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Pépé, tu es parti juste après que j’ai soutenu ma thèse, j’espère que je te donne un peu de
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Chapter 1

Introduction

The focus of this thesis is the study of nonlinear stochastic partial differential equations

(SPDEs) of the type

(∂t −∆)u = −f(u) + ζ, (1.0.1)

over Rt × Rdx where ζ is an irregular distribution and f is super-linear drift with

limx→±∞ f(x) = ±∞.

The particular example we have in mind and that motivated this work is the dynamic

Φ4 equation, where f(u) = u3 and ζ is the space-time white noise. This equation was

introduced in constructive quantum field theory as a tool to construct the Φ4 measure. In

the spirit of stochastic quantization (Symanzik [67], Nelson [57, 58], Parisi and Wu[64]),

this equation introduces a reversible stochastic dynamic, and the target measure is the

invariant measure of this dynamic.

This equation has also been one of the motivating examples of the theory of regularity

structures introduced by Hairer in [41]. Regularity structures give a rigorous meaning and

a local solution theory for large class of semi-linear SPDEs which require renormalisation

due to the low expected regularity of the solution. The theory of regularity structures has

been developed into an impressive machinery in [10, 11, 18].

Up to now it remains a local solution theory. That is due to the fact that the theory of

regularity structures states a mild formulation of the equation to solve, and disregards

large scale properties such as conserved quantities or damping terms. For example, the

regularity structure for equation (1.0.1) doesn’t depend on the sign −f(u). The present

work is part of a program to study long term existence of singular SPDEs, following

[54, 55] where similar results were obtained on the torus. We show one way to use other

analytic tools to obtain large scale results on the full space Rd, which are necessary to

construct an invariant measure.
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In Chapter 2 we prove space-time “coming down from infinity” for the solution u when

ζ ∈ Cα−2 for α > 0, in the sense that we are able to show bounds on the solution u on

a compact set D ⊂ Rt × Rdx that depend only on the rough driving term on a slightly

larger set, in particular independent of initial and boundary conditions. For a smooth

driving term this bound is given by a maximum principle which exploits the super-linear

negative drift−f(u). We see how to link this large scale result with small scale Schauder

theory in this simpler case which does not require renormalisation. This chapter contains

the results of [51], written in collaboration with Hendrik Weber and accepted in the

Electronic Journal of Probability.

In Chapter 3 we prove a similar result for the Φ4 equation in 3 dimensions. In this

relatively simple case of singular SPDE, the regularity structure associated can be handled

by hand but all the analytical tools are introduced. This chapter contains the results of

[52], written in collaboration with Hendrik Weber and accepted in Communications on

Pure and Applied Mathematics.

In Chapter 4 we extend this result to more singular noise. We reformulate the theory

of regularity structures and show how to derive those large scale results in this context.

This chapter contains the results of [21], written in collaboration with Ajay Chandra and

Hendrik Weber. It has only just been submitted for publication.

Those articles were all self-contained, but they are a natural continuity of each other.

Therefore, the adaptation to make it into a coherent thesis was an easy work. However,

they all require, for a full understanding of their implications, some background know-

ledge in stochastic PDEs, regularity structures and constructive quantum field theory.

We will now try to give a short introduction in those domains.

1.1 Φ4 field theory

1.1.1 The Φ4 measure

Formally, one can express the Φ4 measure on Rd as

dµ(φ) ∝ exp
(
−
∫
Rd
φ4 −m2φ2 +

1

2
|Oφ|2

) ∏
x∈Rd

dφ(x).

In constructive quantum field theory, a set of axioms [60, 61] gives a way to build a

field theory from a measure. A lot of effort has consequently been invested in finding

non-trivial measures that satisfied these axioms in dimension 4, which is the physical

space-time dimension.

The Φ4 measure has a particular place in constructive quantum field theory as the first
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example of measure on R3 satisfying those axioms. In two dimensions, the existence

of the Φ4 measure was proven early on [32, 65] while in dimensions four and higher,

another approach is necessary [26].

In three dimensions, the Φ4 measure has been constructed in several ways since the

original construction by a phase cell expansion [25, 31] in the 70’s. Among those

ways are Balaban’s block average method [8], skeleton inequalities method by Brydges,

Fröhlich and Sokal [13], both from 1983, and the renormalisation group method of

Kupiainen in 2016 [50]. The progress in singular stochastic PDEs in the past 5 years gives

a new approach to the problem via stochastic quantization, introduced in Section 1.1.2.

An approximation procedure can be used to build this measure, starting with a measure

on a periodic lattice ΛM,ε = (ε(Z/MZ))3, and then letting ε→ 0 and M →∞.

dµM,ε(φ) ∝ exp
(
−
∑
ΛM,ε

φ4 − (m2 + CM,ε)φ
2 + C ′M,ε +

1

2
|Oεφ|2

) ∏
x∈ΛM,ε

dφ(x).

However in dimensions 2 and 3, convergence of the measure in the limit ε→ 0,M →∞
requires a fine tuning of the renormalisation parameters CM,ε and C ′M,ε which have to

diverge as ε vanishes. The divergence rate of these constants depends on the dimension.

In dimension 2 we have CM,ε ∝ − log(ε) while in dimension 3, CM,ε ∝ ε−1.

The Φ4 measure also arises as a scaling limit for the Ising model with local interaction.

In two dimensions, the Ising model is a spin model with values σ ∈ {1,−1} on the

lattice ΛN = Z2/(2N + 1)Z2. The interaction is described by the Hamiltonian

Hγ(σ) = −1

2

∑
k,j∈ΛN

hγ(k − j)σiσj ,

where hγ is an interaction with range γ−1 ∼
√
N . The Gibbs measure λN for inverse

temperature β is defined on {±1}ΛN as

λN (σ) = Z−1
N exp(−βHγ(σ)),

where

ZN =
∑

σ∈{±1}ΛN

exp(−βHγ(σ)).

Under suitable rescaling the invariant measure for this model converges to the Φ4

measure. In [53], the authors show a dynamical version of this result. The Glauber

dynamics associated with this measure are described by the rate at which a spin at site

3



j ∈ ΛN can flip:

cN (σ, j) =
λN (σj)

λN (σ) + λN (σj)
,

where σj is the configuration σ with the spin site j reversed. This model converges

under suitable rescaling to solutions to the dynamic Φ4 model, which we introduce in

the next section.

1.1.2 Stochastic quantization

The idea of stochastic quantization is derived from the Monte-Carlo method for Markov

chains. A measure prescribed by a Hamiltonian is described as the invariant measure of

a dynamical system with state space the space of the measure, and transition probability

given by the flow of the Hamiltonian.

Following that idea, the dynamic Φ4 equation was introduced to get the Φ4 measure as

an equilibrium limit, here with mass 0:

(∂t −∆)u = −u3 + ζ, (1.1.1)

where ζ is the space-time white noise in d + 1 dimensions. Constructing solutions to

this equation in order to construct the measure has been suggested since 1964 in works

by Nelson [57, 58], Parisi and Wu [64], and Symanzik [67], but the solution theory for

these equations remained i ncomplete until recently. One way to prove existence of

equilibrium solutions is to prove that solutions converge to a compact set, and then prove

contractivity within this set. This is the approach taken in [70] for the Φ4 equation on

the 2-dimensional torus.

During the same period as the research for this thesis was done, the Φ4 measure was

constructed in dimension 3 using stochastic quantization for the first time by Gubinelli

and Hofmanovà [36], using bounds in weighted Besov spaces. Our results differ from

theirs and from other a priori estimates including ”coming-down from infinity” properties

that have been proven for singular SPDEs, namely the dynamic φ2m
2 [55, 68] and φ4

3

models [2, 54] both on compact domains and on the full space. These works all relied

on Fourier methods, the method of paracontrolled distributions, rather than the theory

of regularity structures. Some of the bounds obtained there imply coming down from

infinity in time only, in the case of φ4
3 on the full space [35] in a weighted space.

The ideas presented here extend to more singular cases within the theory of regularity

structures. This is the content of Chapters 3 and 4. There we show that our method

significantly simplifes the technical arguments used in [2, 35, 54] and extend its scope to

construct solutions on the full space without the need for weights.
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1.1.3 The need for renormalisation

The Φ4 equation features the nonlinearity −u3 and space-time white noise over Rd+1,

which is a family {ζ(h), h ∈ L2(Rd+1)} of centred Gaussian random variables such

that

E[ζ(h)2] = ‖h‖L2 (1.1.2)

Formally, one can think of it as a space-time process where E[ζ(z)ζ(z′)] = δz,z′ . The

existence of such object follows from the Kolmogorov extension theorem [55, Lemma

9] but a constructive approach can also be formulated, for example on the d-dimensional

torus Td where the space-time white noise is defined as

ζ(φ) =
∑
ω∈Zd

∫
R
φ̂(t, ω)dW (t, ω)

whereW = (W (·, ω))ω∈Z is a family of complex valued Brownian motion with variance

E[W (t, ω)W (t, ω′)] =

|t| if ω = −ω′

0 otherwise.

Apart from the negative renormalisation, explained in Section 1.2.3, all that we need

for the analysis performed in this thesis is the regularity of a sample path. In spatial

dimension d, the space-time white noise has regularity −d+2
2 − ε for any ε > 0, when

measured in the parabolic metric suggested by the parabolic equation (1.1.5).

Classical Schauder estimates state that the gain of regularity for the inverse heat operator

is 2, which means that at best, u is of regularity −d−2
2 − ε. In dimension 2 and more,

u is a distribution and the nonlinearity −u3 is not classically defined. We then call the

Φ4 equation a singular SPDE . On the other hand, assuming we can give a meaning to

multiplication of distributions, their regularities would add up and the nonlinearity −u3

has regularity at best 3(−d−2
2 − ε). Therefore, in dimension 4 and greater, it is of lower

regularity than the noise. We do not expect to have a solution in that supercritical case,

which is also the dimension in which other constructions of the measure break down. In

dimension between 2 and 4, the nonlinearity is still classically ill-defined but there are

several ways to locally define a solution to the subcritical singular SPDE.

The criticality can also be seen from the following scaling argument. The stochastic heat

equation (∂t −∆)u = ζ is invariant in law under the scaling

û(t, x) = λ
d
2
−1u(λ2t, λx). (1.1.3)

In the Φ4 equation, the nonlinearity −u3 scales like −λ4−dû3 under this scaling. For
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d < 4, the nonlinearity formally vanishes on small scales which suggests that the solution

can be locally described by the solution to the linear heat equation.

This was first done in dimension 2 in [22] by expanding around the solution to the linear

equation. In practice, one defines a smooth version of the noise, either convolving with

a smooth, compactly supported approximation of unity Ψδ(x, t) = 1
δd+2 Ψ( t

δ2 ,
x
δ ) and

setting ζδ = ζ ∗Ψδ or, on the d-dimensional torus, by performing a truncation in Fourier

modes

ζδ(φ) =
∑
|ω|<δ−1

∫
R
φ̂(t, ω)dW (t, ω). (1.1.4)

The following smooth equation can be solved classically, but the term u3
δ does not

converge in the limit δ → 0.

(∂t −∆)uδ = −u3
δ + ζδ. (1.1.5)

Therefore we define δ be a solution to

(∂t −∆) δ = ζδ.

Then vδ = uδ − δ is solution to

(∂t −∆)vδ = −v3
δ − 3v2

δ δ − 3vδ
2
δ − 3

δ . (1.1.6)

However, the products v2
δ δ, vδ 2

δ and 3
δ are still ill-defined: they are not expected to

converge as δ vanishes. It was expected from the study of the Φ4 measure that some

renormalisation would have to be introduced. It takes here the form of some “infinite

counter-terms” that are subtracted from the nonlinearity.

(∂t −∆)uδ = −u3
δ + 3Cδuδ + ζδ, (1.1.7)

where the constant Cδ diverges as δ goes to 0. We discuss this in more details in

Section 1.2.3. If uδ solves equation (1.1.7), then vδ solves the remainder equation which

we rearrange as follows

(∂t −∆)vδ = −v3
δ − 3v2

δ − 3vδ(
2 − Cδ)− ( 3 − 3Cδ ). (1.1.8)

Provided one can prove that ( 3
δ − 3Cδ ) converges to a distribution ∈ C−3ε as δ

vanishes, and ( 2
δ − Cδ) to ∈ C−2ε, then v should converge to a C2−3ε function, at

which point the products v2 and v are well defined.

The terms and are called renormalised products. In practice, one defines all
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renormalised products and then has to show how they modify the equation. This is done

in great generality with the machinery of regularity structures, which we introduce in the

next section.

1.2 Regularity Structures

Before we introduce the theory of regularity structures as in [41], let us remind the reader

that Chapters 2 and 3 of this thesis do not need the machinery of regularity structures, the

first one being set in the non-singular case, and in the second one all the computations are

done by hand. In Chapter 4, our approach is in some sense closer to the theory of rough

paths from [34], which was also an inspiration for the theory of regularity structures.

In both rough-path theory and regularity structures, a non-continuous solution map

associating a distribution uδ ∈ D′(Rd) to (a smooth version of) a realisation of the noise

ζδ ∈ D′(Rd) is split into two parts: a lift of the noise to a richer space, either a rough

path above the noise or the space of models, and then a continuous solution map from

the space of rough path or models to distributions, where the solution uδ lives.

Elements of the rough path and the model and relations between them are described

with some tensor algebras in the case of rough path, and with an abstract space T with

a structure group G in the case of regularity structures. In Chapter 4 we do build an

abstract space but only essential elements of the structure group G are introduced.

In the case of regularity structures however, the “canonical” lift, which gives the mul-

tiplicative model corresponding to equation (1.1.5) does not converge in the space of

models. A renormalised model is introduced, corresponding to equation (1.1.7), and the

stochastic estimates presented in Section 1.2.3 ensure that this model converges.

We will keep the Φ4 equation as an example, but regularity structures in full generality

are defined for equations or sets of equations of the type

Lu = P (u) + ζ,

where L is a differential operator and P is a nonlinear operator in u and derivatives of

u of order strictly less than the order of L. The term ζ is a noise term typically of low

regularity, which makes the nonlinearity P ill-defined. Some classical examples are the

following:

• The KPZ equation describing the growth of an interface :

(∂t − ∂2
x)h = (∂xh)2 + ζ.

7



• The parabolic Anderson model in dimensions 2 and 3 :

(∂t −∆)u = uζ.

• The Navier-Stokes equation, also in dimensions 2 and 3 :

(∂t −∆)v = −P (v.O)v + ζ.

• The Sine-Gordon model in dimension 2, for β2 ∈ (0, 16π
3 ) :

(∂t −
1

2
∆)u = c sin(βu) + ζ.

In all the examples above, ζ is the space-time white noise but the theory is not limited to

the Gaussian case. In this thesis, the Gaussian character of the noise term is only referred

to as a practical example for which we know explicitly how to build the renormalised

model. The results obtained are deterministic and only the regularity of the noise and of

the distributions in the model play a role in the analysis.

1.2.1 Abstract regularity structures

Given a sub-critical singular SPDE, a regularity structure is a way to compute the

renormalised equation and to locally describe solutions to this equation. It provides an

algebraic framework to describe rough distributions, that replaces or completes the usual

polynomial expansion that is suitable to describe smooth functions. These algebraic

elements are derived from the equation together with the calculus needed to express a

fixed point argument.

A regularity structure is an abstract graded vector space T =
⊕

α∈A Tα, for a discrete

set A with a lower bound α0, equipped with a structure group G. The basis elements T
of the free vector space T represent the different iterated integrals of the noise and the

structure group is used to describe the relations between them.

The elements of T can be obtained by a formal fixed point argument with an abstract

equation. For the Φ4 equation, we need an abstract heat kernel I and the abstract noise

Ξ to formulate the abstract Φ4 equation:

U = −I(U3 + Ξ). (1.2.1)

We also want the regularity structure to contain the polynomial structure, so we introduce

the abstract monomials Xi, i = 0, 1...d, as well as some derivative operators Di, i =

0, 1...d. The elements of T are therefore constructed from:
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• A set of generators {Xi, i = 1...d, Ξ};

• An operator I;

• Derivative operators Di;

• A product of elements.

These elements are conveniently represented graphically by trees with nodes being the

noises and polynomials, where edges represent the operator I and its derivatives DiI,

joined at the root to denote multiplication. The first step of the iteration gives the trees

that we already introduced after (1.1.8).

I(Ξ) = , I(Ξ)2 = , I(Ξ)3 = .

Further trees appear in the next step, for example:

I(I(Ξ)3) = , I(Ξ)2(I(Ξ)2) = , I(Ξ)I(I(Ξ)3) = .

We associate to each basis element τ ∈ T an order denoted |τ |, which is derived from

the regularity of the noise and the gain of regularity from the concrete operators. The

space T is then a graded vector space with for every τ ∈ T , τ ∈ Tα for α = |τ |. In

the case of the Φ4 equation, the homogeneity of Ξ will depend on the dimension in

which we want to solve the equation, and the operator I adds 2. Multiplication of two

trees by joining them at the root adds orders. This is different from regularity, since

multiplication of a function and a distribution of negative regularity gives in general a

distribution of the same negative regularity.

1.2.2 Models

As opposed to our approach discussed previously in Section 1.1.2, those trees do not

correspond directly to a distribution. Mapping the abstract space of regularity structure

to functions and distributions is the role of the model map denoted Π. A requirement

for Π is that for τ ∈ T , ΠI(τ) = L−1(Πτ) where the operator L−1 is an integration

against the heat kernel, or a truncated version of the heat kernel. A model will also be

said to be a lift of a noise distribution ζ when it is build based on this noise. We will

typically have ΠΞ = ζ. However, there are different ways to define what Π does with

products.

A solutionU ∈ T of equation (1.2.1) will then be mapped to a distribution u and different

models Π correspond to solving different equations. For example, equation (1.1.6) cor-

responds to the multiplicative model which does not converge as δ → 0; equation (1.1.7)
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corresponds to the renormalised product for which

Π = 2
δ − Cδ and Π = 3

δ − 3Cδ δ.

We show that these converge as δ → 0 in Section 1.2.3. In [11], the authors show for

a wide class of equations how a change from the multiplicative model is equivalent

to solving a modified equation, and a process to determine this modification is also

introduced.

The existence of (local) solutions for a given model is a consequence of a series of

order bounds. As in the case of polynomials, the homogeneity of an element τ ∈ T
describes the behaviour of Πτ around a base point, for example the origin 0. In order to

be able to place this point anywhere, a family of invertible operators Fx ∈ G, x ∈ Rd is

introduced, such that Πx(τ) = ΠFxτ has a behaviour of order |τ | around the point x.

This is quantified by the following bound:

|(Πx(τ) ∗ΨL)(x)| 6 CτL
|τ |,

where ΨL is an approximation of unity at scale L. One can then use the maps Γxy =

F−1
x ◦ Fy, which gives the relation Πy = Πx ◦ Γxy and ΓxyΓyz = Γxz .

Here one more feature of the structure group becomes apparent. For an element τ ∈ T ,

we have the local expansion

Πyτ = Πx ◦ Γxyτ =
∑
τ∈T

γττ (x, y)Πxτ ,

for coefficients γττ (x, y) ∈ R. The previous order bound translates to a requirement for

every element Γ ∈ G to have, for any a ∈ Tα,

Γa− a ∈
∑
β<α

Tβ,

as well as a quantitative bound [41, Eq (2.15)]

|γττ (x, y)| . d(x, y)|τ |−|τ |. (1.2.2)

The objective behind the definition of a regularity structure and a model is the definition

of the nonlinear operations appearing in the SPDE. They are defined on a class of

distributions, called modelled distributions whose local behaviour is described by the

distributions in the model. The space Dγ
β is defined for any γ ∈ R as the space of locally

bounded functions U : Rd →
⊗
α>β

Tα with U(x) =
∑
|τ |>β uτ (x)τ such that for any
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τ ∈ T with |τ | < γ,

|uτ (x)−
∑
τ

γττ (x, y)uτ (y)| . d(x, y)γ−|τ |. (1.2.3)

Those represent the functions or distributions that are of regularity β, but can be approx-

imated up to regularity γ by a linear combination of distributions given by the model.

Multiplication is then defined for modelled distributions [41, Th 4.7]

Dγ1
α1
×Dγ2

α2
→ Dγ

α

where α = α1 +α2 and γ = min{γ1 +α2, γ2 +α1}. If we think about classical Taylor

expansion, this is not too different from saying that the multiplication of a Ca function

and a Cb function gives a Ca∧b function, γ being 0 in both cases.

The reconstruction theorem [41, Th 3.10] also guarantees that if γ > 0 and U ∈ Dγ
β ,

there exists a unique distributionRU in the Hölder space Cβ , called the reconstruction

of U , such that ΠxU(x)−RU(x) ∈ Cγ . The combination of these two theorems gives

then a way to define a distribution as the product of two distributions.

In our example from Section 1.1.2, it means the products vδ δ and v2
δ δ will converge in

the limit δ → 0 if we define them by using an expansion of vδ and v2
δ up to homogeneity

better than −| | and −| | respectively, as we do directly in Chapter 3 where we bypass

the abstract theory and work directly with the few function and distributions Πx(τ)

needed for the Φ4
3 equation.

1.2.3 Stochastic renormalisation

Renormalisation of singular SPDEs in the framework of regularity structures is a well

understood process and [9, 18] presents a systematic approach to the problem. In the

case of the Φ4
3 equation, renormalisation is discussed in great detail in [56], and we

will follow this approach in our shorter presentation here. However, we first introduce

the idea of renormalisation with one example that does not require any knowledge of

stochastic analysis. For locally integrable functions on the real line R, it is possible to

define a corresponding distribution using the L2 product.

The function x → 1
x is not locally integrable, but the principal value gives a way to

define a canonical distribution, defining pv( 1
x)(φ) as the limit when ε→ 0 for 1 > ε > 0

of ∫
R\(−ε,ε)

φ(x)

x
dx =

∫
R\(−1,1)

φ(x)

x
dx+

∫
[−1,1]\(−ε,ε)

φ(x)− φ(0)

x
dx,

where the equality is a consequence of the antisymmetry of x→ 1
x . The convergence

is assured since for |x| < 1, |φ(x) − φ(0)| 6 |x|‖φ′‖(0,1). For the function x → 1
|x|
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however we do not have anti-symmetry, but the quantity∫
R\(−1,1)

φ(x)

|x|
dx+

∫
[−1,1]\(−ε,ε)

φ(x)− φ(0)

|x|
dx (1.2.4)

still converges for the same reason. We are therefore tempted to define a “renormalised”

distribution for x→ 1
|x| with

lim
ε→0

(∫
R\(−ε,ε)

φ(x)

|x|
dx+ 2 log(ε)φ(0)

)
. (1.2.5)

There was however no canonical reason to chose the interval [−1, 1] in (1.2.4). A differ-

ent choice of interval containing 0 would also lead to a converging integral, and would

result in a different diverging constant in (1.2.5). The rate of divergence 2 log(ε)φ(0)

would remain the same however.

The same idea applies when defining the constant Cδ appearing in equation (1.1.7): there

is no canonical choice of Cδ, only the rate of divergence of Cδ matters. As an example,

we present the case of a centred Gaussian noise on the torus in 2 or 3 dimensions as in

(1.1.4), but the scope of the theory of regularity structures in much more general.

In our case we can write:

δ̂(t, ω) = 1{|ω|<δ−1}

∫ t

u=−∞
P̂t−u(ω)dW (u, ω),

where P̂t is the Fourier transform of the heat kernel

P̂t(ω) = e−t(1+4π2|ω|2).

We have then

Cδ :=E[ δ(0)2] = E[
( ∑
|ω|<δ−1

∫ 0

u=−∞
P̂−u(ω)dW (u, ω)

)2
] (1.2.6)

=
∑
|ω|<δ−1

∫ 0

u=−∞
|P̂−u(ω)|2du =

∑
|ω|<δ−1

1

1 + 4π|ω|2
. (1.2.7)

This quantity diverges as δ → 0 with rate proportional to log(δ) in dimension 2, and to

δ−1 in dimension 3.

The following computation using Itô calculus shows that with definition of Cδ, Π δ =
2
δ − Cδ converges as δ → 0 to a distribution that we denote
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2̂
δ(t, ω) =

∑
ω1+ω2=ω

δ̂(t, ω1)̂ δ(t, ω2)

=
∑

ω1+ω2=ω
|ωi|<δ−1

(∫ t

u=−∞
P̂t−u(ω1)dW (u, ω1)

)(∫ t

u=−∞
P̂t−u(ω2)dW (u, ω2)

)

=
∑

ω1+ω2=ω
|ωi|<δ−1

(
2

∫ t

−∞

[ ∫ u1

−∞
P̂t−u1(ω1)P̂t−u2(ω2)dW (u2, ω2)

]
dW (u1, ω1)

+ 1{ω1=−ω2}

∫ t

−∞
P̂t−u(ω1)P̂t−u(ω2)du

)
,

and we see that summation of the last term gives exactly the one we have subtracted when

ω = 0, and vanishes for ω 6= 0. A similar computation shows that Π δ = 3
δ − 3Cδ δ

also converges:

3̂
δ(t, ω) =

∑
ω1+ω2+ω3=ω

δ̂(t, ω1)̂ δ(t, ω2)̂ δ(t, ω3)

=
∑

ω1+ω2+ω3=ω
|ωi|<δ−1

(∫ t

u=−∞
P̂t−u(ω1)dW (u, ω1)

)(∫ t

u=−∞
P̂t−u(ω2)dW (u, ω2)

)

×
(∫ t

u=−∞
P̂t−u(ω3)dW (u, ω3)

)
=

∑
ω1+ω2+ω3=ω
|ωi|<δ−1

(
6

∫ t

−∞

( ∫ u1

−∞

( ∫ u2

−∞
P̂t−u1(ω1)P̂t−u2(ω2)P̂t−u3(ω3)dW (u3, ω3)

)
× dW (u2, ω2)

)
dW (u1, ω1)

+ 31{ω1=−ω2} δ̂(t, ω3)

∫ t

−∞
P̂t−u(ω1)P̂t−u(ω2)du

)
.

For the Φ4 equation in dimension 3 as in Chapter 3, one more renormalisation constant

is needed. It is defined by

C ′δ := E[ δ(0)L−1
δ(0)]

where δ is the distribution constructed previously. We have

E[ 2
δ(0)L−1( 2

δ(0))] =

E[
∑

|wi|<δ−1

ω3+ω4+ω5=0

∫ 0

u3,u4,u5=−∞
P̂−u3(ω3)P̂−u4(ω4)P̂−u5(ω5)
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∑
ω1+ω2=ω5

∫ u5

u1,u2=−∞
P̂u5−u1(ω1)P̂u5−u2(ω2)dW (u1, ω1)dW (u2, ω2)

dW (u3, ω3)dW (u4, ω4)du5].

We use a formula discovered by Isserlis and Wick [47] to compute this expectation

involving a product of several Gaussian variables. This formula states that for an even

number of Gaussian random variables, the expectation can be computed by adding all the

ways of matching pairs of random variables and taking their covariances. Here, matching

variablesW (u1, ω1) withW (u2, ω2) andW (u3, ω3) withW (u4, ω4) corresponds to the

quantities we have already subtracted in the construction of . There are two symmetric

cross-terms remaining, and the expectation vanishes except for when ω1 = −ω3, and

ω2 = −ω4, which gives the following value for C ′δ diverging with rate log(δ) as δ → 0:

C ′δ =2
∑

|wi|<δ−1

ω1+ω2=ω5

∫ 0

u5=−∞
P̂−u5(ω5)

∫ u5

u1,u2=−∞
P̂u5−u1(ω1)P̂−u1(−ω1)P̂u5−u2(ω2)P̂−u2(−ω2)du1du2du5

=2
∑

|wi|<δ−1

ω1+ω2=ω5

∫ 0

−∞
P−u5(ω5)du5

e−u5(1+4π|ω1|2)

2(1 + 4π|ω1|2)

e−u5(1+4π|ω2|2)

2(1 + 4π|ω2|2)

=
1

2

∑
|wi|<δ−1

ω1+ω2=ω5

1

1 + 4π|ω1|2
1

1 + 4π|ω2|2
1

3 + 4π(|ω1|2 + |ω2|2 + |ω5|2)
.

1.3 From small scales to large scales

The purpose of the Chapter 2 was in part to understand how to link large scale bounds,

using the effect of the strong damping −u3 and the small scale analysis done in this

simple case by Schauder estimates, and in more complicated cases with tools inspired

from the theory of regularity structures.

1.3.1 The maximum principle

It is well-known that if f satisfies the so-called Osgood condition, that is if f satisfies∫∞
1

1
f(u)du < ∞, then solutions of the ODE ẋ = −f(x) “come down from infinity

in finite time” (see [59]). This means that if x solves the equation over [0, t], then

automatically x(t) satisfies a bound which depends on t, but holds uniformly over all

possible choices of initial datum x(0) > 0. Similar statements can be derived for reaction

diffusion equations based on a comparison principle (see e.g. [66, Chapter 14] ) and also
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stochastic reaction diffusion equations (see e.g. [15, Theorem 6.2.3] and [16]). These

bounds are powerful tools to study the long-time behaviour of solutions, both in the

deterministic and in the stochastic setting - see e.g. [68] for a construction of invariant

measures for stochastic PDEs based on such bounds.

The maximum principle that allowed for large scale results for the equation (1.0.1) is

introduced in the first chapter as Theorem 2.4.4. In this first chapter, we even have a

more elaborate version which allows us to treat more general nonlinearities, but the idea

behind the proof is the same.

Analysis of a few examples suggests that this bound is of order Θ−1
(

1
t

)
where Θ(x) =

f(x)
x . One may think for example of the case ẋ = −x3, which has for solution x(t) =

(2t+ x−2
0 )−

1
2 < (2t)−

1
2 .

In order to prove a similar bound in space-time for reaction diffusion equations of the

type

(∂t −∆)u = −f(u) + g, (1.3.1)

where f is as before and g is bounded, we multiply the equation with a smooth function

η compactly supported on a domain D and we derive from the equation (1.3.1) a set of

inequalities that the product uη satisfies with uη < 1. To finish the proof, we needed to

find η that was a smooth version of Θ−1
(

1
d(·,∂D)

)
, and that satisfied the inequalities. The

weakest condition we obtained in Theorem 2.4.4 was not quite the Osgood condition,

but slightly stronger. We believe our condition may still be sharp in this PDE setting.

This maximum principle does not apply directly to the Φ4 equation, because it requires

a bounded right-hand side. In the first publication we find a way around this in the

non-singular case where ζ ∈ Cα−2 for some positive α. The technique adopted consists

of convolving the equation with a smooth, compactly supported regularising kernel Ψ,

rescaled at some level L. This gives a bound on u ∗ ΨL and the difference between

u(z) and u ∗ΨL(z) is controlled by the α Hölder regularity of u on B(z, L). The small

enlargement of the domain due to this convolution requires the choice of a specific L

and then to iterate the argument.

The choice of L can be deduced from computations but there is also a heuristic argument

that suggests it should be proportional to Θ−1(‖u‖{x,d(x,∂D)>t}). It also explains why

in Chapter 2, we were not able to go beyond the polynomial case despite having a more

powerful maximum principle. The bound that comes out of the maximum principle is

Θ−1
(

1
d(·,∂D)

)
, and it is reasonable to think that only quantities related to ‖u‖{x,d(x,∂D)>t}

should be appearing in the bound on u− u ∗ΨL. The quantity Θ−1(x2 ) is comparable to

Θ−1(x) when f is a polynomial, which is what allows one to close the argument in that

case.
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In the other chapters we work in the case when ζ ∈ Cα−2 for α < 0, and therefore the

expected regularity for u is negative. This means that u ∈ Cα is not the quantity we

want to look at. Instead, we look at the remainder equation in the manner of (1.1.8) and

treat the other terms as many other bounded terms, but the part of the analysis where we

apply the maximum principle is essentially the same.

1.3.2 Main results

In this whole thesis, we never address the issue of existence of solution to the equation

(1.0.1). Even in the most irregular case, we consider smooth approximations of this

equation, for example taking a sequence of noise terms (or models when regularity

structures are needed) (ξn)n∈N where each element ξn is smooth, but the sequence

converges only in the low regularity space in which we measure the distribution. We do

not prove convergence of the solutions, but our results hold uniformly in the parameter

n, which remains implicit in all the thesis. This implies in particular that we also do not

concern ourselves with knowing in which sense the equation holds. We give precisions

on this topic at the beginning of section 3.2.2. We assume that the equation holds on a

neighbourhood of a domain D, and we only require information on the noise or model

on a 1-enlargement of this domain.

The bounds we obtain in the end in Theorems 2.3.1,3.2.1 and 4.9.1 provide then a

space-time “coming down from infinity” on any domain for what we may call the regular

part of the solution (u in dimension 1, v = u− in dimension 2...), or a bound in terms

of the noise and the functions and distributions in the model:

‖v‖R 6 C max{ 1

R
, [Πτ ]

1
δn(τ) , τ ∈ T }, (1.3.2)

where v represents u in dimension 1, u − in dimension 2 and so on. ‖ • ‖R is the

L∞ norm on a domain DR = D \ {X ∈ D, d(x, ∂D) 6 R} and [Πτ ] is the C |τ | norm

of Π•(τ). The set T and the exponent δ depend on the regularity of the noise. The

exponent n(τ) represents in the case of Gaussian noise the Wiener chaos of highest

degree in which Π•(τ) lies. This bound gives a bound on a solution on the full space

at any space-time point that depends only on the realisation of the noise and the other

terms in the model on a compact space around this point.

This is stronger than the bound in [35], where a bound on the solution on weighted

Besov spaces is obtained. Furthermore, in [35] and in all previous works on global

solutions for the dynamic Φ4 equation [36, 54, 55, 70], the local solution theory was

done using paracontrolled calculus, which is another approach to singular SPDEs [38].

The theory of regularity structures has so far been expressed in a more general setting

and for example the analysis done in Chapter 4 is out of reach of the current status of the
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theory of paracontrolled calculus.

Furthermore, one of the contributions of Chapter 4 to the theory of regularity structures

is the construction of a model that only depends locally on the noise. Instead of using a

kernel approach to describe the integration L−1(τ) of a distribution τ , we only impose

that it is solution to a PDE with cutoff on the right-hand side. We also use the same

ad-hoc localised Schauder theory for singular equations developed in Chapter 3.

One corollary of the main result is the existence of moment bounds for the remainder

part of the solution. The homogeneity of the terms in the bound (1.3.2) is such that in the

case of Gaussian white noise, the exponential stochastic bounds that can be derived form

each of these terms coincide. We get in that case the existence of a constant λ such that:

E[exp(λ‖v‖2δ)] <∞,

where the parameter δ depends on the regularity of the noise, or equivalently on the di-

mension. This gives us reason to think our result is optimal, and once this was understood,

it also allowed for a simplification of the proof by assuming that the bounds in terms of

the model in equation (1.3.2) did not hold (equation (3.4.1) and Assumption 4.9.6) and

using this assumption to prove the localisation part of the bound.
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Chapter 2

Local bounds for stochastic
reaction diffusion equations

2.1 Introduction

In this chapter we are interested in reaction diffusion equations of the type

(∂t −∆)u = −f(u) + ζ, (2.1.1)

over Rt×Rdx where ζ is an irregular distribution of regularity α−2 for some α > 0. The

example we have in mind is the case where ζ is a random noise term, such as space-time

white noise for d = 1, or a noise which is “white in time and coloured in space” for

d > 2. However, we mention once again that our main result is purely deterministic and

the only information about ζ that enters is its regularity measured in a suitable space of

distributions. The nonlinearity f is assumed to be continuous, with super-linear growth

at infinity in u.

Our main result of this chapter, Theorem 2.3.1, is a space-time comming down from

infinity bound for solutions of (2.1.1) with f(u) = u|u|m−1 + g where g is bounded.

We consider a continuous function u : R× Rd → R and we assume that (2.1.1) holds

for (t, x) in a cylinder, say

P0 := (0, 1)× (−1, 1)d.

Then for R < 1
2 the L∞ norm ‖u‖PR of u on the unit cylinder minus a parabolic

boundary layer of size R

PR := (R2, 1)× (−(1−R), 1−R)d, (2.1.2)
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satisfies a bound which only depends on R and a distributional norm of ζ restricted to

the original cylinder P0:

‖u‖PR 6 C(α, d,m) max
{
R−

2
m−1 , [ζ]

2
2+(m−1)α

α−2,P0
, ‖g‖

1
m

}
, (2.1.3)

where [ζ]α−2,P0 is the space-time Hölder norm of order α− 2 on P0 (see (2.3.7) below

for a precise definition), and ‖g‖ refers to the supremum norm of g.

One possible application of the bound (2.1.3) is the construction of solutions to (2.1.1) on

the full space. The standard approach to solve stochastic reaction diffusion equations [24,

39, 71] consists of writing the equation in its mild form and solving the corresponding

fixed point problem using Picard iterations. However, this approach requires a pathwise

uniform-in-x control on ζ , which typically only holds on bounded domains or if ζ decays

at∞; the interesting case of spatially stationary noise cannot be treated directly in this

way. This problem was overcome in [48] where solutions were first constructed on a

sequence of growing tori and then a compactness argument in a space with weights was

used to pass to the limit. The strong localisation obtained in (2.1.3) should allow for a

significant simplification of this construction.

The estimate (2.1.3) also has an interesting consequence for the stochastic integrability

of u. In fact, we are mostly interested in the case where ζ is a random distribution with

Gaussian tails such that E
[
e
ε[ζ]2α−2,P0

]
is finite for ε > 0 small enough. The estimate

(2.1.3) then immediately implies that for any R > 0 and for ε > 0 small enough we

get E
[
e
ε‖u‖2+(m−1)α

PR

]
< ∞. So ‖u‖PR has lighter tails than Gaussian. We observe

that better pathwise regularity for ζ leads to better integrability with respect to the

probability distribution for u. In the special case of one-dimensional reaction-diffusion

equations where ζ is a space-time white noise, equation (2.1.1) equipped with suitable

boundary conditions defines a reversible Markov process, and an explicit expression

of the equilibrium measure is available. In Section 2.7 we argue that in this case the

integrability we derive from estimate (2.1.3) coincides with the integrability derived

from the explicit invariant measure.

Finally, our method shows in this chapter a new perspective on singular SPDE with

the convolution argument. Our starting point is Hairer’s notion [41] of subcriticality

which in the context of (2.1.1) states, roughly speaking, that the small scale behaviour

of solutions should be determined by the interplay of the heat operator and the rough

driving noise ζ , while on large scales the nonlinearity becomes dominant. We implement

this philosophy by regularising (2.1.1) on a lengthscale L by convolving the equation
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with a suitable regularising kernel, arriving at

(∂t −∆)uL = −uL|uL|m−1 + g(u)L + ζL + [uL|uL|m−1 − (u|u|m−1)L], (2.1.4)

where the subscript L denotes a regularised quantity. The extra term [uL|uL|m−1 −
(u|u|m−1)L] on the right hand side appears because regularisation and application of the

polynomial do not commute. We then use a low regularity version of classical Schauder

theory, Lemma 2.9.1, to control the error term [uL|uL|m−1 − (u|u|m−1)L]. Using this

bound, the remaining terms can be treated as in the smooth case (see Theorem 2.4.4).

In the more regular case presented here it would be natural to aim to also include more

general nonlinearities, such as functions with faster than polynomial growth (e.g. the

exp(φ) model f(u) = sinh(u), see [3]) or functions of slower than polynomial growth

such as f(u) ∼ u log(u)δ for δ > 2. In this case the commutator term arising in (2.1.4)

turns into

f(uL)− f(u)L.

Unfortunately, our method crucially depends on the fact that xf ′(x) . f(x) which holds

for polynomial f , but not for functions with exponential growth. Also, another part of

our argument excludes functions that grow to slowly (in the proof of Theorem 2.3.1

we need to sum Θ(u) := f(u)
u for u = 2−k, k ∈ N), thus essentially restricting us to

polynomial f . However, in the case of a more general nonlinearity f , we implement a

more standard argument based on subtracting the solution w to the linear equation

(∂t −∆)w = ζ,

and we do not pass through the regularised equation (2.1.4). We then get the property of

“coming down from infinity” for the remainder u− w in Corollary 2.4.6. For example,

when f(u) = sinh(u), the strong damping implies that u “comes down from infinity”

much more quickly than in the polynomial case – in this case the function R−
2

m−1

in (2.1.3) turns into Θ−1(R−2), where Θ(R) = sinh(R)
R . For very weak damping

f(u) ∼ u log(u)α+2, we obtain a slow coming down from infinity, of order exp(R−
2
α ).

In fact, this method is even easier than the method we use for the polynomial case, but

it has two significant disadvantages: On the one hand, it is impossible to measure the

fine interplay between regularity of ζ and integrability of u in this way, because the

remainder u− w can never have better integrability than the Gaussian process w. More

importantly, the more sophisticated method we use in the proof of our main theorem is

crucial when dealing with more singular equations in the following chapters.

The rest of the chapter is structured as follows. In Section 2.2 we discuss the elementary
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case of the stochastic ODE

dx(t) = −|x(t)|m−1x(t)dt+ dw(t),

in which our strategy and also the interplay between the regularity of the noise and

integrability of the solution becomes apparent in a technically simple context. In Sec-

tion 2.3 we introduce the framework and state the main result. The proof is split into

Sections 2.4–2.5: In Section 2.4 we present a proof of the “space-time coming down from

infinity” in the case where ζ is replaced by a smooth function. This result is an essential

ingredient also in the following chapters. The argument relies on a maximum principle.

As a corollary, as discussed above, we derive the bounds on the remainder u− w in the

case of general, not necessarily polynomial f . In Section 2.5 the result of Section 2.4

is applied to the regularised equation (2.1.4) and combined with Schauder estimates to

bound the commutator concluding the proof of our main result. In Section 2.6 we discuss

the case of a random distribution ζ given by the time-derivative of the stochastic integral∫ t
0 σdW for an adapted bounded process σ = σ(s, x) and a distribution valued Wiener

process W with suitable (spatial) covariance operator. We show Gaussian estimates

for [ζ]α−2 and thus better than Gaussian bounds for u. Finally, in the special case of

space-time white noise in one spatial dimension we show that the integrability obtained

from our method coincides with the integrability of the process in equilibrium obtained

from the explicit invariant measure.

2.2 The ODE case

Before dealing with equation (2.1.1) we briefly discuss the case of a (stochastic) ordinary

differential equation

dx(t) = −|x(t)|m−1x(t)dt+ dw(t) (2.2.1)

for a standard Brownian motion w(t) and form > 1. It is well known that (2.2.1) defines

a reversible Markov process with respect to the measure

µ(dx) ∝ exp
(
− 2

m+ 1
|x|m+1

)
dx. (2.2.2)

We seek to derive optimal bounds on solutions of x(t) directly from the equation (2.2.1).

As a starting point, consider the case of an ordinary differential equation driven by a

regular noise term η

ẋ(t) = −x(t)|x(t)|m−1 + η(t). (2.2.3)
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A simple ODE comparison Lemma, see [68, Lemma 3.8], shows that for t ∈ (0, 1]

|x(t)| 6 C(m) max
{
t−

1
m−1 ,

(
sup
t∈[0,1]

|η(t)|
) 1
m
}
, (2.2.4)

uniformly over all choices of initial datum x(0). If η is a Gaussian process, such that the

random variable supt∈[0,1] |η(t)| has finite Gaussian moments, this bound implies that

for ε > 0 small enough

E
[
exp(ε|x(1)|2m)

]
<∞. (2.2.5)

In particular, in this regular case we get much better integrability than under the measure

(2.2.2). The following deterministic lemma shows that the difference in integrability is

closely related to the regularity of the driving signal.

As usual, we define the α-Hölder semi-norm as

[w]α = sup
06s<t61

|w(t)− w(s)|
|t− s|α

.

In an attempt to make this proof as similar as possible to the one of our main result,

Theorem 2.3.1, we relabel the regularity parameter as α
2 for α ∈ (0, 2).

Lemma 2.2.1. Let w : [0, 1] → R be α
2 -Hölder continuous for some α ∈ (0, 2) with

w(0) = 0. For some m > 1 let x : [0, 1]→ R be a continuous solution to

x(t) = x(0)−
∫ t

0
|x(s)|m−1x(s)ds+ w(t). (2.2.6)

Then for t ∈ (0, 1]

|x(t)| . max
{
t−

1
m−1 , [w]

2
2+(m−1)α
α
2

}
. (2.2.7)

Here and in the proof we use the symbol . for 6 C(α,m).

If w is a random function for which [w]α has Gaussian tails this estimate yields

E
[
exp

(
ε|x(1)|2+(m−1)α

)]
<∞,

for ε small enough. In the Brownian case where α = 1− (α can be any value strictly

less than 1) the exponent 2 + (m− 1)α becomes 1 +m− in line with (2.2.2) and as α

approaches 2, the exponent becomes 2m in line with (2.2.5).

Proof of Lemma 2.2.1. The proof follows the same steps, as the proof of the PDE result,

Theorem 2.3.1, even though most are considerably simpler.

STEP 1: Local Schauder estimate.
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In this context a “Schauder estimate” is trivially derived, simply by writing for 0 < t1 <

t2 < 1

|x(t2)− x(t1)| =
∣∣∣ ∫ t2

t1

x(s)|x(s)|m−1ds+ w(t2)− w(t1)
∣∣∣

6|t2 − t1|‖x‖m[t1,t2] + |w(t2)− w(t1)|,

which can be restated as

[x]α
2
,(s−L,s) 6 L1−α

2 ‖x‖m(s−L,s) + [w]α
2
. (2.2.8)

STEP 2: Application of a comparison lemma.

We regularise equation (2.2.6) by convolution. To this end we introduce a smooth non-

negative kernel Ψ: R → R which is compactly supported in [0, 1] with
∫

Ψ = 1 and

set ΨL(t) = 1
LΨ( tL). For any function f : (0, 1)→ R and for t ∈ (L, 1) we define the

regularisation fL(t) = f ∗ΨL(t) =
∫ t
t−L ΨL(t− s)f(s)ds.

Convolving the integral equation (2.2.6) with ΨL and taking a time derivative leads to

ẋL(t) = −xL(t)|xL(t)|m−1 + ẇL(t) + [·m, (·)L]x(t) for t ∈ (L, 1), (2.2.9)

where we write [·m, (·)L]x =
[
xL|xL|m−1 − (x|x|m−1)L

]
for the commutator term on

the right hand side.

Now we can apply the ODE comparison result (2.2.4) to get, for all t ∈ (L, 1]

|xL(t)| . max
{

(t− L)−
1

m−1 ,
(

sup
[L,1]
|ẇL|

) 1
m
,
(

sup
[L,1]

∣∣[·m, (·)L]x
∣∣) 1

m
}
. (2.2.10)

STEP 3: Bound on the commutator.

To replace xL by x and to bound the commutator term on the right hand side, we use the

information on the regularity of x provided by Step 1. Indeed, using the fact that Ψ has

integral 1, we first see for t ∈ (L, 1],

|(xL − x)(t)| =
∣∣∣ ∫ t

t−L
ΨL(t− s)(x(s)− x(t))ds

∣∣∣
6[x]α

2
,(t−L,t)

∫ t

t−L
ΨL(t− s)|s− t|

α
2 ds 6 L

α
2 [x]α

2
,(t−L,t), (2.2.11)

where [x]α
2
,I = sups 6=t∈I

|x(t)−x(s)|
|t−s|

α
2

denotes the α
2 -Hölder semi-norm of x restricted to
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the interval I . Similarly we establish a bound on the commutator: for s > L,

|[·m, (·)L]x(s)| . ‖x‖m−1
(s−L,s)L

α
2 [x]α

2
,(s−L,s), (2.2.12)

where ‖x‖I is the supremum norm of x restricted to the interval I . To see (2.2.12) we

first write

|[·m, (·)L]x(s)| =
∣∣∣ ∫ s

s−L
ΨL(s− r)

(
xL(s)|xL(s)|m−1 − x(r)|x(r)|m−1

)
dr
∣∣∣.

Then, using the mean value theorem and |xL(s)| 6 ‖x‖(s−L,s), we have

|xL(s)|xL(s)|m−1 − x(r)|x(r)|m−1| 6 m‖x‖m−1
(s−L,s)|xL(s)− x(r)|.

Finally, using the triangle inequality in the form |xL(s) − x(r)| 6 |xL(s) − x(s)| +
|x(s)− x(r)| 6 2L

α
2 [x]α

2
,(s−L,s), we arrive at (2.2.12).

STEP 4: Post processing.

Concerning the noise term on the right hand side of (2.2.10) we write

sup
t∈[L,1]

|ẇL(t)| = sup
t∈[L,1]

∣∣∣ ∫ t

t−L
Ψ̇L(t− s)

(
w(s)− w(t)

)
ds
∣∣∣ . L

α
2
−1[w]α

2
. (2.2.13)

Combining (2.2.10), (2.2.12), (2.2.8) and (2.2.13) we arrive at

|xL(t)| . max
{

(t− L)−
1

m−1 ,
(
L
α
2
−1[w]α

2

) 1
m
,
(
L‖x‖2m−1

(t−L,t)

) 1
m
,(

L
α
2 ‖x‖m−1

(t−L,t)[w]α
2

]) 1
m
}
, t > L.

Combining this estimate with (2.2.11) and (2.2.8) this estimate turns into

|x(t)| . max
{

(t− L)−
1

m−1 ,
(
L
α
2
−1[w]α

2

) 1
m
,
(
L‖x‖2m−1

(t−L,t)

) 1
m
,(

L
α
2 ‖x‖m−1

(t−L,t)[w]α
2

]) 1
m
, L‖x‖m, L

α
2 [w]α

2

}
, t > L.

STEP 5: Choosing L.

We choose L = µ

‖x‖m−1
(0,1)

for µ = µ(α,m) > 0 small enough and consider t satisfying

(t− L)−
1

m−1 6 1
2‖x‖(0,1). Then applying Young’s inequality xy 6 δxp + C(δ)yp

′
for

δ > 0 and p, p′ ∈ (0, 1) with 1
p + 1

p′ = 1 multiple times yields

‖x‖((2m−1+µ)‖x‖1−m
(0,1)

,1) 6 max
{1

2
‖x‖(0,1), C[w]

2
2+(m−1)α
α
2

}
, (2.2.14)
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for some constantC = C(α,m). Note that we can assume that (2m−1 +µ)‖x‖1−m(0,1) < 1,

because else we trivially have a bound on ‖x‖(0,1).

STEP 6: Iterating the result.

We now define a finite set 0 = t0 < . . . < tN = 1 by setting tn+1 − tn = (2m−1 +

µ)‖x‖1−m(tn,1) as long as the time tn+1 defined this way stays strictly less than 1. We

terminate the sequence, once this algorithm would produce a tn+1 > 1 in which case we

set tn+1 = tN = 1. Note that (2m−1 + µ)‖x‖1−m(tn,1) is increasing in n so the sequence

necessarily terminates after finitely many steps.

Applying (2.2.14) to the equation restarted at the times tn we obtain for n 6 N − 1

‖x‖(tn,1) 6 max
{1

2
‖x‖(tn−1,1), C[w]

2
2+(m−1)α
α
2

}
. (2.2.15)

We now show that for n < N

‖x‖(tn,1) . max
{
t
− 1
m−1

n+1 , [w]
2

2+(m−1)α
α
2

}
. (2.2.16)

When the maximum in (2.2.15) is realised by C[w]
1

1+(m−1)α2
α
2

, then this follows immedi-

ately.

Else, we have for k 6 n, ‖x‖(tn,1) 6 ‖x‖(tk,1)2
k−n and hence

tn+1 =

n∑
k=0

tk+1 − tk = (2m−1 + µ)

n∑
k=0

‖x‖1−m(tk,1)

6(2m−1 + µ)‖x‖1−m(tn,1)

n∑
k=0

2(n−1−k)(1−m) . ‖x‖1−m(tn,1), (2.2.17)

establishing (2.2.16). For the end point tN we have either tN−1 > 1
2 or tN − tN−1 > 1

2 .

In the first case we invoke (2.2.17) for n = N − 1 and in the second case the definition

of tn+1 − tn, in both cases yielding the existence of a constant C such that

‖x‖1−m(tN−1,1) > C ⇒ ‖x‖(tN−1,1) 6 C
1

1−m ,

so (2.2.16) also holds for n = N . Finally, for intermediate points t ∈ [tn−1, tn] we write

|x(t)| 6 ‖x‖(tn−1,1)

(2.2.16)
. max

{
t
− 1
m−1

n , [w]
2

2+(m−1)α
α
2

}
6 max

{
t−

1
m−1 , [w]

2
2+(m−1)α
α
2

}
,

so (2.2.7) follows.
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2.3 Setting and main result

After this short interlude, we now go back to the parabolic equation (2.1.1). As usual

when dealing with parabolic equations, regularity will be measured with respect to the

metric

d((t, x), (t, x)) = max
{
|x− x|,

√
|t− t|

}
, (2.3.1)

where | · | denotes the Euclidean norm on Rd. We introduce the parabolic ball of centre

z = (x, t) and radius R in this metric d, looking only into the past:

B(z,R) = {z = (t, x) ∈ R× Rd, d(z, z) < R, t < t}. (2.3.2)

Recall that PR is the cylinder at distance R from P0, as introduced in (2.1.2). Note that

for R′ < R we have PR′ +B(0, R′ −R) ⊂ PR.

For α ∈ (0, 1), we define the Hölder semi-norm [.]α

[u]α := sup
z 6=z∈R×Rd

|u(z)− u(z)|
d(z, z)α

. (2.3.3)

We will often deal with local quantities: If B ⊂ R × Rd is a bounded set, then we

define the local α-Hölder semi-norm [.]α,B as in (2.3.3) with the supremum restricted to

z, z ∈ B. Similarly, ‖.‖ denotes the supremum norm on the whole space R× Rd and

‖.‖B the supremum norm over B.

To measure distributions in negative Hölder spaces, we introduce a family of mollification

operators {(.)L} which are consistent with the scaling given by the heat operator (x, t) =

(lx, l2t). For this we fix a non-negative smooth function Ψ with support in −B(0, 1)

with Ψ(z) ∈ [0, 1] for all z and with integral 1 and for L ∈ (0, 1] set ΨL(x, t) =
1

Ld+2 Ψ
(
x
L ,

t
L2

)
. We define the operator (·)L by convolution with ΨL, noting that for any

L, (·)L is a contraction on with respect to ‖ · ‖. We wish to keep track of the support of

the relevant functions. Since ΨL is compactly support in −B(0, L),

‖hL‖K 6 ‖h‖K+B(0,L) (2.3.4)

for any bounded set K. Furthermore, we mention the estimate∫
|ΨL(x− y)|d(x, y)αdy 6 Lα, (2.3.5)

which, as in (2.2.11) above, immediately implies that for any h ∈ Cα, and for any
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bounded set K, we have

‖hL − h‖K 6 Lα sup
z∈K

[h]α,B(z,L). (2.3.6)

Finally, we define the local Cα−2 semi-norm of a distribution ζ for α− 2 < 0 as

[ζ]α−2,K = sup
L61
‖(ζ)L‖KL2−α. (2.3.7)

This is a localised version of the Besov norm of Bα−2
∞,∞ as defined, for example in [5,

Theorem 2.34]. Any such choice of kernel gives an equivalent norm. Note that, [ζ]α−2,K

depends only on the behaviour of the distribution ζ on the set K+B(0, 1) (i.e. if ζ and ζ̃

coincide when tested against test-functions supported in this set, then [ζ− ζ̃]α−2,K = 0).

Multiplication with a smooth function is a continuous operation with respect to this

norm. We have for any smooth and compactly supported function η

[ηζ]α−2 6 C(η)[ζ]α−2,supp(η). (2.3.8)

Estimates of this type are classical and are typically proved by choosing a convenient

mollifying kernel ΨL, see e.g. [62] for estimates based on kernels ΨL satisfying a semi-

group property in L, or [5, Section 2.4] for a proof in the language of Littlewood-Paley

theory. We refer to [62, Lemma A3] for a proof that norms defined for different kernels

are equivalent. More complicated bounds of this type are also essential in Chapter 3 and

are discussed there at length.

We now state our main result, to be proven in Section 2.5.

Theorem 2.3.1. Assume that f(u) = u|u|m−1 + g(u) with m > 1, g bounded and ζ

is of regularity α − 2 for some α > 0 in the sense of (2.3.7). There exists a constant

C = C(α,m, d) such that if u is continuous and solves (2.1.1) on the cylinder P0 then

for all R ∈ (0, 1
2),

‖u‖PR 6 C max

{
R−

2
m−1 , [ζ]

2
2+(m−1)α

α−2,P0
, ‖g‖

1
m

}
. (2.3.9)

2.4 Maximum principle

We introduce here the essential large-scale ingredient to this whole thesis. In this first

chapter, we attempt to make it as general as possible. In the next chapters however we

only consider cubic non-linearities and the theorem simplifies greatly in those cases. In

particular, the setting of Assumption 2.4.1 is sufficient in that case.
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2.4.1 Assumptions and statement

We prove a space-time version of “coming down from infinity” when there is no distri-

bution of negative regularity involved, but we allow for a more general nonlinearity. Let

u be a C2 function defined for z ∈ R×Rd, for which the following holds point-wise for

z ∈ P0 when u(z) > 0:

(∂t −∆)u 6 −f(u) + g. (2.4.1)

Assumption 2.4.1. We make the following assumptions on f and g:

1. g is a bounded function;

2. f is C2 and f ′′(u) > 0 for u > 0;

3. there exists a constant c > 1 such that uf ′(u) > cf(u) > 0 for u > 0.

Define Θ(u) = f(u)
u . By (3), Θ is increasing for u > 0.

Theorem 2.4.2. Let u ∈ C2 satisfy (2.4.1) for functions f and g satisfying Assump-

tion 2.4.1. There exist λ = λ(d) > 0 and C = C(c, d) such that the following point-wise

bound on u holds for all (t, x) ∈ (0, 1)× (−1, 1)d:

u(x, t) 6 C max
{

Θ−1
( 1

λ2 min{t, (1− xi)2, (1 + xi)2, i = 1...d}

)
, f−1(‖g‖)

}
.

(2.4.2)

Note that min{t, (1− xi)2, (1 + xi)
2, i = 1...d} is exactly the square of the distance to

the boundary of [0, 1]× [−1, 1]d in the parabolic metric. Since a similar bound can be

obtained for −u under a suitable symmetry assumption, this gives a bound on ||u||PR ,

depending only on R.

The condition uf ′(u) > cf(u) with c > 1 is verified exactly for f(u) = u|u|c−1, hence

any function with at least polynomial growth is included in this theorem. For such

monomials, Θ−1 becomes x 7→ x
1
c−1 . For functions with faster growth, the bound is

going to be even stronger. However, some functions with super-linear but not polynomial

growth are not included. For example f(u) = u log(1 + u)α for α > 0. For this

example, uf
′(u)

f(u) = 1 + uα
(1+u) log(1+u) → 1 as u→∞, so point (3) in Assumption 2.4.1

is violated. We can still get a result in that case, under a slightly weaker, but also slightly

more complicated set of assumptions:

Assumption 2.4.3. We make the following assumptions on f and g:

1. g is a bounded function;

2. f is C2 and uf ′(u) > f(u) and there exist two C2 functions f1 and f2 such that

f = f1f2;

3. f ′′1 > 0 and f1 > 0 for u > 0;
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4. f2 > c > 0 for u > 0 and

f2(u) > max
{ 1(

uf ′1(u)
f1(u) − 1

)2 ,
1

uf ′1(u)
f1(u) − 1

}
. (2.4.3)

Define now Θ(u) = f1(u)
u . Θ is increasing for u > 0 by condition (4).

In the example where we want to take f1(u) = u log(1 + u)α for α > 0, one can easily

check that in order to satisfy condition (4), f2 should be
(

1+u
αu

)2
log(1+u)2

α and hence

f(u) = (1+u)2

α2u
log(1 + u)2+α and Θ−1(x) = exp(x

1
α )− 1. Note that this condition is

slightly more restrictive than the Osgood condition
∫∞

1
1

f(u)du <∞, which would be

satisfied by the function with slightly slower growth f(u) = u log(1 + u)1+α for α > 0.

Still we believe that our condition may be sharp, and that the slightly stronger growth

requirement is due to a genuine difference between the ODE and the PDE setting.

Theorem 2.4.4. Let u ∈ C∞ solve (2.4.1) for functions f and g satisfying Assump-

tion 2.4.3. There exist λ = λ(d) > 0 and C = C(c, d) such that the following point-wise

bound on u, holds for all (t, x) ∈ (0, 1)× (−1, 1)d:

u(x, t) 6 C max
{

Θ−1
( 1

λ2 min{t, (1− xi)2, (1 + xi)2, i = 1...d}

)
, f−1(‖g‖)

}
.

(2.4.4)

Theorem 2.4.2 is implied by Theorem 2.4.4 by choosing f1 = f and f2 = 1
(c−1)2 .

Remark 2.4.5. The fact that under these more general assumptions Θ is not simply

defined by f(u)/u but instead grows more slowly, is the reason why we do not get an

equivalent of Theorem 2.3.1, in the case of slower than polynomial growth.

2.4.2 Bound on the remainder

A first corollary of this result is a “coming down from infinity” result for the singular

equation (2.1.1) with general non linearity. In the manner of [22], we expand around the

solution to the linear equation: let w solve

(∂t −∆)w = ζ on P0. (2.4.5)

Below in Section 2.6 we construct w as the solution on the whole space of the heat

equation with a ζ cutoff outside of P0, for which ‖w‖ is bounded by [ζ]α−2, but this

particular choice is not essential. Define v = u− w. If u is a solution to

(∂t −∆)u(z) = −f(u) + g(u, z) + ζ,
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where we assume that f, g satisfies the Assumption 2.4.3 then v is a solution to

(∂t −∆)v(z) = −f(v + w) + g(v + w, z) (2.4.6)

on P0. We now use the w-dependent decomposition f(v + w) = f̃(v, z) + g̃(v, z)

defined by

f̃(v, z) =

f(v + w) if |v(z)| > 2|w(z)|

f
(
v
2

)
else,

and g̃(v, z) = f(v+w)− f̃(v, z). Then, on the one hand by monotonicity of f we have

f̃(v, z) > f(v2 ) and on the other hand ‖g̃‖ 6 f(3‖w‖). The Assumptions 2.4.3 are then

satisfied with f̃ and g+ g̃ and we can apply Theorem 2.4.4 to get a bound on v, and then

the triangle inequality to get bounds on u. We have

f−1(‖g + g̃‖) 6 f−1(2‖g‖) + 6‖w‖.

A corollary of Theorem 2.4.4 is then:

Corollary 2.4.6. Assume ζ ∈ Cα−2 for some α > 0. If u is solution to (2.1.1) and w is

solution to (2.4.5), then there exists constants C = C(c, d, α) and λ = λ(d) such that

‖u‖PR 6 C max
{

Θ−1((λR)−2), f−1(2‖g‖), ‖w‖
}
. (2.4.7)

Keeping in mind the motivation of stochastic PDEs, where ζ is the white noise, the draw-

back of the expansion around the solution to the linear equation is that the integrability

of u that we get out of this result is at best the one of w. As we will see in Section 2.7,

Theorem 2.4.4 allows for better estimates than this in the polynomial case.

2.4.3 Proof of Theorem 2.4.4

We split the proof of the theorem in two lemmas. Lemma 2.4.7 states conditions on a

function η that imply a bound on the product uη, and Lemma 2.4.8 gives a particular

choice of η that satisfies the conditions of Lemma 2.4.7 and implies Theorem 2.4.4.

Lemma 2.4.7. Let η be a continuous function defined on R+× [−1, 1]d, C2 and strictly

positive on the interior and such that η = 0 on the boundary. Assume that η satisfies the

following inequalities:

(∂t −∆)η

η
+ 2
|Oη|2

η2
6
η

2
f(

1

η
), (2.4.8)
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and

0 6 η 6
1

f−1(‖g‖)
. (2.4.9)

Then if u solves (2.4.1) it satisfies the bound uη 6 2.

Proof. Take u satisfying (2.4.1). Either uη attains its maximum on [0, 1] × [−1, 1]d

at some point z0 ∈ (0, 1] × (−1, 1)d, or it is non-positive, in which case u 6 0 in

[0, 1] × {|x| 6 1}. Assuming this is not the case, we get that at the maximum point,

0 = O(uη)(z0), i.e.

Ou = −Oη
η
u. (2.4.10)

If z0 ∈ {1} × (−1, 1)d, then ∂tηu(z0) > 0. Else, ∂tηu(z0) = 0. Additionally,

∆ηu(z0) 6 0 and therefore at the maximum we have

0 6(∂t −∆)(uη) = η(∂t −∆)u+ u(∂t −∆)η − 2Ou · Oη
(2.4.1);(2.4.10)

6 − η(f(u)− g) + u
(

(∂t −∆)η + 2
|Oη|2

η

)
.

Then we get from (2.4.8)

f(u)

u
6
η

2
f
(1

η

)
+
‖g‖
u

6 2 max
{η

2
f
(1

η

)
,
‖g‖
u

}
. (2.4.11)

If the maximum is realised by the first term, then f(u)
u 6 ηf( 1

η ). Since uf ′(u) > f(u),

u 7→ f(u)
u is increasing, we have that at z0, uη 6 1. If the maximum is realised by the

second term, then it has to be bigger than the first one :

η

2
f
(1

η

)
6
‖g‖
u
⇒ uη 6 2

‖g‖
f( 1

η )
.

We then have that at z0, uη 6 2 under the condition (2.4.9).

Thus proving a bound on u reduces to choosing a suitable function η satisfying the

inequalities (2.4.8) and (2.4.9). Ideally, we would like to take η directly as

η(x, t) = min
{

Θ−1
( 1

λ2t

)−1
,Θ−1

( 1

λ2(1− xi)2

)−1
, i = 1...d, f−1(‖g‖)−1

}
.

This almost works as the individual function within the min do satisfy (2.4.8). Indeed,

for example η(x, t) = Θ−1
(

1
λ2t

)−1
satisfies

∂tη =
λ2

(λ2t)2

1

Θ′ ◦Θ−1( 1
λ2t

)
η2. (2.4.12)
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We use v = Θ−1( 1
λ2t

) 6 1
η and f = f1f2. Given that Θ′(y) =

f ′1(y)
y − f1(y)

y2 , we get

∂tη

η2f( 1
η )

6
λ2

f( 1
η )

Θ(v)2

Θ′(v)
6

λ2

f1(v)f2(v)

Θ(v)2

Θ′(v)
=

λ2

f2(v)

1
vf ′1(v)
f1(v) − 1

.

Applying the condition (2.4.3) gives a bound on this, independent of v, establishing

(2.4.8). Unfortunately, taking the min of these functions is not an admitted operation

due to the discontinuity of the derivative at the points where we join two solutions (recall

that while the minimum of two supersolutions is a supersolution the maximum of two

supersolutions in general is not).

In the following lemma we overcome this problem by replacing the non-smooth function

min{x1, . . . , xn} in the above definition of η by the smooth function

1

x−1
1 + . . . x−1

n
.

Lemma 2.4.8. For z = (t, x) ∈ (0,∞)× (−1, 1), we define

η(x, t) =
1

Θ−1( 1
λ2t

) +
∑d

i=1

(
Θ−1( 1

λ2(1+xi)2 ) + Θ−1( 1
λ2(1−xi)2 )

)
+ f−1(‖g‖)

,

(2.4.13)

where λ = (28d+ 1)−
1
2 and we continuously extend with the value 0 on the boundary

of the domain. Then η satisfies (2.4.8) and (2.4.9) and

1

η
6 (2d+ 1)Θ−1

( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
+ f−1(‖g‖) (2.4.14)

This choice of η guarantees a bound on u that is related to the distance from the boundary

of [0, 1]× [−1, 1]d, independently of the boundary conditions. Lemmas 2.4.7 and 2.4.8

imply directly Theorem 2.4.4.

Proof. The condition (2.4.9) is obvious, and so is (2.4.14). We have a bit more:

(2d+ 1)Θ−1
( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
>

1

η
− f−1(‖g‖) > Θ−1

( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
.

(2.4.15)
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We will now check (2.4.8). For the time variable, we have as in (2.4.12)

∂tη =
λ2

(λ2t)2

1

Θ′ ◦Θ−1( 1
λ2t

)
η2,

and we have already seen that this implies

∂tη

η2f( 1
η )

6 λ2.

We now consider the spatial derivatives.

∂iη =
1

λ2

( 2

(1 + xi)3

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

− 2

(1− xi)3

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)
η2,

∂2
i η =− 1

λ2

( 6

(1 + xi)4

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

+
6

(1− xi)4

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)
η2

+
1

λ4

( 4

(1 + xi)6

Θ′′ ◦Θ−1( 1
λ2(1+xi)2 )(

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

)3 +
4

(1− xi)6

Θ′′ ◦Θ−1( 1
λ2(1−xi)2 )(

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)3)η2

+
2

λ4

( 2

(1 + xi)3

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

− 2

(1− xi)3

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)2
η3.

Note that the last line is equal to ∂iη
η2 2η∂iη = 2 (∂iη)2

η , hence it will cancel when com-

puting −∂2
i η + 2 (∂iη)2

η . For the remaining terms, we use v1,i = Θ−1( 1
λ2(1+xi)2 ) and

v2,i = Θ−1( 1
λ2(1−xi)2 ) and we get:

1

λ2f( 1
η )

(
− ∂2

i η

η2
+ 2

(∂iη)2

η3

)
=

6Θ(v1,i)
2

f( 1
η )(

f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)
+

6Θ(v2,i)
2

f( 1
η )(

f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)

− 4Θ(v1,i)
3

f( 1
η )

f ′′(v1,i)
v1,i

− 2
v1,i

(
f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)

(
f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)3

− 4Θ(v2,i)
3

f( 1
η )

f ′′(v2,i)
v2,i

− 2
v2,i

(
f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)

(
f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)3
.

Using that f is increasing, the bound (2.4.15) and f = f1f2, we have that f( 1
η ) >

f1(vj,i)f2(vj,i) for j ∈ {1, 2}. We also know that f ′′2 > 0, hence we get:

1

f( 1
η )

(
− ∂2

i η

η2
+ 2

(∂iη)2

η3

)
6

6λ2

f2(v1,i)(
f ′1(v1,i)v1,i

f1(v1,i)
− 1)

+
6λ2

f2(v2,i)(
f ′1(v2,i)v2,i

f1(v2,i)
− 1)
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+
8λ2

f2(v1,i)(
f ′1(v1,i)v1,i

f1(v1,i)
− 1)2

+
8λ2

f2(v2,i)(
f ′1(v2,i)v2,i

f1(v2,i)
− 1)2

.

We conclude this proof by using the condition (2.4.3) and the value λ = (28d+1)−
1
2 .

2.5 Proof of Theorem 2.3.1

From now on, f(u) = |u|m−1u. In particular, Theorem 2.4.2 holds with Θ−1(R−2) =

R−
1

m−1 . The proof relies on two arguments. The small scale oscillations are controlled

via Schauder theory and the large scale behaviour through the maximum principle

derived in Section 2.4, which applies only to regular objects. A connection between

the two is established via the convolution of the equation with the kernel introduced in

Section 2.3, which produces a commutator term. The technicality of the proof lies in

balancing the contribution of the commutator and the contribution of the irregular noise.

Throughout the proof, . will denote a bound up to a multiplicative constant which may

change from line to line, but will only depend on d, m and α. We will also write um as a

short-hand for u|u|m−1, as in the case when m is an odd integer.

STEP 1: Local Schauder estimate We claim that for any R > 0, for any k > 2,

[u]α,B(z,R) . sup
L6kR

L2−α‖(1{B(z,kR)}(∂t −∆)u)L‖+ (kR)−α‖u‖B(z,kR)

6(kR)2−α‖u‖mB(z,kR) + (kR)2−α‖g‖+ [ζ]α−2,B(z,kR)

+ (kR)−α‖u‖B(z,kR). (2.5.1)

We prove this estimate by applying a cutoff function and using the low-regularity

Schauder estimate given in Lemma 2.9.1. By scaling and translation, it is enough to

prove for some Cα function U ,

[U ]α,B(0, 1
2

) . sup
L61

L2−α‖(1{B(0,1)}(∂t −∆)U)L‖+ ‖U‖B(0,1). (2.5.2)

Indeed, since [u]α,B(0, 1
k

) 6 [u]α,B(0, 1
2

), if we have (2.5.2), define

U(t, x) = u((kR)2(t− t0), kR(x− x0)).

Then

‖u‖B(z,kR) = ‖U‖B(0,1), [u]α,B(z,R) = (kR)α[U ]α,B(0, 1
k

)

sup
L6kR

L2−α‖(1{B(z,kR)}(∂t −∆)u)L‖ = sup
L61

L2−α‖(∂t −∆)(U1{B(0,1)})L‖.
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We proceed to prove (2.5.2). Let η be a cutoff function, with value 1 on B(0, 1
2) and

0 on B(0, 1)C , and such that ‖Oη‖ and ‖(∆ + ∂t)η‖ are bounded by an independent

constant. Then

(∂t −∆)Uη = η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη). (2.5.3)

By applying our version of the Schauder estimate, Lemma 2.9.1 to Equation (2.5.3) we

get that:

[Uη]α . sup
0<L<1

L2−α‖(η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη))L‖. (2.5.4)

We apply the triangle inequality and make use of (2.3.8) to bound each of these terms as

follows.

‖(η(∂t −∆)U)L‖ . ‖(1{B(0,1)}(∂t −∆)U)L‖,

‖(U(∂t + ∆)η)L‖ 6 ‖U(∂t + ∆)η‖ . ‖U‖B(0,1),

‖(O.(UOη))L‖ = sup
z

∫
(UOη)(z − z).OΨL(z)dz

6‖UOη‖‖OΨL‖L1

.
1

L
‖U‖B(0,1).

Since α < 1, we have

sup
0<L<1

L2−α‖(η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη))L‖

. ‖(1{B(0,1)}(∂t −∆)U)L‖+ ‖U‖B(0,1).

This concludes the proof of (2.5.2), hence the proof of (2.5.1).

STEP 2: Application of the maximum principle We convolve the equation (2.1.1)

with ΨL, where L ∈ (0, 1) will be specified later:

(∂t −∆)uL = −(uL)m + gL + ζL + ((uL)m − (um)L) . (2.5.5)

The anti-symmetry of u 7→ um and Theorem 2.4.4 implies that for all 0 < R′ < R < 1
2 ,
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‖uL‖PR . max
{( 1

(R−R′)2

) 1
m−1

, ‖g‖
1
m , ‖ζL‖

1
m
PR′

,(
‖(uL)m − (um)L‖PR′

) 1
m

}
. (2.5.6)

The goal is now to balance the commutator and the term with the noise. This will be

done by choosing the parameter L appropriately in Step 5 below.

STEP 3: Bounds on the commutator We need estimates on the commutator (uL)m−
(um)L. This is obtained as u is Cα, using the moment bounds (2.3.5) and (2.3.6).

((uL)m − (um)L)(z) =

∫
ΨL(z − z) (uL(z)m − u(z)m) dz

=

∫
ΨL(z − z)

∫ 1

0
((u)L(z)− u(z))m (λ(u)L(z) + (1− λ)u(z))m−1 dλdz

6m‖u‖m−1
B(z,L)

∫
ΨL(z − z) (uL(z)− u(z) + u(z)− u(z)) dz

6m‖u‖m−1
B(z,L)

∫
ΨL(z − z)

(
Lα[u]α,B(z,L) + [u]α,B(z,L)d(z, z)α

)
dz

62m‖u‖m−1
B(z,L)L

α[u]α,B(z,L).

Since this is true for all z ∈ PR,

‖(uL)m − (um)L‖PR 6 2m‖u‖m−1
PR−L

sup
z∈PR

[u]α,B(z,L)L
α. (2.5.7)

Using the local Schauder estimate (2.5.1) gives, for any k > 2:

‖(uL)m − (um)L‖PR . L2k2−α(‖u‖2m−1
PR−kL

+ ‖u‖m−1
PR−kL

‖g‖)

+ ‖u‖m−1
PR−L

sup
z∈PR

[ζ]α−2,B(z,kR)L
α + k−α‖u‖mPR−kL . (2.5.8)

STEP 4: Boot-strapping We show here that for k, L such that 2(k + 1)L 6 1, with

as before k > 2, and for 1 > R > 2(k + 1)L, we have

‖u‖PR . max
{
R

2
1−m , ‖g‖

1
m ,
(
[ζ]α−2,P0L

α−2
) 1
m , (L2k2−α)

1
m ‖u‖2−

1
m

P0
,(

L2k2−α) 1
m ‖u‖1−

1
m

P0
‖g‖

1
m ,
(
‖u‖m−1

P0
[ζ]α−2,P0L

α
) 1
m
, k−

α
m ‖u‖P0 ,

L2k2−α‖u‖mP0
, L2k2−α‖g‖, Lα[ζ]α−2,P0 , k

−α‖u‖P0

}
. (2.5.9)
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We need to be careful with the sets over which the supremum norms are taken, since our

different estimates always require a bit more space. We use the bound (2.3.6) and the

Schauder estimate (2.5.1) with L playing the role of R:

‖u‖PR 6‖uL‖PR + Lα sup
z∈PR

[u]α,B(z,L) (2.5.10)

6‖uL‖PR−L + L2k2−α(‖u‖mPR−kL + ‖g‖)

+ Lα[ζ]α−2,PR−kL + k−α‖u‖PR−kL .

Defining r = kL permits to apply the bounds (2.5.6), (2.5.8) and (2.3.7). As r > 0,

Pr ⊂ P0.

‖uL‖PR−L .max
{

(R− (k + 1)L)
2

1−m , ‖g‖
1
m , ‖ζL‖

1
m
Pr
, ‖(uL)m − (um)L‖

1
m
Pr

}
. max

{
(R− (k + 1)L)

2
1−m , ‖g‖

1
m ,
(
[ζ]α−2,P0L

α−2
) 1
m , (L2k2−α)

1
m ‖u‖2−

1
m

P0
,(

L2k2−α) 1
m ‖u‖1−

1
m

P0
‖g‖

1
m ,
(
‖u‖m−1

P0
[ζ]α−2,P0L

α
) 1
m
, k−

α
m ‖u‖P0

}
.

(2.5.11)

If we start with R > 2(k + 1)L then R− (k + 1)L > R
2 . Putting together (2.5.11) and

(2.5.10) gives (2.5.9).

STEP 5: Choosing L In order to balance the term containing ζ in (2.5.9), we see

that we should assign the value L = µ

‖u‖
m−1

2
P0

for some µ ∈ (0, 1) to be chosen. Note

also that as µ ∈ (0, 1), (µα−2 ∨ µα) = µα−2. Furthermore, we impose µ2k2−α 6 1.

Consequently, (2.5.9) becomes

‖u‖PR . max
{
R

2
1−m , (1 + (µ2k2−α)

1
m )‖g‖

1
m ,

(
µα−2‖u‖(m−1) 2−α

2
P0

[ζ]α−2,P0

) 1
m

,

((µ2k2−α ∨ k−α)
1
m + (µ2k2−α ∨ k−α))‖u‖P0 ,

µ2k2−α‖u‖1−mP0
‖g‖, µα

‖u‖(m−1)α
2

P0

[ζ]α−2,P0

}
. (2.5.12)

STEP 6: Identification of terms We claim that the bound above implies that there

exists a positive constants C such that:

‖u‖PR 6 C max
{
R

2
1−m , ‖g‖

1
m , [ζ]

1
1+(m−1)α2
α−2,P0

,
1

2C
‖u‖P0

}
. (2.5.13)
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We need to interpolate some of the arguments of the maximum in (2.5.12) with arguments

of our goal (2.5.13). The first two terms are already in the right form. For the next one,

Young’s inequality gives that for any γ > 0,

(
µα−2‖u‖(m−1) 2−α

2
P0

[ζ]α−2,P0

) 1
m

. µ
α−2
m max

{
γ‖u‖P0 , γ

α−2
2

m−1 +α [ζ]
1

1+(m−1)α2
α−2,P0

}
.

The next term is also in the right form, provided one chooses first k large, and then µ

small, both independently of ‖u‖P0 and satisfying all conditions above. The only condi-

tion that was not independent of ‖u‖P0 was 1 > 2(k+1)L = 2(k+1)(µ‖u‖−1
P0

)(m−1)/2.

However, if this condition is not satisfied after choosing k then µ according to all other

conditions above, it means that we have a bound on ‖u‖P0 :

‖u‖P0 < (2(k + 1)µ)
2

m−1 ,

which proves the theorem directly.

The last two terms can not be dealt with classical interpolation, since they involve

negative powers of ‖u‖P0 . For the first one, we state that always one of the following is

true, for any γ > 0:

‖u‖−(m−1)
P0

‖g‖ 6 γ‖u‖P0 or ‖u‖mP0
6

1

γ
‖g‖.

The first case gives the last argument of our objective for γ small enough. The second

case gives ‖u‖PR 6 ‖u‖P0 6 ( 1
γ ‖g‖)

1
m . We proceed similarly for the last term. One of

the following is always true:

µα‖u‖−(m−1)α
2

P0
[ζ]α−2,P0 6 µαγ‖u‖P0 or ‖u‖1+(m−1)α

2
P0

6
1

γ
[ζ]α−2,P0 .

Once again the first case gives the last argument of our objective for µαγ small enough,

and the second case gives ‖u‖PR 6 ‖u‖P0 6 ( 1
γ [ζ]α−2,P0)

1
1+(m−1)α2 . We can then

choose k large, µ and γ small to get the desired constant C.

STEP 7: Iterating the result The last argument of the maximum (2.5.13) is greater

than the first one for all R such that

R 6 R1 :=

(
1

2C
‖u‖P0

) 1−m
2

,

Let us check that this is not in contradiction with R1 > 2(k + 1)L. By defintion of L
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and R1,

2(k+1)L = 2(k+1)
µ

‖u‖
m−1

2
P0

= 2(k+1)µ(2C)
1−m

2 R1 6 R1 ⇔ 2(k+1)µ(2C)
1−m

2 6 1.

Since C > 1 and m > 1, it is enough to have 2(k + 1)µ 6 1. This can be done since µ

is chosen after k.

From this point, the result (2.5.13) can be iterated to get bounds for smaller and smaller

parabolic boxes.

‖u‖P(R+Rn−1)
6 C max

{ 1

2C
‖u‖PRn−1

, ‖g‖
1
m , [ζ]

1
1+(m−1)α2
α−2,P0

,
1

R
2

m−1

}
.

Define Rn recursively by

Rn −Rn−1 =

(
1

2C
‖u‖PRn−1

) 1−m
2

=

(
1

2C

‖u‖P0

2n−1

) 1−m
2

. (2.5.14)

We conclude by summing those increments:

Rn =

n∑
k=1

Rk −Rk−1 =

n∑
k=1

(
1

2C

‖u‖P0

2k−1

) 1−m
2

.

=

(
‖u‖P0

2C

) 1−m
2

n−1∑
k=0

(2
1−m

2 )k .

(
‖u‖P0

2C

) 1−m
2

(2.5.15)

The same arguments as in the proof of Lemma 2.2.1 concludes the proof of The-

orem 2.3.1.

2.6 Mutiplicative noise

We present an example of equation where our result applies. Let (Ω,F ,Ft,P) be a

filtered probability space and let (W (t, η), t > 0, η ∈ C∞0 (Rd)) be a Brownian motion

with spatial covariance operator K on Ω. We assume that K is given by the convolution

with a function with controlled blow-up near the origin, i.e.

Kφ(x) =

∫
Rd
K(x− x′)φ(x′)dx′, (2.6.1)

for K ∈ C∞(Rd \ {0}) satisfying

|K(x)| 6 1

|x|λ
, (2.6.2)
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for some λ < 2. If λ > 1 and d = 1, we allow additionally for a Dirac mass in the

origin, in which case (2.6.1) turns into

Kφ(x) =

∫
R
K(x− x′)φ(x′)dx′ + φ(x). (2.6.3)

In other words (W (t, η), t > 0, η ∈ C∞0 (Rd)) is a centred Gaussian process with

covariances given either by

EW (t, φ)W (t′, φ′) = (t ∧ t′)
∫
Rd

∫
Rd
φ(x)K(x− x′)φ′(x′)dxdx′

or in the one-dimensional case

EW (t, φ)W (t′, φ′)

= (t ∧ t′)
[ ∫

R

∫
R
φ(x)K(x− x′)φ′(x′)dxdx′ +

∫
R
φ(x)φ′(x)dx

]
.

Let (σ(t, x), t > 0, x ∈ Rd) be a progressively measurable process, with a deterministic

L∞ bound, without loss of generality |σ(t, x)| 6 1. Let u(t, x) be a continuous process

which satisfies the SPDE

du = (∆u− f(u) + g(u))dt+ σdW (2.6.4)

on P0, with f satisfying the Assumptions 2.4.3. More precisely, for all η ∈ C∞(R×Rd)
compactly supported in P0 we assume that the following holds almost surely:∫ ∫

u(−∂t −∆)ηdtdx

=

∫ ∫
(−f(u, z) + g(u, z))ηdtdx+

∫ ∫
η(x)σ(t, x)dxdW (t, x), (2.6.5)

where
∫ ∫

η(x)σ(t, x)dxdW (t, x) should be interpreted as a stochastic integral, as

defined in [24, Chapter 4]. The following lemma shows that the results of our determin-

istic analysis are applicable to this stochastic case.

The Theorem 2.3.1 does not depend on the particular choice of convolution kernel Ψ,

and different choices of kernel don’t change the Hölder norms. We apply it with Ψ̃

defined as

Ψ̃ = Ψ 1
2
∗Ψ 1

2
, (2.6.6)

where Ψ is as defined in Section 2.3. It is clear that Ψ̃ is still non-negative, smooth and

compactly supported in B(0, 1). We still write (·)L for the convolution with ΨL but we
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define the Cα−2 norm with respect to Ψ̃

[ζ]α−2,C = sup
0<L61

‖(ζL
2
)L

2
‖CL2−α

Lemma 2.6.1. We define a family of random variables (ζ(η), η ∈ C∞0 (R× Rd)) by

ζ(η) =

∫ ∫
η(x)σ(t, x)dxdW (t, x).

Then there exists a random distribution ζ̃ on Ω which almost surely takes values in Cα−2

for any α < 2−λ
2 and such that for ε > 0 small enough

E
[
exp

(
ε[ζ̃]2α−2,P0

)]
<∞. (2.6.7)

Furthermore ζ̃ is a modification of ζ in the sense that for all η ∈ C∞0 (R× Rd) we have

almost surely

ζ̃(η) = ζ(η).

We have the following corollaries.

Corollary 2.6.2. Let u solve the SPDE (2.6.4) in the sense of (2.6.5) for f and g

satisfying Assumption 2.4.3. Define Θ(u) = f1(u)
u . Then there exists ε0 = ε0(c, d, α) >

0 such that for 0 < ε 6 ε0,

E
[

exp

(
ε
(

sup
0<R6 1

2

‖u‖PR
Θ−1((λR)−2)

)2
)]

<∞.

Proof. Let ρ be a cutoff outside P0 supported on P0 +B(0, 1), and w be the bounded

solution to

(∂t −∆)w = ρξ,

vanishing for t < −2. From Lemma 2.9.2, ‖w‖ . [ξ]α−2. Using Corollary 2.4.6 and

Lemma 2.6.1 finishes the proof.

Using Theorem 2.3.1 in the case f(u) = u|u|m−1, we have the following improved

estimate:

Corollary 2.6.3. Let u solve the SPDE (2.6.4) in the sense of (2.6.5) where f(u, z) =

u|u|m−1 and g is bounded. Then there exists ε0 = ε0(m, d, α) > 0 such that for

0 < ε 6 ε0,

E
[

exp

(
ε
(

sup
0<R6 1

2

R
2

m−1 ‖u‖PR
)2+(m−1)α

)]
<∞.
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The proof of Lemma 2.6.1 relies on the following technical lemma.

Lemma 2.6.4. The supremum sup0<L61 ‖ζL‖
2p
P0
L2p(2−α) is bounded by the supremum

over dyadic L only,

sup
0<L61

‖ζL‖2pP0
L2p(2−α) . sup

L=2−k61

‖ζL‖2pP0+B(0,1)L
2p(2−α). (2.6.8)

Proof. By splitting the interval (0, 1) into [2−n, 2−n+1) for n > 1, it is enough to prove

that uniformly in n > 1 and λ ∈ (0, 1)

‖ζ2−n(1+λ)‖ . 2−n(α−2) sup
L=2−k61

L2−α‖ζL‖. (2.6.9)

This is a direct consequence of Lemma 2.8.1 quantifying the equivalence of Hölder

norms coming from different kernels applied with Υ = Ψ2−n(1+λ) and θ = 2−m for

some integer m large enough.

Proof of Lemma 2.6.1. This lemma is a variant of [55, Lemma 9] and we refer the reader

to that lemma for the construction of a suitable modification of ζ. Here we only show

the exponential integrability bound (2.6.7), using a similar argument as in [62, Lemma

4.1]. Throughout this proof, . denotes a bound up to a constant that depends only on

the dimension.

In the expansion in series of the exponential, we can exchange expectation and sum:

E
[

exp
(
ε2 sup

0<L61
‖(ζL

2
)L

2
‖2P0

L2(2−α)
)]

=
∞∑
p=0

ε2p
E
[
sup06L61 ‖(ζL

2
)L

2
‖2pP0

L2p(2−α)
]

p!
.

Applying Lemma 2.6.4, we can bound the supremum over all L by the sum over dyadic

L.

E
[

sup
0<L61

‖(ζL
2
)L

2
‖2pP0

L2p(2−α)

]
6

∑
L=2−k6 1

2

E
[
‖(ζL)L‖2pP0+B(0,1)

]
L2p(2−α).

Young’s inequality implies

‖(ζL)L‖P0+B(0,1) 6 ‖ζL‖Lq ,P0+B(0,2)‖ΨL‖Lq′ ,

where the subscript means that the Lq norm of ζL is taken over P0 +B(0, 2) and where

q′ = q−1
q . By scaling, ‖ΨL‖Lq′ . L

− d+2
q . We apply this with q = 2p.

E
[
‖(ζL)L‖2p

]
. E

[
‖ζL‖2pL2p,P0+B(0,2)

]
L−(d+2)
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= E

[∫
P0+B(0,2)

ζL(t, x)2pdtdx

]
L−(d+2)

. sup
z∈P0+B(0,2)

E
[
ζL(z)2p

]
L−(d+2).

We bound E
[
ζL(z)2p

]
using the boundedness of σ. Without loss of generality, we show

the computation for z = (0, 0). By the Burkholder-Davies-Gundy inequality,

E
[
ζL(0, 0)2p

]
= E

[(∫
(0,1)

∫
Rd

ΨL(t, x)σ(t, x)dW (t, x)
)2p
]

. pp
(∫ ∫ ∫

ΨL(t, x)ΨL(t, x′)σ(t, x)σ(t, x′)K(x− x′)dtdxdx′
)p

+ 1{d=1,λ>1}p
p
(∫ ∫

ΨL(t, x)2σ(t, x)2dtdx
)p

. pp(L−λ−2 + 1{d=1,λ>1}L
−d−2)p . ppL−p(λ+2).

We get that E
[
‖(ζ)L‖2p

]
L2p(2−α) . ppLp(2−2α−λ)−(d+2). Since 2− 2α− λ > 0, for

p large enough,

∑
L=2−k6 1

2

E
[
‖(ζL)L‖2p

]
L2p(2−α) . pp

1

1− 2−p(2−2α−λ)+(d+2)
.

By Stirling’s formula, for p large enough,

ε2p
E
[
sup06L61 ‖(ζL

2
)L

2
‖2pL2p(2−α)

]
p!

. ε2pep
√
p,

hence for ε < e−2, (2.6.7) is verified.

2.7 Invariant measure and Optimality

In this last section, we consider a special case of the SPDE considered in Section 2.6,

namely the case of a one-dimensional reaction-diffusion equation driven by an addit-

ive space-time white noise. We aim to argue that in this case the bound obtained in

Corollary 2.6.3 is optimal in terms of stochastic integrability.

Let d = 1 and let W be as in Section 2.6 with covariance operator Kη(x) = η(x). It is

well-known [23, Section 11.2] that if we impose Dirichlet boundary conditions on the

space-interval [−1, 1], then (2.6.5) defines a reversible Markov process with respect to

the measure
1

Z
exp

(
−
∫ 1

−1

1

m+ 1
|u(x)|m+1dx

)
µ(du), (2.7.1)
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where µ is the law of an appropriately scaled Brownian bridge and Z is a normalisation

constant. From the explicit expression (2.7.1) one can immediately read off that under

this measure the following expectations are finite for α < 1
2 and ε small enough

E
[
exp

(
ε

∫ 1

−1
|u|m+1dx

)]
<∞ and E

[
exp

(
ε[u]2α

)]
<∞. (2.7.2)

The following proposition, the proof of which is given in Appendix 2.10, shows how to

interpolate these two estimates to get optimal stochastic integrability for the supremum

norm ‖u‖.

Proposition 2.7.1. If u ∈ Cα(−1, 1) for α ∈ (0, 1) and um+1 is integrable, then u is

bounded and we have the following interpolation:

(‖u‖(−1,1)

2

)1+α(m+1)
6 max{[u]α‖u‖α(m+1)

m+1 , ‖u‖1+α(m+1)
m+1 }, (2.7.3)

where ‖.‖m+1 refers to the Lm+1 norm on [−1, 1].

Since 2α < 1,

‖u‖(m+1)α
m+1 [u]α 6 ‖u‖m+1

m+1 + [u]2α.

Hence, (2.7.2) implies that for ε small,

E
[
exp

(
ε‖u‖1+(m+1)α

)]
<∞. (2.7.4)

On the other hand, from Theorem 2.3.1 and from Corollary 2.6.3, we get

E
[

exp
(
ε(2−

2
m−1 ‖u‖P 1

2

)2+(m−1)α
)]

<∞. (2.7.5)

Therefore, for α→ 1
2 , the exponents in (2.7.4) and (2.7.5) both converge to m+3

2 .

2.8 Appendix: Technical lemma

For a multi-index m ∈ Nd+1, define |m| = 2m0 +
∑d

k=1mk the parabolic index, and

m! =
∏d
k=0mk!.

Lemma 2.8.1. Let Υ and Ψ be two C∞ kernels supported in B(0, RΥ) and B(0, RΨ)

respectively. Assume that for some odd integer β > 0,
∫
Rd+1 z

nΨ(z) = δn=0 holds

for all multi-indices n with |n| 6 β. For R > 0 set R := R + RΥ + 2RΨ. Then for

θ < θ0(Ψ) and for any function or distribution ζ

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R). (2.8.1)
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Here and in the proof . means 6 C(Ψ, β).

Proof. Define inductively ω0 = Υ and ωk+1 = ωk − Ψθk ∗ ωk. Since Ψ cancels all

polynomials of degree less than β, one can see from Taylor’s formula that∫
|ωk −Ψθk ∗ ωk| . θ(β+1)k sup

|n|=β+1,β+2

∫
|∂nωk|,

and ∫
|∂n(ωk −Ψθk ∗ ωk)| .

∫
|∂nωk|,

hence by induction ∫
|ωk| . Ckθ(β+1)k sup

|n|=β+1,β+2

∫
|∂nΥ|. (2.8.2)

This bound shows the convergence of the telescopic sum

Υ =
∞∑
k=0

Ψθk ∗ ωk (2.8.3)

for θ small enough.

We can then write

‖ζ ∗Υ‖B(0,R) =
∥∥∥ ∞∑
k=0

Ψθk ∗ ωk ∗ ζ
∥∥∥
B(0,R)

6
∞∑
k=0

‖ζ ∗Ψθk‖B(0,R)

∫
|ωk|

6 sup
L=θk61

Lβ‖ζ ∗ΨL‖B(0,R)

∞∑
k=0

Ckθk sup
|n|=β+1,β+2

∫
|∂nΥ|.

The following lemma shows that the assumption of vanishing moments for Ψ can be

removed from the previous lemma at the expense of making the domain on the right

hand side even larger.

Lemma 2.8.2. Let Υ and Ψ be two C∞ kernels supported in B(0, RΥ) and B(0, RΨ)

respectively. Let β > 0 be an odd integer and for R > 0 set R := R+RΥ + 5RΨ.Then

for θ < θ0(Ψ) and for any function or distribution ζ

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R). (2.8.4)
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Here and in the proof . means 6 C(Ψ, β).

Proof. For any β > 0, we build from Ψ a kernel Ψ′ that satisfies the hypothesis of

Lemma 2.8.1.

We define An,m =
∫
zn∂mΨ(z)dz and observe that since Ψ is compactly supported and

since
∫

Ψ = 1, we have

An,m =

 0 if |n| 6 |m|, n 6= m,

(−1)|m|m! if n = m.

Hence for any β > 0, (An,m)|n|,|m|6β is an invertible linear system. By continuity of

the coefficients, for r small enough,

Arn,m =

∫
zn∂m(Ψr ∗Ψ)(z)dz (2.8.5)

is also an invertible linear system. Hence, there exists coefficients (am)|m|6β such that

∑
|m|6β

am

∫
zn∂m(Ψr ∗Ψ)(z)dz =

 1 if n = 0

0 else.
(2.8.6)

Set ω(0) =
∑
|m|6β am∂

mΨr and Ψ′ = ω(0) ∗Ψ, then

∫
znΨ′(z)dz =

 1 if n = 0

0 for 0 < |n| < β.
(2.8.7)

We can therefore apply Lemma 2.8.1 with Ψ′ to get

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R+RΥ+2RΨ′ )
.

We have also

‖ζ ∗Ψ′L‖B(0,R+RΥ+2RΨ′ )
= ‖ζ ∗ΨL ∗ ω(0)

L ‖B(0,R+RΥ+2RΨ′ )

6 ‖ζ ∗ΨL‖B(0,R+RΥ+5RΨ)

∫
|ω(0)|.
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2.9 Appendix: Low regularity Schauder estimate

We give here a proof of a low regularity Schauder estimate in our setting. This is enough

for the current chapter. More elaborate Schauder estimmates are introduced in the

following chapter.

Lemma 2.9.1. Let u be a Cα-function for some α ∈ (0, 1) and let f := (∂t − ∆)u.

There exists a constant C = C(α, d) such that

[u]α 6 C sup
0<L<∞

L2−α‖fL‖. (2.9.1)

Proof. Throughout the proof . will denote a bound up to a multiplicative constant,

which may change from line to line, but which always depends only on α and d. Define

N = supL61 L
2−α‖fL‖. Since (·)L denotes the convolution with a smooth kernel,

it commutes with derivatives. We know that for L < 1, for any l ∈ span{1, xi, i ∈
{1, ..., d}}, we have on R× Rd,

(∂t −∆)(uL − l) = fL.

For z0 ∈ B(0, 1), for some δ > 0 to be fixed below, define v> as the solution to

(∂t −∆)v> = 1{B(z0,δ)}fL, v>|∂B(z0,δ) = 0,

where ∂B(z0, δ) = {z = (t, x), d(z, z0) = δ, t 6 t0} is the parabolic boundary of

B(z0, δ). The first interesting inequality we get from standard heat equation estimates

[49, Cor.8.1.5] is

‖v>‖ . δ2‖fL‖ 6 δ2Lα−2N. (2.9.2)

Define v< = uL − v>. As (∂t −∆)v< = 0 on B(z0, δ) for any differential operator

D ∈ {∂t, ∂i∂j , i, j ∈ {1, ..., d}},

‖Dv<‖B δ
2

. δ−2 inf
l
‖uL − l‖B(z0,δ),

where l runs over all function spanned by 1 and xi, i ∈ {1, ..., d}. Therefore, for any

R < δ
2 , for the same range of operator D, for a suitably chosen lR ∈ span{1, xi, i ∈

{1, ..., d}},

‖v< − lR‖B(z0,R) 6 R2‖Dv<‖B(z0,R) .

(
R

δ

)2

inf
l
‖uL − l‖B(z0,δ).
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Using the definition of v< and the triangle inequality,

‖uL − lR‖B(z0,R) − ‖v>‖B(z0,R) .

(
R

δ

)2

inf
l
‖uL − l‖B(z0,δ).

From (2.9.2),

1

Rα
‖uL − lR‖ .

(
R

δ

)2−α 1

δα
inf
l
‖uL − l‖B(z0,δ)

+

(
δ

L

)2(L
R

)α
N. (2.9.3)

Furthermore, from (2.3.6) we get,

1

Rα
‖u− lR‖B(z0,R) .

1

Rα
‖uL − lR‖B(z0,R) +

(
L

R

)α
[u]α. (2.9.4)

Similarly, for any l ∈ span{1, xi, i ∈ {1, ..., d}}

1

δα
‖uL − l‖B(z0,δ) .

1

δα
‖u− l‖B(z0,δ) +

(
L

δ

)α
[u]α. (2.9.5)

Hence for 0 < ε < 1, for L = εR = ε2δ, (2.9.3) and (2.9.4),(2.9.5) give:

1

Rα
inf
l
‖u− l‖B(z0,R) . ε2−α

1

δα
inf
l
‖u− l‖B(z0,δ) (2.9.6)

+(εα + ε2α)[u]α + εα−4N. (2.9.7)

Note that [u]α ∼ supz0 supδ
1
δα inf l ‖u− l‖B(z0,δ), hence

[u]α . (ε2−α + εα + ε2α)[u]α + εα−4N. (2.9.8)

By making ε small enough, we can absorb [u]α in the right-hand side of (2.9.8) into the

left-hand side, concluding the proof of the Schauder estimate (2.9.1).

Corollary 2.9.2. Let f be compactly supported in B(0, R) and let u be the unique

bounded solution to (∂t −∆)u = f which vanishes for t 6 −R2. Then for α ∈ (0, 1)

there exists a constant C = C(α, d) such that

[u]α 6 C sup
0<L62R

L2−α‖fL‖, (2.9.9)
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and

‖u‖ 6 CRα sup
L62R

L2−α‖fL‖. (2.9.10)

Proof. By a scaling argument, we can show the result for R = 1
2 . We first show an

equivalence of kernels by applying Lemma 2.8.2 with β > 1−α and Υ = ΨL−Ψ∗ΨL−1.

Since f has compact support, we do not need to keep track of the domains. There exists

a θ < 1 and a constant C = C(Ψ, β) such that:

‖fL − (f1)L−1‖ 6 C sup
|n|=β+1,β+2

∫
|∂n(ΨL −Ψ ∗ΨL−1)| sup

S=θk
Sβ‖fS‖

Therefore, we can write

L2−α‖f‖L 6 L2−α‖(f1)L−1‖+ L2−αCL−β−1 sup
S=θk

Sβ‖fS‖

6 L2−α(L− 1)−d−2‖f1‖+ CL1−α−β sup
S61

S2−α‖fS‖

6
(
L2−α(L− 1)−d−2 + CL1−α−β

)
sup
S61

S2−α‖fS‖.

Therefore the supremum can be taken over scales L 6 2R. In the proof of Lemma 2.9.1,

the only place where the hypothesis [u]α <∞ was used was in (2.9.8).This assumption

can be removed as by regularising the equation first, we have that uniformly for any

τ > 0,

[uτ ]α . sup
L62R

L2−α‖(fτ )L‖ 6 sup
L62R

L2−α‖fL‖,

and as u is continuous, we can pass to the limit for τ → 0.

For (2.9.10), we write u = uR + (u− uR). For the second term we get

‖u− uR‖ 6 Rα[u]α
(2.9.9)
. Rα sup

0<L62R
L2−α‖fL‖.

For the smooth part uR we write (∂t −∆)uR = fR we use a standard L∞ estimate for

the heat equation with compactly supported right-hand side [49, Thm 8.4.2] and get

‖uR‖ . R2‖fR‖ . Rα sup
0<L62R

L2−α‖fL‖.
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2.10 Appendix: Proof of Proposition 2.7.1

If u ∈ Cα(−1, 1) for α ∈ (0, 1) and um+1 is integrable, then u is bounded and we have

the following interpolation:

(‖u‖(−1,1)

2

)1+α(m+1)
6 max{[u]α‖u‖α(m+1)

m+1 , ‖u‖1+α(m+1)
m+1 }, (2.10.1)

where ‖.‖m+1 refers to the Lm+1 norm on [−1, 1].

For any interval I ⊂ [−1, 1],

|u(t)| − 1

|I|

∣∣∣ ∫
I
u(s)ds

∣∣∣ 6 1

|I|

∫
I
|u(t)− u(s)|ds 6 1

|I|

∫
I
[u]α,I |t− s|α.

If t ∈ I , |t− s|α 6 Iα. We can apply Jensen’s inequality.

|u(t)| 6
(

1

|I|

∫
I
|u(s)|m+1ds

) 1
m+1

+ |I|α[u]α,I .

And since this is true for any I ⊂ [−1, 1], we have for any choice of 0 < x 6 2,

‖u‖I 6 x−
1

m+1 ‖u‖m+1 + xα[u]α,I .

If ‖u‖m+1 > [u]α then choose x = 1 to get ‖u‖(−1,1) 6 2‖u‖m+1. Else choose

x = (‖u‖m+1/[u]α)
m+1

1+α(m+1) 6 1 and get ‖u‖(−1,1) 6 2[u]
1

1+α(m+1)
α ‖u‖

α(m+1)
1+α(m+1)

m+1 . In

conclusion,

‖u‖(−1,1) 6 2 max{‖u‖m+1, [u]
1

1+α(m+1)
α ‖u‖

α(m+1)
1+α(m+1)

m+1 }.
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Chapter 3

Space-time localisation for Φ4
3

3.1 Introduction

The aim of this chapter is to understand how techniques from the previous chapter can

be adapted to derive a priori bounds for the three dimensional stochastic quantisation

equation, also known as the dynamic Φ4
3 model. This model is - at least formally - given

by the nonlinear stochastic partial differential equation (SPDE)

(∂t −∆)u = −u3 + ξ, (3.1.1)

where ξ is the space-time white noise over R×Rd. In our main result, Theorem 3.2.1, we

show a bound on the solution in the case d = 3 on a compact space-time set that depends

only on a finite number of explicit polynomials in the Gaussian noise on a slightly larger

space-time set. In particular, our bound does not depend on any space-time boundary

conditions.

The main difficulty when working with (3.1.1) compared to the previous chapter is the

roughness of the driving noise ξ which in turn makes the solution irregular and the

interpretation of nonlinear terms non-trivial. It is now well-understood that solutions

are distribution valued in spatial dimension d > 2 and the nonlinearity has to be

renormalised, which loosely speaking corresponds to replacing (3.1.1) by

(∂t −∆)u = −u3 + “∞” u+ ξ. (3.1.2)

The theory of singular SPDEs of this type has been revolutionised in the recent years,

starting with Hairer’s theory of regularity structures [41].

This theory is by now well-developed and enables the analysis of a range of equations

which are much more singular than the dynamic Φ4
3 model, however we recall that the
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arguments currently available are insufficient to go beyond a short time existence theory

in any of these equations. For example, the construction of solutions to (3.1.1) in [41]

does not make use of the “good” sign of the nonlinear term −u3 and would work equally

if it were replaced with a +u3. Solutions for this modified equation are expected to blow

up in finite time.

For (3.1.1) in dimension 3 the problem of passing from a local to a global solution theory

has been largely overcome in a series of very recent works starting with [54] where

(3.1.1) was studied on the torus T3 and a priori estimates were obtained which ruled

out the possibility of finite time blow-up. In [35] a priori estimates for solutions on the

full space R3 were shown; see also [2, 36] for an analysis of the invariant measures

based on similar ideas. All of these articles worked in the framework of paracontrolled

distribution rather than regularity structures.

In this chapter we adapt the technique combining the maximum principle with the

convolution argument from the previous chapter to derive a priori estimates within the

framework of regularity structures. We show a space-time version of the “coming down

from infinity” property, i.e. we provide a bound on the solution on a compact space-

time set that depends on the realisation of the noise on a slightly larger set, but does

not depend on the behaviour of the solution elsewhere, making full use of the strong

nonlinear damping term −u3. This local dependence makes this bound extremely useful

when analysing the behaviour of solutions on large scales.

A main interest of this approach is the technique itself. Its advantages are that we

effectively separate the argument for small and large scales by dealing with a family of

regularised equations for large scales and use (an appropriate restatement) of the theory

of regularity structures to analyse the small scales. This results in a relatively short

argument compared to previous works and has the potential to work for a much larger

class of equations. We want to stress that our argument does not make use explicitly

of any of the results in [41]. In fact, in both the statement of our main result and its

proof we fully avoid the terminology of this theory, i.e. the notions of model, modelled

distribution, structure group etc. but give a direct statement of all of the required bounds.

This is possible, because the algebra involved in the small scale solution theory of (3.1.1)

is still not too complex and we hope that our direct approach makes the presentation

more clear. We do however include a separate section in which we translate our main

estimates into the regularity structure terminology. This may also be used as a practical

example to understand the more complete introduction of regularity structures in the

next chapter.

This chapter is structured as follows. Section 3.2 contains the elements needed to state

our main result, Theorem 3.2.1, starting with the definitions of the proper Hölder spaces
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in Section 3.2.1. Section 3.2.2 presents the setting in which we solve Equation (3.1.1)

and our main result. The outline of the proof and the different lemmas required are

presented in Section 3.2.3. We then explain the close connection between our setting and

Hairer’s theory of regularity structures in Section 3.3, where the full regularity structure

for the Φ4
3 equation is presented. Section 3.4 contains the proof of the Theorem 3.2.1.

3.2 Setting and main result

3.2.1 Measuring regularity

As in chapter 2, regularity will be measured with respect to the metric

d((t, x), (t, x)) = max
{√
|t− t|, |x− x|

}
, (3.2.1)

and we use the same balls introduced previously (2.3.2).

Since we are dealing with a wider range of regularities, we need to expand the definitions

of Hölder space. For α ∈ (0, 1), we keep the same definition of the Hölder semi-norm

[.]α

[u]α := sup
z 6=z∈R×R3

|u(z)− u(z)|
d(z, z)α

. (3.2.2)

For α ∈ (1, 2), we define the Hölder semi-norm [.]α

[u]α := sup
z 6=z∈R×R3

|u(z)− u(z)− Ou(z).X(z − z)|
d(z, z)α

, (3.2.3)

where ∇ refers to the spatial gradient, and we introduce the function X which is the

projection on space coordinates. We will often deal with functions U(z, z) of two

variables generalising the increments of u(z)− u(z) in (3.2.3) above. In this case we

define for α ∈ (1, 2)

[U ]α := sup
z∈R×R3

inf
ν(z)∈R3

sup
z∈R×R3\{z}

|U(z, z)− ν(z).X(z − z)|
d(z, z)α

. (3.2.4)

The infimum over functions ν is attained when ν(z) is the spatial gradient in the second

coordinate of U at point (z, z). As before, we often work with norms which only

depend on the behaviour of functions / distributions on a fixed subset of time-space: if

B ⊂ R× R3 is a bounded set, then we define the local α-Hölder semi-norm [.]α,B as in

(3.2.2) with the supremum restricted to z, z ∈ B. The use of a third index r as in [.]α,B,r

indicates that the supremum is restricted to z and z at distance at most r. Similarly, ‖.‖
denotes the L∞ norm on the whole space R× R3 and ‖.‖B the norm of the restriction

of the function to B, and for a function of two variable, ‖.‖B,r is the norm restricted to
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z, z ∈ B with d(z, z) 6 r.

From now on and for the remainder of this chapter, x, y and z will always denote a

generic space-time variable.

In the spirit of the convolution method, we work again with a Besov-Hölder type norm

to measure negative regularity, however we need here further precision in the choice of

the kernel. Our definition is strongly inspired by the choice of smooth kernel satisfying

the semi-group property with respect to the scaling parameter first introduced in [62].

This semi-group property allows us to effectively connect regularisations at different

scales and thus makes the proof of the Reconstruction Theorem 3.2.8 very convenient.

However, an additional twist is required. For us it is important to be able to define local

norms that only depend on properties of distributions on a compact set. This makes

it most convenient to work with a compactly supported kernel in the definition of the

norm. But the kernel used in [62] does not have this property. Wavelet bases, on the

other hand, permit a convenient transition from one scale to another and can consist of

compactly supported functions, but unfortunately the projection on these basis functions

do not commute with differential operators. The following simple construction yields a

kernel which is compactly supported and enjoys a version of the semi-group property for

dyadic scales which is enough to prove the reconstruction theorem.

We fix a non-negative smooth function Φ with support in B(0, 1), symmetric in space,

with Φ(x) ∈ [0, 1] for all x ∈ R × R3 and with integral 1. Setting ΦL(t, x) =

L−5Φ( t
L2 ,

x
L), we now define ΨL,n = ΦL2−1∗ΦL2−2∗...∗ΦL2−n and ΨL = limn→∞ΨL,n

so that ΨL = ΦL
2
∗ΨL

2
. The convergence can be checked easily. ΨL and ΨL,n are non-

negative and smooth, symmetric in space and with support B(0, 1) and B(0, 1− 2−n).

We define the operator (·)L by convolution with ΨL, and (·)L,n by convolution with

ΨL,n for n > 1. (·)L,0 is the identity. Since ΨL,n+m = ΨL,n ∗ΨL2−n,m, we have

(·)L,n+m = ((·)L2−n,m)L,n. (3.2.5)

Taking m to infinity in this, or equivalently noticing that ΨL = ΨL,n ∗ΨL2−n , we have

the desired relation between dyadic scales

(·)L = ((·)L2−n)L,n. (3.2.6)

We then define the local Cα norm of a distribution θ for α < 0 as

[θ]α,C = sup
L61
‖(θ)L‖CL−α. (3.2.7)

It is proven in [5, Theorem 2.34] that for a similar quantity, in the case where C is a
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torus of size one this corresponds to the classical Besov norm Bα∞,∞ . In our case, [θ]α,C

depends on the distribution θ on C +B(0, 1) since Ψ has support in B(0, 1)

Furthermore, we recall and mention the scaling estimates, for n ∈ N∪{∞} and α > −5∫
|ΨL,n(x− y)|d(x, y)αdy 6 Lα,

∫
|OΨL,n(x− y)|d(x, y)αdy . Lα−1. (3.2.8)

Here and in the rest of the thesis, ”.” denotes a bound that holds up to a multiplicative

constant. This immediately implies that for any h ∈ Cα, α ∈ (0, 2), and for any bounded

set C, we have

‖hL − h‖CL 6 Lα sup
z∈CL

[h]α,B(z,L) = Lα[h]α,C,2L. (3.2.9)

Indeed, since Ψ is symmetric in space we have
∫

Ψ(y)X(y)dy = 0 where X denotes

the projection onto space coordinates, and for all x ∈ C:

(hL − h)(x) =

∫
ΨL(x− y)(h(y)− h(x))dy

=

∫
ΨL(x− y)(h(y)− h(x)− 1{α>1}Oh(x).X(y − x))dy

.[h]α,B(x,L)

∫
ΨL(x− y)d(x, y)αdy.

For products of functions, we will sometimes be using the following notational conven-

tion:

(fg)L(x)− f(x)gL(x) = ((f − f(x))g)L(x).

The presence of the variable means that we evaluate the function there first, and the

absence means that the convolution variable is used.

3.2.2 Main result

We will work with a regularised version of (3.1.1) throughout, i.e we assume that u is a

smooth function which on P satisfies

(∂t −∆)u = −u3 + ζ + (3C1 − 9C2)u, (3.2.10)

for real valued parameters C1, C2. Thus, throughout this work, we never have to address

the question of how a given expression has to be interpreted to make sense. The main

application we have in mind the case where ζ = ξδ, i.e. a regularisation of the white noise

at scale δ and where C1 and C2 are defined as the expectations of certain polynomials in

ξδ which diverge like 1
δ and log δ−1 as the regularisation is removed. More precision on
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the meaning of these constants was provided in section 1.2.3. However, in our analysis

these values only enter in the assumptions on the “trees” (see (3.2.12), (3.2.15) and

(3.2.17)) and their precise values do not appear. Despite dealing with smooth functions

we stress that all of our estimates are stable in the limit δ → 0, where ξ can only be

measured as a distribution of regularity −5
2− and u as a distribution of regularity −1

2−.

We will freely use the convention to speak of “distributions” when we refer to smooth

functions that can only be measured in a distributional norm in this limit.

We first introduce several polynomials in ζ that are used in the local description of the

solution to (3.2.10). These are (essentially) the same objects which appear in Hairer’s

small scale solution theory for (3.2.10) and we use his convention to denote these objects

by trees.

We start by fixing an ε > 0 which will always be assumed to be “sufficiently small”.

The first tree is is assumed to satisfy the point-wise identity on P

(∂t −∆) = ζ, (3.2.11)

and we assume a control in the C−
1
2
−ε norm. The constant C1 appears in the following

definitions of the trees and :

:= 2 − C1, := 3 − 3C1 , (3.2.12)

and these distributions will be measured in the norms of C−1−2ε and C−
3
2
−3ε, respect-

ively. We also introduce symbols of higher order: we assume that and satisfy the

point-wise identity on P

(∂t −∆) = , (∂t −∆) = . (3.2.13)

As expected with the heat operator, we assume that the regularity is increased by 2 i.e.

∈ C1−2ε and ∈ C
1
2
−3ε. The trees are built with leaves • which represents the noise

ξ, solving the heat equation is represented by a vertical edge, and taking renormalised

products of trees is done by joining them at the root.

Finally we introduce the trees X denoting the product of with X , , and and for

these we will need bounds on the quantities

[ X ]−2ε = sup
x∈P

sup
L<1

L2ε
∣∣∣ ∫ X(y − x) (y)ΨL(y − x)dy

∣∣∣, (3.2.14)

[ ]−4ε = sup
x∈P

sup
L<1

L4ε
∣∣∣ ∫ (( (y)− (x)) (y)− C2)ΨL(y − x)dy

∣∣∣, (3.2.15)

[ ]−4ε = sup
x∈P

sup
L<1

L4ε
∣∣∣ ∫ ( (y) (y)− (x) (y))ΨL(y − x)dy

∣∣∣, (3.2.16)
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[ ]− 1
2
−5ε = sup

x∈P
sup
L<1

L
1
2

+5ε
∣∣∣ ∫ (( (y)− (x)) (y)− 3C2 (y))ΨL(y − x)dy

∣∣∣.
(3.2.17)

We will work with the function v := u− which satisfies

(∂t −∆)v =− u3 + (3C1 − 9C2)u = −(v + )3 + (3C1 − 9C2)(v + )

=− v3 − 3v2 − 3v( 2 − C1)− ( 3 − 3C1 )− 9C2(v + )

=− v3 − 3v2 − 3v − − 9C2(v + ). (3.2.18)

The fact that the constant C1 disappears in this expansion was already noted in [22] and

that was enough to define solutions in dimension 2, where the constantC2 is unnecessary.

The main result can now be stated.

Theorem 3.2.1. If v solves (3.2.18) pointwise on P , then we have:

‖v‖PR 6 C max
{ 1

R
, [τ ]

1

nτ ( 1
2−ε)

|τ | , τ ∈ T
}
, (3.2.19)

where T = { , , X , , , , , , }, |τ | is the regularity in which we measure the

tree τ in the way explained above and nτ is the number of noises or leaves appearing in

the tree.

Remark 3.2.2. As stated above, the bounds we assume on the “trees” are (almost

– see the following Remarks 3.2.4 and 3.2.5) identical to those appearing as input

into the analytic part of [41]. The particular form of the x-dependent “counterterms”

−X(x) (y) in (3.2.14), (x) (y) in (3.2.15), − (x) (y) in (3.2.16) and (x) (y) in

(3.2.17) corresponds exactly to the “positive renormalisation” or re-centring procedure

of the trees performed there. See Section 3.3 for a more detailed discussion of positive

renormalisation in the theory of regularity structures.

In the case where ζ = ξδ is a regularised white noise and where C1 = E (y)2 and

C2 = E (y) (y), e.g. for y = (1, 0), uniform-in-δ-bounds on the various norms

were obtained in [41, Section 10]. We stress that in this low-regularity situation the

convergence of these terms as δ → 0 is highly non-obvious, even after renormalisation.

The calculations use probabilistic tools and strongly rely on stochastic cancellations.

The estimates in [41, Section 10] actually yield bounds on the moments of all of these

terms, so that our main result (3.2.19) implies bounds on moments of the solution:

Since τ is a random variable in the (inhomogeneous) Wiener chaos of order nτ over the
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Gaussian noise, [τ ]γτ has Gaussian tails, more precisely [27]:

E[exp(λ[τ ]
2
nτ
γτ )] <∞,

for some λ > 0. Hence for λ = λ
C1−2ε we get

E[exp(λ‖v‖1−2ε
PR

)] <∞. (3.2.20)

Remark 3.2.3. One of the main motivations to consider (3.1.1) is to use the Markovian

dynamics described by it to study its invariant measure, the Euclidean Φ4
3 quantum field

theory. In order to link this Euclidean (imaginary time) field theory to a real time field

theory, this measure should satisfy certain properties, the Osterwalder-Schrader axioms

[32, section 6.1]. Our bound (3.2.20) immediately transfers to this invariant measure.

Unfortunately, these stretched exponential moments just fall short of the exponential

bounds required for the Analyticity Axiom.

Remark 3.2.4. Hairer’s convention in the definition of the symbols in (3.2.11), and

in (3.2.13) differs slightly from ours: Instead of assuming that these objects satisfy a

partial differential equation as we do, he defines them using an integral condition, e.g.

(x) =

∫
R×R3

K(y, x)ζ(y)dy,

for a singular integral kernel K. This kernel K is essentially the Gaussian heat kernel,

but it is post-processed to make it compactly supported and to integrate to 0 against

polynomials up to a certain degree. After this post-processing K is not associated to a

differential operator any more and in this definition and the other stochastic terms are

not characterised by a (simple) PDE. This is in line with the general philosophy pursued

in [41] to view (3.1.1) as an integral equation using the mild formulation rather than a

differential equation.

Remark 3.2.5. Continuing the discussion of the symbols , and we point out that in

(3.2.11) and (3.2.13) we do not impose boundary conditions, but only that a certain PDE

holds point-wise. There is thus some choice in how these objects are defined and our

main result, the estimate (3.2.19), holds uniformly over all of these choices. This is also

the reason why the symbols and appear in the list T . For many choices of boundary

conditions Schauder theory would imply [ ]1−2ε . [ ]−1−2ε and [ ] 1
2
−3ε . [ ]− 3

2
−3ε

so that these symbols could be removed from T .

A natural choice to would be to impose Dirichlet boundary conditions on the parabolic

boundary of P in (3.2.11) and (3.2.13) and in this case such a Schauder estimate holds

indeed. Moreover, with this choice one would have the nice property that all of the
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objects on the right-hand side only depend on the realisation of ζ on P , which would be

in line with a “space-time Markov property.” This nice choice has the slight disadvantage

that (in the case where ζ = ξδ is a regularised white noise) the negative renormalisation

would have to be modified reflecting the boundary conditions which would lead to

x-dependent C1 and C2 in (3.2.12), (3.2.15), (3.2.17), and then an extra term would

have to be added in (3.2.10) in order to make the renormalisation of the original equation

x-independent. Such a construction could certainly be implemented, but we refrain from

doing so here (see [30], [68] for discussion of similar boundary issues).

Remark 3.2.6. The spatial dimension d = 3 only enters our analysis through the reg-

ularity assumptions on the “trees”. The various |τ | are all derived from the parabolic

regularity of the white noise in 1 + 3 time-space dimensions , which is −5
2−. The actual

PDE arguments we present do not rely on a specific choice of d.

3.2.3 Outline of proof

One of the key ideas behind the theory of regularity structures is the following scaling

argument:

û(t, x) = λ
d
2
−1u(λ2t, λx) (3.2.21)

is the scaling under which the stochastic heat equation (∂t−∆)u = ξ is invariant in law.

For the Φ4 equation the nonlinearity −u3 scales like −λ4−dû3. In dimension less than

4, this term formally vanishes on small scales, i.e. when λ goes to zero. This property

is called subcriticality in Hairer’s theory and corresponds to super-renormalisability in

quantum field theory. This observation suggests that in order to control the behaviour

of u on “small scales” one should use the heat operator and treat the nonlinearity as a

perturbation. This is precisely how a small-scale local solution theory is built in [41].

The sign of the nonlinearity −u3 is not used in this argument. The argument for large

scales on the other hand clearly has to rely on the “good term” −u3 and should not use

the smoothing of the heat operator too much.

We have already seen that as a perturbation of the linear equation, v = u− satisfies

(∂t −∆)v = −v3 − 3v2 − 3v − − 9C2(v + ). (3.2.22)

To control large scales, we apply the regularising operator (·)L for some L to be chosen

below and we get the equation

(∂t−∆)vL = −(vL)3−3(v2 )L−3(v )L−9C2(vL+ L)− ( )L+ ((vL)3− (v3)L).

(3.2.23)

This equation is not closed in terms of vL and we will require control on the commutator
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(vL)3 − (v3)L and on the products (v2 )L and (v )L. These are bounded in the small-

scale theory. For large scale bounds, we use the following lemma

Lemma 3.2.7. Let u be a continuous function defined on [0, 1]× [−1, 1]3, for which the

following holds point-wise in (0, 1]× (−1, 1)3:

(∂t −∆)u = −u3 + g(u, z), (3.2.24)

where g is a bounded function. We have the following point-wise bound on u, for all

(t, x) ∈ (0, 1]× (−1, 1)3:

|u(x, t)| 6 C max
{ 1

min{
√
t, (1− xi), (1 + xi), i = 1, 2, 3}

, ‖g‖
1
3

}
, (3.2.25)

for some independent constant C.

This lemma is a simplified version of 2.3.9, in the specific case on a cubic non-linearity.

It is the only part of the argument which makes use of the fact that u is a scalar field and

not vector valued. The rest of the proof would go through in the vector-valued case and

we expect that it is possible to find a vector-valued replacement for Lemma 2.6 as well.

In order to close the estimate obtained from Lemma 3.2.7, we require a bound that

controls high order regularity of v in terms of the L∞ norm. The classical method would

consist of using a Schauder estimate of the form [49, Theorem 8.9.2]

[u]δ+2,DRR
2 . [(∂t −∆)u+ u]δ,D

for solutions of the inhomogeneous heat equation. Then if the right-hand side depends

on lower order norms of u it can be absorbed into the left-hand side. We perform such an

argument in the case where usual Hölder norms are replaced by the norms of “modelled

distributions” (which depend on the underlying noise ζ).

First, power counting suggests that v + has better regularity than v (namely 1− 2ε)

and that this would be enough to define v2 = v(v + ) − (assuming that we can

construct ), but not enough to define v . The next idea to get even better description

of solution by explicit stochastic terms is to freeze coefficients at base point, and to look

at local expansions that depend on that base point. The expansion of v in around base

point x goes as follows:

v(y) = v(x)− ( (y)− (x))− 3v(x)( (y)− (x)). (3.2.26)

We introduce the following function of two variables based on this local description:

U(y, x) = v(y)− v(x) + (y)− (x) + 3v(x)( (y)− (x)). (3.2.27)
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The regularity of U , as defined in (3.2.4), is expected to be higher than 1. This better

description is indeed enough to define v . The core observation is the following abstract

reconstruction theorem, which is a variant of [41, Theorem 3.10] and [63, Proposition 1].

Theorem 3.2.8 (Reconstruction). Let γ > 0 and A be a finite subset of (−∞, γ]. Let

L ∈ (0, 1) and x ∈ R × R3. For a function F : B(x, L)2 → R assume that for all

β ∈ A there exist constants Cβ > 0 and γβ > γ such that for all t ∈ (0, L), for all

x1, x2 ∈ B(x, L− t)∣∣∣ ∫ Ψt(x2 − y)(F (y, x1)− F (y, x2))dy
∣∣∣ 6 ∑

β∈A
Cβd(x1, x2)γβ−βtβ. (3.2.28)

Then f : y 7→ F (y, y) satisfies∣∣∣ ∫ ΨL(x− y)(F (y, x)− f(y))dy
∣∣∣ . ∑

β∈A
CβL

γβ , (3.2.29)

where “.” represents a bound up to a multiplicative constant depending only on γ and

A.

As a consequence of this theorem, we get the following bounds on the products.

Lemma 3.2.9. The following bound on v2 holds:

|(v2 )L(x)| .L
1
2
−3ε‖v‖B(x,L)[v + ]1−2ε,B(x,L)[ ]− 1

2
−ε

+ L
1
2
−7ε[v] 1

2
−3ε,B(x,L)([ ] 1

2
−3ε[ ]− 1

2
−ε + [ ]−4ε) (3.2.30)

+ ‖v‖2B(x,L)[ ]− 1
2
−εL

− 1
2
−ε + ‖v‖B(x,L)[ ]−4εL

−4ε.

Lemma 3.2.10. The following bound on v holds:

|((v − v(x)) )L(x) + 3C2(vL + L)(x)| .

L
1
2
−7ε
(

[v] 1
2
−3ε,B(x,L)[ ]−4ε + [U ] 3

2
−5ε,B(x,L)[ ]−1−2ε + [ν] 1

2
−5ε,B(x,L)[ X ]−2ε

)
+ [ ]− 1

2
−5εL

− 1
2
−5ε + L−4ε‖v‖B(x,L)[ ]−4ε + ‖ν‖B(x,L)[ X ]−2εL

−2ε,

(3.2.31)

where U is as introduced in (3.2.27) and ν is optimal in the Definition 3.2.4.

The reconstruction lemma and the two bounds above are proved in section 3.5.1 To

bound the quantities appearing in the right-hand side of these lemmas, we will introduce

our version of Schauder theory in the next section.
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3.2.4 Schauder Theory

Here we present Schauder theory adapted to our set-up: regularity is measured by

convolution with a kernel and we are interested in functions depending on base points.

This is inspired from [63, Proposition 2], our contribution being the introduction of

blow-up at the boundaries of the domain instead of an assumption of periodicity.

The formulation of the lemmas differs depending on the regularity, and we actually only

use Lemma 3.2.3 in this chapter. All lemmas are used in the next chapter however and

the proofs are simple rewritings of each other, so we group all of the statements here.

The proof is in section 3.5.2.

In all this section, ”.” denotes a bound that holds up to a multiplicative constant that

only depends on κ and A when relevant.

Lemma 3.2.1. Let κ < 0 and U be a distribution such that (∂t − ∆)U is compactly

supported and

‖(∂t −∆)UL‖ 6MLκ−2. (3.2.32)

Then

[U ]κ .M. (3.2.33)

The second lemma is slightly non-standard due to the presence of a second argument

Lemma 3.2.2. Let 0 < κ < 2 and A ⊂ (−∞, κ] be finite. Let U be a function of two

variables such that U(x, x) = 0 for all x and (∂t −∆)U(·, x) is compactly supported

for all x. Assume that there exists a constant M (1) such that for all base-points x and

length scales L2 6 L1 6 1, it holds that

L2
2‖(∂t −∆)UL2(·, x)‖B(x,L1) 6M (1)

∑
β∈A

Lβ2L1
κ−β. (3.2.34)

Assume furthermore that there exists a constant M (2) such that, for any x, y ∈ R× Rd,

there exists λ(y, x) = (λ(i)(y, x))di=1 ∈ Rd such that, for any z ∈ R×Rd, the following

”three-point continuity” holds:

|U(z, x)− U(y, x)− U(z, y)− λ(y, x) ·X(z − y)| 6M (2)
∑
β∈A

d(y, x)βd(z, y)κ−β.

(3.2.35)

Note that if κ 6 1 then λ doesn’t matter so we can take λ = 0. Then

[U ]κ .M (1) +M (2). (3.2.36)

We now introduce the localised lemma that we use to bound the solutions. The difference

62



between this lemma and the previous one is that instead of a compact support of the

right-hand side, we introduce a blow-up at the boundary in the way we measure objects.

Lemma 3.2.3. Let 1 < κ < 2 and A ⊂ (−∞, κ] be finite. Let U be a bounded function

of two variables defined on a domain D×D such that U(x, x) = 0 for all x. Let d0 > 0

and assume that for any 0 < d 6 d0 and L1 6 d
4 there exists a constant M (1)

Dd,L1
such

that for all base-points x ∈ Dd and length scales L2 6 L1, it holds that

L2
2‖(∂t −∆)UL2(·, x)‖B(x,L1) 6M

(1)
Dd,L1

∑
β∈A

Lβ2L1
κ−β. (3.2.37)

Assume furthermore, that for L1, L2 6 d
4 there exists a constant M (2)

Dd,L1,L2
such that,

for any x ∈ Dd and y ∈ B(x, L1), there exists λ(y, x) = (λ(i)(y, x))di=1 ∈ Rd such

that, for any z ∈ B(y, L2), the following ”three-point continuity” holds:

|U(z, x)− U(y, x)− U(z, y)− λ(y, x) ·X(z − y)|

6M
(2)
Dd,L1,L2

∑
β∈A

d(y, x)βd(z, y)κ−β. (3.2.38)

Additionally define

M (1) := sup
d6d0

dκM
(1)

Dd,
d
2

, and M (2) := sup
d6d0

dκM
(2)

Dd,
d
2
, d
4

.

Then

sup
d6d0

dκ[U ]κ,Dd .M (1) +M (2) + sup
d6d0

‖U‖Dd,d. (3.2.39)

The following lemma gives bounds on the derivative. It can be used both for the

derivatives of the trees in Section 4.4 and for the derivative of the solution in Section 4.9.

Lemma 3.2.4. Let κ > 1 and U ∈ Cκ(R × Rd) then, for the optimal function ν in

(3.2.4), for any r ∈ (0,∞),

‖ν‖ . rκ−1[U ]κ + r−1‖U‖ . (3.2.40)

Suppose furthermore that there exists a constant M and, for all x, y ∈ R× Rd, a vector

λ(y, x) = (λ(i)(y, x))di=1 ∈ Rd such that for any z ∈ R × Rd one has the three-point

continuity bound

|U(z, x)− U(y, x)− U(z, y)− λ(y, x) ·X(z − y)| 6M
∑
β∈A

d(y, x)βd(z, y)κ−β .

(3.2.41)

Then, if we write f(z, w) = (f (i)(z, w))di=1 where f (i)(z, w) = ν(i)(z) − ν(i)(w) +
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λ(i)(z, w), one has

[f ]κ−1 . [U ]κ +M . (3.2.42)

A localised version of this lemma is as follows:

Lemma 3.2.5. Assume that D satisfies a spatial interior cone condition with parameters

r0 > 0 and β ∈ (0, 1), i.e. for all r ∈ [0, r0], for all x ∈ D, for any vector θ =

(θ(i))di=1 ∈ Rd, there exists y ∈ D such that d(x, y) = r and

|θ(i)yi| > βd(x, y)|θ|.

Let κ > 1 and U ∈ Cκ then, for the optimal function ν in (3.2.4) and for all r ∈ [0, r0],

we have the bound

β‖ν‖D 6 rκ−1[U ]κ,D + r−1‖U‖D,r . (3.2.43)

Suppose furthermore that there exists a constant M and, for all x, y ∈ D, a vector

λ(y, x) = (λ(i)(y, x))di=1 ∈ Rd such that for any z ∈ D one has the the three-point

continuity bound

|U(z, x)− U(y, x)− U(z, y)− λ(y, x) ·X(z − y)| 6M
∑
β∈A

d(y, x)βd(z, y)κ−β .

(3.2.44)

Then, if we write f(z, w) = (f (i)(z, w))di=1 where f (i)(z, w) = ν(i)(z) − ν(i)(w) +

λ(i)(z, w), one has, for every r ∈ [0, r0],

[f ]κ−1,D . [U ]κ,D +M + r−κ‖U‖D,r . (3.2.45)

3.3 Translation to the language of regularity structures

Although our argument is not formulated using the terminology of the theory of regularity

structures, the analysis of the small scale behaviour, Theorem 3.2.8, Lemmas 3.2.9 and

3.2.10 as well as the Schauder estimate 3.2.3, build on the same key ideas as this theory.

We now provide a translation of how the lemmas that appear in this section can be stated

in terms of the central objects introduced in the theory of regularity structures such as

the models, modelled distributions, and the abstract integration operator. This section is

aimed at those interested in this theory but plays no role in the results presented in this

chapter, beyond explaining why the assumptions we make in section 3.2.2 are reasonable

in this framework. In the next chapter however we will revisit the theory of regularity

structures and introduce a slightly different formulation.

We begin by recalling the setup of regularity structures, introduced in section 1.2: in

[41, Definition 2.1] a regularity structure is defined as a triple (A, T,G), consisting of
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an index set A ⊂ R, a graded vector space T =
⊕

α∈A Tα and a group G of linear

transformations acting on T with some additional properties. In this framework, the

local description of the solution u is encoded by replacing the scalar valued function

/ distribution u by modelled distribution, which is a function U : R × R3 → T for a

certain purpose-built regularity structure. To build this structure one first introduces

some symbols, namely

{1, , , } ∪ {Xi : i = 1, 2, 3}.

At this level these symbols with a bar on top are completely abstract objects, but of course

they ultimately represent the functions / distributions appearing in the local description.

To each of these symbols τ one associates a homogeneity |τ | ∈ R, namely

|1| = 0, |Xi| = 1, | | = −1

2
− ε, | | = 1

2
− 3ε, | | = 1− 2ε.

The space T is then defined as the finite dimensional space

T =
⊕

τ∈{1,Xi, , , }

Rτ,

and A is defined to be the set of homogeneities of these symbols. It turns out that the

modelled distribution U takes the form

U(x) = + v(x)1− − 3v(x) − ν(x).X, (3.3.1)

for some functions v and ν (which of course coincide with our functions v and ν). For

our analysis we choose to work with a local description for v = u − , which in the

notation of regularity structures would take the form

V(x) = v(x)1− − 3v(x) − ν(x).X, (3.3.2)

i.e. the only difference with respect to (3.3.1) is that the term is removed. Equation

(3.3.2) should be viewed as an abstract counterpart of our equation (3.2.26). For us

it is more convenient to work with v rather than u to get good bounds on the error

term (vT )3 − (v3)T . We argue below that the regularity assumption we impose on V is

equivalent to the condition imposed on U in [41].

Just like our main result, Theorem 3.2.1, the solution theory using regularity structures

requires a perturbative expansion as an input. There this expansion is encoded in the

notion of a model [41, Definition 2.17]. To each of the symbols, one associates a function
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or distribution Πτ corresponding exactly to our definitions (3.2.11), and (3.2.13), i.e.

Π1(y) = 1, ΠXi(y) = yi, Π (y) = (y),

Π (y) = (y), Π (y) = (y).

A key idea of the theory is to not work with these distributions directly, but with centred

or positively renormalised objects, Πxτ indexed by a base-point in x ∈ R × R3. The

right notion of regularity for the modelled distributions U and V is then defined in term

of this recentring procedure.

For the symbols we have introduced so far, the centring is relatively simple and amounts

to subtracting the value at the base point for the symbols of strictly positive homogeneity:

Πx1(y) = 1, ΠxXi(y) = yi − xi, Πx (y) = (y),

Πx (y) = (y)− (x), Πx (y) = (y)− (x).

The reason why one works with these centred objects is that one has good control over

their behaviour as the argument approaches the base point x. This is encoded in the

formula [41, Equation (2.15)],

〈Πxτ, ϕ
λ
x〉 . λ|τ |, (3.3.3)

where ϕ is a smooth test-function rescaled to scale λ and centred at the base-point x.

This corresponds exactly to our regularity assumption on the Hölder norms of the objects,

see Section 3.2.2 (our scale is called L rather than λ and the test-function is called Ψ

rather than ϕ).

In order to connect the centring procedure to the functions U and V and to formulate the

right continuity condition, it is useful to introduce the structure group G. In the current

context this group is simply the five-dimensional group of all linear transformations F

on T of the form

F1 = 1, FXi = Xi + ai1 ai ∈ R, F = ,

F = + b1 b ∈ R, F = + c1 c ∈ R, (3.3.4)

but this group will be enlarged as more symbols are introduced below. For each x ∈
R× R3 we define Fx ∈ G by

Fx1 = 1, FxXi(y) = Xi − xi1, Fx = ,

Fx = − (x)1, Fx = − (x)1,
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so that one gets

Πxτ = ΠFxτ.

Now, for x, y ∈ R× R3 we set

Γxy = F−1
y ◦ Fx,

and we trivially have the identity, cf. [41, Definition 2.17].

Πx = Πy ◦ Γxy. (3.3.5)

The continuity assumption on U and V is formulated in terms of the translation operators

Γxy. U is said to be a modelled distribution of order γ if

‖U(x)− ΓxyU(y)‖β . d(x, y)γ−β,

where ‖ · ‖β refers to the component in Tβ . It is easy to check that for both, U defined by

(3.3.1) and V defined by (3.3.2), this condition translates precisely into the “modelledness

conditions”

|v(y)− v(x) + (y)− (x)− ν(x).X(y − x)

+3v(x)( (y)− (x))| . d(x, y)γ ,

|ν(y)− ν(x)| . d(x, y)γ−1, (3.3.6)

|v(y)− v(x)| . d(x, y)γ−1+2ε,

and this condition for γ = 3
2 − 5ε corresponds exactly to the regularity assumptions on

U , ν and v we work with.

The main feature of the space of modelled distributions is that although expansions like

(3.3.1) are ultimately used as good local descriptions of distributions, one can multiply

them as if they were of positive regularity, provided one can expand the action of the

model to new symbols that are seen as products of the symbols introduced earlier. For

equation (3.1.1) one has to get a bound on u3 = (v + )3 = v3 + 3v2 + 3v + . We

aim to bound this in terms of:

• A high-regularity norm on v, namely the Dγ norm of the modelled distribution V ,

which is defined as the smallest possible constant in the inequalities (3.3.6);

• The low regularity L∞ norm ‖v‖;

• The bounds on the various stochastic terms.

The term v3 can immediately be bounded by ‖v‖3 and is a stochastic term which does
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not involve v. The only terms which require work are 3v2 and 3v . The distribution

has regularity −1 − 2ε, so a description of v to order γ > 1 + 2ε is required. Such a

description is precisely provided by (3.3.2). One now defines new symbols

{ , , , , X}, (3.3.7)

associates to them a homogeneity using the rule |ττ | = |τ |+ |τ |, and simply defines a

new modelled distribution for the local description of v by

V (x) = v(x) + − 3v(x) − ν(x). X . (3.3.8)

This definition becomes substantial by extending the model (Πx,Γxy) to these new

symbols. One would like to extend the operator Πx to these products simply by defining

locally

Πx(ττ)(y) = (Πxτ(y))(Πxτ(y)),

but such a definition may not be meaningful when the regularisation is removed. Fortu-

nately, there is some flexibility at this level. The main requirements for multiplication to

be well-behaved are only that (3.3.3) and (3.3.5) remain valid for the new symbols and

additionally that one has the identity

Γxy(ττ) = (Γxyτ)(Γxyτ).

It is here that the positive renormalisation, and hence the action of the structure group

G becomes more involved than subtracting the value at a base point and the condition

|ττ | = |τ | + |τ | becomes strictly stronger than Hölder regularity. For example Π

is a distribution of regularity −1 − 2ε but its homogeneity is strictly larger, namely

−1
2 − 5ε. The condition (3.3.3) states that near any base point x, Π is well described

by a (x)Π up to an error of order −1
2 − 5ε, which is strictly stronger than a bound

on the C−1−2ε norm of it. Our definitions (3.2.12) and the assumed bounds (3.2.17),

(3.2.15), (3.2.14) correspond exactly to the definitions for Πx and the bound (3.3.3) in

[41]. The only difference is that Hairer defines the trees , and using the inverse

heat operator with some cutoff at large scales and appropriate right-hand side. We only

assume that they satisfy the heat equation point-wise without imposing any boundary

conditions, but we additionally impose some natural regularity bounds, as explained in

Remark 3.2.5. Combining Hairer’s multiplication theorem [41, Theorem 4.7] and his

reconstruction theorem [41, Theorem 3.10] then yields the estimate

∣∣〈R(V )−Πx(V ), ϕλx
〉∣∣ . λγ−1−2ε‖V‖Dγ‖Π‖,
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where ‖Π‖ is the smallest possible constant in all of the assumed bounds on the model.

This is essentially the statement of our Lemma 3.2.10 up to a few points:

• Some of the terms in Πx(V ) are removed from the left-hand side of (3.2.31) and

added to the right-hand side using the triangle inequality.

• We prove these estimates “by hand” without using the algebraic machinery dis-

cussed above and in particular without introducing the group G to organise the

various continuity assumptions. More precisely, Theorem 3.2.8, is a condensed

version of [41, Theorem 3.10] which contains the key analytic estimate, but as-

sumes the output of the algebraic machinery. In the case, of (3.1.1) the algebraic

manipulations are not too complex and can be done directly quite easily, and that

is precisely what we do in the proof of Lemma 3.2.10

• Along the way we keep track of the precise norms needed in each term, rather

than compiling them in ‖V‖Dγ and ‖Π‖. This added level of detail is important

for us, especially when determining the exact exponents of each tree appearing in

our final estimate (3.2.19).

The treatment of the term v2 goes along similar lines. As has better regularity than ,

namely −1
2 − ε, a local description of v2 is only required to order > 1

2 + ε and this is

provided by

V2(x) = v2(x)1− 2v(x) ,

which in turn prompts us to define

V2 (x) = v2(x) − 2v(x) .

Again, our assumption (3.2.16) corresponds exactly to the homogeneity condition (3.3.3)

in [41] and our Lemma 3.2.9 is obtained by combining the multiplication and recon-

struction theorem and applying the triangle inequality, this time to remove the term cor-

responding to ΠxV2 from the left hand side completely. The Hölder norm [v + ]1−2ε

which appears on the right hand side of our estimate (3.2.30) corresponds to the norm of

the modelled distribution one obtains by removing the terms −3v(x) − ν(x).X , which

are not necessary here, from the definition of V in (3.3.2).

The last ingredient from the theory of regularity structures concerns the heat operator.

For us, the gain of regularity for solutions to the heat equation is expressed in Lemma

3.2.3, and this corresponds to [41, Theorem 5.12]. As stated above in (3.3.6), we seek a

local description of the solution v of order γ = 3
2 − 5ε. The heat operator (∂t −∆)−1 is

a 2-regularising operator (β = 2 in Hairer’s theory) and thus it seems reasonable that a

local description of the right-hand side of (3.2.18) up to order −1
2 − 5ε is required as
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input for the Schauder Lemma. Therefore we work with

W(x) = v(x) + .

At this point we slightly deviate from Hairer’s approach: his Schauder Lemma [41,

Theorem 5.12] assumes that the right hand side is a modelled distribution of strictly

positive order, because he applies the reconstruction operator as part of the argument. We

circumvent this by viewing the reconstruction as an extra input to the theorem. Imposing

thatW is a modelled distribution of order−1
2−5ε [41, Definition 3.1] translates precisely

to our three-point continuity condition (3.2.38), and our smallness assumption (3.2.37)

corresponds to [41, Equation 5.42], which in the notation of this section would be

∣∣〈RW −ΠxW, ϕλx〉
∣∣ . λ−

1
2
−5ε. (3.3.9)

The exact statement of the assumption (3.2.38) appears slightly stronger than (3.3.9)

because of the L∞ norm on the left-hand side and the extra parameter L, but in practice

the seemingly stronger bound can be obtained easily from the weaker bound using

triangle inequality and some lower-order regularity information.

In the framework of regularity structures the operator that encodes the integration of a

modelled distribution is described as the sum of three operators. The first operator I
acts point-wise on the modelled distributions by a shift of coefficients. The action on the

trees is:

I = , I = .

The continuity of the coefficients for a modelled distribution is transferred accordingly

under the action of I. In our setting, this is also automatic and follows from our

assumptions, as explained in Remark 3.2.5.

The non-trivial part of the integration happens on the levels 1 and X which is encoded in

Hairer’s theory in the operators J and N . We have again a direct translation, although

we do not need to split the operator.

NW(x) =
(
(∂t −∆)−1(−v3 − 3v2 − 3(v − v(x)) )|y=x

)
1 + ν(x)X,

J (x)W =
(
3v(x) −

)
1.

The differences between our approach and the one adopted by Hairer is that in the spirit

of [62] we use a kernel-free approach and we have a special treatment of the boundary

on the levels 1 and X . We are also more precise in our final bounds in the sense that, as

in the definition of V , we keep track of the precise norms needed in each term.
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3.4 Proof of Theorem 3.2.1

3.4.1 Assumption

We assume that the bound of Theorem 3.2.1 in terms of powers of trees does not hold on

a domain D = Pr, and use that assumption to prove that then bound in 1
R holds1. Our

assumption is stated as such:

∀τ ∈ T , [τ ]γτ 6 c‖v‖nτ ( 1
2
−ε)

D , (3.4.1)

for some constant c < 1 that we will tune later, according to conditions suggested by

equations (3.4.18) and (3.4.32). With these assumptions, Lemmas 3.2.9 and 3.2.10 can

be restated as, for any x with B(x, L) ∈ D,

|(v2 )L(x)| .c([v + ]1−2ε,B(x,L)L
1
2
−3ε‖v‖

3
2
−ε

D + [v] 1
2
−3ε,B(x,L)L

1
2
−7ε‖v‖2−4ε

D )

+ c(L−
1
2
−ε‖v‖

5
2
−ε

D + L−4ε‖v‖3−4ε
D + L

1
2
−7ε‖v‖

7
2
−7ε

D ). (3.4.2)

and:

|((v − v(x)) )L(x) + 3C2(vL + L)(x)|

.cL
1
2
−7ε
(

[v] 1
2
−3ε,B(x,L)‖v‖

2−4ε
D + ([U ] 3

2
−5ε,B(x,L) + [ν] 1

2
−5ε,B(x,L))‖v‖

1−2ε
D

)
+ c(‖v‖

5
2
−5ε

D L−
1
2
−5ε + L−4ε‖v‖3−4ε

D ) + ‖ν‖B(x,L)c‖v‖1−2ε
D L−2ε. (3.4.3)

3.4.2 Applying Lemma 3.2.3

For any domain D, for x, L, T and d such that B(x, L + T ) ⊂ Dd, we prove the

following bound, which is the first condition to apply Lemma 3.2.3.

‖(∂t −∆)U(x, ·)T ‖B(x,L) . ‖v‖3D + L
1
2
−3εT−1−2εc[v] 1

2
−3ε,Dd,d

‖v‖1−2ε
D

+c([v + ]1−2ε,B(x,T )T
1
2
−3ε‖v‖

3
2
−ε

D + [v] 1
2
−3ε,B(x,T )T

1
2
−7ε‖v‖2−4ε

D )

+c(T−
1
2
−ε‖v‖

5
2
−ε

D + T−4ε‖v‖3−4ε
D + T

1
2
−7ε‖v‖

7
2
−7ε

D ) (3.4.4)

+cT
1
2
−7ε
(

[v] 1
2
−3ε,B(x,T )‖v‖

2−4ε
D + ([U ] 3

2
−5ε,B(x,T ) + [ν] 1

2
−5ε,B(x,T ))‖v‖

1−2ε
D

)
+c(‖v‖

5
2
−5ε

D T−
1
2
−5ε + T−4ε‖v‖3−4ε

D ) + ‖ν‖B(x,T )c‖v‖1−2ε
D T−2ε,

where ν is the optimal function in the definition of [U ] 3
2
−5ε,Dd

.

1This assumption is not mandatory to the proof but it simplifies greatly the computations, in particular
(3.4.20), by allowing one to replace all occurrences of norms of trees by powers of ‖v‖D .
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Let x be an arbitrary point in Dd+L and y a point in B(x, L) ⊂ Dd. We have

(∂t −∆)U(x, ·)T (y) =

∫
ΨT (z − y)(∂t −∆)U(x, z)dz

= −(v3)T (y)− 3(v2 )T (y)− 3((v − v(x)) )T (y)− 9C2(vT (y) + T (y))

= −(v3)T (y)− 3(v2 )T (y)− 3(v(y)− v(x)) T (y)

−3((v − v(y)) )T (y)− 9C2(vT (y) + T (y)).

We bound the some terms of this expression by the previous bounds (3.4.2) and (3.4.3)

and the remaining ones as follows:

|(v3)T (y)| 6 ‖v‖3B(y,T ) 6 ‖v‖
3
Dd
, (3.4.5)

|(v(y)− v(x)) T (y)| 6 d(x, y)
1
2
−3ε[v] 1

2
−3ε,Dd,d

T−1−2ε[ ]−1−2ε

6 L
1
2
−3εT−1−2εc[v] 1

2
−3ε,Dd,d

‖v‖1−2ε
D (3.4.6)

This proves (3.4.4).

The three-point continuity on U holds as follows. For any x ∈ Dd, for any y ∈ B(x, d4),

for any z ∈ B(y, d4)

|U(y, x)− U(x, z)− U(z, y)| =3|v(x)− v(z)|| (y)− (z)|

63[v] 1
2
−3ε,D d

2
, d
2
[ ]1−2εd(x, z)

1
2
−3εd(y, z)1−2ε

(3.4.7)

63c[v] 1
2
−3ε,D d

2
, d
2
‖v‖1−2ε

D d(x, z)
1
2
−3εd(y, z)1−2ε

Lemma 3.2.3 applies to U with κ = 3
2 − 5ε. Note that in the bound 3.4.4 we see powers

of T higher than T−
1
2
−5ε but we use the fact that T . d to make up for that. After a few

simplifications we get

sup
d6d0

d
3
2
−5ε[U ] 3

2
−5ε,Dd

. sup
d6d0

(
d2‖v‖3D + d

3
2
−5εc[v] 1

2
−3ε,Dd,d

‖v‖1−2ε
D

+ c([v + ]1−2ε,Dd,dd
5
2
−3ε‖v‖

3
2
−ε

D + d
3
2
−ε‖v‖

5
2
−ε

D + d
5
2
−7ε‖v‖

7
2
−7ε

D )

+ cd
5
2
−7ε
(

[v] 1
2
−3ε,Dd,d

‖v‖2−4ε
D + ([U ] 3

2
−5ε,Dd,d

+ [ν] 1
2
−5ε,Dd,d

)‖v‖1−2ε
D

)
(3.4.8)

+ c(‖v‖
5
2
−5ε

D d
3
2
−5ε + d2−4ε‖v‖3−4ε

D ) + ‖ν‖Ddc‖v‖
1−2ε
D d2−2ε + ‖U‖Dd,d

)
.
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3.4.3 Simplifications

Our goal in this section is to produce bounds on the norms [v] 1
2
−3ε,Dd,d

, [v+ ]1−2ε,Dd,d

and [U ] 3
2
−5ε,Dd

that depend only on ‖v‖D, in particular independent of each other.

We introduce the following elementary bounds, which can be deduced from triangle

inequalities and application of the Assumption 3.4.1.

[v] 1
2
−3ε,Dd,d

6 d1−2ε[U ] 3
2
−5ε,Dd

+ [ ] 1
2
−3ε + 3d

1
2

+ε‖v‖Dd [ ]1−2ε + d
1
2

+3ε‖ν‖Dd

6 d1−2ε[U ] 3
2
−5ε,Dd

+ c‖v‖
3
2
−3ε

D + 3cd
1
2

+ε‖v‖2−2ε
Dd

+ d
1
2

+3ε‖ν‖Dd
(3.4.9)

and

[v + ]1−2ε,Dd,d 6 d
1
2
−3ε[U ] 3

2
−5ε,Dd

+ 3‖v‖Dd [ ]1−2ε + d2ε‖ν‖Dd

6 d
1
2
−3ε[U ] 3

2
−5ε,Dd

+ 3c‖v‖2−2ε
Dd

+ d2ε‖ν‖Dd , (3.4.10)

and we recall that from Corollary 3.2.5 we have the two bounds, assuming d ∈ (0, rd],

‖ν‖Dd .[U ] 3
2
−5ε,Dd

d
1
2
−5ε + ‖U‖Dd,dd

−1 (3.4.11)

and

[ν] 1
2
−5ε,Dd

.[U ] 3
2
−5ε,Dd

+ [v] 1
2
−3ε,Dd,d

[ ]1−2ε + d−
3
2

+5ε‖U‖Dd,d

.[U ] 3
2
−5ε,Dd

+ c[v] 1
2
−3ε,Dd,d

‖v‖1−2ε
D + d−

3
2

+5ε‖U‖Dd,d. (3.4.12)

We will also be using the bound

‖U‖Dd,d 62‖v‖D + [ ] 1
2
−3εd

1
2
−3ε + 3‖v‖D[ ]1−2εd

1−2ε

62‖v‖D + cd
1
2
−3ε‖v‖

3
2
−3ε

D + 3cd1−2ε‖v‖2−2ε
D . (3.4.13)

By combining the bounds above to get bounds in terms of ‖v‖D and [U ] 3
2
−5ε,Dd

only,

we get the following bounds (in order of logical deduction):

‖ν‖Dd . d
1
2
−5ε[U ] 3

2
−5ε,Dd

+ d−1‖v‖Dd + cd−
1
2
−3ε‖v‖

3
2
−3ε

Dd
+ cd−2ε‖v‖2−2ε

Dd
,

(3.4.14)

[v + ]1−2ε,Dd,d . d
1
2
−3ε[U ] 3

2
−5ε,Dd

+ c‖v‖2−2ε
Dd

+ d−1+2ε‖v‖Dd

+ cd−
1
2
−ε‖v‖

3
2
−3ε

Dd
, (3.4.15)

[v] 1
2
−3ε,Dd,d

. d1−2ε[U ] 3
2
−5ε,Dd

+ d−
1
2

+3ε‖v‖Dd + c‖v‖
3
2
−3ε

Dd
(3.4.16)
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+ cd
1
2

+ε‖v‖2−2ε
Dd

,

[ν] 1
2
−5ε,Dd

. [U ] 3
2
−5ε,Dd

(1 + cd1−2ε‖v‖1−2ε
D ) + c2(‖v‖

5
2
−5ε

Dd
+ d

1
2

+ε‖v‖3−4ε
Dd

)

+ d−
3
2

+5ε‖v‖Dd + cd−1+2ε‖v‖
3
2
−3ε

Dd
+ cd−

1
2

+3ε‖v‖2−2ε
Dd

. (3.4.17)

We inject those in the right-hand side of (3.4.8) and we bound positive powers of d by

powers of d0. A few computations permit to reduce the result to the following expression:

sup
d6d0

d
3
2
−5ε[U ] 3

2
−5ε,Dd

. c
∑
h

dh0‖v‖h+1
D + c sup

d6d0

d
3
2
−5ε[U ] 3

2
−5ε,Dd

∑
l

dl0‖v‖lD,

(3.4.18)

where the index of the sum h is taken in a finite subset of [0, 9
2 − 11ε] and the index l in

{1− 2ε, 2
3 − ε, 2− 4ε}. If we set

d0 = ‖v‖−1
D , (3.4.19)

we see that we can get rid of supd6d0
d

3
2
−5ε[U ] 3

2
−5ε,Dd

in the right-hand side under

a first smallness condition on c depending on the constant implicit in .. Note that if

(3.4.19) defines d0 too large, it means that we already have a bound on ‖v‖D. If the

smallness condition on c is satisfied, we have:

sup
d6d0

d
3
2
−5ε[U ] 3

2
−5ε,Dd

. c‖v‖D. (3.4.20)

In this equation and in the following, . does not depend on this first condition on c.

Applying this to Equations (3.4.14) to (3.4.17) gives

sup
d6d0

d‖ν‖Dd . c‖v‖D, (3.4.21)

sup
d6d0

d1−2ε[v + ]1−2ε,Dd,d . c‖v‖D, (3.4.22)

sup
d6d0

d
1
2
−3ε[v] 1

2
−3ε,Dd,d

. c‖v‖D, (3.4.23)

sup
d6d0

d
3
2
−5ε[ν] 1

2
−5ε,Dd

. c‖v‖D. (3.4.24)

Applying estimates (3.4.20) and (3.4.21)-(3.4.24) to (3.4.2) and (3.4.3), we have, for

d 6 d0 and B(x, T ) ∈ Dd,

|(v2 )T (x)| .c2(d−1+2εT
1
2
−3ε‖v‖

5
2
−ε

D + d−
1
2

+3εT
1
2
−7ε‖v‖3−4ε

D ) (3.4.25)

+ c(T−
1
2
−ε‖v‖

5
2
−ε

D + T−4ε‖v‖3−4ε
D + T

1
2
−7ε‖v‖

7
2
−7ε

D ).
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and

|(v )T (x) + 3C2(vT + T )(x)| . c‖v‖2−2ε
D T−1−2ε

+ c2T
1
2
−7ε
(
d−

1
2

+3ε‖v‖3−4ε
D + d−

3
2

+5ε‖v‖2−2ε
D

)
+ c(‖v‖

5
2
−5ε

D T−
1
2
−5ε + T−4ε‖v‖3−4ε

D ) + c2d−1‖v‖2−2ε
D T−2ε. (3.4.26)

In this last estimate, we have used triangle inequality to get ‖v T ‖Dd+T out of the left

hand side, and then used the assumption (3.4.1) to bound it.

3.4.4 Application of Lemma 3.2.7

We now go back to the original equation, and start to study large scale behaviour. We

convolve the equation (3.2.18) with ΨL:

(∂t −∆)(v)L =− (vL)3 − 3(v2 )L − 3(v )L − 9C2(vL + L)− ( )L (3.4.27)

+ ((vL)3 − (v3)L).

Lemma 3.2.7 implies that for all r > 0 and 0 < R′ < R such that r +R < 1
2 , we have

‖(v)L‖Pr+R . max
{ 1

R−R′
, ‖(vL)3 − (v3)L‖

1
3
Pr+R′

, ‖(v2 )L‖
1
3
Pr+R′

,

‖(v )L + 3C2(vL + L)‖
1
3
Pr+R′

, ‖( )L‖
1
3
Pr+R′

}
. (3.4.28)

The goal is now to balance the commutator and the renormalized powers of the noise

term by choosing the parameter L appropriately. We first mention that applying (3.2.9)

and then Assumption 3.4.1 gives the bound:

‖v‖Pr+R . max
{ 1

R−R′
, L

1
2
−3ε[v] 1

2
−3ε,Pr+R−L,2L

, ‖(vL)3 − (v3)L‖
1
3
Pr+R′

,

‖(v2 )L‖
1
3
Pr+R′

, ‖(v )L + 3C2(vL + L)‖
1
3
Pr+R′

, ‖( )L‖
1
3
Pr+R′

}
.

(3.4.29)

We need estimates on the commutator (vL)3 − (v3)L. This is easily obtained as v is

C
1
2
−3ε, using the moment bounds (3.2.8) and (3.2.9). For any z ∈ Pr+R′ ,

((vL)3 − (v3)L)(z) =

∫
ΨL(z − z)

(
vL(z)3 − v(z)3

)
dz

=

∫
ΨL(z − z)

∫ 1

0
(vL(z)− v(z)) 3 (λvL(z) + (1− λ)v(z))2 dλdz
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63‖v‖2B(z,L)

∫
ΨL(z − z) (vL(z)− v(z) + v(z)− v(z)) dz

63‖v‖2B(z,L)

∫
ΨL(z − z)

(
L

1
2
−3ε + d(z, z)

1
2
−3ε
)

[v] 1
2
−3ε,B(z,L)dz

66‖v‖2B(z,L)L
1
2
−3ε[v] 1

2
−3ε,B(z,L).

Since this is true for all z ∈ Pr+R′ ,

‖(vL)3 − (v3)L‖Pr+R′ . ‖v‖
2
Pr+R′−L

L
1
2
−3ε[v] 1

2
−3ε,Pr+R′−L,2L

. (3.4.30)

In conclusion of this step,

‖v‖Pr+R .

max
{ 1

R−R′
, L

1
2
−3ε[v] 1

2
−3ε,Pr+R−L,2L

, L
1
6
−ε‖v‖

2
3
Pr+R′−L

[v]
1
3
1
2
−3ε,Pr+R′−L,2L

,

‖(v2 )L‖
1
3
Pr+R′

, ‖(v )L + 3C2(vL + L)‖
1
3
Pr+R′

, ‖( )L‖
1
3
Pr+R′

}
. (3.4.31)

3.4.5 Choice of scale

We now apply the assumption (3.4.1) with τ = and the results from the previous

steps, (3.4.23),(3.4.25) and (3.4.26) to equation (3.4.31). In (3.4.31) we choose

R′ = d0 and L =
d0

k
,

for some k > 2 to be specified. Recall that d0 = 1
‖v‖Pr

, as set in (3.4.19). In the left-hand

side of (3.4.23),(3.4.25) and (3.4.26) we make the particular choice

d = d0
k − 1

k
.

Since k > 2 we have d ∼ d0, and we also have L + d = d0 so ‖v‖Pr+R′−L = ‖v‖Dd .

Equation (3.4.31) simplifies to

‖v‖Pr+R 6 C max
{ 1

R−R′
, ‖v‖Prk−

1
2

+3ε, ‖v‖Prk−
1
6

+ε,

‖v‖Pr
[
c2
(
k−

1
2

+3ε + k−1+6ε + k−
1
2

+7ε + k−
1
2

+7ε + k2ε
)
(3.4.32)

+ c
(
k−

1
2

+ε + k4ε + k−
1
2

+7ε + k1+ε + k
1
2

+5ε + k
3
2

+3ε
)] 1

3
}
,
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for some constant C > 1. We see that we can choose k large and then impose another

smallness condition on c to get,

‖v‖PR+r
6 max

{ C

R−R′
,
1

2
‖v‖Pr

}
. (3.4.33)

3.4.6 Iterating the result

If we have R > 2R′, then we can rewrite equation (3.4.33) for r = 0 as

‖v‖PR 6 max
{2C

R
,
‖v‖P

2

}
. (3.4.34)

The first argument of the maximum (3.4.34) is equal to the second one for

R = R1 :=
4C

‖v‖P
.

This is not in contradiction with R > 2R′ = 2
‖v‖P as C > 1. We now define a finite set

0 = R0 < . . . < RN = 1
2 by setting

Rn+1 −Rn = 4C‖v‖−1
PRn

,

as long as the times Rn+1 defined this way stay strictly less than 1
2 . We terminate

the sequence once this algorithm would produce a Rn+1 > 1
2 in which case we set

Rn+1 = RN = 1
2 or once the Assumption (3.4.1) does not hold for D = Rn. Note that

4C‖v‖−1
PRn

is increasing in n so the sequence necessarily terminates after finitely many

steps. Equation (3.4.33) applied with r = Rn−1 for n = 1...N then gives the bounds

for smaller and smaller parabolic boxes.

‖v‖PR+Rn−1
6 max

{2C

R
,
1

2
‖v‖PRn−1

}
, (3.4.35)

hence for R = Rn −Rn−1,

‖v‖PRn 6
1

2
‖v‖PRn−1

. (3.4.36)

We now show that the bound (3.2.19) in Theorem 3.2.1 holds for all R = Rn, n ∈
{0, ..., N}. If Assumption (3.4.1) does not hold for D = RN it is immediate, in the

other case for k 6 n, ‖v‖PRn 6 ‖v‖PRk2k−n and hence

Rn =

n−1∑
k=0

Rk+1 −Rk =

n−1∑
k=0

4C‖v‖−1
PRk

6 4C‖v‖−1
PRn

n−1∑
k=0

2k−n .‖v‖−1
PRn

. (3.4.37)
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For the end point RN we have either RN−1 > 1
4 or RN −RN−1 > 1

4 . In the first case

we invoke (3.4.37) for n = N − 1 and in the second case the definition of Rn+1 −Rn,

in both cases yielding a bound on ‖v‖PRN−1
. Finally for values R ∈ (Rn, Rn+1), we

use the definition of Rn+1 −Rn:

R 6 Rn+1 = Rn+1 −Rn +Rn . ‖v‖−1
PRn

+Rn . ‖v‖−1
PR
.

This concludes the proof of the theorem.

3.5 Proof of lemmas

3.5.1 Reconstruction

Proof of Theorem 3.2.8

For this proof, we will use the following notations for f a function of one variable and F

a function of two variables:

[F, (·)T ](x) =

∫
ΨT (x− y)F (y, x)dy (3.5.1)

This is the only place where our particular choice of convolution kernel is crucial. It

enables us to use the following factorisation:∣∣∣[F, (·)T2−n ](x1)−
(

[F, (·)T2−n−1 ]
)
T2−n,1

(x1)
∣∣∣

=
∣∣∣ ∫ ∫ ΨT2−n−1(x2 − y)ΦT2−n−1(x1 − x2)(F (y, x1)− F (y, x2))dydx2

∣∣∣
6
∑
β∈A

Cβ

∫
ΦT2−n−1(x1 − x2)d(x1, x2)γβ−β(T2−n−1)βdx2

6
∑
β∈A

Cβ(T2−n−1)γβ .

This proves the convergence of [F, (·)T2−n ] to f : y 7→ F (y, y) and justifies the bound

on the following telescopic sum, obtained once more thanks to the semi-group property

of our kernel:

∣∣∣[F, (·)T ]− [F, (·)T2−N ]T,N−1

∣∣∣ =
∣∣∣ N∑
n=0

(
[F, (·)T2−n ]− [F, (·)T2−n−1 ]T2−n,1

)
T,n

∣∣∣
6

N∑
n=0

∑
β∈A

Cβ(T2−n−1)γβ .
∑
β∈A

CβT
γβ ,
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where the constant in ”.” depends only on γ (in particular not on N ), thus proving the

theorem.

Proof of Lemma 3.2.9

To obtain a bound on (v2 )T (y) we implement the following expansion.

(v2 )T (x) = (v2 )T (x)− v(x)2
T (x)− 2v(x)(( (x)− ) )T (x)

+ v(x)2
T (x) + 2v(x)(( (x)− ) )T (x).

From the bound (3.2.16) we have

|v(x)2
T (x)| 6 ‖v‖2B(x,T )[ ]− 1

2
−εT

− 1
2
−ε (3.5.2)

|v(x)(( (x)− ) )T (x)| 6 ‖v‖B(x,T )[ ]−4εT
−4ε. (3.5.3)

To bound the remaining part, we will apply Theorem 3.2.8 and to that end we set

F (y, x1) = v(x1)2 (y) + 2v(x1)( (x1)− (y)) (y). (3.5.4)

Then

F (y, x1)− F (y, x2) =(v(x1) + v(x2))(v(x1)− v(x2) + (x1)− (x2)) (y)

+ (v(x1)− v(x2))( (x1)− (x2)) (y)

+ 2(v(x1)− v(x2))( (x1)− (y)) (y).

By definition of (3.2.16) this gives, for x1, x2 ∈ B(x, T − t)

|
∫

Ψt(x1 − y)(F (y, x1)− F (y, x2))dy|

62‖v‖Dd [v + ]1−2ε,B(x,T )d(x1, x2)1−2ε[ ]− 1
2
−εt
− 1

2
−ε

+ [v] 1
2
−3ε,B(x,T )[ ] 1

2
−3εd(x1, x2)1−6ε[ ]− 1

2
−εt
− 1

2
−ε

+ [v] 1
2
−3ε,B(x,T )d(x1, x2)

1
2
−3ε[ ]−4εt

−4ε.

Hence by Theorem 3.2.8, we have the bound

|(v2 )T (x)− v(x)2
T (x) + 2v(x)(( (x)− ) )T (x)|

. T
1
2
−3ε2‖v‖Dd [v + ]1−2ε,B(x,T )[ ]− 1

2
−ε

+T
1
2
−7ε[v] 1

2
−3ε,B(x,T )([ ] 1

2
−3ε[ ]− 1

2
−ε + [ ]−4ε). (3.5.5)
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Together with bounds (3.5.2) to (3.5.3), we get Lemma 3.2.9.

Proof of Lemma 3.2.10

The last quantity we need to bound is:

((v − v(x)) )T (x) + 3C2(vT (x) + T (x)) =

[U , (·)T ](x)− 3C2(v − vT )(x)− (( − (x)) − 3C2 )T (x)

− 3v(x)(( − (x)) − 3C2)T (x) + ν(x).(X(· − x) )T (x),

whereU(y, x) = U(y, x)−ν(x).X(y−x) and ν is optimal in the definition of [U ]1+3ε,D.

From the bounds (3.2.17), (3.2.15) and (3.2.14) we have

|(( − (x)) − 3C2 )T (x)| 6[ ]− 1
2
−5εT

− 1
2
−5ε, (3.5.6)

|v(x)(( − (x)) − 3C2)T (y) 6‖v‖B(x,T )[ ]−4εT
−4ε, (3.5.7)

|ν(x).(X(· − y) )T (x)| 6‖ν‖B(x,T )[ X ]−2εT
−2ε. (3.5.8)

To bound the remaining part, we will apply Theorem 3.2.8 and to that end we set

F (y, x1) =
(
v(x1) + (x1)− (y) + 3v(x1)( (x1)− (y))

−ν(x1).X(x1 − y)
)

(y)− 3C2(v(x1)− v(y)). (3.5.9)

Then for x1, x2 ∈ B(x, T − t),

F (y, x1)− F (y, x2) =(3(v(x1)− v(x2))(( (y)− (x2)) (y)− C2)

+ U(x1, x2) (y)− (ν(x1)− ν(x2)).X(y − x2) (y).

By definition of (3.2.15) and X (3.2.14), this gives∫
Ψt(x1 − y)(F (y, x1)− F (y, x2))dy

63[v] 1
2
−3ε,B(x,T )d(x1, x2)

1
2
−3ε[ ]−4εt

−4ε

+ [U ] 3
2
−5ε,B(x,T )d(x1, x2)

3
2
−5ε[ ]−1−2εt

−1−2ε

+ [ν] 1
2
−5ε,B(x,T )d(x1, x2)

1
2
−5ε[ X ]−2εt

−2ε.

Hence by Theorem 3.2.8, we have the bound v such that

‖[U ,(·)T ](x)− 3C2(v − vT )(x)‖ . T
1
2
−7ε
(

3[v] 1
2
−3ε,B(x,T )[ ]−4ε

+ [U ] 3
2
−5ε,B(x,T )[ ]−1−2ε + [ν] 1

2
−5ε,B(x,T )[ X ]−2ε

)
. (3.5.10)
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Together with bounds (3.5.6) to (3.5.8), we get the lemma 3.2.10.

multiplication by C2 function

This is a useful lemma that shows a simple application of the reconstruction lemma.

Lemma 3.5.1. Let g be a C2 function and let h be a distribution of regularity γ > −2.

Then gh ∈ Cγ with [gh]γ . [h]γ(1 + ‖g′′‖)

Proof. We do the proof in one dimension for simplicity. It is identical in higher di-

mension. Once again, we do not concern ourselves with existence so we may assume

that g and h are actually smooth functions, but we only allow a control with their given

regularity.

Take the Taylor expansion of g: g(y) = g(x) + g′(y)(y − x) + Err(x, y) where

|Err(x, y)| 6 ‖g′′‖|x − y|2. Then define F (y, x) = (g(x) + g′(y)(y − x))h(y). We

have by triangle inequalities

|F (y, x1)− F (y, x2)| = |h(y)(g(x1)− g(x2) + g′(y)(x2 − x1))|

6 |h(y)|‖g′′‖(|x1 − x2|+ |x2 − y|)2

Therefore∣∣∣ ∫ Ψl(x2 − y)(F (y, x1)− F (y, x2))dy
∣∣∣ 6 4‖g′′‖[h]γ(|x1 − x2|2lγ + lγ+2,

and the reconstruction lemma applies, giving∣∣∣ ∫ ΨL(x− y)(g(x)− g(y) + g′(y)(y − x))h(y)dy
∣∣∣ . ‖g′′‖[h]γL

γ+2,

which in particular guarantees that gh ∈ Cγ with [gh]γ . [h]γ(1 + ‖g′′‖).

3.5.2 Schauder theory

We only prove the most complex of the lemmas, the proof of the others an be understood

by removing the unnecessary arguments from this one.

Proof of Lemma 3.2.3

STEP 1. We claim that for all base points x and scales T,R and L with R 6 L
2 and

such that B(x, L) ⊂ D, it holds:

inf
l
‖UT (·, x)− l‖B(x,R) (3.5.11)
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.
R2

L2
inf
l
‖UT (·, x)− l‖B(x,L) + L2M

(1)
{x},L

∑
β∈A

T β−2Lκ−β,

where the infimum runs over all affine functions l(y) = C.X(y − x) + c. To prove this,

we define a decomposition UT (·, x) = u> + u< where u> is the solution to

(∂t −∆)u> = 1B(x,L)(∂t −∆)UT (·, x).

with Dirichlet boundary conditions. By standard estimates for the heat equation [49,

Cor.8.1.5],

‖u>‖B(x,L) . L2‖(∂t −∆)UT (·, x)‖B(x,L)

(3.2.37)
6 L2M

(1)
{x},L

∑
β∈A

T β−2Lκ−β.

(3.5.12)

As (∂t −∆)u< = 0 on B(x, L) for ∂ ∈ {∂t, ∂i∂j} a differential operator of order 1 in

time or 2 in space,

‖∂u<‖B(x,R) 6 L−2‖u< − l>‖B(x,L),

for any affine function l>, where we used R 6 L
2 , and the fact that the differential

operators used cancel the spatial linear functional. Next we define a concrete affine

function l< via l<(y) := u<(x) + Ou<(x).X(y − x) and observe, using Taylor’s

formula,

‖u< − l<‖B(x,R) 6R
2‖Du<‖B(x,R)

6
R2

L2
‖u< − l>‖B(x,L)

6
R2

L2
‖UT (·, x)− l>‖B(x,L) + ‖u>‖B(x,L).

Using the triangle inequality once more and (3.5.12) gives:

‖UT (·, x)− l>‖B(x,R) 6‖u< − l<‖B(x,R) + ‖u>‖B(x,R)

.
R2

L2
‖UT (·, x)− l>‖B(x,L) + ‖u>‖B(x,L)

(3.5.12)
6

R2

L2
‖UT (·, x)− l>‖B(x,L) + L2M

(1)
{x},L

∑
β∈A

T β−2Lκ−β,

which implies (3.5.13)
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STEP 2. We claim that for all base points x and scales T, L, it holds:

‖UT (·, x)− U(·, x)‖B(x,R) 6M
(2)
{x},R,T

∑
β∈A

RβT κ−β + T κ[U ]κ,B(x,R),T . (3.5.13)

Indeed, since Ψ is symmetric, it integrates to 0 against linear functions hence for any

y ∈ B(x,R), we have

|UT (y, x)− U(y, x)| =
∣∣∣ ∫ ΨT (y − z)(U(z, x)− U(y, x))dz

∣∣∣
= inf
ν(y)

∣∣∣ ∫ ΨT (y − z)(U(z, x)− U(y, x)− U(z, y) + λ(y, x) ·X(z − y))dz

+

∫
ΨT (y − z)(U(z, y)− ν(y).X(z − y))dz

∣∣∣
6M (2)

{x},R,T

∑
β∈A

d(y, x)β
∫

ΨT (y − z)d(z, y)κ−βdz

+
(

sup
y∈B(x,R)

inf
ν(y)

sup
z∈B(y,T )

d(y, z)−κ|U(z, y)− ν(y).X(z − y)|
)

×
∫

ΨT (y − z)d(z, y)κdz.

STEP 3. We prove

sup
R6 εd

2

R−κ inf
l
‖U(·, x)− l‖B(x,R)

.
∑
β∈A

(
M

(1)

{x}, d
2

ε−4+2β−κ +M
(2)

{x}, εd
2
, ε

2d
2

εκ−β +M
(2)

{x}, d
2
, ε

2d
2

ε2(κ−β)
)

+ ε2−2κd
−κ

2−κ
‖U(·, x)‖B(x, d

2
(1+ε2)) + (εκ + ε2+κ)[U ]

κ,B(x, εd
2

), ε
2d
2

. (3.5.14)

Multiplying Equation (3.5.11) by R−κ and fixing the length ratios R = εL = ε−1T for

some ε 6 1
2 to be fixed below, we get for any point x ∈ Dd and length L 6 d

2 ,

R−κ inf
l
‖UT (·, x)− l‖B(x,R)

. ε2−κL−κ inf
l
‖UT (·, x)− l‖B(x,L) +

∑
β∈A

M
(1)
Dd,L

ε−4+2β−κ.

Taking the supremum over L 6 d
2 while keeping the ratios R = εL = ε−1T fixed we get

sup
R6 εd

2

R−κ inf
l
‖UT (·, x)− l‖B(x,R)

83



. ε2−κ sup
L6 d

2

L−κ inf
l
‖UT (·, x)− l‖B(x,L) + sup

L6 d
2

∑
β∈A

M
(1)
Dd,L

ε−4+2β−κ

6 ε2−κ sup
L6 εd

2

L−κ inf
l
‖UT (·, x)− l‖B(x,L) + sup

L6 d
2

∑
β∈A

M
(1)
Dd,L

ε−4+2β−κ

+ ε2−κ sup
εd
2
6L6 d

2

L−κ inf
l
‖UT (·, x)− l‖B(x,L).

The last term is bounded by

ε2−κ
(εd

2

)−κ
‖UT (·, x)‖B(x, d

2
) 6 ε2−2κd

−κ

2−κ
‖U(·, x)‖B(x, d

2
(1+ε2)).

Hence we have

sup
R6 εd

2

R−κ inf
l
‖UT (·, x)− l‖B(x,R)

.ε2−κ sup
L6 εd

2

L−κ inf
l
‖UT (·, x)− l‖B(x,L)

+
∑
β∈A

M
(1)

Dd,
d
2

ε−4+2β−κ + ε2−2κd
−κ

2−κ
‖U(·, x)‖B(x, d

2
(1+ε2)),

where the ratios between L and T , and R and T are fixed only within the supremum

operators. Applying Equation (3.5.13) gives

sup
R6 εd

2

R−κ inf
l
‖U(·, x)− l‖B(x,R)

6 sup
R6 εd

2

R−κ inf
l
‖UT (·, x)− l‖B(x,R)

+M
(2)

{x}, εd
2
, ε

2d
2

∑
β∈A

εκ−β + εκ[U ]
κ,B(x, εd

2
), ε

2d
2

.
∑
β∈A

(
M

(1)

{x}, d
2

ε−4+2β−κ +M
(2)

Dd,
εd
2
, ε

2d
2

εκ−β
)

+ ε2−2κd
−κ

2−κ
‖U(·, x)‖B(x, d

2
(1+ε2)) + εκ[U ]

κ,B(x, εd
2

), ε
2d
2

+ ε2−κ sup
L6 εd

2

L−κ inf
l
‖UT (·, x)− l‖B(x,L)

.
∑
β∈A

(
M

(1)

{x}, d
2

ε−4+2β−κ +M
(2)

{x}, εd
2
, ε

2d
2

εκ−β +M
(2)

{x}, d
2
, ε

2d
2

ε2(κ−β)
)

+ ε2−2κd
−κ

2−κ
‖U(·, x)‖B(x, d

2
(1+ε2)) + (εκ + ε2+κ)[U ]

κ,B(x, εd
2

), ε
2d
2

+ ε2−κ sup
L6 εd

2

L−κ inf
l
‖U(·, x)− l‖B(x,L).
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The last term on the right-hand side can now be absorbed into the left-hand side for ε

sufficiently small, giving the bound (3.5.14)

STEP 4. We prove that

sup
d6d0

dκ[U ]κ,Dd

.
∑
β∈A

(
M (1)ε−4+2β−κ +M (2)εκ−β

)
+ (ε−κ + ε2−2κ) sup

d6d0

‖U‖Dd,d. (3.5.15)

We first argue that we can change the order of the supremum and the infimum in

supR6 εd
2
R−κ inf l ‖U(·, x) − l‖B(x,R). Since U(x, x) = 0 it is clear that one can

restrict to l(x) = 0 hence l(y) = C(x,R).X(y − x). We argue that C may be chosen

independently of R. Let CR be the (near) optimal constant for the radius R. Then

R−(κ−1)|CR
2
− CR| . sup

R6 εd
2

R−κ inf
l
‖U(·, x)− l‖B(x,R).

Since κ > 1, this can be extended by summation to all R 6 εd
2 , thus there exists a near

optimal constant C independent of ρ. We then have

inf
ν(x)

sup
x 6=y∈B(x, εd

2
)

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

6 inf
l

sup
R6 εd

2

R−κ‖U(·, x)− l‖B(x,R)

. sup
R6 εd

2

R−κ inf
l
‖U(·, x)− l‖B(x,R).

Therefore, if we take the supremum over x ∈ Dd in Equation (3.5.14) then multiply it

by dκ and take the supremum over d, we get

sup
d6d0

dκ sup
x∈Dd

inf
ν(x)

sup
x 6=y∈B(x, εd

2
)

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

. sup
d6d0

dκ
∑
β∈A

(
M

(1)

Dd,
d
2

ε−4+2β−κ +M
(2)

Dd,
d
2
, ε

2d
2

εκ−β
)

+ ε2−2κ sup
d6d0

‖U‖Dd,d

+ εκ sup
d6d0

dκ sup
x∈Dd

sup
y∈B(x, εd

2
)

inf
ν(y)

sup
z∈B(y, ε

2d
2

)
y 6=z

d(y, z)−κ|U(z, y)− ν(y).X(z − y)|.

The last term can be absorbed into the left-hand side for ε small enough since for

y ∈ B(x, εd2 ) we have d(y, δD) > d(1 − ε
2) and consequently for z ∈ B(y, ε

2d
2 ), we
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have d(y, z) 6 ε2d(y,δD)
2(1− ε

2
) 6 εd(y,δD)

2 , which gives

sup
d6d0

dκ sup
x∈Dd

inf
ν(x)

sup
x 6=y∈B(x, εd

2
)

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

. sup
d6d0

dκ
∑
β∈A

(
M

(1)

Dd,
d
2

ε−4+2β−κ +M
(2)

Dd,
εd
2
, ε

2d
2

εκ−β
)

+ ε2−2κ sup
d6d0

‖U‖Dd,d.

We concludes the proof of (3.5.15) by extending to all y ∈ Dd with the following

argument

sup
x∈Dd

inf
ν(x)

sup
x6=y∈Dd

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

6 sup
x∈Dd

inf
ν(x)

sup
x 6=y∈B(x, εd

2
)

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

+ sup
x∈Dd

inf
ν(x)

sup
y∈Dd\B(x, εd

2
)

d(x, y)−κ|U(y, x)− ν(x).X(y − x)|

6 sup
x∈Dd

inf
ν(x)

sup
y∈B(x, εd

2
)

x 6=y

|U(y, x)− ν(x).X(y − x)|
d(x, y)κ

+
(εd

2

)−κ
‖U‖Dd,d.

Proof of Lemma 3.2.5

From the definition of [U ]κ,D in (3.2.4) used with variables x, y ∈ Dd and with triangle

inequalities, we get

|ν(x).X(y − x)| 6 [U ]κ,Ddd(x, y)κ + ‖U‖Dd,d(x,y).

Applying the interior cone condition for r ∈ [0, rd] gives the existence of some y with

d(x, y) = r such that

λ|ν(x)|d(x, y) 6 [U ]κ,Ddd(x, y)κ + ‖U‖Dd,r,

which proves (3.2.43).

Using again the definition of [U ]κ,D with variables x, y and y, z ∈ Dd, and with triangle

inequalities, we get

|U(y, x)− U(z, x)− U(y, z)− (ν(x)− ν(z)).X(y − z)|

6 [U ]κ,Dd(d(x, y)κ + d(y, z)κ + d(x, z)κ).

We combine this with the three-point continuity condition (3.2.38), and we assume that
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r > d(x, z) = d(y, z) > d(x,y)
2 to get

|(ν(x)− ν(z)− λ(x, z)).X(y − z)| . d(x, z)κ([U ]κ,D +M
(2)

Dd,
d
4
, d
4

).

Choosing finally y such that |(ν(x)−ν(z)−λ(x, z)).X(y−z)| > λ|ν(x)−ν(z)||d(y, z)|
gives (3.2.45) for d(x, y) 6 r. For d(x, y) > r, we have

d(x, y)−κ+1|ν(x)− ν(y)− λ(x, y)| 6 2r−κ+1‖ν‖Dd + r−κ+1|λ(x, y)|.

Applying (3.2.43) for v and (3.2.44) for λ gives for d(x, y) > r,

d(x, y)−κ+1|ν(x)− ν(y)− λ(x, y)| . [U ]κ,Dd + r−κ‖U‖Dd,r.
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Chapter 4

A priori bounds for the Φ4 equation
in the full sub-critical regime

4.1 Introduction

The theory of regularity structures was introduced in Hairer’s groundbreaking work

[41] and has since been developed into an impressive machinery [10, 11, 18] that

systematically yields existence and uniqueness results for a whole range of singular

stochastic partial differential equations from mathematical physics. Examples include

the KPZ equation [28, 40], the multiplicative stochastic heat equation [45], as well as

reversible Markovian dynamics for the Euclidean Φ4 theory in three dimensions [41], in

“fractional dimension d < 4” [11], for the Sine-Gordon model [20, 46], for the Brownian

loop measure measure on a manifold [12] and for the d = 3 Yang-Mills theory [19].

A serious limitation of this theory so far is that these existence and uniqueness results

only hold for a short time, and this existence time typically depends on the specific

realisation of the random noise term in the equation. Most applications are furthermore

limited to a compact spatial domain such as a torus. The reason for this limitation

is that the whole machinery is set up as the solution theory for a mild formulation in

terms of a fixed-point problem, and that specific features of the nonlinearity, such as

damping effects or conserved quantities, are not taken into account. With this method,

global-in-time solutions can only be obtained in special situations, e.g. if all nonlinear

terms are globally Lipschitz [43] or if extra information on an invariant measure is

available [22, 44].

This thesis is the beginning of a programme to derive a priori bounds within the regularity

structures framework in order to go beyond short time existence and compact spatial

domains. We focus on the Φ4 dynamics which are formally given by the stochastic
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reaction diffusion equation

(∂t −∆)φ = −φ3 + ξ, (4.1.1)

where ξ is a Gaussian space-time white noise over R × Rd. A priori bounds for this

equation have recently been derived by several groups for the two dimensional case d = 2

[55, 68] and the more difficult case d = 3 [1, 35, 36, 54]. In this last chapter we obtain

bounds throughout the entire sub-critical regime, formally dealing with all “fractional

dimensions” up to (but excluding) the critical dimension d = 4. Here we follow the

convention of [11] to emulate fractional dimensions d < 4 by adjusting the regularity

assumption on ξ, and assuming that it can only be controlled in a distributional parabolic

Besov-Hölder space of regularity −3 + δ for an arbitrarily small δ > 0. Connecting

back to the Φ4 dynamics driven by space-time white noise, δ = 0− mimics the scaling

of the equation with d = 4 and δ = 1/2− gives us back equation with d = 3 and the

result there is indeed identical to the previous chapter. This chapter shows how to deal in

most generality with an unbounded (but finite) number of renormalisation terms.

Our analysis uses the method developed in the d = 3 context in previous chapters where

it was shown that if φ solves (4.1.1), on a parabolic cylinder, say on

D = (0, 1)× {|x| < 1}, (4.1.2)

where |x| = max{|x1|, . . . , |xd|} denotes the supremum norm on Rd, then it can be

bounded on any smaller cylinder DR = (R2, 1)× {|x| < 1−R} only in terms of the

distance R and the realisation of ξ when restricted to a small neighbourhood of D. This

bound holds uniformly over all possible choices for φ on the parabolic boundary of D,

thus leveraging on the full strength of the nonlinear damping term −φ3. This makes the

estimate extremely useful when studying the large scale behaviour of solutions, because

given a realisation of the noise, any local function of the solution (e.g. a localised norm

or testing against a compactly supported test-function) can be controlled in a completely

deterministic way by objects that depend on the noise realisation on a compact set,

without taking the behaviour of solution elsewhere into account.

Our main result is the exact analogue valid throughout the entire sub-critical regime.

Theorem 4.1.1 (Theorem 4.9.1 below). Let δ > 0 and let ξ be of regularity −3 + δ. Let

{X•τ : τ ∈ W,N} be a local product lift of ξ. Let φ solve

(∂t −∆)φ = −φ◦X3 + ξ, on D (4.1.3)

where φ◦X3 refers to the renormalised cube sub-ordinate to X.
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Then v := φ−
∑

τ∈W X•I(τ) satisfies

‖v‖DR 6 C max
{ 1

R
, [X; τ ]

1
δmΞ(τ) , τ ∈ N ∪W

}
,

uniform in the choice of the local product, where ‖ • ‖DR denotes the supremum norm

on DR

Here the “local product” denotes a finite number of functions/distributions X•τ , each of

which is constructed as a polynomial of degree mΞ(τ), see Section 4.3. Local products

correspond to models [41, Definition 2.17] in the theory of regularity structures, but

we use them slightly differently and hence prefer a different name and notation. The

functions / distributions X•τ are indexed by two setsW and N . HereW contains the

most irregular terms so that after their subtraction the remainder v can be bounded

in a positive regularity norm. The semi-norms [X; τ ] are defined in (4.5.11) and they

correspond to the order bounds on models [41, Equation (2.15)]. The renormalised cube

sub-ordinate to a local product is defined in Definition 4.7.1. This notion corresponds

exactly to the reconstruction with respect to a model / local product X• of the abstract

cube in [41].

When analysing an equation within the theory of regularity structures, one proceeds in

two steps: in a probabilistic step a finite number of terms in a perturbative approximation

of the solution are constructed - these terms are referred to as the model already mentioned

above. The terms in this expansion are just as irregular as φ itself, and their construction

a priori poses the same problem to define nonlinear operations. However, they are

given by an explicit polynomial expression of the Gaussian noise ξ and they can thus be

analysed using stochastic moment calculations. It turns out that in many situations the

necessary nonlinear operations on the model can be defined despite the low regularity

due to stochastic cancellations. However, this construction does require renormalisation

with infinite counterterms.

In the second analytic step the remainder of the perturbative expansion is bounded.

The key criterion for this procedure to work is a scaling condition, which is called sub-

criticality in [41], and which corresponds to super-renormalisability in Quantum Field

Theory. This condition states, roughly speaking, that on small scales the nonlinearity

is dominated by the interplay of noise and linear operator. As mentioned above, in the

context of (4.1.1) this condition is satisfied precisely for ξ ∈ C−3+δ if δ > 0. Sub-

criticality ensures that only finitely many terms in the expansion are needed to yield a

remainder that is small enough to close the argument.

It is important to note that while subcriticality ensures that the number of terms needed in

the model is finite, this number can still be extremely large and typically diverges as one
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approaches the threshold of criticality. A substantial part of [10, 11, 18] is thus dedicated

to a systematic treatment of the algebraic relations between all of these terms and their

interaction, as well as the effect of renormalising the model on the original equation. The

local-in-time well posedness theory for (4.1.1) for all sub-critical ξ ∈ C−3+δ, which was

developed in [11], was one of the first applications of the complete algebraic machinery.

The three dimensional analysis in the previous chapter was the first work that used

regularity structures to derive a priori bounds. All of the previous works mentioned

above [1, 35, 36, 54] were set in an alternative technical framework, the theory of para-

controlled distributions developed in [38]. These two theories are closely related: both

theories were developed to understand the small scale behaviour of solutions to singular

SPDEs, and both separate the probabilistic construction of finitely many terms in a

perturbative expansion from the deterministic analysis of a remainder. Furthermore,

many technical arguments in the theory of regularity structures have a close correspond-

ent in the paracontrolled distribution framework. However, up to now paracontrolled

distributions have only been used to deal with equations with a moderate number of terms

in the expansion (e.g. (4.1.1) for d 6 3 [14] or the KPZ equation [37]). Despite efforts

by several groups (see e.g. [6, 7]) this method has not yet been extended to allow for

expansions of arbitrary order. Thus for some of the most interesting models mentioned

above, e.g. the Sine-Gordon model for β2 just below 8π, the reversible dynamics for the

Brownian loop measure on a manifold, the three-dimensional Yang-Mills theory, or the

Φ4 model close to critical dimension considered here, even a short time existence and

uniqueness theory is currently out of reach of the theory of paracontrolled distributions.

The analysis developed previously is based on the idea that the large and small scale

behaviour of solutions to singular SPDEs should be controlled by completely different

arguments: for large scales the irregularity of ξ is essentially irrelevant and bounds follow

from the strong damping effect of the nonlinearity −φ3. The small scale behaviour is

controlled using the smoothing properties of the heat operator. This philosophy was

implemented by working with a suitably regularised equation which could be treated

with a maximum principle and by bounding the error due to the regularisation using

regularity structures.

However, this analysis did not make use of the full strength of the regularity structure

machinery. In fact, the three-dimensional Φ4 equation is by now considered as one of the

easiest examples of a singular SPDE, because the model only contains a moderate number

of terms, only five different non-trivial products need to be defined using stochastic

arguments and only two different divergencies must be renormalised. The interplay of

these procedures is not too complex and no advanced algebraic machinery is needed to

deal with it. Instead, we simply treated the few algebraic relations explicitly “by hand”.
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The main contribution of the present chapter is thus to implement a similar argument

when the number of terms in the model is unbounded, thus combining the analytic ideas

from [52] with the algebraic techniques of [10, 11]. For this it turns out to be most

convenient to re-develop the necessary elements of the theory of regularity structures

in the specific context of (4.1.1), leading to bounds that are tailor-made as input for the

large-scale analysis.

Along the way, we encounter various serious simplifications and new observations which

are interesting in their own right:

• As already hinted at in Theorem 4.1.1 we make systematic use of the “generalised

Da Prato-Debussche trick” [11, 22]. This means that instead of working with φ

directly we remove the most irregular terms of the expansion leading to a function

valued remainder. This was already done in [11] but only in order to avoid a

technical problem concerning the initial conditions. For us the remainder v is the

more natural object, observing that for all values of δ > 0 it solves an equation of

the form

(∂t −∆)v = −v3 + . . . (4.1.4)

where . . . represents a large number of terms (the number diverges as δ ↓ 0) which

involve renormalised products of either 1, v or v2 with various irregular “stochastic

terms”. For each δ > 0, v takes values in a positive regularity Hölder norm (i.e.

it is a function) and so an un-renormalised damping term −v3 appears on the

right-hand side. Of course, the Hölder regularity of v is not enough to control

many of the products appearing in . . ., and a local expansion of v is required to

control these terms. However, we are able to show that for each fixed value of δ

all of these terms are ultimately of lower order relative to (∂t −∆)v and v3.

• One of the key ideas in the theory of regularity structures is positive renormalisa-

tion and the notion of order. Most of the analysis works with a re-centred version

of the functions / distributions from the model, which depends on a base-point

as well as the running argument - these objects are denoted by the Πx. A good

description of their behaviour under a change of base-point is key to the analysis,

and in Hairer’s framework this is accomplished by working with a family of

translation operators Γx,y.

There is a close relationship between these Πx and Γx,y maps and some generic

identities relating them were found in [9]. Our observation is that - at least in

the context of Equation (4.1.4) - most of the matrix entries for Γx,y coincide with

entries for Πx evaluated at y. Therefore we can work with just a single object X•
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(corresponding to Π in [41]) and its re-centred version X•,• that acts on itself for

translation.

With this choice our framework is highly reminiscent of Gubinelli’s work on

branched rough paths [34], the only real difference being the introduction of

some (linear) polynomials, first order derivatives, and the flexibility to allow for

non-canonical products.

• Inspired by [62, 63] we work with the Schauder estimates introduced in the

previous chapter using Safonov’s kernel-free method (popularised in [49]), thus

working directly with the PDE rather than transforming into an integral equation.

This is more convenient for our analysis, because these bounds give more flexibility

e.g. when localising functions by restricting them to certain sets.

• As in [41] we use the model / local product to build a local approximation of v

around any base-point x. This takes the form

v(y) ≈
∑
τ∈N

Υx(τ)Xy,xI(τ),

with a well-controlled error as y approaches x. In order to use this local expansion

to control nonlinearities two key analytic ingredients are needed: the first is the

order bound discussed above, and the second is a suitable continuity condition on

the coefficients Υx(τ). In [41] these conditions are encoded in a family of model-

dependent semi-norms, which make up the core of the definition of a modelled

distribution [41, Definition 3.1]. It turns out however, that the coefficients Υx(τ)

that appear in the expansion of the solution v are far from generic: up to signs

and combinatoric factors they can only be either 1, v(x), v(x)2, or vX(x) (a

generalised derivative of v). Furthermore, there is a simple criterion (Lemma 4.6.7)

to see which of these is associated to a given tree τ . This fact was already observed

in [11] and was called coherence there. Here we observe that the various semi-

norms in the definition of a modelled distribution are in fact all truncations of the

single continuity condition on the first coefficient Υ(1) = v. This observation is

key for our analysis, as this particular semi-norm is precisely the output of our

Schauder lemma.

• Our deterministic theory more cleanly separates the issues of positive and negative

renormalisation in the context of (4.1.1). Indeed, we can derive a priori bounds

under extremely general assumptions on the specific choice of the local product

X which seems quite a bit larger and simpler than the space of models given

in [10]. The key information contained in X is how certain a priori unbounded

products should be interpreted. Our definition of a local product allows for these
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interpretations to be completely arbitrary! We can then always define the re-

centred version of X (or path) and the only assumption where the various functions

interact is in the assumption that these re-centred products satisfy the correct order

bound.

We do however include a Section 4.8 in which we introduce a specific class of

local products for which the renormalised product φ◦X3 appearing in (4.1.3) is still

a local polynomial in φ and its spatial derivatives. Our approach in this section

is to apply a recursive negative renormalisation that commutes with positive

renormalisation, similar to [9]. Finally, the class of local products described in

Section 4.8 also contains local products that correspond to the BPHZ renormalised

model [10, 18].

4.1.1 Conventions

Throughout we will work with functions / distributions defined on (subsets of) R× Rd

for an arbitrary d > 1. As in previous chapters, we measure regularity in Hölder-type

norms that reflect the parabolic scaling of the heat operator. We recall the definition of

α-Hölder norm for α < 0 we set

[ξ]α = sup
L61

∥∥∥(ξ)L

∥∥∥L−α. (4.1.5)

The operator (•)L denotes convolution with a compactly supported smooth kernel

ΨL(x) = L−d−2Ψ
(
x0
L2 ,

x
L

)
, where x = (x0, x). As before, we work with a specific

choice of Ψ, but this was only relevant in the proof of the Reconstruction Theorem,

Lemma 3.2.8.

In the case of space-time white noise, the quantity in (4.1.5) is almost surely not finite,

but our analysis only depends on the noise locally: a space-time cutoff can be introduced.

Throughout the paper we also make the qualitative assumption that ξ and all other

functions are smooth. This corresponds to introducing a regularisation of the noise

term ξ (e.g. by convolution with a regularising kernel at some small scale - in field

theory this is called an ultra-violet cutoff). This is very convenient, because it allows to

avoid unnecessary discussions about how certain objects have to be interpreted and in

which sense partial differential equations hold. We stress however that our main result,

Theorem 4.9.1, is a bound only in terms of those low-regularity norms (Definition 4.5.7)

which can be controlled when the regularisation is removed in the renormalization

procedure. Even though all functions involved are smooth, we will freely use the term

“distribution” to refer to a smooth function that can only be bounded in a negative

regularity norm.
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4.2 Overview

As stated in the introduction a large part of our analysis consists of a suitable re-

formulation of elements of the theory of regularity structures. The key notions we

require are local products, the renormalized product sub-ordinate to a local product, as

well as the relevant norms that permit us to bound these renormalized products. We start

our exposition with an overview over these notions and how they are interconnected.

The exposition in this section is meant to be intuitive and rather “bottom up”. The actual

analysis begins in the subsequent Section 4.3.

4.2.1 Subcriticality:

The starting point of our analysis is a simple scaling consideration: assume φ solves

(∂t −∆)φ = −φ3 + ξ, (4.2.1)

for ξ ∈ C−3+δ. Schauder theory suggests that the solution φ is not better than C−1+δ.

In this low regularity class no bounds on φ3 are available, but as we will see below the

notion of product we will work with has the property that negative regularities add under

multiplication. Therefore we will obtain a control on (a renormalised version of) φ3

as a distribution in C−3+3δ. Despite this very low regularity, for δ > 0, the term φ3 is

still more regular than the noise ξ. This observation is the core of Hairer’s notion of

sub-criticality (see [41, Assumption 8.3]) and suggests that the small-scale behaviour of

φ and φ3 can ultimately be well understood by building a perturbative expansion based

on the linearised equation.

4.2.2 Trees:

We follow Hairer’s convention to index the terms in this expansion by a set of trees.

This is not only a convenient notation that organises which term corresponds to which

operation, but also allows for an efficient organisation of the relations between these

terms. We furthermore follow the convention to view trees as abstract symbols which

form the basis of a finite-dimensional vector space. The trees are built from a generator

symbol Ξ (which represents the noise ξ and graphically are the leaves of the tree)

followed by applying the operator I(·) (which represents to solving the heat equation

and graphically corresponds to the edges of the tree) and taking products of trees (which

represents to some choice of point-wise product and graphically corresponds to joining

two trees at their root). To carry out the localisation procedure, discussed in Section 4.2.4

below, along with Ξ, additional generators {1,X1, . . . ,Xd} are used in our construction

of trees.
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We associate concrete meaning to trees via an operator X• of one variable which we

call a “local product”, see Definition 4.3.7. Even though this may seem somewhat

bulky initially, it turns out to be extremely convenient as the concrete definition of X•
on the same tree may change during the renormalisation procedure and because, the

local product also appears in a centred form with two variables, denoted by X•,•, see

Section 4.2.6 below.

4.2.3 Subtracting the most irregular terms:

The first step of our analysis consists of subtracting a finite number of terms from φ to

obtain a remainder v which is regular enough to be bounded in a positive Hölder norm.

The regularity analysis in Section 4.2.1 suggests that the regularity of φ can be improved

by removing ξ from the right-hand side of (4.2.1). We introduce the first graph, I(Ξ) or

graphically , and impose that X• acts on this symbol yielding a function that satisfies

(∂t −∆)X• = ξ. (4.2.2)

We set ṽ := φ− X• so that ṽ solves

(∂t −∆)ṽ = −φ3 = −
(
ṽ3 + 3ṽ2X• + 3ṽ

(
X•
)2

+
(
X•
)3)

. (4.2.3)

Of course the problem of controlling the cube of a distribution of regularity −1 + δ has

not disappeared, but instead of φ3 one now has to control (X• )3 and (X• )2. At this

point one has to make use of the fact that X• is known much more explicitly than the

solution φ, and can thus be analysed using explicit covariance calculations. We do not

discuss these calculations here, but rather view these products as part of the given data:

we introduce two additional symbols I(Ξ)I(Ξ)I(Ξ) or graphically , and similarly

I(Ξ)I(Ξ) or and assume that X acts on these additional symbols yielding distributions

which are controlled in C−3+3δ and C−2+2δ. We stress that only the control on these

norms enters the proof of our a priori bound, and no relation to X• needs to be imposed

(see however Section 4.8 below). Instead of (4.2.3) we thus consider

(∂t −∆)ṽ = −
(
ṽ3 + 3ṽ2X• + 3ṽX• + X•

)
. (4.2.4)

Note that the most irregular term on the right-hand side is X• ∈ C−3+3δ so that we can

expect ṽ ∈ C−1+3δ i.e. we have gained 2δ differentiability with respect to φ. For δ > 1
3

(which corresponds to dimensions “d < 31
3”) ṽ is thus controlled in a positive order

Hölder norm. For smaller δ we proceed to subtract an additional term to again remove

the most irregular term from the right-hand side as above. We define a new symbol

I(I(Ξ)I(Ξ)I(Ξ)) or graphically , postulate that X• acts on this symbol yielding a
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distribution which solves

(∂t −∆)X• = X• , (4.2.5)

and define a new remainder ˜̃v := ṽ + X• = φ − X• + X• which takes values in

C−1+5δ. In general, for any δ > 0 we denote byW the set of trees of order < −2 (for

these trees, order is the same as the regularity of the local product on this tree; below,

in Section 4.2.6 we will encounter additional trees for which these notions differ) and

define

v := φ−
∑
w∈W

(−1)
m(w)−1

2 X•I(τ),

where m(w) denotes the number of “leaves” of the tree w. Then v takes values in a

Hölder space of positive regularity. The remainder equation then turns into

(∂t −∆)v = −v3 (4.2.6)

− 3
∑
w∈W

(−1)
m(w)−1

2 v2X•I(w)

− 3
∑

w1,w2∈W
(−1)

m(w1)+m(w2)−2
2 vX•(I(w1)I(w2))

−
∑

w1,w2,w3∈W
I(w1)I(w2)I(w3)/∈W

(−1)
m(w1)+m(w2)+m(w3)−3

2 X•(I(w1)I(w2)I(w3)).

We stress that the structure of this equation is always the same in the sense that the

nonlinear heat equation (∂t −∆)v = −v3 is perturbed by a large number of irregular

terms (the number actually diverges as δ → 0). Bounding these irregular terms forces us

to introduce additional trees as we will see below, but ultimately we will show that all of

these terms are of lower order with respect to (∂t −∆)v = −v3.

4.2.4 Iterated freezing of coefficients

We now discuss the remainder equation (4.2.6) in more detail, writing it as

(∂t −∆)v = −v3 − 3v2X• − 3vX• −Υ(τ0)X•τ0 − . . . , (4.2.7)

where we are isolating the most irregular terms in each of the three sums appearing on

the right-hand side of (4.2.6). The most irregular term in the sum on the second line of

(4.2.6) is −3v2X• and the most irregular term in the third line is −3vX• . For the last

line, the precise form of the most irregular term depends on δ and there could be multiple

terms of the same low regularity. Here we just keep track of one of them, simply denote

it by X•τ0 and also leave the combinatorial prefactor Υ(τ0) implicit. We remark that

X•τ0 is always a distribution of regularity C−2+κ for some κ ∈ (0, 2δ). To simplify the
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exposition we disregard all of the (many) additional terms hidden in the ellipses . . . for

the moment.

We recall the standard multiplicative inequality

‖fg‖C−β . ‖f‖Cα‖g‖C−β

for α, β > 0 which holds if and only if α − β > 0. In view of the regularity X• ∈
C−2+2δ we would thus require v ∈ Cγ for γ > 2 − 2δ in order to have a classical

interpretation of the product vX• on the right-hand side of (4.2.7). Unfortunately, v is

much more irregular: by Schauder theory we can only expect v to be of class Cκ.

The solution to overcome this difficulty presented in [41] amounts to an “iterated freezing

of coefficient” procedure to obtain a good local description of v around a fixed base-

point: we fix a space-time point x and rewrite the third (and most important) term on the

right-hand side of (4.2.7) as

vX• = v(x)X• + (v − v(x))X• (4.2.8)

and use this to rewrite the equation (4.2.7) as

(∂t −∆)(v + 3v(x)X• + Υ(τ0)X•I(τ0))

= −v3 − 3v2X• − 3(v − v(x))X• − . . . (4.2.9)

where we have introduced new symbols and I(τ0) and postulated that X acts on

these symbols to yield a solution of the inhomogeneous heat equation with right-hand

sides X• and X•τ0. The worst term on the right-hand side is now X• so that the

left-hand side can at best be of regularity 2δ. However, near the base-point we can use

the smallness of the pre-factor |v(•)− v(x)| . [v]κd(•, x)κ to get the better estimate

|U(y, x)| :=
∣∣∣v(y)−

(
v(x)− 3v(x)Xy,x −Υ(τ0)Xy,xI(τ0)

)∣∣∣
. d(y, x)2δ+κ, (4.2.10)

where have used the short-hand notation

Xy,x := Xy − Xx
Xy,xI(τ0) := XyI(τ0)− XxI(τ0). (4.2.11)

This bound in turn can now be used to get yet a better approximation in (4.2.8): we write

(v(y)− v(x))Xy
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=
(
U(y, x)− 3v(x)Xy,x −Υ(τ0)Xy,xI(τ0)

)
Xy . (4.2.12)

At this point two additional non-classical products appear in the second and third term

on the right-hand side, and as before they are treated as part of the assumed data: we

introduce two additional symbols and I(τ0)I(Ξ)I(Ξ) and assume that X acts on these

symbols yielding distributions which we interpret as playing the roles of the products

Xy Xy and XyI(τ0)Xy . Similarly, we introduce the base-point dependent versions

as

Xy,x := Xy − Xx Xy
Xy,xI(τ0)I(Ξ)I(Ξ) := XyI(τ0)I(Ξ)I(Ξ)− XxI(τ0)Xy , (4.2.13)

so that (4.2.12) becomes re-interpreted as

(v(y)− v(x))Xy
= U(y, x)Xy − 3v(x)Xy,x −Υ(τ0)Xy,xI(τ0)I(Ξ)I(Ξ). (4.2.14)

The last two terms on the right-hand side can now again be moved to the left-hand side

of the equation suggesting that near x we can improve the approximation (4.2.9) of v(y)

by considering

Ũ(y, x) := U(y, x) + 3v(x)Xy,x + Υ(τ0)Xy,xI(I(τ0)I(Ξ)I(Ξ)) (4.2.15)

where

Xy,x := Xy − Xx − Xx
(
Xy − Xx

)
Xy,xXyI(I(τ0)I(Ξ)I(Ξ)) := XyI(I(τ0)I(Ξ)I(Ξ))− XxI(I(τ0)I(Ξ)I(Ξ))

− XxI(τ0)
(
Xy − Xx

)
. (4.2.16)

with the improved estimate |Ũ(y, x)| . d(y, x)4δ+κ, thus gaining another 2δ with

respect to U(y, x).

The whole procedure can now be iterated: in each step an improved approximation of v

is plugged into the product vX• which in turn yields an even better local approximation

of v near x. At some point additional terms have to be added:

• In order to get a local description of order > 1, “generalized derivatives” vXi of v

appears, i.e. a term
∑d

i=1 vXi(x)(yi − xi) has to be included.

• The term −3v2X on the right-hand side of the remainder equation (4.2.7) has

regularity−1+δ, so once one wishes to push the expansion of v to a level> 1+δ,
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one also has to “freeze the coefficient” v2, i.e. write

v2X = v2(x)X + (v2 − v2(x))X

= v2(x)X + 2v
(
− 3v(x)X•,x −Υ(τ0)X•,xI(τ0)

)
X + . . .

leading to additional terms on the left-hand side.

• Of course, the various terms which were hidden in . . . in (4.2.7) above have to be

treated in a similar way leading to (many) additional terms in the local description

of v.

Ultimately, we iterate this scheme until we have a local description of order γ > 2− 2δ,

corresponding to the regularity required classically to define vX• .

4.2.5 Renormalised products

The previous discussion thus suggests that we have a Taylor-like approximation of v

near the base-point x

v(y) ≈ v(x) +

d∑
i=1

vXi(x) · (yi − xi) +
∑
τ∈N̊

Υx(τ)Xy,xI(τ) (4.2.17)

for coefficients Υx and with an error that is controlled by . d(x, y)γ . Here N̊ denotes

the set of trees appearing in the recursive construction described above. We unify our

notation by also writing the first two terms with “trees” and set

Xy,xI(1) = 1 Xy,xI(Xi) = yi − xi
Υx(1) = v(x) Υx(Xi) = vXi(x),

thus permitting us to rewrite (4.2.17) as

v(y) ≈
∑
τ∈N

Υx(τ)Xy,xI(τ), (4.2.18)

where N = N̊ ∪ {1,X1, . . . ,Xd}.

Of course, up to now our reasoning was purely formal, because it relied on all of the ad

hoc products of singular distributions that were simply postulated along the way. We

now turn this formal reasoning into a definition of the products subordinate to the choices

in the local product X. More precisely, we define renormalized products such as

v ◦X X• (x) :=
∑
τ∈N

Υx(τ)Xx,x(I(τ) ),
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v ◦X v ◦X X• (x) :=
∑

τ1,τ2∈N
Υx(τ1)Υx(τ2)Xx,x(I(τ1)I(τ1) ). (4.2.19)

Our main a priori bound in Theorem 4.9.1 holds for the remainder equation interpreted in

this sense, under very general assumptions on the local product X. However, under these

very general assumptions it is not clear (and in general not true) that the renormalized

products are in any simple relationship to the usual products. In Section 4.8 we discuss

a class of local products for which the renormalized products can be re-expressed as

explicit local functionals of usual products. In particular, for those local products we

always have

φ◦X3(y) = φ3(y)− aφ2(y)− bφ(y)− c−
d∑
i=1

di∂iφ(y),

for real parameters a, b, c, di. This class of local products contains the examples that can

actually be treated using probabilistic arguments.

4.2.6 Positive renormalisation and order

One of the key insights of the theory of regularity structures is that the renormalized

products defined above can be controlled quantitatively in a process called renormaliza-

tion, and the most important ingredient for that process are the definitions of suitable

notions of regularity / continuity for the local products X and the coefficients Υ. We

start with the local products.

The base-point dependent or centred versions of the local product, Xy,x that appear

naturally in the expansions above (e.g. in (4.2.11), (4.2.13), (4.2.16)) are in fact much

more than a notational convenience. The key observation is that their behaviour as the

running argument y approaches the base-point x is well controlled in the so-called order

bound. For Xy,x defined in (4.2.11) we have

|Xy,x | = |Xy − Xx | . d(y, x)2δ, (4.2.20)

which amounts to the Hölder regularity of X• . The order bounds become more inter-

esting in more complex examples: for Xy,x defined in (4.2.16) we have

|Xy,x | :=
∣∣Xy − Xx − Xx

(
Xy − Xx

)∣∣ . d(y, x)4δ. (4.2.21)

The remarkable observation here is that the function Xy is itself only of regularity

2δ, so that this estimate expresses that the second term −Xx
(
Xy − Xx

)
exactly

compensates the roughest small scale fluctuations. The exponent 4δ is defined as the

order of the tree simply denoted by | |. Analogously, for the tree Xy,x defined in
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(4.2.13) we have the order | | = −2 + 4δ exceding the regularity of the distribution

Xy which is only −2 + 2δ, the same as the regularity of Xy . As these quantities are

distributions the order bound now has to be interpreted by testing against the rescaled

kernel ΨT ∣∣∣ ∫ ΨT (y − x)Xy,x dy
∣∣∣ . T−2+4δ. (4.2.22)

This notion of order of trees has the crucial property that it behaves additively under

multiplication - just like the regularity of distributions discussed above. This property is

what guarantees that for sub-critical equations the number of trees with order below any

fixed threshold is always finite.

4.2.7 Change of base-point

As sketched in the discussion above, the base-point dependent centred local products

X•,• are defined recursively from the un-centred ones. For what follows, a good algebraic

framework to describe the centring operation and the behaviour under the change of

base-point is required. It turns out that both operations can be formulated conveniently

using a combinatorial operation called the coproduct ∆ (note that this ∆ has nothing

to do with the Laplace operator, it will always be clear from the context which object

we refer to). This coproduct associates to each tree a finite sum of couples (τ (1), τ (2))

where τ (1) is a tree and τ (2) is a finite list of trees. Equivalently, the coproduct can be

seen as a linear map

∆ : T+ → Vec(T+)⊗Alg(T rec),

where T+ and T rec are sets of trees that we will define later (see Section 4.3.1 for the

former and Section 4.4.3 for the latter) and Vec and Alg denote the vector space and the

free non-commutative unital algebra generated by a set, respectively. This coproduct is

defined recursively reflecting exactly the recursive positive renormalization described

above in Section 4.2.4. For example

∆ := ⊗ I(1) + I(1)⊗

∆ := ⊗ I(1) + I(1)⊗ + ⊗

so that for example the first definitions of (4.2.11) and (4.2.15) turn into

Xy,x := (Xy ⊗ Xrec
x )∆

Xy,x := (Xy ⊗ Xrec
x )∆ ,
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i.e. the different terms in the coproduct correspond to the different terms appearing in

the positive renormalization, and for each pair τ1 ⊗ τ2, the first tree τ1 corresponds to

the “running variable y” and τ2 to the value of the base-point. The coefficients Xrec
x are

also defined recursively to match this definition e.g

Xrec
x I(1) = 1 Xrec

x = −Xx Xrec
x = −Xx + Xx Xx .

This way of codifying the relation between the centred and un-centred local products is

useful, e.g. when analysing the effect of the renormalization procedure (Section 4.8) but

even more importantly they give an efficient way to describe how Xy,x behaves under

change of base-point. It turns out that we obtain the remarkable formula for all τ ∈ T

Xy,z(τ) = (Xy,z ⊗ Xz,z)∆τ,

i.e. the centred object Xy,z acts on itself as a translation operator!

4.2.8 Continuity of coefficients

With this algebraic formalism in hand, we are now ready to describe the correct continuity

condition on the coefficients. This continuity condition is formulated in terms of the

concrete realisation of the local product, in that an “adjoint” of the translation operator

appears. In order to formulate it, we introduce another combinatorial notation C+(τ , τ),

which is defined recursively to ensure that

∆I(τ) =
∑

τ∈N∪W
I(τ)⊗ C+(τ , τ).

We argue below that the correct family of semi-norms for the various coefficients Υ(τ)

is given by

sup
x,y

1

d(x, y)γ−|τ |

∣∣∣Υx(τ)−
∑
τ∈N
|τ |<γ

Υy(τ)Xy,xC+(τ, τ)
∣∣∣. (4.2.23)

The Reconstruction Theorem (see Lemma 3.2.8 for our formulation) implies that the

renormalized products (4.2.19) can be controlled in terms of the semi-norms (4.2.23)

and the order bounds (e.g. (4.2.22)). Reconstruction takes as input the whole family of

semi-norms (4.2.23), but it turns out that in our case, it suffices to deal with a single semi-

norm on the coefficients: the coefficients Υx(τ) that appear in the recursive freezing of

coefficients described in Section 4.2.4 are far from arbitrary. It is very easy to see that

(up to combinatorial coefficients and signs) the only possible coefficients we encounter

are v, v2, vX, and 1. It then turns out that all of the semi-norms (4.2.23) are in fact

truncations of the single continuity condition on the coefficient v itself. This semi-norm
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can then be easily seen to be

sup
x,y

1

d(x, y)γ

∣∣∣v(x)−
∑
τ∈N
|τ |<γ

Υy(τ)Xy,xI(τ)
∣∣∣, (4.2.24)

which measures precisely the quality of the approximation (4.2.18) at the starting point

of this discussion.

4.2.9 Outline of chapter

A large part of this chapter is concerned with providing the details of the arguments

sketched above in a streamlined “top-down” way: The set of trees, their order and local

products are defined in Section 4.3, while Section 4.4 provides a systematic treatment of

combinatorial properties of the coproduct. Positive renormalization of local products

is discussed in Section 4.5, while Section 4.6 contains the detailed discussion of the

coefficients Υ sketched above in Section 4.2.5. The renormalized products in the spirit of

(4.2.19) are defined in Section 4.7. As already announced above Section 4.8 contains the

discussion of a special class of local products, for which the renormalized product can

be expressed in a simple form. The actual large-scale analysis only starts in Section 4.9,

where the main result is announced. This section also contains a detailed outline of the

strategy of proof. The various technical lemmas that constitute this proof can then be

found in Section 4.10.

4.3 Tree expansion and local products

The objects we refer to as trees will be built from

• a set of generators {1,X1, . . . ,Xd,Ξ}, which can be thought of as the set of

possible types of leaf nodes of the tree

• applications of an operator I, which can be thought of as edges

• A tree product, which joins edges I at a common new node.

As an example, we have

Ξ = •, I[Ξ]2 = , I(Ξ)I(I(Ξ))I(Ξ) = ,

I(Ξ)I(I(Ξ)2I(Xi))I(Ξ) =

i

, and I(1)I(I(Ξ)3)I(1) = 00 .

In particular, when drawing our trees pictorially we decorate the leaf nodes with a • for

an instance of Ξ, 0 for an instance of 1, and j ∈ {1, . . . , d} for an instance of Xj . Notice
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that we do not decorate internal (nonleaf) nodes and have the root node at the bottom.

Our tree product is non-commutative which in terms of our pictures means that we

distinguish between the ways a tree can be embedded in the plane. For example, the

following trees are treated as distinct from the trees above:

I(Ξ)I(I(Ξ)I(Xi)I(Ξ))I(Ξ) =

i

and I(I(Ξ)3)I(1)I(1) =
0 0

.

Remark 4.3.1. We work with a non-commutative tree product only to simplify combinat-

orial arguments. Whenever we map trees over to concrete functions and or distributions

this mapping will treat identically any two trees that coincide when one imposes com-

mutativity of the tree product.

We say a tree τ is planted if it is of the form τ = I(τ̃) for some other tree τ̃ , some

examples would be:

,
0

, and .

We take a moment to describe the intuition behind these trees. The symbol Ξ will

represent the driving noise, we will often call nodes of type Ξ noise leaves/nodes.

Regarding the operator I, when applied to trees different from {1,X1, . . . ,Xd}, I will

represent solving the heat equation, that is

“(∂t −∆)I(τ) = τ” .

However, we think of the trees as algebraic objects so such an equation is only given

here as a mnemonic and will be made concrete when we associate functions to trees in

Section 4.3.2.

The symbols {1,X1, . . . ,Xd} themselves will not correspond to any analytic object,

but the trees {I(1), I(X1), . . . , I(Xd)} will play the role of the classical monomials,

that is I(1) corresponds to 1 and I(Xj) corresponds to the monomial zj .

We define T̂r to be the smallest set of trees containing {1,X1, . . . ,Xd,Ξ} ⊂ T̂r and

such that for every τ1, τ2, τ3 ∈ T̂r one also has I(τ1)I(τ2)I(τ3) ∈ T̂r. The trees in

T̂r \ {1,X1, . . . ,Xd} will be used to write expansions for the right-hand side of (4.1.1).

We remark that non-leaf nodes in T̂r have three offspring, for instance I(Ξ)2I(1) ∈ T̂r
but = I(Ξ)2 6∈ T̂r. However, the three different permutations of I(Ξ)2I(1) will play

the role of that did in expressions like (4.2.4), and as an example of how this simplifies

our combinatorics we remark that this allows us to forget about the “3” that appears in

(4.2.4).

We also define a corresponding set of planted trees T̂l = {I(τ) : τ ∈ T̂r}. The planted
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trees in T̂l will be used to describe an expansion of the solution φ to (4.1.1).

At certain points of our argument the roles of the planted trees of T̂l and the unplanted

trees of T̂r will be quite different. For this reason we will reserve the use of the greek

letter τ (and τ , τ̃ , etc.) for elements of T̂r. If we want to refer to a tree that could belong

to either T̂l or T̂r we will use the greek letter σ.

4.3.1 The order of a tree and truncation

We give a recursive definition of the order | · | on T̂r ∪ T̂l as follows. Given I(τ) ∈ T̂l
we set |I(τ)| = |τ |+ 2. Given τ ∈ T̂r we set

|τ | :=



−2, τ = 1 ,

−1, τ = Xi , i ∈ {1, . . . , d}

−3 + δ, τ = Ξ ,∑3
i=1 |I(τi)| = 6 +

∑3
i=1 |τi|, τ = I(τ1)I(τ2)I(τ3) .

The values of −2 and −1 for homogeneities of the trees 1 and Xi may seem a bit odd

but this is just due to the convention that it is I(1) and I(Xi) that actually play the

role of the classical monomials and we want |I(1)| = 0 and |I(Xi)| = 1. We find that

treating the classical monomials as planted trees makes our combinatorial arguments and

various inductive proofs cleaner.

We now restrict the set of trees we work with and organise them into various sets. We

define the following subsets of T̂r:

Poly :={X1, . . . ,Xd,1} ,

W :={τ ∈ T̂r : |τ | < −2} , W̊ :=W \ {Ξ},

N :={τ ∈ T̂r , −2 6 |τ | 6 0}, N̊ := N \ Poly .

As a mnemonic, W̊ (resp N̊ ), is the set of those trees inW (respN ) which are themselves

the tree product of three planted trees.

Assumption 4.3.2. For the rest of the thesis, we treat δ > 0 as fixed, and assume,

without loss of generality for the purposes of our main theorem, that δ has been chosen

so that {|τ | : τ ∈ W ∪ N̊} does not contain any integers.

It will be helpful in the following to have a notation for counting the number of occur-

rences of a certain leaf type in a tree. We define the functionsm1, mxi , mΞ : T̂r → Z≥0

which count, on any given tree, the number of occurrences of 1, Xi and Ξ as leaves in

the tree.
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We also setmx =
∑d

i=1mxi for the function that returns the total number of {X1, · · · ,Xd}
leaves and m = m1 +mx +mΞ which returns the total number of leaves of the given

tree.

One can easily check that, for τ ∈ T̂r,

|τ | = −3 +mΞ(τ)δ +m1(τ) + 2mx(τ) . (4.3.1)

We now describe the roles of the various sets defined earlier. As mentioned earlier,

the trees of Poly will not, by themselves, play a role in our expansions. The set W
consists of those trees that appear in our expansion that have the lowest orders. When

“subtracting the most irregular terms” as described in Section 4.2.3 we will be subtracting

the trees of I(W) which are all of negative order themselves. In particular, the trees of

W will appear in tree expansions for the right-hand side of (4.1.1) but will not appear by

themselves on the right-hand side of the remainder equation.

On the other hand, the trees of N̊ will appear on the right-hand side of expansions of

both (4.1.1) and the remainder equation. We do not include |τ | > 0 in τ ∈ N̊ since we

only need to expand the right-hand side of the remainder equation up to order 0.

Our remainder will then be described by an expansion in terms of trees of N where the

trees in I(Poly) will come with “generalised derivatives”.

We have the following straightforward lemma.

Lemma 4.3.3. The setsW and N are both finite.

Proof. From the formula (4.3.1), one can see that τ ∈ W if and only if m1(τ) =

mx(τ) = 0 and mΞ(τ) < δ−1. Similarly for τ ∈ N̊ , one has

(m1(τ),mx(τ)) ∈ {(0, 0), (1, 0), (2, 0), (0, 1)} ,

and mΞ(τ) < δ−1(3−m1(τ)− 2mx(τ)).

Remark 4.3.4. Clearly Lemma 4.3.3 would be false for δ = 0, that is when the equation

is critical.

We also have the following lemma describing the trees in W̊ .

Lemma 4.3.5. For any τ ∈ T̂r \ {Ξ}, |τ | ≥ −3 + 3δ > |Ξ| = −3 + δ. Moreover, for

any w ∈ W̊ , one has

w = I(w1)I(w2)I(w3) (4.3.2)

where w1, w2, w3 ∈ W .
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Proof. The first statement about |τ | is a simple consequence of (4.3.1) and the constraint

that mΞ(τ) ≥ 3. For the second statement, we write w = I(τ1)I(τ2)I(τ3) with

τ1, τ2, τ3 ∈ T̂r . Then we have, by bounding the orders of τ2 and τ3 from below,

|w| = 6 + |τ1|+ |τ2|+ |τ3| ≥ |τ1|+ 2δ

Then, the condition that |w| ≤ −2 forces |τ1| < −2 so we have τ1 ∈ W and clearly the

same argument applies for τ2, τ3.

We also define

Tr :=W ∪ N̊ , Tl := I(Tr) ∪ I(Poly), and T := Tr ∪ Tl . (4.3.3)

Above, and in what follows, given A ⊂ T̂r we write I(A) = {I(τ) : τ ∈ A}.

Our various tree expansions will be linear combinations of trees in T and we define tree

products of such linear combinations by using linearity. However, here we implement

a truncation convention that will be in place for the rest of the paper. Namely, given

σ1, σ2, σ3 ∈ Tl we enforce that if |σ1|+ |σ2|+ |σ3| > 0, then

σ1σ2σ3 := 0 .

In particular, with these conventions an important identity for us will be( ∑
τ∈N∪W

I(τ)
)3

=
∑

τ∈N̊∪W̊

τ . (4.3.4)

Above, on the left, the (•)3 indicates a three-fold tree product.

4.3.2 Local products

In this section we begin to specify how trees are mapped into analytic expressions. Our

starting point for this will be what we call a local product and will be denoted by X.

Each local product X should be thought of as a (minimal) description of how products of

planted trees should be interpreted at a concrete level.

We will view local products as being defined on a relatively small set of trees and then

canonically extended to all of T (and in the sequel, to larger sets of trees that will appear).

Definition 4.3.6. We define Q ⊂ N̊ ∪ W̊ to consist of all trees τ = I(τ1)I(τ2)I(τ3) ∈
N̊ ∪ W̊ satisfying the following properties:

• τ1, τ2, τ3 6∈ {X1, . . . ,Xd}.
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• At most one of the trees τ1, τ2, τ3 is equal to 1.

Note that W̊ ⊂ Q. The set Q includes all “non-trivial” products of trees, namely those

corresponding to classically ill-defined products of distributions. Our philosophy is that

once a local product X is specified on the noise Ξ and all these non-trivial products then

we are able to define all other products that appear in our analysis.

We impose the first of the two constraints stated above because multiplication by the

tree I(Xi) corresponds to multiplication of a distribution/function by zi which always

well-defined - this makes it natural to enforce that this product is not deformed. We

impose the second of the two constraints above since a tree of the form I(1)I(τ)I(1)

(or some permutation thereof) doesn’t really represent a new non-trivial product because

the factors I(1) corresponds to the the classical monomial 1.

Definition 4.3.7. A local product is a map X : Q ∪ {Ξ} → C∞(R × Rd), which we

write τ 7→ X•τ .

We further enforce that if τ, τ ∈ Q differ from each other only due to the non-

commutativity of the tree-product then X•τ = X•τ , that is X must be insensitive to the

non-commutativity of the tree product.

4.3.3 Extension of local products

We now describe how any local product X is extended to T , this procedure will involve

induction in me(σ) +mx(σ) where me(σ) is the number of edges of σ.

We start by defining, for any function f : R × Rd → R, (L−1f) to be the unique

bounded solution u of

(∂t −∆)u = ρf. (4.3.5)

where ρ is a smooth cutoff function with value 1 in a neighbourhood of D and vanishes

outside of {z; d(z, 0) < 2}.

We now describe how we extend X to N̊ \ Q. If τ = I(τ1)I(τ2)I(τ3) ∈ N̊ \ Q then

precisely one of the following conditions holds

1. Exactly one of the τ1, τ2, τ3 belong to the set {Xi}di=1.

2. Two of the factors τ1, τ2, τ3 are equal to 1.

In the first case above we can assume without loss of generality that τ1 = Xi, then we

set

Xzτ = ziXz(I(1)I(τ2)I(τ3)) .

In the second case above we can assume without loss of generality that τ1 = τ2 = 1,
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then we set

Xzτ = (L−1X•τ3)(z) .

Next we extend any local product X to Tl by setting, for any I(τ) ∈ Tl,

XzI(τ) =


zi if τ = Xi

1 if τ = 1

(L−1X•τ)(z) otherwise .

(4.3.6)

Finally, we extend by linearity to allow X to act on linear combinations of elements of

T . Adopting the language of rough path theory and regularity structures, given smooth

noise ξ : R × Rd → R we say a local product X is a lift of ξ if XzΞ = ξ(z). Without

additional constraints lifts are not unique.

Definition 4.3.8. We say a local product X is multiplicative if, for every

I(τ1)I(τ2)I(τ3) ∈ Q ,

one has

XzI(τ1)I(τ2)I(τ3) = XzI(τ1)XzI(τ2)XzI(τ3) , (4.3.7)

where on the right-hand side we are using the extension of X to planted trees.

The following lemma is then straightforward to prove.

Lemma 4.3.9. Given any smooth ξ : R× Rd → R there is a unique multiplicative lift

of ξ into a local product, up to the choice of cutoff function ρ.

Multiplicative local products will not play a special role in our analysis but we will use

them at several points to compare our solution theory for (4.1.1) to the classical solution

theory.

4.4 The coproduct

As discussed in Section 4.2.4, local products X• enter in our analysis in a centred form

which depends on the choice of a basepoint x. The construction of these centred objects

is given in Section 4.5. As a preliminary step, in this section we define a combinatorial

operation on trees, called the coproduct, which plays a central role in this construction.
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4.4.1 Derivative edges

For trees σ with |σ| ∈ (1, 2) we will need the centring procedure to generate first order

Taylor expansions in spatial directions. In order to encode these derivatives at the level

of our algebraic symbols we introduce a new set of edges I+
i , i = 1...d and also define

the sets of trees

Ñ = {τ ∈ N̊ : −1 < |τ | < 0} ,

T+ = Tr ∪ Tl ∪
{
I+
i (τ) : 1 ≤ i ≤ d, τ ∈ Ñ ∪ {Xi}

}
.

Given 1 ≤ i ≤ d and τ ∈ Ñ ∪ {Xi}, we also call I+
i (τ) a planted tree. The order of

these new planted trees introduced here is given by |I+
i (τ)| = |τ |+ 1. We also adopt

the shorthand that, for 1 ≤ i ≤ d,

I+
i (Xj) = 0 for j 6= i and I+

i (τ) = 0 for all τ ∈ N̊ \ Ñ .

We emphasise that these new edges will only ever appear as the bottom edge of a planted

tree. Graphically we distinguish these edges by writing an index by them. For example,

I+
i (Xj) = i

j

= 0 if i 6= j, I+
j (I(Ξ)I(Ξ)I(Xi)) = j

i

.

At an analytic level, the role of I+
i (Xj) is the same as that of I(1) but distinguishing

these symbols will be important - see Remark 4.4.3.

4.4.2 Algebras and vector spaces of trees

We now give some notation for describing the codomain of our coproduct ∆. Given a

set of trees T we write Vec(T ) for the vector space (over R) generated by T .

Given a set of planted trees T we write Alg(T ) for the unital non-commutative algebra

(again over R) generated by T . We will distinguish between the tree product introduced

in Section 4.3 and the product that makes Alg(T ) an algebra, calling the the latter product

the “forest product”. While both the tree product and forest product are non-commutative,

the roles they play are quite different - see Remark 4.4.2

We will write · to denote the forest product when using algebraic variables for trees,

that is given σ, σ̃ ∈ T , we write σ · σ̃ for the forest product of σ and σ̃. As a real vector

space Alg(T ) is spanned by products σ1 · σ2 · · ·σn with σ1, . . . , σn ∈ T . We call such a

product σ1 · σ2 · · ·σn a “forest”. The unit for the forest product is given by the “empty”

forest and is denoted by 1.

Graphically, we will represent forest products just by drawing the corresponding planted
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trees side by side, for instance writing

i

j

i i

.

4.4.3 Coproduct

We define another set of trees

T rec := I(N ) ∪ {I+
i (τ) : τ ∈ Ñ ∪ {Xi}, 1 ≤ i ≤ d} . (4.4.1)

Our coproduct will be a map

∆ : T+ → Vec(T+)⊗Alg(T rec) .

Our definition of ∆ will be recursive. The base cases of this recursive definition are the

trees in w ∈ W and planted trees I(w), w ∈ W , and the elementary trees I(1), I(Xi)

and I+
i (Xi):

∆I(1) = I(1)⊗ I(1), (4.4.2)

∆I(Xi) = I(1)⊗ I(Xi) + I(Xi)⊗ I+
i (Xi),

∆I+
i (Xi) = I+

i (Xi)⊗ I+
i (Xi),

∆w = w ⊗ 1, ∆I(w) = I(w)⊗ 1, w ∈ W.

Note that in the last line, the 1 appearing is the unit element in the algebra and should

not be mistaken for 1 ∈ Poly.

The recursive part of our definition is then given by

∆I(τ) = I(1)⊗ I(τ) + I(Xi)⊗ I+
i (τ) + (I ⊗ Id)∆τ, τ ∈ N̊ ,

∆I+
i (τ) = I+

i (Xi)⊗ I+
i (τ) + (I+

i ⊗ Id)∆τ, τ ∈ Ñ , (4.4.3)

∆(I(τ1)I(τ2)I(τ3)) = ∆(I(τ1))∆(I(τ2))∆(I(τ2)), I(τ1)I(τ2)I(τ3) ∈ N̊ ,

where, on the right-hand side of the last line above we are referring to the natural product

[Vec(Tl)⊗Alg(T rec)]⊗3 → Vec(Tr)⊗Alg(T rec). This product is just given by setting

⊗3
i=1 (I(τi)⊗ ai) 7→ I(τ1)I(τ2)I(τ3)⊗ (a1 · a2 · a3) , (4.4.4)

and then extending by linearity. We also make note of the fact that, in the first and second

lines of (4.4.3), we are using our convention of Einstein summation - since i does not

appear on the left-hand side then the i on the right-hand side is summed from 1 to d.
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One can verify that it is indeed the case that ∆ maps T+ into Vec(T+)⊗Alg(T rec) by

checking inductively, using (4.4.2) for the bases cases and (4.4.3) for the inductive step.

We also have the following lemma on how ∆ acts on subsets of T+.

Lemma 4.4.1. We have that

• ∆ maps Tl into Vec(Tl)⊗Alg(T rec),

• ∆ maps Tr into Vec(Tr)⊗Alg(T rec),

• ∆ maps N̊ into Vec(N̊ )⊗Alg(T rec), and

• ∆ maps T rec into Vec(T rec)⊗Alg(T rec).

Proof. The first two statements are immediate consequences of our definitions. We turn

to proving the third statement, where we proceed by induction in the number of edges of

τ ∈ N . The base case(s) where τ has three edges are easily verified by hand. For the

inductive step, we write τ = I(τ1)I(τ2)I(τ3). Now, if τ1, τ2, τ3 ∈ W one can check

that the last line of (4.4.3) gives us that ∆τ = τ ⊗ 1 and we are done. On the other hand,

if we have τi ∈ N for some i then ∆I(τ) ∈ Vec(I(N )) ⊗ Alg(T rec) and so we are

done by combining the last line of (4.4.3) with (4.3.2).

Finally, the fourth statement is immediate by inspection for planted trees T rec \ I(N̊ )

while for planted trees in I(N̊ ) it follows from using the third statement for τ in the first

line of (4.4.3).

We extend ∆ to sums of trees by linearity, so that ∆ : Vec(T+)→ Vec(T+)⊗Alg(T rec).

Remark 4.4.2. The two products we have introduced on trees, the tree product and

the forest product, play different roles in our framework: the tree product represents

a point-wise product of functions/distributions which may not be defined canonically.

Therefore we do not enforce that local products act multiplicatively with respect to the

tree product. On the other hand, any map on trees that is applied to a forest is extended

multiplicatively - we do not allow for any flexibility in how forest products are interpreted

at a concrete level. In particular, the trees in the forests that ∆ produces in the right

factor of its codomain are all of non-negative order and should be thought of as being

associated to products of base-point dependent constants rather than a point-wise product

of space-time functions/distributions.

Remark 4.4.3. The coproduct plays a central role in algebraically encoding the terms

that appear in our centring procedure, but the precise choices (4.4.2) and (4.4.3) are

also motivated by additional properties we will need from the coproduct, namely the

self-commutativity property (4.4.5) and the combinatorial identity (4.4.7) .

The key content of (4.4.7) is that for any τ ∈ N and any σ ⊗ σ1 · · ·σn appearing in the

expansion of ∆I(τ), the precise number of Xi and 1 generators appearing in the forest
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σ1 · · ·σn and in τ coincide. This in turn is needed for the crucial relation (4.6.20). For

this reason we have to work with the different algebraic objects I(1), I+
i (Xi), and the

empty forest 1 - even though all these symbols are treated identically at an analytic level.

For instance, one might be tempted to set ∆I(1) = I(1) ⊗ 1 but this would break

(4.4.7) since the number of 1’s in the empty forest 1 is zero while the number in 1 is one.

Similarly, one cannot include I(Xi)⊗ 1 or I(Xi)⊗ I(1) in the expansion of ∆I(Xi).

Finally, we have to write the term I+
i (Xi)⊗ I+

i (τ) in the second line of (4.4.3) instead

of say, I(1)⊗ I+
i (τ), because of our earlier choices and (4.4.5).

Example 4.4.4. We show one pictorial example. The value of our parameter δ influences

the definition of the set N̊ and whether I+
i (τ) vanishes or not for τ ∈ N̊ , therefore most

non-trivial computations of ∆ we would present are valid only for a certain range of the

parameter δ.

For the example we present below, we restrict to 3
7 > δ > 1

3 and therefore 1 > | | > 0

and 2 >
∣∣∣ ∣∣∣ = −1 + 7δ > 1. We then have, using Einstein’s convention for the

index i ∈ {1, ..., d} (when an index i appears twice on one side of an equation, it means

a summation over i = 1...d)

∆ =
0

⊗ +
i

⊗ i +
00

⊗

+
0

⊗ +
0

⊗ + ⊗
0

.

We show now the example of an unplanted tree in the case δ < 1
3 and therefore | | < 0.

On the other hand, we always have |
i

| = 1 + 2δ > 1. With Einstein’s convention for

the index j ∈ {1, ..., d}

∆
i

= 0 ⊗
i

+ j ⊗ j

i

+
0

⊗
i

+
i

⊗ i

i

.

Remark 4.4.5. The last formula in (4.4.3) for τ ∈ N̊ is also valid for τ ∈ W̊ where it

is trivial. The first formula of (4.4.3) can also be extended to τ ∈ N if one adopts the

convention that ∆Xi = ∆1 = 0. We chose not to do this since the trees of Poly do not,

by themselves, play a role in our algebraic expansions and analysis except when they

appear in a larger tree.

We extend ∆ to forests of planted trees by setting ∆1 = 1 ⊗ 1 and, for any forest

σ1 · · ·σn, n ≥ 1,

∆(σ1 · · ·σn) = (∆σ1) · · · (∆σn) ,
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where on the right-hand side we use the forest product to multiply all the factors

components-wise. We extend to sums of forests of planted trees by additivity so that

∆ : Alg(Tl)→ Alg(Tl)⊗Alg(T rec) and, by Lemma 4.4.1, we also have that ∆ maps

Alg(T rec) into Alg(T rec)⊗Alg(T rec).

While a single application of ∆ will be used for centring objects around a basepoint,

we will see in Section 4.5 that a double application of ∆ will be used for describing

the behaviour when changing this basepoint. This is our reason for also defining ∆ on

the planted trees of T rec \ Tl. It will be important below to know that the two ways of

“applying ∆ twice” agree, this is encoded in the following lemma.

Lemma 4.4.6. ∆ satisfies a co-associativity property: for any σ ∈ T one has

(∆⊗ Id)∆σ = (Id⊗∆)∆σ , (4.4.5)

where both sides are seen as elements of Vec(T )⊗Alg(T rec)⊗Alg(T rec).

Proof. We argue by induction in the size of σ. The cases where σ = I(1), or I(Xi)

are straightforward to check. Note that by multiplicativity of ∆ with respect to the tree

product it suffices to establish the inductive step for σ = I(τ) for some τ ∈ N̊ ∪ W̊ .

The case where τ ∈ W̊ is trivial so we walk through the verification of the identity when

τ ∈ N̊ . On the left we have

(∆⊗ Id)∆I(τ) =(∆⊗ Id)
[
I(1)⊗ I(τ) + I(Xi)⊗ I+

i (τ) + (I ⊗ Id)∆τ
]

=I(1)⊗ I(1)⊗ I(τ) + I(Xi)⊗ I+
i (Xi)⊗ I+

i (τ)

+ I(1)⊗ I(Xi)⊗ I+
i (τ) + I(1)⊗

(
(I ⊗ Id)∆τ

)
+ I(Xj)⊗

(
(I+
j ⊗ Id)∆τ

)
+ (I ⊗ Id⊗ Id)(∆⊗ Id)∆τ .

On the right we have

(Id⊗∆)∆I(τ) =(Id⊗∆)
[
I(1)⊗ I(τ) + I(Xi)⊗ I+

i (τ) + (I ⊗ Id)∆τ
]

=I(1)⊗ I(1)⊗ I(τ) + I(1)⊗ I(Xj)⊗ I+
j (τ)

+ I(1)⊗
(
(I ⊗ Id)∆τ

)
+ I(Xi)⊗ I+

i (Xi)⊗ I+
i (τ)

+ I(Xi)⊗
(
(I+
i ⊗ Id)∆τ

)
+ (I ⊗ Id⊗ Id)(Id⊗∆)∆τ .

All the terms in the expression for the left- and right-hand sides can be immediately

matched except for the very last terms, but these are seen to be identical by using our
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induction hypothesis which is

(Id⊗∆)∆τ = (∆⊗ Id)∆τ .

4.4.4 Useful relations on trees

We introduce two (reflexive and antisymmetric) relations on unplanted trees Tr, which

we denote 6 and ⊂.

Definition 4.4.7. Given τ , τ ∈ Tr we have τ 6 τ if and only if one can obtain τ

from τ by replacing occurrences of the generators 1 in τ with appropriately chosen

trees τ1, ...τm1(τ) ∈ Tr and, for every 1 ≤ i ≤ d, occurrences of Xi with trees

τ1, . . . , τmXi(τ)
∈ Tr \ {1,Xj , j 6= i}.

Example 4.4.8. We give two pictorial examples

00 6
i

,

i

00 6 i .

Definition 4.4.9. Given τ , τ ∈ Tr we have τ ⊂ τ if and only if τ = τ or τ appears in

the inductive definition of τ , that is the expression I(τ) should appear at some point

when one writes out the full algebraic expression for τ .

Example 4.4.10. We give an example below.

,
i ⊂

i

We also use the notation < and ( to refer to the non-reflexive (strict) relations corres-

ponding to ≤ and ⊂.

One can get an intuition of how the coproduct works with the idea of cutting branches:

on the left-hand side of ∆τ we have trees τ 6 τ , and on the right-hand side, we have the

trees I(τ̃) or I+
i (τ̃) where τ̃ ⊂ τ has been cut from τ to obtain τ . We formalise this in

in the following section.

4.4.5 Another formula for ∆

We write F rec for the collection of all finite, non-commutative words in T rec, including

the empty word. In particular, F rec is a vector space basis for Alg(T+). We define a map

C+ : Tr × Tr → F rec recursively. The recursion is given in the following table:

Here p+ is the projection on trees of positive order. In particular, for δ < 1, one has
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τ \ τ 1 Xi Ξ I(τ1)I(τ2)I(τ3)

1 I(1) 0 0 0

Xj I(Xj) I+
i (Xj) 0 0

Ξ 0 0 1 0

I(τ1)I(τ2)I(τ3) p+I(τ) I+
i (τ) 0 C+(τ1, τ1) · C+(τ2, τ2) · C+(τ3, τ3)

Table 4.1: This table gives a recursive definition of C+(τ , τ). Possible values of τ are
displayed in the first column, while possible values of τ are shown in the first row. The
corresponding values of C+(τ , τ) are shown in the remaining fields.

p+I(Ξ), I+
i (Ξ) = 0. Note also that C+(Ξ,Ξ) = 1, which is the unit element in the

algebra of trees, not to be mistaken for 1.

Example 4.4.11. We give two pictorial examples

C+( 00 ,
i

) =


i

if δ > 1
3

0 else.

and

C+( j ,
i

) = j

i

.

We explain how this can be understood in the language of “cuts”. There are three types

of cutting procedures that can be applied to a tree σ.

1. One cuts an I-branch and takes the attached planted tree, leaving behind an I(1).

2. One cuts an I branch and takes the attached planted tree, with its “trunk” becoming

a derivative I+
k , and leaving behind a I(Xk). Note that this only occurs when one

the tree τ ⊂ σ attached to this I branch belongs to Ñ .

3. One cuts an I+
i branch (which must be the trunk of σ) and takes the whole tree σ,

leaving behind an I+
i (Xi).

If δ > 1
3 , the tree 00 is obtained from

i

by performing the first type of cut on

the leftmost and rightmost I branches of
i

connected to the root, leaving behind
00 .

In the second example, one performs the second type of cut on the rightmost I branch

connected to the root of
i

, generating an I+
j trunk on the planted tree taken and

leaving behind an I(Xj) on j .

Some immediate properties of these forests C+(τ, τ) are given in the following lemma.
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Lemma 4.4.12. Let τ, τ ∈ Tr. Then we have

C+(τ , τ) 6= 0⇒ τ 6 τ, (4.4.6)

I(τ ′) ∈ C+(τ , τ) or I+
i (τ ′) ∈ C+(τ , τ)⇒ τ ′ ⊂ τ.

Under the assumption that C+(τ , τ) 6= 0 we have

mΞ(τ) = mΞ(τ) +mΞ(C+(τ , τ)) m1(τ) +mx(τ) = ](C+(τ , τ)), (4.4.7)

m1(τ) = m1(C+(τ , τ)), mx(τ) = mx(C+(τ , τ)),

where ](C+(τ , τ)) is the number of trees in C+(τ , τ) (including multiplicity) and we

extend the functions m1, mx and mΞ to forests of the planted trees by summing over the

individual planted trees in the forest.

The following lemma finally gives the expression of the coproduct ∆ in terms of C+.

This expression is used throughout the chapter without explicit reference to this lemma.

Lemma 4.4.13. For any τ ∈ N ∪W ,

∆I(τ) =
∑

τ∈N∪W
I(τ)⊗ C+(τ , τ). (4.4.8)

In particular,

∆I(τ) =

I(τ)⊗ 1 if τ ∈ W ,∑
τ∈N I(τ)⊗ C+(τ , τ) if τ ∈ N .

(4.4.9)

Moreover, for any τ ∈ Tr,

∆τ =
∑

τ∈N∪W
τ ⊗ C+(τ , τ) = τ ⊗ 1 +

∑
τ∈N
τ 6=τ

τ ⊗ C+(τ , τ) . (4.4.10)

Proof. We prove (4.4.9) by induction, with the base cases given by τ ∈ Poly∪W which

we check now.

∆I(1) = I(1)⊗ I(1) and C+(τ ,1) = I(1)δ{τ=1}.

Since I+
j (Xi) = 0 for j 6= i, we also have ∆I(Xi) = I(1)⊗I(Xi)+I(Xi)⊗I+

i (Xi)

and C+(τ ,Xi) = I(Xi)δ{τ=1} + I+
i (Xi)δ{τ=Xi}.

Finally, for τ = w ∈ W , we have to show that the sum in the right-hand side of

(4.4.8) contains only one term. Indeed, for any w′ 6 w, we also have w′ ∈ W , hence

|I(w′)| < 0 and C+(τ , w) = δ{τ=w}.
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We now prove the inductive step for τ = I(τ1)I(τ2)I(τ3) ∈ N̊ , with the induc-

tion hypothesis ∆I(τk) =
∑

τk
I(τk) ⊗ C+(τk, τk), for k = 1, 2, 3. We have that

C+(1, τ) = p+I(τ) = I(τ) since τ ∈ N̊ and C+(Xi, τ) = I+
i (τ) = I+

i (τ)δ{τ∈Ñ},

and from the definition of ∆, we have

∆I(τ) =I(1)⊗ I(τ) + I(Xi)⊗ I+
i (τ)

+
∑

τ1,τ2,τ3

I(I(τ1)I(τ2)I(τ3))⊗ C+(τ1, τ1)C+(τ2, τ2)C+(τ3, τ3).

Furthermore, for any τ 6 τ ∈ N̊ , we have that either τ = τ or m1(τ) + mx(τ) > 1

therefore |τ | > −2. Hence the sum can be restricted to trees τ = I(I(τ1)I(τ2)I(τ3)) ∈
N̊ . This concludes the proof of (4.4.8)

Finally, we prove (4.4.10). This is immediate if τ = W , otherwise one has τ =

I(τ1)I(τ2)I(τ3) ∈ N̊ and one obtains the desired result by combining (4.4.9) and the

multiplicativity of ∆ with respect to the tree product as described in the last line of

(4.4.3).

4.5 From local products to paths

4.5.1 Definition of paths and centrings

For any choice of local product X, we will define two corresponding families of maps, a

path (Xz,x : T+ → R; z, x ∈ R× Rd) and a centring (Xrec
z : T rec → R; z ∈ R× Rd)

where T rec is defined in (4.4.1).

Both the path and the centring are defined through an inductive procedure that intertwines

these two families of maps.

One particular aim of our definitions will be to allow us to obtain the formula

Xz,xI(τ) = (Xz ⊗ Xrec
x )∆I(τ) for any τ ∈ N̊ , (4.5.1)

where we are extending Xrec
x to act on forests of planted trees by multiplicativity.

As we discussed in Section 4.2, we define

Xz,xI(1) := 1 and Xz,xI(Xi) := zi − xi, (4.5.2)

and

Xz,xτ := Xzτ, Xz,xI(τ) := XzI(τ) for any τ ∈ W . (4.5.3)

With our definition (4.5.3) it is immediate that (4.5.1) holds for τ ∈ W . For τ ∈ N̊ we
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define

Xz,xI(τ) := L−1(X•,xτ)(z)− L−1(X•,xτ)(x)− 1
τ∈Ñ (zi − xi)ν(i)

τ (x) , (4.5.4)

for which one must take as input the definition of X•,xτ and

ντ (x) = (ν(i)
τ (x))di=1 := ∇(L−1(X•,xτ))(z)|z=x , (4.5.5)

where∇ denotes the spatial gradient. For the centring we will define

Xrec
x I(1) :=1, Xrec

x I(Xi) := −xi, Xrec
x I+

i (Xi) := 1,

Xrec
x I(τ) :=− L−1(X•,xτ)(x) + 1

τ∈Ñxiν
(i)
τ (x) for any τ ∈ N̊ ,

Xrec
x I+

i (τ) :=− ν(i)
τ (x) for any τ ∈ Ñ .

(4.5.6)

The formulae above are inductive, we remark that for τ ∈ N̊ one needs to be given

X•,yτ in order to define Xrec
y I(τ) and, if τ ∈ Ñ , that same input is needed to define

Xrec
y I+

i (τ).

Finally, to handle the tree products that appear in the remainder equation we define

Xz,xτ := (Xz ⊗ Xrec
x )∆τ for all τ ∈ N̊ . (4.5.7)

Again, the formula above is an inductive definition - a sufficient condition for specifying

the right-hand side above is that we already know X•,x for every τ ∈ N̊ for τ ( τ .

Remark 4.5.1. Note that if (4.5.7) is extended to τ ∈ W it agrees with the definition

given in (4.5.3).

Lemma 4.5.2. If one adopts the inductive set of definitions (4.5.2), (4.5.4), (4.5.3), and

(4.5.6), to determine the path on T and the centring on T rec then (4.5.1) holds for every

τ ∈ N ∪W .

Proof. The fact that (4.5.1) holds for every τ ∈ W ∪ I(W) ∪ I(Poly) is immediate.

Now suppose that τ ∈ N̊ , we can then rewrite (4.5.4) as

Xz,xI(τ) = L−1(X•,xτ)(z)− 1
τ∈Ñ ziν

(i)
τ (x) + Xrec

x I(τ).

We also have

L−1(X•,xτ)(z) =L−1[(X• ⊗ Xrec
x )∆τ ](z)

=[(L−1X•·)(z)⊗ Xrec
x ]∆τ

=(Xz ⊗ Xrec
x )(I ⊗ Id)∆τ .
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The desired claim follows upon observing that

−1
τ∈Ñ ziν

(i)
τ (x) =(Xz ⊗ Xrec

x )(I(Xi)⊗ I+
i (τ)) ,

and Xrec
x I(τ) =(Xz ⊗ Xrec

x )(I(1)⊗ I(τ)) .

At this point we have finished the inductive definition of the path on the trees of T and

of the centring on the trees of T rec. What is left is to define the path on the trees of

{I+
i (τ) : 1 ≤ i ≤ d, τ ∈ Ñ ∪ {Xi}}.

In keeping with our convention of thinking of I+
i (Xi) as acting like I(1) for all analysis,

we set

Xz,xI+
i (Xi) := 1 .

Our definition for the action of a path X•,• on a tree I+
i (τ) for τ ∈ Ñ is motivated by

the fact that such trees are not really part of our tree expansions but instead only appear

in order to encode change of base-point operations.

In particular, Xu,xI+
i (τ) will play a role in how we relate centring at u versus centring

at x and the identity we will be aiming for is Chen’s relation (4.5.10).

The key identity we would like to hold is that, for any z, x ∈ R× Rd,

Xrec
x I+

i (τ) =
(
Xrec
z ⊗ Xz,x

)
∆I+

i (τ) . (4.5.8)

Note that in the above equation we are using our convention of extending Xz,x to forests

of planted trees by multiplicativity.

Expanding the action of ∆ in (4.5.8) gives us an inductive procedure for defining

X•,•I+
i (τ) for τ ∈ Ñ . Namely, we will define, for any τ ∈ Ñ ,

Xz,xI+
i (τ) :=Xrec

x I+
i (τ)− (Xrec

z ◦ I+
i ⊗ Xz,x)∆τ

=− ν(i)
τ (x) +

∑
τ∈Ñ

ν
(i)
τ (z)Xz,xC+(τ , τ) . (4.5.9)

We then see that, in order to define Xz,xI+
i (τ) it suffices to have defined X•,x(τ),

X•,x(τ) for every τ ∈ N̊ with τ < τ , along with Xz,xI(τ̃) and Xz,xI+
i (τ̃) for every

τ̃ ( τ .

Remark 4.5.3. We take a moment to draw parallels between our definitions and those

found in the theory of regularity structures. Those unfamiliar with the theory of regularity

structures can skip this remark.

In our context, the local product Xz plays the role of the “un-recentred” Π(•)(z) map in
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the theory of regularity structures.

The corresponding path Xz,x sometimes plays the role of the map (Πx•)(z) and some-

times plays a role more analogous to γz,x(•) where γz,x is as in [41, Section 8.2], that is

it is the character that defines Γz,x.

• For σ ∈ W ∪ I(W) the path Xz,xσ plays the role of (Πxσ)(z) or equivalently

(Πσ)(z).

• For τ ∈ N̊ ,

– Xz,xτ plays the role of (Πxτ)(z).

– Xz,xI(τ) plays the role of (ΠxI(τ))(z) and γz,x(I(τ)). In particular these

two quantities are the same and in our context this means that the definition

(4.5.4) is actually compatible with the formula (4.5.8) - see (4.5.12).

• For τ ∈ Ñ and 1 ≤ i ≤ d, Xz,xI+
i (τ) plays the role of γz,x(Ii(τ)) which in

general has a different value than (ΠxIi(τ))(z). This is why we cannot define

Xz,xI+
i (τ) with some formula that is analogous to (4.5.4).

4.5.2 Properties of paths and centrings

The first property we will investigate is Chen’s relation.

Definition 4.5.4. We say a local product satisfies Chen’s relation on σ ∈ T if, for every

z, u, x ∈ R× Rd,

(Xz,u ⊗ Xu,x)∆σ = Xz,xσ . (4.5.10)

Remark 4.5.5. We use Chen’s relation to study the change of base-point operation for

tree expansions, and the sole role of I+
i (τ) for τ ∈ Ñ is to describe this procedure.

Therefore we are not interested in Chen’s relation (4.5.10) for the case where σ = I+
i (τ)

and instead I+
i (τ) plays the role of an intermediate object in the expansion of (4.5.10).

The following lemma is straightforward because of the trivial structure of the coproduct

in those cases.

Lemma 4.5.6. Any local product automatically satisfies Chen’s relation on every σ ∈
W ∪ I(W) ∪ I(Poly) ∪ {I+

i (Xi)}di=1.

We also define semi-norms to capture our notion of order bounds, using the convolution

with a approximation of unity denoted by (·)L as introduced in equation (4.1.5).
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Definition 4.5.7. Given a local product X and σ ∈ T+, we define

[X;σ] :=


sup

x∈R×Rd
sup

L∈(0,1]

∣∣∣(X•,xσ)L(x)
∣∣∣L−|σ| for σ ∈ Tr ∪ I(W) ,

sup
z,x∈R×Rd
d(z,x)∈(0,1)

|Xz,xσ|d(z, x)−|σ| for σ ∈ T rec .
(4.5.11)

We say X satisfies an order bound on σ if [X;σ] <∞.

Remark 4.5.8. We note that for any σ ∈ I(Poly) ∪ {I+
i (Xi)}di=1 we have the bound

[X;σ] . 1 uniformly over local products X.

Since we are working in the smooth setting, it is also true that any local product X
satisfies an order bound on τ ∈ Tr (and I(τ) ∈ I(W)). However, it is not obvious and

in general not true, that these bounds remain finite, when one passes to the rough limit,

where ξ is genuinely only a C−3+δ distribution. In the application to stochastic PDE,

these bounds can be controlled in the limit, but this requires additional probabilistic

arguments as well as a renormalization procedure.

Since we have Lemma 4.5.6 and Remark 4.5.8 our goal for this section is to verify that

our definitions automatically guarantee that any local product satisfies

• Chen’s relation on any τ ∈ I(N ) ∪ N̊ , and

• a quantitative order bound on any

τ ∈ I(N̊ ) ∪ {I+
i (τ) : 1 ≤ i ≤ d, τ ∈ Ñ} ∪ I(W)

in terms of order bounds on τ ∈ N̊ ∪ Tr.

We now turn to showing the desired statements about Chen’s relation.

Proving Chen’s relation

It is useful to introduce a stronger, partially factorized version of Chen’s relation.

Definition 4.5.9. Given I(τ) ∈ I(N ) we say a local product X satisfies the strong

Chen relation on I(τ) if, for every x, y ∈ Rd, one has the identity

Xrec
y I(τ) =

(
Xrec
x ⊗ Xx,y

)
∆I(τ). (4.5.12)

We remark that it is trivial to check that any local product satisfies the strong Chen

relation on I(τ) ∈ I(Poly). The following lemma is half of our inductive step for

proving Chen’s relation.

Lemma 4.5.10. Suppose a local product X satisfies Chen’s relation on τ ∈ N̊ , then X
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satisfies the strong Chen relation on I(τ).

Proof. Expanding both sides of (4.5.12) gives

L−1
(
X•,yτ

)
(y) + yjXrec

y I+
j (τ)

=L−1(X•,yτ)|yx + (yi − xi)Xrec
y I+

i (τ)

+ xk
(
Xrec
y I+

k (τ)−
∑
τ̃∈N̊

(Xrec
x I+

k (τ̃))Xx,yC+(τ̃ , τ)
)

−
∑
τ̃∈N̊

(
Xrec
x I(τ̃)

)(
Xx,yC+(τ̃ , τ)

)
(4.5.13)

Each of the three lines on the right-hand side above come from one of the three terms on

the right-hand side of the first line of (4.4.3).

Doing the explicit cancellations lets us simplify (4.5.13) to

0 =L−1(X•,yτ)(x) + xk
∑
τ̃∈N̊

(Xrec
x I+

k (τ̃))Xx,yC+(τ̃ , τ)

+
∑
τ̃∈N̊

(
Xrec
x I(τ̃)

)(
Xx,yC+(τ̃ , τ)

) (4.5.14)

We then obtain (4.5.14) by using our assumption on Chen’s relation for τ to write

L−1(X•,yτ)(x) = L−1
(

(X•,x ⊗ Xx,y)∆τ
)

(x)

=
∑
τ̃∈N̊

(
L−1X•,x(τ̃)

)
(x)
(
Xx,yC+(τ̃ , τ)

)
,

and then recalling that for any τ̃ in the above sum one has

L−1(X•,xτ̃
)
(x) = −Xrec

x I(τ̃)− xkXrec
x I+

k (τ̃) .

The following lemma is the second half of our inductive step.

Lemma 4.5.11. Fix τ ∈ N̊ and suppose X is a local product that satisfies the strong

Chen property on I(τ) for every τ ( τ . Then X satisfies Chen’s relation on τ .
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Proof. We have

(Xx,y ⊗ Xy,z)∆τ =(Xx ⊗ Xrec
y ⊗ Xy,z)(∆⊗ Id)∆τ

=(Xx ⊗ Xrec
y ⊗ Xy,z)(Id⊗∆)∆τ

=(Xx ⊗ Xrec
z )∆τ

=Xx,zτ .

In the first equality we used our identity (4.5.7) for Xx,y and in the second we used the

co-associativity property of Lemma 4.4.6.

For the third equality we used the fact that ∆ is multiplicative over forests of planted

trees so we can use either Lemma 4.5.10 or (4.5.8) for the planted trees that appear in

the forests that appear on the right factor of ∆τ . Fix τ̃ 6∈ {1,X1, . . . ,Xd}. Then for

any I(τ) ∈ C+(τ̃ , τ) one has τ ( τ so one can use Lemma 4.5.10 for these factors. For

the factors I+
i (τ) ∈ C+(τ̃ , τ) one can just use (4.5.8).

Putting together these two lemmas for our inductive step, combined with Lemma 4.5.6

which gives us the bases cases for our induction, we arrive at the following proposition.

Proposition 4.5.12. Any local product X satisfies Chen’s relation on T .

Order bound

Below, for any local product X and forest of planted trees σ1 · · ·σn, n ∈ Z≥0, we write

[X;σ1 · · ·σn] :=
n∏
j=1

[X;σj ] .

We also write [X; 0] := 0. With this notation we can state the following lemma.

Lemma 4.5.13. For any τ ∈ Tr and uniform over local products X one has the estimate

[X; I(τ)] .

[X; τ ] for τ ∈ W ,

[X; τ ] + max
τ<τ

[X; τ ][X;C+(τ , τ)] for τ ∈ N̊ .
(4.5.15)

Suppose τ ∈ Ñ , then, for any 1 ≤ i ≤ d, and uniform over local products, one has

[X; I+
i (τ)] . [X; τ ] + max

τ<τ
[X; τ ][X;C+(τ , τ)] (4.5.16)

It follows that any X satisfies an order bound for any σ ∈ T+.

Proof. We start with proving (4.5.15) for any τ ∈ Tr. Clearly the bound is trivial when

the corresponding right-hand side of (4.5.15) is infinite so we assume that they are finite.
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When τ ∈ W the desired estimate follows from the Schauder Lemma 3.2.1 where we set

U(•, x) = X•,xI(τ) = X•I(τ) and where we can take M . [X; τ ] by Lemma 3.5.1,

which gives an estimate on the multiplication by smooth cutoff function ρ in (4.3.5).

For τ ∈ N̊ we will instead appeal to Lemma 3.2.2. We set

U(y, x) = L−1(X•,xτ)(y)− L−1(X•,xτ)(x) . (4.5.17)

It is clear that we can take M (1) . [X; τ ] for the assumption (3.2.35).

We now verify the three point continuity condition (3.2.38). The role of λ(•, •) in

(3.2.35) will be played by the quantity λτ (y, x) = (λ
(i)
τ (y, x))di=1 ∈ Rd where

λ(i)
τ (y, x) = −

∑
τ∈N̊
τ 6=τ

(Xrec
y I+

i (τ))Xy,xC+(τ , τ) . (4.5.18)

We then write

U(z, x)− U(y, x)− U(z, y)− (zi − yi)λ(i)
τ (y, x)

=(L−1X•,xτ)|zy − (L−1X•,yτ)|zy − (zi − yi)λ(i)
τ (y, x)

=(L−1(X•,y ⊗ Xy,x)∆τ)|zy − (L−1X•,yτ)|zy − (zi − yi)λ(i)
τ (y, x)

=
∑
τ∈N̊
τ 6=τ

(L−1(X•,yτ))|zyXy,xC+(τ , τ)− (zi − yi)λ(i)
τ (y, x)

=
∑
τ∈N̊
τ 6=τ

Xz,yI(τ)Xy,xC+(τ , τ).

(4.5.19)

For the second equality above we appealed to Proposition 4.5.12 to use Chen’s relation

for τ . Then by inserting the order bound for every term in the last line of (4.5.19) we see

that in (3.2.35) we can take M (2) . maxτ<τ [X; τ ][X;C+(τ , τ)].

We turn to proving (4.5.16) and so we fix τ ∈ Ñ . We obtain the desired estimate by

applying Lemma 3.2.4. Here we again define U(•, •) as in (4.5.17) and λτ (•, •) by

(4.5.18). Thanks to the computation (4.5.19) we see we can takeM = maxτ<τ [X; τ ][X;C+(τ , τ)]

in (3.2.41). We also note that ντ is then the optimal ν referenced in Lemma 3.2.4 and

that we have

Xy,xI+
i (τ) = ν(i)

τ (y)− ν(i)
τ (x) + λ(i)

τ (y, x)

and so the desired estimate is given by (3.2.42).
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4.6 Modelled distribution

With the definition of local products and their associated paths in place, we now show

how to use them to give a good local approximation to the solution v of the remainder

equation. As explained above in (4.2.18), we seek a local approximation to v of the form

v(y) ≈ Xy,xΘ(x) =
∑
τ∈N

Θx(τ)Xy,xI(τ), (4.6.1)

for suitable coefficients Θ ∈ C∞(R × Rd; Vec(N )) (which we interchangeably view

as a map Θ : N → C∞ taking τ 7→ Θ•(τ)) and with an error of order . d(x, y)γ .

In this section we first introduce a family of seminorms that measure the regularity of

the coefficient map Θ and that ultimately permits us to bound renormalized products.

Subsequently, we turn to a specific choice of coefficients Θ (denoted by Υ, see Defini-

tion 4.6.6) which arise in “freezing of coefficient procedure” described in Section 4.2.4.

The main result of this section, Theorem 4.6.10, shows a close connection between the

various seminorms for this specific choice of coefficient.

In order to motivate the regularity condition we rewrite equation (4.6.1) for another

base-point x (but for the same argument y)

v(y) ≈
∑
τ∈N

Θx(τ)Xy,xI(τ), (4.6.2)

then use Chen’s relation (4.5.10) and Lemma 4.4.13 in the form

Xy,xI(τ) =
∑
τ∈N

Xy,xI(τ)Xx,xC+(τ, τ)

to rewrite the right-hand side of (4.6.2) and compare the resulting expression to (4.6.1),

arriving at∣∣∣ ∑
τ∈N

(
Θx(τ)−

∑
τ∈N

Θx(τ)Xx,xC+(τ, τ)
)
Xy,xI(τ)

∣∣∣ . d(x, y)γ + d(x, y)γ . (4.6.3)

Specialising this inequality to those y for which d(x, y) ≈ d(x, y) ≈ d(x, x) ≈ d yields

the estimate ∣∣∣ ∑
τ∈N

(
Θx(τ)−

∑
τ∈N

Θx(τ)Xx,xC+(τ, τ)
)
Xy,xI(τ)

∣∣∣ . dγ . (4.6.4)

In view of the the order bound (4.5.11)

|Xy,xI(τ)| . d|τ |+2,
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the following definition is natural.

Definition 4.6.1. Let X• be a local product and X•,• be the path constructed from X•.
Then for Θ ∈ C∞(R× Rd; Vec(N )) for τ ∈ N and 0 < γ < 2 we define

U τγ−2(y, x) := Θy(τ)−
∑
τ∈N
|τ |<γ−2

Θx(τ)Xy,xC+(τ, τ), (4.6.5)

and the seminorm

[U τ ]γ−|τ |−2 := sup
x,y

1

d(x, y)γ−|τ |−2

∣∣U τγ−2(y, x)
∣∣. (4.6.6)

It is important to observe that the semi-norm [U τ ]γ−|τ |−2 involves the coefficients, Θτ

as well as the paths X•,• on all symbols τ for which C+(τ, τ) does not vanish, and that

all of these trees τ satisfy τ 6 τ . Also, for τ = 1, in view of the identity C+(1, τ) = τ

and |1| = −2 the quantity [U1]γ measures exactly the size of the error in the expression

(4.6.1) at the beginning of this discussion.

Remark 4.6.2. The definition of the semi-norm corresponds exactly to Hairer’s definition

of a modelled distribution, [41, Definition 3.1]. In Hairer’s notation the expression

|U τγ−2(y, x)| becomes

‖Θ(x)− ΓxyΘ(y)‖|I(τ)| .

The following lemma relates the notion of classical derivative with the generalised

derivatives that appear in the modeled distribution.

Lemma 4.6.3. Let 1 < γ < 2. Fix a local product X and Θ ∈ C∞(R× Rd; Vec(N ))

with the property that, with U1
γ−2(y, x) defined as in (4.6.5), we have [U1]γ <∞. Then,

for 1 ≤ i ≤ d,

Θx(Xi) = ∂i

(
Θy(1)−

∑
τ∈N̊
|τ |<−1

Θx(τ)Xy,xC+(1, τ)
)∣∣∣
y=x

, (4.6.7)

where the partial derivative ∂i acts in the variable y.

Proof. Note that by assumption we have that that |U1
γ−2(y, x)| . d(y, x)γ and since

γ > 1 it follows that (
∂iU

1
γ−2(y, x)

)∣∣
y=x

= 0 .

We obtain the desired result by plugging in the definition of U1
γ−2(y, x) and recalling
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that (
∂iXy,xC+(1,1)

)∣∣
y=x

=
(
∂iXy,xI(1)

)∣∣
y=x

= 0 ,(
∂iXy,xC+(1,Xj)

)∣∣
y=x

=
(
∂iXy,xI(Xj)

)∣∣
y=x

= δ{j=i} ,

and
(
∂iXy,xC+(1, τ)

)∣∣
y=x

=0 for τ ∈ N̊ with |τ | > −1 .

In the last statement we are using that |Xy,xC+(1, τ)| . d(y, x)|τ |+2.

We now introduce some short-hand notation that will be very useful in the following

calculations. First, for a given local product X, for Θ ∈ C∞(R × Rd; Vec(N )) and

γ ∈ (0, 2) we denote by

Vγ(y, x) :=
∑
τ∈N ,
|τ |<γ−2

Θx(τ)Xy,xI(τ) . (4.6.8)

We also introduce a truncated “square” and a “spatial derivative”:

V 2
γ (y, x) :=

∑
τ1,τ2∈N ,

|τ1|+|τ2|<γ−4

Θx(τ1)Θx(τ2)Xy,xI(τ1)Xy,xI(τ2) , (4.6.9)

V (i)
γ (y, x) :=

∑
τ∈Ñ ,
|τ |<γ−1

Θx(τ)Xy,xI+
i (τ) . (4.6.10)

Note that due to the choice of index set V 2
γ (y, x) does not coincide with the point-wise

square (Vγ(y, x))2. Note furthermore, that recalling the definition (4.6.5) specialised to

τ = Xi as well as the identity C+(Xi, τ) = I+
i (τ) for τ ∈ Ñ and = 0 otherwise (see

Table 4.1) we have the identity

UXi
γ (y, x) = Θy(Xi)− V (i)

γ−1(y, x). (4.6.11)

A first nice observation is a control for the “three point continuity operator” for Vγ
(the left-hand side of (4.6.12) below) in terms of the U τγ−2 and X•,•. This “three point

continuity operator” corresponds exactly to Gubinelli’s δ operator [33, 34]. In our

calculations this quantity is needed to bound derivatives (see (4.6.16) below) and as input

to the Schauder lemmas presented in Section 3.2.4.

Lemma 4.6.4. Let X• be a local product. Let Θ ∈ C∞(R× Rd; Vec(N )) and let V be

defined as in (4.6.8). Then for any space-time points x, y, z ∈ R× Rd we have

Vγ(z, x)− Vγ(z, y) + Vγ(y, y)− Vγ(y, x)
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= −
∑

τ∈N\{1},
|τ |<γ−2

U τγ−2(y, x)Xz,yI(τ) . (4.6.12)

Proof. We reorganise the terms on the left-hand side of (4.6.12) to write

Vγ(z, x)− Vγ(z, y) + Vγ(y, y)− Vγ(y, x)

=
∑
τ∈N ,
|τ |<γ−2

Θx(τ)
(
Xz,xI(τ)− Xy,xI(τ)

)
−
∑
τ∈N ,
|τ |<γ−2

Θy(τ)
(
Xz,yI(τ)− Xy,yI(τ)

)
. (4.6.13)

We use Chen’s relation (4.5.10) for the terms in the first sum on the right-hand

Xz,xI(τ)− Xy,xI(τ) =
∑
τ∈N
|τ |<γ−2

(
Xz,yI(τ)− Xy,yI(τ)

)
Xy,xC+(τ, τ) .

Plugging this into the first term on the right-hand side of (4.6.13), exchanging the

summation in τ and τ gives

Vγ(z, x)−Vγ(z, y) + Vγ(y, y)− Vγ(y, x) =∑
τ∈N ,
|τ |<γ−2

((
Xz,yI(τ)− Xy,yI(τ)

)( ∑
τ∈N ,
|τ |<γ−2

Θx(τ)Xy,xC+(τ, τ)−Θy(τ)
))
.

Finally, noting that Xz,yI(1)−Xy,yI(1) = 0 and Xy,yI(τ) = 0 for τ ∈ N \ {1} leads

to the desired expression (4.6.12).

The following lemma gives relations between V , V 2 and V (i). They will be used heavily

in Section 4.10.

Lemma 4.6.5. Truncation: for 0 < β < γ < 2, Vγ−β is a truncation of Vγ

Θy(1)− Vγ(y, x) =Θy(1)− Vγ−β(y, x)

−
∑

γ−β−26|τ |<γ−2

Θx(τ)Xy,xI(τ) . (4.6.14)

Multiplication: for 0 < γ < 1, V 2
γ is a truncation of (Vγ)2:

Θy(1)2 − V 2
γ (y, x) = Θy(1)(Θy(1)− Vγ(y, x)) (4.6.15)

+
∑

−26|τ |<γ−2

Θx(τ)Xy,xI(τ)(Θy(1)− Vγ−|τ |−2(y, x)).
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Derivative: To control derivatives we use the following reorganisation of Lemma 4.6.4:

for 1 < γ < 2 we have

Vγ(z, x)− Vγ(z, y) + Vγ(y, y)− Vγ(y, x) (4.6.16)

+
d∑
i=1

(
Θy(Xi)− V (i)

γ−1(y, x)
)
(y − z)i = −

∑
τ∈N̊ ,
|τ |<γ−2

U τγ−2(y, x)Xz,yI(τ).

This last identity (4.6.16) will be combined with Lemma 3.2.5 to give a bound on V (i)

below.

Proof. The first two identities are immediate. In the third one, we use the identity

(4.6.11) and rewrite the term corresponding to τ = Xi, for which Xz,yXi = (y−z)i.

We introduce in the following definition a coefficient map Υ depending on some real

valued functions v1 and vXi , i = 1...d, on R× Rd.

Definition 4.6.6. Given real parameters v1, vXi , i = 1...d and τ ∈ N tW we set

Υ(τ)[v1, vX] :=



v1, τ = 1,

vXi , τ = Xi,

1, τ = Ξ,

−
∏3
i=1 Υ(τi)[v1, vX], τ = I(τ1)I(τ2)I(τ3),

(4.6.17)

where we adopt, above and in what follows, the notational convention vX = (vXi)
d
i=1.

We may omit the parameters [v1, vX] from the notation when there is no possible confu-

sion, We usually work in the case where v1 and vX are functions of spacetime R×Rd in

which case we use the shorthand: Υ(τ)[v1(z), vX(z)] =: Υz(τ).

We extend Υ to planted trees, in particular we set Υ(I(τ)) := Υ(τ) for τ ∈ W ∪ N
and Υ(I+

i (τ)) = Υ(τ) for τ ∈ Ñ ∪ {Xi}di=1. We also extend Υ to forests of planted

trees by multiplicativity.

It is straightforward to derive an explicit formula from the earlier recursive formula Υ,

we state this as a lemma.

Lemma 4.6.7.

Υ(τ)[v1, vX] = (−1)
m(τ)−1

2 v
m1(τ)
1

d∏
i=1

v
mxi (τ)

Xi
.

Note that since we only consider trees of negative order, we always have m1(τ) +

2mx(τ) < 3. In particular only±v1,±v2
1,±vXi or±1 can appear and these possibilities
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correspond, respectively, to m1(τ) = 1, m1(τ) = 2, mxi(τ) = 1, and m1(τ) =

mx(τ) = 0.

Assumption 4.6.8. For the remainder of the thesis, we will always assume that the

coefficient map Θ ∈ C∞(R× Rd; Vec(N )) is of the form

Θz(•) = Υ(•)[v1(z), vX(z)] = Υz(•) for some v1, vX . (4.6.18)

We enforce the relation (4.6.18) for the rest of the thesis, in particular this is implicit in

any use of the notation U τ .

The following identities are the main motivation behind our definition of Υ.

Lemma 4.6.9. One has

−
( ∑
τ∈N∪W

Υ(τ)I(τ)
)3

=
∑

τ∈N̊∪W̊

Υ(τ)τ . (4.6.19)

We also have for any τ ∈ N , τ ∈ N̊ such that C+(τ, τ) 6= 0,

Υ(τ) = (−1)
m(τ)−1

2 Υ(C+(τ, τ)), (4.6.20)

where Υ acts on forests multiplicatively.

Proof. For the equality (4.6.19) we first note that we have this equality if we dropped all

the Υ’s and dropped the minus sign on the left-hand side, this is just (4.3.4). What is

left is to make sure that by inserting the minus sign and Υ’s in (4.6.19), the unplanted

trees on either side of the equation have the same coefficient, but this is an immediate

consequence of the last line of (4.6.17).

The identity (4.6.20) follows from Lemma 4.6.7 and Lemma 4.4.12.

The key result of this section is the observation that under the structure assumption

described in Remark 4.6.8, all continuity conditions are controlled by the condition on 1

and Xi. This follows from the bounds established in Lemma 4.6.5 and the following

theorem which uses the structure of Υ.

Theorem 4.6.10. For τ ∈ T , the quantity U τγ (y, x) takes the following form

U τγ (y, x) =



(−1)
m(τ)−1

2 (v1(y)− Vγ−|τ |(y, x)) if m1(τ) = 1,

(−1)
m(τ)−1

2 (v1(y)2 − V 2
γ−|τ |(y, x)) if m1(τ) = 2,

(−1)
m(τ)−1

2 (vXi(y)− V (i)
γ−|τ |(y, x)) if mxi(τ) = 1,

0 if m1(τ),mx(τ) = 0.

(4.6.21)
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Proof. From Lemma 4.6.9, we have

Υ(τ)C+(τ, τ) = (−1)
m(τ)−1

2 Υ(C+(τ, τ))C+(τ, τ).

This allows us to write:

U τγ (y, x) = Υy(τ)− (−1)
m(τ)−1

2

∑
|τ |<γ

Υx(C+(τ, τ))Xy,xC+(τ, τ).

We can use Lemma 4.4.12 to study the different cases:

• If m1(τ) = 1 and C+(τ, τ) 6= 0 then there exists a unique τ̃ ∈ N such that

C+(τ, τ) = I(τ̃). Conversely, for each τ̃ ∈ N with |τ̃ | < γ−|τ |−2, there exists

a unique τ ∈ N with |τ | < γ − 2 such that C+(τ, τ) = I(τ̃). Indexing the sum

over this τ̃ gives the expression of Vγ−|τ |.

• If mxi(τ) = 1 and C+(τ, τ) 6= 0 then there exists a unique τ̃ ∈ N such that

C+(τ, τ) = I+
i (τ̃). Indexing the sum over this τ̃ gives the expression of V (i)

γ−|τ |.

• If m1(τ) = 2 and C+(τ, τ) 6= 0 then there exists a unique non-commutative

couple (τ̃1, τ̃2) ∈ N 2 such that C+(τ, τ) = I(τ̃1) · I(τ̃2). Indexing the sum over

these τ̃1, τ̃2 gives the expression of V 2
γ−|τ |, using also the multiplicative action of

X on forests of planted trees.

We finally see that we get the correct order using the fact that |τ |+ |C(τ, τ)| = |τ |.

Lemma 4.6.3 above showed that the continuity condition on a modelled distribution

enforces the relation (4.6.7) between the coefficients Θz(Xi) and the other coefficients.

Since we are now imposing the structural condition (4.6.18), we see that all the left-hand

side of (4.6.7) is given by vXi(x) and the right-hand side of (4.6.7) has no dependence on

vX(x) - therefore the continuity condition combined with (4.6.18) determines vX(x) =

(vXi(x))di=1 as a function of v1 and the local product X along with associated derivatives.

For future use we encode this as a map (v1,X) 7→ DX
i v1 = vXi .

Definition 4.6.11. Given a local product X and a smooth function v : R× Rdx → R we

define DXv = (DX
i v)di=1, DX

i v : R× Rd → R by setting, for 1 ≤ i ≤ d,

(DX
i v)(x) =

∑
τ∈N̊
|τ |<−1

Υx(τ)
(
∂iXy,xC+(1, τ)

)∣∣
y=x
− ∂iv(y)

∣∣
y=x

,

where the partial derivatives above acts in the dummy variable y and the Υx(·) coeffi-

cients above are defined using the parameter v(x) = v1(x). Note that we do not need to

specify a parameter vX(x) for the Υx map above since every τ appearing in this sum

satisfies mx(τ) = 0.
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4.7 Renormalised products of tree expansions

In this section we define renormalised “point-wise” products, taking as input a local

product and tree expansions. Fix some smooth noise ξ and let X be a lift of ξ. This means

that we enforce that XΞ = ξ. Upon fixing the choice of X we will arrive at analog of the

(4.1.1) equation which we now try to identify. The solution to this yet to be identified

equation will be written in the form

φ(z) = v(z) +
∑
τ∈W

(−1)
m(τ)−1

2 XzI(τ)

=
∑

τ∈W∪{1}

Υz(τ)Xz,zI(τ)

=
∑

τ∈W∪N
Υz(τ)Xz,zI(τ) . (4.7.1)

Above, in passing from the first to second line, we have used the definition of Υ onW
in Lemma 4.6.7 as well as the fact that Xz,zI(τ) = XzI(τ) for τ ∈ W . In passing to

the last line we used the simple observation that for τ ∈ N \ {1}, Xz,zI(τ) = 0. This

trivially gives the identity

φ3(z) =
∑

τ1,τ2,τ3∈W∪N
Υz(τ1)Υz(τ2)Υz(τ3)Xz,zI(τ1)Xz,zI(τ2)Xz,zI(τ3)

= −
∑

τ1,τ2,τ3∈W∪N
Υz(I(τ1)I(τ2)I(τ3))Xz,zI(τ1)Xz,zI(τ2)Xz,zI(τ3) .

(4.7.2)

The renormalisation now consists of replacing each of the point-wise products Xz,zI(τ1)

Xz,zI(τ2)Xz,zI(τ3) which in general we do not control by the terms Xz,zI(τ1)I(τ2)I(τ3)

which we control by assumption. The following definition extends this idea to more

general expansions.

Definition 4.7.1. Fix a local product X. Suppose we are given, for 1 ≤ i ≤ 3, smooth

functions θ(i)(z) : R× Rd → R and Θ(i) : R× Rd → Vec(Tl) with

θ(i)(z) = Xz,zΘ(i)(z) =
∑

τ∈N∪W
Θ(i)
z (τ)Xz,zI(τ) . (4.7.3)

Then, we define

(θ(1) ◦X θ(2) ◦X θ(3))(z) =∑
τ=I(τ1)I(τ2)I(τ3)∈N̊∪W̊

Θ(1)
z (τ1)Θ(2)

z (τ2)Θ(3)
z (τ3)Xz,zτ . (4.7.4)
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In the case where there is a single function θ(i) = θ and a single corresponding tree

expansion Θ(i) = Θ then we just write θ◦X3 for the left-hand side of (4.7.4).

We adopt the convention that when θ(i)(z) = Xz,zI(τ) = XzI(τ), where τ ∈ W ,

appears as a factor in a local product, we will implicitly take Θ(i)(z) = I(τ). We

remark that, with the generality we allow in the definition of local products, there is

no reason to expect that (θ(1) ◦X θ(2) ◦X θ(3))(z) is given by some polynomial in the

functions θ(i)(z) and their spatial derivatives. However, a trivial case where there is such

a correspondence is in the case of a multiplicative local product in which case one clearly

has (θ(1) ◦X θ(2) ◦X θ(3))(z) = θ(1)(z)θ(2)(z)θ(3)(z).

Remark 4.7.2. An important observation about the importance of these tree expansions is

the following. In (4.7.3), the contribution on the two right-hand sides from τ ∈ N \ {1}
vanishes due to the order bound for any local product.

Similarly, if the local product X is multiplicative then none of the terms involving either

τ1 or τ2 or τ3 ∈ N contribute to the value of the renormalised product.

However, if the X is not multiplicative then it can certainly be the case that these terms

from τ ∈ N \ {1} contribute to the value of the renormalised product even though they

do not contribute to the value of the θ(i)(z). At the same time, in the end we only need

to keep products of trees I(τ1)I(τ2)I(τ3) with |I(τ1)I(τ2)I(τ3)| < 0 in our analysis

of renormalised products. This motivates our truncation convention for tree products

described at the end of Section 4.3.1.

We can now specify the equations we obtain a priori bounds for.

Definition 4.7.3. Fix a local product X. Then we say the solution of the Φ4 equation

driven by X is a smooth function φ : R× Rd → R solving

(∂t −∆)φ = φ◦X3 + ξ . (4.7.5)

where we write ξ = XzΞ and the tree expansion Φ for φ used to define φ◦X3 is defined by

Φ(z) =
∑

τ∈N∪W
Υz(τ)I(τ) ,

where Υ is defined as in Definition 4.6.6 and the parameter v1(z) is given by

v1(z) = φ(z)−
∑
τ∈W

Υz(τ)XzI(τ) , (4.7.6)

while we set parameter vX = DXv1 as given in Definition 4.6.11.

Definition 4.7.4. Fix a local product X. Then we say the solution of the Φ4-remainder
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equation driven by X is a smooth function v : R× Rd → R satisfies the equation

(∂t −∆)v =−
(
v3 + 3

∑
τ∈W

(−1)
m(τ)−1

2 v ◦X v ◦X X•I(τ)

+ 3
∑

τ1,τ2∈W
(−1)

m(τ1)+m(τ2)−2
2 v ◦X X•I(τ1) ◦X X•I(τ2)

−
∑

τ1,τ2,τ3∈W
|τ1|+|τ2|+|τ3|>−8

(−1)
m(τ1)+m(τ2)+m(τ3)−3

2 X•I(τ1)I(τ2)I(τ3)
)
.

(4.7.7)

Here, the tree expansion that governs v is given by

V (z) =
∑
τ∈N

Υz(τ)I(τ)

where Υz is defined as in Definition 4.6.6 using the function v(z) and the parameters

v1 = v and vX = DXv.

The following statement is then straightforward.

Lemma 4.7.5. There is a one to one correspondence between solutions in the sense of

Definition 4.7.3 to those of Definition 4.7.4, the correspondence is given by taking φ

which is a solution in the sense Definition 4.7.3 and mapping it to v = v1 which will be

a solution in the sense of (4.7.6).

4.8 A useful class of local products

This section is somewhat orthogonal to the main result of this chapter. Here we present a

particular subset of local products, lifts of a smooth noise ξ, which are defined in terms

of recursive procedure that guarantees that the renormalised product appearing in (4.7.5)

is a local polynomial in φ and its derivatives. This class of local products also includes

those that satisfy the necessary uniform stochastic estimates in order to go to the rough

setting, namely the BPHZ renormalisation of [10, 18].

4.8.1 Another derivative edge

Our class of local products will, for δ sufficiently small, allow the renormalised product

φ◦X3 to involve spatial derivatives ∂iφ for 1 ≤ i ≤ d.

To describe the generation of these derivatives in terms of operations on trees we will

introduce yet another set of edges {I−i }di=1 and another set of planted trees

Tl,− = Tl ∪
{
I−i (τ) : τ ∈ Tr, 1 ≤ i ≤ d} ∪ {I+

i (Xi) : 1 ≤ i ≤ d} .
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We also adopt the notational convention that

I−i (Xi) = I+
i (Xi), I−i (1) = 0, and I−i (Xj) = 0 if i 6= j .

Both the new set of edges {I−i }di=1 and the set of edges {I+
i }di=1 introduced in Sec-

tion 4.4 should be thought of as representing a spatial derivative of a solution to a heat

equation. However these two sets of edges play different roles in our argument: a symbol

I+
i (τ) for τ ∈ Ñ is used to describe centring terms while the terms I−i (τ̃) for τ̃ ∈ Tr are

only used so we can write tree expansions for derivatives generated by our renormalised

products.

In particular, since the renormalised product associated to a local product X is defined in

terms of the path built from it, it will be useful to extend this path to act on such I−i (τ̃)

trees and the natural action to choose here will be different than the action of the path on

I+
i (τ) trees.

Another difference between these two sets of derivative edges is that while we adopted

the convention that, for any τ ∈ Tr \ Ñ , one has I+
i (τ) = 0. We do not adopt the same

convention for I−i (τ).

For convenience we will treat the symbols I−i (Xi) and I+
i (Xi) as the same and also

adopt the convention that I−i (1) = 0. We also extend our notion of order to Tl,− by

setting, for τ ∈ Tr, |I−i (τ)| = |τ |+ 1.

We extend any local product X to the new trees we have added in Tl,− by setting, for

1 ≤ i ≤ d,

XzI−i (τ) =

∂i(L
−1X•τ)(z) if τ ∈ Tr ,

1 if τ = Xi .
(4.8.1)

4.8.2 Operations on I−i trees

Given a local product X, we extend the corresponding path to I−i trees by setting, for

any τ ∈ Tr and 1 ≤ i ≤ d,

Xz,wI−i (τ) =
(
Xz ⊗ Xrec

w

)
∆I−i (τ) . (4.8.2)

where we extend the formulae of (4.4.3) by setting, for 1 ≤ i ≤ d,

∆I−i (τ) = (I−i ⊗ Id)∆τ + I+
i (Xi)⊗ I+

i (τ), τ ∈ Tr .

Remark 4.8.1. We remark that our convention that I−i (Xi) = I+
i (Xi) also seems

natural since this guarantees (4.4.5) holds for σ of the form I−i (τ), but this observation
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will not play any role in our argument.

We then have the following easy lemma.

Lemma 4.8.2. Let X be a local product, then for any 1 ≤ i ≤ d and τ ∈Ww tN , one

has

∂iXz,wI(τ) = Xz,wI−i (τ) for any τ ∈ W ∪N , (4.8.3)

where the derivative ∂i above acts in the variable z. In particular, one has

Xz,zI−i (τ) = 0 if |I−i (τ)| > 0 (4.8.4)

.

Moreover, if Θ : N → C∞ has the property that, for some 1 < γ < 2, we have

[U1]γ <∞ (where U1
γ−2 is defined as in (4.6.5)) then we have that

∂iΘz(1) =
∑
τ∈N
|τ |≤−1

Θz(τ)Xz,zI−i (τ) . (4.8.5)

Proof. The first statement (4.8.3) is a straightforward computation using (4.8.3) and

(4.8.1) and (4.8.2). The second statement (4.8.4) then follows from the first one and the

order bound [X : I(τ)] for such τ .

Finally, the third statement (4.8.5) follows immediately from combining (4.8.3) and

Lemma 4.6.3.

4.8.3 A recipe for local products

With this notation in hand, our recipe for building a local product X will be to first

specify the smooth function XzΞ and then inductively define, for τ ∈ Q (recall that Q
was defined in Definition 4.3.6),

Xzτ = XzRτ (4.8.6)

where R : Q → Alg(Tl,−), and on the right-hand side, we apply Xz multiplicatively

over the planted trees appearing in the forests of Alg(Tl,−) and use the conventions of

Section 4.3.3 and (4.8.2) to reduce the right-hand side to evaluating Xz on N ∪W . For

this to be a well-defined way to construct local products the map R must satisfy the

following two criteria

• For the induction (4.8.6) to be closed, it is natural to enforce that R should have a

triangular structure in that, for any τ ∈ Q, any planted tree appearing in a forest

appearing in Rτ should be of the form I(τ̃) or I−i (τ̃) with τ̃ strictly fewer edges
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than τ .

• In order for Xz to be invariant under permutations of non-commutative tree

products it also natural to enforce that R act covariantly with respect to such

permutations.

If we have a map R as above and use it to build a local product X using (4.8.6) then we

say X is built from R.

For what follows it is useful to define the map qF which takes tree products to forest

products, namely qF maps N̊∪W̊ 3 I(τ1)I(τ2)I(τ3) 7→ I(τ1)·I(τ2)·I(τ3) ∈ Alg(Tl).

Remark 4.8.3. One possible choice for a renormalisation operator Rmult is setting, for

each τ ∈ Q, Rmultτ = qF τ . If one uses Rmult to build a local product X then it follows

that X is a multiplicative local product.

However, in order to allow more flexibility than a multiplicative local product but still

make it easy to show that that the product φ◦X3 in (4.7.5) admits a nice formula, we

impose a structural assumption on the operator R.

This assumption can be expressed in terms of a slightly modified version of our earlier

defined coproduct.

4.8.4 A modified coproduct and local renormalisation operators

The modified coproduct is defined with a map C−, modification of C+. C− : (τ , τ) ∈
T × T → F is given by the table below.

τ \ τ 1 Xi Ξ I(τ1)I(τ2)I(τ3)

1 I(1) 0 0 0

Xj I(Xj) I−i (Xj) 0 0

Ξ I(Ξ) I−i (Ξ) 1 0

I(τ1)I(τ2)I(τ3) I(τ) I−i (τ) 0 C−(τ1, τ1)C−(τ2, τ2)C−(τ3, τ3)

Table 4.2: This table gives a recursive definition of C−(τ , τ). Possible values of τ are
displayed in the first column, while possible values of τ are shown in the first row. The
corresponding values of C−(τ , τ) are shown in the remaining fields.

The difference between C+ and C− is the removal of the projection on positive planted

trees. Similarly, we never assume that I−i (τ) = 0 if τ 6∈ Ñ . C− also satisfies Lemma

4.4.12, with the first implication in (4.4.6) being an equivalence in this case.

The following lemma, which follows in an immediate way from the definition of our

sets of trees N andW , will be useful when we try to drive an explicit formula for φ◦X3.
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Lemma 4.8.4. For any fixed τ ∈ N̊ ∪ W̊ ,

p60

∑
τ∈N̊∪W̊

C−(τ , τ)

=


(∑

τ∈W I(τ) + I(1)
)

if m1(τ) = 1 ,(∑
τ∈W I(τ) + I(1)

)
·
(∑

τ∈W I(τ) + I(1)
)

if m1(τ) = 2 ,∑
τ∈N∪W
|τ |≤−1

I−i (τ) if mxi(τ) = 1 .

Above, p6 : Alg(Tl,−) → Alg(Tl,−) is the projection that annihilates any forest of

planted trees that contains a planted tree of strictly positive degree.

Definition 4.8.5. Given a map r : Q → R such that r is invariant under permutations

we define a corresponding map R : Q → Alg(Tl,−) by defining

R(τ) = qF τ +
∑
τ ′∈ Q

r(τ ′)C−(τ ′, τ) . (4.8.7)

Note that counterterm maps r and local renormalisation operators R determine each

other uniquely.

We then immediately have the following lemma.

Lemma 4.8.6. Let R be a local renormalisation operator. .

Given a local product X built from R, the formula (4.8.6) defining X for τ ∈ Q actually

also holds as an identity for τ ∈ N̊ \ Q where R is itself is extended to N̊ ∪ W̊ by

applying the formula (4.8.7).

Suppose we are given a X built from R. Then the formula (4.8.6) allows us to compute

the action of X• on any element τ ∈ N ∪W in terms of its actions on simpler trees.

However, the starting formula for φ◦X3 involves the action of the corresponding path

Xz,z . Therefore in order to work out an explicit formula for φ◦X3 it would be good to

have an analogue of (4.8.6) for paths X•,• instead of just the underlying local product

X•. Heuristically the idea for getting such a formula is showing that the action of a local

renormalisation operator will “commute” with our centring operations. To this end we

have the following lemma.

Lemma 4.8.7. Let R be a local renormalisation operator. Then one has, for any

τ ∈ N̊ ∪ W̊ , the identity

∆Rτ = (R⊗ Id)∆τ . (4.8.8)
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Proof.

∆R(τ) = ∆qF τ +
∑
τ∈T

r(τ)∆C−(τ , τ).

We split the sum above depending on m1(τ) and mx(τ), for τ 6 τ . If m1(τ) =

mx(τ) = 0, then C−(τ , τ) = δ{τ=τ}.

If m1(τ) = 1, then we have C−(τ , τ) = I(σ) where σ ⊂ τ and

∆I(σ) =
∑

τ̃∈N̊∪W

I(τ̃)⊗ C+(τ̃ , σ̃).

For each element τ̃ in this sum, we define a corresponding τ by replacing the occurrence

of σ in τ identified above by τ̃ . We have τ 6 τ 6 τ and by the inductive formulas,

I(τ̃) = C−(τ , τ)

and

C+(τ̃ , σ̃) = C+(τ , τ).

The following picture is a representation of τ and the relation between its different

subtrees, for one choice of τ̃ , to give an intuition of the proof. Drawn above the thicker

lines is C+(τ̃ , σ̃) = C+(τ , τ), which in this example is a product of two planted trees.

τ

τ̃

τ

σ

If mx(τ) = 1, the same holds by replacing I by I−i in the argument.

If m1(τ) = 2, then we write C−(τ , τ) = I(σ1) · I(σ2) where σi ⊂ τ and for i = 1, 2,

∆I(σi) =
∑

τ̃i∈N̊∪W

I(τ̃i)⊗ C+(τ̃i, σ̃i).

For each element τ̃1 and τ̃2, we define τ by replacing σi by τ̃i in τ . We have τ 6 τ 6 τ

and by the inductive formulas,

I(τ̃1) · I(τ̃2) = C−(τ , τ)

and

C+(τ̃1, σ̃1) · C+(τ̃2, σ̃2) = C+(τ , τ).
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In all the cases discussed, we can index the sum induced by the coproduct in terms of τ

instead of τ̃ or τ̃1, τ̃2. Permutation of that sum with the sum over τ then gives:

∆R(τ) =∆qF τ +
∑

τ∈N̊∪W

(
∑
τ∈T

r(τ)C−(τ , τ))⊗ C+(τ , τ)

=
∑

τ∈N̊∪W̊

(qF τ +
∑
τ∈T

r(τ)C−(τ , τ))⊗ C+(τ , τ)

=
∑

τ∈N̊∪W̊

R(τ)⊗ C+(τ , τ)

=(R⊗ Id)∆τ ,

where above we adopt the convention that r(τ ′) = 0 if τ ′ 6∈ Q.

With this identity we can now give an analog of (4.8.6) for our paths.

Lemma 4.8.8. Suppose that the local product X was built from an local renormalisation

map R. Then, for any x, y ∈ Rd, and tree τ ∈ N̊ ∪ W̊ one has

Xx,yτ = Xx,yRτ (4.8.9)

where on the right-hand side we extend Xx,y to forests of planted trees multiplicatively.

Proof. Our proof is by induction in the size of τ . The bases cases where mτ = 3 are

straightforward to check by hand. For the inductive step, we note that one has

Xx,yτ = (Xx ⊗ Xrec
y )∆τ = (XxR⊗ Xrec

y )∆τ = (Xx ⊗ Xrec
y )∆Rτ = Xx,yRτ ,

where in the second equality we used Lemma 4.8.6 and in the third equality we used

Lemma 4.8.7.

Remark 4.8.9. We describe how the renormalisation of Φ4
3 (which in our setting cor-

responds to fixing δ = 1/2− with Gaussian noise) used in previous works such as [56]

corresponds to a choice of a local renormalisation operator R.

We define Qwick to be the three different elements of N̊ obtained by permuting the tree

product in I(1)I(Ξ)2, that is

Qwick = {I(1)I(Ξ)2, I(Ξ)I(1)I(Ξ), I(Ξ)2I(1)}

and similarly define Qsunset to be the collection of the 9 different elements of N̊ which
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are obtained by permutations of the tree product in

I(Ξ)I
(
I(Ξ)I(1)I(Ξ)

)
I(Ξ) =

0

.

There are nine elements because there are three different orders for each of the two tree

products appearing in this tree, for instance one also has

I
(
I(1)I(Ξ)2

)
I(Ξ)2 ∈ Qsunset .

The corresponding counterterm map r is given by

r(τ) =


−Cwick if τ ∈ Qwick,

−Csunset if τ ∈ Qsunset,

0 otherwise.

where one has

Cwick =E[(L−1ξ)(0)2].

Csunset =E[θ(0)L−1θ(0)],

where ξ is our (regularised) noise, P is the space-time Green’s function for the heat

kernel and θ is defined by

θ(z) = (L−1ξ)(z)2 − E[(L−1ξ)(0)2] = (L−1ξ)(z)2 − Cwick.

The promised local renormalisation operator is then given by building R from r as in

(4.8.7).

As an example, we compute

R = − 3Cwick and R

0

=

0

− Cwick

0

− Csunset

0

.

4.8.5 Formula for the renormalised cube

The next proposition gives the explicit formulae for our renormalised product that

promised at the beginning of this section.

Proposition 4.8.10. Let X be built from a local renormalisation operator R.
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Fix smooth functions v1, vX1 , . . . , vXd
: R× Rd → R and let

Φ(z) =
∑

τ∈N∪W
Υz(τ)I(τ)

where Υ is defined in terms of the parameters v1 and vX, and

φ(z) = Xz,zΦ(z) = Υz(1) +
∑
τ∈W

Υ(τ)XzI(τ) .

Moreover, suppose that, for some 1 < γ < 2, ifU1
γ−2 as in (4.6.5) with Θ•(·) = Υ•(·)|N ,

we have that [U1]γ <∞.

Then, if we define φ◦X3 as in Definition 4.7.1 using Θ as our tree expansion for φ, we

then have

φ◦X3(z) = φ3(z)− r1 − rΦφ(z)− rΦ2φ2(z)−
d∑
i=1

r∂iΦ∂iφ(z), (4.8.10)

where

r1 =
∑

τ∈N̊∪W̊,
m1(τ)+mx(τ)=0

(−1)
m(τ)−1

2 r(τ), rΦ =
∑
τ∈N̊

m1(τ)=1

(−1)
m(τ)−1

2 r(τ),

rΦ2 =
∑
τ∈N̊

m1(τ)=2

(−1)
m(τ)−1

2 r(τ), r∂iΦ =
∑

mxi (τ)=1

τ∈N̊

(−1)
m(τ)−1

2 r(τ).
(4.8.11)

Here r : Q → R is the map from which R is built.

Proof. We have

φ◦X3(z) =
∑

τ1,τ2,τ3∈N∪W̊

Υz(τ1)Υz(τ2)Υz(τ3)Xz,zI(τ1)I(τ2)I(τ3)

=
∑

τ∈N̊∪W̊

Υz(τ)Xz,zτ

=
∑

τ∈N̊∪W̊

Υz(τ)Xz,zRτ

=
∑

τ∈N̊∪W̊

Υz(τ)(Xz,zqF τ +
∑
τ∈T

r(τ)Xz,zC−(τ , τ)) ,

where the first equality follows from the definition of renormalised local products,

the second equality comes from Lemma 4.6.9, and the third equality comes from

Lemma 4.8.8.
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By appealing to Lemma 4.6.9 once more, we can rewrite the first term of the last line

above as

−Xz,zqF
∑

τ∈N̊∪W̊

Υz(τ)τ =Xz,zqF
( ∑
τ∈N∪W

Υz(τ)I(τ)
)3

=
( ∑
τ∈N∪W

Υz(τ)Xz,zI(τ)
)3

= φ3(z) .

By using Lemma 4.8.4 (note that Xz,zp≤0 = Xz,z on Alg(Tl,−)) followed by equation

(4.6.20), and using the fact that Xz,zσ = 0 if |σ| > 0, we have∑
τ∈N̊∪W̊

Υz(τ)
∑

τ∈N̊∪W̊

r(τ)Xz,zC−(τ , τ) (4.8.12)

=
∑

τ∈N̊∪W̊,
m1(τ)+mx(τ)=0

(−1)
m(τ)−1

2 r(τ)1

+
∑
τ∈N̊

m1(τ)=1

(−1)
m(τ)−1

2 r(τ)
∑

τ∈{1}∪W

Υz(τ)Xz,zI(τ)

+
∑
τ∈N̊

m1(τ)=2

(−1)
m(τ)−1

2 r(τ)
( ∑
τ∈{1}∪W

Υz(τ)Xz,zI(τ)
)2

+
d∑
i=1

∑
τ∈N̊

mxi (τ)=1

(−1)
m(τ)−1

2 r(τ)
∑

τ∈N∪W
|τ |≤−1

Υz(τ)Xz,zI−i (τ).

We then obtain the desired result by observing that, for the second and third terms on the

right-hand side above,∑
τ∈{1}∪W

Υz(τ)Xz,zI(τ) = Υz(1) +
∑
τ∈W

ΥzXzI(τ) = φ(z)

and, for the third term on the right-hand side above, we have, for 1 ≤ i ≤ d,∑
τ∈N∪W
|τ |≤−1

Υz(τ)Xz,zI−i (τ) =
∑
τ∈W

Υ(τ)XzI−i (τ) +
∑
τ∈N
|τ |≤−1

Υz(τ)Xz,zI−i (τ)

=
∑
τ∈W

Υz(τ)∂iXzI(τ) + ∂iΥz(1) = ∂iφ(z) .

For the first equality of the second line above we used Lemma 4.8.2 - in particular,

(4.8.5) - with Θ•(·) = Υ•(·)|N .

Remark 4.8.11. Under the assumptions of Proposition 4.8.10 one can also show that
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each one of the renormalised products in (4.7.7) can also be expressed in terms of local

polynomials of v(z), {∂iv(z)}di=1, and {XzI(τ) : τ ∈ W}.

However, we refrain from doing this because the index sets for the summations that

define the analogs of the constants (4.8.11) become quite complicated.

Remark 4.8.12. Returning to the example of Φ4
3 described in Remark 4.8.9, one then

sees that r∂iΦ = rΦ2 = r1 = 0 for all 1 ≤ i ≤ d and

rΦ =
∑

τ∈Qwick

(−1)
3−1

2 (−Cwick) +
∑

τ∈Qsunset

(−1)
5−1

2 (−Csunset) = 3Cwick − 9Csunset .

4.9 Main result

4.9.1 Statement of main theorem

The main theorem of this chapter is a generalisation of Theorem 3.2.1 to the full

subcritical regime. It allows therefore to treat cases with any number of trees appearing

in the expansion of the solution. In this chapter, we are therefore able to generalise a

result where renormalisation was treated by hand, to the (modified) setting of regularity

structures.

We recall the definition of the parabolic cylinders D and DR:

D = (0, 1)× {|x| < 1}, DR = (R2, 1)× {|x| < 1−R},

and of the parabolic ball of centre z = (t, x) and radius R in this metric d, looking only

into the past:

B(z,R) = {z = (t, x) ∈ R× Rd, d(z, z) < R, t < t}. (4.9.1)

Theorem 4.9.1. There exists a constant C such that if v is a pointwise solution on D to

the remainder equation driven by a local product X, according to Definition 4.7.4 then

‖v‖DR 6 C max
{ 1

R
, [X; τ ]

1
δmΞ(τ) , |τ | < 0,mΞ(τ) 6= 0

}
. (4.9.2)

This theorem generalises to an arbitrary domain D̃ in the following way: the local path

is defined in a similar way, only replacing the cutoff function ρ by a cutoff function that

has value 1 on a 1-enlargement of D̃, and vanishes on a 2 enlargement of the set. Then

for every point in D̃, one can obtain a bound depending only on the path by applying a

translated version of the theorem, for R = 1.

The following corollary is a reformulation of this theorem following from Defini-
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tion 4.7.3.

Corollary 4.9.2. There exists a constant C such that if φ is a pointwise solution to

equation (4.7.5) driven by a local product X then for v = φ−
∑

w∈W Υ(w)XI(w), the

bound (4.9.2) holds.

The following result is a particular case of the local product introduced in Section 4.8. It

follows from Proposition 4.8.10.

Corollary 4.9.3. Let R be a local renormalisation operator, and X be the local product

built from R. There exists a constant C such that if φ is a pointwise solution to

(∂t −∆)φ = −φ3(z) + r1 + rΦφ(z) + rΦ2φ2(z) +
d∑
i=1

r∂iΦ∂iφ(z), (4.9.3)

where the coefficients r1, rΦ, rΦ2 and r∂i are given by (4.8.11), then for v = φ −∑
w∈W Υ(w)XI(w), the bound (4.9.2) holds.

The typical application of these results concerns paths X which are constructed from a

Gaussian noise ξ. In this case, one typically has that for a given tree τ the quantity [X; τ ]

is in the (inhomogeneous) Wiener chaos of order mΞ(τ) (see [27]). In particular, in this

case one gets for some λ > 0,

E[exp(λ[X; τ ]
2

mΞ(τ) )] <∞.

This implies the following corollary:

Corollary 4.9.4. If ξ is a Gaussian noise and the path X is built from the local renor-

malisation operator, if v is a pointwise solution to the remainder equation driven by a

local product X on D, according to Definition 4.7.4 then there exists a constant λ such

that

E[exp(λ‖v‖2δD 1
2

)] <∞.

Remark 4.9.5. The results presented here also imply a bound for the corresponding

elliptic equation in dimension 6−, i.e.

∆φ = φ3 − ξ x ∈ R6,

where ξ is a 6-dimensional white noise which is slightly regularized (e.g. by applying

(1 − ∆)−δ for an arbitrary δ > 0). The four and five dimensional versions of this

equation were recently studied in [4, 35]. Our Corollary 4.9.4 can be applied directly,

if φ is viewed as a stationary solution of the parabolic equation (i.e. with ∂tφ = 0).

However, to treat the elliptic case it would be more natural to define the action of X on I
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slightly differently in terms of the inverse Laplace, rather than the inverse heat operator.

Such a change could be implemented easily.

4.9.2 Proof of Theorem 4.9.1

We remind the reader that the notation τ always refers to an unplanted tree. In particular,

sums indexed by |τ | ∈ J for J an interval only refer to unplanted trees of that order.

Planted trees will be explicitly denoted I(τ).

We recall the remainder equation:

(∂t −∆)v = −v3 − 3
∑
w∈W

Υ(w)v ◦X v ◦X X•I(w)

−3
∑

w1,w2∈W
Υ(w1)Υ(w2)v ◦X X•I(w1) ◦X X•I(w2) +

∑
τ∈∂W

Υ(τ)X•τ.

Here we have introduced ∂W = {τ ∈ N , τ = I(w1)I(w2)I(w3), wi ∈ W}. Note that

the product v3 does not need to be expressed using the renormalised product ◦X since

v is of positive regularity. All the factors Υ in there are just combinatorial factors ±1

which is why we omitted the subscript variable y.

The first thing we do is to convolve this equation with the kernel ΨL, and we obtain:

(∂t −∆)vL = −v3
L + (v3

L − (v3)L)− 3
∑
w∈W

Υ(w)(v ◦X v ◦X X•I(w))L (4.9.4)

− 3
∑

w1,w2∈W
Υ(w1)Υ(w2)(v ◦X X•I(w1) ◦X X•I(w2))L −

∑
τ∈∂W

Υ(τ)(X•τ)L.

To apply the maximum principle 2.4.2, we will therefore need bounds on the commutator,

which is easy enough:

|(v3)L − (vL)3| 6 ‖v‖2[v]αL
α,

as well as quantities of the type:

(Xτ)L(x) where τ ∈ ∂W,

which is bounded by [τ ]|τ |L
|τ | 6 c‖v‖δmΞ(τ)

Dd
L−3+δmΞ(τ), in view of Assumption 4.9.6

and (4.3.1). The following two products will require more work:

(v ◦X v ◦X X•I(w))L with w ∈ W
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and

(v ◦X X•I(w1) ◦X X•I(w2))L with w1, w2 ∈ W

Since the path X is built such that two symmetric trees have the same image, studying

those cases will be enough to be exhaustive.

We formulate the following assumption, for some 1 > c > 0 to be fixed later in (4.10.16)

and (4.10.22).

Assumption 4.9.6. For all τ ∈ T such that mΞ(τ) 6= 0,

[X; τ ] 6 c‖v‖δmΞ(τ)
D . (4.9.5)

Remark 4.9.7. Note that it is not necessary to do the proof of the main theorem by

contradiction with this Assumption, but it simplifies greatly the computations and allows

us to write everything in powers of ‖v‖. Alternatively a proof can be made by keeping

all norms of trees in the computation, but that becomes very messy fast.

Under Assumption 4.9.6, we have by Lemma 4.5.13 the following lemma:

Lemma 4.9.8. For all τ ∈ T such that mΞ(τ) 6= 0,

[X; I(τ)] . c‖v‖δmΞ(τ)
D , (4.9.6)

Proof. For τ ∈ W , it is immediate.

For τ ∈ N̊ , one simply has to notice that for τ 6 τ , mΞ(τ) = mΞ(τ) +mΞ(C+(τ , τ))

and then use induction on mΞ(τ) to bound [X;C+(τ , τ)].

With this set-up, we manage to prove the following lemmas, which hold for any domain

D, uniformly over x ∈ D.

Lemma 4.9.9. Under the Assumption 4.9.6, for w1, w2 ∈ W , there exists an ε > 0 such

that for J = [−2,−6− |w1| − |w2|+ ε),∣∣∣(v◦XX•I(w1) ◦X X•I(w2))L(x)−
∑
|τ |∈J

(
Υx(τ)X•,x(I(τ)I(w1)I(w2))

)
L

(x)
∣∣∣

. c
∑
|τ |∈J

‖v‖δmΞ(τ+w1+w2)
D [U τ ]−6−|w1|−|w2|−|τ |+εL

ε. (4.9.7)

We also have, for |τ | ∈ J ,∣∣∣Υx(τ)
(
X•,x(I(τ)I(w1)I(w2))

)
L

(x)
∣∣∣ (4.9.8)

6 c‖v‖m1(τ)+δmΞ(τ+w1+w2)
D ‖vX‖

mx(τ)
Dd

L6+|τ |+|w1|+|w2|.
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In this lemma we extend the notationmΞ to sums of trees linearly. The functionsm1,mx

and m will also be extended similarly later.

Lemma 4.9.10. Under the Assumption 4.9.6, for w ∈ W , there exists ε > 0 such that

for J̃ = {(a, b) ∈ [−2,−1]2, a+ b < −6− |w|+ ε},∣∣∣(v ◦X v ◦X X•I(w))L(x)

−
∑

(|τ1|,|τ2|)∈J̃

Υx(τ1)Υx(τ2)
(
X•,x(I(τ1)I(τ2)I(w))

)
L

(x)
∣∣∣ (4.9.9)

. c
∑

(|τ1|,|τ2|)∈J̃

‖v‖δmΞ(τ1+τ2+w)
D [UI(τ1)I(τ2)I(Ξ)]−6−|w|−|τ1|−|τ2|+εL

ε.

We also have, for (|τ1|, |τ2|) ∈ J̃∣∣∣Υx(τ1)Υx(τ2)
(
X•,x(I(τ1)I(τ2)I(w))

)
L

(x)
∣∣∣ (4.9.10)

6 c‖v‖m1(τ1+τ2)+δmΞ(τ1+τ2+w)
D L6+|τ1|+|τ2|+|w|.

In both of these lemmas, the existence of the ε follows from the following remark.

Remark 4.9.11. Our choice of δ is such that I(1)I(1)I(1) is the only tree of order

0. Therefore for any non-trivial product, the sum can be indexed over trees τ of order

|τ | < ε, for some ε > 0. The renormalised product is therefore described up to positive

order ε.

Applying the Schauder Lemma yields the following lemma:

Lemma 4.9.12. Under the Assumption 4.9.6, for any 1 > d0 > 0 we have

sup
d6d0

d‖vX‖Dd . ‖v‖D, (4.9.11)

and

sup
d6d0

dγ−β−|τ |+mx(τ)[U τ ]γ−β−|τ |,Dd,d . ‖v‖
m1(τ)+mx(τ)
D . (4.9.12)

A few more computations allow to close this argument, with a specification of d0 in

(4.10.13).

Lemma 4.9.13. Under the Assumption 4.9.6, there exist λ > 0 such that

‖v‖D
λ‖v‖−1

D

6
‖v‖D

2
. (4.9.13)

The final proof of the main theorem relies on a iteration of this result. We define a finite
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sequence 0 = R0 < ... < RN = 1 by setting

Rn+1 −Rn = λ‖v‖−1
DRn

,

as long as the Rn+1 defined that way stay less than 1. We terminate this algorithm

once it would produce Rn+1 > 1 in which case we set RN = Rn+1 = 1, or once

Assumption 4.9.6 does not hold for D′ = DRn . Note that ‖v‖−1
DRn

is strictly increasing

so the sequence necessarily terminates after finitely many steps. Rewriting Lemma 4.9.13

replacing D by DRn then gives the bounds for smaller and smaller boxes.

‖v‖DRn+1
6
‖v‖DRn

2

We now prove that Theorem 4.9.1 holds for all d = Rn, n = 0...N . If Assumption 4.9.6

does not hold for N then it is immediate, else for k < n, ‖v‖DRn 6 ‖v‖DRk2k−n hence

Rn =

n−1∑
k=0

Rk+1 −Rk =

n−1∑
k0

λ‖v‖−1
DRk

6 λ‖v‖−1
DRn−1

n−1∑
k0

2k−n+1 . ‖v‖−1
DRn−1

.

This implies that for any R ∈ (Rn−1, Rn), ‖v‖DR 6 ‖v‖DRn−1
. R−1

n 6 R−1, which

proves the theorem in that case.

If the end-point is RN = 1, we either have RN−1 >
1
2 or RN − RN−1 >

1
2 . In both

cases ‖v‖DRN−1
. R−1

N−1 . 1.

4.10 Proof of the intermediate results

4.10.1 A technical lemma

We first quantify the expansions given in equations (4.6.8),(4.6.9) and (4.6.10), used

now with Θ = Υ.

[V ]α = sup
x,y

|v1(x)− Vα(y, x)|
d(x, y)α

,

[V 2]α = sup
x,y

|v1(x)2 − V 2
α (y, x)|

d(x, y)α
,

[V (i)]α = sup
x,y

|vXi(x)− V (i)
α (y, x)|

d(x, y)α
.

For any domain D, we denote the restriction of this norm to x, y ∈ D by adding the

subscript D. A second subscript d may be added when we restrict to x, y satisfying
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d(x, y) < d.

Using Theorem 4.6.10 we have the identities.

[U τ ]γ−|τ | =



[V ]γ−|τ | if m1(τ) = 1,

[V 2]γ−|τ | if m1(τ) = 2,

[V (i)]γ−|τ | if mxi(τ) = 1,

0 if m1(τ),mx(τ) = 0 .

(4.10.1)

Using Lemma 4.6.5 and the Assumption 4.9.6 to replace all order bounds on trees in this

lemma by powers of ‖v‖D, we get the following general bound for the norm of U . The

bound in the case of mx(τ) = 1 is a straightforward application of Lemma 3.2.5.

Lemma 4.10.1. Under the Assumption 4.9.6, for any τ ∈ N , and 0 < β < γ < 2,

sup
d6d0

dγ−β+2−δmΞ(τ)[U τ ]γ−β−|τ |,Dd,d (4.10.2)

. sup
d6d0

[
[V ]γ,Dd,dd

γ + 1{γ−β+2−δmΞ(τ)<1}d‖vX‖Dd

+ c
∑

γ−β−δmΞ(τ)6|τ |<γ−2

d|τ |+2‖v‖m1(τ)+mΞ(τ)δ
D ‖vX‖

mx(τ)
Dd

]
.

4.10.2 Proof of Lemma 4.9.9

Take w1, w2 ∈ W . From Definition 4.7.1, there exists ε > 0 such that for J =

[−2,−6− |w1| − |w2|+ ε),

(v ◦X X•I(w1) ◦X X•I(w2))L(x) = (4.10.3)∑
|τ |∈J

(
Υ•(τ)X•,•(I(τ)I(w1)I(w2))

)
L

(x).

We know J is the right interval even though we have a longer expansion of v because

the unplanted trees of positive homogeneity vanish in our formalism. This corresponds

to |τ |+ |w1|+ |w2|+ 6 < 0, and Remark 4.9.11 tells us that this expansion is the same

to positive level ε, for ε > 0 small enough.

We prove estimate (4.9.7) by using the reconstruction Lemma 3.2.8. Define F (y, x) =∑
|τ |∈J Υx(τ)Xy,x(I(τ)I(w1)I(w2)), and we aim to bound a suitable regularisation

of F (y, x)− F (x, x). Lemma 3.2.8 and Assumption 4.9.6 imply the desired estimate
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(4.9.7) as soon as the following identity is established:∣∣∣ ∫ Ψl(x2 − y)(F (y, x1)− F (y, x2))dy
∣∣∣ (4.10.4)

6
∑
|τ |∈J

[X; I(τ)I(w1)I(w2)][U τ ]−6−|w1|−|w2|−|τ |+ε

× l6+|w1|+|w2|+|τ |d(x1, x2)−6−|w1|−|w2|−|τ |+ε .

By multiplicativity of the coproduct, and since w1, w2 ∈ W , we first note that for τ ∈ N

∆(I(τ)I(w1)I(w2)) = ∆I(τ)∆I(w1)∆I(w2)

=
∑

−26|τ |6|τ |

I(τ)I(w1)I(w2)⊗ C+(τ, τ).

Using Chen’s relation, we have:

F (y, x1) =
∑
|τ |∈J

Υx1(τ)Xy,x1(I(τ)I(w1)I(w2))

=
∑
|τ |∈J

Υx1(τ)
∑
|τ |∈J

Xy,x2(I(τ)I(w1)I(w2))Xx2,x1C+(τ, τ)

=
∑
|τ |∈J

Xy,x2(I(τ)I(w1)I(w2))
∑
|τ |∈J

Υx1(τ)Xx2,x1C+(τ, τ).

Therefore,

F (y, x1)− F (y, x2)

=
∑
|τ |∈J

Xy,x2(I(τ)I(w1)I(w2))
( ∑
|τ |∈J

Υx1(τ)Xx2,x1C+(τ, τ)−Υx2(τ)
)

= −
∑
|τ |∈J

Xy,x2(I(τ)I(w1)I(w2))U τ−6−|w1|−|w2|−|τ |+ε(x2, x1)

which proves (4.10.4) and thus (4.9.7).

The bound (4.9.8) is simply the order bound on the trees, which for x ∈ Dd and for

L < d, can be expressed as:

|Υx(τ)
(
X•,x(I(τ)I(w1)I(w2))

)
L

(x)| (4.10.5)

6 ‖v‖m1(τ)
D ‖vX‖

mx(τ)
Dd

[X; I(τ)I(w1)I(w2)]L6+|τ |+|w1|+|w2|

Ass. 4.9.6
6 c‖v‖m1(τ)+δmΞ(τ+w1+w2)

D ‖vX‖
mx(τ)
Dd

L6+|τ |+|w1|+|w2|.
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4.10.3 Proof of Lemma 4.9.10

Take w ∈ W . From Definition 4.7.1 and Remark 4.9.11, there exists ε > 0 such that for

J̃ = {(a, b) ∈ [−2,−1]2, a+ b < −6− |w|+ ε},

(v ◦X v ◦X X•I(w))L(x)

=
∑

(|τ1|,|τ2|)∈J̃

(
Υ(τ1)Υ(τ2)X•,•(I(τ1)I(τ2)I(w))

)
L

(x). (4.10.6)

We know J is the right domain even though we have a longer expansion for v because

unplanted trees of positive order vanish in our setting.

We prove the bound (4.9.9).

Define F (y, x) =
∑

(|τ1|,|τ2|)∈J̃ Υx(τ1)Υx(τ2)Xy,x(I(τ1)I(τ2)I(w)), and we aim to

bound a suitable regularisation of F (y, x)−F (x, x). Lemma 3.2.8 and Assumption 4.9.6

implies the desired bound as soon as the following bound is established:∣∣∣ ∫ Ψl(x2 − y)(F (y, x1)− F (y, x2))dy
∣∣∣ 6∑

(|τ1|,|τ2|)∈J̃

[X; I(τ1)I(τ2)I(w)][UI(τ1)I(τ2)I(Ξ)]−6−|w|−|τ1|−|τ2|+ε

× l6+|τ1|+|τ2|+|w|d(x1, x2)−6−|w|−|τ1|−|τ2|+ε (4.10.7)

By multiplicativity of the coproduct, and sincew ∈ W , we first note that for (|τ1|, |τ2|) ∈
J̃ ,

∆(I(τ1)I(τ2)I(w)) = ∆I(τ1)∆I(τ2)∆I(w)

=
∑

−26|τ2|6|τ2|
−26|τ1|6|τ1|

I(τ1)I(τ2)I(w)⊗ C+(τ1, τ1)C+(τ2, τ2).

Using Chen’s relation, we have

F (y, x1)

=
∑

(|τ1|,|τ2|)∈J̃

Υx1(τ1)Υx1(τ2)Xy,x1(I(τ1)I(τ2)I(w))

=
∑

(|τ1|,|τ2|)∈J̃

Υx1(τ1)Υx1(τ2)

×
∑

−26|τ2|6|τ2|
−26|τ1|6|τ1|

Xy,x2(I(τ1)I(τ2)I(w))Xx2,x1(C+(τ1, τ1)C+(τ2, τ2))
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=
∑

(|τ1|,|τ2|)∈J̃

Xy,x2(I(τ1)I(τ2)I(w))

×
∑

(|τ1|,|τ2|)∈J̃

Υx1(τ1)Υx1(τ2)Xx2,x1(C+(τ1, τ1)C+(τ2, τ2)).

In the following computation, we introduce a mock Υ(Ξ), which is just a factor −1, and

C+(Ξ,Ξ) = 1 to make explicit that the structure of the terms appearing here is that of

U τ̃β for some τ̃ and β.

F (y, x1)− F (y, x2) =
∑

(|τ1|,|τ2|)∈J̃

Xy,x2(I(τ1)I(τ2)I(w))

×
( ∑

(|τ1|,|τ2|)∈J̃

Υx1(τ1)Υx1(τ2)Xx2,x1(C+(τ1, τ1)C+(τ2, τ2))−Υx2(τ1)Υx2(τ2)
)

=
∑

(|τ1|,|τ2|)∈J̃

Xy,x2(I(τ1)I(τ2)I(w))×
(

Υx2(τ1)Υx2(τ2)Υx2(Ξ)

−
∑

(|τ1|,|τ2|)∈J̃

Υx1(τ1)Υx1(τ2)Υx1(Ξ)Xx2,x1(C+(τ1, τ1)C+(τ2, τ2)C+(Ξ,Ξ))
)

=
∑

(|τ1|,|τ2|)∈J̃

Xy,x2(I(τ1)I(τ2)I(w))×
(

Υx2(I(τ1)I(τ2)I(Ξ))

−
∑

(|τ1|,|τ2|)∈J̃

Υx1(I(τ1)I(τ2)I(Ξ))Xx2,x1(C+(I(τ1)I(τ2)I(Ξ), I(τ1)I(τ2)I(Ξ))
)

=
∑

(|τ1|,|τ2|)∈J̃

Xy,x2(I(τ1)I(τ2)I(w))U
I(τ1)I(τ2)I(Ξ)
−3+δ−|w|+ε ,

which proves (4.10.7) and thus (4.9.9).

The bound (4.9.10) is directly the order bound on the trees, which for x ∈ Dd and for

L < d, can be expressed as:

|Υx(τ1)Υx(τ2)
(
X•,x(I(τ1)I(τ2)I(w))

)
L

(x)| (4.10.8)

6 ‖v‖m1(τ1+τ2)
D [X; I(τ1)I(τ2)I(w)]L6+|τ1|+|τ2|+|w|

Ass. 4.9.6
6 c‖v‖m1(τ1+τ2)+δmΞ(τ1+τ2+w)

D L6+|τ1|+|τ2|+|w|.

Note that here the term ‖vX‖ does not appear since J̃ does not contain any homogeneities

higher than 1.
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4.10.4 Proof of Lemma 4.9.12

For γ ∈ (2− 2δ, 2) we have

(∂t −∆)yVγ(y, x) =
∑

−2<|τ |<γ−2

Υx(τ)Xyx(τ).

We write trees in this sum as τ = I(τ1)I(τ2)I(τ3). The first remark we make is that

if |τi| > −2 for i = 1, 2, 3, then |τ | > 0 > γ − 2. We also remark that for w ∈ W ,

Υx(w) is independent of x and for τ ∈ ∂W , Xyxτ is also independent of x. Therefore,

accounting for symmetries with the factor 3, we get:

(∂t−∆)yVγ(y, x) =

−3
∑
w∈W

Υy(w)
∑

|τ1|+|τ2|<γ−8−|w|

Υx(τ1)Υx(τ2)Xy,x(I(τ1)I(τ2)I(w))

−3
∑

w1,w2∈W
Υy(w1)Υy(w2)

∑
|τ |<γ−8−|w1|−|w2|

Υx(τ)Xy,x(I(τ)I(w1)I(w2))

+
∑
τ∈∂W

Υy(τ)Xy,yτ.

Using the remainder equation, we have:

(∂t −∆)(v−Vγ(·, x))(y) = −v3(y)

−3
∑
w∈W

Υy(w)
(

(v ◦X v ◦X XyI(w))(y)

−
∑

|τ1|+|τ2|<γ−8−|w|

Υx(τ1)Υx(τ2)Xy,x(I(τ1)I(τ2)I(w))
)

−3
∑

w1,w2∈W
Υy(w1)Υy(w2)

(
(v ◦X XyI(w1) ◦X XyI(w2))(y)

−
∑

|τ |<γ−8−|w1|−|w2|

Υx(τ)Xy,x(I(τ)I(w1)I(w2))
)
.

We need to bound this after integration against ΨL1(z − y)dy for z ∈ B(x, L2), for

x ∈ D2d, for L1 <
d
2 and L2 <

d
4 to apply the Schauder Lemma 3.2.3. We first have:

|(v3)L1(z)| 6 ‖v‖3D.

IfF (y, x) =
∑
|τ1|+|τ2|<γ−8−|w|Υx(τ1)Υx(τ2)Xy,x(I(τ1)I(τ2)I(w)), then Lemma 4.9.10

gives a bound on (v ◦X v ◦X X•I(w)− F (•, z))L1(z), and from equation (4.10.7) we
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have a bound on (F (•, x)− F (•, z))L1(z). Together with Assumption 4.9.6, they give∣∣∣((v ◦X v ◦X X•I(w)) (4.10.9)

−
∑

|τ1|+|τ2|<γ−8−|w|

Υx(τ1)Υx(τ2)X·,x(I(τ1)I(τ2)I(w))
)
L1

(z)
∣∣∣

. c
∑

|τ1|+|τ2|<γ−8−|w|

[UI(τ1)I(τ2)I(Ξ)]−6−|w|−|τ1|−|τ2|+ε,Dd,d

×‖v‖δmΞ(τ1+τ2+w)
D (Lε1 + L

6+|τ1|+|τ2|+|w|
1 d(x, z)−6−|w|−|τ1|−|τ2|+ε).

Similarly withF (y, x) =
∑
|τ |<γ−8−|w1|−|w2|Υx(τ)Xy,x(I(τ)I(w1)I(w2)), Lemma 4.9.9

gives a bound on (v ◦X X•I(w1) ◦X X•I(w2)) − F (•, z))L1(z)) and from Equa-

tion (4.10.4), we have a bound on (F (•, x) − F (•, z))L1(z). Together with Assump-

tion 4.9.6, they give∣∣∣(v ◦X X•I(w1) ◦X X•I(w2) (4.10.10)

−
∑

|τ |<γ−8−|w1|−|w2|

Υx(τ)X•,x(I(τ)I(w1)I(w2))
)
L

(z)
∣∣∣

. c
∑

|τ |<γ−8−|w1|−|w2|

[U τ ]−6−|w1|−|w2|−|τ |+ε,Dd,d

×‖v‖δmΞ(τ+w1+w2)
D (Lε + L6+|w1|+|w2|+|τ |d(x, z)−6−|w1|−|w2|−|τ |+ε).

We also need the three-point continuity. It is a consequence of Lemma 4.6.4, and can be

quantified, for x ∈ Dd, for y ∈ B(x, d4), for z ∈ B(y, d4), as:

|Vγ(z, x)− Vγ(z, y) + Vγ(y, y)− Vγ(y, x) + V i
γ (y, x)(zi − yi)| (4.10.11)

6
∑

−2<|τ |<γ−2
τ 6=X

[U τ ]γ−2−|τ |,D d
2
, d
2
d(y, x)γ−2−|τ | [X; I(τ)]d(z, y)|τ |+2

Ass. 4.9.6
6 c

∑
−2<|τ |<γ−2

τ 6=X

‖v‖δmΞ(τ)
D [U τ ]γ−2−|τ |,D d

2
, d
2
d(y, x)γ−2−|τ | d(z, y)|τ |+2.

We now notice that all the term appearing in (4.10.9),(4.10.10) and (4.10.11) have a

common structure. By replacing the homogeneities by their expressions in terms of

δmΞ for the trees inW , and relabelling τ = I(τ1)I(τ2)I(Ξ) in (4.10.9), we get after

application of Lemma 3.2.3:

sup
d6d0

dγ [V ]γ,Dd . sup
d6d0

d2‖v‖3D (4.10.12)

+ c sup
a,b,τ

sup
d6d0

(
db‖v‖a+δmΞ(τ)

Dd
[U τ ]b−2−a−|τ |,Dd,d

)
,

157



where [V ]γ,Dd is the γ-Hölder norm of Vγ , restricted to the domain Dd, and where the

supremum is taken over a finite subset of

{(a, b, τ) ∈ R2
+ × Tr, a > 0 , b > γ , b− 2− a− |τ | < γ}.

We apply Lemma 4.10.1 to the second part.

sup
d6d0

dγ [V ]γ,Dd . sup
d6d0

d2‖v‖3D

+c sup
a,b,τ

sup
d6d0

da+δmΞ(τ)‖v‖a+δmΞ(τ)
Dd

(
[V ]γ,Ddd

γ + 1{b−a−δmΞ(τ)<1}d‖vX‖Dd

+ c
∑

b−a−2−δmΞ(τ)6|τ |<γ−2

d|τ |+2‖v‖m1(τ)+δmΞ(τ)
D ‖vX‖

mx(τ)
Dd

)
.

We see now that if we take

d0 = ‖v‖−1
D (4.10.13)

, then there exist a value of c0 < 1 such that for any 0 < c < c0, the occurrences of

[V ]γ,Dd can be absorbed into the left-hand side, and the other terms also simplify: in the

last sum, if mx(τ) = 1, we bound

d|τ |+2‖v‖m1(τ)+δmΞ(τ)
D ‖vX‖

mx(τ)
Dd

6 d−1+2mx(τ)‖vX‖
mx(τ)
Dd

= d‖vX‖Dd ,

and if mx(τ) = 0,

d|τ |+2‖v‖m1(τ)+δmΞ(τ)
D = d−1+m1(τ)+δmΞ(τ)‖v‖m1(τ)+δmΞ(τ)

D 6 ‖v‖D.

In conclusion,

sup
d6d0

dγ [V ]γ,Dd . ‖v‖D + c sup
d6d0

d‖vX‖Dd . (4.10.14)

We now prove the bound on ‖vX‖. For that we take ε small enough such that there is no

tree of regularity between 1 and 1 + ε. Then we can apply Corollary 3.2.5 with κ = 1 + ε

but with U(x, y) =
∑
−26|τ |<−1 Υx(τ)XyxI(τ). We get

‖vX‖Dd . [V ]1+ε,Dd,dd
ε + ‖U‖Dd,dd

−1.

We have by Assumption 4.9.6

‖U‖Dd,dd
−1 .

∑
n

dn−2‖v‖nD,
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and from (4.10.2)

[V ]1+ε,Dd,dd
ε . [V ]γ,Dd,dd

γ−1 + c
∑
n,m

dn+2m−2‖v‖nDd‖vX‖
m
Dd
,

where the sum ranges over a finite set of indices n > 0 and m ∈ {0, 1}. We have,

assuming d0 6 ‖v‖−1
D ,

sup
d6d0

d‖vX‖Dd . sup
d6d0

(
[V ]γ,Dd,dd

γ + c(‖v‖D + d‖vX‖Dd)
)
.

If we take c small enough, depending on the constant implicit in ., for some constant

C > 0 we have,

sup
d6d0

d‖vX‖Dd 6 C sup
d6d0

(
[V ]γ,Dd,dd

γ + ‖v‖D
)
. (4.10.15)

Together with (4.10.14), this gives, for a constant c small enough,

sup
d6d0

dγ [V ]γ,Dd,d . ‖v‖D. (4.10.16)

4.10.5 Proof of Lemma 4.9.13

We apply the Lemma 2.4.2 to the convolved equation (4.9.4), on the domain D.

‖v‖Dd+d′ . max
{
d′
−1
, ‖(v3)L − v3

L‖
1
3
Dd
, ‖(Xτ)L‖

1
3
Dd
, τ ∈ ∂W,

‖(v ◦X X·I(w1) ◦X X·I(w2))L‖
1
3
Dd
, wi ∈ W, (4.10.17)

‖(v ◦X v ◦X X•I(w))L‖
1
3
Dd
, w ∈ W, ‖v − vL‖Dd+d′

}
We have for d > L

‖(v3)L − v3
L‖Dd . ‖v‖

2
Dd−L

[v]α,Dd−L,LL
α and

‖v − vL‖Dd+d′ 6 [v]α,Dd−L,LL
α (4.10.18)

and for α small enough, we have by Lemma 4.9.12, [v]α,Dd−L,L . (d− L)−α‖v‖D.

From Lemma 4.9.9 we get for w1, w2 ∈ W ,

‖(v ◦X X•I(w1) ◦X X•I(w2))L‖Dd
. c

∑
|τ |∈J

‖v‖δmΞ(τ+w1+w2)
D

(
[U τ ]−6−|w1|−|w2|−|τ |+ε,Dd−L,dL

ε

+ ‖v‖m1(τ)
D ‖vX‖

mx(τ)
Dd−L

L6+|τ |+|w1|+|w2|
)
.
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From Lemma 4.9.10, we get for w ∈ W ,

‖(v ◦X v ◦X X•I(w))L‖Dd
. c

∑
(|τ1|,|τ2|)∈J̃

‖v‖δmΞ(τ1+τ2+w)
(

[UI(τ1)I(τ2)I(Ξ)]−6−|w|−|τ1|−|τ2|+ε,Dd−L,dL
ε

+ ‖v‖m1(τ1+τ2)
D L6+|τ1|+|τ2|+|w|

)
.

Using Lemma 4.9.12 and setting d = ‖v‖−1
D and L = d

k for some k > 2 gives for

w1, w2 ∈ ∂W ,

‖(v ◦X X•I(w1) ◦X X•I(w2))L‖Dd . c‖v‖3DK(w1, w2, k) , (4.10.19)

where

K(w1, w2, k) =
∑
|τ |∈J

(
k−ε + k3−δmΞ(τ+w1+w2)−m1(τ)−2mx(τ)

)
,

and for w ∈ W ,

‖(v ◦X v ◦X X•I(w))L‖Dd . c‖v‖3DK ′(w, k) (4.10.20)

where

K ′(w, k) =
∑

(|τ1|,|τ2|)∈J̃

(
k−ε + k3−δmΞ(τ1+τ2+w)−m1(τ1+τ2)

)
.

Finally, for τ ∈ ∂W , we get from Assumption 4.9.6

‖(Xτ)L‖Dd . cL−3+δmΞ(τ)‖v‖δmΞ(τ)
D = c‖v‖3Dk3−δmΞ(τ). (4.10.21)

With (4.10.18), (4.10.19), (4.10.20) and (4.10.21), the bound (4.10.17) becomes

‖v‖D‖v‖−1
D

+R
. max

{
R−1, k−

α
3 ‖v‖D, c

1
3 ‖v‖Dk1− δmΞ(τ)

3 , τ ∈ ∂W,

c
1
3 ‖v‖DK(w1, w2, k)

1
3 , w1, w2 ∈ W, (4.10.22)

c
1
3 ‖v‖DK ′(w, k)

1
3 , w ∈ W, k−α‖v‖D,

}
.

We see that we can now choose k > 2 large enough and then c < c0, as well as

R = (λ− 1)‖v‖−1
D for λ large enough such that (4.10.22) becomes:

‖v‖D
λ‖v‖−1

D

6
‖v‖D

2
. (4.10.23)
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis we have explored part of the potential of the deterministic technique

developed in the first chapter. The particular maximum principle that comes with the

strong non-linear term interacts perfectly with the convolution method to separate the

analysis on large and small scales. In the first chapter, we introduced this new maximum

principle and explored its limits in a setting where the noise was just rough enough

to make the problem non-trivial. We were not able to translate the full range of the

maximum principle to the irregular case unfortunately, and in particular the exponential

case is not covered by this approach. We were however able to get some exponential

integrability in the case of Gaussian noise.

The convolution method proved reliable enough to be applied in a simple case where

renormalisation is needed in the second chapter. We decided to skip the traditional

first step of the Φ4 equation in dimension 2 and to go directly to dimension 3, since in

this case we can still handle all the renormalisation terms by hand. In this section, we

started to introduce our kernel-free version of the theory of regularity structures with in

particular a Reconstruction lemma with an extremely simplified proof, and tailor-made

Schauder theory with local expansions around a base-point. The probabilistic estimates

in the first chapter gave a precious insight into what bound we could expect, and that

simplified the proof. We were able to recover stretched exponential integrability, again

in the case of Gaussian noise.

In the last chapter, we worked towards a systematic implementation of the convolution

method. We defined a kernel-free approach to the theory of regularity structures in a

more systematic way, although still not as general as Hairer’s works. Our approach was

designed to allow for the same localisation as in the previous chapters. In the algebraic
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construction we proved a fundamental coherence result: using the coefficient map given

by the fixed-point argument, continuity condition for different levels of the expansion are

consequences of the bound given by the Schauder estimate. This result was not apparent

nor necessary in dimension 3. In the analytic part of this chapter, we once again made

use of the insight provided by probabilistic estimates, and in the case of Gaussian noise,

stretched exponential integrability holds.

This thesis contains the first results on large scale behaviour of solutions to rough PDEs.

This was made possible with a strong maximum principle, a localised Schauder theory

and a restatement of the theory of regularity structures compatible with these localisation

properties. We have however uncovered only a small amount of the potentials of the

theory of regularity structures: the dynamic Φ4 model is now considered to be one of the

most simple examples of application of the theory, at least up to dimension 3.

5.2 Future Work

The obvious follow-up to this thesis is therefore the extension of this convolution method

to other equations where regularity structures apply. The issue being that without

localisation, it is not clear what length-scale should be used in the convolution. A

Gronwall-type argument is probably necessary. A first example of such equation would

be the multiplicative stochastic heat equation:

(∂t −∆)u = σ(u)ξ,

where ξ is the rough driving term and σ is for example a smooth Lipschitz function. This

kind of equation can for example be derived from the sine-Gordon model [46],

(∂t −∆)u = sin(βu) + ζ,

where ζ is the space-time white noise in dimension 2, by expanding around the solution

to the linear equation and using trigonometric identities. A scaling argument and the

expansion into power series of the sine function tells us that criticality depends on the

parameter β. Renormalisation for this model has been studied in the framework of

regularity structures up to criticality in [20]. The regularity structure for this equation

depends in particular on how well σ is approximated by its Taylor expansion. A coher-

ence result similar to the one presented in the last chapter is believed to be also true in

that case, as well as in more general cases.

One loose end of this thesis is our inability to account for exponential non-linearity in the

first chapter, when it seems like the maximum principle should be even more powerful
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in that case. Some results in that direction could be useful for example in the study of

Liouville quantum gravity model [29], represented by the equation:

(∂t −∆)u = eγu + ξ,

in dimension 2. The stochastic renormalisation for this equation is similar in spirit to the

renormalisation for the Sine-Gordon equation and depends on the parameter γ, but the

regularity structure for this equation is not properly established up to criticality.

One more possible development of the results of this thesis is the study of initial value

problems: the strong bounds obtained ensure that solutions to any such problem find

themselves in a compact domain that depends only on the noise after time 1. Once

the solutions are close, we may be able to use a contractivity estimate. In the case of

Gaussian noise, this would provide a proof of the uniqueness of the invariant measure.

This has been studied in [69] for the 2-dimensional Φ4 model on the torus with small

noise, using a similar coming down from infinity in time only. It is not clear how to

remove the small noise condition, but the present thesis would at least allow to extend

this result to the full space and to higher dimension.
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Appendix A

Appendix:Symbolic index

In this appendix, we collect the most used symbols of the thesis, together with their

meaning and the page where they were first introduced.

Symbol Meaning Page

ζ Noise term 18

P0 (0, 1)× {|x| < 1} 18

PR (R2, 1)× {|x| < 1−R} 18

d(·, ·) Parabolic distance between space-time points z, z ∈ R× Rd 26

B(z,R) {z = (t, x) ∈ R× Rd, d(z, z) < R, t < t} 26

‖ • ‖ L∞ norm 26

[•]α Hölder seminorm of index α 26,53

Θ Coming-down from infinity speed function 29

T (for Chap. 3) The set of trees needed for Φ4
3 57

ΨL Smooth compactly supported kernel, rescaled at length L 54

(•)L Convolution with the kernel ΨL 54

Ξ The abstract noise 104

Poly The set {1,X1, . . . ,Xd} 106

W Unplanted trees with |τ | < −2 106

W̊ Set of product trees inW , namelyW \ {Ξ} 106

N Unplanted trees with |τ | ∈ [−2, 0], includes Poly 106

N̊ Set of product trees in N , namely N \ Poly 106
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Symbol Meaning Page

Tr Unplanted trees on right-hand side of φ equation, Tr =W ∪ N̊ 108

Tl Planted trees in expansion of φ, Tl = I(Tr) ∪ I(Poly) 108

T Trees on left or right-hand side of φ equation, T = Tl ∪ Tr 108

Ñ {τ ∈ N̊ : |τ | > 1} 111

T+ T ∪ T rec 111

T rec Planted trees that only appear for centring 112

I Edge of a tree corresponding to heat kernel 104

I(i)
+ Edge for derivative of heat kernel for positive renormalisation 111

I(i)
− Edge for derivative of heat kernel for negative renormalisation 136

[X; •] Seminorm for the local product X applied to a tree 122

X• Local product 110

Xrec
• Centring map 119

X•,• Local path 119

ρ cutoff function used to define local product 109

6,⊂ Relations on trees 116

m(τ) Number of leaves in a tree τ 107

mΞ Number of noise leaves in a tree τ 107

mx Number of {Xi}di=1 leaves in a tree τ 107

m1 Number of 1 leaves in a tree τ 107

| • | Order of a tree 107

δ Noise is of regularity C−3−δ, δ > 0 89

D (0, 1)× {|x| < 1} 89

DR (R2, 1)× {|x| < 1−R} 89

∆ Coproduct 110

C+ Cut map for coproduct 117

C− Cut map for modified coproduct 139

R Renormalisation operator 138

◦X Renormalised product of tree expansion 134

Υ Coefficient map for solutions to equation 131
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Symbol Meaning Page

Vγ Expansion of the remainder solution to level γ 129

V 2
γ Expansion of square of remainder solution to level γ 129

V
((i)
γ Expansion of derivative of the remainder solution to level γ 129

U τγ Expansion of the local approximation on level τ 128

166



Bibliography

[1] S. Albeverio and S. Kusuoka. The invariant measure and the flow associated to the Φ4
3-

quantum field model. ArXiv e-prints, November 2017.

[2] Sergio Albeverio and Seiichiro Kusuoka. The invariant measure and the flow associated to
the φ43-quantum field model. arXiv preprint arXiv:1711.07108, 2017.

[3] Sergio Albeverio, Hiroshi Kawabi, and Michael Röckner. Strong uniqueness for both dirich-
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