 temp[0,0,h-1,w-1]+= tla*img2[t1,l1,b1-1,r1-1]; 

 temp[0,1,h-1,w]+= tra*img2[t1,l1,b1-1,r1-1]; 

 temp[1,0,h,w-1]+= bla*img2[t1,l1,b1-1,r1-1]; 

 temp[1,1,h,w]+= bra*img2[t1,l1,b1-1,r1-1]; 

 //bounding rectangle for paste to img1 

 number t2=abs(round(fy*(fy>0))); 

 number l2=abs(round(fx*(fx>0))); 

 number b2=round(sizY+fy*(fy<0)); 

 number r2=round(sizX+fx*(fx<0)); 

 //result("tlbr2:"+t2+","+l2+","+b2+","+r2+"\n"); 

 img1[t2+1,l2+1,b2-1,r2-1] = temp[1,1,h-1,w-1]; 

 

 return img1 

}//End of Merge0 

 

//Function Merge2 

//Merges image 2 onto image 1 with sub-pixel accuracy, 

linear interpolation 

image Merge2(image img1, image img2, number x, number 

y, number SumNo) 

{ 

 number sizX,sizY; 

 img1.GetSize(sizX,sizY); 

 img1*=SumNo;//weight the destination image by the 

number averaged 

 image countSum=SumNo*tert((img1==0),0,1);//mask for 

averaging 

 number fx=floor(x); 

 number fy=floor(y); 

 //bounding rectangle for copy from img2 

 number t1=abs(round( fy*(fy>0) ));//abs needed to 

avoid problems with -0(?!) 

 number l1=abs(round( fx*(fx>0) )); 

 number b1=round( sizY+fy*(fy<0) ); 

 number r1=round( sizX+fx*(fx<0) ); 

 //bounding rectangle for paste to img1 

 number t2=abs(round( (sizY-b1)*(!(t1>0)) )); 

 number l2=abs(round( (sizX-r1)*(!(l1>0)) )); 

 number b2=round( sizY-t1); 

 number r2=round( sizX-l1); 

 //numbers for linear interpolation 

 number xinterp = x - floor(x); 

 number yinterp = y - floor(y); 

 number tla = (1-xinterp) * (1-yinterp); 

 number bra = xinterp * yinterp; 

 number bla = (1-xinterp)*yinterp; 

 number tra = xinterp * (1-yinterp); 

 //Add 4x image2 into temp image using linear 

interpolation  

 image temp=img1[t2,l2,b2-1,r2-1]*0 + 

tla*img2[t1,l1,b1-1,r1-1]+tra*img2[t1,l1+1,b1-

1,r1]+bla*img2[t1+1,l1,b1,r1-

1]+bra*img2[t1+1,l1+1,b1,r1]; 

 image tempSum=tert((temp==0),0,1);//mask for 

subtracting border and intensity correction 

 number h=b2-1-t2; 

 number w=r2-1-l2; 

 //border to remove aliased pixels 

 number bor=2; 

 //delete one-pixel border 

 temp[0,0,h-bor,w-bor]*=tempsum[bor,bor,h,w]; 

 temp[bor,0,h,w-bor]*=tempsum[0,bor,h-bor,w]; 

 temp[0,bor,h-bor,w]*=tempsum[bor,0,h,w-bor]; 

 temp[bor,bor,h,w]*=tempsum[0,0,h-bor,w-bor]; 

 img1[t2,l2,b2-1,r2-1] += temp; 

 //Calcluate mask 

 tempSum=tert((temp==0),0,1); 

 countSum[t2,l2,b2-1,r2-1]+=tempsum; 

 img1=tert( (img1==0), 0, (img1/countSum)); 

 

 return img1 

}//End of Merge2 

 

//Function Parabola 

//Gives sub-pixel peak position in 2D using Kramers 

rule 

void Parabola(image img, number &x, number &y) 

{ 

  number maxval=img.max(x,y); 
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  number a1=img.GetPixel(x,y-1); 

  number a2=maxval; 

  number a3=img.GetPixel(x,y+1); 

  y+=0.5*(a3-a1)/(2*a2-a1-a3); 

  a1=img.GetPixel(x-1,y); 

  a3=img.GetPixel(x+1,y); 

  x+=0.5*(a3-a1)/(2*a2-a1-a3); 

}//end of Parabola 

 

//Function PatternCentre 

//finds the displacement [x,y] of the pattern centre 

from the image centre 

//by applying a 180 degree rotation and cross-

correlating 

void PatternCentre(image img, number &x, number &y) 

{ 

 image img180=img.rotate(pi); 

 image imgCC=img180.CrossCorrelate(img); 

 //imgCC.DisplayAt(500,30) 

 imgCC.Parabola(x,y) 

 number sizX,sizY 

 img.GetSize(sizX,sizY); 

 x-=sizX/2; 

 y-=sizY/2; 

}//end of PatternCentre 

 

//Function symmetry matrix 

//returns the matrix relating equivalent patterns in 

the LACBED stack 

void SymmetryMatrix(string SymType, number &m11, number 

&m12, number &m21, number &m22, string &SymName) 

{ 

  m11=0; 

  m12=0; 

  m21=0; 

  m22=0; 

  if (SymType=="2") 

  { 

    m11=-1; 

    m22=-1; 

    SymName="2-fold"; 

  } 

  if (SymType=="4+") 

  { 

    m12=-1; 

    m21=1; 

    SymName="4-fold(+)"; 

  } 

  if (SymType=="4-") 

  { 

    m12=1; 

    m21=-1; 

    SymName="4-fold(-)"; 

  } 

  if (SymType=="mx") 

  { 

    m11=-1; 

    m22=1; 

    SymName="x mirror"; 

  } 

  if (SymType=="mx1") 

  { 

    m11=-1; 

    m21=1; 

    m22=1; 

    SymName="x mirror"; 

  } 

  if (SymType=="mx2") 

  { 

    m11=-1; 

    m12=-1; 

    m22=1; 

    SymName="x mirror"; 

  } 

  if (SymType=="my") 

  { 

    m11=1; 

    m22=-1; 

    SymName="y mirror"; 

  } 

  if (SymType=="my1") 

  { 

    m11=1; 

    m21=-1; 

    m22=-1; 

    SymName="y mirror"; 

  } 

  if (SymType=="my2") 

  { 

    m11=1; 

    m12=1; 

    m22=-1; 

    SymName="y mirror"; 

  } 

  if (SymType=="mxy") 

  { 

    m12=-1; 

    m21=-1; 

    SymName="x-y mirror"; 

  } 

  if (SymType=="myx") 

  { 

    m12=-1; 

    m21=-1; 

    SymName="y-x mirror"; 

  } 

 

}//end of symmetry matrix 

 

//Function ApplySym 

//Applies the symmetry operation given by SymOp to a 

square image 

void  ApplySym( image &img2, string SymOp) 

{ 

 image img0=img2; 

 //img2.DisplayAt(225,30); 

 //img2.SetName("img2"); 

 //img2.SetWindowSize(200,200); 

 if (SymOp=="4+") 

 { 

   img2=img0.rotate(pi/2); 

 } 

 if (SymOp=="4-") 

 { 

   img2=img0.rotate(-pi/2); 

 } 

 if (SymOp=="2") 

 { 

   img2=img0.rotate(pi);//no need if individual 2-folds 

have been applied 

 } 

 if (SymOp=="mx") 

 { 

   img2=img0[iwidth-icol,irow]; 

 } 

 if (SymOp=="my") 

 { 

   img2=img0[icol,iheight-irow]; 

 } 

 if (SymOp=="mxy") 

 { 

   img2=img0[iwidth-irow,iheight-icol]; 

 } 

 if (SymOp=="myx") 

 { 

   img2=img0[irow,icol]; 

 } 

 

}//End of ApplySym 

 

//Function SymmetryAdd 

//Adds symmetrically related patterns 

//requires window defined as a global variable, assumes 

a SQUARE input image [siz x siz] 
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void SymmetryAdd(image &Lstack, string SymOp, number 

nG1, number nG2, number g1X, number g1Y, number g2X, 

number g2Y, number SumNo) 

{ 

 image Lstack2=Lstack.ImageClone(); 

 number data_type = Lstack.GetDataType(); 

 number siz,nPatt; 

 Lstack.Get3DSize(siz,siz,nPatt); 

 number med=round((siz/2)); 

 image img1=NewImage("img1",data_type,2*siz,2*siz); 

 image img2=img1; 

 image imgCC=img1*0; 

 //img1.DisplayAt(5,30); 

 //img1.SetName("img1"); 

 //img1.SetWindowSize(200,200); 

 //img2.DisplayAt(220,30); 

 //img2.SetName("img2"); 

 //img2.SetWindowSize(200,200); 

 //imgCC.DisplayAt(440,30); 

 //imgCC.SetName("imgCC"); 

 //imgCC.SetWindowSize(200,200); 

 //Get the matrix describing equivalent patterns 

 string SymName; 

 number m11,m12,m21,m22 

 SymOp.SymmetryMatrix(m11,m12,m21,m22,SymName); 

 if (SymOp=="my1" || SymOp=="my2") SymOp="my"; 

 if (SymOp=="mx1" || SymOp=="mx2") SymOp="mx"; 

 number 

ind,jnd,indS,jndS,gNoS,prog,t1,l1,b1,r1,t2,l2,b2,r2,x,y

; 

 number it=0.1; 

 number gNo=0; 

 for (ind=-nG1; ind<nG1+1; ind++) 

 { 

   for (jnd=-nG2; jnd<nG2+1; jnd++) 

   { 

     prog=round(100*( (gNo+1)/Npatt )) 

     OpenAndSetProgressWindow(SymName+" symmetry 

averaging","Image "+(gNo+1)+" of "+Npatt," "+prog+" 

%"); 

     img1=0; 

     img2=0; 

     indS=m11*ind+m12*jnd;//get equivalent slice  

     jndS=m21*ind+m22*jnd; 

     gNoS=(jndS+nG2)+((2*nG2)+1)*(indS+nG1);//the slice 

number of the equivalent pattern 

     //result("i,j=["+ind+","+jnd+"] ("+gNo+"), 

iS,jS=["+indS+","+jndS+"] ("+gNoS+")\n"); 

     if (indS>(-nG1-it) && indS<(nG1+it) && jndS>(-nG2-

it) && jndS<(nG2+it) ) 

     {//it is in the array, so combine them 

       //make a mask around the pattern centre for the 

cross-correlation 

       t1=round((ind*g1Y+jnd*g2Y+siz-window)/2);//in 

Lstack 

       l1=round((ind*g1X+jnd*g2X+siz-window)/2); 

       b1=t1+window; 

       r1=l1+window; 

       t2=t1+med;//in img1 

       l2=l1+med; 

       b2=b1+med; 

       r2=r1+med; 

       

img1[t2,l2,b2,r2]=Lstack[l1,t1,gNo,r1,b1,gNo+1]*mask; 

       // the same in the symmetrically related pattern 

       t1=round((indS*g1Y+jndS*g2Y+siz-window)/2); 

       l1=round((indS*g1X+jndS*g2X+siz-window)/2); 

       b1=t1+window; 

       r1=l1+window; 

       t2=t1+med;//in img1 

       l2=l1+med; 

       b2=b1+med; 

       r2=r1+med; 

       

img2[t2,l2,b2,r2]=Lstack2[l1,t1,gNoS,r1,b1,gNoS+1]*mask

; 

       //Apply symmetry operation to image 

       img2.ApplySym(SymOp); 

       imgCC=img2.CrossCorrelate(img1); 

       imgCC.Parabola(x,y); 

       x-=siz; 

       y-=siz; 

       //result("x,y:"+x+","+y+"\n"); 

       //use the full patterns to make the average 

       

img1[med,med,med+siz,med+siz]=Lstack[0,0,gNo,siz,siz,gN

o+1]; 

       

img2[med,med,med+siz,med+siz]=Lstack2[0,0,gNoS,siz,siz,

gNoS+1]; 

       //Apply symmetry operation to image 

       img2.ApplySym(SymOp) 

       img1=Merge2(img1,img2,x,y,SumNo); 

       

Lstack[0,0,gNo,siz,siz,gNo+1]=img1[med,med,med+siz,med+

siz]; 

     } 

     gNo++ 

  } 

}   

 

}//end of SymmetryAdd 

 

//Function BlurG 

//A Gaussian blur of radius r applied to image img 

image BlurG(image img, number r) 

{ 

 number ind,jnd; 

 //get size, min and max of input image 

 number siz2,siz 

 img.GetSize(siz2,siz2); 

 siz=round(siz2/2); 

 number Rmin=img.min(); 

 number Rmax=img.max(); 

 //set up a 1D kernel of appropriate size   

 number kernel=round(3*r); 

 image gauss1D=NewImage("Kernel",2,1,2*kernel+1);//1 

pixel wide 

 //gauss1D.DisplayAt(0,30); 

 //gauss1D.SetWindowSize(20,200); 

 number Rsum=0; 

 number Igauss; 

 for (ind=-kernel; ind<kernel+1; ind++) 

 { 

   Igauss=exp(-(ind*ind)/(2*r*r)); 

   gauss1D[ind+kernel,0,ind+kernel+1,1]=Igauss; 

   Rsum=Rsum+Igauss; 

 }  

 gauss1D=gauss1D/Rsum;//normalise 

 image img0=img;//duplicate of input image, will be 

returned as output 

 image temp=img0*0;//temporary image to apply the blur 

 //img0.DisplayAt(30,30); 

 //img0.SetName("img0"); 

 //img0.SetWindowSize(200,200); 

 image shift=temp;//for edge filling 

 //blur y 

 for (ind=-kernel; ind<kernel; ind++) 

 { 

   if (ind<0) 

   { 

     shift[0,0,siz2+ind,siz2]=img0[-ind,0,siz2,siz2]; 

     for (jnd=0; jnd<-ind+1; jnd++)//edge fill on 

bottom 

     { 

       shift[siz2-jnd-1,0,siz2-jnd,siz2]=img0[siz2-

1,0,siz2,siz2]; 

     } 

   } 

   else 

   { 

     shift[ind,0,siz2,siz2]=img0[0,0,siz2-ind,siz2]; 

     for (jnd=0; jnd<ind+1; jnd++);//edge fill on top 

     { 
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       shift[jnd,0,jnd+1,siz2]=img0[0,0,1,siz2]; 

     } 

   } 

 temp=temp+shift*gauss1D.getPixel(0,ind+kernel); 

 } 

 //make the y-blurred image the input for x-blur 

 img0=temp; 

 temp=0;//reset the temp image 

 

 //blur x   

 for (ind=-kernel; ind<kernel+1; ind++) 

 { 

   if (ind<0) 

   { 

     shift[0,0,siz2,siz2+ind]=img0[0,-ind,siz2,siz2]; 

     for (jnd = 1; jnd<-ind+1; jnd++)//edge fill on 

right 

     { 

       shift[0,siz2-jnd,siz2,siz2-jnd+1]=img0[0,siz2-

1,siz2,siz2]; 

     } 

   } 

   else 

   { 

     shift[0,ind,siz2,siz2]=img0[0,0,siz2,siz2-ind]; 

     for (jnd=1; jnd<ind+1; jnd++)//edge fill on left 

     { 

       shift[0,jnd,siz2,jnd+1]=img0[0,0,siz2,1]; 

     } 

   } 

   temp=temp+shift*gauss1D.getPixel(0,ind+kernel); 

 } 

 //set intensity range of outpt image to match that of 

the input image 

 temp-=temp.min() 

 temp=temp*(Rmax-Rmin)/temp.max()+Rmin 

 //return the blurred image 

 return img0=temp; 

} 

//End of BlurG  

 

 

//Function linwarp 

//Applies linear distortions to a square image 

image linwarp(image img, number XoX, number XoY, number 

YoX, number YoY) 

{ 

  image warped=img*0; 

  number siz,med; 

  img.GetSize(siz,siz); 

  med=siz/2; 

  warped=img[icol+(icol-med)*XoX+(irow-

med)*XoY,irow+(irow-med)*YoY+(icol-med)*YoX]; 

  return warped 

} 

 

//Function FindEdges 

void FindEdges(image img, number &te, number &le, 

number &be, number &re) 

{//finds the edges of the LACBED data in Lstack, 

te,le,be,re are global variables 

 number siz; 

 img.GetSize(siz,siz); 

 number med=siz/2; 

 number ind=0; 

 number dat=0; 

// number wf=0.75;//shift of border inwards to allow 

window to be used, must be >0.5 

 number wf=1.5;//shift of border inwards to allow 

window to be used, must be >0.5 

 while (dat==0) 

 {//count until reach a non-zero pixel 

   dat=img.GetPixel(ind,med); 

   ind++; 

 } 

 te=ind+wf*window; 

 dat=0; 

 ind=0; 

 while (dat==0) 

 { 

   dat=img.GetPixel(med,ind); 

   ind++; 

 } 

 le=ind+wf*window; 

 dat=0; 

 ind=siz-1; 

 while (dat==0) 

 { 

   dat=img.GetPixel(ind,med); 

   ind--; 

 } 

 be=ind-wf*window; 

 if ((be-med)<(med-te)) 

 {//be is closer to middle, move te 

   te=med-(be-med); 

 }//te is closer to middle, move be 

 else 

 { 

   be=med+(med-te); 

 } 

 dat=0; 

 ind=siz-1; 

 while (dat==0) 

 { 

   dat=img.GetPixel(med,ind); 

   ind--; 

 } 

 re=ind-wf*window; 

 if ((re-med)<(med-le)) 

 {//re is closer to middle, move le 

   le=siz-re; 

 }//le is closer to middle, move re 

 else 

 { 

   re=siz-le; 

 } 

 //result("tlbr:"+te+","+le+","+be+","+re+"\n"); 

}//end of FindEdges 

 

//Function skewfit 

//Finds best skew for a square image and a transformed 

version 

//XoX etc. are the best fit coefficients for linear 

distortion 

void skewfit(image img, string SymOp, number &XoX, 

number &XoY, number &YoX, number &YoY) 

{ 

 number siz 

 img.GetSize(siz,siz) 

 number med=siz/2 

 image Dimg=img;//copy of input image (to be Deformed) 

 image Timg=Dimg; 

 Timg.ApplySym(SymOp);//the transformed image 

 //we deform the copy of the original image to match 

the transformed one. 

 //the final distortion will be half of that needed to 

transform one into the other 

 //edges of the data inside the image 

 number te,le,be,re,x,y 

 img.FindEdges(te,le,be,re); 

 image Mimg=img*0;//mask to enhance fit 

  

 //YoX skew 

 Mimg[med-window/2,le-

window/2,med+window/2,le+window/2]=mask; 

 Mimg[med-window/2,re-

window/2,med+window/2,re+window/2]=mask;  

 image TimgM=Timg*Mimg;//masked Timg 

 image DimgM=Dimg*Mimg;//masked Dimg 

 DimgM.DisplayAt(630,30); 

 DimgM.SetName("Deformed image"); 

 DimgM.SetWindowSize(300,300); 

// Timg.DisplayAt(630,330); 

// Timg.SetName("Transformed image"); 

// Timg.SetWindowSize(300,300); 

//Starting point, zero skew 
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 number bestfit=max(TimgM.CrossCorrelate(DimgM)); 

 number bestYoX=YoX; 

 number Cshow=round(YoX*10000)/100; 

 OpenAndSetProgressWindow("Fitting x-skew,"+Cshow," 

",bestfit+" "); 

 //result("x-skew=0, "+bestfit+"\n"); 

 number lastfit=bestfit; 

 number del=0.0025;//increment by 0.25% 

 //work out which way to go 

 DimgM=Dimg.linwarp(XoX,XoY,(YoX+del),YoY)*Mimg; 

 number fit=max(TimgM.CrossCorrelate(DimgM)); 

 //result("x-skew=0.0025, "+fit+"\n"); 

 if (fit<lastfit) 

 {//fit is worse, go the other way 

   del*=-1; 

 } 

 while (lastfit>=bestfit) 

 {//now get approximate minimum 

   YoX+=del; 

   DimgM=Dimg.linwarp(XoX,XoY,YoX,YoY)*Mimg; 

   fit=max(TimgM.CrossCorrelate(DimgM)); 

   //result("x-skew="+YoX+", "+fit+"; last="+lastfit+"; 

best="+bestfit+"\n"); 

   if (fit>=bestfit) 

   { 

     bestYoX=YoX; 

     bestfit=fit; 

   } 

   lastfit=fit; 

   Cshow=round(YoX*10000)/100; 

   OpenAndSetProgressWindow("Finding x-skew,"+Cshow," 

",fit+" "); 

 } 

 //3-point parabola to get best fit 

 del=abs(del); 

 DimgM=Dimg.linwarp(XoX,XoY,bestYoX-del,YoY)*Mimg; 

 number a1=max(TimgM.CrossCorrelate(DimgM)); 

 number a2=bestfit; 

 DimgM=Dimg.linwarp(XoX,XoY,bestYoX+del,YoY)*Mimg; 

 number a3=max(TimgM.CrossCorrelate(DimgM)); 

 //result("3 x "+(bestYoX-del)+", "+bestYoX+", 

"+(bestYoX+del)+"\n") 

 //result("3 y "+a1+", "+a2+", "+a3+"\n") 

 YoX=bestYoX+del*0.5*(a3-a1)/(2*a2-a1-a3);//best skew 

 //result("x-skew="+YoX+", "+fit+"\n"); 

 Cshow=round(YoX*10000)/100; 

 OpenAndSetProgressWindow("Best fit x-skew,"+Cshow," 

",fit+" "); 

 

 //XoY skew 

 Mimg=0; 

 Mimg[te-window/2,med-

window/2,te+window/2,med+window/2]=mask; 

 Mimg[be-window/2,med-

window/2,be+window/2,med+window/2]=mask;  

 TimgM=Timg*Mimg; 

 DimgM=Dimg*Mimg; 

//Starting point, zero skew 

 bestfit=max(TimgM.CrossCorrelate(DimgM)); 

 number bestXoY=XoY; 

 Cshow=round(XoY*10000)/100; 

 OpenAndSetProgressWindow("Fitting y-skew,"+Cshow," 

",bestfit+" "); 

 //result("y-skew=0, "+bestfit+"\n"); 

 lastfit=bestfit; 

 //work out which way to go 

 DimgM=Dimg.linwarp(XoX,(XoY+del),YoX,YoY)*Mimg; 

 fit=max(TimgM.CrossCorrelate(DimgM)); 

 if (fit<lastfit) 

 {//fit is worse, go the other way 

   del*=-1; 

 } 

 while (lastfit>=bestfit) 

 {//now get approximate minimum 

   XoY+=del; 

   DimgM=Dimg.linwarp(XoX,XoY,YoX,YoY)*Mimg; 

   fit=max(TimgM.CrossCorrelate(DimgM)); 

   //result("y-skew="+XoY+", "+fit+"; last="+lastfit+"; 

best="+bestfit+"\n"); 

   if (fit>=bestfit) 

     { 

     bestXoY=XoY; 

     bestfit=fit; 

    } 

    lastfit=fit; 

    Cshow=round(XoY*10000)/100; 

    OpenAndSetProgressWindow("Finding y-skew,"+Cshow," 

",fit+" "); 

  } 

 del=abs(del); 

 DimgM=Dimg.linwarp(XoX,bestXoY-del,YoX,YoY)*Mimg; 

 a1=max(TimgM.CrossCorrelate(DimgM)); 

 a2=bestfit; 

 DimgM=Dimg.linwarp(XoX,bestXoY+del,YoX,YoY)*Mimg; 

 a3=max(TimgM.CrossCorrelate(DimgM)); 

 //result("3 x "+(bestXoY-del)+", "+bestXoY+", 

"+(bestXoY+del)+"\n") 

 //result("3 y "+a1+", "+a2+", "+a3+"\n") 

 XoY=bestXoY+del*0.5*(a3-a1)/(2*a2-a1-a3);//best skew 

 Cshow=round(XoY*10000)/100; 

 OpenAndSetProgressWindow("Best fit y-skew,"+Cshow," 

",fit+" "); 

 result("done\n"); 

 DimgM.DeleteImage(); 

 TimgM.DeleteImage(); 

}//End of skewfit 

 

//function rotfit 

//Gives fit index for rotation of a square image by 

checking it against a horizontally flipped version 

number rotfit(image img, number phi) 

{ 

  number fit 

  image Rot000=img.rotate(phi).BlurG(2).Sobel(); 

  image Rot2=Rot000*0; 

  //Rot000.DisplayAt(630,330); 

  //Rot000.SetName("Rotated image"); 

  //Rot000.SetWindowSize(300,300);  image 

Rot2=Rot000*0; 

  number Rsiz,te,le,be,re; 

  Rot000.GetSize(Rsiz,Rsiz); 

  Rot000.FindEdges(te,le,be,re); 

  Rot2[(Rsiz-window)/2,(le-

window/2),(Rsiz+window)/2,(le+window/2)]=mask; 

  Rot2[(Rsiz-window)/2,(re-

window/2),(Rsiz+window)/2,(re+window/2)]=mask; 

  Rot000*=Rot2; 

  Rot2=Rot000[iwidth-icol,irow]; 

  image CC=Rot000.CrossCorrelate(Rot2); 

  fit=1-max(CC); 

  Rot000.DeleteImage(); 

  return fit 

}//end of rotfit 

 

//Function median 

//gives the median value of an image 

number median(image img) 

{ 

 number sizX,sizY 

 img.GetSize(sizX,sizY); 

 number nPix=sizX*sizY; 

 number odd=round(nPix % 2); 

 number midpoint=round(1+(nPix-odd)/2);//e.g. gives 6 

if nPix=10 or 11 

 image sorted = NewImage("list",2,1,midpoint) 

 //fill up the list to the midpoint 

 number ind,x,y; 

 for (ind=0; ind<midpoint; ind++) 

 { 

   sorted[ind,0,ind+1,1]=img.min(x,y); 

   img.SetPixel(x,y,img.max()); 

 } 

 number ibar 

 if(odd) 

 { 
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   ibar=sorted.getPixel(0,(midpoint-1)) 

 } 

 else 

 { 

   ibar=(sorted.getPixel(0,(midpoint-

1))+sorted.getPixel(0,(midpoint-2)))/2; 

 } 

 return ibar 

}//End of median 

 

//Function ReCentre 

//puts the centre of the 000 image in the middle again 

void ReCentre(image &Lstack) 

{ 

  OpenAndSetProgressWindow("Re-centring","",""); 

  number siz,nPatt,x,y; 

  Lstack.Get3DSize(siz,siz,nPatt); 

  number med=siz/2; 

  number N000=round((nPatt-1)/2); 

  image L000=Lstack[0,0,N000,siz,siz,N000+1]*0; 

  number t1=(siz-window)/2; 

  number l1=(siz-window)/2; 

  number b1=t1+window; 

  number r1=l1+window; 

  

L000[t1,l1,b1,r1]=Lstack[l1,t1,N000,r1,b1,N000+1]*mask; 

  L000.PatternCentre(x,y); 

  //roi in instack 

  number height=round(siz-abs(y)); 

  if ((height % 2)==1) height-=1//make height even if 

it's odd 

  number width=round(siz-abs(x)); 

  if ((width % 2)==1) width-=1//make width even if it's 

odd 

  t1=0*(y>0)+(siz-height)*(y<=0); 

  l1=0*(x>0)+(siz-width)*(x<=0); 

  b1=height*(y>0)+siz*(y<=0); 

  r1=width*(x>0)+siz*(x<=0); 

  //roi in Lstack 

  number t2=abs(round(med-height/2)); 

  number l2=abs(round(med-width/2)); 

  number b2=t2+height; 

  number r2=l2+width; 

  image Ltemp=Lstack; 

  

Lstack[l2,t2,0,r2,b2,nPatt]=Ltemp[l1,t1,0,r1,b1,nPatt]; 

} 

 

 

//*******************************// 

/////////////////////////////////// 

// Main program 

/////////////////////////////////// 

//*******************************// 

result("\nD-ED Align v1.2.9\n") 

 

number f_; 

string date_; 

GetDate(f_,date_); 

string time_; 

GetTime(f_,time_); 

string datetime=date_+"_"+time_; 

result("\nStarting processing "+datetime+"\n") 

OpenAndSetProgressWindow("Starting processing","",""); 

 

/////////////// 

// Get 3D data stack 

image L_Instack := GetFrontImage(); 

number sizX,sizY,nPatt,siz; 

L_Instack.Get3DSize(sizX,sizY,nPatt); 

//check for image type 

if (nPatt==0) throw("Exiting: input should be a 3D 

LACBED stack"); 

number data_type = L_Instack.GetDataType(); 

//result("data type="+data_type+"\n"); 

siz=round(1.4*max(sizX,sizY));//1.4 is big enough to 

accomodate a 45 deg rotation 

if ((siz % 2)==1) siz+=1//make siz even if it's odd 

//Lstack will be square, [siz x siz], to contain the 

averaged patterns 

image Lstack := NewImage("Averaged 

Stack",data_type,siz,siz,nPatt); 

Lstack.DisplayAt(5,30); 

Lstack.SetWindowSize(600,600); 

number med=round((siz/2));//a useful number 

//remove negative pixels 

L_Instack=tert((L_Instack<0),0,L_Instack); 

       

//get image tags 

number 

Rr,tInc,CamL,mag,Alpha,spot,nG1,nG2,g1X,g1Y,g2X,g2Y,g1H

,g1K,g1L,g2H,g2K,g2L,g1Ag2,g1Mg2,gC; 

string material; 

{ 

L_Instack.GetStringNote("Info:Date",datetime); 

L_Instack.GetNumberNote("Info:Camera Length",CamL); 

L_Instack.GetNumberNote("Info:Magnification",mag); 

L_Instack.GetNumberNote("Info:Alpha",Alpha); 

L_Instack.GetNumberNote("Info:Spot size",spot); 

L_Instack.GetNumberNote("Info:Disc Radius",Rr); 

L_Instack.GetStringNote("Info:Material",material); 

L_Instack.GetNumberNote("g-vectors:nG1",nG1); 

L_Instack.GetNumberNote("g-vectors:nG2",nG2); 

L_Instack.GetNumberNote("g-vectors:g1X",g1X); 

L_Instack.GetNumberNote("g-vectors:g1Y",g1Y); 

L_Instack.GetNumberNote("g-vectors:g2X",g2X); 

L_Instack.GetNumberNote("g-vectors:g2Y",g2Y); 

L_Instack.GetNumberNote("g-vectors:g1H",g1H); 

L_Instack.GetNumberNote("g-vectors:g1K",g1K); 

L_Instack.GetNumberNote("g-vectors:g1L",g1L); 

L_Instack.GetNumberNote("g-vectors:g2H",g2H); 

L_Instack.GetNumberNote("g-vectors:g2K",g2K); 

L_Instack.GetNumberNote("g-vectors:g2L",g2L); 

L_Instack.GetNumberNote("g-vectors:g1Ag2",g1Ag2); 

L_Instack.GetNumberNote("g-vectors:g1Mg2",g1Mg2); 

L_Instack.GetNumberNote("g-vectors:gC",gC); 

if (material=="") 

{ 

  if (!GetString("Material?",material,material)); 

  exit(0); 

  L_Instack.SetStringNote("Info:Material",material) 

} 

result("Material is "+material+"\n"); 

} 

//g-vector outputs 

number g1mag=sqrt(g1X*g1X+g1Y*g1Y); 

number g2mag=sqrt(g2X*g2X+g2Y*g2Y); 

number dot=(g1X*g2X+g1Y*g2Y)/(g1mag*g2mag);//gives 

cos(theta) 

number cross=(g1X*g2Y-g1Y*g2X)/(g1mag*g2mag);//g1 x g2 

gives sin(theta) 

number theta=(acos(dot)*sgn(cross)); 

result("g1: "+g1H+","+g1K+","+g1L+", +/-"+nG1+": 

["+g1X+","+g1Y+"], magnitude "+g1mag+"\n"); 

result("g2: "+g2H+","+g2K+","+g2L+", +/-"+nG2+": 

["+g2X+","+g2Y+"], magnitude "+g2mag+"\n"); 

//result("Nominal ratio of magnitudes g1/g2 = 

"+g1Mg2+"\n"); 

//result("Actual ratio of magnitudes g1/g2 = 

"+(g1mag/g2mag)+"\n"); 

//result("Nominal angle between g1 and g2 ="+g1Ag2+" 

degrees\n"); 

//result("Actual angle between g1 and g2 

="+(180*theta/pi)+" degrees\n"); 

 

/////////////// 

//Get cropped stack radius 

number w=200; 

if (!GetNumber("Cropped stack radius?",w,w)) exit(0); 

result("Cropped stack size "+(2*w)+"x"+(2*w)+"\n"); 

 

/////////////// 

//montage 

number montage=0; 

if (TwoButtonDialog("Make montage?","Yes","No") ) 

{ 
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  result("Will make montage\n");  

  montage=1; 

} 

else 

{ 

  result("Will not make montage\n");  

  montage=0; 

} 

 

/////////////// 

//Get symmetry 

string symmetry; 

if (!GetString("Rotational symmetry?","1",symmetry)) 

exit(0); 

result("Applying rotational symmetry "+symmetry+"\n"); 

 

/////////////// 

//use 000 image to find centre and set up averaged 

stack 

number N000=round((nPatt-1)/2); 

number x,y,x0,y0;//cross correlation peak for 000 

image avL000=L_Instack[0,0,N000,sizX,sizY,N000+1]; 

//avL000.DisplayAt(0,30); 

//avL000.SetName("Current pattern"); 

//avL000.SetWindowSize(200,200); 

image maL000=avL000*0; 

maL000=exp(-(iradius/(0.25*sizX))**2); 

//maL000=exp(-((icol-329)/(0.15*sizX))**2)*exp(-((irow-

338)/(0.15*sizX))**2); 

avL000*=maL000; 

//sleep(5); 

avL000.PatternCentre(x,y); 

avL000.merge2(avL000.rotate(pi),x,y,1); 

x0=x;//we can only expect a rough estimate without 

using a window 

y0=y; 

//put central part of 000 pattern into Lstack 

number t1=round((siz-window)/2); 

number l1=round((siz-window)/2); 

number b1=t1+window; 

number r1=l1+window; 

number t2=round((sizY-y-window)/2); 

number l2=round((sizX-x-window)/2); 

number b2=t2+window; 

number r2=l2+window; 

Lstack[l1,t1,N000,r1,b1,N000+1]=avL000[t2,l2,b2,r2]*mas

k; 

avL000.DeleteImage(); 

maL000.DeleteImage(); 

//fine correction using windowed pattern 

Lstack[0,0,N000,siz,siz,N000+1].PatternCentre(x,y); 

x0+=x;//correct [x0,y0] 

y0+=y; 

result("Whole pattern centre displaced by 

["+(x0/2)+","+(y0/2)+"]\n"); 

//roi in instack 

number height=round(sizY-abs(y0)); 

number width=round(sizX-abs(x0)); 

t1=0*(y0>0)+(sizY-height)*(y0<=0); 

l1=0*(x0>0)+(sizX-width)*(x0<=0); 

b1=height*(y0>0)+sizY*(y0<=0); 

r1=width*(x0>0)+sizX*(x0<=0); 

//roi in Lstack 

t2=round(med-height/2); 

l2=round(med-width/2); 

b2=t2+height; 

r2=l2+width; 

//Copy instack across to Lstack 

Lstack[l2,t2,0,r2,b2,Npatt]=L_Instack[l1,t1,0,r1,b1,Npa

tt]; 

//from now on everything is done with Lstack, which is 

large, square and has 000 centred 

image Limg=NewImage("Current 

pattern",data_type,siz,siz); 

//Limg.DisplayAt(0,30); 

//Limg.SetName("Current pattern"); 

//Limg.SetWindowSize(200,200); 

 

/////////////// 

//Measure all the pattern centres in Lstack 

result("Measuring pattern centres..."); 

number n1=2*nG1+1; 

number n2=2*nG2+1; 

image PattCen=NewImage("Centres",data_type,n1,n2,2); 

//PattCen.DisplayAt(630,30); 

//PattCen.SetName("Centres"); 

//PattCen.SetWindowSize(200,200); 

number ind,jnd,prog,gNo; 

gNo=0; 

for (ind=-nG1; ind<nG1+1; ind++) 

{  

  for (jnd=-nG2; jnd<nG2+1; jnd++) 

  { 

    prog=round(100*( gNo/Npatt )) 

    OpenAndSetProgressWindow("Measuring pattern 

centres","Image "+(gNo+1)+" of "+Npatt," "+prog+" %"); 

    t1=round((ind*g1Y+jnd*g2Y+siz-window)/2);//window 

around pattern centre 

    l1=round((ind*g1X+jnd*g2X+siz-window)/2); 

    b1=t1+window; 

    r1=l1+window; 

    Limg=0; 

    

Limg[t1,l1,b1,r1]=Lstack[l1,t1,gNo,r1,b1,gNo+1]*mask; 

    Limg.PatternCentre(x,y); 

    

PattCen[(ind+nG1),(jnd+nG2),0,(ind+nG1+1),(jnd+nG2+1),1

]=x; 

    

PattCen[(ind+nG1),(jnd+nG2),1,(ind+nG1+1),(jnd+nG2+1),2

]=y; 

    gNo++ 

  } 

} 

result("done\n"); 

 

//update g-vectors 

result("__________\n"); 

{//median is probably better (less sensitive to bad 

measurements) 

//alternative using mean 

g1X=mean(PattCen[0,0,0,(n1-1),n2,1]-

PattCen[1,0,0,n1,n2,1]); 

g2X=mean(PattCen[0,0,0,n1,(n2-1),1]-

PattCen[0,1,0,n1,n2,1]); 

g1Y=mean(PattCen[0,0,1,(n1-1),n2,2]-

PattCen[1,0,1,n1,n2,2]); 

g2Y=mean(PattCen[0,0,1,n1,(n2-1),2]-

PattCen[0,1,1,n1,n2,2]); 

result("Mean g1: ["+g1X+","+g1Y+"]\n"); 

result("Mean g2: ["+g2X+","+g2Y+"]\n"); 

g1X=median(PattCen[0,0,0,(n1-1),n2,1]-

PattCen[1,0,0,n1,n2,1]); 

g2X=median(PattCen[0,0,0,n1,(n2-1),1]-

PattCen[0,1,0,n1,n2,1]); 

g1Y=median(PattCen[0,0,1,(n1-1),n2,2]-

PattCen[1,0,1,n1,n2,2]); 

g2Y=median(PattCen[0,0,1,n1,(n2-1),2]-

PattCen[0,1,1,n1,n2,2]); 

g1mag=sqrt(g1X*g1X+g1Y*g1Y); 

g2mag=sqrt(g2X*g2X+g2Y*g2Y); 

dot=(g1X*g2X+g1Y*g2Y)/(g1mag*g2mag);//gives cos(theta) 

cross=(g1X*g2Y-g1Y*g2X)/(g1mag*g2mag);//g1 x g2 gives 

sin(theta) 

theta=(acos(dot)*sgn(cross)); 

result("Median g1: ["+g1X+","+g1Y+"]\n"); 

result("Median g2: ["+g2X+","+g2Y+"]\n"); 

result("Nominal ratio of magnitudes g1/g2 = 

"+g1Mg2+"\n"); 

result("Actual ratio of magnitudes g1/g2 = 

"+(g1mag/g2mag)+"\n"); 

result("Nominal angle between g1 and g2 ="+g1Ag2+" 

degrees\n"); 

result("Actual angle between g1 and g2 

="+(180*theta/pi)+" degrees\n"); 

} 
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///////////////**** 

//Averaging using user-input symmetry 

//to keep track of the number of images that have been 

added 

number SumNo=1;  

 

//Apply individual 2-fold pattern symmetries and put 

into Lstack 

number XoX,XoY,YoX,YoY; 

image L000=Lstack[0,0,N000,siz,siz,N000+1]; 

image Dimg=L000; 

if (!(symmetry=="0")) 

{ 

  result("    2-fold pattern averaging..."); 

  gNo=0; 

  for (ind=-nG1; ind<nG1+1; ind++) 

  {  

    for (jnd=-nG2; jnd<nG2+1; jnd++) 

    { 

      prog=round(100*( (gNo+1)/Npatt )) 

      OpenAndSetProgressWindow("2-fold pattern 

averaging","Image "+(gNo+1)+" of "+Npatt," "+prog+" 

%"); 

      t1=round((ind*g1Y+jnd*g2Y+siz-window)/2);//window 

around pattern centre 

      l1=round((ind*g1X+jnd*g2X+siz-window)/2); 

      b1=t1+window; 

      r1=l1+window; 

      Limg=0; 

      Limg[t1,l1,b1,r1]=Lstack[l1,t1,gNo,r1,b1,gNo+1]; 

      Limg.PatternCentre(x,y); 

      //result("x,y:"+x+","+y+"\n"); 

      //use the full patterns to make the average 

      Limg=Lstack[0,0,gNo,siz,siz,gNo+1]; 

      Limg=Merge2(Limg,(Limg.rotate(pi)),x,y,SumNo); 

      Lstack[0,0,gNo,siz,siz,gNo+1]=Limg; 

      gNo++ 

    } 

  } 

  //SumNo++ 

  result("done\n"); 

} 

 

/////////////// 

//centred lattice: default is that vectors h1 and h2 

are the same as g1 and g2 

number h1X=g1X; 

number h1Y=g1Y; 

number h1H=g1H; 

number h1K=g1K; 

number h1L=g1L; 

number h1mag=g1mag; 

number h2X=g2X; 

number h2Y=g2Y; 

number h2H=g2H; 

number h2K=g2K; 

number h2L=g2L; 

number h2mag=g2mag; 

number h1Ah2=g1Ag2; 

number h1Mh2=g1Mg2; 

if (gC==0) result("The pattern is not face-

centred\n");//and so h=g 

if (gC==1) 

{//set up new vectors h1 and h2 to describe the centred 

pattern 

  result("g1 is a face-centring vector: centred lattice 

is\n"); 

  h1X=2*g1X-g2X; 

  h1Y=2*g1Y-g2Y; 

  h1mag=sqrt(h1X*h1X+h1Y*h1Y); 

  h1H=round(2*g1H-g2H);//relying on the user here to 

have put in indices that work 

  h1K=round(2*g1K-g2K); 

  h1L=round(2*g1L-g2L); 

  h1Ah2=90;//centred patterns are always rectangular 

  h1Mh2=g1Mg2*2*sin(g1Ag2*pi/180); 

} 

if (gC==2) 

{ 

  result("g2 is a face-centring vector: centred lattice 

is\n"); 

  h2X=2*g2X-g1X; 

  h2Y=2*g2Y-g1Y; 

  h2mag=sqrt(h2X*h2X+h2Y*h2Y); 

  h2H=round(2*g2H-g1H); 

  h2K=round(2*g2K-g1K); 

  h2L=round(2*g2L-g1L); 

  h1Ah2=90;//centred patterns are always rectangular 

  h1Mh2=g1Mg2/(2*sin(g1Ag2*pi/180)); 

} 

if (abs(h1X)<tiny) h1X=0; 

if (abs(h1Y)<tiny) h1Y=0; 

if (abs(h2X)<tiny) h2X=0; 

if (abs(h2Y)<tiny) h2Y=0; 

result("h1: "+h1H+","+h1K+","+h1L+" : 

["+h1X+","+h1Y+"], magnitude "+h1mag+"\n"); 

result("h2: "+h2H+","+h2K+","+h2L+" : 

["+h2X+","+h2Y+"], magnitude "+h2mag+"\n"); 

result("__________\n"); 

 

/////////////// 

//Rotate stack to put h1 horizontal 

if (!(symmetry=="0")) 

{ 

  //Calculate angles and new g-vectors 

  //Angle phi between h1 and the x-axis 

  number dotX=h1X/h1mag;//gives cos(phi) 

  number crossX=-h1Y/h1mag;//g1 x [100] gives sin(phi) 

  number phi=-(acos(dotX)*sgn(crossX)); 

  //Use the 000 image to get an accurate rotation angle 

  number dphi=pi/720;//quarter degree angle increment 

  //Get initial fit at the nominal rotation angle 

  number 

bestfit=Lstack[0,0,N000,siz,siz,N000+1].rotfit(phi+tiny

); 

  number bestphi=phi; 

  OpenAndSetProgressWindow("Measuring rotation 

angle",""+(phi*180/pi),""+bestfit); 

  //result("initial angle="+(phi*180/pi)+", 

"+bestfit+"\n"); 

  number lastfit=bestfit; 

  //Get fit at incremented angle 

  number 

fit=Lstack[0,0,N000,siz,siz,N000+1].rotfit((phi+dphi+ti

ny)) 

  //result("angle= "+((phi+dphi)*180/pi)+", 

"+fit+"\n"); 

  OpenAndSetProgressWindow("Measuring rotation 

angle",""+((phi+dphi)*180/pi),""+fit); 

  //work out which way to go 

  if (fit>lastfit) 

  {//fit is worse, go the other way 

    dphi*=-1; 

  } 

  while (lastfit<=bestfit) 

  {//now get approximate minimum 

    phi+=dphi;//increment angle 

    lastfit=fit; 

    

fit=Lstack[0,0,N000,siz,siz,N000+1].rotfit(phi+tiny); 

    //result((phi*180/pi)+", "+fit+"\n"); 

    OpenAndSetProgressWindow("Measuring rotation 

angle",""+(phi*180/pi),""+fit); 

    if (fit<=bestfit) 

    { 

      bestphi=phi; 

      bestfit=fit; 

    } 

  } 

  //now do a 3-point parabola to get an interpolated 

fit 

  dphi=abs(dphi); 

  number 

a1=Lstack[0,0,N000,siz,siz,N000+1].rotfit(bestphi-

dphi+tiny); 
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  number a2=bestfit; 

  number 

a3=Lstack[0,0,N000,siz,siz,N000+1].rotfit(bestphi+dphi+

tiny); 

  phi=bestphi+dphi*0.5*(a3-a1)/(2*a2-a1-a3); 

  OpenAndSetProgressWindow("Rotating by",(phi*180/pi)+" 

degrees",""+fit); 

  result("Rotating by "+(phi*180/pi)+" degrees\n"); 

  image Lcorrected=Lstack.rotate(phi); 

  number sizXr,sizYr; 

  Lcorrected.Get3DSize(sizXr,sizYr,nPatt); 

  //put it back into Lstack 

  t1=round((sizYr-siz)/2); 

  l1=round((sizXr-siz)/2); 

  b1=t1+siz; 

  r1=l1+siz; 

  

Lstack[0,0,0,siz,siz,nPatt]=Lcorrected[l1,t1,0,r1,b1,nP

att]; 

  //rotated vectors 

  number g1Xr=g1X*cos(phi)+g1Y*sin(phi); 

  number g1Yr=g1Y*cos(phi)-g1X*sin(phi); 

  number g2Xr=g2X*cos(phi)+g2Y*sin(phi); 

  number g2Yr=g2Y*cos(phi)-g2X*sin(phi); 

  number h1Xr=h1X*cos(phi)+h1Y*sin(phi); 

  number h1Yr=0;//by definition 

  number h2Xr=h2X*cos(phi)+h2Y*sin(phi); 

  number h2Yr=h2Y*cos(phi)-h2X*sin(phi); 

  g1X=g1Xr; 

  g1Y=g1Yr; 

  h1X=h1Xr; 

  h1Y=h1Yr; 

  g2X=g2Xr; 

  g2Y=g2Yr; 

  h2Y=h2Yr; 

  h2X=h2Xr; 

}//re-centre 

Lstack.ReCentre(); 

 

/////////////// 

//Apply mirrors 

XoX=0;//start off with no distortion 

XoY=0; 

YoX=0; 

YoY=0; 

if (!(symmetry=="0")) 

{ 

  string Msymmetry,SymOp; 

  if (!GetString("mirror symmetry?","mx",Msymmetry)) 

exit(0); 

  result("  Applying mirror symmetry "+Msymmetry+"\n"); 

  //first measure distortions, skews from x-mirror 

  if (Msymmetry=="mx" || Msymmetry=="mxy" || 

Msymmetry=="mm") 

  { 

    result("Measuring distortions, x-mirror... "); 

    SymOp="mx" 

    L000=Lstack[0,0,N000,siz,siz,N000+1]; 

    L000=L000.BlurG(2).Sobel(); 

    L000.skewfit(SymOp,XoX,XoY,YoX,YoY); 

    result("    Measured skew = 

"+(round(XoY*10000)/100)+"%\n"); 

    //result("dx="+(round(XoX*10000)/100)+"x% + 

"+(round(XoY*10000)/100)+"y%\n"); 

    //result("dy="+(round(YoX*10000)/100)+"x% + 

"+(round(YoY*10000)/100)+"y%\n"); 

  } 

  //store first set of measurements 

  number XoY1=XoY; 

  number YoX1=YoX 

  //measure skews from y-mirror, should give the same 

result 

  if (Msymmetry=="my" || Msymmetry=="mxy" || 

Msymmetry=="mm") 

  { 

    result("Measuring distortions, y-mirror..."); 

    string SymOp="my" 

    L000=Lstack[0,0,N000,siz,siz,N000+1]; 

    L000=L000.BlurG(2).Sobel(); 

    L000.skewfit(SymOp,XoX,XoY,YoX,YoY); 

    result("    Measured skew = 

"+(round(XoY*10000)/100)+"%\n"); 

    //result("dx="+(round(XoX*10000)/100)+"x% + 

"+(round(XoY*10000)/100)+"y%\n"); 

    //result("dy="+(round(YoX*10000)/100)+"x% + 

"+(round(YoY*10000)/100)+"y%\n"); 

  }//Take the average 

  XoY=(XoY+XoY1)/2; 

  YoX=(YoX+YoX1)/2; 

  //Measure y-stretch from xy-mirror or 4-fold rotation 

(3-fold and 6-fold to be added) 

  if (Msymmetry=="mxy" || symmetry=="4") 

  { 

    image mask1:=RealImage("Mask",4,2*w,window);//short 

wide mask 

    mask1=exp(-((irow-window/2)/(0.3*window))**2)*exp(-

((icol-w)/(0.5*w))**2); 

    //we deform the copy of the original image to match 

the transformed one. 

    L000=Lstack[0,0,N000,siz,siz,N000+1]; 

    L000=L000.BlurG(2).Sobel(); 

    image Mimg=L000*0;//top & bottom masks to enhance 

fit 

    Mimg[(med-w),(med-w),(med-w+window),(med+w)]=mask1; 

    Mimg[(med+w-window),(med-w),(med+w),(med+w)]=mask1; 

    image DimgM=L000*Mimg;//masked input image (to be 

Deformed) 

    DimgM.DisplayAt(630,30); 

    DimgM.SetName("Deformed image"); 

    DimgM.SetWindowSize(300,300); 

    if (Msymmetry=="mxy") SymOp="mxy"; 

    if (symmetry=="4") SymOp="4+"; 

    L000.ApplySym(SymOp) 

    image TimgM=L000*Mimg;//transformed masked 

reference image 

    number bestfit=max(TimgM.CrossCorrelate(DimgM)); 

    //result("y-stretch=0.0000, "+bestfit+"\n"); 

    number lastfit=bestfit; 

    number del=0.0025;//increment by 0.25% 

    number bestYoY=YoY; 

    number Cshow=round(YoY*10000)/100; 

    OpenAndSetProgressWindow("Finding y-

stretch,",Cshow+" ",bestfit+" "); 

    //work out which way to go 

    DimgM=(L000.linwarp(XoX,XoY,YoX,YoY+del))*Mimg; 

    number fit=max(TimgM.CrossCorrelate(DimgM)); 

    //result("y-stretch=0.0025, "+fit+"\n"); 

    if (fit<lastfit) 

    {//fit is worse, go the other way 

      del*=-1; 

    } 

    while (lastfit>=bestfit) 

    {//now get approximate minimum 

      YoY+=del; 

      DimgM=(L000.linwarp(XoX,XoY,YoX,YoY))*Mimg; 

      fit=max(TimgM.CrossCorrelate(DimgM)); 

      //result("y-stretch="+YoY+", "+fit+"; 

last="+lastfit+"; best="+bestfit+"\n"); 

      if (fit>=bestfit) 

      { 

        bestYoY=YoY; 

        bestfit=fit; 

      } 

      lastfit=fit; 

      Cshow=round(YoY*10000)/100; 

      OpenAndSetProgressWindow("Finding y-

stretch,"+Cshow," ",fit+" "); 

    } 

    //3-point parabola to get best fit 

    del=abs(del); 

    DimgM=L000.linwarp(XoX,XoY,YoX,bestYoY-del)*Mimg; 

    number a1=max(TimgM.CrossCorrelate(DimgM)); 

    number a2=bestfit; 

    DimgM=L000.linwarp(XoX,XoY,YoX,bestYoY-del)*Mimg; 

    number a3=max(TimgM.CrossCorrelate(DimgM)); 
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    //result("3 x "+(bestYoY-del)+", "+bestYoY+", 

"+(bestYoY+del)+"\n") 

    //result("3 y "+a1+", "+a2+", "+a3+"\n") 

    YoY=bestYoY+del*0.5*(a3-a1)/(2*a2-a1-a3);//best 

stretch 

    result("    Measured y-

stretch="+(round(YoY*10000)/100)+"%\n"); 

    Cshow=round(YoY*10000)/100; 

    OpenAndSetProgressWindow("Best fit y-

stretch,",Cshow+" ",fit+" "); 

    DimgM.DeleteImage(); 

    TimgM.DeleteImage(); 

  } 

  else 

  { 

    result("Not enough symmetry to determine y-stretch, 

ensure that you run D-ED_Stretch to match the 

simulation later\n") 

  } 

  result("Distortion applied:\n") 

  result("dx="+(round(XoX*10000)/100)+"x% + 

"+(round(XoY*10000)/100)+"y%\n"); 

  result("dy="+(round(YoX*10000)/100)+"x% + 

"+(round(YoY*10000)/100)+"y%\n"); 

 

  //Correct distortions 

  gNo=0; 

  for (ind=-nG1; ind<nG1+1; ind++) 

  {  

    for (jnd=-nG2; jnd<nG2+1; jnd++) 

    { 

      prog=round(100*( (gNo+1)/Npatt )) 

      OpenAndSetProgressWindow("Correcting 

distortions","Image "+(gNo+1)+" of "+Npatt," "+prog+" 

%"); 

      L000=Lstack[0,0,gNo,siz,siz,gNo+1]; 

      Limg=L000.linwarp(XoX,XoY/2,YoX/2,YoY); 

      Lstack[0,0,gNo,siz,siz,gNo+1]=Limg; 

      gNo++ 

    } 

  } 

  //mirror symmetry averaging 

  if (Msymmetry=="mx" || Msymmetry=="mxy" || 

Msymmetry=="mm") 

  { 

    result("    x-mirror symmetry averaging..."); 

    if (gC==0) 

SymmetryAdd(Lstack,"mx",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo); 

    if (gC==1) 

SymmetryAdd(Lstack,"mx1",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo)

; 

    if (gC==2) 

SymmetryAdd(Lstack,"mx2",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo)

; 

    SumNo++ 

    result("done\n"); 

    Lstack.ReCentre(); 

  } 

  if (Msymmetry=="my" || Msymmetry=="mxy" || 

Msymmetry=="mm") 

  { 

    result("    y-mirror symmetry averaging..."); 

    if (gC==0) 

SymmetryAdd(Lstack,"my",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo); 

    if (gC==1) 

SymmetryAdd(Lstack,"my1",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo)

; 

    if (gC==2) 

SymmetryAdd(Lstack,"my2",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo)

; 

    SumNo++ 

    result("done\n"); 

    Lstack.ReCentre(); 

  } 

  if (Msymmetry=="mxy") 

  { 

    result("    xy-mirror symmetry averaging...");//NB 

this can only be present in 4mm symmetry 

    if (gC==0) 

SymmetryAdd(Lstack,"mxy",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo)

; 

    if (gC==1) result("xy-mirror symmetry incompatible 

with centred lattice, redefine basis vectors\n");  

    SumNo++ 

    result("done\n"); 

    Lstack.ReCentre(); 

  } 

  //other mirrors for 3m and 6mm needed here 

} 

 

//Averaging using rotational symmetry 

//number m11,m12,m21,m22; 

string SymOp; 

//2-fold symmetry 

if (symmetry=="2" || symmetry=="4" || symmetry=="6") 

{ 

  result("    2-fold symmetry averaging..."); 

  

SymmetryAdd(Lstack,"2",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo); 

  SumNo++ 

  result("done\n"); 

} 

 

//4+ symmetry 

if (symmetry=="4") 

{//NB do not need 4(-) averaging if we have already 

done a 2-fold 

SumNo=1 

  result("    4-fold symmetry averaging..."); 

  

SymmetryAdd(Lstack,"4+",nG1,nG2,g1X,g1Y,g2X,g2Y,SumNo); 

  SumNo++ 

  result("done\n"); 

  //re-centre 

  Lstack.ReCentre(); 

}   

//3 and 6 fold needed here! 

 

 

  /////////////// 

  //Measure all the pattern centres in Lstack 

  result("Measuring pattern centres..."); 

  n1=2*nG1+1; 

  n2=2*nG2+1; 

  gNo=0; 

  for (ind=-nG1; ind<nG1+1; ind++) 

  {  

    for (jnd=-nG2; jnd<nG2+1; jnd++) 

    { 

      prog=round(100*( gNo/Npatt )) 

      OpenAndSetProgressWindow("Measuring pattern 

centres","Image "+(gNo+1)+" of "+Npatt," "+prog+" %"); 

      t1=round((ind*g1Y+jnd*g2Y+siz-window)/2);//window 

around pattern centre 

      l1=round((ind*g1X+jnd*g2X+siz-window)/2); 

      b1=t1+window; 

      r1=l1+window; 

      Limg=0; 

      

Limg[t1,l1,b1,r1]=Lstack[l1,t1,gNo,r1,b1,gNo+1]*mask; 

      Limg.PatternCentre(x,y); 

      

PattCen[(ind+nG1),(jnd+nG2),0,(ind+nG1+1),(jnd+nG2+1),1

]=x; 

      

PattCen[(ind+nG1),(jnd+nG2),1,(ind+nG1+1),(jnd+nG2+1),2

]=y; 

      gNo++ 

    } 

  } 

  result("done\n"); 

  //update g-vectors 

result("__________\n"); 

{//median is probably better (less sensitive to bad 

measurements) 

//alternative using mean 
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g1X=mean(PattCen[0,0,0,(n1-1),n2,1]-

PattCen[1,0,0,n1,n2,1]); 

g2X=mean(PattCen[0,0,0,n1,(n2-1),1]-

PattCen[0,1,0,n1,n2,1]); 

g1Y=mean(PattCen[0,0,1,(n1-1),n2,2]-

PattCen[1,0,1,n1,n2,2]); 

g2Y=mean(PattCen[0,0,1,n1,(n2-1),2]-

PattCen[0,1,1,n1,n2,2]); 

result("Mean g1: ["+g1X+","+g1Y+"]\n"); 

result("Mean g2: ["+g2X+","+g2Y+"]\n"); 

g1X=median(PattCen[0,0,0,(n1-1),n2,1]-

PattCen[1,0,0,n1,n2,1]); 

g2X=median(PattCen[0,0,0,n1,(n2-1),1]-

PattCen[0,1,0,n1,n2,1]); 

g1Y=median(PattCen[0,0,1,(n1-1),n2,2]-

PattCen[1,0,1,n1,n2,2]); 

g2Y=median(PattCen[0,0,1,n1,(n2-1),2]-

PattCen[0,1,1,n1,n2,2]); 

g1mag=sqrt(g1X*g1X+g1Y*g1Y); 

g2mag=sqrt(g2X*g2X+g2Y*g2Y); 

dot=(g1X*g2X+g1Y*g2Y)/(g1mag*g2mag);//gives cos(theta) 

cross=(g1X*g2Y-g1Y*g2X)/(g1mag*g2mag);//g1 x g2 gives 

sin(theta) 

theta=(acos(dot)*sgn(cross)); 

result("Median g1: ["+g1X+","+g1Y+"]\n"); 

result("Median g2: ["+g2X+","+g2Y+"]\n"); 

result("Nominal ratio of magnitudes g1/g2 = 

"+g1Mg2+"\n"); 

result("Actual ratio of magnitudes g1/g2 = 

"+(g1mag/g2mag)+"\n"); 

result("Nominal angle between g1 and g2 ="+g1Ag2+" 

degrees\n"); 

result("Actual angle between g1 and g2 

="+(180*theta/pi)+" degrees\n"); 

} 

 

//additional rotation 

//{ 

//image Lrotated2=Lstack.rotate(45*pi/180); 

//number sizXr,sizYr; 

//Lrotated2.Get3DSize(sizXr,sizYr,nPatt); 

//t1=round((sizYr-siz)/2); 

//l1=round((sizXr-siz)/2); 

//b1=t1+siz; 

//r1=l1+siz; 

//Lstack[0,0,0,siz,siz,nPatt]=Lrotated2[l1,t1,0,r1,b1,n

Patt]; 

//Lrotated2.DeleteImage(); 

//} 

 

/////////////// 

//cropped stack 

result("Cropping to ["+(2*w)+"x"+(2*w)+"]\n"); 

t1=med-w; 

l1=med-w; 

b1=med+w; 

r1=med+w; 

image LACBED_reduced_stack=Lstack[l1,t1,0,r1,b1,nPatt]; 

LACBED_reduced_stack.SetName("Cropped_Stack"); 

LACBED_reduced_stack.DisplayAt(5,30); 

LACBED_reduced_stack.SetWindowSize(200,200); 

LACBED_reduced_stack.SetLimits(LACBED_reduced_stack.min

(),LACBED_reduced_stack.max()) 

result("    Convergence angle = 

"+(w/min(g1mag,g2mag))+"\n"); 

 

/////////////// 

//montage 

if (montage==1) 

{ 

  image 

Dmontage=NewImage("Montage",data_type,(n1*2*w),(n2*2*w)

); 

  image 

temp=LACBED_reduced_stack[0,0,0,2*w,2*w,1];//temp image 

for normalising 

  number back=5;//a background to subtract, if desired 

  Dmontage.DisplayAt(225,30); 

  Dmontage.SetWindowSize(500,500); 

  Dmontage.SetName("Montage"); 

  gNo=nPatt-1; 

  for (ind=-nG1; ind<nG1+1; ind++) 

  {  

    for (jnd=-nG2; jnd<nG2+1; jnd++) 

    { 

      prog=round(100*( 1-(gNo+1)/Npatt )) 

      OpenAndSetProgressWindow("Making montage","Image 

"+(gNo+1)+" of "+Npatt," "+prog+" %"); 

      t1=round((jnd+nG2)*2*w); 

      l1=round((ind+nG1)*2*w); 

      b1=t1+2*w; 

      r1=l1+2*w; 

      //result("tlbr:"+t1+","+l1+","+b1+","+r1+"\n"); 

      temp=LACBED_reduced_stack[0,0,gNo,2*w,2*w,gNo+1]-

back; 

      temp=tert((temp<0),0,temp); 

      temp-=temp.min(); 

      temp/=temp.max(); 

      Dmontage[t1,l1,b1,r1]=temp; 

      gNo-- 

    } 

  } 

  Dmontage.SetLimits(Dmontage.min(),Dmontage.max()) 

  result("done\n"); 

} 

 

 

//set image tags 

{ 

LACBED_reduced_stack.SetStringNote("Info:Date",datetime

); 

LACBED_reduced_stack.SetNumberNote("Info:Camera 

Length",CamL) 

LACBED_reduced_stack.SetNumberNote("Info:Magnification"

,mag) 

LACBED_reduced_stack.SetNumberNote("Info:Alpha",Alpha); 

LACBED_reduced_stack.SetNumberNote("Info:Spot 

size",spot); 

LACBED_reduced_stack.SetNumberNote("Info:Disc 

Radius",Rr); 

LACBED_reduced_stack.SetStringNote("Info:Material",mate

rial); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:nG1",nG1); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:nG2",nG2); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1X",g1X); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1Y",g1Y); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g2X",g2X); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g2Y",g2Y); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1H",g1H); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1K",g1K); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1L",g1L); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g2H",g2H); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g2K",g2K); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g2L",g2L); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1Ag2",g1Ag2); 

LACBED_reduced_stack.SetNumberNote("g-

vectors:g1Mg2",g1Mg2); 

} 

GetDate(f_,date_); 

GetTime(f_,time_); 

datetime=date_+"_"+time_; 
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Appendix E

In Memoriam

GatanTM double-tilt heating holder - oops
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S. Hovmöller, and X. Zou, “Structure analysis of zeolites by rotation electron

diffraction (red),” Microporous and Mesoporous Materials, vol. 189, pp. 115–

125, 2014.

[57] P. Guo, L. Liu, Y. Yun, J. Su, W. Wan, H. Gies, H. Zhang, F.-S. Xiao, and

X. Zou, “Ab initio structure determination of interlayer expanded zeolites

by single crystal rotation electron diffraction,” Dalton Transactions, vol. 43,

no. 27, pp. 10593–10601, 2014.

138



[58] S. Smeets, L. B. McCusker, C. Baerlocher, E. Mugnaioli, and U. Kolb, “Using

focus to solve zeolite structures from three-dimensional electron diffraction

data,” Journal of Applied Crystallography, vol. 46, no. 4, pp. 1017–1023, 2013.

[59] Y. Lorgouilloux, M. Dodin, E. Mugnaioli, C. Marichal, P. Caullet, N. Bats,

U. Kolb, and J.-L. Paillaud, “Im-17: a new zeolitic material, synthesis and

structure elucidation from electron diffraction adt data and rietveld analysis,”

Rsc Advances, vol. 4, no. 37, pp. 19440–19449, 2014.

[60] J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas,

U. Kolb, and A. Corma, “Synthesis and structure determination of the hierar-

chical meso-microporous zeolite itq-43,” Science, vol. 333, no. 6046, pp. 1131–

1134, 2011.

[61] E. Mugnaioli and U. Kolb, “Applications of automated diffraction tomogra-

phy (adt) on nanocrystalline porous materials,” Microporous and Mesoporous

Materials, vol. 166, pp. 93–101, 2013.

[62] U. Kolb, T. E. Gorelik, E. Mugnaioli, and A. Stewart, “Structural characteri-

zation of organics using manual and automated electron diffraction,” Polymer

Reviews, vol. 50, no. 3, pp. 385–409, 2010.

[63] M. Warren, “Atomic structures solved in minutes - cross-disciplinarity led to

method’s use on small molecules.,” Nature, vol. 563, pp. 16–17, 2018.

[64] E. Van Genderen, M. Clabbers, P. Das, A. Stewart, I. Nederlof, K. Barentsen,

Q. Portillo, N. Pannu, S. Nicolopoulos, Gruene, et al., “Ab initio structure de-

termination of nanocrystals of organic pharmaceutical compounds by electron

diffraction at room temperature using a timepix quantum area direct elec-

tron detector,” Acta Crystallographica Section A: Foundations and Advances,

vol. 72, no. 2, pp. 236–242, 2016.

[65] E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier,
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Marks, “Structure refinement from precession electron diffraction data,” Acta

Crystallographica Section A: Foundations of Crystallography, vol. 69, no. 2,

pp. 171–188, 2013.

[74] C. Own, L. Marks, and W. Sinkler, “Precession electron diffraction 1: multi-

slice simulation,” Acta Crystallographica Section A: Foundations of Crystal-

lography, vol. 62, no. 6, pp. 434–443, 2006.
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[84] M. Klementová, M. Karĺık, P. Novák, and L. Palatinus, “Structure determina-

tion of a new phase ni8ti5 by electron diffraction tomography,” Intermetallics,

vol. 85, pp. 110–116, 2017.
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