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Abstract

This thesis is mainly concerned with percolation on general infinite graphs, as well

as the approximation of conformal maps by square tilings, which are defined using

electrical networks.

The first chapter is concerned with the smoothness of the percolation density

on various graphs. In particular, we prove that for Bernoulli percolation on Zd, d ≥

2, the percolation density is an analytic function of the parameter in the supercritical

interval (pc(Zd), 1]. This answers a question of Kesten [1981]. The analogous result

is also proved for the Boolean model of continuum percolation in R2, answering a

question of Last et al. [2017]. In order to prove these results, we introduce the notion

of interfaces, which is studied extensively in the current thesis. For dimensions d ≥ 3,

we use renormalisation tecnhiques. Furthermore, we prove that the susceptibility is

analytic in the subcritical interval for all transitive short- or long-range models, and

that pc < 1/2 for bond percolation on certain families of triangulations for which

Benjamini & Schramm conjectured that pc ≤ 1/2 for site percolation. For the latter

result, we use the well-known circle packing theorem of He and Schramm [1995], a

discrete analogue of the Riemann mapping theorem.

In Chapter 2, we continue the study of interfaces, and in particular, we con-

sider the exponential growth rate br of the number of interfaces of a given size as a

function of their surface-to-volume ratio r. We prove that the values of the percola-

tion parameter p for which the interface size distribution has an exponential tail are

uniquely determined by br by comparison with a dimension-independent function

f(r) := (1+r)1+r

rr . We also point out a formula for translating any upper bound on

the percolation threshold of a lattice G into a lower bound on the exponential growth

viii



rate of lattice animals a(G) and vice-versa. We exploit this in both directions. We

obtain the rigorous lower bound pc(Z3) > 0.2522 for 3-dimensional site percolation.

We also improve on the best known asymptotic lower and upper bounds on a(Zd)

as d→∞.

We also prove that the rate of the exponential decay of the cluster size

distribution, defined as c(p) := limn→∞ (Pp(|Co| = n))1/n, is a continuous function

of p. The proof makes use of the Arzelà-Ascoli theorem but otherwise boils down

to elementary calculations. The analogous statement is also proved for the interface

size distribution. For this we first establish that the rate of exponential decay is

well-defined.

In Chapter 3, we use interfaces to obtain upper bounds for the site percolation

threshold of plane graphs with given minimum degree conditions. The results of this

chapter are inspired by well-known conjectures of Benjamini and Schramm [1996b]

for percolation on general graphs. We prove a conjecture by Benjamini and Schramm

[1996b] stating that plane graphs of minimum degree at least 7 have site percolation

threshold bounded away from 1/2. We also make progress on a conjecture of Angel

et al. [2018] that the critical probability is at most 1/2 for plane triangulations

of minimum degree 6. In the process, we prove tight new isoperimetric bounds

for certain classes of hyperbolic graphs. This establishes the vertex isoperimetric

constant for all triangular and square hyperbolic lattices, answering a question of

[Lyons and Peres, 2016, Question 6.20].

Another topic of this thesis is the discrete approximation of conformal maps

using another discrete analogue of the Riemann mapping theorem, namely the

square tilings of Brooks et al. [1940]. This result is analogous to a well-known the-

orem of Rodin & Sullivan, previously conjectured by Thurston, which states that

the circle packing of the intersection of a lattice with a simply connected planar

domain Ω into the unit disc D converges to a Riemann map from Ω to D when the

mesh size converges to 0. As a result, we obtain a new algorithm that allows us to

numerically compute the Riemann map from any Jordan domain onto a square.

ix



Preliminaries

We recall some standard definitions of graph theory and percolation theory used

throughout this thesis in order to fix our notation. For more details, the reader can

consult e.g. Grimmett [1999]; Lyons and Peres [2016]. For a higher-level overview

of percolation theory, I recommend the recent survey by Duminil-Copin [2017].

Graph theory

Let G = (V,E) be a graph. An induced subgraph H of G is a subgraph that contains

all edges xy of G with x, y ∈ V (H). Note that H is uniquely determined by its vertex

set. The subgraph of G spanned by a vertex set S ⊆ V (G) is the induced subgraph

of G with vertex set S. The degree a of a vertex v is the number of edges incident

to v. We say that G is locally finite if all vertex degrees are finite.

The vertex set of a graph G will be denoted by V (G), and its edge set

by E(G). A graph G is (vertex-)transitive if for every x, y ∈ V (G) there is an

automorphism π of G mapping x to y, where an automorphism is a bijection π of

V (G) that preserves edges and non-edges. We say that G is quasi-transitive if there

is a finite set U ⊂ V (G) such that for every x ∈ V (G), there exist y ∈ U and an

automorphism of G that maps x to y.

A planar graph G is a graph that can be embedded in the plane R2, i.e. it

can be drawn in such a way that no edges cross each other. Such an embedding is

called a planar embedding of the graph. A plane graph is a (planar) graph endowed

with a fixed planar embedding.

A plane graph divides the plane into regions called faces, i.e. a face is the

closure of a component of R2 \G. Using the faces of a plane graph G we define its

dual graph G∗ as follows. The vertices of G∗ are the faces of G, and we connect two

vertices of G∗ with an edge whenever the corresponding faces of G share an edge.

Thus there is a bijection e 7→ e∗ from E(G) to E(G∗).
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Percolation

Let G = (V,E) be a locally finite countably infinite graph, and let Ω := {0, 1}E be

the set of percolation instances on G. We say that an edge e is vacant or closed

(respectively, occupied or open) in a percolation instance ω ∈ Ω if ω(e) = 0 (respec-

tively ω(e) = 1).

By bond percolation on G with parameter p ∈ [0, 1] we mean the random

subgraph of G obtained by keeping each edge with probability p and deleting it

with probability 1− p, with these decisions being independent of each other.

More formally, we endow Ω with the σ-algebra F generated by the cylinder

sets Ce := {ω ∈ Ω, ω(e) = ε}e∈E,ε∈{0,1}, and the probability measure defined as the

product measure Pp := Πe∈Eµe, where p ∈ [0, 1] is our percolation parameter and

µe is the Bernoulli measure on {0, 1} determined by µe(1) = p.

The percolation threshold pc(G) is defined by

pc(G) := sup{p | Pp(|Co| =∞) = 0},

where the cluster Co of o ∈ V is the component of o in the subgraph of G spanned

by the occupied edges. It is easy to see that pc(G) does not depend on the choice

of o.

To define site percolation we repeat the same definitions, except that we now

let Ω := {0, 1}V , and let Co be the component of o in the subgraph of G induced by

the occupied vertices. The site percolation threshold is denoted by ṗc.

The graph G is a priori arbitrary. Some results will need assumptions on

G such as vertex-transitivity or planarity, but these will be explicitly stated as

needed.
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Chapter 1

Analytic functions in Bernoulli

Percolation

1.1 Introduction

In this chapter, we prove that several functions studied in percolation theory are

analytic functions of the percolation parameter. We consider Bernoulli bond per-

colation on a variety of graphs, as well as general long-range models (defined in

Section 1.2.2) preserved by a transitive group action. The susceptibility χ of a per-

colation model is the expected number of vertices in the cluster of a fixed vertex o.

The percolation density θ is the probability that the cluster Co of o is infinite. Let

pC := inf{p ≤ 1 | θ(p) is analytic in (p, 1]} (1.1)

The main results of this chapter are

(i) For every quasi-transitive graph, and every quasi-transitive (1-parameter)

long-range model, the susceptibility χo(p) is analytic in the subcritical interval

[0, pc).

(ii) For every d ≥ 2, the (Bernoulli, bond) percolation density θ(p) on Zd is an-

alytic in the supercritical interval (pc, 1] (in other words, pC = pc). The cor-

responding result is proved for quasi-transitive lattices in R2 and continuum

percolation in R2 as well.

(iii) For certain families of triangulations for which Benjamini and Schramm [1996b]

and Benjamini [2015] conjectured that psitec ≤ 1/2, we prove pbondc ≤ pC < 1/2.

Perhaps the first occurrence of questions of smoothness in percolation theory
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dates back to the work of Sykes and Essam [1964]. Trying to compute the value

of pc for bond percolation on the square lattice Z2, Sykes & Essam introduced

the fundamental idea of duality in planar percolation and obtained that the free

energy (aka. mean number of clusters per vertex) κ(p) := Ep(|Co|−1) satisfies the

functional equation κ(p) = κ(1 − p) + φ(p) for some polynomial φ(p). Under the

assumption of smoothness of κ for every value of the parameter p other than pc, at

which it is conjectured that κ has a singularity, they obtained that pc = 1/2 due

to the symmetry of the functional equation around 1/2. It is worth noting that

extending this argument to bond percolation on other dual pairs (G,G∗) of planar

quasi-transitive lattices (see Section 1.4 for the relevant definitions) is essentially

straightforward, and under the same assumption one obtains the relation pc(G) +

pc(G
∗) = 1. In fact, the paper of Sykes & Essam contains the argument not only for

the square lattice Z2 but also for the dual pair (T,H), where T denotes the triangular

lattice and H the hexagonal lattice, and for site percolation on the self-dual case

of T. Their work generated considerable interest, and a lot of the early work in

percolation was focused on the smoothness of functions like κ and χ that describe

the macroscopic behaviour of its clusters. Kunz and Souillard [1978] proved that κ is

analytic for small enough p. Grimmett [1981] proved that κ is C∞ for p 6= pc in the

case d = 2. A breakthrough was made by Kesten [1981], who proved that κ and χ

are analytic on [0, pc) for all d ≥ 2. Despite all the efforts, the argument of Sykes &

Essam has never been made rigorous, and all proofs of the fact that pc(Z2) = 1/2 use

different methods, see e.g. Kesten [1980]; Bollobás and Riordan [2006]. The element

still missing from making mathematically complete their argument is proving loss

of regularity at pc.

Except for the special case of κ on Z2 (and other planar lattices), smoothness

results are harder to obtain in the supercritical interval (pc, 1], partly because the

cluster size distribution Pn := Pp(|Co| = n) has an exponential tail below pc Men-

shikov [1986]; Aizenman and Barsky [1987] but not above pc Aizenman et al. [1980].

Still, it is known that κ and θ are infinitely differentiable for p ∈ (pc, 1] (see Chayes

et al. [1987] or [Grimmett, 1999, §8.7] and references therein). It is a well-known

open question, dating back to Kesten [1981] at least, and appearing in several text-

books ([Kesten, 1982, Problem 6],Grimmett [1997, 1999]), whether θ is analytic for

p ∈ (pc, 1] for percolation on the hypercubic lattice Zd, d ≥ 2. In this chapter, we

answer this question in the affirmative. We also answer the corresponding question,

asked by Last et al. [2017], for the Boolean model in R2 (Theorem 1.7.1).

Part of the interest for this question comes form Griffiths [1969] discovery of

models, constructed by applying the Ising model on 2-dimensional percolation clus-
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ters, in which the free energy is infinitely differentiable but not analytic. This phe-

nomenon is since called a Griffiths singularity, see van Enter [2007] for an overview

and further references.

The study of the analytical properties of the free energy is a common theme

in several models of Statistical Mechanics. Perhaps the most famous such example

is Onsager’s exact calculation of the free energy of the square-lattice Ising model

Onsager [1944]. A corollary of this calculation is the computation of the critical

temperature, as well as the analyticity of the free energy for all temperatures other

than the critical one. See also Kager et al. [2013] for an alternative proof of the latter

result. The analytical properties of the free energy have also been studied for the

q-Potts model, which generalizes the Ising model. For this model, the analyticity of

the free energy has been proved for d = 2 and all supercritical temperatures when

q is large enough van Enter et al. [1997].

Before our result, partial progress on the analyticity of the percolation density

had been made by Braga et al. [2004, 2002], who showed that θ is analytic for p

close enough to 1. Shortly after our paper Georgakopoulos and Panagiotis [2018] was

released, Hermon and Hutchcroft [2019] proved that θ is analytic above pc for every

non-amenable transitive graph, by establishing that the cluster size distribution Pn

has an exponential tail in the whole supercritical interval.

Kesten’s method for the analyticity of χ (or κ) Kesten [1981] (see also

[Grimmett, 1999, §6.4]) involves extending p and χ to the complex plane, and

applying the standard complex analytic machinery of Weierstrass to the series

χ(p) =
∑

n∈N nPn(p). This uses the fact that Pn(p) can be expressed as a poly-

nomial by considering all possible clusters of size n, and can hence be extended to

C. To show that this series converges to an analytic function χ(z), one needs upper

bounds for |Pn(z)| inside appropriate domains in order to apply the Weierstrass M-

test. These bounds are obtained by combining the well-known fact due to Menshikov

[1986]; Aizenman and Barsky [1987] that Pn(z) decays exponentially in n for real z,

with elementary complex-analytic calculations. Kesten’s calculations involved the

numbers of certain ‘lattice animals’, but we observe (Theorem 1.3.12) that this is

not necessary and his proof can be simplified by making a direct comparison be-

tween the values of Pn(z) for z /∈ [0, 1] and for z ∈ [0, 1]. An immediate benefit of

this simplification is that the proof extends beyond Zd, to bond and site percolation

on any quasi-transitive graph. The only ingredients needed are the appropriate ex-

ponential decay statement and elementary complex analysis. This summarises the

proof of (i), which is given in detail in Section 1.3.4.

The technique we just sketched is used in our results (ii)–(iii) as well, but
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additional ingredients are needed. For (ii), we can write θ(p) = 1 −
∑

n Pn(p) by

the definitions, but as Pn decays slower than exponentially for p > pc Kunz and

Souillard [1978]; Grimmett [1999], the above machinery cannot be applied to this

series. Therefore, instead of working with the size of Co, we work with the ‘area’

of its boundary. To make this more precise, consider at first the 2-dimensional

case and define the outer interface of the cluster Co to be the pair (∂intCo, ∂extCo),

where ∂intCo denotes the set of edges of Co bounding its unbounded face, and

∂extCo denotes the set of vacant edges in the unbounded face incident with ∂intCo

(Figure 1.1). See Section 1.4.2 for a more formal definition. We say that such a pair

of edge sets I = (∂intCo, ∂extCo) occurs in some percolation instance if it is the outer

interface of some cluster, in which case all edges in ∂intCo are occupied and all edges

in ∂extCo are vacant. For any plausible such I, the probability PI(p) := Pp(I occurs)

is just p|∂intCo|(1−p)|∂extCo| by the definitions, which is a polynomial we can extend to

C hoping to apply our machinery. Moreover, these PI exhibit the kind of exponential

decay we need: ∂extCo gives rise to a connected subgraph of the dual lattice, and

we can combine a well-known coupling between supercritical bond percolation on

a lattice and subcritical bond percolation on its dual (see Theorem 1.4.2) with the

aforementioned exponential decay of Pn.

o

Figure 1.1: An example of two outer interfaces of percolation clusters, one nested inside
the other. We depict ∂intCo with bold lines and ∂extCo with dashed lines. The rest of the
clusters is depicted in plain lines (blue if colour is shown).

Still, further challenges arise when trying to express θ in terms of the func-

tions PI because knowing that a certain outer interface I occurs does not imply that
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it is part of the cluster Co: there could be other outer interfaces nested inside I, as

exemplified in Figure 1.1. We overcome this difficulty using the Inclusion-Exclusion

Principle, to express θ as

θ(p) = 1−
∑

I∈MS(−1)c(I)+1PI , (1.2)

whereMS is the set of finite disjoint nonempty unions of outer interfaces, and c(I)

counts the number of outer interfaces in I. The problem now becomes whether the

probability for such an I ∈MS with n edges in total decays exponentially in n. All

we know so far is that the probability to have an outer interface containing a fixed

vertex x decays exponentially, which seems to be of little use given that there are

many ways to partition n into smaller integers n1, . . . nk, and construct an I ∈MS
out of k outer interfaces of lengths ni, each rooted at one of many candidate vertices

xi. But there is a way to bring all these possibilities under control, and establish

the desired exponential decay, by a certain combination of the following ingredients:

a) the Hardy–Ramanujan formula (Section 1.2.5), implying that the number of par-

titions of an integer n grows sub-exponentially;

b) some combinatorial arguments that restrict the possible vertices xi at which the

outer interfaces meet the horizontal axis, and

c) using the BK inequality (Theorem 1.2.2) to argue that for each choice of a par-

tition of n, and vertices x1, . . . xk, the probability of occurrence of an I ∈ MS
complying with this data decays as fast as if we had a single outer interface of size

n (which we already know to decay exponentially). This summarises the proof of

(ii), which is given in detail in Section 1.4.

We remark that formula (1.2) can be thought of as a refinement of the well-

known Peierls argument (see e.g. [Grimmett, 1999, p. 16]), where instead of an

inequality we now have an equality. The price to pay is that the structures arising —

of the form (∂intCo,∂extCo) instead of just ∂extCo— are harder to enumerate, and the

benefit is that the events we consider are mutually exclusive, hence the equality. We

found this technique very convenient and it will be useful in the following chapters

as well.

Our notion of interfaces can be generalised to higher dimensions in such a

way that a unique interface is associated with any cluster. A slight modification of

the above method still yields the analyticity of θ for the values of p close to 1, but

not in the whole supercritical interval. The main obstacle is that for values of p in

the interval (pc, 1− pc), the distribution of the size of the interface of Co has only a

stretched exponential tail, which follows from the work of Kesten and Zhang [1990].
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As we will prove in Chapter 2, this behaviour holds for p = 1− pc as well.

In the same paper, Kesten and Zhang introduced some variants of the stan-

dard boundary of Co that are obtained by dividing the lattice Zd into large boxes,

and proved that these variants satisfy the desired exponential tail on the whole

supercritical interval.1 It is natural to try to apply our method to those variants,

however, their occurrence does not prevent the origin from being connected to in-

finity. Instead, we expand these variants into larger objects that we call separating

components. In Section 1.5 (Lemma 1.5.4) we prove that whenever a separating

component S occurs, we can find inside S and its boundary ∂�S an edge cut ∂bSo
separating the origin from infinity. Conversely, some separating component occurs

whenever Co is finite (Lemma 1.5.2). Thus we can express θ in terms of the oc-

currence of separating components (see (1.20) in Section 1.5.3). In contrast to the

behaviour of the boundary of Co which has only a stretched exponential tail on the

interval (pc, 1− pc], ∂bSo has an exponential tail in the whole supercritical interval.

We plug this exponential decay into a general tool (Corollary (1.3.15)), which rests

on an application of the Weierstrass M-test to polynomials of the form pm(1− p)n,

to obtain the analyticity of θ above pc in Section 1.5.4. In Section 1.6 we use similar

arguments to prove the analyticity of the k-point function τ and its truncation τ f ,

as well as of χf and κ.

Typically, ∂bSo has size of smaller magnitude than the boundary of Co, and it

is obtained from the latter by ‘smoothening’ some of its parts with ‘fractal’ structure.

As a corollary, we re-obtain, in Section 1.5.5, a result of Pete [2008] about the

exponential decay of the probability that Co is finite but sends a lot of closed edges

to the infinite component.

Most of this chapter is concerned with analyticity results, but some of the

methods developed can be applied to provide bounds on pc as well. We display this

in Section 1.8, where we prove that pbondc < 1/2 for certain families of triangulations

for which Benjamini and Schramm [1996b], Benjamini [2015] and Angel et al. [2018]

conjectured that psitec ≤ 1/2 ((iii)).

1.2 Definitions and preliminaries

1.2.1 Cut sets and boundaries

Let G = (V,E) be an infinite, locally finite and connected graph. For a finite

connected subgraph H of G, we will define several notions of ‘boundary’. We define

1The threshold pc(H
d) in Kesten’s and Zhang’s original formulation was proved later to coincide

with pc(Zd) by Grimmett and Marstrand [1990].
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Figure 1.2: A connected sugraph H of G = Z2 shown in black. Among the edges
in G \H that are incident to H (shown in blue or red), only the red ones belong to
the corresponding minimal edge cut.

the vertex boundary ∂VH of H as the set of vertices in V \ V (H) that have a

neighbour in H. The edge boundary ∂EH is the set of edges in E \ E(H) that are

incident to H. The internal boundary ∂H of H is the set of vertices of H that are

incident with an infinite component of G\H (recall that G is an infinite graph here).

Given a vertex x of G, we say that a set S of edges of G is a minimal edge

cut separating x from infinity if x belongs to a finite component of G \ S, and S

is minimal with respect to the inclusion relation. Analogously, we say that a set S

of vertices of G is a minimal vertex cut separating x from infinity if x belongs to a

finite component of G \ S, and S is minimal with respect to the inclusion relation.

Note that any vertex x has several minimal edge (vertex) cuts. When working with

a specific finite connected subgraph H of G, it will be useful to fix some minimal

edge (vertex) cut. We define the minimal edge cut of H as the unique minimal edge

cut, each edge of which has one end-vertex in H and one in an infinite component of

G \H. The minimal vertex cut of H is the unique minimal vertex cut, each vertex

of which belongs to an infinite component of G \H and has a neighbour in H.

1.2.2 Long-range models

Long-range percolation is a generalisation of Bernoulli bond percolation where dif-

ferent edges become occupied with different probabilities, and each vertex can have

infinitely many incident edges that can become occupied. In fact, the graph is often

taken to be the complete graph on countably many vertices, and so its edges play

a rather trivial role. Therefore, it is simpler to define our model with a set rather
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than a graph as follows.

Let G = (V,E) be a countably infinite graph. We will typically write xy

instead of {x, y} to denote an element of E. Let µ : E → R≥0 be a function

satisfying
∑

y∈V µ(xy) = 1 for every x ∈ V (in some occasions we allow more

general µ, satisfying just
∑

y∈V µ(xy) <∞). The data V, µ define a random graph

on V similarly to the previous definition, except that we now make each edge xy

vacant with probability e−µ(xy)t, with our parameter t now ranging in [0,∞). The

corresponding probability measure on Ω = {0, 1}E is denoted by Pt. (We like

thinking of t as time, with each edge xy becoming occupied if vacant at a tick of a

Poisson clock with rate µ(xy)).

Analogously to pc, one defines

tc = tc(V, µ) := sup{t | Pt(|Co| =∞) = 0},

which again does not depend on the choice of o ∈ V .

We say that such a percolation model, defined by V and µ, is transitive if

there is a group acting transitively on V that preserves µ. In other words, if for

every x, y ∈ V there is a bijection π : V → V mapping x to y and preserving

edges and non-edges (π(x)π(y) is an edge if and only if xy is an edge), such that

µ(π(z)π(w)) = µ(zw) for every edge zw.

Long-range percolation is a less standard topic that is not typically found

in textbooks, and the term often refers to the special case where the group acting

transitively is Z, where it was used in order to come up with a model in which θ is

discontinuous at tc Aizenman and Newman [1986]. In the generality we work with

it has been considered in e.g. Aizenman and Newman [1984]; Georgakopoulos and

Haslegrave [2017].

1.2.3 Exponential tail of the subcritical cluster size distribution:

the exponential decay property

An important fact that will be used throughout the chapter whenever we want to

show the convergence of a series is the following exponential decay of the cluster

size distribution P(|Co| = n) (or equivalently, of P(|Co| ≥ n)) in the subcritical

regime.2 For every vertex o, we define χ(p) = χo(p) := Ep(|Co|), and we let X(p) =

2Some bibliographical remarks about Theorem 1.2.1: Kesten [1981] proved exponential decay
when χ <∞ for lattices in Rd, and Aizenman and Newman [1984] extended it to all models we are
interested in. Menshikov [1986]; Aizenman and Barsky [1987] proved independently that χ < ∞
below pc on Zd. Antunović and Veselić [2008] extended this to all quasi-transitive models. Duminil-
Copin and Tassion [2016] gave a shorter proof that χ < ∞ below pc (or βc) for all independent,
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supo∈V χo(p).

Theorem 1.2.1 ([Aizenman and Newman, 1984, Proposition 5.1],Menshikov [1986];

Aizenman and Barsky [1987]; Antunović and Veselić [2008]). For every bond, site,

or long-range model, if X(p) <∞, then

Pp(|Co| ≥ n) = O((e/n)1/2e−n/(2X(p))2
).

Moreover, for every quasi-transitive bond, site, or long-range model, if p < pc, then

X(p) <∞.

We will say that a bond, site, or long-range model model satisfies the exponen-

tial decay property if for every p < pc and o ∈ V , there is a constant c = c(p, o) > 0

such that Pp(|C(o)| ≥ n) ≤ e−cn.

1.2.4 The BK inequality

We define a partial order on our space Ω = {0, 1}E(G) of percolation instances as

follows. For two instances ω and ω′ we write ω ≤ ω′ if ω(e) ≤ ω′(e) for every e ∈ E.

A random variable X is called increasing if whenever ω ≤ ω′, then X(ω) ≤
X(ω′). An event A is called increasing if its indicator function is increasing. For

instance, the event {|Co| ≥ m} is increasing, where Co, as usual, denotes the cluster

of o.

For every ω ∈ Ω and a subset S ⊂ E we write

[ω]S = {ω′ ∈ Ω : ω′(e) = ω(e) for every e ∈ S}.

Let A and B be two events depending on a finite set of edges F . Then the

disjoint occurrence of A and B is defined as

A ◦B = {ω ∈ Ω : there is S ⊂ F with [ω]S ⊂ A and [ω]F\S ⊂ B}.

Theorem 1.2.2. (BK inequality)van den Berg and Kesten [1985]; Grimmett [1999]

Let F be a finite set and ω = {0, 1}F . For all increasing events A and B on Ω we

have

Pp(A ◦B) ≤ Pp(A)Pp(B).

We remark that the ◦ operation is in general non-associative. In other words,

for generic events A1, A2, . . . , Am, the notation A1 ◦ A2 ◦ . . . ◦ Am is ambiguous

transitive bond and site models.
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without any reference to the order at which the operation is performed. However,

if we assume that the events A1, A2, . . . , Am are all increasing, then the ◦ operation

is associative and in this case we have that

A1 ◦A2 ◦ . . . ◦Am = {ω ∈ Ω : there are pairwise disjoint sets S1, S2, . . . , Sm ⊂ F

with [ω]Si ⊂ Ai for every i = 1, 2, . . .m}.

Applying the BK inequality, we obtain P(A1◦A2◦. . .◦Am) ≤ P(A1)P(A2) . . .P(Am).

1.2.5 Partitions of integers

A partition of a positive integer n is an unordered multiset {m1,m2, . . . ,mk} of

positive integers such that m1 +m2 + . . .+mk = n. Let p(n) denote the number of

partitions of n. An asymptotic expression for p(n) was given by Hardy & Ramanujan

in their famous paper Hardy and Ramanujan [1918]. An elementary proof of this

formula up to a multiplicative constant was given by Erdos [1942]. As customary

we use A ∼ B to denote the relation A/B → 1 as n→∞.

Theorem 1.2.3 (Hardy-Ramanujan formula). The number p(n) of partitions of n

satisfies

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

The above asymptotic formula for p(n) implies in particular that p(n) grows

sub-exponentially, and this is all we will need in our several applications of Theo-

rem 1.2.3.

1.3 The basic technique

A common ingredient of our analyticity results is the following technique, the main

idea of which is present in Kesten [1981] and was mentioned in the introduction. We

express our function f(p) as an infinite series f(p) =
∑

n∈N anfn(p), where fn(p) is

the probability of an event. For example, when f = χ is the expected size of the

cluster Co of o, then fn is the probability that |Co| = n, and an = n. To prove

that f(p) is analytic, our strategy is to extend the domain of definition of each fn

to complex values of p (we will usually write z instead of p when doing so). Our

extended fn will turn out to be complex-analytic, and so f is analytic if the series∑
n∈N anfn(p) converges uniformly by standard complex analysis (Weierstrass’ The-

orem 1.3.1). To show the latter, we employ the Weierstrass M-test (Theorem 1.3.2),

using upper bounds on |fn(z)| inside appropriate discs (centred in the interval [0, 1]
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where p takes its values). These upper bounds are obtained by Lemma 1.3.3 below

for nearest-neighbour models, and by its counterpart Lemma 1.3.6 for long-range

models.

Theorem 1.3.1. (Weierstrass Theorem) Let fn be a sequence of analytic func-

tions defined on an open subset Ω of the plane, which converges uniformly on the

compact subsets of Ω to a function f . Then f is analytic on Ω. Moreover, f ′n

converges uniformly on the compact subsets of Ω to f ′.

Theorem 1.3.2. (Weierstrass M-test) Let fn be a sequence of complex-valued

functions defined on a subset Ω of the plane and assume that there exist positive

numbers Mn with |fn(z)| ≤ Mn for every z ∈ Ω, and
∑

nMn < ∞. Then
∑

n fn

converges uniformly on Ω.

1.3.1 Nearest-neighbour models

The following lemma, and its generalisation Corollary 1.3.5 below, provides the

upper bounds that we are going to plug into the M-test as explained above.

Let Pp denote the law of Bernoulli percolation with parameter p on an arbi-

trary graph G. Let D(x,M) denote the disc with centre x ∈ C and radius M > 0

in C. For a subgraph S of G, let ∂S be the set of edges of G that have at least one

end-vertex in S but are not contained in E(S).

In this lemma, x is to be thought of as a value of our parameter p near which

we want to show the analyticity of some function, and we are free to choose the

radius M of the disc we consider as small as we like.

Lemma 1.3.3. For every finite subgraph S of G and every o ∈ V (G), the function

PS(p) := Pp(Co = S) admits an entire extension PS(z), z ∈ C, such that for every

1 > M > 0, every 1 > x ≥ 0 with x+M < 1 and every z ∈ D(x,M), we have

|PS(z)| ≤ C |∂S|PS(x+M),

where C = CM,x := 1−x+M
1−x−M .

Moreover, for every 1 ≥ x > 0, every x > M > 0 and every z ∈ D(x,M),

we have |PS(z)| ≤ K |E(S)|PS(x−M), where K = KM,x := x+M
x−M .

(The second sentence will be used to prove analyticity at p = 1; the reader

who is only interested in analyticity for p ∈ [0, 1) may ignore it and skip the last

paragraph of the proof.)
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Proof. By the definitions, we have

PS(p) = (1− p)|∂S|p|E(S)| (1.3)

because the event {Co = S} is satisfied exactly when all edges in ∂S are absent

and all edges in E(S) present. This function, being a polynomial, admits an entire

extension, which we will still denote by PS = PS(z) with a slight abuse.

To prove the upper bound in our first statement —for 1 > x ≥ 0, and

z ∈ D(x,M)— we will bound each of the two products appearing in (1.3) separately.

Easily,

|z||E(S)| ≤ (x+M)|E(S)|

when z ∈ D(x,M) because |z| ≤ x+ |z − x| ≤ x+M .

Moreover, it is geometrically obvious that the distance |1− z| between 1 and

z is maximised at z = x−M , which implies

|1− z||∂S| ≤ (1− x+M)|∂S|.

Plugging these two inequalities into (1.3) we obtain the desired inequality:

|PS(z)| ≤ (1− x+M)|∂S|(x+M)|E(S)| =(1− x+M

1− x−M

)|∂S|
(1− x−M)|∂S|(x+M)|E(S)| =

(1− x+M

1− x−M

)|∂S|
PS(x+M),

where we also applied (1.3) with p = x+M .

For the second statement, let x ∈ (0, 1], 0 < M < x z ∈ D(x,M). Then

|z| ≤ x + M , and |1 − z| ≤ 1 − x + M , and similarly to the above calculation we

have

|PS(z)| ≤ (1− x+M)|∂S|(x+M)|E(S)| =

(1− x+M)|∂S|
(x+M

x−M

)|E(S)|
(x−M)|E(S)| =

(x+M

x−M

)|E(S)|
PS(x−M).

Remark 1.3.4. When G has maximum degree d, we have the crude bound |∂S| ≤
d|S|, with which Lemma (1.3.3) yields |PS(z)| ≤ Cd|S|M,xPS(x+M).

Note that in the proof of Lemma 1.3.3 we can replace E(S) and ∂S with any

two disjoint finite sets of edges D,F ⊂ E(G), to obtain the following:
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Corollary 1.3.5. For every two disjoint finite sets of edges D,F ⊂ E(G), the

function P (p) := Pp(D ⊆ ω and F ∩ ω = ∅) (i.e. the probability that all edges in D

are occupied and all edges in F are vacant) admits an entire extension P (z), z ∈ C,

such that

|P (z)| ≤
(1− x+M

1− x−M

)|F |
P (x+M) (1.4)

for every M > 0, 1 > x ≥ 0 with x+M < 1 and z ∈ D(x,M). Moreover, for every

1 ≥ x > 0, every x > M > 0 and every z ∈ D(x,M), we have

|P (z)| ≤
(x+M

x−M

)|D|
P (x−M). (1.5)

1.3.2 Long-range models

We now prove the analogue of Lemma 1.3.3 for long-range models. Recall that in

our long-range setup, we have a vertex set V and any two of its elements can form

an edge. The parameters x,M now take their values in [0,∞), as this is the case

for our percolation parameter t. Let ∂S be the set of pairs {x, y} ⊂ V 2 that are not

contained in E(S) but have at least one vertex in S.

Lemma 1.3.6. For every finite graph S on a subset of V , and every o ∈ V , the

function P (t) := Pt(Co = S) admits an entire extension P (z), z ∈ C, such that

|P (z)| ≤ e2M |S|P (x+M) for every M > 0, x ≥ 0 and z ∈ D(x,M).

The proof of this is similar to that of Lemma 1.3.3, but as our function P (t)

is not exactly a polynomial now we will need some reshuffling of terms and the

following basic fact about complex numbers.

Proposition 1.3.7. For every µ > 0 and every z ∈ C we have

|eµz − 1| ≤ eµ|z| − 1.

Proof. Expressing eµz via its Taylor expansion and using the triangle inequality

yields

|eµz − 1| =

∣∣∣∣∣∣
∞∑
j=1

(µz)j

j!

∣∣∣∣∣∣ ≤
∞∑
j=1

|zµ|j

j!
. (1.6)
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Since µ > 0, the last expression coincides with the Taylor expansion of eµr−1

evaluated at r = |z|, from which we obtain |eµz − 1| ≤ eµ|z| − 1.

Proof of Lemma 1.3.6. Similarly to (1.3), we have

Pt(Co = S) =
∏
e∈∂S

e−tµ(e)
∏

e∈E(S)

(
1− e−tµ(e)

)
(1.7)

because the event {Co = S} is satisfied exactly when all edges in ∂S are absent and

all edges in E(S) present. Multiplying the second product by
∏
e∈E(S) e

tµ(e) and the

first by its inverse, we obtain

Pt(Co = S) =
∏

e∈∂S∪E(S)

e−tµ(e)
∏

e∈E(S)

(
etµ(e)− 1

)
= e−tµ(S)

∏
e∈E(S)

(
etµ(e)− 1

)
, (1.8)

where µ(S) :=
∑

e incident with S µ(e) < ∞ because the edges incident with S are

exactly the elements of ∂S∪E(S). This function clearly admits an entire extension,

which we will still denote by P = P (z) with a slight abuse.

To prove the upper bound, we will bound each of the two products appearing

in (1.8) separately. Easily,

|e−zµ(S)| ≤ e2M |S|e−(x+M)µ(S)

when z ∈ D(x,M) because |z| ≤ x + |z − x| ≤ x + M and µ(S) ≤ |S|. For the

second product, we apply Proposition 1.3.7 to each factor to obtain

|ezµ(e) − 1| ≤ e|z|µ(e) − 1 ≤ e(x+M)µ(e) − 1 (1.9)

for every for z ∈ D(x,M).

Combining these two inequalities, and then applying (1.8) with t = x + M ,

we obtain the desired bound:

|P (z)| ≤ e2M |S|e−(x+M)µ(S)
∏

e∈E(S)

(
e(x+M)µ(e) − 1

)
= e2M |S|P (x+M).

Again, in this proof we can replace E(S) and ∂S with any two disjoint finite

sets of edges D,F ⊂ E, to obtain, in analogy with Corollary 1.3.5, the following

statement:
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Corollary 1.3.8. For every two disjoint finite sets of edges D,F ⊂ E, the function

P (t) := Pt(D ⊆ ω and F∩ω = ∅) (i.e. the probability that all edges in D are occupied

and all edges in F are vacant) admits an entire extension P (z), z ∈ C, such that

|P (z)| ≤ e2M |V (D∪F )|P (x + M) for every M > 0, x ≥ 0 and z ∈ D(x,M), where

V (D∪F ) denotes the set of vertices that are incident with some edge in D∪F .

1.3.3 Analyticity of the probability of a given cluster size

Next, we prove that Pm(t) := Pt(|Co| = m) is analytic, in the full generality of our

long-range models as above. For nearest-neighbour models, this is trivial because

the corresponding probability can be expressed as a polynomial, but the long-range

variant is more interesting. In addition to analyticity, the following result also

provides the upper bound that we will plug into the Weirstrass M-test to deduce the

analyticity of the susceptibility χ for subcritical long-range models (Theorem 1.3.12).

Theorem 1.3.9. For every m ∈ N and every o ∈ V , the function Pm(t) := Pt(|Co| =
m) admits an entire extension pm(z), z ∈ C, such that

|Pm(z)| ≤ e2MmPm(x+M)

for every M > 0, x ≥ 0 and z ∈ D(x,M).

Proof. For m ∈ N, let Gm(V ) denote the set of finite graphs whose vertex set in a

subset of V with m elements containing o (to be thought of as possible percolation

clusters of o). For every such S ∈ Gm(V ), Lemma 1.3.6 yields an entire extension

PS of Pt(Co = S). We claim that the sum∑
S∈Gm(V )

PS(z), (1.10)

which for t ∈ R, t > 0 coincides with Pt(|Co| = m), converges uniformly on each

closed disc D(x,M),M > 0, x ≥ 0 to a function pm : C → C which coincides with

Pt(|Co| = m) for t ∈ R, t > 0. By Weierstrass’ Theorem 1.3.1, this means that pm

admits an entire extension.

Indeed, this uniform convergence follows from the Weierstrass M-test: each

summand PS can be bounded by |PS(z)| ≤ e2M |S|PS(x+M) = e2MmPS(x+M) for

every M > 0, x ≥ 0 and z ∈ D(x,M) by Lemma 1.3.6. Moreover, the sum of these

bounds satisfies ∑
S∈Gm(V )

e2MmPS(x+M) = e2MmPm(x+M) <∞.
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Thus the Weierstrass M-test can be applied to deduce that (1.10) converges uni-

formly on D(x,M), and therefore on any compact subset of C.

Finally, the above bounds also prove that |Pm(z)| ≤ e2MmPm(x + M) as

desired.

Corollary 1.3.10. For every m ∈ N and every o ∈ V , the function fm(t) :=

Pt(|Co| ≥ m) admits an entire extension.

Proof. It follows from the formula Pt(|Co| ≥ m) = 1 −
∑m−1

i=1 Pt(|Co| = i) and

Theorem 1.3.9.

1.3.4 Analyticity of χ in the subcritical regime

In this section, we prove that the susceptibility χ(t) := Et(|Co|) of our models is an

analytic function of the parameter in the subcritical interval. This applies to both

nearest-neighbour and long-range models. For this, we need to assume that our

model has the exponential decay property. We remark that the exponential decay

property holds whenever our model is transitive Menshikov [1986]; Aizenman and

Barsky [1987].

Theorem 1.3.11. For every long-range model with the exponential decay property

(in particular, for every quasi-transitive model), and every o ∈ V , χo(t) is analytic

in the interval [0, tc).

Theorem 1.3.12. For every bounded-degree nearest-neighbour model with the ex-

ponential decay property (in particular, for every quasi-transitive graph), and every

o ∈ V , χo(p) is analytic in the interval [0, pc).

The proofs of these facts are very similar, and follow Kesten’s proof of the

corresponding statement for (nearest-neighbour) lattices in Zd, except that we sim-

plify it by avoiding any mention to lattice animals.

Proof of Theorem 1.3.11. Each summand in the definition

χo(t) =
∑∞

m=1mPt(|Co| = m) of χv admits an analytic extension to C by Theo-

rem 1.3.9. By Weierstrass’ Theorem 1.3.1, it suffices to prove that for every x ∈ [0, tc)

there is an open disk D centred at x such that
∑∞

m=1mPt(|Co| = m) converges uni-

formly in D.

Pick an arbitrary x ∈ [0, tc) and x < y < tc. Since we are assuming the

exponential decay property, we have Py(|Co| ≥ m) ≤ e−cm for some constant c =

c(y, o) > 0. Since Pt(|Co| ≥ m) is an increasing function of t, we deduce that

Pm(t) = Pt(|Co| = m) ≤ e−cm (1.11)
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for every t ≤ y. Pick M > 0 small enough that x+M ≤ y and M < c/2. Combined

with Theorem 1.3.9, this implies that |Pm(z)| ≤ Cam for z ∈ D(x,M), where C is a

positive constant and a < 1. Since
∑∞

m=1Cma
m < ∞, we can use the Weierstrass

M-test to conclude that the sum
∑∞

m=1mpm(z) converges uniformly on D(x,M)

and since each Pm is analytic the sum is also analytic. Moreover, this sum coincides

with χo(t) for t ∈ D(x,M) ∩ [0, tc), and so our statement follows.

Proof of Theorem 1.3.12. This is similar to the above, but instead of Theorem 1.3.9,

we use the corresponding statement for nearest-neighbour models. This is easier,

as the sum (1.10) is finite. Applying Lemma 1.3.3 (using the bounded degree as-

sumption, see also Remark 1.3.4) yields an upper bound of the form |Pm(z)| ≤
cdmPm(x+M) which we use instead of that of Theorem 1.3.9 in our application of

the M-test. The rest of the proof is identical to that of Theorem 1.3.11.

The above proofs show that there is an open disk centred at any subcritical

value x of the parameter where pm converges exponentially fast to 0. Easily, every

higher moment Et(|Co|k) =
∑∞

m=1m
kPt(|Co| = m) (or for the same reason, the

expectation of every sub-exponential function of |Co|) admits an analytic extension

on the same disk, and so we obtain

Corollary 1.3.13. Every moment Et(|Co|k) is an analytic function of the parameter

t in the subcritical interval for all models as in Theorem 1.3.12 or Theorem 1.3.11.

Let us summarize the ideas used to prove the analyticity of χo. Our proofs

had little to do with χo itself. The main idea was to express χo as a sum of multi-

ples of probabilities of events and use the exponential decay of those probabilities

(Theorem 1.2.1) to counter the exponential growth of their complex extensions (as

in Lemma 1.3.3) in small enough discs around every point p. The rest of the proof

was standard complex analysis, namely the Weierstrass M-test and Theorem 1.3.1.

As we are going to use the same proof structure several times, we reformulate it

as the following corollary, which is a straightforward generalisation of the proof of

Theorem 1.3.12. To formulate it, we need the following definition.

Definition 1.3.14. We say that an event E —of a nearest-neighbour model on a

graph G— has complexity n, if it is a disjoint union of a family of events (Fi)i∈A

where each Fi is measurable with respect to a set of edges of G of cardinality n and

A is a set of indices.

Corollary 1.3.15. Let Pp denote the law of a nearest-neighbour model, and let f(p)

be a function that can be expressed as f(p) =
∑

n∈N
∑

i∈Ln aiPp(En,i) in an interval
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p ∈ (a, b) ⊆ [0, 1], where an ∈ R, Ln is a finite index set, and each En,i is an event

measurable with respect to Pp (in particular, the above sum converges absolutely for

every p ∈ (a, b)). Suppose that

(i) En has complexity of order Θ(n), and

(ii) there is a constant 0 < c < 1 independent of p such that
∑

i∈Ln |ai|Pp(En,i) =

O(cn) on (a, b).

Then there is a constant ε > 0 such that f(p) is analytic in (a− ε, b+ ε).

(The analyticity on the larger interval (a− ε, b+ ε) is needed to handle the

case p = 1. The proof shows that ((ii)) holds on the larger interval (a − ε, b + ε)

with c replaced by some other constant smaller than 1.)

Proof. We imitate the proof of Theorem 1.3.11, except that instead of the expo-

nential decay property we use our assumption (ii), and instead of Lemma 1.3.3 we

use its generalisation Corollary 1.3.5, which we apply to the sequence of events wit-

nessing that (En,i) satisfies (i). (Note that the complexity of an event governs the

exponential growth rate of the maximum modulus of the extension of its probability

to a complex disc as a function of the radius of that disc.) For p ∈ (a, b), we can

use either (1.4) or (1.5). To obtain the analyticity at a neighbourhood of a we need

to use (1.4), while to obtain the analyticity at a neighbourhood of b we need to use

(1.5).

Remark: A similar statement for long-range models can be formulated, and

proved, along the same lines, except that we use the total µ-weight rather than the

cardinality of an edge-set in Definition 1.3.14.

1.4 Analyticity above the threshold for planar lattices

A planar quasi-transitive lattice (in R2) is a connected, locally finite, plane graph L

such that for some pair of linearly independent vectors v1, v2 ∈ R2, translation by

each vi preserves L, and this action has finitely many orbits of vertices. This means

that there exists a finite set U of vertices of L such that any vertex of L can be

translated by a linear combination of v1, v2 to some vertex of U . In particular, L

does not have accumulation points, i.e. there are finitely many vertices inside any

every bounded region of the plane. It is not hard to see that we can draw L in the

plane in such a way that the edges of L are piecewise linear curves. We can even
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assume that the edges of L are straight lines, which we can do for any planar graph

Thomassen [1977].

In this section, we prove

Theorem 1.4.1. For Bernoulli bond percolation on any planar quasi-transitive lat-

tice we have pC = pc.

This result is new even for the standard square lattice Z2, i.e. the Cayley

graph of Z2 with respect to the standard generating set {(0, 1), (1, 0)}. Slightly

more effort is needed to prove it in the generality of planar quasi-transitive lattices.

The reader that wants to see a simplest possible proof for the lattice L = Z2 is

advised to:

• ignore Theorem 1.4.2, and just recall that pc(Z2) = 1/2 and Z2∗ = Z2;

• skip the definition ofX in Section 1.4.1, and instead takeX to be the horizontal

‘axis’ of Z2, and X+ the right ‘half-axis’ starting at the origin o; and

• notice that Proposition 1.4.4 holds trivially with f = 1.

We will use the following important fact about the relation between the

percolation thresholds in the primal and dual lattice. The history of this result

starts with the proof of the inequality pc(Z2) ≥ 1/2 by Harris [1960]. Soon after,

Fisher [1961] extended this result to a wide class of dual pairs. This is the first paper

where the formula pc(L) + pc(L
∗) ≥ 1 appears. Sykes and Essam [1964] established

the relation pc(L)+pc(L
∗) = 1 for some dual pairs with an unverified (and still open

for proof) assumption in the argument. Kesten [1980] gave the first rigorous proof

of the formula pc(Z2) = 1/2. Kestens result was rigorously extended for a dual pair

of graphs other than Z2 and for site percolation on Z2 and its matching pair by

Russo [1981]. These results were further extended by Bollobas and Riordan [2008],

and almost simultaneously the general case was proved by [Sheffield, 2005, Theorem

9.3.1] in a rather involved way. A shorter proof can be found in Duminil-Copin et al.

[2019].

Theorem 1.4.2 (Sheffield [2005]; see also Duminil-Copin et al. [2019]). For every

planar quasi-transitive lattice L, we have pc(L) + pc(L
∗) = 1.

1.4.1 Preliminaries on planar quasi-transitive lattices

Consider a planar quasi-transitive lattice L. We will construct a 2-way infinite path

X in any planar quasi-transitive lattice L, which can be thought of as a ‘quasi-

geodesic’ of both L and L∗.
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Figure 1.3: The path P (solid lines) and its translates P + ktv1 (dashed lines).
Translating the blue subpath (if colour is shown) by multiples of tv1 we obtain X.

Since L is a plane graph, we naturally identify V (L) with a set of points of

R2. Let o ∈ R2 be a vertex of L and recall that o + kv1 ∈ V (L) for some non-zero

vector v1 ∈ R2 and every k ∈ Z. Fix a path P from o to o+ v1. Note that the union⋃
k∈Z(P + kv1) of its translates along multiples of v1 contains a 2-way infinite path

X. Indeed, consider the largest t > 0 such that P + tv1 and P share a common

vertex. Then only consecutive translates of P of the form P + ktv1 overlap. Let W

be the set of common vertices of P and P − tv1, and notice that W + tv1 lies in P .

Now consider a vertex u ∈ W such that for every other vertex v ∈ W , at most one

of v, v + tv1 belongs to the subpath Q of P connecting u to u + tv1. It is easy to

see that the union
⋃
k∈Z(Q+ ktv1) is the desired 2-way infinite path X. See Figure

1.3. It follows from the construction that X is t-periodic, i.e. X + tv1 = X. For

convenience, we will assume that our reference vertex o belongs to X.

We will first show that X is a quasi-geodesic, i.e. there is a constant c > 0

such that for every xi, xj ∈ X we have dL(xi, xj) ≥ c|i − j|, where dL denotes the

graph-distance in L.

Proposition 1.4.3. Let L be a planar quasi-transitive lattice and X the infinite

path defined above. Then X is a quasi-geodesic.

Proof. First, notice that there are finitely many ‘types’ of edges of L up to transla-

tion by v1, v2, hence there is a constant ` > 0 such that any edge of L has length

at most `. This implies that dL(xi, xj) ≥ d(xi, xj)/`, where d(xi, xj) denotes the

Euclidean distance between xi and xj , because any graph-geodesic connecting xi to

xj has length at most `dL(xi, xj) when viewed as a curve in the plane.

Now to estimate d(xi, xj), consider a large enough box B that contains en-

tirely the path Q defined in the construction of X, the sides of which are parallel to

v1,v2. Without loss of generality, we can assume that one of the sides of B coincides

with v1. Then
⋃
k∈Z(B+kv1) covers X, and furthermore, only consecutive translates

of B overlap. Consider the adjacent translates B + kv1, B + (k + 1)v1, . . . , B + nv1

of B connecting xi to xj , i.e. xi lies in one of B + kv1, B + nk1 and xj in the

other. Projecting v1 to the x and y axes we obtain two vectors with certain lengths.
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Without loss of generality, we can assume that the projection to the x-axis has

non-zero length, which we denote by s. We claim that d(xi, xj) ≥ s(n− k − 1). To

see this, write x′i and x′j for the x coordinate of xi and xj respectively. Then we

have d(xi, xj) ≥ |x′i−x′j |. Since the projection of
⋃n−1
j=k+1(B+ jv1) to the x-axis has

length s(n− k− 1), we deduce that |x′i−x′j | ≥ s(n− k− 1), which proves the claim.

It remains to compare n − k − 1 with |i − j|. To this end, notice that the

boxes B+kv1, . . . , B+nv1 contain all vertices of the subpath of X connecting xi to

xj because B is so large that it contains Q. Write v(B) for the number of vertices

in B, which is finite by the definition of L. With this definition, the number of

vertices in the union of the boxes B + kv1, . . . , B + nv1 is at most v(B)(n− k + 1).

In particular, |i−j| is at most v(B)(n−k+1). Combining all the above inequalities

we obtain that dL(xi, xj) ≥ c1|i− j| − c2 for some constants c1, c2 > 0 which do not

depend on i, j. Using the fact that dL(xi, xj) ≥ 1 whenever xi 6= xj , we see that

there is a constant c which does not depend on i, j such that dL(xi, xj) ≥ c|i − j|.
The proof is now complete.

Let X+ = (x0 = o, x1, . . .), X
− = (. . . , x−1, x0 = o) denote the two 1-way

infinite sub-paths of X starting at o.

Proposition 1.4.4. Let L be a planar quasi-transitive lattice and X+ the infinite

path defined above. Then there is a constant f = f(L) > 0 such that every con-

nected subgraph of L that surrounds o and has N > 0 edges, must contain one of

the first fN vertices x0, x1, . . . , xfN−1 of X+, and every connected subgraph of L∗

that surrounds o and has at most N edges, must cross one of the first fN edges

x0x1, x1x2, . . . , xfN−1xfN of X+.

Proof. Suppose that some connected graph S ⊂ L surrounds o. Then S must

separate o from infinity, and so it must contain a vertex x+ in X+, and a vertex

x− in X− (x+ and x− may possibly coincide). If S has at most N edges, then the

graph-distance between x+ and x− is at most N because S is a connected graph.

Since X is a quasi-geodesic, the indices of x+ and x− differ by at most N/c, where

c is the constant at the definition of a quasi-geodesic. We now see that x+ is one of

the first 1 +N/c vertices of X+.

Suppose now that some connected graph S∗ ⊂ L∗ with at most N edges

surrounds o. Then some edges e+ and e− of X+ and X−, respectively, are crossed

by S∗. Our aim is to define a connected graph H in the primal L that contains e+

and e− and has O(N) edges. To this end, recall that each vertex of S∗ corresponds

to some face of L which is incident to a certain number of edges of L. Since S∗ is

connected, the set of all edges of L incident to (the dual face of) some vertex of S∗
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defines a connected subgraph H of L. Notice that H surrounds o and contains both

e+ and e−. We will show that the number of edges of H is of order N . Indeed, we

first observe that every face of L is bounded: choose vectors v1, v2 as in the definition

of a planar quasi-transitive lattice, fix a path P1 from o to o + v1 and a path P2

from o to o + v2, and note that the union of their translates kPi, k ∈ Z contains a

grid that separates R2 into bounded regions containing the faces of L. Therefore,

since there are finitely many of orbits of vertices of L, there are also finitely many

of orbits of faces, and so the number of edges in the boundary of any face is at most

some C ∈ N. Since S∗ is connected and has at most N edges, it must have at most

N + 1 vertices. Thus H has at most C(N + 1) edges by its construction.

We can now argue as above to conclude that each of the two end-vertices of

e+ is some of the first 1 + C(N + 1)/c vertices of X+. Hence e+ is one of the first

1+C(N+1)/c edges of X+. Choosing f large enough so that 1+C(N+1)/c ≤ fN ,

we obtain the desired result.

1.4.2 Outer interfaces

A key element in the proof of analyticity of θ in 2-dimensions is the notion of outer

interface. The definition we will give applies not only to planar quasi-transitive lat-

tices but also to plane graphs without any accumulation points, i.e. every bounded

region contains finitely many vertices. We remark that all planar graphs we will

work with in this thesis, namely planar quasi-transitive lattices, triangulations of

an open disk and regular tessellations of the hyperbolic plane, can be embedded

in the plane without any accumulation points. For triangulations of an open disk,

this follows e.g. from the Circle packing theorem (see Section 1.8 for more details).

For regular tessellations of the hyperbolic plane, consider their standard embedding

in the open unit disk and then map the open unit disk to the whole plane using a

continuous bijection.

Thomassen [1977] proved that all plane graphs without any accumulation

points can be embedded in the plane (without accumulation points) in such a way

that all edges are straight lines.

Consider a connected plane graph G without any accumulation points and

fix a vertex o. We will assume throughout that all edges of G are straight lines.

Recall that a plane graph divides the plane into faces, i.e. a face of G is the closure

of a component of R2 \ E(G). To avoid any confusion, we emphasize that given a

subgraph H of G, the faces of H are the closures of the components of R2 \ E(H)

(not the faces inherited from G). Notice that when H is finite, it has a unique

unbounded face.
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Definition 1.4.5. An outer interface of G is a pair (S, ∂S) of finite sets of edges

of G with the following properties

(i) The graph H = (V (S), S), where V (S) is the set of endpoints of S, is con-

nected;

(ii) Each edge in S lies at the boundary of the (unique) unbounded face of H;

(iii) o lies either in H or inside a bounded face of H; and

(iv) ∂S is the set of edges in E(G) \S that have at least one endpoint in V (S) and

are contained in the (unique) unbounded face of H.

To simplify the notation, we will usually write S instead of (S, ∂S). We will

also refer to ∂S as the boundary of the outer interface. It is important to remember

that ∂S may contain edges that have both their end-vertices in S; our proof will

break down (at Lemma 1.4.8) if we exclude such edges from the definition of ∂S.

Given a finite connected subgraph Γ of G containing o, we can associate to

Γ an outer interface S with S ⊂ E(Γ) and ∂S ⊂ (E(G) \ E(Γ)). To this end, we

let S consist of the edges lying at the boundary of the unbounded face of Γ. We

define ∂S to be the set of edges in E(G) \S that have at least one endpoint in V (Γ)

and are contained in the (unique) unbounded face of H. We will call S the outer

interface of Γ but we need to first verify that S is an outer interface.

It is clear that the pair (S, ∂S) satisfies properties (ii) and (iii). To verify

property (i), let D be a connected component of H = (V (S), S). We have that

every edge in E(Γ) \ E(H) lies in a region bounded by a cycle of H. Hence the

graph D′ spanned by D and all edges of Γ lying in a region bounded by a cycle of

D, forms a connected component of Γ, and so D′ must coincide with Γ. Moreover,

the only vertices of H that D′ contains are those of D. Thus D coincides with H,

i.e. S is a connected graph. Finally, it is now clear that ∂S satisfies (iv), because

the unbounded faces of H and Γ coincide.

Given a realisation ω ∈ 2E(G) of our Bernoulli percolation on G, we say that

an outer interface S occurs in ω if S is the outer interface of some cluster of ω. This

happens exactly when all edges of S are occupied and all edges in ∂S are vacant.

A multi-interface M is a finite set of pairwise vertex-disjoint outer interfaces.

Lemma 1.4.6. For every outer interface S, the dual graph ∂S∗ of its boundary ∂S

spans a connected subgraph of G∗ surrounding o.

Proof. Let H be the graph (V (S), S). We claim that there is a Jordan curve J

disjoint from H such that H lies in the bounded side of J , and J is close enough to
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Figure 1.4: A connected graph and the corresponding outer interface.

H that it meets all edges in ∂S and no other edges of G. Indeed, let H ′ be the union

of H (when viewed as a subset of the plane) with the bounded faces of L\H. Then S

coincides with the topological boundary of H ′. Consider a collection {d1, d2, . . . , dk}
of open disks that cover the boundary S of H ′. Since we have assumed that the

edges of L are piecewise linear curves, we can choose the collection appropriately

so that only consecutive disks di, di+1 overlap (with the understanding that dk,d1

might overlap as well). This will ensure that the set A, which is defined as the union

of H ′ with the disks d1, d2, . . . , dk, is a bounded simply-connected open set. Since

the boundary of A is a finite union of circular arcs, it is a Jordan curve J . It is not

hard to see that J satisfies the desired properties.

The cyclic sequence of faces and edges of G visited by J defines a closed

walk in G∗. This easily implies that ∂S∗ spans a connected subgraph of G∗. That

this subgraph surrounds o is an immediate consequence of the definition of an outer

interface.

The following lemma, which is an easy consequence of the definitions, is

the main reason why we define multi-interfaces to comprise vertex-disjoint outer

interfaces.

Lemma 1.4.7. If two occurring outer interfaces S1, S2 share a vertex, then they

coincide. Moreover, if their boundaries ∂S1, ∂S2 share an edge, then they coincide.

Proof. For the first assertion, let Ci, i = 1, 2 be the percolation cluster of Si. That

such clusters exist follows from the fact that each Si spans a connected graph by

Lemma 1.4.6. If S1, S2 share a vertex, then C1 coincides with C2. Now each of

S1, S2 is the unique outer interface of C1 = C2. Hence S1 and S2 coincide.

For the second assertion, assume that ∂S1, ∂S2 share an edge. If S1, S2 share

a common vertex, then they coincide, as proved above, so let us assume that they

are vertex disjoint. Since o is a common vertex of the regions bounded by S1, S2,
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S2

S1

Figure 1.5: Two outer interfaces sharing a common vertex. The blue edges belong
to both the boundary of the ‘internal’ outer interface S1 and the ‘external’ outer
interface S2. If both S1 and S2 occur, then the blue edges need to be open and
closed at the same time.

either S1 lies in the interior of the region bounded by S2 or vice versa. This implies

that ∂S1, ∂S2 are disjoint. This contradiction shows that in any case, S1 and S2

coincide, as desired.

1.4.3 Main result

We will now focus again on planar quasi-transitive lattices. The following lemma

is one of the reasons why the proof of Theorem 1.4.1 only applies to lattices rather

than arbitrary planar graphs. Let |S|, |∂S| be the number of edges in S and ∂S,

respectively.

Lemma 1.4.8. For every outer interface S we have |∂S| ≥ |S|/k for some integer

k = k(L).

For example, if L is the square lattice Z2, then k = 2. (And not k = 1

because it can happen that most edges in ∂S have both their end-vertices in S; for

example, we can have a ‘space filling’ outer interface whose vertex set is an n × n
box of Z2. The following proof will give a worse bound than k = 2 but we can afford

to be generous.)

Proof. Recall that any face of L has at most C edges for some C > 0 (this was

proved in Proposition 1.4.4), and also that S consists of the vertices and edges

incident with the unbounded face F of some H ⊂ L. If we walk along the boundary
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S of F , we will never traverse C or more edges of S without encountering an edge in

∂S, and we will encounter each edge in ∂S at most twice. Thus our assertion holds

for k = 2(C − 1).

Let MS denote the set of multi-interfaces of L. We say that M ∈ MS
occurs if each of the outer interfaces it contains occurs. Let |M | :=

∑
Si∈M |Si| be

the total number of edges in M . Let ∂M :=
⋃
Si∈M ∂Si, and let MSn := {M ∈

MS | |∂M | = n} be the set of multi-interfaces with n boundary edges.

Lemma 1.4.9. There is a constant r ∈ R such that for every n ∈ N at most r
√
n

elements of MSn can occur simultaneously in any percolation instance ω.

Proof. SupposeM ∈MSn occurs in ω. Let us denote byD the subset of {x0, x1, . . .}
comprising the first vertex of {x0, x1, . . .} that each component outer interface of

M meets. Notice that M is uniquely determined by D because occurring outer

interfaces are disjoint by Lemma 1.4.7. In other words, M =
⋃
xi∈D S(xi, ω), where

S(xi, ω) denotes the occurring outer interface containing xi.

Note that |S(xi, ω)| > i/f for every xi ∈ D by Proposition 1.4.4. Since

kn ≥ |M | =
∑

xi∈D |S(xi, ω)| by Lemma 1.4.8 and the above remark, we deduce

fkn >
∑

xi∈D i. This means that the set {i | xi ∈ D} is a partition of a number

smaller than fkn. Moreover, distinct occurring multi-interfaces in MSn determine

distinct subsets D of {x0, x1, . . .}, and therefore distinct partitions. By the Hardy–

Ramanujan formula, the number of such partitions is less than r
√
n for some r > 0.

Thus less than r
√
n elements of MSn can occur simultaneously in ω.

If Co is finite, then there is exactly one outer interface that occurs and is

contained in Co, namely the boundary of the unbounded face of Co. We denote the

probability of this event by PS , that is, we set

PS(p) := P(S occurs and S ⊂ Co).

Thus we can write the probability θo(p) that Co is finite by summing PS over all

S ∈ S, where S denotes the set of outer interfaces:

1− θo(p) =
∑

S∈S PS(p) (1.12)

for every p ∈ (pc, 1].

As usual, our strategy to prove the analyticity of θ, is to express θ as an

infinite sum of functions that admit analytic extensions, namely, probabilities of

events that depend on finitely many edges, and then apply Corollary 1.3.15. Formula
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(1.12) is a first step in this direction, however, the functions PS are not fit for our

purpose: the event {S occurs and S ⊂ Co} is not measurable with respect to the

set of edges incident with S only. Therefore, we would prefer to express θ in terms

of the simpler functions

QS := Pp(S occurs).

These functions have the advantage that comply with the premise of Corollary 1.3.5,

and hence |QS(p)| is bounded in D(p,R) by eCR,p|S|QS(p+R), where CR,p is inde-

pendent of S. But when trying to write θ as a sum involving these QS , we have to

be more careful: we have

1− θo(p) = Pp(|Co| <∞) = Pp(at least one S ∈ S occurs)

by the definitions, but more than one S ∈ S might occur simultaneously. Therefore,

we will apply the inclusion-exclusion principle to the set of events {S occurs}S∈S .

For every multi-interface M , we define QM :=
∏
S∈M QS , i.e. QM is the

probability that M occurs.

Lemma 1.4.10. For every p ∈ (pc, 1] we have

1− θo(p) =
∑

M∈MS(−1)c(M)+1QM (p), (1.13)

where c(M) denotes the number of outer interfaces in the multi-interface M .

Proof. To prove this, we need first of all to check that the sum in the right-hand

side converges. This is implied by Lemma 1.4.11 below, which states that the

sum
∑

M∈MSn QM (p) decays exponentially in n, and therefore our sum converges

absolutely. Then, we need to check that

1{some S occurs} =
∑

M∈MS
(−1)c(M)+1

1{M occurs}.

To see this, notice that by the Borel-Cantelli lemma only finitely many outer inter-

faces occur in almost every ω. Furthermore, for every set M of outer interfaces, we

have

P(every S ∈M occurs) = 0

unless the elements of I are pairwise vertex-disjoint —that is, M ∈ MS— by

Lemma 1.4.7. Moreover, if for some M ∈ MS, all outer interfaces S ∈ M occur,
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then M occurs as well. Hence we have

∑
M∈MS

(−1)c(M)+1
1{M occurs} =

N∑
k=1

(
N

k

)
(−1)k+1,

where N is the number of occurring outer interfaces, because for every integer

1 ≤ k ≤ N , all possible
(
N
k

)
combinations of k occurring outer interfaces contribute

(−1)k+1 to
∑

M∈MS(−1)c(M)+1
1{M occurs}. The binomial theorem implies that the

sum in the right-hand side is equal to 1 if some outer interface occurs and 0 otherwise,

i.e. coincides with 1{some S occurs}. Finally, we have

Ep
( ∑
M∈MS

(−1)c(M)+1
1{M occurs}

)
=

∑
M∈MS

(−1)c(M)+1QM (p)

by Fubini’s theorem.

The main part of our proof is to show that the probability for at least one

multi-interface inMSn to occur decays exponentially in n, which will imply the fol-

lowing lemma. The rest of the arguments used to prove Theorem 1.4.1 are identical

to those of e.g. Theorem 1.3.12.

Lemma 1.4.11. For every p ∈ (pc, 1] there are constants c1 = c1(p), c2 = c2(p) > 0

such that for every n ∈ N,

∑
M∈MSn QM (p) ≤ c1e

−c2n. (1.14)

Moreover, if [a, b] ⊂ (pc, 1], then the constants c1 and c2 can be chosen independently

of p in such a way that (1.14) holds for every p ∈ [a, b].

The proof of this is based on the fact that the size of the boundary of an

outer interface S that contains a certain vertex x has an exponential tail. This is

because ∂S is contained in a component of the dual L∗ by Lemma 1.4.6, and as

our percolation is subcritical on L∗, the exponential decay property holds. Still, the

exponential tail of each |∂S| does not easily imply Lemma 1.4.11. First of all, the sum

in the left-hand side of Lemma 1.4.11 is larger than the probability P(MSn occurs)

that a multi-interface of MSn occurs. Second, a multi-interface might consist of

plenty of outer interfaces. Nevertheless, we will be able to overcome these difficulties.

Using Lemma 1.4.9 we prove that the aforementioned sum does not grow too fast

when compared with the probability that a multi-interface of MSn occurs.
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Proof of Lemma 1.4.11. We start by noticing that∑
M∈MSn

QM (p) = Ep(
∑

M∈MSn

1{M occurs}).

The number of multi-interfaces M ∈MSn that can occur simultaneously is bounded

above by r
√
n for some r > 0 by Lemma 1.4.9. It follows that∑

M∈MSn

1{M occurs} ≤ r
√
n
1{MSn occurs}

which in turn implies that∑
M∈MSn

QM (p) ≤ r
√
nPp(MSn occurs).

Hence it suffices to show that Pp(MSn occurs) decays exponentially in n. In

order to do so, we will employ the exponential tail of the size of a certain (subcritical)

cluster in the dual L∗ given by the exponential decay property. For this, we will use

the natural coupling of the percolation processes on L and L∗: given a percolation

instance ω ∈ 2E(L) on L, we obtain a percolation instance ω∗ on L∗ by changing the

state of each edge, i.e. letting ω∗(e∗) = 1−ω(e) for every e ∈ E(L). Let C(k) denote

the event that there is a connected subgraph of ω∗ which crosses one of the first fk

edges of X+, and has at least k edges, where f is the constant of Proposition 1.4.4.

Note that C(k) is an increasing event for ω∗ that depends on finitely many edges.

We claim that

Pp(MSn occurs) ≤
∑
{m1,...,mk}∈Pn P1−p(C(m1) ◦ . . . ◦ C(mk)), (1.15)

where ◦ means that the events occur edge–disjointly. Since the events C(mi) are

increasing, the event C(m1) ◦ . . . ◦ C(mk) is well defined (see the discussion in

Section 1.2.4). Here Pn is the set of partitions {m1, . . . ,mk} of n. Once this claim is

established, we will be able to employ the BK inequality (Theorem 1.2.2) to bound

Pp(MSn occurs).

To prove (1.15), we remark that each multi-interface M ∈ MSn defines a

partition {m1, . . . ,mk} of n by letting mi stand for the number of edges in the i-th

component Ki of the subgraph of L∗ spanned by ∂M∗. By Proposition 1.4.4 if M

occurs, then Ki is a witness of C(mi), and these witnesses are pairwise edge-disjoint.

Thus the occurrence of M implies the occurrence of the event C(m1) ◦ . . . ◦ C(mk)

in ω∗. To conclude that (1.15) holds, we apply the union bound to the family of
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events of the latter form, ranging over all partitions {m1, . . . ,mk} ∈ Pn.

The BK inequality Grimmett [1999] states that

P1−p(C(m1) ◦ . . . ◦ C(mk)) ≤ P1−p(C(m1)) · . . . · P1−p(C(mk)).

Using the union bound and applying the exponential decay property, we obtain

P1−p(C(mi)) ≤ fmic
mi for some constant 0 < c = c(p) < 1. In addition, if [a, b] ⊂

(pc, 1], then the monotonicity of P1−p(C(mi)) implies that the constant c can be

chosen uniformly for p ∈ [a, b]. As P1−p(C(n)) < 1 for every n, we deduce that

P1−p(C(mi)) ≤ (c+ ε)mi for some ε > 0 such that c+ ε < 1; indeed, for any ε, this

is satisfied for large enough mi, and increasing ε we can make it true for the smaller

values of mi.

Combining all these inequalities starting with (1.15) we conclude that

Pp(MSn occurs) ≤ |Pn|(c+ ε)n.

We have |Pn| ≤ h
√
n for some constant h by the Hardy–Ramanujan formula (Theo-

rem 1.2.3), and so

Pp(MSn occurs) ≤ h
√
n(c+ ε)n.

Thus Pp(MSn occurs) decays exponentially in n as claimed.

Remark 1.4.12. The BK-inequality is only used to prove the exponential decay of

P1−p(C(m1) ◦ . . . ◦ C(mk)). Here we briefly describe an alternative way to obtain

this result. Let t > 0 be a fixed constant to be defined. If mi ≥ tn for some

i = 1, 2, . . . , k, then because P1−p(C(m1)◦ . . .◦C(mk)) ≤ P1−p(C(mi)) we obtain the

desired exponential decay. If not, then we have that mi < tn for every i = 1, 2, . . . , k.

This implies that when the event C(m1)◦. . .◦C(mk) occurs, for every i = 1, 2, . . . , k,

there is a connected subgraph of ω∗ which crosses one of the first ftn edges of X+,

and has at least mi edges. Hence we can connect all these connected subgraphs

by opening a path of length ftn in ω∗ (closing the corresponding edges in ω) to

create one connected subgraph of size at least n. In this case, the event C(n) occurs.

Computing the cost of opening this path, we obtain that P1−p(C(m1)◦ . . .◦C(mk)) ≤
KftnP1−p(C(n)) for some constant K > 0 depending only on p. We can now choose

t > 0 small enough so that KftnP1−p(C(n)) decays exponentially in n, which we

can do because P1−p(C(n)) decays exponentially in n. In both cases, we obtain the

desired exponential decay.

We are now ready to prove Theorem 1.4.1.
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Proof of Theorem 1.4.1. As already explained, the inclusion–exclusion expression

(1.13) holds by Lemma 1.4.11. The assertion follows if we can apply Corollary

1.3.15 for Ln =MSn, and (En,i) an enumeration of the events {M occurs}M∈MSn .

So let us check that the assumptions of Corollary 1.3.15 are satisfied.

By definition, every M ∈MSn has n vacant edges. Moreover, |M | ≤ k(L)n

by Lemma 1.4.8. Thus assumption (i) of Corollary 1.3.15 is satisfied. The fact that

assumption (ii) is satisfied is exactly the statement of Lemma 1.4.11.

1.5 Analyticity of θ in all dimensions

In this section, we will prove that for percolation on Zd, θ is analytic on the su-

percritical interval. Our proof works for d = 2 as well, providing an alternative

statement.

We will write Ld for the hypercubic lattice (Zd, E(Zd)), the vertices of which

have integer coordinates, and we connect two vertices when they have distance 1.

Theorem 1.5.1. For Bernoulli bond percolation on Ld, d ≥ 2, the percolation den-

sity θ is analytic on (pc, 1].

1.5.1 Setting up the renormalisation

We start by introducing some necessary definitions. Consider a positive integer

N . For every vertex x of Zd, we let B(x) = B(x,N) denote the box {y ∈ Zd :

‖y −Nx‖∞ ≤ 3N/4}. With a slight abuse, we will use the same notation B(x) to

also denote the corresponding subset of Rd, namely {y ∈ Rd : ‖y−Nx‖∞ ≤ 3N/4}.
The collection of all these boxes can be thought of as the vertex set of graph

canonically isomorphic to Zd. We will denote this graph by NLd. Whenever we talk

about percolation (clusters) from now on, we will be referring to percolation, with

a fixed parameter p > pc, on Ld and not on NLd; we will never percolate the latter.

For any percolation cluster C, we denote by C(N) the set of boxes B such

that the subgraph of C induced by its vertices lying in B has a component of

diameter at least N/5. The boxes with this property will be called C-substantial.

Notice that C(N) is a connected subgraph of NLd. The internal boundary of C(N)

is denoted by ∂C(N) following the terminology of Section 1.2.1. Notice that ∂C(N)

is not necessarily connected. For technical reasons, we would like it to be, and

therefore we modify our lattice by adding the diagonals: we introduce a new graph

NLd�, the vertices of which are the boxes B(x), x ∈ Zd, and we connect two boxes

with an edge of NLd� whenever they have non-empty intersection. When N = 1, the
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vertex set of Ld� is simply Zd. It is not too hard to show (see [Timár, 2007, Theorem

5.1]) that

if C is finite, then ∂C(N) is a connected subgraph of NLd�. (1.16)

Given two diagonally opposite neighbours x, y of Ld, we will write B(x, y) for

the intersection B(x)∩B(y). A percolation cluster C is a crossing cluster for some

box B(x) or B(x, y), if C contains a vertex from each of the (d − 1)-dimensional

faces of that box. We say that a box B(x) is good in a percolation instance ω if it

has a crossing cluster C with the property that the intersection of C with each of the

boxes B(x, y) contains a crossing cluster (of B(x, y)), and every other cluster of B(x)

has diameter less than N/5. A box that is not good will be called bad. It is known

[Grimmett, 1999, Theorem 7.61] that, for every p > pc, the probability of having a

crossing cluster and no other cluster of diameter greater than N/5 converges to 1

as N →∞. Combining this with a union bound we easily deduce that

for every p > pc, the probability of any box being good converges to 1 as

N →∞.
(1.17)

We will say that a set of boxes is bad if all its boxes are bad.

Our definition of good boxes is slightly different than the standard one in that

it asks for all boxes B(x, y) to contain a crossing cluster. The reason for imposing

this additional property is because now

every NLd�-component B of good boxes contains a unique percolation clus-

ter C such that some box of B is C-substantial (and in fact all boxes of B

are C-substantial).

(1.18)

This follows easily once we notice that this holds for pairs of neighbouring boxes.

Observe that the boxes in ∂C(N) are never good. Indeed, if some box B ∈
∂C(N) is good, then C connects all the (d − 1)-dimensional faces of B, hence all

NLd-neighbouring boxes of B contain a connected subgraph of C of diameter at

least N/5, and so they lie in C(N). This contradicts the fact that B belongs to

∂C(N).

Having introduced the above definitions, our aim now is to find a suitable

expression for 1− θ in terms of good and bad boxes surrounding o.

With the above definitions, we have that, conditioning on the event that Co is

finite and has diameter at least N/5, there is a non-empty NLd�-connected subgraph

of bad boxes that separates o from infinity, namely T := ∂Co(N). However, the event

{|Co| <∞} is not necessarily measurable with respect to the instance inside T . In
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other words, we cannot express 1 − θ in terms of just the instance inside T , and

instead, we have to explore the instance inside the finite components surrounded by

T . To this end, we will expand ∂Co(N) into a larger object.

1.5.2 Separating components

A separating component is an NLd�-connected set S of boxes, such that o lies either

inside S or in a finite component of NLd� \ S. We will write ∂�S for its vertex

boundary —defined in Section 1.2.1— when viewed as a subgraph of NLd�. We say

that S occurs in an instance ω if all the following hold:

(i) all boxes in S are bad;

(ii) all boxes in ∂�S are good, and

(iii) there is an instance ω′ which coincides with ω in S ∪ ∂�S, such that Co(ω
′) is

finite, and S contains ∂Co(ω
′)(N).

We will say that ω′ is a witness for the occurrence of S if (i)–(iii) all hold.

One way to interpret (iii) is that there exists a minimal cut set F surrounding

o with the property that all its edges inside S ∪ ∂�S are closed in ω. If there is an

infinite path in ω starting from o, then it has to avoid the edges of F lying in S∪∂�S.

As we will see, (ii) makes this impossible without violating that Co(ω
′) is finite.

Note that (iii) implies that

∂V Co(ω
′) (and Co(ω

′)) does not share a vertex with the infinite component

of Ld \ S.
(1.19)

1.5.3 Expressing θ in terms of the probability of the occurrence of

a separating component

In this section, we show that Co is finite exactly when some separating component

occurs, unless diam(Co) < N/5, which is a case that is easy to deal with. This will

allow us to express θ(p) in terms of the probability of the occurrence of a separating

component (see (1.20)). In the following section we will expand the latter as a sum

(with inclusion-exclusion) over all possible separating components. The summands

of this sum are well-behaved polynomials, that will allow us to apply Corollary

1.3.15 to deduce the analyticity of θ(p).

Lemma 1.5.2. For every p > pc there is N ∈ N and an interval (a, b) containing

p such that the following holds for every q ∈ (a, b) ∩ (pc, 1]. Conditioning on Co
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being finite, and diam(Co) ≥ N/5, at least one separating component occurs almost

surely.

Proof. Let S be the maximal connected subgraph of NLd� that contains ∂Co(N) and

consists of bad boxes only. This S exists whenever Co is finite and diam(Co) ≥ N/5
because ∂Co(N) is connected by (1.16).

We claim that there is some N and an interval (a, b) containing p such that

S is Pq-almost surely finite for every q ∈ (a, b) ∩ (pc, 1]. For this, it suffices to show

that for some large enough N , the probability Pq(S has size at least n) converges to

0 as n tends to infinity for each such q. The latter follows by combining the union

bound with Lemma 1.5.6 below, which states that∑
T is a separating component of size n

Pq(T is bad) ≤ e−tn

for some constant t = t(p) > 0, for some N , and every q in an interval (a, b)∩ (pc, 1].

Note that conditions (i) and (ii) are automatically satisfied by the choice of

S. The instance ω′ := ω satisfies condition (iii), since Co(ω) is finite, and S contains

∂Co(ω)(N) by definition. Thus S occurs in ω, as desired.

Note that the proof of Lemma 1.5.2 finds a concrete occurring separating

component whenever Co is finite and diam(Co) ≥ N/5; we denote this separating

component by So in this case.

The next two lemmas provide a converse to Lemma 1.5.2, namely that Co is

finite whenever some separating component occurs.

Whenever ω′ is a witness for the occurrence of S, we let Ro(ω
′) denote the

set of vertices of the infinite component of Ld \ Co(ω′) lying in S.

Lemma 1.5.3. Consider a separating component S, and assume that S occurs in

ω. Let ω′ be a witness of the occurrence of S. Then no vertex of Ro(ω
′) lies in

Co(ω).

Proof. Assume that some vertex u of Ro(ω
′) lies in Co(ω); we will obtain a contra-

diction.

Since Co(ω) contains u, there must exist a path P in ω connecting o to u.

This path cannot lie entirely in S ∪ ∂�S because ω and ω′ coincide in that set of

boxes and u 6∈ Co(ω′). Hence NLd� \ (S ∪ ∂�S) must have some finite component.

Let E denote the minimal edge cut of Co(ω
′). Clearly, P must meet E, since u lies

in the infinite component of Ld \ Co(ω′). Let e be an edge of E that P contains.

Notice that no common edge of P and E lies in S ∪ ∂�S because the edges of E are
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closed in ω′, the edges of P are open in ω, and the two instances coincide in S∪∂�S.

Hence e must lie in one of the finite components Bin of NLd� \ (S ∪ ∂�S). Write B
for the set of those boxes in ∂�S that have a NLd�-neighbour in Bin. (Thus B is the

vertex boundary of Bin.) See Figure 1.6.

o

u

E

P

Figure 1.6: The situation in the proof of Lemma 1.5.3. The separating component
S is depicted in green and its boundary ∂�S in red (if colour is shown). When two
boxes of S and ∂�S overlap, their intersection is depicted also in green. The dashes
depict the edges of the cut E, and e is highlighted with a (red) dot.

It is not hard to see that some box B of B is Co(ω
′)-substantial, which then

implies that all boxes of B are Co(ω
′)-substantial because they are all good. Indeed,

notice that one of the two end-vertices of e lies in Co(ω
′) by the definition of the

set E. As S contains a Co(ω
′)-substantial box, some box B of B must be Co(ω

′)-

substantial, as claimed, because B is the vertex boundary of Bin.

Our aim now is to show that we can connect u to the subgraph of Co(ω
′)

inside B with a path in ω′ lying entirely in S ∪ ∂�S. This will imply that u belongs

to Co(ω
′), contradicting that u ∈ Ro(ω′).

For this, consider the subpath Q of P that starts at u and ends at the last

vertex of the intersection of Bin and B (notice that although Bin and B are disjoint

sets of boxes, the subgraphs of Ld inside them overlap). If Q is not contained in

S∪∂�S, then we can modify it to ensure that it does lie entirely in S∪∂�S. Indeed,

notice that each NLd�-component F of ∂�S contains a unique ω-cluster C such that

some box of F is C-substantial by (1.18) because all its boxes are good. Moreover,

each time Q exits S ∪ ∂�S, it has to first visit the unique such percolation cluster of
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some NLd�-component F of ∂�S, and then eventually revisit the same percolation

cluster of F . We can thus replace the subpaths of Q that lie outside of S ∪ ∂�S by

open paths lying entirely in ∂�S that share the same end-vertices. Thus we may

assume that Q is contained in S ∪ ∂�S as claimed.

Now notice that Q contains a subpath of diameter greater than N/5 lying

entirely in some box B of B. This box is Co(ω
′)-substantial, hence Co(ω

′) and Q

must meet. Then following the edges of Q, which are all open in ω′, we arrive at u,

and thus u belongs to Co(ω
′), as desired.

We now use this to prove

Lemma 1.5.4. Whenever some separating component occurs in an instance ω, the

cluster Co(ω) is finite.

Proof. We will prove the following slightly stronger statement: whenever a separat-

ing component S occurs in an instance ω, a minimal (finite) edge cut of closed edges

occurs in ω which separates o from infinity and lies in S ∪ ∂�S.

For this, consider a witness ω′ of the occurrence of S, and let ω′′ be the

instance which coincides with ω (and ω′) on every edge lying in S ∪ ∂�S, and every

other edge of ω′′ is open. Note that S occurs in ω′′ since it occurs in ω. Thus Co(ω
′′)

contains no vertex of Ro(ω
′) by Lemma 1.5.3. This implies that Co(ω

′′) contains no

vertex in the infinite component X of NLd� \S because any path P in L connecting

o to X has to first visit Ro(ω
′).

We have just proved that Co(ω
′′) can only contain vertices in S and the finite

components of NLd� \ S. Since S is a finite set of boxes, Co(ω
′′) is finite as well.

Hence a minimal edge cut of closed edges separating o from infinity occurs in ω′′.

This minimal edge cut must lie entirely in S ∪ ∂�S because all edges not in S ∪ ∂�S

are open. This is the desired minimal edge cut since it occurs in ω as well. We will

denote it by ∂bSo.

Lemmas 1.5.2 and 1.5.4 combined allow us to express the event that Co is

finite in terms of the event that some separating component occurs. To do so, let

us write DN to denote the event {diam(Co) < N/5}. Thus we have proved that

1− θ(p) =Pp(Co is finite)

=Pp(DN ) + Pp(|Co| <∞, Dc
N )

=Pp(DN ) + Pp(some separating component occurs, Dc
N ).

(1.20)

Here and below, the notation X,Y, . . . denotes the intersection of the events X,Y, . . ..
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1.5.4 Expanding θ as an infinite sum of polynomials

Notice that Pp(DN ) is a polynomial in p since the event DN depends only on the

state of finitely many edges.

Following our technique from Section 1.4.3, we will now use the inclusion-

exclusion principle to expand the right-hand side of (1.20) as an infinite sum of

polynomials, corresponding to all possible separating components that could occur.

Notice that any two occurring separating components are disjoint because

they are connected, their boxes are bad, and they are surrounded by good boxes by

definition.

Lemma 1.5.5. For every p > pc there is some integer N = N(p) > 0 and an

interval (a, b) containing p such that the expansion

Pq(some S occurs, Dc
N ) =

∑
S∈MSN

(−1)c(S)+1Pq(S occurs, Dc
N ) (1.21)

holds for every q ∈ (a, b) ∩ (pc, 1], where MSN denotes the set of all finite collec-

tions of pairwise disjoint separating components S, and c(S) denotes the number of

separating components of S.

Lemma 1.5.5 follows easily from the next lemma. We will use the notation

MSNn to denote the set of those finite collections of pairwise disjoint separating

components {S1, S2, . . . , Sk} such that |S1|+ |S2|+ . . .+ |Sk| = n. The superscript

reminds us of the dependence of the boxes on N .

Lemma 1.5.6. For every p > pc, there are N = N(p) > 0, t = t(p) > 0 and an

interval (a, b) containing p such that∑
S∈MSNn

Pq(S is bad) ≤ e−tn (1.22)

for every n ≥ 1 and every q ∈ (a, b) ∩ (pc, 1].

Proof. To prove the desired exponential decay we will use a standard renormalisation

technique with a few modifications. We will first prove the exponential decay when

q = p, and then we will use a continuity argument to obtain the desired assertion.

We will first show that there exists a constant k > 0 depending only on d

such that for every S ∈MSNn we have

Pp(S is bad) ≤ cn/k,
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where c := Pp(B(o) is bad). Indeed, it is not hard to see that there is a constant

k = k(d) > 0 such that for every S ∈MSNn there is a subset Y of S of size at least

n/k, all boxes of which are pairwise disjoint. As each box of Y is bad whenever S

occurs, we have

Pp(S is bad) ≤ Pp(Y is bad).

By independence Pp(Y is bad) = cn/k and the assertion follows.

We will now find an exponential upper bound for the number of elements of

S ∈MSNn . Since NLd� is isomorphic to Ld�, there is a constant µ > 0 depending only

on d and not on N , such that the number of connected subgraphs of NLd� with n

vertices containing a given vertex is at most µn. However, an element of MSNn might

contain multiple separating components, and there are in general several possibilities

for the reference vertices that each of them contains. To remedy this, consider some

axis X = (. . . ,−x1, x0 = B(o), x1, . . .) of NLd� that contains the box B(o), and let

X+, X− be its two infinite subpaths starting from B(o). We will first show that any

separating component of size n contains one of the first n elements of X+. Indeed,

consider an occurring separating component S of size n, and notice that S has to

contain some vertex x+ of X+, and some vertex x− of X−. The graph distance

between x+ and x− is at most n, as there is a path in S connecting them. This

implies that x+ is one of the first n elements of X+, as desired.

Consider now a constant M > 0 such that mµm ≤ Mm for every integer

m ≥ 1. Consider also a partition {m1,m2, . . . ,mk} of n. It follows that the number

of collections {S1, S2, . . . , Sk} with |Si| = mi is at most m1m2 . . .mkµ
n ≤Mn, since

we have at most miµ
mi choices for each Si. Since there are at most r

√
n partitions

of n by Theorem 1.2.3 (even an exponential bound would be good enough at this

point), we can now deduce that the size of MSNn is at most r
√
nMn, implying that∑

S∈MSNn

Pp(S is bad) ≤ r
√
nMncn/k.

Notice that in the right-hand side of the above inequality, only c depends on N . It

is a standard result that c converges to 0 as N tends to infinity [Grimmett, 1999,

Theorem 7.61]. Choosing N large enough so that Mc1/k < 1, we obtain the desired

exponential decay.

Now notice that c(q) = Pq(B(o) is bad) is a polynomial in q, hence a con-

tinuous function, since it depends only on the state of the edges inside B(o). This

implies that we can choose an interval (a, b) containing p such that Mc(q)1/k < 1

for every q ∈ (a, b) ∩ (pc, 1]. This completes the proof.
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We are now ready to prove Theorem 1.5.1.

Proof of Theorem 1.5.1. Consider some p ∈ (pc, 1]. Let N, t > 0, and the interval

(a, b) containing p, be as in Lemma 1.5.6. Then the expression

1− θ(q) = Pq(DN ) +
∞∑
n=1

∑
S∈MSNn

(−1)c(S)+1Pq(S occurs, Dc
N )

holds for every q ∈ (a, b) ∩ (pc, 1], and furthermore∣∣∣ ∑
S∈MSNn

(−1)c(S)+1Pq(S occurs, Dc
N )
∣∣∣ ≤ e−tn

for every q ∈ (a, b)∩(pc, 1]. The probability Pq(DN ) is a polynomial in q, hence ana-

lytic, because it depends on finitely many edges. Moreover, the event {S occurs, Dc
N}

depends only on the state of the edges lying in S ∪ ∂�S and the box B(o,N). The

number of edges of each box is O(Nd), hence the event {S occurs, Dc
N} depends only

on O(Ndn) edges. The desired assertion follows now from Corollary 1.3.15.

Remark 1.5.7. It might seem surprising to the reader that the BK inequality is

being used in the proof of the analyticity of θ in 2-dimensions but not in higher

dimensions. It is worth pointing out that there is a proof of the higher dimen-

sional result which uses the BK inequality but it is not simpler than the one we

just presented. On the other hand, the BK inequality does simplify the argument in

2-dimensions (see Remark 1.4.12).

1.5.5 Exponential tail of ∂bSo

As we will now see, Lemma 1.5.6 easily implies that the size of ∂bSo, as defined in

the proof of Lemma 1.5.4, has an exponential tail:

Theorem 1.5.8. For every p > pc, there are constants N = N(p) > 0 and t =

t(p) > 0 such that

Pp(|∂bSo| ≥ n) ≤ e−tn

for every n ≥ N .

Remark 1.5.9. In the statement of Theorem 1.5.8, the dependence on N is implicit

in the definition of ∂bSo in terms of boxes of NLd�.

Proof. Assume that |∂bSo| ≥ n, and consider the separating component S associated

with Co. Then the boxes of S ∪ ∂�S must contain at least n edges of Ld. Hence the
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number of boxes of S ∪ ∂�S is at least cn/Nd for some constant c > 0. Moreover,

we have |∂�S| ≤ (3d − 1)|S| because each box of ∂�S has at least one neighbour in

S, and each box in S has at most 3d − 1 neighbours. Therefore, S contains at least

cn/(3N)d boxes. The desired assertion follows from Lemma 1.5.6.

We recall that for every p ∈ (pc, 1− pc), the probability Pp(|∂Co| ≥ n) does

not decay exponentially in n (Kesten and Zhang [1990]). This implies that for those

values of p, ∂bSo has typically smaller order of magnitude than the standard minimal

edge cut of Co.

As a corollary, we re-obtain a result of Pete [2008] which states that when Co

is finite, the number of touching edges between Co and the unique infinite cluster,

which we denote C∞, has an exponential tail. A touching edge is an edge in ∂ECo∩
∂EC∞. We denote the number of (closed) touching edges joining Co to the infinite

component C∞ by φ(Co, C∞).

Corollary 1.5.10. For every p > pc, there is some c = c(p, d) > 0 such that

Pp(|Co| <∞, φ(Co, C∞) ≥ t) ≤ e−ct

for every t ≥ 1.

Proof. The result follows from Theorem 1.5.8 by observing that C∞ has to lie in the

unbounded component of Ld \ ∂bSo, hence all relevant edges belong to ∂bSo.

1.6 Analyticity of τ

In the previous section we proved that θ is analytic above pc. Some further challenges

arise when one tries to prove that other functions describing the macroscopic be-

haviour of our model are analytic functions of p. The main obstacle is that events of

the form {x is connected to y} are not fully determined, in general, by the instance

inside S∪∂�S of a separating component S (recall the relevant definitions introduced

in Section 1.5.2). In this section, we show how one can remedy this issue, and we will

prove that the k-point function τ = P(x1, x2, . . . , xk belong to the same cluster) and

its truncated version τ f = P(x1, x2, . . . , xk belong to the same finite cluster) are an-

alytic functions above pc. We will then deduce that the truncated susceptibility

E(|Co|; |Co| <∞) and the free energy E(|Co|−1) are analytic functions as well. One

can prove that the results of this section hold for planar quasi-transitive lattices as

well. This can be done by using the notion of outer interfaces (see Georgakopoulos

and Panagiotis [2018]).
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Given a k-tuple x = {x1, . . . , xk}, k ≥ 2 of vertices of Zd, the function τx(p)

denotes the probability that x is contained in a cluster of Bernoulli percolation on

Zd with parameter p. Similarly, τ fx(p) denotes the probability that x is contained

in a finite cluster. We will write MSN (x) for the set of all finite collections of

separating components surrounding some vertex of x, and MSNn (x) for the set of

those elements of MSN (x) that have size n.

Arguing as in the proof of Lemma 1.5.6, we obtain the following:

Lemma 1.6.1. For every p > pc, there are N = N(p) > 0, t = t(p) > 0, and an

interval (a, b) containing p, such that∑
S∈MSNn

Pq(S occurs) ≤ e−tn (1.23)

for every n ≥ 1 and every q ∈ (a, b) ∩ (pc, 1].

We are now ready to prove that τ and τ f are analytic.

Theorem 1.6.2. For every d ≥ 2 and every finite set x of vertices of Zd, the

functions τx(p) and τ fx(p) admit analytic extensions to a domain of C that contains

the interval (pc, 1].

Moreover, for every p ∈ (pc, 1] and every finite set x such that diam(x) ≥
N/5, there is a closed disk D(p, δ), δ > 0 and positive constants c1 = c1(p, δ), c2 =

c2(p, δ) such that

|τ fx(z)| ≤ c1e
−c2diam(x)

for every z ∈ D(p, δ) for such an analytic extension τ fx(z) of τ fx(p).

Proof. We start by showing that τ fx(p) is analytic. Suppose x = {x1, . . . , xk},
and let A be the event that diam(Cxi) ≥ N/5 for every i ≤ k. We will write

{x is connected} to denote the event that all vertices of x belong to the same cluster.

When {x is connected} occurs, we will write Cx corresponding cluster. When both

events {x is connected} and A occur and Cx is finite, we will write Sx for the

separating component of the latter cluster, namely the NLd�-component of ∂Cx(N).

The event {S occurs} is defined as in the previous section except that now Co is

replaced by Cx, i.e. the event {x is connected} occurs in a witness ω′, and S contains

∂Cx(ω′)(N). With the above definitions, we have

τ fx(p) = Pp(Ac,x is connected) +
∑
S

Pp(A,x is connected,Sx = S),
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where the sum ranges over all possible separating components separating all of x

from infinity.

Our aim is to further decompose the events of the above expansion into

simpler ones that we have effectively estimate, and then use the inclusion-exclusion

principle. We will first introduce some notation. Given a separating component S

as above, we first decompose x into two sets xout and xin, where xout denotes the

set of those vertices of x lying in some finite component of NLd� \ (S ∪ ∂�S), and

xin := x\xout its complement. We write {x→ S} for the event that no separating

component separating some xi ∈ x from S occurs; to be more precise, the event

{x → S} means that for each xi ∈ xout, no separating component that surrounds

xi and lies entirely in some of the finite components of NLd� \ (S ∪ ∂�S) occurs.

Consider now some vertex x in xout, and let F be the component of ∂�S that

separates x from S. We claim that when S and the events A, {x → S} all occur,

then x is connected to the unique large percolation cluster inside F . In particular,

if another vertex of x lies in the same finite component of NLd� \ (S ∪ ∂�S) as x

does, then both vertices are connected to the unique large cluster of F , hence they

are connected to each other. To see that the claim holds, notice that Cx has to be

finite because S∪∂�S contains a minimal edge cut of closed edges that surrounds all

vertices of x, hence x. Now ∂Cx(N) has to intersect S because it cannot lie entirely

in NLd� \ (S ∪ ∂�S) by our assumption. This implies that x is connected to some

vertex inside S, hence it must first visit the unique large cluster of F , as desired.

We now define C to be the event that

• all vertices of xin are connected to each other with open paths lying in S∪∂�S,

• the unique large percolation clusters of the components F of ∂�S that separate

some xi ∈ xout from S are connected to each other with open paths lying

S ∪ ∂�S,

• all vertices of xin are connected to all such percolation clusters with open

paths lying in S ∪ ∂�S.

(It is possible that either xin or xout is the empty set, in which case the third

item and one of the first two are empty statements.) We claim that when S and

the events A, {x → S} and {x is connected} all occur, then the event C occurs as

well. Indeed, consider a vertex x ∈ xout, and let F be the component of ∂�S that

separates x from S, as above. Any open path connecting x to some vertex of xout

which does not lie in the same finite component of NLd� that x does, has to first

visit the unique large percolation cluster of F . Hence it suffices to prove that when
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two vertices xi and xj of xin lie in the same cluster, there is always an open path

connecting them lying entirely in S ∪ ∂�S. To this end, assume that there is a path

P in ω connecting xi to xj , which does not lie entirely in S ∪ ∂�S. Arguing as in

the proof of Lemma 1.5.3, we can modify P to obtain an open path P ′ connecting

xi to xj which lies entirely in S ∪ ∂�S. The desired claim follows now easily.

Combining the above claims, we conclude that the events {A,x is connected,

Sx = S} and {A, C,x→ S, S occurs} coincide, and thus

Pp(A,x is connected,Sx = S) = Pp(A, C,x→ S, S occurs).

Using the inclusion-exclusion principle we obtain that

Pp(A, C,x→ S, S occurs) = Pp(A, C, S occurs)+∑
T

(−1)c(T )Pp(A, T occurs, C, S occurs),
(1.24)

where the latter sum ranges over all finite collections T of separating components

separating x from S. Collecting now all the terms we obtain that

τ fx(p) = Pp(Ac,x is connected)+∑
S

(
Pp(A, C, S occurs) +

∑
T

(−1)c(T )Pp(A, T occurs, C, S occurs)
)
.

(1.25)

Notice that by combining S and T we obtain an element of MSN (x). More-

over, A depends on the state of a fixed finite set of edges, while C depends on the

state of the edges inside S ∪ ∂�S. Hence we can use Lemma 1.6.1, and then argue

as in the proof of Theorem 1.5.1 to obtain that τ fx is analytic above pc.

We will now prove the analyticity of τx. Since τ fx is analytic, it suffices to

prove that τx − τ fx is analytic. It is well-known that the infinite cluster is unique

in our setup Burton and Keane [1989], and this implies that τx − τ fx = P(|Cx1 | =

∞, . . . , |Cxk | =∞). The latter probability is complementary to P(∪ki=1{|Cxi | <∞}),
which is in turn equal to

P(∪ki=1{|Cxi | <∞}) = P(Ac) + P(
(
∪ki=1 {|Cxi | <∞}

)
∩A).

Define the event {S occurs for some xi ∈ x} as in the previous section except that

now we require the existence of a witness ω′ such that S contains ∂Cxi(ω
′)(N) for

some xi ∈ x. We can expand the latter term as an infinite sum using the inclusion-
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exclusion principle to obtain

P(
(
∪ki=1 {|Cxi | <∞}

)
∩A) =

∑
(−1)c(S)+1P(S occurs for some xi ∈ x, A),

where now we require our separating components to surround some xi ∈ x. Arguing

as in the proof of Theorem 1.5.1, we obtain that τx − τ fx is analytic, as desired.

For the second claim of the theorem, notice that when diam(x) ≥ N/5, the

probability P(Ac,x is connected) is equal to 0. Hence our expansion for τ fx simplifies

to

τ fx(p) =
∑
S

(
P(A, C, S occurs) +

∑
T

(−1)c(T )P(A, T occurs, C, S occurs)
)
.

Our goal is to show that for every p > pc, there are some constants δ, t > 0 such

that∣∣∣ ∑
|S|=n

(
Pz(A, C, S occurs) +

∑
T

(−1)c(T )Pz(A, T occurs, C, S occurs)
)∣∣∣ ≤ e−tn

(1.26)

for every z ∈ D(p, δ) for the analytic extensions of the above probabilities. Then the

desired claim will follow easily from the observation that any plausible separating

component S of x must have size Ω(diam(x)).

Notice that the event A depends only on finitely many edges. Moreover,

the events C and {S occurs} depend on O(|S|) edges, while the event {T occurs}
depends on O(|T |) edges. We can now use Lemma 1.3.3 to conclude that there is a

constant c = c(p, δ,N) > 1 (perhaps slightly larger than that of Lemma 1.3.3) such

that

|Pz(A, C, S occurs)| ≤ c|S|Pp′(A, C, S occurs)

and

|Pz(A, T occurs, C, S occurs)| ≤ c|S|+|T |Pp′(A, T occurs, C, S occurs)

for every z ∈ D(p, δ), where p′ = p+ δ if p < 1, and p′ = 1− δ if p = 1. Moreover,
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we can always choose c in such a way that c→ 1 as δ → 0. Hence we have∣∣∣ ∑
|S|=n

(
Pz(A, C, S occurs) +

∑
T

(−1)c(T )Pz(A, T occurs, C, S occurs)
)∣∣∣ ≤

cn
∑
|S|=n

(
Pp′(A, C, S occurs) +

∑
T

c|T |Pp′(A, T occurs, C, S occurs)
) (1.27)

by the triangle inequality. It follows from Lemma 1.6.1 that the sum∑
|S|=n

(
Pp′(A, C, S occurs) +

∑
T

Pp′(A, T occurs, C, S occurs)
)

decays exponentially in n, and by choosing δ small enough we can ensure that

cn
∑
|S|=n

(
Pp′(A, C, S occurs) +

∑
T

c|T |Pp′(A, T occurs, C, S occurs)
)

decays exponentially in n as well, hence (1.26) holds. The proof is now complete.

Using Theorem 1.6.2 we can now prove the following results.

Theorem 1.6.3. For every k ≥ 1 and every d ≥ 2, the functions χfk(p) :=

Ep(|Co|k; |Co| <∞) are analytic in p on the interval (pc, 1].

Proof. We observe that, by the definitions,

χfk(p) = Ep
(( ∑

x∈Zd
1{x∈Co,|Co|<∞}

)k)
=
∑
x

τ fx′ ,

where the latter sum ranges over all possible sequences x over Zd of length k that

contain o, and x′ denotes the set of distinct elements in x. The probabilities τ fx′

admit analytic extensions by Theorem 1.6.2, and so it suffices to prove that the sum∑
x τ

f
x′ converges uniformly on an open neighbourhood of (pc, 1]. This follows from

the fact that the polynomial growth of Zd and the exponential decay of |τ fx(z)| in

the diameter of x proved in Theorem 1.6.2.

Theorem 1.6.4. For every d ≥ 2, the free energy κ = E(|Co|−1) is analytic in p on

the interval (pc, 1].

Proof. It is known Aizenman and Newman [1987] that κ is differentiable on (pc, 1)

with derivative equal to

f(p) :=
1

2(1− p)
∑

x∈N(o)

(
1− τ{o,x}(p)

)
.
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Since each τ{o,x} is analytic on the interval (pc, 1], and τ{o,x}(1) = 1, f is analytic

on (pc, 1] as well. So far we know that κ coincides with a primitive F of f only on

(pc, 1), which implies that κ is analytic on that interval. In fact, κ coincides with F

on the whole interval (pc, 1]. Indeed, we simply need to verify that κ is continuous

from the left at 1. To see this, notice that κ(1) = 1− θ(1) = 0 and κ(p) ≤ 1− θ(p).
Since θ is continuous from the left at 1, which follows e.g. by Theorem 1.5.1, we

have that κ is continuous from the left at 1 as well, hence coincides with F on the

whole interval (pc, 1]. It now follows that κ is analytic in p on the interval (pc, 1], as

desired.

1.7 Continuum Percolation

In this section, we will prove analyticity results for the Boolean model in R2 analo-

gous to Theorem 1.4.1, answering a question of Last et al. [2017].

Let Pλ be a Poisson point process in Rd of intensity λ and let N (B) denote

the number of points inside a bounded subset B of Rd. The Boolean model is

obtained by taking the union Z of disks of radius r, called grains, centred at the

points of Pλ. The random radii are independent random variables and have the

same distribution as another positive random variable ρ. They are also independent

of Pλ. We denote (Pλ, ρ) the Boolean model with random radii sampled from ρ. If

ρ is equal to a positive constant r we will write (Pλ, r).

The random set Z is called the occupied region and its complement V is

called the vacant region. We will denote by W (0) the connected component of Z
containing 0 (W (0) = ∅ if 0 is not occupied) and V (0) the connected component of

V containing 0 (V (0) = ∅ if 0 is occupied).

It is well-known that for every non-negative random variable ρ, there is a

critical value λc such that for every λ > λc there is almost surely a (unique) occupied

unbounded connected component Z∞, but no unbounded connected components

exist whenever λ < λc. It is possible that the critical value is equal to 0 or infinity.

Under the assumptions that E(ρ2d−1) < ∞, where d is the dimension of our space,

and P(ρ = 0) < 1 we have 0 < λc < ∞. An important tool in the study of Z∞

is the percolation density θ0 := Pλ(0 ∈ Z∞) of Z∞ (also called ‘volume fraction’

or ‘percolation function’). For an introduction to the subject see Meester and Roy

[1996]; Penrose [2003].

Under general assumptions on the grain distribution, θ0 is continuous for

every λ 6= λc and d ≥ 2, and θ0(λc) = 0 when d = 2 Meester and Roy [1996].

Similarly to the standard percolation model on Z2, it is expected that the latter
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holds for every d ≥ 3 as well.

Much more is known about the behaviour of θ0 on the interval (λc,∞).

Recently, it has been proved in Last et al. [2017] that θ0 is infinitely differentiable

on (λc,∞) under general assumptions on the grain distribution. The authors asked

whether θ0 is analytic in that interval, and we answer this question in the affirmative

when d = 2. For simplicity, we will assume that all discs have radius 1, although

our proof easily extends to the case where the radii are bounded from above and

below.

Theorem 1.7.1. Consider the Boolean model (Pλ, 1) in R2. Then θ0 is analytic on

(λc,∞).

The proof of Theorem 1.7.1 will follow the lines of that of Theorem 1.4.1.

One of the main tools in the proof of the latter is the exponential decay of the

probability Pp(some S ∈ MSn occurs), which follows from the exponential decay

property, duality, and the BK inequality. In the case of the Boolean model, we

will define another notion of outer interface and our goal once again is to show

that the probability of having large multi-interfaces decays exponentially in their

size. However, the Boolean model lacks a notion of duality which leads to certain

complications. Nevertheless, it is still true that the probability Pλ(µ(V (0)) ≥ a),

where µ(A) denotes the area of a set A ⊂ R2, decays exponentially in a for every

fixed λ > λc, which we will combine with the more general Reimer inequality Gupta

and Rao [1999], instead of the BK inequality, to show the desired exponential decay.

Before stating the Reimer inequality let us fix some notation. We denote a

sample of the Boolean model (Pλ, ρ) by ω = {(xi, ri) : i = 1, 2, . . .}, where (xi) is

the sequence of points of the Poisson point process and (ri) the associated sequence

of radii. The restriction of ω to a set K ⊂ Rd is

ωK := {(xi, ri) ∈ ω : xi ∈ K}.

We also define

[ω]K := {ω′ : ω′K = ωK}.

We say that an event A lives on a set U if ω ∈ A and ω′ ∈ [ω]U imply ω′ ∈ A. For

A and B living on a bounded region U we define the event

A�B = {ω : there are disjoint sets K,L, each a finite union of

rectangles with rational coordinates, with [ω]K ⊂ A, [ω]L ⊂ B}.
(1.28)

When A�B occurs we say that A and B occur disjointly.
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Theorem 1.7.2. (Reimer inequality)Reimer [2000]; Gupta and Rao [1999] Let U

be a bounded measurable set in Rd. For any two events A and B living on U we

have

P(A�B) ≤ P(A)P(B).

We would like to apply the Reimer inequality to families of more than two

events but the � operation is not in general associative. For this reason, given events

A1, A2, . . . , Am we define

A1�A2� . . .�Am := {ω : there are disjoint sets K1,K2, . . .Km each a finite union

of rectangles with rational coordinates, with [ω]Ki ⊂ Ai for every i = 1, 2, . . . ,m}.

Notice that the event A1�A2� . . .�Am is not in general equal to the event

((. . . (A1�A2)�A3)� . . .�Am) obtained by successively applying the � operation,

but the former event is always contained in the later. Hence the Reimer inequal-

ity implies that P(A1�A2� . . .�Am) ≤ P(A1)P(A2) . . .P(Am) whenever the events

A1, A2, . . . , Am live on a bounded measurable set.

Before delving into the details of the proof of Theorem 1.7.1 let us give some

more definitions. The area of an open set Ω is denoted by µ(Ω), and the length of

a curve γ by L(γ). We will write D(x) for the closed unit disk centred at x and D
for the closed unit disk centred at 0. The Minkowski sum of two sets Ω1,Ω2 ⊂ R2

is defined as the set

Ω1 + Ω2 := {a+ b : a ∈ Ω1, b ∈ Ω2}.

Given Y = {x1, x2, . . . , xn} ⊂ R2 we define

Ω(Y ) := ∪ni=1D(xi).

In case Ω(Y ) is not simply connected, consider the bounded connected components

C1, C2, . . . , Ck of its complement and define

Ω̃ = Ω̃(Y ) := (∪ki=1Ck) ∪ Ω(Y ).

Let us now focus on the function θ0. If 0 6∈ Z∞, then there are two possibil-

ities:

(i) either there is no point of Pλ in D

(ii) or there are points x1, x2, . . . , xn of Pλ in W (0) such that Ω := Ω({x1, . . . , xn})
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is connected and there is no point of Pλ \ {x1, . . . , xn} at distance r ≤ 1 from

∂Ω̃.

This observation leads to the following definition. Consider a subset Y =

{x1, x2, . . . , xn} of R2 satisfying

(i) Ω := Ω(Y ) is connected;

(ii) 0 ∈ Ω̃; and

(iii) D(xi) ∩ ∂Ω̃ contains an arc of positive length for every i = 1, . . . , n.

Then we call ∂Ω̃ an outer interface and we denote it by J(Y ). The set S(Y ) :=

J(Y ) + D is called a separating strip. We say that a set Y as above happens to

separate in Pλ if Y ⊂ Pλ and no other point of S(Y ) belongs to Pλ. We say that

S(Y ) occurs whenever Y happens to separate in Pλ.

There is a subtle point in the latter definition. It is possible that there are

points x in Pλ \ Y such that D(xi) ∩ J 6= ∅ but does not contain an arc of positive

length. However, this is an event of measure 0 and so we can disregard it.

To avoid such trivialities, we will always assume that no pair of points xi, xj

of Pλ have distance 2, which implies that no pair of disks touch. We can do so as

this event has measure 0.

The following lemma is an easy consequence of the definitions.

Lemma 1.7.3. If Y1 and Y2 happen to separate in Pλ and S(Y1), S(Y2) have non-

empty intersection, then Y1 = Y2.

This leads us to define a multi-interface as a finite set of pairwise disjoint

outer interfaces and a separating multi-strip as a finite set of pairwise disjoint sepa-

rating strips. A separating multi-strip occurs if each of its separating strips occurs.

Using the above definitions we obtain

1− θ0(λ) = Pλ(0 6∈ Z∞) = Pλ(some S(Y ) occurs)

for every λ > λc. The second equality follows from the fact that whenever 0 6∈ Z∞
and no Y happens to separate in Pλ, 0 belongs to an infinite vacant component, and

this event has measure 0 for every λ > λc Meester and Roy [1996].

Once again we intend to use the inclusion-exclusion principle to obtain the

formula

Pλ(some S(Y ) occurs) =
∞∑
k=1

(−1)k+1Eλ(N(k))
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for every λ ∈ (λc,∞), where N(k) is the number of occurring separating multi-strips

comprising k separating strips.

To prove the validity of the above formula we will show that the alternating

sum converges absolutely. In order to do so, we first express the above expectations

as an infinite sum according to the area of S(Yi), i.e.

Eλ(N(k)) =
∑

{m1,...,mk}

Eλ(N(m1, . . . ,mk)),

where the sum in the right-hand side ranges over all multi-sets of k positive in-

tegers, and N({m1, . . . ,mk}) is the number of occurring separating multi-strips

S = {S1, . . . , Sk} with bµ(Si)c = mi.

Let us define MSn to be the set of separating multi-strips S = {S1, . . . , Sk}
with bµ(S1)c + . . . + bµ(Si)c = n. We denote by Nn the number of occurring

separating multi-strips of MSn. The analogue of Lemma 1.4.11 is

Lemma 1.7.4. For every λ ∈ (λc,∞) there are constants c1 = c1(λ) and c2 = c2(λ)

with c2 < 1 such that for every n ∈ N,

Eλ(Nn) ≤ c1c
n
2 . (1.29)

Notice that whenever a separating strip S occurs, a subset of S is vacant.

Thus we are lead to use the exponential decay in a of the probability

Pλ(µ(V (0)) ≥ a) for every λ > λc Meester and Roy [1996]. However, we cannot

directly apply the aforementioned exponential decay as it is possible for the area of

the vacant subset of S to be relatively small compared to the area of S.

In order to overcome this difficulty, we fix a λ > λc and consider a small

enough 1 > ε > 0 such that λc(B1−ε) < λ, where λc(B1−ε) is the critical point of the

Poisson Boolean model (Pλ, 1−ε). We couple the two models by sampling a Poisson

point process with intensity λ in R2 and placing two disks, one of radius 1 and

another of radius 1−ε, centred at each point of the process. We notice that whenever

a separating strip S = S(Y ) occurs in (Pλ, 1), the set S(ε) := J(Y ) + D(0, ε) is

vacant in (Pλ, 1− ε) in our coupling and our goal is to show that this happens with

probability that decays exponentially in the area of S.

First, we need to show that µ(S(ε)) and µ(S) are of the same order. We do

so in the following purely geometric lemma.

Lemma 1.7.5. Let 1 > ε > 0. Then there is a constant γ = γ(ε) > 0, such that for
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every separating strip S = S(Y ) we have

µ
(
S(ε)

)
≥ γµ(S).

Proof. Let Y be the corresponding set of centres, and J = J(Y ) the corresponding

outer interface of S. For each element y of Y , we choose a point in D(y) ∩ J . We

denote the set of all those points by T . Clearly, T +D(0, ε) lies in S(ε), but it many

happen that some disks of this collection overlap. For this reason, we consider a

subset T ′ of T such that for any x1, x2 ∈ T ′, the disks D(x1, ε) and D(x2, ε) are

disjoint, and T ′ is maximal for this property. It follows from the definition of T ′

that

µ
(
S(ε)

)
≥
∑
x∈T ′

µ
(
D(x, ε)

)
.

Notice that for any z ∈ T \ T ′, there is some x ∈ T ′ such that the disks

D(z, ε) and D(x, ε) overlap, by the maximality of T ′. This implies that any y ∈ Y
is at distance at most 1 + 2ε from some element x ∈ T ′ by the definition of T . We

can now conclude that any w ∈ S is at distance at most 2 + 2ε from some element

x ∈ T ′. Hence, the disks D(x, 2 + 2ε), x ∈ T ′ cover S, and the union bound implies

that ∑
x∈T ′

µ
(
D(x, 2 + 2ε)

)
≥ µ(S).

Combining the above inequalities we obtain that

µ
(
S(ε)

)
≥
∑
x∈T ′

µ
(
D(x, ε)

)
= γ

∑
x∈T ′

µ
(
D(x, 2 + 2ε)

)
≥ γµ(S),

where γ = γ(ε) = µ
(
D(0, ε)

)
/µ
(
D(0, 2 + 2ε)

)
. This proves the desired result.

Notice that every S(ε) has a non-empty intersection with the non-negative

real line [0,∞) because S has this property. In fact, if x is the point of J ∩ [0,∞)

which has the greatest distance from 0, where J is the outer interface that defines

S, then the interval [x, x+ ε) is contained in S(ε) ∩ [0,∞). We conclude that S(ε)

contains one of the points {0, ε, 2ε, . . . , Nε} for some N ∈ N depending on S(ε).

The next lemma provides a uniform upper bound for N that depends only on the

area of S.

Lemma 1.7.6. For every separating strip S = S(Y ) we have

S ⊂ D(0, 3µ(S)).
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Proof. Let J = J(Y ) be the outer interface that defines S, and Ω = Ω(Y ) the

closure of the Jordan domain bounded by J . We claim that the distance of any

point (x, y) of J from 0 is bounded from above by L(J). Indeed, we can assume

without loss of generality that both x, y > 0. Let x− and y− be the first points

of (−∞, 0] × {0} and {0} × (−∞, 0], respectively, that J contains. Then there are

two non-overlapping subarcs J1, J2 of J that connect (x, y) to x−, y−, respectively.

Notice that x ≤ L(J1) and y ≤ L(J2). Since L(J1) + L(J2) ≤ L(J), it follows that√
x2 + y2 ≤

√
L(J1)2 + L(J2)2 ≤ L(J1) + L(J2) ≤ L(J),

as claimed.

Having proved the claim, we deduce that the distance of any point in S from

0 is bounded from above by L(J) + 1. We now claim that

L(J) ≤ 2µ(S) (1.30)

Indeed, let us first partition J as follows. For every x ∈ Y , the intersection of

J with the circle C(x) of radius 1 centred at x may contain several connected

components. Let (Ji) be an enumeration of all these connected components and

(xi) the corresponding sequence of centres, i.e. xi is the centre of the arc Ji (some

x ∈ Y may appear more than once).

Every arc Ji has two endpoints Ai, Bi. Let S(i) be the open sector of D(xi)

enclosed by the radii xiAi, xiBi and the arc Ji. Notice that S(i) is a subset of S.

Moreover, any two distinct S(i), S(j) are disjoint. To see this, remove all disks from

Ω except for D(xi) and D(xj). Since the arcs Ji and Jj lie in the boundary of Ω,

they must lie in the boundary of D(xi) ∪ D(xj) as well. It is now clear that the

sectors S(i), S(j) are disjoint.

These observations imply that∑
i

µ(S(i)) ≤ µ(S).

An elementary computation yields L(Ji) = 2µ(Si), which implies that

L(J) =
∑
i

L(Ji) = 2
∑
i

µ(S(i)) ≤ 2µ(S)

establishing (1.30).

Clearly, µ(S) > 1 because by definition S contains at least one disk of radius

1. Therefore, L(J) + 1 < 3µ(S). This yields the desired assertion.
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We deduce from Lemma 1.7.6 that N can be chosen to be b3µ(S)/εc. We

are now almost ready to prove the desired exponential decay. Before we do so we

need to upper bound the number of occurring separating multi-strips of MSn.

Lemma 1.7.7. There is a constant R ∈ R such that for every n ∈ N at most R
√
n

elements of MSn can occur simultaneously in any ω.

Proof. Notice that a separating strip S = S(Y ) contains an interval of the form

[x, x + 1] for some x ∈ [0,∞). Combined with Lemma 1.7.6 this implies that S

contains some element of the set {0, 1, . . . , b3µ(S)c}. We can now proceed as in the

proof of Lemma 1.4.9.

We are now ready to prove Lemma 1.7.4.

Proof of Lemma 1.7.4. Since

Nn ≤ R
√
n
1{some S∈MSn occurs}

by Lemma 1.7.7, we conclude that

Eλ(Nn) ≤ R
√
nPλ(some S ∈MSn occurs).

Hence it suffices to show that Pλ(some S ∈MSn occurs) decays exponentially.

Recall our coupling between the Boolean models (Pλ, 1) and (Pλ, 1− ε), and

the fact that whenever Y happens to separate in Pλ the set S(ε) is a vacant connected

subset of (Pλ, 1− ε) in our coupling. For m ∈ N, let Vm denote the event that there

is a subset V of a vacant component with µ(V ) ≥ γm, where γ is the constant of

Lemma 1.7.5, and some element of the set {0, ε, . . . , b(3m+ 3)/εc ε} belongs to V ,

and V is contained in D(0, 3m+ 3). We claim that

Pλ(some S ∈MSn occurs) ≤
∑

{m1,m2,...,mk}∈Pn

Pλ,1−ε(Vm1� . . .�Vmk),

where as above � means that the events occur disjointly, Pn is the set of partitions of

n, and the probability measure Pλ,1−ε refers to the Boolean model (Pλ, 1−ε). Indeed,

notice that if for some separating strip S we have bµ(S)c = m, then µ(S) ≤ m+ 1,

hence S lies in D(0, 3m+ 3) by Lemma 1.7.6. The inequality follows now similarly

to (1.15),

Reimer’s inequality Gupta and Rao [1999] implies that

Pλ,1−ε(Vm1� . . .�Vmk) ≤ Pλ,1−ε(Vm1) · . . . · Pλ,1−ε(Vmk).
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Combining the fact that Pλ,1−ε(µ(V (0)) ≥ a) ≤ ca Meester and Roy [1996] for every

λ > λc and some c = c(λ) < 1 with the union bound we obtain

Pλ,1−ε(µ(Vm)) ≤ c1(m)c2
m,

where c1(m) = b(3m+ 3)/εc+1 and c2 = cγ < 1. We can now argue as in the proof

of Lemma 1.4.11 to obtain the desired exponential decay.

We proceed by establishing the analyticity and the necessary estimates of

the functions involved in Lemma 1.7.4 that we will combine with their exponential

decay to prove the analyticity of θ0.

Lemma 1.7.8. Let {m1,m2, . . . ,mk} be a composition of n. Then the function

f(λ) := Eλ(N{m1, . . . ,mk}) admits an entire extension satisfying

|f(z)| ≤ e4nMf(λ+M) (1.31)

for every λ ≥ 0, M > 0 and z ∈ D(λ,M).

Proof. To ease notation we will prove the assertion for k = 2 and m1 6= m2. The

general case can be handled similarly.

Given two disjoint sets Y1 = {x1, . . . , xj1} and Y2 = {xj1+1, . . . , xj1+j2}, we

let L(x1, . . . , xj1+j2) denote the indicator function of the event that the sets Y1

and Y2 satisfy all three properties ((i))-((iii)) in the definition of a separating strip,

and furthermore, bµ(S(Yi)c = mi, i = 1, 2. The indicator function of the event

{Yi happens to separate in Pλ} is denoted by 1Yi . Let us also define the functions

g(x1, . . . , xj1+j2) := µ(S(x1, . . . , xj1)) + µ(S(xj1+1, . . . , xj2))

and

h(x1, . . . , xj1+j2) := L(x1, . . . , xj1+j2)e−λg(x1,...,xj1+j2
).

First, we will find a suitable formula for f . We claim that

f(λ) =

∞∑
j1=1

∞∑
j2=1

(λµ(6nD))j1+j2

j1!j2!
f(λ, j1, j2), (1.32)

where

f(λ, j1, j2) =

∫
6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
h(x1, . . . , xj1+j2). (1.33)
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Indeed, expressing f according to the size of Y1 and Y2 we obtain

f(λ) =

∞∑
j1=1

∞∑
j2=1

Eλ
(
N
(
{(m1, j1), (m2, j2)}

))

where N
(
{(m1, j1), (m2, j2)}

)
denotes the number of sets Y1, Y2 that happen to

separate with the property that bµ(S(Yi)c = mi, |Yi| = ji, i = 1, 2. This expression

holds because we have assumed that m1 6= m2, and so each {(m1, j1), (m2, j2)}
appears exactly once. Next notice that

µ(S(Y1)) + µ(S(Y2)) ≤ (k1 + 1) + (k2 + 1) ≤ 2k1 + 2k2 = 2n, (1.34)

since 1 ≤ k1, k2, which combined with Lemma 1.7.6, implies thatN
(
{(m1, j1), (m2, j2)}

)
depends only on the points of the Poisson point process inside the disk 6nD. Now

regard Pλ ∩ 6nD as a finite Poisson point process whose total number of points has

a Poisson distribution with parameter λµ(6nD), each point being uniformly dis-

tributed over 6nD. Notice that conditioned on the number of points N (6nD) inside

6nD, the distribution of the sets Y1, Y2 depends only on their sizes.

Conditionally on the event {N (6nD) = m} and the sets Y1 = {x1, . . . , xj1}
and Y2 = {xj1+1, . . . , xj1+j2} being contained in Pλ, the expectation of 1Y11Y2 is

equal to

Hm(x1, . . . , xj1+j2) := L(x1, . . . , xj1+j2)
(µ(6nD)− g(x1, . . . , xj1+j2)

µ(6nD)

)m−j1−j2
,

because every other point of the Poisson point process must lie outside of S(Y1),

S(Y2). Hence expressing f according to the number of points of the Poisson process

inside 6nD and the size of the sets Y1, Y2 we obtain

f(λ) =
∞∑
j1=1

∞∑
j2=1

∞∑
m=j1+j2

e−λµ(6nD) (λµ(6nD))m

m!

(
m

j1

)(
m− j1
j2

)
F (j1, j2,m),

where

F (j1, j2,m) =

∫
6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
Hm(x1, . . . , xj1+j2).

The factors e−λµ(6nD) (λµ(6nD))m

m!
and

(
m
j1

)(
m−j1
j2

)
correspond to the prob-

ability Pλ(N (6nD) = m) and the number of ways to choose two disjoint subsets

of size j1 and j2 from a set of size m (here the order of the sets matters because
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m1 6= m2), respectively. After changing the order of the second summation and

integration, using the Taylor expansion

∞∑
m=j1+j2

(λ(µ(6nD)− g(x1, . . . , xj1+j2)))m−j1−j2

(m− j1 − j2)!
= eλ(µ(6nD)−g(x1,...,xj1+j2

))

and cancelling some terms, we arrive at formula (1.33).

Using (1.32) we see that f extends to an entire function. Indeed, the assertion

will follow from the standard tools once we have shown that every summand of (1.32)

is an entire function and that the upper bound (1.31) holds for the summands of

(1.32) in place of f .

First, we express e−λg(x1,...,xj1+j2
) via its Taylor expansion

e−λg(x1,...,xj1+j2
) =

∞∑
s=0

(−λg(x1, . . . , xj1+j2))s

s!
.

We will plug this into (1.33). We notice that the coefficient∫
6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
L(x1, . . . , xj1+j2)(−g(x1, . . . , xj1+j2))s/s!

is bounded in absolute value by (2n)s/s!, as g(x1, . . . , xj1+j2) = µ(S(Y1))+µ(S(Y2)) ≤
2n by (1.34) and 0 ≤ L(x1, . . . , xj1+j2) ≤ 1. Therefore the function defined by the

Taylor expansion

∞∑
s=0

λs
∫

6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
L(x1, . . . , xj1+j2)(−g(x1, . . . , xj1+j2))s/s!

is entire and by reversing the order of summation and integration we conclude that

it coincides with f(λ, j1, j2).

Now let λ ≥ 0 and M > 0. Since |z|j1+j2 ≤ (λ + M)j1+j2 for every z ∈
D(λ,M), inequality (1.31) will follow once we prove that

|f(z, j1, j2)| ≤ e4nMf(λ+M, j1, j2) for every z ∈ D(λ,M). (1.35)

Using once again (1.34) we obtain

|e−zg(x1,...,xj1+j2
)| ≤ e−(λ−M)g(x1,...,xj1+j2

) =

e2Mg(x1,...,xj1+j2
)e−(λ+M)g(x1,...,xj1+j2

) ≤ e4nMe−(λ+M)g(x1,...,xj1+j2
).

Hence (1.35) follows from the triangle inequality. This proves (1.31).
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Combining (1.35) with (1.32) and the theorems of Weierstrass, we deduce

that f is entire as well.

We are finally ready to prove Theorem 1.7.1.

Proof of Theorem 1.7.1. Consider the functions

f(λ) =

∞∑
k=1

(−1)k+1Eλ(N(k))

and

gn(λ) :=
∑

{m1,m2,...,mk}∈Pn

(−1)k+1Eλ(N({m1, . . . ,mk}),

where Pn is the set of partitions of n. Notice that

f =

∞∑
n=1

gn.

By Lemma 1.7.4 we have
∞∑
k=1

Eλ(N(k)) <∞

for any λ > λc. Hence f coincides with 1−θ0 on the interval (λc,∞) by the inclusion-

exclusion principle as remarked above. Combining Lemma 1.7.4 with Lemma 1.7.8

we conclude that for every λ > λc there are constantsM = M(λ) > 0, c1 = c1(λ) > 0

and 0 < c2 = c2(λ) < 1 such that |gn(z)| ≤ c1c2
n for every z ∈ D(λ,M). As usual,

by the theorems of Weierstrass, we conclude that f , and thus θ0, is analytic on the

interval (λc,∞).

1.8 Triangulations

1.8.1 Overview

In this section, we use the techniques we developed to provide upper bounds on

pc and ṗc for certain families of triangulations. Although these bounds will apply

to pC, we stress that the results of this section give the best known (or only) such

bounds on pc, ṗc for these triangulations.

We will prove that pC ≤ 1/2 for Bernoulli bond percolation on triangulations

of an open disk that either satisfy a weak expansion property or are transient for

simple symmetric random walk. Once again the analyticity of θo will follow by
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showing that the outer interfaces (interfaces) of o have an exponential tail for every

p > 1/2.

The interest in the study of percolation on triangulations of an open disk

was sparked by the seminal paper Benjamini and Schramm [1996b] of Benjamini

& Schramm. They made a series of conjectures, the strongest one of which is that

ṗc(T ) ≤ 1/2 on any bounded degree triangulation T of an open disk that satisfies a

weak isoperimetric inequality of the form |∂VA| ≥ f(|A|)) log(|A|)) for some function

f = ω(1), where A is any finite set of vertices. More recently, Benjamini [2015]

conjectured that ṗc(T ) ≤ 1/2 on any transient bounded degree triangulation T of

an open disk.

Angel et al. [2018] proved that for any triangulation T of an open disk with

minimum degree 6, the isoperimetric dimension of T is at least 2 and thus satisfies

the assumption of the conjecture of Benjamini & Schramm. They also asked whether

pc(T ) ≤ 2 sin(π/18) (and ṗc ≤ 1/2), the critical value for bond percolation on the

triangular lattice, for any such triangulation.

The main results of this section, which we now state, imply that in all afore-

mentioned conjectures, the bound pc ≤ 1/2 is correct if one considers bond instead

of site percolation.

Theorem 1.8.1. Let T be a triangulation of an open disc such that every vertex

has finite degree (not necessarily bounded) and3

for every finite set A of vertices we have |∂VA| ≥ f(diam(A)) log(diam(A))

for some function f = ω(1),
(1.36)

then

pc(T ) ≤ pC(T ) ≤ 1/2.

Theorem 1.8.2. Let T be a transient triangulation of an open disc with degrees

bounded above by d. Then

pc(T ) ≤ pC(T ) ≤ 1/2.

We will also prove the same bound for recurrent triangulations T with a

uniform upper bound on the radii of the circles in any circle packing of T .

1.8.2 Proofs

We will first focus on proving Theorem 1.8.1, but many of the following arguments

will also be valid for transient triangulations.

3The reader will lose nothing by replacing diam(A) by |A| in this statement, which only strength-
ens our assumptions.
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Our proofs will follow the lines of that of Theorem 1.4.1. Recall the definitions

of outer interface and multi-interface of Section 1.4. Again MS denotes the set of

multi-interfaces of a chosen vertex o, while ∂M denotes the boundary of a multi-

interface M and MSn := {M ∈MS | |∂M | = n}.
Let T be a triangulation of an open disk and o a vertex in T . Once again we

will utilise the inclusion-exclusion principle to express 1− θo as an infinite sum

1− θo(p) =
∑

M∈MS(−1)c(M)+1QM (p) (1.37)

for every p large enough, where c(M) denotes the number of outer interfaces in

the multi-interface M , and QM (p) := Pp(M occurs). The validity of the formula

will follow as in the proof of Theorem 1.4.1 (recall (1.13)) once we establish an

exponential tail for the corresponding probabilities, which is the purpose of the

following lemma.

Lemma 1.8.3. For every triangulation T of an open disk satisfying condition (1.36)

of Theorem 1.8.1 and every p ∈ (1/2, 1],

∑
M∈MSn QM (p) ≤ c1c2

n, (1.38)

where c1 = c1(p) > 0 and c2 = c2(p) > 0 are some constants with c2 < 1. Moreover,

if [a, b] ⊂ (1/2, 1], then the constants c1 and c2 can be chosen independent of p in

such a way that (1.38) holds for every p ∈ [a, b].

In order to prove the above lemma, we first pick an arbitrary infinite geodesic

R starting from o. Our goal is to show that the outer interfaces M of o for which

∂M contains a fixed edge e ∈ E(R) occur with exponentially decaying probability

for every p > 1/2. Then we will upper bound the choices for e ∈ R.

In what follows we will be using the standard coupling between percolation

on T and its dual T ∗ as in the proof of Lemma 1.4.11. Since T is a triangulation, the

dual of any minimal edge cut of T is a cycle. The number of cycles in T ∗ of size n

containing a fixed edge is at most 2n−1 because T ∗ is a cubic graph. Then the union

bound shows that the probability that some minimal edge cut containing a fixed edge

is vacant has an exponential tail for every p > 1/2. However, the boundary of an

outer interface is not necessarily a minimal edge cut. Still, the dual of the boundary

of any outer interface in T is a connected subgraph of T ∗. The desired exponential

tail will follow from Theorem 1.2.1 once we show that supu∈V (T ∗) χu(1− p) <∞ for

every p > 1/2, where, as usual, χu(1−p) denotes the expected size of the percolation

cluster of u in the dual graph T ∗. The next lemma proves this statement.
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Lemma 1.8.4. Let T be a triangulation of an open disc. Then

χ∗(p) := sup
u∈V (T ∗)

χu(1− p) <∞

for every p ∈ (1/2, 1].

Proof. Let u be a vertex of T ∗. Note that whenever some vertex v belongs to Cu

there is a path from u to v with occupied edges. Hence we obtain E1−p(|Cu|) ≤
E1−p(P (u)), where P (u) is the number of occupied self-avoiding walks starting from

u (including the self-avoiding walk with only one vertex). The number σk(u) of

k-step self-avoiding walks in T ∗ starting from u is at most 3 · 2k−1. Consequently,

E1−p(P (u)) ≤
∑∞

k=0 3 · 2k−1(1− p)k <∞ (1.39)

whenever p > 1/2. Since this bound does not depend on u the proof is complete.

Using Theorem 1.2.1 we immediately obtain the desired exponential tail.

Corollary 1.8.5. For every p > 1/2 there is a constant 0 < c = c(p) < 1 such that

for any triangulation T of an open disk and any vertex u ∈ T ∗, we have P1−p(|Cu| ≥
n) ≤ cn.

Let R be a geodesic ray in T starting at any o ∈ V (G). The following lemma

converts condition (1.36) into a statement saying that every outer interface of T

meets a relatively short initial subpath of R.

Define a function g : N → N ∪ {∞} by letting g(n) be the smallest integer

l such that every outer interface of Sn contains at least one of the first l edges of

R if such a l exists, and let g(n) = ∞ if no such l exists, with the convention that

g(n) = 1 if no such edge-separator of size n exists. Clearly, we always have g(n) <∞
for triangulations of an open disk satisfying condition (1.36).

Lemma 1.8.6. Let T be a triangulation of an open disk satisfying condition (1.36).

Then lim supn→∞ g(n)1/n = 1.

Proof. Consider some outer interface M of Sn. Let B be the minimal edge cut of

M and A = An be the component of o in T \B. Our condition (1.36) says that

f(diam(A)) log(diam(A)) ≤ |∂VA| ≤ |∂EA| = |B| ≤ n.

Since f = ω(1), we obtain that log(diam(A)) = o(n). However, diam(A) is greater

than the initial segment of R that A contains because R is a geodesic ray. This

implies that log(g(n)) = o(n), as desired.
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If a sequence satisfies the assertion of Lemma 1.8.6 we will say that it grows

sub-exponentially.

The following lemma is the analogue of Lemma 1.4.9.

Lemma 1.8.7. For every triangulation T of an open disk satisfying condition (1.36)

of Theorem 1.8.1 the maximal number of elements of MSn that can occur simulta-

neously in any percolation instance ω grows sub-exponentially.

Proof. Let S be an element of MSn comprising the outer interfaces S1, S2, . . . , Sl.

Since any two distinct occurring outer interfaces are vertex disjoint by Lemma 1.4.7,

the collection of all mi := |∂Si| define a partition of n. We call the multi-set

{m1,m2, . . . ,ml} the boundary partition of S. It is possible that more than one

occurring multi-interfaces have the same boundary partition. In order to prove

the desired assertion, we will show that for every partition {m1,m2, . . . ,ml} of n,

there are sub-exponentially many occurring multi-interfaces with {m1,m2, . . . ,ml}
as their boundary partition. Then the assertion follows by the Hardy–Ramanujan

formula (Theorem 1.2.3).

Since occurring outer interfaces meet R and they are vertex-disjoint by

Lemma 1.4.7, S is uniquely determined by the subset of R it meets. The num-

ber of occurring outer interfaces with boundary of size mi is at most g(mi) by

definition. Hence the number of occurring multi-interfaces with {m1,m2, . . . ,ml}
as their boundary partition is bounded above by g(m1)g(m2) . . . g(ml). It is not

hard to see that this product grows sub-exponentially. Indeed, given a constant

c > 1, for all but finitely many indices i, we have that g(mi) ≤ cmi because g

grows sub-exponentially. Hence g(m1)g(m2) . . . g(ml) ≤ Kcn for some large enough

constant K = K(c, g) > 0 which does not depend on the partition. Letting now

c converge slowly enough to 1 as n → ∞ so that K = O(n), we obtain that Kcn

grows sub-exponentially in n, which proves the desired assertion.

We are now ready to prove Lemma 1.8.3.

Proof of Lemma 1.8.3. By Lemma 1.8.7 we have∑
M∈MSn

QM (p) ≤ hnPp(some M ∈MSn occurs)

for some hn growing sub-exponentially. Let rm denote the m-th edge of R. For

every dual edges r∗m, we pick one of its two end-vertices and we denote it vm (some

of these end-vertices appear possibly more than once). Let D(m) denote the event

that one of the clusters of v1, . . . , vg(m) contains at least m vertices. Arguing as in

61



the proof of Lemma 1.4.11, we can deduce that

Pp(some M ∈MSn occurs) ≤
∑

{m1,...,mk}∈P ′n

P1−p(D(m1)) · . . . · P1−p(D(mk)),

where Pn is the set of partitions of n.

By Corollary 1.8.5 and the union bound we obtain

Pp(some M ∈MSn occurs) ≤ Hnc
n

for some Hn growing sub-exponentially, where c is the constant of Corollary 1.8.5.

Hence
∑

M∈MSn QM (p) decays exponentially in n for all p > 1/2.

The following is an easy combinatorial exercise.

Lemma 1.8.8. For every triangulation of an open disk T and every outer interface

M we have |E(M)| ≤ 4|∂M |.

Proof. Let H be a finite connected graph witnessing the fact that M is an outer

interface. We claim that every edge e ∈ M lies in a triangular face Te of T such

that at least one edge of Te− e lies in ∂M . Indeed, e lies in exactly two (triangular)

faces of T , and we choose Te to be one of them lying in the unbounded face of H;

such a Te exists because by definition the vertices and edges of M are incident with

the unbounded face of H. As Te lies in the unbounded face of H, one of the two

other edges of Te lies in ∂M .

Since any edge of ∂M lies in at most two of these triangular faces Te, and

each such face contains at most two edges of E(M), the result follows.

We have collected all the ingredients for the main result of this section.

Proof of Theorem 1.8.1. To obtain our precise result, note that, by definition, every

M ∈MSn has n vacant edges. Moreover, |E(M)| ≤ 4n by Lemma 1.8.8. Hence we

can now apply Corollary 1.3.15 for (1/2, 1], Ln =MSn, and (En,i) an enumeration

of the events {M occurs}M∈MSn , to deduce that θo(p) is analytic for p > 1/2. As

usual, we then recall that θo(p) cannot be analytic at pc, and so pc ≤ pC.

Remark: The above proof uses some complex analysis (needed in Corol-

lary 1.3.15) to prove pc ≤ 1/2. But the complex analysis can be avoided by using a

refinement of the Peierls argument, as we will see in Chapter 3.

For the proof of Theorem 1.8.2 we just need to show that the size of the

set of edges of a 1-way geodesic R that meets
⋃
MSn grows sub-exponentially in
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n. To this end, we will use the well-known theorem of He & Schramm stating that

every graph as in our statement is the contacts graph of a circle packing whose

carrier is the open unit disc D in R2; see He and Schramm [1995], where the relevant

definitions can be found. We say that an edge e meets MSn, if there is M ∈MSn
with e ∈ ∂M .

Lemma 1.8.9. Let T be a triangulation of an open disk which is transient and has

bounded vertex degrees. Let R be a geodesic ray in T starting at any o ∈ V (G), and

let Rn be the set of edges of R meeting MSn. Then |Rn| = O(n3).

Proof. Let P be a circle packing for T whose carrier is the open unit disk D, provided

by He and Schramm [1995]. The main properties of P used in our proof are

(i) two vertices of T are joined with an edge if and only if the corresponding

circles are tangent, and

(ii) there are no accumulation points of circles of P inside D.

Assume that |Rn| = ω(n3) contrary to our claim. Let R′n be the set of

vertices of R incident with an edge in Rn. Then |R′n| > |Rn| = ω(n3). For a vertex

u of T , let xu denote the corresponding circle of P .

For any u ∈ R′n Lemma 1.8.8 yields a connected subgraph Gu of T of at most

4n+ 1 edges containing u and surrounding o; indeed, Gu can be obtained from any

outer interface M witnessing the fact that u ∈ R′n by possibly adding the edge of u

lying in ∂M in case u does not lie on M .

Let Pu denote the union of the disks of P corresponding to Gu. We claim

that the area area(Pu) covered by Pu is at least r/n2 for some constant r = r(P ).

Indeed, Pu is the union of at most 4n + 2 disks (|V (Gu)| ≤ |E(Gu)| + 1), and its

diameter is greater than the diameter of xo, and so at least one of its circles must

have diameter of order at least 1/n, hence area of order at least 1/n2.

For every n, pick a subset R′′n of R′n such that any two vertices of R′′n lie

at distance at least 8n + 3 along R, and therefore in T since R is a geodesic, and

|R′′n| = ω(n2). Such a choice is possible because R′n = ω(n3).

Note that for any two distinct elements u, v ∈ R′′n, the subgraphs Gu, Gv

defined above are vertex disjoint: this is because we chose u, v to have distance at

least 8n + 3 in T , and each of Gu, Gv has at most 4n + 1 edges and is connected.

Moreover, recall that each Pu has area of order at least 1/n2. Combining these two

facts we obtain
∑

u∈R′′n area(Pu) = ω(1), a contradiction since area(D) is finite.

Proof of Theorem 1.8.2. We repeat the arguments of the proof of Theorem 1.8.1,

replacing Lemma 1.8.6 by Lemma 1.8.9.
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In the case of recurrent triangulations, the theorem of He & Schramm states

that T is the contacts graph of a circle packing whose carrier is the plane R2 He

and Schramm [1995]. Let P be such a circle packing. We will prove the analogue of

Lemma 1.8.9 for recurrent triangulations of an open disk such that the radii of the

circles of P are bounded from above. This, in turn, implies that pC ≤ 1/2 for such

triangulations by repeating the proof of Theorem 1.8.2.

Lemma 1.8.10. Let T be a triangulation of an open disk which is recurrent and

has bounded vertex degree. Assume that

for some (and hence every) circle packing P of T , the radius of every disk

in P is bounded from above by some constant M .
(1.40)

Let R be a geodesic ray in T starting at any o ∈ V (G), and let Rn be the set of edges

of R contained in some outer interface of MSn. Then |Rn| = O(n5).

Proof. We will follow the proof of Lemma 1.8.9. Assume that |Rn| = ω(n5) contrary

to our claim. Recall the definitions of Pu, Gu and R′n, and let R′′n be defined as in

the proof of Lemma 1.8.9 with the additional property ∞ > |R′′n| = ω(n4). This is

possible because |Rn| = ω(n5). In the proof of Lemma 1.8.9, we utilised the finite

area of D to derive a contradiction. However, the area of the plane is infinite. For

this reason, we will construct a family of bounded domains (Dn) with the property

that Pu is contained in Dn for most u ∈ R′′n.

Let un be the vertex of R′′n that attains the greatest graph distance from o.

We claim that Gn := Gun contains a cycle that surrounds o. Indeed, assuming that

Gn does not contain any such cycle, we obtain that o lies in Gn. Consider now some

u ∈ R′′n other than un. Then Gu is vertex disjoint from Gn, as mentioned in the

proof of Lemma 1.8.9. As Gu separates o from infinity, Gn must lie in a bounded

face of Gu. This implies that d(u, o) > d(un, o), which is a contradiction. Hence Gn

contains a cycle Cn that surrounds o.

Let Dn be the domain bounded by Cn. Arguing as above, we can immediately

see that each Pu for u ∈ R′′n\{un} lies in Dn. Moreover, Cn contains at most 4n edges

by Lemma 1.8.8. Every edge of T has length at most 2M in P by our assumption,

therefore, the length of Cn (as a curve in R2) is at most 8Mn.

As in the proof of Lemma 1.8.9 if u ∈ R′′n, then some circle of Pu has area

of order at least 1/n2. Hence we obtain
∑

u∈R′′n\{un} area(Pu) = ω(n2), since |R′′n \
{un}| = ω(n4). Using the standard isoperimetric inequality of the plane, we derive∑

u∈R′′n\{un}

4π · area(Pu) ≤ 4π · area(Dn) ≤ (8Mn)2.
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We have obtained a contradiction.

Using an idea of Grimmett and Li [2015], we can slightly improve our results

to obtain the strict inequality pc ≤ pC < 1/2 instead of pc ≤ pC ≤ 1/2 in all above

results. Indeed, it is not hard to see that for any bounded degree triangulation of

an open disk T , σk(o) ≤ 3 · 2d−1(2d − 2)bn/dc, where d is the maximum degree of

T . This comes from the fact that for every vertex u and any edge e incident to u

the number of d-step self-avoiding walks starting from u that do not traverse e is at

most 2d − 2. Hence pc ≤ pC < 1/2 as claimed.
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Chapter 2

Exponential growth rates

2.1 Introduction

2.1.1 Overview

The aim of this chapter is to study the properties of interfaces, in particular their

exponential growth rates, and use them in order to obtain results for percolation on

Zd and other Euclidean lattices.

We point out a technique for translating any upper bound on the percolation

threshold ṗc(G) of a lattice G into a lower bound on the exponential growth rate

ȧ(G) of lattice animals and vice-versa. More precisely, we have

ȧ(G) ≥ f(r(ṗc(G))), (2.1)

where f(r) := (1+r)1+r

rr and r(p) := 1−p
p are universal functions. Percolation for now

refers to Bernoulli site percolation, and a lattice animal is an induced subgraph of

G.

This is by no means the first time where such a formula has been observed

(see e.g. Delyon [1980]; Hammond [2005]) but in all previous instances, the focus

was on obtaining upper bounds for ȧ(G) rather than lower bounds. Inequality (2.1)

not only allows us to obtain lower bounds for ȧ(G), but it also allows us to obtain

lower bounds for ṗc(G). Indeed, coupling (2.1) with a recent upper bound on ȧ(G)

Barequet and Shalah [2019] we obtain the lower bound ṗc(Z3) > 0.2522 for the

site percolation threshold of the cubic lattice; see (2.25) in Section 2.8. This is

higher than the predicted threshold for bond percolation, which is about 0.2488.

The best rigorous bound previously known was about ṗc(Z3) > 0.21225, obtained

as the inverse of the best known bound on the connective constant MacDonald et al.
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[2000]1.

By combinatorial arguments, we obtain the upper bounds ȧ(Zd) ≤ 2de −
5e/2 +O(1/ log(d)) that improve on those of Barequet and Shalah [2019], and plug

them into (2.1) to deduce the asymptotic lower bounds ṗc(Zd) ≥
1

2d
+

2

(2d)2
−

O(1/d2 log(d)) (Section 2.8). Arguing conversely, and exploiting existing upper

bounds on ṗc(Zd) obtained using lace expansion, we also improve on the known

lower bounds on ȧ(Zd) from Barequet et al. [2010]; we obtain ȧ(Zd) = 2de − O(1).

See Section 2.7 for more.

There is a lot of room for improvement for bounds such as the above, and

indeed we refine (2.1) into

b(G) ≥ f(r(ṗc(G))), (2.2)

where b(G) denotes the exponential growth rate of the interfaces of G, a subfamily

of the lattice animals that arises naturally in Peierls type arguments, on which we

elaborate in Sections 2.3 and 2.4. To establish (2.2) we consider the exponential

growth rate br = br(G) of the number of interfaces of G with size n and volume-to-

surface ratio approximating r, as a function of r. We consider the aforementioned

results to be of independent interest; in fact, the main motivation for studying br

is the duality relation Theorem 2.5.1 which was obtained before the above bounds

were noticed. We summarize what we know about br in Figure 2.1.

One of the best known results of percolation theory is the exponential decay,

as n→∞, of the probability Pp(|Co| = n) of the cluster Co of the origin having size

n for p in the subcritical interval [0, pc) Menshikov [1986]; Aizenman and Barsky

[1987]. In the supercritical case p ∈ (pc, 1] this exponential decay holds, for some

but not all, lattices and values of p Aizenman et al. [1980]; Hermon and Hutchcroft

[2019].

Letting So ⊆ Co denote the interface of Co, we can analogously ask for

which p ∈ (0, 1) we have exponential decay of the probability Pp(|So| = n). We

prove that this is uniquely determined by the value br(p), where r(p) := 1−p
p is

a bijection between the parameter spaces of edge density p and volume-to-surface

ratio r. More concretely, we identify a universal function f(r) := (1+r)1+r

rr such that,

firstly, br(p)(G) ≤ f(r(p)) for every lattice G and every p ∈ (0, 1) (Proposition 2.4.4),

and secondly, Pp(|So| = n) decays exponentially in n for exactly those values of p

for which this inequality is strict (Figure 2.1):

1We thank John Wierman for this remark.
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Theorem 2.1.1. Let G ∈ S. Then for every p ∈ (0, 1), the interface size distribu-

tion Pp(|So| = n) fails to decay exponentially in n if and only if

br(p)(G) = f(r(p)).

The class of lattices S we work with includes the standard cubic lattice in Zd,
d ≥ 2, as well as all quasi-transitive planar lattices (see Section 2.3 for definitions).

We expect our results to hold for all vertex-transitive 1-ended graphs but decided

to restrict our attention to S to avoid technicalities that would add little to the

understanding of the matter.

We emphasize that Theorem 2.1.1, and the function f(r), is independent of

the dimension.

Theorem 2.1.1 holds even if we replace the interface size distribution Pp(|So| =
n) by the cluster size distribution Pp(|Co| = n), and br(p)(G) by its analogue ar(p)(G)

counting lattice animals. This was proved by Hammond [2005] building on a result

of Delyon [1980]. But it can also be seen as a special case of Theorem 2.1.1: our

definition of interface entails some flexibility, as it is based on a choice of a basis P
of the cycle space of G. Letting P contain all cycles identifies interfaces and lattice

animals. However, br is a more interesting function when P is a sparser basis, in

particular the set of squares of the cubic lattice in Rd, and we will work with such

bases in the rest of this chapter.

Incidentally, we also prove that the rate of the exponential decay of Pp(|Co| =
n), defined as c(p) := limn (Pp(|Co| = n))1/n, is a continuous function of p (Theo-

rem 2.9.1). Our proof makes use of the Arzelà-Ascoli theorem but otherwise boils

down to elementary calculations not involving our notion of an interface.

2.1.2 Our interfaces and their growth rates

The term interface is commonly used in statistical mechanics to denote the common

boundary of two components of a crystal or liquid that are in a different phase.

The precise meaning of the term varies according to the model in question and

the perspective of its study. In Chapter 1 we introduced a variant of the notion

of interface for Bernoulli percolation and used it to prove the analyticity of the

percolation density for supercritical planar percolation.

A famous and simple use of interfaces in percolation theory is Peierls’ ar-

gument, which deduces an upper bound on pc(Z2) from an upper bound on the

exponential growth rate of the number of cycles in the dual with size n separating

the origin from infinity, see e.g. Grimmett [1999]. The bounds thus obtained are
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rather weak, mainly due to the use of a union bound over a large number of heavily

dependent events. Our innovation of considering P as part of the definition of in-

terface in Chapter 1 allowed us to reduce these dependencies, thus refining Peierls’

argument into an exact formula for the percolation density θ(p) := Pp(Co is infinite):

1− θ(p) =
∑

M∈MS(−1)c(M)+1Pp({M occurs}). (2.3)

Equality (2.3) means that in principle we could answer any question about

Bernoulli percolation (e.g. continuity of θ(p) at pc, the numerical value of pc etc.)

if we could compute the numbers cn,r of (multi-)interfaces with |M | = n edges and

|∂M | = m boundary edges accurately enough. In practice, it is rather hopeless to

compute these numbers but we will make some progress and obtain results about

their order of magnitude, i.e. their exponential growth rate. It turns out that the

volume-to-surface ratio n/m is bounded for every lattice G, and for a given ratio r :=

n/m, the number of interfaces with size n and ratio ‘roughly’ r grows exponentially

in n, at a rate that we will denote by br = br(G). Size here refers to the number of

vertices or edges, depending on whether we are interested in site or bond percolation,

respectively. We stress however that our notion of interface, and br, is defined

without reference to any random experiment. Still, we have two variants, site- and

bond-interfaces, and use the one or the other depending on whether we want to

study site or bond percolation.

We now formally define br, the fundamental quantity of this chapter. For a

possible ‘size’ n ∈ N, ‘volume-to-surface ratio’ r ∈ R+, and ‘tolerance’ ε ∈ R+, let

cn,r,ε denote the number of interfaces P with |P | = n and (r−ε)n ≤ |∂P | ≤ (r+ε)n.

These numbers grow exponentially in n, and we define br to be their exponential

growth rate as ε→ 0:

br = br(G) := lim
ε→0

lim sup
n→∞

cn,r,ε(G)1/n.

Since cn,r,ε decreases as ε → 0, it is unclear at first sight whether br can ever be

greater than 1. But as we will see, there is some value of r such that br equals the

exponential growth rate of all the interfaces of G (Proposition 2.4.3). By exploiting

the fact that the number of partitions of an integer n grows sub-exponentially in

n, we observed that the value of br is unaffected if instead of interfaces we count

multi-interfaces (Lemma 2.4.2). Moreover, br is a continuous (Theorem 2.6.4), and

log-concave (Theorem 2.6.3) function of r.
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For ‘triangulated’ lattices as defined in (2.8), we show that

br = (b1/r)
r (2.4)

in other words, the values of br for r < 1 determine those for r > 1 (Theorem 2.5.1).

This is the technically most involved result of this chapter. It shows that considering

interfaces rather than animals yields a more interesting function br, namely one

where the values of br and f(r) coincide for fewer values of r. One of the ideas

involved in the proof of (2.4) is that one can reverse the roles of P and ∂P to define

‘inner-interfaces’, and a typical inner-interface can be turned ‘inside out by changing

relatively few edges to yield an interface, and vice-versa. Therefore, the exponential

growth rates of interfaces and inner-interfaces coincide. Refining this statement by

taking the corresponding ratios r into account yields (2.4). Amusingly, our universal

function f(r) also has property (2.4).

2.1.3 Using interfaces and percolation to count lattice animals

In Section 2.7 we combine (2.1) with known results on the asymptotic expansion

of ṗc(Zd) as d → ∞ to deduce that ȧ(Zd) = 2de − O(1) (Theorem 2.7.3). This

improves on a result of Barequet et al. [2010] that ȧ(Zd) = 2de− o(d), where a dot

above pc, a or br means that we are considering site-percolation, lattice site-animals,

and site-interfaces respectively (most of our results have a bond and a site version).

In the latter paper, it was conjectured that ȧ(Zd) = 2de− 3e+ O(1/d). Under the

assumption that ṗc(Zd) =
1

2d
+

5

2(2d)2
+O(1/d3) holds, as reported in Gaunt et al.

[1976] based on numerical evidence, our method gives the conjectured lower bound

ȧ(Zd) ≥ 2de− 3e+ O(1/d). It is reasonable to expect that both b(Zd)− ḃrd(Zd) =

O(1/d) and ȧ(Zd)−b(Zd) = O(1/d) hold, which combined with the above assumption

would imply the aforementioned conjecture ȧ(Zd) = 2de − 3e + O(1/d). The case

of bond lattice animals turns out to be a bit easier, and we obtain the analogous

a(Zd) = 2de − 3e

2
− O(1/d) using an asymptotic expansion for pc(Zd) for bond

percolation obtained rigorously in Hara and Slade [1995]; Hofstad and Slade [2006]

using lace expansion.

In simultaneous work, Barequet and Shalah [2019] prove ȧ(Zd) ≤ 2de− 2e+

1/(2d − 2). In Section 2.8 we improve this asymptotically into ȧ(Zd) ≤ 2de −
5e/2 + O(1/ log(d)), narrowing the gap towards the aforementioned conjecture of

Barequet et al. [2010]. For this, we use direct combinatorial arguments that do not

involve percolation. We then plug these bounds into (2.1) to obtain the bounds
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ṗc(Zd) ≥
1

2d
+

2

(2d)2
−O(1/d2 log(d)) (Theorem 2.8.4).

2.1.4 Comparison to Hammond’s work

Several ideas and results of this chapter were previously obtained by Hammond

[2005], with the difference that Hammond considered directly the exponential growth

rate of the number of lattice animals, rather than interfaces, of surface-to-volume

ratio r. Among other results, Hammond proved that these growth rates satisfy the

statements analogous to our Propositions 2.4.4, 2.4.6 and 2.6.3. The two approaches

have some similarities but certain additional combinatorial and geometric arguments

are needed to prove our results. Our approach to defining br is simpler than that of

Hammond, giving rise to simpler proofs. One additional difficulty that we were faced

with is that, unlike lattice animals containing the origin, several interfaces can occur

simultaneously in a percolation instance. Our results of Sections 2.5 (duality), 2.9

(continuity of decay exponents) and 2.7 (implications for counting lattice animals)

have no analogues in Hammond [2005].

2.2 Definitions and preliminaries

2.2.1 Cycle space

The edge space of a graph G is the direct sum E(G) :=
⊕

e∈E(G) Z2, where Z2 =

{0, 1} is the field of two elements, which we consider as a vector space over Z2. The

cycle space C(G) of G is the subspace of E(G) spanned by the circuits of cycles, where

a circuit is an element C ∈ E(G) whose non-zero coordinates {e ∈ E(G) | Ce = 1}
coincide with the edge-set of a cycle of G.

2.2.2 Convergence and continuity

Let (fn) be a sequence of continuous functions on an interval [a, b]. The sequence is

said to be equicontinuous if, for every ε > 0 and x, there exists δ > 0 such that

|fn(x)− fn(y)| < ε

whenever |x− y| < δ for every n.

The Arzelà-Ascoli theorem Rudin [1964] gives necessary and sufficient con-

ditions to decide whether a subsequence of functions converges uniformly.
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Theorem 2.2.1 (Arzelà-Ascoli theorem). Let (fn) be a uniformly bounded and

equicontinuous sequence of continuous functions on an interval [a, b]. Then there is

a subsequence of (fn) that converges uniformly on [a, b].

2.2.3 Quasi-transitive planar lattices

Recall that a planar quasi-transitive lattice is a locally finite, connected graph G

embedded in R2 such that for some linearly independent vectors v1, v2 ∈ R2, trans-

lation by each vi preserves G, and the action defined by the translations has finitely

many orbits of vertices. Although not part of the definition, we will always assume

in this chapter that planar quasi-transitive lattices are 2-connected, so that the

two definitions of interfaces coincide. This is only a minor assumption because the

boundary of a face of G contains a cycle that surrounds every other boundary vertex

of the same face. By deleting every vertex that does not lie in the surrounding cycle

of some face of G, we obtain a 2-connected planar quasi-transitive lattice with the

same pc and many other common properties with the initial graph.

It is not hard to see that planar quasi-transitive lattices are quasi-isometric

to R2, inheriting some of its geometric properties. More precisely any planar quasi-

transitive lattice G

(1) has quadratic growth, i.e. there are constants c1 = c1(G), c2 = c2(G) > 0 such

that

c1n
2 ≤ |B(u, n)| ≤ c2n

2

for every u ∈ V (G) and every positive integer n, where B(u, n) denotes the ball

of radius n around u in either graph-theoretic distance or Euclidean distance,

(2) satisfies a 2-dimensional isoperimetric inequality, i.e. there is a constant c =

c(G) > 0 such that for any finite subgraph H ⊂ G,

|∂VH| ≥ c
√
|H|.

Here ∂VH denotes the minimal vertex cut of H, i.e. the minimal set of

vertices, the deletion of which disconnects H from the infinite component of G \H.

Similarly, the minimal edge cut of H is the minimal set of edges, the deletion of

which disconnects H from the infinite component of G \H. It is denoted by ∂EH.

Any planar quasi-transitive lattice G is easily seen to satisfy the following properties

as well:

(3) For some o ∈ V (G), there is a 2-way infinite path X = (. . . , x−1, x0 = o, x1, . . .)

containing o and a constant f > 0, such that f |i − j| ≤ dG(xi, xj) for every
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i, j ∈ Z, where dG denotes distance in G. Moreover, we can choose X to be

periodic, i.e. to satisfy X + tv1 = X for some t ∈ N. The existence of such a

path was in fact proved in Chapter 1.

(4) The cycle space of G is generated by cycles of bounded length.

(5) G is 1-ended, i.e. for every finite subgraph H of G, the graph G\H has a unique

infinite component.

2.3 Interfaces

In this chapter, we recall the notions of (bond-)interfaces and site-interfaces intro-

duced in Georgakopoulos and Panagiotis [2018]. In most cases, we will work with

the following families of graphs:

(a) planar quasi-transitive lattices,

(b) the standard cubic lattice Zd, d > 1,

(c) Td, the graph obtained by adding to Zd, d > 1 the ‘monotone’ diagonal edges,

i.e. the edges of the form xy where yi−xi = 1 for exactly two coordinates i ≤ d
and yi = xi for all other coordinates (T2 is isomorphic to the triangular lattice).

Let us denote with S the set of all those graphs.

For each G ∈ S, we will fix a basis P = P(G) of the cycle space C(G) (defined

in Section 2.2.1). If G is a planar quasi-transitive lattice , P consists of the cycles

bounding the faces of G. For G = Zd we can use the squares bounding the faces of

its cubes as our basis P, and for G = Td we can use the triangles obtained from the

squares once we add the ‘monotone’ diagonal edges. Our definition of the interfaces

of G depends on the choice of P(G), and so in Georgakopoulos and Panagiotis [2018],

we used the notation ‘P-interface’ to emphasize the dependence. Since we are fixing

P(G) for each G ∈ S, we will simplify our notation and just talk about interfaces.

In the 2-dimensional case, interfaces have already been defined in Chapter 1.

With some thought, this notion can be generalised to higher dimensions in such a

way that a unique interface is associated with any cluster. The reader may already

have their own favourite definition of interface for G = Zd or G = Td, and as long

as that definition satisfies Theorem 2.3.3 below it will coincide with ours. For the

remaining readers we offer the following abstract definition. For (site percolation

on) G = Td we offer a simpler alternative definition implicit in Proposition 2.3.5.
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To define interfaces in full generality, we need to fix first some notation. From

now on, all our graphs G will be

1-ended and 2-connected. (2.7)

Every edge e = vw ∈ E(G) has two directions −→vw,−→wv, which are the two directed

sets comprising v, w. The head head(−→vw) of −→vw is w. Given F ⊂ E(G) and a

subgraph D of G, let ~FD := {−→vz | vz ∈ F, z ∈ V (D)} be the set of directions of the

elements of F towards D.

Let P denote a basis of C(G) (which we fixed at the beginning of this section).

A P-path connecting two directed edges −→vw,←−yx ∈
↔

E(G) is a path P of G such that

the extension vwPyx is a subpath of an element of P. Here, the notation vwPyx

denotes the path with edge set E(P ) ∪ {vw, yx}, with the understanding that the

end-vertices of P are w, y. Note that P is not endowed with any notion of direction

but the directions of the edges −→vw,←−yx it connects do matter. We allow P to consist

of a single vertex w = y.

We will say that P connects an undirected edge e ∈ E(G) to
−→
f ∈

↔
E(G)

(respectively, to a set J ⊂
↔

E(G)) if P is a P-path connecting one of the two directions

of e to
−→
f (resp. to some element of J).

Definition 2.3.1. We say that a set J ⊂
↔

E(G) is F -connected for some F ⊂ E(G),

if for every proper bipartition (J1, J2) of J , there is a P-path in G \ F connecting

an element of J1 to an element of J2.

Definition 2.3.2. A (bond-)interface of G is a pair (P, ∂P ) of sets of edges of

G with the following properties

(i) ∂P separates o from infinity;

(ii) There is a unique finite component D of G \ ∂P containing a vertex of each

edge in ∂P ;

(iii) ~∂PD is ∂P -connected; and

(iv) P = {e ∈ E(D) | there is a P-path in G \ ∂P connecting e to ~∂PD }.

We say that an interface (P, ∂P ) occurs in a bond percolation instance ω if

the edges of P are occupied, and the edges of ∂P are vacant.

(Bond-)interfaces are specifically designed to study bond percolation on G.

There is a natural analogue for site percolation. For an interface (P, ∂P ) of G ,

we let V (P ) denote the set of vertices incident to an edge in P , and we let V (∂P )
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denote the set of vertices incident to an edge in ∂P but with no edge in P . We say

that an interface (P, ∂P ) is a site-interface if no edge in ∂P has both its end-vertices

in V (P ). We say that a site-interface (P, ∂P ) occurs in a site percolation instance

ω if the vertices of V (P ) are occupied, and the vertices of V (∂P ) are vacant. We

will still use P and ∂P to refer to V (P ) and V (∂P ).

We say that (P, ∂P ) meets a cluster C of ω, if either P ∩ E(C) 6= ∅, or

P = E(C) = ∅ and ∂P = ∂C, where ∂C is the set edges in E(G) \ E(C) with at

least one end-vertex in C (in which case C consists of o only).

The following result applies to both bond- and the site-interfaces.

Theorem 2.3.3 ([Georgakopoulos and Panagiotis, 2018, Theorem 10.4.]). For every

finite (site) percolation cluster C of G such that C separates o from infinity, there

is a unique (site-)interface (P, ∂P ) that meets C and occurs. Moreover, we have

P ⊂ E(C) and ∂P ⊂ ∂C.

Conversely, every occurring (site-)interface meets a unique percolation clus-

ter C, and ∂C separates o from infinity (in particular, C is finite).

Theorem 2.3.3 allows us to define the (site-)interface of a cluster C of a

percolation instance ω as the unique occurring (site-)interface that meets C.

We remark that for every planar quasi-transitive lattice G, the notion of

outer interface introduced in Chapter 1 coincides with the aforementioned notion

of interface, once we choose as basis P of the cycle space C(G) the set of cycles at

the boundary of each face of G. Indeed, it is clear that an outer interface (S, ∂S)

satisfies properties (i) and (ii). Properties (iii) and (iv) follow from the fact that

∂S∗ is connected. Hence any outer interface is also a interface. On the other hand,

any interface gives rise to a finite component D. We can associate to D a outer

interface (S, ∂S), as described in Section 1.4.5. As we explained, (S, ∂S) is also a

interface and by Theorem 2.3.3, it must coincide with (P, ∂P ), i.e. (P, ∂P ) is a outer

interface, as desired.

Remark 2.3.4. Let G be a graph the cycle space of which admits a basis consisting

of cycles of length bounded by some constant t > 0. Then for every interface (P, ∂P )

of G, and any pair of edges in ∂P , there is a path contained in the t/2-neighbourhood

of ∂P connecting the pair (see [Georgakopoulos and Panagiotis, 2018, p. 47]).

We define a multi-interface to be a finite collection of pairwise disjoint in-

terfaces, and a site-multi-interface to be a finite collection of pairwise disjoint site-

interfaces.
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In the case of an

1-ended, 2-connected graph G, the cycle space of which is generated by its

triangles,
(2.8)

site-interfaces admit an equivalent definition that is more standard and easier to

work with:

Proposition 2.3.5 ([Georgakopoulos and Panagiotis, 2019a, Proposition 3.7.]). Let

G be a graph satisfying (2.8), and let D be a finite induced subgraph of G containing

o. Let D be the union of D with the finite connected components of G\D. Define P

to be the set of vertices of D which have a neighbour not in D, and let ∂P be the set

of vertices of G \D that have a neighbour in D. Then (P, ∂P ) is the site-interface

of D.

Most of the time we will write P instead of (P, ∂P ) to simplify the notation.

2.4 Growth rates

In this section, we give the formal definition of br in its bond and site version, obtain

some basic facts about it, and establish the connection to percolation.

Given a graph G ∈ S, we let In,r,ε = In,r,ε(G) denote the set of interfaces

P with |P | = n and (r − ε)n ≤ |∂P | ≤ (r + ε)n. Here | · | counts the number of

edges. Similarly, we let MIn,r,ε = MIn,r,ε(G) denote the set of multi-interfaces P

with |P | = n and (r − ε)n ≤ |∂P | ≤ (r + ε)n.

To avoid introducing a cumbersome notation, we will still write In,r,ε and

MIn,r,ε for the site-interfaces and site-multi-interfaces, respectively, of size n and

boundary size between (r− ε)n and (r+ ε)n. Moreover, we will write c◦n,r,ε and c�n,r,ε

for the cardinality of In,r,ε and MSn,r,ε, respectively.

The definitions, results and proofs that follow apply to both

(bond-)interfaces and site-interfaces unless otherwise stated.

Definition 2.4.1. Define the (upper) exponential growth rate b◦r(G) of the (bond-

or site-) interfaces of G with surface-to-volume ratio r by

b◦r = b◦r(G) := lim
ε→0

lim sup
n→∞

c◦n,r,ε(G)1/n.

Similarly, we define the (upper) exponential growth rate b◦r(G) of the (site-)multi-
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interfaces of G with surface-to-volume ratio r by

b�r = b�r (G) := lim
ε→0

lim sup
n→∞

c�n,r,ε(G)
1/n
.

We remark that in Hammond’s definition of the exponential growth rate of

lattice animals with surface-to-volume ratio r, ε depends on n. The above definition

simplifies the proofs of some of the following results.

We are going to study b◦r and b�r as functions of r. As it turns out, these two

functions coincide:

Lemma 2.4.2. Let G ∈ S. Then b◦r(G) = b�r (G).

We postpone the proof until the next section where the necessary definitions

and tools are introduced.

From now on, except for the proof of Lemma 2.4.2, we will drop the su-

perscripts and we will simply write br and cn,r,ε. In our proofs, we will work with

interfaces and site-interfaces instead of multi-interfaces and site-multi-interfaces.

Similarly to br, we define the (upper) exponential growth rate of all interfaces

of G:

b = b(G) := lim
ε→0

lim sup
n→∞

cn(G)1/n

where cn(G) := |{ interfaces P with |P | = n}|. In the following proposition we

prove that b(G) = maxr br(G).

Proposition 2.4.3. Let G ∈ S. Then there is some r such that b(G) = br(G).

Proof. Notice that there are no (site-)interfaces P with |P | ≥ 1 and |∂P |/|P | >
2∆, where ∆ is the maximum degree of G. Recursively subdivide the interval

I0 := [0, 2∆] into two subintervals of equal length. At each step j, one of the two

subintervals Ij of Ij−1 accounts for at least half of the (site-)interfaces P of size n

with |∂P |/|P | ∈ Ij−1 for infinitely many n. Hence there are at least 2−jcn (site-

)interfaces of size n with |∂P |/|P | ∈ Ij for infinitely many n. By compactness,

[0, 2∆] contains an accumulation point r0 of the Ij , j ∈ N. Notice that for every

ε > 0 we have lim supn→∞ c
1/n
n,r0,ε = b. Taking the limit as ε goes to 0, we obtain

b = br0 , as desired.

We will now obtain some bounds for br. Notice that both Zd, Td contain a

2-way infinite geodesic, namely the x-axis.

Proposition 2.4.4. Let G ∈ S, and let r > 0, 0 ≤ p ≤ 1. Then we have p(1−p)r ≤
1/br(G).
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Proof. Let us first assume that G satisfies (3). Let Nn be the (random) number

of occurring (site-)interfaces P with |P | = n in a percolation instance ω. Consider

a quasi-geodesic X containing o, and let X+ be one of the two infinite subpaths

starting from o. Arguing as in the proof of Proposition 1.4.4, we see that any

occurring (site-)interface P has to contain one of the first fn vertices of X+ for

some constant f > 0. Since occurring (site-)interfaces are disjoint,

Nn ≤ fn (2.9)

for every n and any bond (site) percolation instance ω. Therefore, Ep(Nn) ≤ fn for

every p ∈ [0, 1]. We now have fn ≥ Ep(Nn) ≥ cn,r,ε(p(1− p)r+ε)n. Taking the n-th

root, and then letting n go to infinity, and ε go to 0, we obtain p(1− p)r ≤ 1/br, as

desired.

Next, we observe that for any fixed r, equality in Proposition 2.4.4 can occur

for at most one value of p, which value we can compute:

Proposition 2.4.5. Let G ∈ S. If p(1− p)r = 1/br(G) for some r, p, then p = 1
1+r

(and so r = 1−p
p and 1/br(G) = p(1− p)

1−p
p ).

Proof. Fix r and let M := maxp∈[0,1] p(1− p)r. If p0(1− p0)r = 1/br is satisfied for

some p0 ∈ [0, 1], then p0 must attain M by Proposition 2.4.4, that is, we have M =

p0(1−p0)r. Thus f ′(p0) = 0. By elementary calculus, f ′(p) = (1−p)r−rp(1−p)r−1,

from which we obtain r = 1−p0

p0
and p0 = 1

1+r .

Combining Proposition 2.4.4 and Proposition 2.4.5 we obtain

br ≤ f(r) := (1+r)1+r

rr . (2.10)

Notice that the function f(r) is reminiscent of the entropy function p log(p)+

(1− p) log(1− p) for Bernoulli random variables, where p and r are related via the

formula p = 1/(1 + r). This is not a surprise, as the proofs of this section are

essentially a matter of large deviations estimates.

Motivated by Proposition 2.4.5, we define the functions

p(r) :=
1

1 + r
and r(p) :=

1− p
p

.

These functions are 1 − 1, strictly monotone decreasing, and the inverse of each

other.
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br

rr(pc)r(1− pc)

f(r)

Figure 2.1: An approximate visualisation of br(G) when G is a lattice in Rd, d ≥ 3. The
graph of br(G) (depicted in black, if colour is shown) lies below the graph of f(r) :=
(1+r)1+r

rr (depicted in blue, if colour is shown). The fact that f(r) plots (in Mathematica,
in this instance) almost like a straight line can be seen by rewriting it as (1 + r)(1 + 1/r)r,
which approximates the function e(1 + r). The fact that br = f(r) for r in the interval
(r(1− pc), r(pc)], where r(p) := 1−p

p , follows by combining a theorem of Kesten and Zhang

[1990], saying that exponential decay of Ep(Nn) fails in that interval, with our Theorem 2.1.1.
That br < f(r) for r > r(pc) follows from the well-known exponential decay of Pp(|Co| = n)
for p < pc Menshikov [1986]; Aizenman and Barsky [1987].

Recall that Nn denotes the number of occurring multi-interfaces P with

|P | = n. The next result says that equality is achieved in Proposition 2.4.5 (for

some r) exactly for those p for which exponential decay in n of Ep(Nn) fails.

Proposition 2.4.6. Let G ∈ S and p ∈ (0, 1). Then Ep(Nn) fails to decay expo-

nentially in n if and only if br(p)(G) = 1/p(1− p)r(p) (that is, if and only if equality

is achieved in Proposition 2.4.5).

Proof. The backward implication is straightforward by the definitions.

For the forward implication, suppose to the contrary that

br(p) < 1/p(1− p)r(p).

The definition of br implies that there is ε > 0 such that

cn,r(p),εp
n(1− p)n(r(p)−ε) ≤ (1− ε)n

for all but finitely n. Hence, if we denote by Nn,r(p),ε the (random) number of

occurring (site-)multi-interfaces P with |P | = n and (r(p)−ε)n ≤ |∂P | ≤ (r(p)+ε)n,

then for every large enough n,

Ep(Nn,r(p),ε) ≤ cn,r(p),εpn(1− p)n(r(p)−ε) ≤ (1− ε)n,
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which implies the exponential decay in n of Ep(Nn,r(p),ε).

On the other hand, we claim that Ep(Nn−Nn,r(p),ε) always decays exponen-

tially in n. Indeed, consider the function g(q, r) = q(1 − q)r. Notice that for every

fixed r the function gr(q) := g(q, r) is maximised at 1
1+r and is strictly monotone

on the intervals [0, 1
1+r ] and [ 1

1+r , 1]. Recall that p = 1
1+r(p) , and define

s = s(p, ε) :=
1

1 + r(p) + ε

and

S = S(p, ε) :=
1

1 + r(p)− ε
.

It follows that there is a constant 0 < c = c(p, ε) < 1 such that g(p, r(p) + ε) ≤
cg(s, r(p) + ε) and g(p, r(p)− ε) ≤ cg(S, r(p)− ε) because s < p < S. Moreover, we

have (1− p
1− s

)r
≤
(1− p

1− s

)r(p)+ε
≤ c

whenever r ≥ r(p) + ε, and( 1− p
1− S

)r
≤
( 1− p

1− S

)r(p)−ε
≤ c

whenever r ≤ r(p)−ε. This implies that g(p, r) ≤ cg(s, r) for every r ≥ r(p)+ε, and

g(p, r) ≤ cg(S, r) for every r ≤ r(p) − ε. In other words, we have Pp(P occurs) ≤
cnPs(P occurs) for every bond or site multi-interfaceP with |P | = n, |∂P | > (r+ε)n

and Pp(P occurs) ≤ cnPS(P occurs) for every bond or site multi-interfaceP with

|P | = n, |∂P | < (r − ε)n. This easily implies that

Ep(Nn −Nn,r(p),ε) ≤ cn(Es(Nn) + ES(Nn)).

Since both Es(Nn),ES(Nn) ≤ fn, we conclude that Ep(Nn − Nn,r(p),ε), and hence

Ep(Nn), decays exponentially in n, which contradicts our assumption. Therefore,

br(p) = 1/p(1− p)r(p).

Let So denote the (site-)interface of the cluster Co of o if Co is finite, and

So = ∅ otherwise. We can now easily deduce that the statement of Proposition 2.4.6

holds for Pp(|So| = n) in place of Ep(Nn), as stated in Theorem 2.1.1, which we

repeat here for convenience:

Theorem 2.4.7. Let G ∈ S. Then for every p ∈ (0, 1), the cluster size distribution

Pp(|So| = n) fails to decay exponentially in n if and only if
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br(p)(G) = 1/p(1− p)r(p) = f(r(p)).2

Proof. Let X be a quasi-geodesic containing o such that X+tv1 = X for some t ∈ N,

and let X+ be one of the two infinite subpaths of X starting at o. If G is Zd or Td,
we just let X be the horizontal axis. Write also Q for the subpath of X connecting o

to o+tv1. Notice that any (site-)interface P meets X+ at some vertex. Write x+ for

the first of X+ that it meets. Using a multiple ktv1 of tv1 for some integer k, we can

translate x+ to some vertex of Q. Then P+ktv1 is a (site-)interface of o. To see this,

notice that o− ktv1 appears before x+ in X+ because o appears before x+ + ktv1 in

X+. Thus o−ktv1 belongs to the finite component of G\∂P , and so o belongs to the

finite component of G\∂(P +ktv1). On the event A = A(P ) := {P + ktv1 occurs}∩
{the subpath of X+ between o and x+ + ktv1 is open}, we have So = P + ktv1.

Moreover,

pMPp(P occurs) ≤ P(A),

where M is the number of vertices of Q. Summing over all (site-)interfaces of size

n with the property that the first vertex of X+ they contain is x+, we obtain

pM
∑

Pp(P occurs) ≤ Pp(|So| = n),

where the sum ranges over all such (site-)interfaces. Since there are at most fn

choices for the first vertex of X+, summing over all possible x+ we obtain

pMEp(Nn) ≤ fnPp(|So| = n).

On the other hand, clearly

Pp(|So| = n) ≤ Ep(Nn).

Therefore, Pp(|So| = n) decays exponentially if and only if Ep(Xn) does. The desired

assertion follows now from Proposition 2.4.6.

2.5 Duality

The main aim of this section is the proof of (2.4) (Theorem 2.5.1), and an analogous

statement for planar bond percolation (Theorem 2.5.2). In this section, we study

the properties of both interfaces and site-interfaces of graphs in S.

If G ∈ S satisfies (2.8), we say that (P, ∂P ) is an inner-interface of G if

2That is, if and only if equality is achieved in Proposition 2.4.5.
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(∂P, P ) is a site-interface of G. We define b∗r similarly to br, except that we now

count inner-interfaces instead of site-interfaces. Note that both P and ∂P span

connected graphs in this case. Since this operation inverts the surface-to-volume

ratio, we have

b∗r = br1/r. (2.11)

If G is a planar quasi-transitive lattice, we say that (P, ∂P ) is an inner-interface of

G if (∂P ∗, P ∗) is an interface of G∗. Again define b∗r(G) similarly to br(G), except

that we now count inner-interfaces in the dual lattice G∗. Then (2.11) still holds in

this case.

The main results of this section are:

Theorem 2.5.1. Consider a graph G ∈ S satisfying (2.8). Then for the site-

interfaces in G we have br(G) = (b1/r(G))r.

Theorem 2.5.2. Consider a planar quasi-transitive lattice G. Then for the inter-

faces in G and G∗ we have br(G) = (b1/r(G
∗))r.

To prove Theorems 2.5.1 and 2.5.2 we need the following concepts. Given

a graph G ∈ S, let v1, v2, . . . , vd ∈ Rd be some linearly independent vectors that

preserve G, and let B be the box determined by v1, v2, . . . , vd. For Zd and Td we

can choose v1, v2, . . . vd to be the standard basis of Rd. Given a (site-)interface P

of G, among all translates of B by an integer combination of v1, v2, . . . vd, consider

those which intersect P ∪ ∂P , and let T denote the set of all such translates. The

box B(P ) of P is the smallest box with sides parallel to v1, v2, . . . , vd containing T .

The box size |B(P )| of P is the number of translates of B contained in B(P ) that

intersect the topological boundary of B(P ). Define b̃r like br, except that we restrict

the (site-)interfaces we consider to a subfamily satisfying |B(P )| = o(|P |), and take

the supremum over all such subfamilies.

Our aim now is to prove that b̃r = br. In other words, (site-)interfaces with

a ‘fractal’ shape have the same exponential growth rate as all (site-)interfaces. We

will first consider the cases of Zd and Td.

Proposition 2.5.3. Let G be either Zd or Td. Then b̃r(G) = br(G).

Proof. Let us first assume that br > 1. We will start by proving the assertion for

(bond) interfaces. Let n ∈ N, ε > 0, r > 0, and let P ∈ In,r,ε. Consider the

associated box B(P ), and let ai, bi, i = 1, 2, . . . , d be integers such that B(P ) =∏d
i=1[ai, bi]. Notice that B(P ) contains the graph P ∪ ∂P in its interior (no vertex
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Figure 2.2: The grid Bn and the interfaces when d = 2 in the proof of Proposition 2.5.3.

of P ∪ ∂P lies in its topological boundary), and furthermore, each face of B(P ) is

incident with ∂P . Order the vertices of G arbitrarily, and for each face f of B(P ),

let vf be the first vertex in our ordering that belongs to f and is incident with ∂P .

We will call these vertices extremal. Now define the shape of an interface P to be

the 4d-tuple consisting of the numbers ai, bi, and the extremal vertices. Notice that

the extremal vertices are in fact incident to a vertex of ∂V P .

It is not hard to see that −(n + 1) ≤ ai ≤ 0 and 0 ≤ bi ≤ n + 1 for every

i = 1, 2, . . . , d. This implies that there are at most Pn := (n + 2)2d(2n + 3)2d(d−1)

possible shapes for interfaces in In,r,ε, since there are at most n+ 2 choices for each

ai, bi, and each (d − 1)-dimensional face has at most (2n + 3)d−1 vertices. On the

other hand, there are exponentially many interfaces, hence we can choose n large

enough to ensure that there is a non-empty set K ⊆ In,r,ε of cardinality at least

N := cn,r,ε/Pn

consisting of interfaces P with |P | = n and (r− ε)n ≤ |∂P | ≤ (r+ ε)n that have the

same shape.

We now piece elements ofK together to construct a large number of interfaces

of arbitrarily high size that will contribute to br. We will construct a set Kn of

cardinality about Nnd of interfaces of size about nd+1, of surface-to-volume ratio

about r, and of small box-size.

Recall that all interfaces in K have the same shape, in particular, the same

box B. Let Bn be a d-dimensional grid of nd adjacent copies Bi, i = (i1, . . . , id)
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of B (Figure 2.2). In each copy of B in Bn, we place an arbitrary element of K.

We denote the copy of B placed in Bi with Ki. Write Sk, 1 ≤ k ≤ n for the slab

containing the boxes Bi with i1 = k. Our aim is to connect the interfaces inside

the boxes using mostly short paths. First, consider S2 and notice that every box

in S2 shares a common face with a box in S1. We can move S2 using the vectors

v2, . . . , vd in order to achieve that the ‘rightmost’ extremal vertices of S1 coincide

with the corresponding ‘leftmost’ extremal vertices of S2 lying in a common face

with them. This is possible because all interfaces in K have the same shape. Moving

each slab Sk in turn, we can make the ‘rightmost’ and ‘leftmost’ extremal vertices

of consecutive slabs coincide. We now connect all these extremal vertices with their

corresponding interfaces by attaching paths of length 2 parallel to v1. Finally, we

connect the interfaces in the first slab as follows. If two boxes in the first slab share

a common face, then we connect the two extremal vertices lying in the common face

with a path of minimum length inside that face (hence of length O(n)). Also, we

attach a path of length 2 connecting all those extremal vertices to the interface of

their box (Figure 2.3).

u1

S1 S2 S3 S4

Figure 2.3: The interface Q in the proof of Proposition 2.5.3.

This construction defines a new graph Q. We claim that Q is an interface.

Indeed, if d = 2 this follows easily from the topological definition of interfaces. For

d > 2, since Q is a connected graph, there is an interface associated with it. We will

verify that Q coincides with its interface, which is denoted Q′. Let ∂EQ denote the

minimal edge cut of Q. Consider an interface Ki. We will first verify that all edges

of ∂EKi \Q belong to ∂EQ. Indeed, let B′i be the smallest box containing Ki (but
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not necessarily its boundary). Any edge in ∂EKi that has not been attached to Q

has either one end-vertex in the boundary of B′i and one in the complement of B′i,

or it can be connected with such an edge with a path lying in G \Ki. From there it

can be connected to infinity without intersecting Q. Hence all edges of (∂EKi) \Q
lie in ∂EQ.

Next, we claim that all remaining edges of (∂Ki)\Q belong to the boundary

of Q′. To see this, consider an edge e of ∂Ki that has been attached to Q. It is not

hard to see that

any edge of Ki ∪ ∂Ki lying in the same basic cycle with e, lies in the same

basic cycle with an edge of ∂EQ.
(2.12)

This easily implies that every edge in ∂Ki \ Q lies in the same ∂Q component of
~∂QQ with some edge in ∂EQ, which proves the claim.

It remains to show that every all edges of Q belongs to Q′. To see this, recall

that any edge of Ki lies in the same basic cycle with an edge of ∂Ki. Observation

(2.12) implies that this remains true if we replace ∂Ki by ∂Q′, i.e. that any edge of

Ki lies in the same basic cycle with an edge of ∂Q′. Hence all edges of Ki belong to

Q′. It is easy to see that the remaining edges of Q are incident with ∂EQ. Thus Q

coincides with Q′, hence Q is an interface, as desired.

It can be easily seen that Q has size roughly nd+1 and boundary size

(r − ε′)|Q| ≤ |∂Q| ≤ (r + ε′)|Q|

for some ε′ = ε′(n) not necessarily equal to ε. Clearly, we can choose ε′ = ε+ o(1),

since the number of attached edges is o(nd+1). The number of such Q we constructed

is equal to |K|nd ≥ Nnd . This is because by deleting all attached paths we recover

each Ki, and we have |K| choices for each Ki.

Note that each slab Sk has been moved at distance at most O(n2) = o(|Q|)
from its original position. Hence, |B(Q)| = o(|Q|). The result follows by letting

n→∞ and then ε→ 0. In fact, we proved that the supremum in the definition of

b̃r is attained by some family.

Let us now consider the case of site-interfaces. Let K be a collection of at

least N site-interfaces of In,r,ε, all of which have the same shape. Arguing as above,

we place the elements of K in a d-dimensional grid and we connect them in the

same fashion to obtain a graph Q. For Zd, nothing changes since Q is an induced

graph. This is not necessarily true for Td because some end-vertices of the attached

paths are possibly incident to multiple vertices of the same site-interface. This could

potentially lead to an issue in the case that some boundary vertices cannot connect
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to infinity without avoiding the vertices of Q. See Figure 2.4. It is not hard to see

that the latter is impossible in our case. Arguing as above, we obtain the desired

result for site-interfaces as well.

It remains to consider the case where br = 0 or br = 1. If br = 0, there is

nothing to prove. If br = 1, then we can argue as in the case br > 1, except that

now we place the same interface at each box of the grid.

The above arguments can be carried out for interfaces of any planar quasi-

transitive lattice with only minor modifications that we will describe in Lemma 2.5.5.

However, certain difficulties arise when studying site-interfaces on an arbitrary pla-

nar quasi-transitive lattice. Indeed, when we connect two site-interfaces P1, P2 with

a path, it is possible that some of the vertices of ∂P1 or ∂P2 are now ‘separated’ from

the remaining boundary vertices, see Figure 2.4. In fact, it is possible that most

boundary vertices have this property. To remedy this, we will choose the path that

connects P1 and P2 appropriately so that only a few of them, if any, are ‘separated’

from the remaining boundary vertices.

Figure 2.4: If the vertex incident to the two dashed lines is attached to the site-interface, the
vertices of which are highlighted in red, then the new graph is not a site-interface anymore.

Lemma 2.5.4. Let G ∈ S. Let P be a site-interface of G. Then there are |∂V P | −
O(|P |1/4) = Ω(|P |1/2) vertices u ∈ ∂V P such that the site-interface of P ∪ {u} has

size |P | −O(|P |3/4) and boundary size |∂P | −O(|∂P |3/4).

Proof. Recall that the cycle space of G is generated by cycles of bounded length.

We will write t for the maximal length of a cycle in our basis.

For every v ∈ ∂V P , let Pv be the site-interface of the connected graph P ∪{v}
and let Qv := ∂P \ (∂Pv ∪ {v}). Write L for the edges between P and ∂P , Ev for

the edges between v and P , and Lv for the edges between P and Qv. First, we claim

that all Qv are pairwise disjoint. Indeed, assuming that this is not true, we find a

pair of distinct u, v such that Qu ∩ Qv 6= ∅. Since the vertices of Qz, z ∈ {u, v}
do not belong to ∂Pz,

~EPz separates ~LPz from the remaining edges of ~LP . Hence

86



no vertex of Qz lies in ∂V P , as any path starting from a vertex of Qz and going

to infinity without intersecting P must intersect z. This implies that if X,Y are

two overlapping components of ~LPu , ~LPv , respectively, then X ∪ Y is L \ (Eu ∪ Ev)-
connected, and thus X,Y coincide. Moreover, X is connected to ~EPu with a P-path

in G \ L, and Y is connected to ~EPv with a P-path in G \ L. Therefore, u coincides

with v, which is absurd. Hence, our claim is proved.

u v

Qu Qv

Figure 2.5: The situation in the proof of Lemma 2.5.4.

We can now conclude that
∑

v∈∂V P |Qv| ≤ |∂P | ≤ ∆|P |, where ∆ is the

maximal degree of G. It follows that the number of v ∈ ∂V P such that |Qv| ≥
|P |3/4 is at most ∆|P |1/4. By the isoperimetric inequality (2), which holds for

all graphs in S, there is c > 0 such that |∂V P | ≥ c|P |
1
2 , which implies the strict

inequality |∂V P | > ∆|P |1/4 whenever |P | is large enough. It is clear that Pu has

size |P | − O(|P |3/4) whenever |Qu| < |P |3/4 because |P \ Pu| ≤ ∆t|Qu|. The proof

is now complete.

The boundary vertices satisfying the property of Lemma 2.5.4 will be called

good, and the remaining ones will be called bad.

In order to generalise Proposition 2.5.3 to all elements of S, we will need the

following definitions. Consider a quasi-transitive lattice G in R2. Given two linearly

independent vectors z, w ∈ R2 we write B(z, w) for the box determined by z and

w. Given a side s of B(z, w), we write Bs(z, w) for the box that is congruent to

B(z, w), and satisfies Bs(z, w) ∩ B(z, w) = s. It is not hard to see that there are

vectors z1, z2, w1, w2 such that the following hold:

• For each i = 1, 2, zi is parallel to vi, and wi is an integer multiple of zi.

• For every side s of B(z1, z2), there are vertices u ∈ B(z1, z2) and v ∈ Bs(z1, z2)

that can be connected with a path lying in B(z1, z2) ∪Bs(z1, z2).

• For every pair of vertices u, v in B(z1, z2), there is a path in B(w1, w2) con-

necting u to v.

We regard the tilings Tz and Tw of R2 by translates ofB(z1, z2) andB(w1, w2),

respectively, as graphs that are naturally isomorphic to Z2.
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Lemma 2.5.5. Consider a graph G ∈ S. Then b̃r(G) = br(G).

Proof. We handled Zd and Td above, so it only remains to handle planar quasi-

transitive lattices. We will focus on the case of site-interfaces with surface-to-volume

ratio r such that br > 1, which is the hardest one.

Let n ∈ N, ε > 0, r > 0, and let P ∈ In,r,ε. Recall that there is a t > 0

such that the cycles in our basis of C(G) have length at most t. Consider the set

of boxes in Tw that either intersect the 2t-neighbourhood of P ∪ ∂P , or share a

common face with such a box. Let Bt(P ) be the smallest box with sides parallel to

w1, w2 containing all these boxes. Write s for a side of Bt(P ). Order the vertices

of G arbitrarily. Among all vertices of ∂V P that are closest to s, there is one that

is minimal. We call these vertices extremal. Each extremal vertex lies in some box

of Tz that is called extremal as well (in case a vertex lies in more than one boxes of

Tz, order the boxes arbitrarily and choose the minimal one). We define the shape of

a site-interface P to be the tuple comprising the dimensions of the box Bt(P ), and

the extremal vertices of P ∪∂P . Using the polynomial growth of G, we immediately

deduce that we have polynomially many choices P (n) for the shape and auxiliary

shape of any site-interface P . We define K as in the proof of Proposition 2.5.3.

By definition, all elements P of K have the same Bt = Bt(P ). It is not hard

to see that at least one of the two dimensions of Bt is Ω(
√
n). Indeed, Bt contains

the vertices of P . For every vertex u of P there is a disk of small enough radius

ru > 0 contained in Bt, so that distinct disks are disjoint. The translation invariance

of G implies that there are only finitely possibilities for ru, hence r := infu∈V ru > 0.

It follows that Bt has area Ω(n) because it contains n disjoint disks of radius at least

r. This implies that at least one of the two dimensions of Bt is Ω(
√
n). We can

assume without loss of generality that the dimension parallel to v1 has this property.

We start with a n × n grid of copies Bi,j of Bt. We place inside every Bi,j

a site-interface Ki,j ∈ K. We write Sk for the k-th column of the grid. Similarly

to the proof of Proposition 2.5.3, we move every column, except for the first one, in

the direction parallel to v2 in such a way that the ‘rightmost’ extremal boxes of Sk

and the ‘leftmost’ extremal boxes of Sk+1 can be connected in Tz by a straight path

parallel to v1.

For every pair Ki,j , Ki,j+1 of consecutive interfaces, there is an induced

path in G of bounded length connecting their ‘rightmost’ and ‘leftmost’ extremal

vertices. We can further assume that the path lies in Bi,j ∪Bi,j+1 by our choice of

z1, z2, w1, w2 and the definition of Bt. Indeed, if Π = B1, B2, . . . , Bl is a straight

path in Tz connecting the ‘rightmost’ and ‘leftmost’ extremal boxes of Ki,j , Ki,j+1,

respectively, we first connect all consecutive boxes Bm, Bm+1, m = 1, . . . , l − 1
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using paths Πm in G lying in Bm ∪ Bm+1. Then we connect the ‘rightmost’ and

‘leftmost’ end-vertices of consecutive paths Πm, Πm+1, respectively, using paths

lying in boxes congruent to B(w1, w2) containing those end-vertices. Finally, we

connect the ‘rightmost’ and ‘leftmost’ extremal vertices of Ki,j , Ki,j+1 to Π1 and Πl

using paths lying in boxes congruent to B(w1, w2). In this way, we obtain a path

that lies in Bi,j ∪ Bi,j+1 because both Bi,j , Bi,j+1 contain a ‘layer’ of boxes of Tw

surrounding Ki,j , Ki,j+1. The path is not necessarily disjoint from Ki,j , Ki,j+1 but it

certainly contains a subpath that is disjoint from them and connects two boundary

vertices of both site-interfaces. We can choose the subpath to contain exactly two

boundary vertices, one from each of the two site-interfaces.

Let W be the path connecting Ki,j , Ki,j+1, and let u1 ∈ ∂VKi,j , u2 ∈
∂VKi,j+1 be the end-vertices of W. Adding u1, u2 to Ki,j , Ki,j+1 may result to

much smaller site-interfaces. For this reason, we need to find two good boundary

vertices. Consider the vertices x1, x2 at distance t from u1, u2, respectively, lying

in W. Write Q1, Q2 for the (t − 1)-neighbourhood of Ki,j , Ki,j+1, respectively,

and notice that both ∂VQ1, ∂VQ2 have distance t from Ki,j , Ki,j+1, respectively.

Furthermore, we can connect any pair of vertices of ∂VQi, i = 1, 2 with a path

lying in the t/2 neighbourhood of ∂VQi by Remark 2.3.4, hence disjoint from Ki,j ,

Ki,j+1 and their boundaries. The isoperimetric inequality (2) gives ∂VQi = Ω(
√
n).

Moreover, for every k > 0, the number of vertices of ∂VQi that can be connected

to xi with a path of length at most k lying in the t/2-neighbourhood of ∂VQi is

Ω(k). On the other hand, Lemma 2.5.4 implies that O(n1/4) boundary vertices

of either Ki,j ,Ki,j+1 are bad. Hence choosing k = cn1/4 for some large enough

constant c > 0, we can find two good vertices y1, y2 in ∂VKi,j , ∂VKi,j+1, that can be

connected to x1, x2, respectively, in the following way: we first connect yi to some

vertex of ∂VQi with a path of length t, and then we connect the latter vertex with

a path of length O(n1/4) lying in the t/2 neighbourhood of ∂VQi. Taking the union

of these two paths with the subpath of W connecting x1 to x2, we obtain a path of

length O(n1/4) connecting y1 to y2 that lies in Bi,j ∪Bi,j+1. We attach this path to

our collection of site-interfaces.

Consider now a site-interface Ki,j with 2 ≤ j ≤ n−1. Notice that exactly two

paths emanate from ∂Ki,j , one of which has distance O(n1/4) from the ‘rightmost’

extremal vertex of Ki,j , and the other has distance O(n1/4) from the ‘leftmost’

extremal vertex of Ki,j . The two paths may possibly overlap, separating some

vertices of ∂Ki,j from infinity. However, the distance between the ‘rightmost’ and

the ‘leftmost’ extremal vertex is Ω(
√
n) because the dimension of Bi,j that is parallel

to v1 is Ω(
√
n). We can increase the value of n if necessary to ensure that the paths
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do not overlap.

Moreover, we connect, as we may, the boundaries of consecutive site-interfaces

Ki,1,Ki+1,1 of the first column with induced paths of length O(n) disjoint from

any other site-interface, only the end-vertices of which intersect the boundary of

Ki,1,Ki+1,1.

Taking the union of all site-interfaces Ki,j and the attached paths we obtain

a graph H. Let Q be the site-interface of the graph spanned by the vertices of H.

We claim that Q has size n3(1 − o(1)), and boundary size between (r − ε′)|Q| and

(r + ε′)|Q|, for some ε′ = ε + o(1). Indeed, for every site-interface Ki,j that does

not lie in the first column, if Fi,j ⊂ ∂Ki,j is the set of end-vertices of the attached

paths that emanate from ∂Ki,j , then the site-interface of Ki,j ∪ Fi,j (which has size

n − O(n1/4)) lies in the boundary of Q. Since we have n2 − n such Ki,j , the claim

follows readily.

Each column Sk has been moved at distance O(kn) = O(n2) = o(|Q|) from

its original position. Hence |B(Q)| = o(|Q|). It remains to show that the number

of constructed interfaces Q is roughly Nn2
. Notice that we have not necessarily

used the same paths to connect our interfaces, and so given such a Q, we cannot

immediately recover all possible sequences (Ki,j) giving rise to Q. Our goal is to

restrict to a suitable subfamily of Kn2
.

We claim that there are only sub-exponentially many in n3 possibilities for

the attached paths. Recall that all elements of K have the same extremal vertices.

The end-vertices of every attached path have distance O(n1/4) from a pair of ex-

tremal vertices. Using the polynomial growth of G, we conclude that there are only

polynomially many choices in n for each end-vertex. Moreover, the paths connecting

interfaces of the first column have length O(n), and the remaining paths have length

O(n1/4). There are at most ∆O(n) choices for each path connecting site-interfaces

of the first column, and at most ∆O(n1/4) choices for each of the remaining paths,

because any path starting from a fixed vertex can be constructed sequentially, and

there are at most ∆ choices at each step. In total, there are ∆O(n9/4) possibilities

for the attached paths. This proves our claim.

On the other hand, there are at least Nn2
sequences (Ki,j) ∈ Kn2

, hence for a

subfamily of Kn2
of size at least Nn2

/∆O(n9/4), we have used exactly the same paths.

Let us restrict to that subfamily. Since we have fixed the paths connecting the Ki,j ,

if we delete every vertex of the attached paths except for their end-vertices, then

we can ‘almost’ reconstruct all site-interfaces producing Q. To be more precise, if

(Ki,j) and (K ′i,j) are two sequences producing the same Q, then the site-interfaces of

Ki,j∪Fi,j and K ′i,j∪Fi,j coincide. By Lemma 2.5.6 below, if we fix a sequence (Ki,j)
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producing Q, then for each i, j with j > 1, there are sub-exponentially many in n

possible K ′i,j as above. For each of the remaining i, j there are at most exponentially

many in n possible K ′i,j as above since there are at most exponentially many site-

interfaces in total. Therefore, each Q can be constructed by sub-exponentially many

in n3 sequences (Ki,j). We can now deduce that we constructed roughly Nn2
site-

interfaces Q, and taking limits we obtain b̃r = br, as desired.

We now prove the lemma mentioned in the above proof.

Lemma 2.5.6. Let G be a planar quasi-transitive lattice. Let P be a site-interface

of size n in G, and F ⊂ ∂V P . Assume that the site-interface of P ∪ F has size

at least n − O(n3/4). Then the number of site-interfaces P ′ of size n such that the

site-interfaces of P ∪ F and P ′ ∪ F coincide, is nO(n3/4).

Proof. Consider a site-interface P ′ of size n such that the site-interface X of P ∪F ,

and the site-interface of P ′ ∪ F coincide. Let k be the size of P ′ \ X. By our

assumption k = O(n3/4). Each connected component of P ′ \X is incident to some

vertex of P , hence every vertex of P ′ \ X has distance O(n3/4) from P . By the

polynomial growth of G, the number of vertices at distance O(n3/4) from P is at

most m for some m = O(n3/2). There are(
m

k

)
≤ mk = nO(n3/4)

subsets of size k containing vertices having distance O(n3/4) from P . Therefore,

there are nO(n3/4) site-interfaces P ′ as above.

We can now prove the main results of this section.

Proof of Theorem 2.5.1. We first prove that

b∗r ≥ br. (2.13)

Combined with (2.11) this will easily yield the desired equality.

Assume first that G is a planar quasi-transitive lattice. Let n ∈ N, r > 0,

ε > 0, and choose P ∈ In,r,ε. By Proposition 2.5.5, we may assume that P satisfies

|B(P )| = o(|P |) = o(n). Recall that B(P ) contains P ∪ ∂P in its interior. It is not

hard to see that there is a cycle C at a bounded distance from P that separates

B(P ) from infinity, and has size O(|B(P )|). Arguing as in the proof of Lemma 2.5.5,

we find a good vertex u ∈ ∂V P , and an induced path Π connecting u to C that has

size O(n1/4), and does not contain any other vertex of P ∪ ∂P .
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Figure 2.6: The vertices of Q are depicted with big dots, and the vertices of ∂Q are depicted
with smaller dots. The edges spanned by P and C are depicted in solid lines, while the edges
of Π are depicted in dashed lines.

Our aim now is to find a suitable inner-interface containing the site-interface

of P ∪ {u}, which we denote by X. Since the cycle space of G is generated by

its triangles, the minimal vertex cut of P spans a cycle surrounding P and the

remaining boundary vertices. Hence ∂V P \{u} spans a connected graph. The graph

Γ := X ∪ Π ∪ C surrounds an open subset of the plane that contains ∂V P \ {u}.
Consider the connected component Y of ∂V P \ {u} in this open set. Write Q for

the inner-interface of Y , i.e. the boundary of the site-interface of Y .

We claim that Q contains X and is contained in X ∪ Π ∪ C. To see that Q

contains X, notice that all vertices of X are incident to Y because G is a triangu-

lation, and lie in the external face of Y . Therefore, X is contained in Q. Moreover,

if Q contains some vertex not in X ∪ Π ∪ C, then we can add this vertex to Y to

obtain an even larger connected graph. This contradiction shows that there is no

such vertex and proves our claim.

We now consider the case where G = Td. We can let C be the set of vertices

in the boundary of B(P ), and Π be a path of length 2 connecting an extremal vertex

of B(P ) to P . Let Y be the subgraph of G surrounded by P ∪Π∪C. It is clear that

Y is connected. Write Q for the inner-interface of Y . Every vertex of P is incident

to Y and lies in the infinite component of G \ Y . Hence P lies in Q. Furthermore,

Q contains only vertices of P ∪Π ∪ C.

In both cases, Q has roughly n vertices and surface-to-volume ratio between

(r− ε′)|Q| and (r+ ε′)|Q| for some ε′ = ε+ o(1). Moreover, each Q can be obtained
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from only sub-exponentially many P . This proves (2.13). Combining this with

(2.11), we obtain the following:

b∗r ≥ br = (b∗1/r)
r ≥ br1/r = b∗r ,

where both inequalities coincide with (2.13) and both equalities with (2.11). Thus

we must have equality all along, and in particular br = br1/r.

We now prove Theorem 2.5.2.

Proof of Theorem 2.5.2. Choose P ∈ In,r,ε such that |B(P )| = o(|P |) = o(n). Define

C as in the proof of Theorem 2.5.1, and connect ∂P to C with a path Π of minimal

length. Notice that (∂EP )∗ is a cycle, hence (∂P \ E(Π))∗ is a connected graph.

Let X be the connected component of (∂P \ E(Π))∗ in G∗ that is sur-

rounded by P ∪ Π ∪ C, and let Q be the interface of X. Arguing as in the

proof of Theorem 2.5.1, we see that P ∗ lies in ∂Q, Q has size roughly n, and

(r − ε′)|Q| ≤ |∂Q| ≤ (r + ε′)|Q| for some ε′ = ε+ o(1).

Let b•r(G) be defined like br(G) except that we now consider inner-interfaces.

Thus we have

b∗r(G) = b•r(G
∗) (2.14)

by the definitions. The above construction now yields the inequality b•r(G) ≥ br(G).

Combining this with (2.11), which we rewrite using (2.14), we obtain

b•r(G) ≥ br(G) = (b•1/r(G
∗))r ≥ b•1/r(G

∗)r = b•r(G),

as above, and again equality holds all along. In particular,

br(G) = b•1/r(G
∗)r = (b∗1/r(G))r.

The arguments in the proofs of Lemma 2.5.3 and Theorem 2.5.5 can be used

to prove Lemma 2.4.2.

Proof of Lemma 2.4.2. The inequality b◦r ≤ b�r is obvious.

For the reverse inequality, we will focus on the case of site-interfaces. We will

construct an array of a certain number of boxes of possibly different sizes, then place

the component site-interfaces of an arbitrary site-multi-interface inside the boxes,

and connect them with short paths to obtain a new site-interface.

We claim that the number of choices for the shapes of the components of

any site-multi-interface of size n grows sub-exponentially in n. Indeed, the number
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of choices for the shape of any site-interface grows polynomially in its size. The-

orem 1.2.3 shows that there are most s
√
n choices for the component sizes of any

site-multi-interface of size n, where s > 0 is a constant. Hence it suffices to show

that a site-multi-interface of size n comprises O(
√
n) site-interfaces.

Let X = (. . . , x−1, x0 = o, x1, . . .) be a quasi-geodesic in G containing o and

let X+ = (x0, x1, . . .) be the one of the two 1-way infinite subpaths of X starting

from o. Consider a site-multi-interface P of size n. As proved in Proposition 1.4.4,

P contains at least one of the first fn vertices of X+. We enumerate the component

site-interfaces P1, P2, . . . , Pk of P according to the first vertex of X+ that they

contain. As the Pi’s are disjoint, we have li < li+1, where li is the index of the first

vertex of X+ that Pi contains. Since l1 ≥ 0, we deduce that li ≥ i − 1 for every i.

Hence, we obtain

|Pi| ≥ (i− 1)/f

for every i = 1, 2, . . . , k, which implies that

n =

k∑
i=1

|Pi| ≥
k∑
i=1

(i− 1)/f =
k(k − 1)

2f
.

The latter implies that k = O(
√
n), hence there are (sn)O(

√
n) choices for the shapes

of the components site-interfaces of any site-multi-interface of size n.

We can now restrict to a subfamily K ⊂MIn,r,ε of size at least

N :=
cn,r,ε

(sn)O(
√
n)

such that all site-multi-interfaces ofK have the same component sizes {n1, n2, . . . , nk},
and corresponding component site-interfaces have the same shape. Let B1, . . . , Bk

be the boxes of the component site-interfaces. Instead of a grid, we construct an

array by placing the above k boxes next to each other. Given an element of K, we

place its component site-interfaces in their boxes. After moving the boxes, if neces-

sary, we connect them with short paths, as described in the proof of Lemma 2.5.5.

Arguing as in the proof of Lemma 2.5.5, we obtain b◦r ≥ b�r , as desired.

Since Ppc(|So| = n) does not decay exponentially in n, we conclude

Corollary 2.5.7. Consider site percolation on a planar quasi-transitive lattice in

Rd satisfying (2.8). Then P1−pc(|So| = n) does not decay exponentially in n.

Proof. Notice that r(1− pc) = 1/r(pc). The fact that Ppc(|So| = n) does not decay
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exponentially in n implies that br(pc) = f(r(pc)). Theorem 2.5.1 shows that

br(1−pc) = b
1/r(pc)
r(pc)

= f(r(pc))
1/r(pc) = f(r(1− pc)).

Using Theorem 2.1.1 we conclude that P1−pc(|So| = n) does not decay exponentially

in n.

2.6 Continuity

In this section, we study the analytical properties of br. To avoid repeating the

arguments in the proof of Lemma 2.5.5 and considering cases according to whether

we study interfaces or site-interfaces, we will prove the results for interfaces in Zd

and Td.
We first prove that the lim sup in the definition of br can be replaced by lim.

Proposition 2.6.1. Let G ∈ S. Then for every r such that br > 1 and for all but

countably many ε > 0 the limit limn→∞ cn,r,ε(G)1/n exists.

Proof. We will first show that

lim sup
n→∞

c1/n
n,r,ε = lim inf

n→∞
c1/n
n,r,ε

holds for any ε > 0 at which the function lim infn→∞ c
1/n
n,r,ε is continuous. Since

lim infn→∞ c
1/n
n,r,ε is an increasing function of ε, its points of discontinuity are count-

ably many Rudin [1964].

Let ε be a point of continuity of lim infn→∞ c
1/n
n,r,ε and n ∈ N. By combining

elements of In,r,ε we will construct interfaces of arbitrarily large size and surface-to-

volume ratio between r− ε′ and r+ ε′ for some ε ≤ ε′ = ε+ o(1). Let 0 ≤ s ≤ n+ 3

be an integer. We repeat the idea of Proposition 2.5.3 but instead of a grid, we

construct an array of m boxes for some m > 0. We place inside each box an element

of In,r,ε and after moving the boxes, if necessary, we connect consecutive interfaces

using paths of length 4, similarly to the proof of Proposition 2.5.3. We also attach

a path of length s + 4, that is incident to the last interface and disjoint from any

of the previous interfaces. In this way, we produce an element Q of Ik,r,ε′ , where

ε′ = ε+o(1) and k is any integer of the form k = m(n+4)+s. There are roughly cmn,r,ε

choices for Q. Since s ranges between 0 and n+ 3, for every fixed n, all but finitely

many k can be written in this form for some m ≥ 1. Taking the k-th root and then

the limit as m→∞ we conclude that lim infk→∞ c
1/k
k,r,ε′ ≥ c

1/(n+4)
n,r,ε . Letting n→∞

we obtain lim infn→∞ c
1/n
n,r,ε ≥ lim supn→∞ c

1/n
n,r,ε. The above inequality follows from
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the fact that ε is a point of continuity of lim infn→∞ c
1/n
n,r,ε. Hence lim infn→∞ c

1/n
n,r,ε =

lim supn→∞ c
1/n
n,r,ε, as desired

The following proposition follows directly from the definition of br:

Proposition 2.6.2. Let G ∈ S. Then br(G) is an upper-semicontinuous function

of r.

Proof. Let ε > 0 and 0 < δ < ε/2. Then for every r > 0 and for every s with

|r − s| < ε/2, the interval (s − δ, s + δ) is contained in (r − ε, r + ε), and the site-

interfaces P with |∂P |/|P | ∈ (s−δ, s+δ) are counted in the set of those site-interfaces

with |∂P |/|P | ∈ (r − ε, r + ε) as well. Hence, lim supn→∞ c
1/n
n,r,ε ≥ lim supn→∞ c

1/n
n,s,δ.

Taking limits as δ → 0, s→ r and finally ε→ 0, we obtain br ≥ lim sups→r bs. The

latter shows that br is an upper-semicontinuous function of r.

Next, we prove that br is a log-concave function of r:

Proposition 2.6.3. Let G ∈ S. Then for any t ∈ [0, 1] and any r, s such that

br(G), bs(G) > 1, we have btr+(1−t)s(G) ≥ br(G)tbs(G)1−t.

Proof. Pick an ε such that both limn→∞ c
1/n
n,r,ε and limn→∞ c

1/n
n,s,ε exist. Let (pm/qm)

be a sequence of rational numbers converging to t such that qm → ∞. Con-

sider subfamilies K, K ′ of Ipm,r,ε and Iqm−pm,s,ε, where the elements of both K

and K ′ have the same shape (as defined in the proof of Proposition 2.5.3), and

|K| ≥ cpm,r,ε/P (pm), |K ′| ≥ cqm−pm,s,ε/P (qm − pm) for some polynomial P (x).

Note that the elements of K and K ′ share the same boxes B and B′, respectively.

Place two interfaces, one from K and another from K ′, in an array of two boxes

parallel to B and B′, and move the boxes, if necessary, in order to connect the

interfaces with short paths. In this way, we obtain an interface Q of size roughly

qm and surface-to-volume ratio roughly tr + (1 − t)s. Notice that we have at least

cpm,r,εcqm−pm,s,ε/
(
P (pm)P (qm − pm)

)
choices for Q. Taking the k-th root of the

latter expression, where k = |Q|, and letting m→∞ gives

lim
n→∞

ct/nn,r,ε lim
n→∞

c(1−t)/n
n,s,ε .

Letting ε→ 0 along a sequence of points such that both limn→∞ c
1/n
n,r,ε, limn→∞ c

1/n
n,s,ε

exist, we obtain btr+(1−t)s ≥ btrb1−ts as desired.

We expect Proposition 2.6.3, and as a result Theorem 2.6.4 below, to hold in

much grater generality than G ∈ S, namely for all 1-ended Cayley graphs. In order

to be able to put several interfaces close to each other to connect them with short

96



paths as in the above proof, it could be handy to use [Bandyopadhyay et al., 2010,

Lemma 6].

Let I be the closure of the set of r such that br > 1. Proposition 2.6.3,

combined with Proposition 2.6.2, easily imply

Theorem 2.6.4. Let G ∈ S. Then br(G) is a continuous function of r on I.

Proof. By Proposition 2.6.3, I is an interval, and the only possible r ∈ I such that

br = 1, are its endpoints. For every r in I, we have lim sups→r bs ≤ br by Pro-

position 2.6.2. Using Proposition 2.6.3 for t = 1/2 we obtain lim infs→r b(r+s)/2 ≥√
br lim infs→r bs for every r such that br > 1. This immediately implies that

lim infs→r bs ≥ br and thus lims→r bs = br.

On the other hand, if br = 1 for some of the endpoints of I, then Pro-

position 2.6.2 and the fact that bs > 1 for s in the interior of I, give that

lim
s→r
s∈I

bs = 1.

Therefore, br is a continuous function on I.

Having proved that br is a continuous function, the next natural question is

whether it is differentiable. It turns out that this holds everywhere except, perhaps,

on a countable set.

Corollary 2.6.5. Let G ∈ S. Then br(G) is differentiable for all but countably

many r.

Proof. By Proposition 2.6.3, log br is a concave function, hence differentiable every-

where except for a countable set Rockafellar [2015]. It follows immediately that this

holds for br as well.

2.7 Growth rates of lattice animals in Zd

In this section, we exploit the machinery developed above in order to obtain bounds

on the exponential growth rates of lattice (site) animals in Zd.

A lattice animal in a graph G is a connected subgraph of G containing o. A

lattice tree in G is a lattice animal that is also a tree. Let an(G) be the number

of all lattice animals of G with n edges, and let tn(G) be the number of all lattice

trees of G with n edges. It is well-known that both a(Zd) := limn→∞ an(Zd)1/n
and

t(Zd) := limn→∞ tn(Zd)1/n
exist Klarner [1967]; Klein [1981].
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A lattice site-animal in G is a set of vertices of G containing o that spans a

connected graph. A lattice site tree in G is a lattice site-animal in G that spans a

tree. Let ȧn(G) be the number of all lattice site-animals of G with n vertices, and

let ṫn(G) be the number of all lattice trees of G with n vertices. We let ȧ(G) :=

limn→∞ ȧn(G)1/n and ṫ(G) := limn→∞ ṫn(G)
1/n

whenever the limits exist.

Our results allow us to translate any upper bound on ṗc(G) into a lower

bound on ȧ(G), and conversely, any upper bound on ȧ(G) into a lower bound on

ṗc(G). Indeed, we just remark that

ȧ(G) ≥ ḃ(G) ≥ ḃr(ṗc(G)) = f(r(ṗc(G))) (2.15)

for every lattice G, where the two inequalities are obvious from the definitions (inter-

faces are a species of lattice animal), and the last equality is given by Theorem 2.4.7.

To translate bounds on ṗc(G) into bounds on ȧ(G) and vice-versa, we just remark

that f(r) is monotone increasing in r and r(p) is monotone decreasing in p. Inequal-

ity (2.15) and the above reasoning applies verbatim to pc(G) and a(G).

In two dimensions we cannot hope to get close to the real value of ȧ(G) with

this technique, as we are only enumerating the subspecies of site-interfaces.3 But

as we will see in the next section, our lower bounds become asymptotically tight as

the dimension d tends to infinity. In Section 2.8 we will argue conversely: we will

prove upper bounds on ȧ(Zd) and plug them into (2.15) to obtain lower bounds on

ṗc(Zd).

2.7.1 Lattice (site) animals in Zd

We start by computing the first terms of the 1/d asymptotic expansion of interfaces.

Theorem 2.7.1. The exponential growth rate of the number of interfaces of Zd

satisfies b(Zd) = 2de− 3e

2
−O(1/d).

Proof. We claim that for any interface P of Zd we have |∂P | ≤ (2d − 2)|P | + 2d.

Indeed, summing vertex degrees gives
∑

u∈V (P ) deg(u) ≥ 2|P |+ |∂P |, where deg(u)

is the degree of u in the graph P ∪∂P , because the edges of P are counted twice, and

the edges of ∂P are counted at least once. Since deg(u) ≤ 2d and V (P ) ≤ |P |+ 1,

3Still, when G is the hexagonal (aka. honeycomb) lattice H, the best known lower bound was
ȧ(H) ≥ 2.35 Barequet et al. [2019a]; Rands and Welsh [1981], until this was recently improved to
ȧ(H) ≥ 2.8424 Barequet et al. [2019b]. Plugging a numerical value for ṗc(H), for which the most
pessimistic (i.e. highest) estimate currently available is about 0.69704 Jacobsen [2014], we obtain
ȧ(H) ≥ 2.41073. If those approximations were rigorous, this would have improved the bounds of
Barequet et al. [2019a]; Rands and Welsh [1981].
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we get

2|P |+ |∂P | ≤
∑

u∈V (P )

deg(u) ≤ 2dV (P ) ≤ 2d|P |+ 2d.

By rearranging we obtain the desired inequality. It follows that br = 0 for every

r > 2d − 2 which combined with Proposition 2.4.4 and the fact that f(r) is an

increasing function of r gives

br(Zd) ≤
(2d− 1)(2d−1)

(2d− 2)(2d−2)

for r ≥ 0. Using Proposition 2.4.3 we obtain that

b(Zd) ≤ (2d− 1)(2d−1)

(2d− 2)(2d−2)
.

Notice that for every r > 0,

(1 + r)1+r

rr
= (1 + r)

(
1 +

1

r

)r
= (1 + r) exp

(
r log

(
1 +

1

r

))
.

Using the Taylor expansion log
(

1 +
1

r

)
=

1

r
− 1

2r2
+

1

3r3
−O(1/r4) we obtain

(1 + r)1+r

rr
= (1 + r) exp

(
1− 1

2r
+

1

3r2
−O(1/r3)

)
as r →∞. Now the Taylor expansion

exp(1 + x) = e
(

1 + x+
x2

2
+O(x3)

)
= e
(

1− 1

2r
+

11

24r2
−O(1/r3)

)
,

where x = − 1

2r
+

1

3r2
−O(1/r3), gives

(1 + r) exp
(

1− 1

2r
+

1

3r2
−O(1/r3)

)
= (1 + r)e

(
1− 1

2r
+

11

24r2
−O(1/r3)

)
=

er +
e

2
−O(1/r).

Consequently,

(1 + r)1+r

rr
= er +

e

2
−O(1/r). (2.16)
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Plugging r = 2d− 2 in (2.16) we deduce that

(2d− 1)(2d−1)

(2d− 2)(2d−2)
= 2de− 3e/2−O(1/d). (2.17)

Moreover, we have b(Zd) ≥ brd(Zd) and brd(Zd) = f(rd), where rd := r(pc(Zd)). It

has been proved in Hara and Slade [1995]; Hofstad and Slade [2006] that

pc(Zd) =
1

2d
+

1

(2d)2
+

7

2(2d)3
+O(1/d4), (2.18)

hence

rd =
1− pc(Zd)
pc(Zd)

=
16d4

8d3 + 4d2 + 7d+O(1)
− 1.

We can easily compute that

16d4

8d3 + 4d2 + 7d+O(1)
= 2d− 8d3 + 14d2 +O(d)

8d3 + 4d2 + 7d+O(1)
=

2d− 8d3 + 4d2

8d3 + 4d2 + 7d+O(1)
−O(1/d)

and
8d3 + 4d2

8d3 + 4d2 + 7d+O(1)
=

1

1 +O(1/d2)
= 1−O(1/d2).

Hence rd = 2d− 2−O(1/d), which implies that

brd(Z
d) =

(1 + rd)
1+rd

rrdd
= 2de− 3e/2−O(1/d).

Therefore, b(Zd) = 2de− 3e

2
−O(1/d) as desired.

We remark that the asymptotic expansions of
(2d− 1)(2d−1)

(2d− 2)(2d−2)
and brd differ in

their third terms, and so we are unable to compute the third term in the asymptotic

expansion of b(Zd). It follows from the proof of Theorem 2.7.1 above that b(Zd) −
brd(Zd) = O(1/d), i.e. brd is a good approximation of b(Zd).

In the next theorem, using Theorem 2.7.1 and Kesten’s argument Grimmett

[1999], we obtain the first two terms in the asymptotic expansion of a(Zd).

Theorem 2.7.2. a(Zd) = 2de− 3e

2
−O(1/d).

Proof. Let C be a connected subgraph containing o, and let ∂C be the set of edges

in E(Zd) \ E(C) with at least one endpoint in C. Arguing as in the proof of
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Theorem 2.7.1, we obtain that |∂C| ≤ (2d − 2)|E(C)| + 2d. It follows that for

every p ∈ [0, 1].

an(Zd)pn(1− p)(2d−2)n+2d ≤ Pp(|E(Co)| = n) ≤ 1.

Choosing p = 1
2d−1 and dividing by pn(1− p)(2d−2)n+2d, we obtain that

a(Zd) ≤ (2d− 1)(2d−1)

(2d− 2)(2d−2)
= 2de− 3e/2−O(1/d).

Since b(Zd) ≤ a(Zd), the desired assertion follows from Theorem 2.7.1.

The behaviour of a(Zd) and t(Zd) has been extensively studied in the physics

literature. The expansions

a(Zd) = σe exp

(
−1

2

1

σ
−
(8

3
− 1

2e

) 1

σ2
−
(85

12
− 1

4e

) 1

σ3
−
(931

20
− 139

48e
− 1

8e2

) 1

σ4

−
(2777

10
+

177

32e
− 29

12e2

) 1

σ5
+ · · ·

)
and

t(Zd) = σe exp

(
−1

2

1

σ
− 8

3

1

σ2
− 85

12

1

σ3
− 931

20

1

σ4
− 2777

10

1

σ5
+ · · ·

)
, (2.19)

where σ = 2d − 1, were reported in Gaunt and Peard [2000], Harris [1982]; Peard

and Gaunt [1995], respectively, but without any rigorous bounds on the error terms.

Miranda and Slade [2011] proved that both a(Zd) and t(Zd) are asymptotic to 2de.

The first three terms of a(Zd) and t(Zd) have been computed rigorously by the same

authors in Miranda and Slade [2013].

Since any lattice tree is an interface, we obtain that t(Zd) ≤ b(Zd) ≤ a(Zd).
Although the first two terms in the asymptotic expansions of each of them are the

same, we believe that b(Zd) lies strictly between t(Zd) and a(Zd).
Using (2.18) we can easily compute the first three terms of the 1/d expan-

sion of brd(Zd), and check that they coincide with the corresponding terms of the

1/d expansion of t(Zd). However, we expect that the fourth term of the asymp-

totic expansion of brd(Zd) is strictly smaller than the fourth term of the asymptotic

expansion of t(Zd), as suggested by (2.19) and the asymptotic expansion

pc(Zd) =
1

σ
+

5

2σ3
+

15

2σ4
+

57

σ5
+ · · ·
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that is reported in Gaunt and Ruskin [1978] without rigorous proof. This implies the

strict inequalities brd(Zd) < t(Zd) and brd(Zd) < b(Zd) for every large enough value

of d. We expect that these strict inequalities hold for every d > 1. For example, we

know that br2(Z2) = 4 because pc(Z2) = 1/2 Kesten [1980]. On the other hand, for

small enough numbers n, the value of tn(Z2) is known exactly, and a concatenation

argument yields the lower bound t(Z2) ≥ 4.1507 Gaunt et al. [1982]; Whittington

and Soteros [1990].

We remark that for site percolation the expansion

ṗc(Zd) =
1

σ
+

3

2σ2
+

15

4σ3
+

83

4σ4
+ · · · (2.20)

was reported in Gaunt et al. [1976] without any rigorous bounds on the error terms.

For site-interfaces of Zd, we prove the following weaker asymptotic expansion.

Theorem 2.7.3. The exponential growth rate b(Zd) of the number of site-interfaces

of Zd satisfies b(Zd) = 2de−O(1).

Proof. Similarly to the proof of Theorem 2.7.1, we will show that for any site-

interface P of Zd we have |∂P | ≤ (2d− 2)|P |+ 2. Let k be the number of edges of

the graph spanned by P , and let l be the number of edges with one end-vertex in

P and one in ∂P . Notice that k ≥ |P | − 1 and l ≥ |∂P |. Arguing as in the proof of

Theorem 2.7.1, we obtain

2(|P | − 1) + |∂P | ≤ 2k + l ≤ 2d|P |.

By rearranging we obtain the desired inequality. Arguing as in the proof of Theo-

rem 2.7.1, we obtain

b(Zd) ≤ (2d− 1)(2d−1)

(2d− 2)(2d−2)
= 2de−O(1).

Moreover, we have that b(Zd) ≥ bṙd(Zd) and bṙd(Zd) = f(ṙd), where ṙd := r(ṗc(Zd)).
Hara and Slade [1995] proved that ṗc(Zd) =

(
1 +O(1/d)

)
/2d, hence

ṙd =
1− ṗc(Zd)
ṗc(Zd)

=
2d

1 +O(1/d)
− 1.

Using (2.16) we obtain

bṙd(Z
d) =

(1 + ṙd)
1+ṙd

ṙṙdd
=

2de

1 +O(1/d)
− e/2−O(1/d).
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Since
1

1 +O(1/d)
= 1−O(1/d), we have

2de

1 +O(1/d)
− e/2−O(1/d) = 2de

(
1−O(1/d)

)
− e/2−O(1/d) = 2de−O(1).

Therefore, bṙd(Zd) = 2de−O(1), which implies that b(Zd) = 2de−O(1) as desired.

Arguing as in the proof of Theorem 2.7.2, we can easily deduce that

Theorem 2.7.4. ȧ(Zd) = 2de−O(1).

Barequet, Barequet and Rote proved the weaker result ȧ(Zd) = 2de − o(d),

and they conjectured that ȧ(Zd) = 2de − 3e + O(1/d) in Barequet et al. [2010]4.

Under the assumption that ṗc(Zd) =
1

2d
+

5

2(2d)2
+O(1/d3) holds, which is suggested

by (2.20), our method gives the lower bound ȧ(Zd) ≥ 2de− 3e+O(1/d). Moreover,

assuming that both ṗc(Zd) =
1

2d
+

5

2(2d)2
+O(1/d3) and ȧ(Zd) = 2de−3e+O(1/d)

hold, we obtain b(Zd)− bṙd(Zd) = O(1/d).

2.8 Upper bounds for lattice site animals

In the previous section we used Kesten’s argument in order to upper bound ȧ(Zd).
Another method that gives the same upper bounds for ȧ(Zd) was introduced by Eden

[1961]. Eden described a procedure that associates in a canonical way, a spanning

tree and a binary sequence to every lattice site animal. This reduces the problem of

counting lattice site animals to a problem of counting binary sequences with certain

properties. Klarner and Rivest [1973] enhanced Eden’s method in the case of Z2,

proving that ȧ(Zd) ≤ 4.6496. Recently, Barequet and Shalah [2019] extended this

enhancement to higher dimensions, obtaining ȧ(Zd) ≤ 2de− 2e+ 1/(2d− 2).

In this section, we will utilise Eden’s procedure to reduce the gap between

the aforementioned inequality and the conjectured asymptotic expansion ȧ(Zd) =

2de− 3 +O(1/d) mentioned in the previous section.

Theorem 2.8.1. We have ȧ(Zd) ≤ 2de− 5e/2 +O(1/ log(d)).

Our result improves the bounds of Barequet and Shalah [2019] for every large

enough d. In order to prove Theorem 2.8.1, we will show that a typical lattice site

4In fact, Barequet et al. [2010] offers the more detailed conjecture ȧ(Zd) = 2de − 3e − 31e
48d

+
O(1/d2).
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animal has surface-to-volume ratio that is bounded away from its maximal possible

value, namely 2d− 2.

We will need the following definitions. Given a lattice site animal X of Zd,
we write ∂X for the set of vertices of Zd \ X that have a neighbour in X. We let

ȧn,r,ε denote the number of lattice site animals X of Zd containing o with |X| = n

and (r − ε)n ≤ |∂X| ≤ (r + ε)n, and we define

ȧr = ȧr(Zd) := lim
ε→0

lim sup
n→∞

ȧn,r,ε(Zd)
1/n
.

As mentioned in the Introduction, using Kesten’s argument, Hammond [2005] proved

that

ȧr ≤ f(r). (2.21)

for every r > 0.

For the proof of Theorem 2.8.1, we will need the next lemma which bounds

ȧr(Zd) for r close to 2d− 2.

Lemma 2.8.2. Consider some 0 ≤ x < 1, and let y = min{x, 1/2}. Then

ȧ2d−2−x(Zd) ≤ (2d− 1)2d−1

yy(1− y)1−yxx(2d− 1− x)2d−1−x .

In particular, ȧ2d−2(Zd) = 1.

Proof. Let us start by introducing some necessary definitions. The lexicographical

ordering of Zd is defined as follows. We say that a vertex u = (u1, u2, . . . , ud) is

smaller than a vertex v = (v1, v2, . . . , vd) if there is some i = 1, 2, . . . , d such that

ui ≤ vi and uj = vj for every j < i. We also order the directed edges of the form −→ou
in an arbitrary way. The latter ordering induces by translation a natural ordering of

the set of directed edges with a common initial end-vertex v, where v is any vertex

of Zd.
Consider some numbers n ∈ N, and ε > 0 with x + ε < 1. We will start by

describing Eden’s procedure. Let X be a lattice site animal of size n in Zd containing

o, such that (2d−2−x−ε)n ≤ |∂X| ≤ (2d−2−x+ε)n. We will assign to X a unique

binary sequence S = S(X) = (s1, s2, . . . , s(2d−1)n−d+1) of length (2d−1)n−d+1. To

this end, we will reveal the vertices of X one by one in a specific way. Let v1 be the

lexicographically smallest vertex of X, and notice that v1 has at most d neighbours

in X. For every i = 1, . . . , d, we let si take the value 1 if the i-th directed edge

of the form −→u1v in the above ordering lies in the set of directed edges
↔

E(X) of X,
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and 0 otherwise. The ordering of these directed edges induces an ordering on the

neighbours of u1 in P . We reveal the neighbours of u1 in X one by one according

to the latter ordering, and we let uj+1 be the j-th revealed vertex. Now we proceed

to the lexicographically smaller neighbour of u1 lying in X, denoted w. The valid

directed edges starting from w are those not ending at u1, and there are exactly

2d − 1 of them. The ordering of the whole set of directed edges starting from w

induces an ordering of the set of valid directed edges starting from w. For every

i = d+ 1, . . . , 3d−1, we let si take the value 1 if the (i−d)-th valid directed edge of

the form −→wv lies in
↔

E(X) and v has not been revealed so far (the latter is always true

in this step but not necessarily in the following steps), and 0 otherwise. We reveal

the corresponding neighbours of w in X one by one, and we label them uk, uk+1 . . . ,

where k is the smallest index not previously used. Now we proceed as before up to

the point that all vertices of X have been revealed, and we set to 0 all the remaining

entries of S that have not already been set to some value. Notice that S contains

exactly n− 1 1’s since P has size n.

The above construction defines naturally a spanning subtree T of X rooted

at u1, by attaching an edge ukul, k < l to T when ul is one of the neighbours of

uk revealed when considering the valid directed edges starting from uk. Given an

edge uv of T with u being the ancestor of v, we say that uv is a turn of T if uv is

perpendicular to the edge zu of T , where z is the (unique) ancestor of u. We denote

by t the number of turns of T . We claim that

|∂X| ≤ (2d− 2)n− t+ 2. (2.22)

Indeed, for every k = 1, 2, . . . , n, let Tk be the subtree of T with V (Tk) = {u1, u2, . . . ,

uk}. Let also ∂Tk be the set of vertices in Zd \{u1, u2, . . . , uk} having a neighbour in

{u1, u2, . . . , uk}. Write tk for the number of turns of Tk. We will prove inductively

that

|∂Tk| ≤ (2d− 2)|Tk| − tk + 2

for every k = 1, 2, . . . , n. The claim will then follow once we observe that |∂X| =

|∂Tn|, |X| = |Tn| = n and t = tn. For k = 1, the assertion clearly holds. Assume

that it holds for some 1 ≤ k < n. Notice that we always have |Tk+1| = |Tk|+ 1 and

|∂Tk+1| ≤ |∂Tk| + 2d − 2 because uk+1 lies in ∂Tk and at most 2d − 1 neighbours

of uk+1 lie in ∂Tk+1. If tk+1 = tk, then we get |∂Tk+1| ≤ (2d − 2)|Tk+1| − tk+1 + 2

by our induction hypothesis, as claimed. Suppose that tk+1 = tk + 1. Consider the

ancestor ul of uk+1 and the ancestor um of ul. Since by adding uk+1 to Tk we create

one more turn, uk+1, ul and um are three vertices of a common square. Let w be
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the fourth vertex. Notice that w lies in Tk ∪ ∂Tk. Thus, at most 2d− 2 neighbours

of uk+1 lie in ∂Tk+1 \∂Tk. In this case, we have |∂Tk+1| ≤ |∂Tk|+2d−3. Therefore,

|∂Tk+1| ≤ (2d− 2)|Tk+1| − tk+1 + 2, as desired. This completes the proof of (2.22).

We will now utilise (2.22) to prove the statement of the lemma. Our assump-

tion (2d − 2 − x − ε)n ≤ |∂X| combined with (2.22) implies that t ≤ (x + ε)n + 2.

Hence it suffices to find an upper bound for the number of lattice site animals Q of

size n with t ≤ q := (x+ ε)n+ 2. We claim that the number cn of such lattice site

animals of size n satisfies

cn ≤
d∑
i=1

min{q,n−i−1}∑
j=0

(
d

i

)(
(2d− 1)(n− 1)

j

)(
n− 1

n− i− j − 1

)
. (2.23)

Indeed, let i be number of neighbours of u1 in Q, and let j be the number of 1’s

contributing to the number of turns. Let us apply the following steps in turn:

(i) Set i entries of (s1, . . . , sd) equal to 1,

(ii) Choose which entries of S(Q) contribute to the number of turns,

(iii) Choose which bits, except for the first one, contain an additional 1.

After the first two steps, we have specified which entries of S(Q) are set to 1, except

for those that do not contribute to the number of turns. In order to specify which

of the remaining entries are set to 1, assume that at some step we have revealed a

vertex u of Q. Let v be the ancestor of v. Notice that there a unique edge adjacent

to u which is not vertical to uv. Hence we can determine whether this edge belongs

to Q or not by choosing whether the bit of the neighbours of u contains an additional

1 or not. Thus the three steps above uniquely determine Q. It is easy to see now

that for every i and j, there are at most(
d

i

)(
(2d− 1)(n− 1)

j

)(
n− 1

n− i− j − 1

)
possibilities for Q, and so (2.23) can be obtained by summing over all possible values

of i and j.

We will now handle the sum in the right-hand side of (2.23). Since the

binomial coefficient
(
m
l

)
is an increasing function of l when l ≤ m/2, we have(

(2d− 1)(n− 1)

j

)
≤
(

(2d− 1)(n− 1)

q

)
.
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Using Stirling’s approximation m! =
(
1 + o(1)

)√
2πm(m/e)m we obtain(

(2d− 1)(n− 1)

q

)
≈ (2d− 1)(2d−1)n

(x+ ε)x+ε(2d− 1− x− ε)(2d−1−x−ε)n ,

where ≈ denotes equality up to a multiplicative constant that is O(cn) for every

c > 1. Clearly, (
n− 1

n− i− j − 1

)
≤ 2n.

It follows that

ȧn,2d−2−x,ε . 2n
(2d− 1)(2d−1)n

(x+ ε)x+ε(2d− 1− x− ε)(2d−1−x−ε)n ,

where . denotes inequality up to a multiplicative constant that is O(cn) for every

c > 1. Taking n-th roots and letting n→∞ and ε→ 0 we obtain

ȧ2d−2−x ≤ 2
(2d− 1)2d−1

xx(2d− 1− x)2d−1−x .

The above bound can be improved when x < 1/2. Suppose that x < 1/2.

We can choose ε > 0 small enough, and increase the value of n, if necessary, to

ensure that q + d < n/2. Since the binomial coefficient
(
m
l

)
is a decreasing function

of l when l ≥ m/2, for every i and j, we have(
n− 1

n− i− j − 1

)
≤
(

n− 1

n− d− q

)
,

because n− i− j − 1 ≥ n− d− q − 1 ≥ n/2. Using again Stirling’s approximation,

we deduce that (
n− 1

n− d− q − 1

)
≈
(
(x+ ε)x+ε(1− x− ε)1−x−ε)−n.

We can now conclude that

ȧn,2d−2−x,ε .
(2d− 1)(2d−1)n

(x+ ε)(2x+2ε)n(1− x− ε)(1−x−ε)n(2d− 1− x)(2d−1−x)n
.

Taking n-th roots and letting n→∞ and ε→ 0 we obtain

ȧ2d−2−x ≤
(2d− 1)2d−1

x2x(1− x)1−x(2d− 1− x)2d−1−x .
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Since site interfaces are also lattice site animals, we obtain

Corollary 2.8.3. Consider some 0 ≤ x < 1, and let y = min{x, 1/2}. Then

b2d−2−x(Zd) ≤ (2d− 1)2d−1

yy(1− y)1−yxx(2d− 1− x)2d−1−x .

In particular, b2d−2(Zd) = 1.

The above bounds are in agreement with our plot of br.

We are now ready to prove Theorem 2.8.1.

Proof of Theorem 2.8.1. For every 0 ≤ x ≤ 1, we let

gd(x) =
(2d− 1)2d−1

yy(1− y)1−yxx(2d− 1− x)2d−1−x ,

where y = min{x, 1/2}. It is not hard to see that there is a constant C > 0 such

that x−x ≤ C for every x ∈ [0, 1], and

1

yy(1− y)1−y ≤ C

for every y ∈ [0, 1/2]. Moreover, for every x ∈ [0, 1] we have

(2d− 1)2d−1

(2d− 1− x)2d−1−x ≤
(2d− 1)2d−1

(2d− 2)2d−1−x

by the monotonicity of 2d− 1− x as a function of x, and

(2d− 1)2d−1

(2d− 2)2d−1−x =
2d− 1

(2d− 2)1−x

(
1 +

1

2d− 2

)2d−2
≤ 2d− 1

(2d− 2)1−x e.

Thus,

gd(x) ≤ C2e
2d− 1

(2d− 2)1−x .

Since
2d− 1

(2d− 2)1−x is an increasing function of x, it follows by Lemma 2.8.2 that for

every

x ≤ z := 1− C2

log
(
2d− 2

)
we have

ȧ2d−2−x(Zd) ≤ gd(x) ≤ C2e
2d− 1

(2d− 2)1−x ≤ C
2e

2d− 1

(2d− 2)1−z = C2e1−C2
(2d− 1).
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Using the standard inequality eC
2 ≥ 1 + C2 we obtain e−C

2 ≤ 1/(1 + C2), hence

C2e1−C2
(2d− 1) ≤ C2e

1 + C2
(2d− 1).

Plugging r = 2d−2−z in (2.16) we obtain f(2d−2−z) = 2de−5e/2+O(1/ log(d)),

and so

ȧ2d−2−x(Zd) < f(2d− 2− z) (2.24)

for every d large enough. On the other hand, for every r ≤ 2d − 2 − z we have

ȧr(Zd) ≤ f(2d− 2− z), hence

ȧ(Zd) ≤ f(2d− 2− z) = 2de− 5e/2 +O(1/ log(d))

for every d large enough, which proves our claim.

Combining this with (2.15) yields the following lower bound for ṗc(Zd):

Theorem 2.8.4. ṗc(Zd) ≥
1

2d
+

2

(2d)2
−O(1/d2 log(d)).

Proof. It follows from (2.24) that br < f(2d−2− z) ≤ f(r) for every r ≥ 2d−2− z,

where z = 1− C2

log
(
2d− 2

) . Since bṙd(Zd) = f(ṙd), we obtain

ṙd ≤ 2d− 3 +
C2

log
(
2d− 2

) .
Hence

ṗc(Zd) =
1

1 + ṙd
≥ 1

2d− 2 + C2/ log(2d− 2)
.

It is not hard to see

1

2d− 2 + C2/ log(2d− 2)
=

1

2d
+

2− C2/ log(2d− 2)

2d
(
2d− 2 + C2/ log(2d− 2)

) =

1

2d
+

2

(2d)2
−O(1/d2 log(d)),

which proves the assertion.

We remark that the well-known inequality ṗc(Zd) ≥ pc(Zd) Grimmett [1999]

and the asymptotic expansion pc(Zd) =
1

2d
+

1

(2d)2
+ O(1/d3), mentioned in the

previous section, give a weaker lower bound on ṗc(Zd).
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Recently, Barequet and Shalah [2019] proved that ȧ(Z3) < 9.3835. Plugging

this into (2.15), we deduce

ṗc(Z3) > r−1 ◦ f−1(9.3835) > 0.2522. (2.25)

As far as we know, the best rigorous bound previously known was about ṗc(Z3) >

0.21225, obtained as the inverse of the best known bound on the connective constant

MacDonald et al. [2000].

Remark: In both Theorem 2.8.4 and (2.25) we made implicit use of Theo-

rem 2.1.1 but it would have sufficed to use its variant for site lattice animals instead

of interfaces. Thus adapting Delyon’s result to site animals would have sufficed.

2.9 Continuity of the decay exponents

We prove that the rate of exponential decay c(p) := limn→∞ Pp(|Co| = n)1/n of the

cluster size distribution —which is known to exist for every p ∈ (0, 1) Bandyopad-

hyay et al. [2010]; Grimmett [1999]— is a continuous function of p. This applies to

bond and site percolation on our class of graphs S.

We will also prove the analogous continuity result for the (upper) exponential

growth rate of Ep(Nn), i.e. lim supn→∞ Ep(Nn)1/n, where as before Nn denotes the

number of occurring (site-)interfaces.

We will start by proving the continuity of c(p).

Theorem 2.9.1. Consider bond or site percolation on a graph in S. Then c(p) is

a continuous function of p ∈ (0, 1).

Proof. The proof is an easy application of the Arzelà-Ascoli theorem. Let I be

a compact subinterval of (0, 1). Define gn(p) := Pp(|Co| = n)1/n, and notice

that gn(p) ≤ 1. Moreover, gn is a differentiable function with derivative equal to

gn(p)
P′p(|Co| = n)

nPp(|Co| = n)
, where P′p(|Co| = n) denotes the derivative of Pp(|Co| = n). Ex-

pressing P′p(|Co| = n) via
∑

P

(n
p
− |∂P |

1− p

)
pn(1− p)|∂P |, where the sum ranges over

all lattice (site) animals of size n, we conclude that there is a constant c = c(I) > 0

such that |P′p(|Co| = n)| ≤ cnPp(|Co| = n) for every p ∈ I. Therefore, g′n is uniformly

bounded on I. We immediately deduce that the sequence (gn) is equicontinuous and

bounded. The Arzelà-Ascoli theorem and the pointwise convergence of gn to c(p)

give that every subsequence of gn has a further subsequence converging uniformly

on I to c(p). Hence (gn) converges uniformly on I to c(p), and c(p) is continuous

on I.
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Define Bp := lim supn→∞ Ep(Nn)1/n. Before proving the continuity of Bp,

we will show that limn→∞ Ep(Nn)1/n exists for every p.

Proposition 2.9.2. Consider bond or site percolation on a graph in S. Then for

every p ∈ (0, 1), the limit limn→∞ Ep(Nn)1/n exists.

Proof. For simplicity, we will prove the assertion for interfaces in Zd and Td. The

remaining cases can be handled in a similar way.

Let m and n be positive integers. We will consider interfaces without any re-

striction on the surface-to-volume ratio. Arguing as in the proof of Proposition 2.6.1,

we combine m interfaces P1, P2, . . . , Pm of size n that have the same shape, and at-

tach a horizontal path to Pm, to obtain an interface of size k = m(n + 4) + s for

some s between 0 and n + 3. Notice that the number of attached edges that were

initially lying in some ∂Pi is equal to 2m − 1. The probability that the resulting

interface occurs is equal to pk(1− p)M−(2m−1)+N , where M =
∑m

i=1 |∂Pi|, and N is

the number of remaining boundary edges of the interface. It is not hard to see that

N ≤ Cm for some constant C > 0. Hence

pk(1− p)M−(2m−1)+N ≥ p4m+s(1− p)−(2m−1)+Cm
m∏
i=1

pn(1− p)|∂Pi|.

Summing over all possible sequences (P1, P2, . . . , Pm) we obtain

Ep(Nk) ≥ p4m+s(1− p)−(2m−1)+Cm(Ep(Nn))m.

Taking the k-th root, and then letting m → ∞ and n → ∞, we obtain that

lim infn→∞ Ep(Nn)1/n ≥ lim supn→∞ Ep(Nn)1/n, which implies the desired asser-

tion.

The proof of Theorem 2.9.1 applies mutatis mutandis to Bp: instead of defin-

ing gn(p) as Pp(|Co| = n)1/n, we define gn(p) := Ep(Nn)1/n, and we use the fact that

Ep(Nn) ≤ fn.

Corollary 2.9.3. Consider bond or site percolation on a graph in S. Then Bp is a

continuous function of p ∈ (0, 1).

111



Chapter 3

Site percolation on plane graphs

3.1 Introduction

In their highly influential paper Benjamini and Schramm [1996b], the authors made

several conjectures that generated a lot of interest among mathematicians and led

to many beautiful mathematical results Babson and Benjamini [1999]; Benjamini

et al. [1999]; Benjamini and Schramm [2001]; Duminil-Copin et al. [2018]; Häggström

and Y.Peres [1999]; Hutchcroft [2016], just to name a few. Despite the substantial

amount of work, most of these conjectures are still open, while for a few of them,

hardly anything is known. One of their conjectures states that the critical prob-

ability for site percolation, ṗc(G), satisfies ṗc(G) < 1/2 on any planar graph G

of minimal degree at least 7; they additionally conjecture that there are infinitely

many infinite open clusters on the interval (ṗc(G), 1 − ṗc(G)). As Benjamini and

Schramm observe in their paper, every planar graph of minimal degree at least 7 is

non-amenable. The conjecture has been verified for the d-regular triangulations of

the hyperbolic plane in Benjamini and Schramm [2001].

The connection between percolation thresholds and isoperimetric (or Cheeger)

constants is well-known, and in Benjamini and Schramm [1996b] it is proved that the

site percolation threshold for a graph G is bounded above by (1 + ḣ(G))−1, where

ḣ(G) is the vertex isoperimetric constant. In their book Lyons and Peres [2016],

Lyons and Peres give the edge isoperimetric constants for the regular hyperbolic

tessellations Hd,d′ , where (d− 2)(d′ − 2) > 4 (which were established by Häggström

et al. [2002]), and ask [Lyons and Peres, 2016, Question 6.20] for the corresponding

vertex isoperimetric constants.

Angel, Benjamini and Horesh considered isoperimetric inequalities for plane

triangulations of minimum degree 6 in Angel et al. [2018], and proved a discrete
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analogue of Weil’s theorem, showing that any such triangulation satisfies the same

isoperimetric inequality as the Euclidean triangular lattice T2. They conjectured

that T2 is extremal in other ways which might be expected to have connections

with isoperimetric properties. First, they conjecture that the connective constant

µ(T ) – that is, the exponential growth rate of the number of self-avoiding walks

of length n on T – is minimised by T2 among triangulations of minimum degree

at least 6. Secondly, they conjecture that percolation is hardest to achieve on T2

in the sense that both the critical probability for site percolation ṗc(T ) and the

critical probability for bond percolation pc(T ) are maximised by T2. Intuitively

these conjectures are connected, in that if fewer long self-avoiding paths exist then

long connections might be expected to be less robust, making percolation less likely

to occur. See also Benjamini [2015] for several other conjectures regarding them.

In Chapter 1 we proved that the bond percolation threshold satisfies pc(T ) ≤
1/2 for any planar triangulation T with minimum degree at least 6, and a well-known

result of Grimmett and Stacey [1998] shows that ṗc(T ) ≤ 1 − (1/2)d−1 when the

degrees in T are bounded by d. Unforunately, this bound converges to 1 as the

maximal degree converges to infinity. We remark that Benjamini and Schramm

[1996b] made an even stronger conjecture than that one of Angel, Benjamini and

Horesh mentioned above, namely that ṗc(T ) ≤ 1/2 for any planar triangulation

without logarithmic cut sets.

In Section 3.3 we consider the conjecture of Angel, Benjamini and Horesh

for site percolation, and we prove the following theorem.

Theorem 3.1.1. For any plane graph G without any accumulation points and with

minimum degree at least 6,

ṗc(G) ≤ 2/3 .

In section 3.4 we study planar graphs of minimal degree at least 7 and we prove the

aforementioned conjecture of Benjamini and Schramm.

Theorem 3.1.2. Let G be a plane graph without any accumulation points and with

minimum degree at least d ≥ 7. Then

ṗc(G) ≤ 2 + αd
(d− 3)(1 + αd)

where αd =
d−6+
√

(d−2)(d−6)

2 . In particular, for planar graphs with minimum degree

at least 7

ṗc(G) ≤ 2 + α7

4(1 + α7)
≈ 0.3455.
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For plane graphs without faces of degree 3, a minimum vertex degree of 5

is sufficient to ensure non-amenability; we also give bounds on the site percolation

threshold in this case.

Theorem 3.1.3. Let G be a plane graph without any accumulation points and with

minimum degree at least d ≥ 5 and face degree at least 4. Then

ṗc(G) ≤ (2 + αd+2)(d− 2)

(1 + αd+2)(d2 − 3d+ 1)
.

As far as we know, these results are new even for the d-regular triangulations and

quadrangulations of the hyperbolic plane. In the process, we obtain best-possible

bounds on the vertex Cheeger constants ḣ(G) of such graphs.

Theorem 3.1.4. Let G be a plane graph without any accumulation points and with

minimum degree at least d ≥ 7. Then

ḣ(G) ≥ αd.

If G is the d-regular triangulation of the hyperbolic plane, then we have equality.

Theorem 3.1.5. Let G be a plane graph without any accumulation points and with

minimum degree at least d ≥ 5 and minimum face degree at least 4. Then

ḣ(G) ≥ αd+2.

If G is the d-regular quadrangulation of the hyperbolic plane, then we have equality.

The second halves of the last two theorems answer the aforementioned question

of Lyons and Peres for all cases with d′ = 3 and d′ = 4. In particular, the ver-

tex isoperimetric constant for both the 7-regular triangulation and the 5-regular

quadrangulation, α7, is the golden ratio.

3.2 Definitions and main technique

Let G be an infinite connected locally finite plane graph, and fix a root vertex

o. Throughout this chapter, we assume that G is embedded in the plane without

accumulation points, i.e. only finitely many vertices lie in any bounded region. We

will also assume, as we may, that all egdes of G are straight lines. This is because any

plane graph without accumulation points can be embedded in the plane (without

accumulation points) in such a way that all edges are straight lines Thomassen

[1977].
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Let Co be any finite connected induced subgraph containing o. Recall that

outer interface of Co consists of all vertices of Co meeting the unbounded face of Co.

Deleting all vertices of Co from G divides the remaining graph into components, at

least one of which lies in the unbounded face of Co. Write C∞ for the union of all

components lying in the outer face of Co. The boundary of the outer interface is

the set of vertices in C∞ adjacent to Co. Denote the outer interface by M and the

outer boundary by B. By definition, M induces a connected subgraph of G and B

forms a vertex cut separating o from infinity.

Note that, while (in general) neither M nor B uniquely determine Co, each

uniquely determines C∞. In fact, it is the union of components of G \ M lying

in the outer face of M , and it is also the union of B and the set of vertices not

connected to o in G \ B. Since M is also the outer interface of G \ C∞ and B

coincides with the set of vertices in C∞ adjacent to M , each of M and B uniquely

determines the other. Let the set of feasible pairs (M,B) be O, and for each n let

On = {(M,B) ∈ O : |B| = n}.
We say that a pair (M,B) ∈ O occurs in a site percolation instance ω if

ω(m) = 1 for each m ∈ M and ω(b) = 0 for each b ∈ B. Note that in a site

percolation instance ω with ω(o) = 1, the occupied cluster of o is infinite if and

only if no pair (M,B) ∈ O occurs. Since each outer boundary forms a vertex cut

separating o from infinity, the occurrence of a pair certainly precludes o being in

an infinite cluster, whereas if o is in a finite cluster Co then the outer interface and

outer boundary of Co form an occurring pair.

Our main technique is to upper bound the ratio |M |/|B| for (M,B) ∈ O and

consequently to show that the probability of occurrence of any given pair is decreas-

ing for p above a certain value. Provided G satisfies an isoperimetric inequality of

moderate strength, we then deduce that with positive probability no pair occurs.

This latter condition essentially requires non-positive curvature, and so the smallest

minimum degree to guarantee this is 6 for the general case and 5 for the triangle-free

case.

Theorem 3.2.1. Suppose that there exist a real number α and a function f(n) of

sub-exponential growth with the following properties.

(i) For each pair (M,B) ∈ O, we have |M | ≤ α|B|.

(ii) For each outer boundary B, the component of o in G \ B contains at most

f(|B|) vertices.

Then ṗc(G) ≤ α
1+α .
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We will use a Peierls-type argument (see e.g. [Pete, 2008, Theorem 4.1]) to

show that with positive probability o is in an infinite component for site percolation

with any intensity p > α
1+α . It is sufficient to show that with positive probability

no pair (M,B) ∈ O occurs; in fact, we shall find it more convenient to work with

a slightly weaker notion than occurrence. The key observations are that not too

many pairs of any given size can occur for p = α
1+α , and that the expected number

of occurring pairs at any given higher intensity is exponentially smaller.

In G, pick a geodesic R from o, going to infinity. For any (M,B) ∈ O, let RB

be the longest initial segment of R which does not intersect B (so the next vertex

on R is the first intersection with B, which must exist since B is a vertex cut), and

define M ′ = M \ RB. We say that the pair (M,B) almost occurs in a percolation

instance if the vertices of M ′ are occupied and the vertices of B are unoccupied.

We first need to show that (ii) gives a bound on the number of almost-

occurring pairs.

Lemma 3.2.2. At most f(n) elements of On almost occur in any instance ω.

Proof. Fix an instance ω. Suppose (M,B) ∈ On almost occurs in ω. Now define

a new instance ω′ by setting each vertex in RB to be occupied, leaving the states

of other vertices unchanged. Note that (M,B) occurs in ω′; in fact, since M ∪ RB
induces a connected subgraph, (M,B) is the outer interface and boundary of the

occupied cluster of o in ω′. Thus ω′ uniquely determines (M,B).

Since o ∈ RB and RB lies entirely within the component of o in G \ B, by

(ii) we have 1 ≤ |RB| ≤ f(n). Thus, given ω, there are at most f(n) possibilities

for ω′ and hence at most this many pairs (M,B) ∈ On almost occur.

Proof of Theorem 3.2.1. We can always assume that f is a strictly increasing func-

tion as otherwise, we can work with g(n) := n + maxk≤n f(k) which is a strictly

increasing function and also satisfies the properties of f in the statement of the

theorem.

Let bn,m be the number of pairs (M,B) ∈ On for which |M ′| = m. By (i),

whenever (M,B) ∈ On we have |M | ≤ αn, and so bn,m = 0 for m > αn.

Let Xn be the number of pairs (M,B) ∈ On which almost occur, and write

q = α
1+α . By Lemma 3.2.2, Xn ≤ f(n), and hence Eq(Xn) ≤ f(n). Thus

f(n) ≥
∑

(M,B)∈On

Pq((M,B) almost occurs)

=
∑
m≤αn

bn,mq
m(1− q)n .
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Now for any p > q, we have

Ep(Xn) =
∑
m≤αn

bn,mp
m(1− p)n

=
∑
m≤αn

bn,mq
m(1− q)n(p/q)m

(
1− p
1− q

)n
≤
∑
m≤αn

bn,mq
m(1− q)n.(p/q)αn

(
1− p
1− q

)n
≤
(

(1 + α)1+α

αα
pα(1− p)

)n
f(n) .

The arithmetic-geometric mean inequality implies pα(1 − p) < αα

(1+α)1+α . Conse-

quently, since f(n) is sub-exponential,
∑

n>0 Ep(Xn) is finite, and in particular,

there is some n0 such that Ep
(∑

n≥n0
Xn

)
< 1.

Let ω be a site percolation instance with intensity p. Notice that any pair

(M,B) with |RB| ≥ f(n0) satisfies |B| ≥ n0 by the monotonicity of f . We can now

deduce from the union bound that with positive probability no pair (M,B) with

|RB| ≥ f(n0) almost occurs in ω; call this event E1. Let E2 be the event that the

first f(n0) vertices along R are all occupied in ω; clearly Pp(E2) > 0. As E1 and

E2 are determined by the states of disjoint sets of vertices, they are independent,

and so their intersection also has positive probability. In the event E1 ∩E2, no pair

(M,B) occurs in ω. Thus o is in an infinite cluster with positive probability, so

p ≥ ṗc(G).

Remark 3.2.3. The reason for introducing the notion of almost occurrence of el-

ements of O is the following. In the proof of Theorem 3.2.1, it is crucial that the

event E1 ∩ E2 has positive probability, which holds because the events E1 and E2

depend on disjoint sets of vertices, hence they are independent. If instead of E1 we

were working with the event E′1 that no pair (M,B) with |RB| ≥ f(n0) occurs in ω,

which also has positive probability, then it is a priori possible that the event E′1 ∩E2

has probability zero. This is because E′1 does depend on the state of the first f(n0)

vertices along R.

Following Benjamini and Schramm [1996b], in this chapter, we use the no-

tation ∂S, where S is a set of vertices, to denote the set of vertices which are not in

S but are adjacent to some vertex in S, and we define the (site) Cheeger constant

ḣ(G) = inf
|S|<∞

|∂S|
|S|

.
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3.3 Graphs of minimum degree at least 6

In this section, we will consider the following problem of Angel et al. [2018].

Problem 3.3.1 (from [Angel et al., 2018, Problem 4.2]). If T is a plane triangula-

tion with all vertex degrees at least 6, is it necessarily true that ṗc(T ) ≤ 1/2?

The authors ask also similar questions for bond percolation and self-avoiding walks.

While Angel et al. [2018] does not give a precise definition of “plane triangula-

tion”, it is clear from context that accumulation points are not permitted. Without

this assumption, the answer to the question would be negative. Indeed, consider

the graph of an infinite cylinder formed by stacking congruent antiprisms, which

can be embedded in the plane with a single accumulation point. Notice that all

vertices have degree 6, and furthermore this graph contains infinitely many disjoint

cut sets of fixed size separating o from infinity, hence ṗc = 1 by the Borel-Cantelli

lemma. We remark in passing that the same graph demonstrates that [Angel et al.,

2018, Theorem 2.4] also assumes accumulation points are not permitted. With this

assumption, we firmly believe that the answer to Problem 3.3.1 is affirmative.

The aim of this section is to give upper bounds for ṗc on general plane graphs

of minimum degree at least 6 that are not necessarily triangulations. As we will see,

the general case can be easily reduced to the case of triangulations.

The following two results of Angel et al. [2018] about plane triangulations

T with finitely many vertices will be used in our proofs. A plane triangulation is a

plane graph without accumulation points in which every bounded face has degree

3. The boundary of T is the set of vertices incident with the unbounded face. The

remaining vertices of T are called internal. The total boundary length of T counts

all edges induced by the boundary vertices of T exactly once, except for those not

incident with a triangular face of T which are counted twice. When the boundary

vertices of T span a cycle, we will say that its boundary is simple and T is a disc

triangulation.

Lemma 3.3.1. Let T be a disc triangulation with a simple boundary of length n

and at least one internal vertex. Let T ′ be the triangulation induced by the internal

vertices of T and let m be the total boundary length of T ′. Suppose all internal

vertices of T have degree at least 6. Then m ≤ n− 6.

Lemma 3.3.2. Any disc triangulation with k vertices and n boundary vertices, and

with all internal vertices having degree at least 6, satisfies k ≤
⌊
n2/12 + n/2 + 1

⌋
.

Consider now some plane graph G of minimum degree at least 6. For any pair

(M,B) ∈ On, consider the subgraph of G induced by B and the finite components
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of G \ B. Write B◦ for the set of vertices in B which were adjacent to the infinite

component of G \ B; note that |B◦| ≤ |B| = n. By adding edges, if necessary, to

the subgraph, we may obtain a plane triangulation T = T (M,B) with finitely many

vertices, say k, and boundary B◦. We do this by first adding edges joining vertices

of B◦ cyclically so that no other vertices meet the unbounded face, then adding

internal edges to triangulate bounded faces of degree greater than 3. Each time that

we triangulate a face between B and M , we do so by adding all diagonals meeting

some vertex of B; this will ensure that in the final triangulation the subgraph

induced by B is connected, and every vertex of M is adjacent to B. Let us fix

such a triangulation T . Since M is connected, T must be a disc triangulation, and

the choice of B◦ ensures that all internal vertices have degree at least 6. The next

corollary follows now from Lemma 3.3.2, noting that the number of internal vertices

is at most k − n.

Corollary 3.3.3. For each pair (M,B) ∈ On, the component of o in T \B consists

of at most
⌊
n2/12− n/2 + 1

⌋
vertices.

We wish to apply Lemma 3.3.1 to bound |M | in terms of |B|, for (M,B) ∈ O.

However, the boundary of T (M,B) does not necessarily coincide with B; to deal with

this we show that the triangulation can be modified to give a disc triangulation with

boundary which is not too much larger than |B|. First, we need a simple application

of Euler’s formula.

Lemma 3.3.4. Consider a pair (M,B) ∈ O and the corresponding triangulation

T = T (M,B). Let H be the subgraph of T induced by B, and f a face of H. Write

∂f for the boundary of f , and write ∂◦f ⊆ ∂f for that part of the boundary which

forms a cycle separating f from infinity. Follow ∂f clockwise, writing down a list

of vertices visited (so the same vertex can appear in the list multiple times). The

length of the list so obtained is at most 2|∂f | − |∂◦f |, which is at most 2|∂f | − 3.

Proof. We may assume that f is an internal face. Add a new vertex inside f , and

join it to each vertex in the list in turn. This gives a plane multigraph H ′ with

|∂f | + 1 vertices in which each face incident with the new vertex has degree 3 and

since H was simple, all other faces have degree at least 3. The unbounded face has

degree |∂◦f |, but there may be other faces inherited from H.

Suppose there are k internal faces. Then Euler’s formula gives e(H ′)− (k +

1) = |∂f | − 1. Since each edge is incident with two faces, the sum of face degrees

coincides with 2e(H ′). Hence 3k + |∂◦f | ≤ 2e(H ′), so k ≤ 2|∂f | − |∂◦f |. Since the

length of the list is the number of faces incident with the new vertex, which is at

most k, the result follows.
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We are now ready to bound |M | in terms of |B| and |B◦|.

Lemma 3.3.5. For each pair (M,B) ∈ On we have |M | ≤ 2n− |B◦|.

Proof. Fix such a pair, and let T = T (M,B) be the plane triangulation fixed above.

Recall that T is formed in such a way that B is internally connected, and every

vertex of M is adjacent to B. Let Co be the component containing o of T \ B.

Removing the vertices of Co would leave a face f with boundary vertices B.

We define an “unzipping” operation on B as follows. We imagine that each

edge of B has positive width so that each such edge has two edge-sides, where each

of them is incident with exactly one face. Moreover, each edge-side has two ends

reaching the end-vertices of the corresponding edge. Proceed clockwise around the

boundary of f along the edge-sides incident with f , recording the ends of edges-sides

of f which are crossed in a cyclic ordering. Group these edge-ends by the vertex in

B which they reach; since f is a face of T \ Co, no edge of T inside f connects two

vertices of B.

Note that since T is a triangulation, every time a vertex of B is encountered

when proceeding around ∂f clockwise, at least one edge-end of T incident with that

vertex is crossed. Thus the number of groups in the cyclic ordering of edge-ends is

precisely the number of entries in the list constructed in Lemma 3.3.4; since |B| = n,

this list has at most 2n− |B◦| entries.

We now “unzip” B by replacing vertices in B by the entries of the list,

so that each vertex which appears more than once in the list is split into multiple

vertices distinguished by list position. We also replace edges in ∂f by edges between

consecutive entries in the list; this means that any edges of ∂f which were surrounded

by f will also be split into two.

There is a one-to-one correspondence between groups of edge-ends of T inside

f and entries in the list; we use this correspondence to replace every edge between

Co and B by an edge between Co and a specific list entry. This will ensure that the

graph obtained is still plane, and every vertex of T inside f retains its original degree.

Finally, remove all vertices and edges which lie completely outside f . Figure 3.1

illustrates this unzipping operation.

This produces a disc triangulation with all internal vertices having degree 6.

The simple boundary has at most 2n−|B◦| vertices, and M is precisely the boundary

of the internal vertices. The required bound now follows from Lemma 3.3.1.

We now have all the ingredients required for Theorem 3.1.1.

Proof of Theorem 3.1.1. We apply Theorem 3.2.1; by Lemma 3.3.5 we have (i) with

α = 2, and by Corollary 3.3.3 we have (ii) with f(n) =
⌊
n2/12− n/2 + 1

⌋
.
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Figure 3.1: Unzipping an outer boundary B (bold vertices and edges); M is shown
in red (if colour is shown).

If we further assume that G is non-amenable, we obtain better bounds.

Theorem 3.3.6. Let G be a non-amenable plane graph without any accumulation

points and with minimum degree at least 6, and set β = ḣ(G) > 0. Then ṗc(G) ≤
2+β
3+3β .

Remark. This result is only interesting for 0 < β < 1 since for β ≥ 1 it is weaker

than the bound of 1
1+β , due to Benjamini and Schramm [1996b], which applies to

general graphs. This is as we would expect since for β ≥ 1 a stronger form of

Lemma 3.3.1 may be deduced directly from the Cheeger constant.

Proof. Consider some (M,B) ∈ On and the corresponding triangulation T . Let

B◦ ⊆ B be the minimum vertex cut separating o from infinity. Note that B◦ is the

boundary of some set A consisting of those vertices of T separated from infinity by

B◦. In particular, A ⊇M ∪ (B \B◦). Consequently |A| ≥ |M |+ n− |B◦|, giving

|B◦| ≥ β(|M |+ n− |B◦|),

i.e.

|B◦| ≥ β

1 + β
(|M |+ n) . (3.1)

Unzipping B as in the proof of Lemma 3.3.5 gives a disc triangulation with

boundary of length at most 2n−|B◦| by Lemma 3.3.4, and so applying Lemma 3.3.1

and (3.1) gives |M | ≤ 2n − β
1+β (|M | + n), i.e. |M | ≤

( 2+β
1+2β

)
n. Applying Theo-

rem 3.2.1 with α = 2+β
1+2β gives the required result.

We remark that Angel et al. [2018] proved that for any r > 0, if a plane

triangulation T has minimum degree at least 6 and every ball of radius r contains

a vertex of degree greater than 6, then T is non-amenable.

121



3.4 Hyperbolic graphs

In this section, we consider more stringent degree conditions, motivated by regular

hyperbolic graphs. Benjamini and Schramm [1996b] conjecture that a plane graph G

of minimum degree at least 7 has ṗc < 1/2, and furthermore that there are infinitely

many infinite open clusters for every p ∈ (ṗc, 1− ṗc). We show the first half of this

conjecture. In the process we give tight bounds on the vertex Cheeger constant.

Let G be a plane graph with minimum degree at least d ≥ 7, fixed throughout

this section.

Lemma 3.4.1. Fix a minimal vertex cut X separating o from infinity. Let Y be

the vertices of the finite component of G \X which are adjacent to X, and Z be the

other vertices of this component. Then |X| ≥ (d− 5)|Y |+ (d− 6)|Z|+ 5.

Proof. Consider the induced graph on X ∪ Y ∪ Z. We may add edges if necessary

so that this is a disc triangulation with boundary X, and we may do this in such a

way that the set of vertices in G \X which are adjacent to X is precisely Y . Notice

that the vertices of X induce a cycle, and the graph induced by Y ∪Z is a connected

plane triangulation because X is a minimal vertex cut.

Now add a new vertex u in the unbounded face of this graph adjacent to all

vertices in X to obtain a new graph H. We now have a triangulation of a sphere

with |X| + |Y | + |Z| + 1 vertices, i.e. all faces, including the unbounded one, have

degree 3. Since each edge is incident with two faces, we can easily deduce that

3F = 2E, where F and E denote the number of faces and edges of H. Using Euler’s

formula we now obtain that E = 3(|X|+ |Y |+ |Z|)− 3.

Look at faces between X and Y in H, i.e. faces having two vertices from X

and one from Y or vice versa. There are |X| of the first type (one for each edge

between vertices of X) because the vertices of X span a cycle, and at least |Y | − 1

of the second because there is at least one face for each edge between vertices of Y ,

and Y spans a connected graph (in fact we only need the − 1 in the case |Y | = 1).

When walking along X the faces between X and Y appear in a cyclic order because

X spans a cycle, hence the number of edges between X and Y coincides with the

number of faces between X and Y . It follows that there are at least |X| + |Y | − 1

edges between X and Y .

Thus we can calculate the sum of the degrees d(v) of H to be∑
v∈V (H)

d(v) ≥
∑

v∈Y ∪Z
d(v) + |X|+ |Y | − 1 + 4|X| ≥ 5|X|+ (d+ 1)|Y |+ d|Z| − 1 .

To see that the first inequality holds notice that the sum
∑

v∈X∪{u} d(v) counts the
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edges between X and Y only once and the remaining edges with at least one end-

vertex in X exactly twice. Now the number of edges connecting vertices of X and the

number of edges between X and u are both equal to |X|. In the second inequality,

we used that d(v) ≥ d. Since
∑

v∈V (H) d(v) is equal to 2E = 6(|X|+ |Y |+ |Z|)− 6

by the handshake lemma, the result follows.

In particular, we have (d− 5)|Y | ≤ |X| − 5 and (d− 6)|Y ∪Z| ≤ |X| − 5. In

fact, the second inequality can be improved.

Lemma 3.4.2. αd|Y ∪ Z| < |X| − 5, where

αd =
d− 6 +

√
(d− 2)(d− 6)

2
.

In particular, α7 ≈ 1.618 is the golden ratio.

Proof. We prove this by induction on |Z|. If Z = ∅ then the required inequality

holds since αd < d − 5. Otherwise, Y contains k ≥ 1 minimum vertex cuts which

separate clusters of vertices in Z from infinity. Write (Yi)
k
i=1 for the cuts (which

may overlap) and (Zi)
k
i=1 for the clusters; by Lemma 3.4.1 |Yi| ≥ d for each i.

We may add edges, where necessary, between vertices of Y such that each of

the cuts forms a cycle. The auxiliary graph H consisting only of these cycles has

the property that all its belong to the unbounded face, by definition of Y . Notice

that H has k faces bounded by the vertex cuts, one unbounded face, and possibly a

few more faces that are formed when some vertex cuts overlap in a cyclic way. Let

us denote by ` the number of the latter faces. Moreover, H has |Y | vertices and

its unbounded face has degree at least |Y | because H is a connected graph and has

at least one cycle. Since each edge of H is incident with two faces, the sum of face

degrees coincides with 2e(H). It follows that
∑k

i=1|Yi| ≤ 2e(H)− |Y | − 3`, and by

Euler’s formula, the right-hand side of the inequality is equal to |Y | + 2k − ` − 2,

implying that
∑k

i=1(|Yi| − 2) ≤ |Y | − 2.

By the induction hypothesis, we have αd|Zi| ≤ |Yi| − 5, and thus αd|Z| =

αd
∑k

i=1|Zi| ≤
∑k

i=1(|Yi| − 5) ≤ |Y | − 2− 3k ≤ |Y | − 5.

It follows that |Y | > αd
1+αd

(|Y ∪ Z|), so applying Lemma 3.4.1 we get(
d− 6 +

αd
1 + αd

)
|Y ∪ Z| < |X| − 5 ,

and since αd = d− 6 + αd
1+αd

the result follows.

It now follows that
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Corollary 3.4.3. Let W be any finite subset of V (G). Then |∂W | ≥ αd|W |.

Proof. We may assume every vertex in ∂W meets the infinite component of G\∂W ,

since otherwise we may find a larger set with smaller boundary. Now splitting

∂W into minimum vertex cuts surrounding clusters of W as above, and applying

Lemma 3.4.2 to each cut, gives the required result.

The following result, which shows that Lemma 3.4.2 is tight, may be of

independent interest.

Theorem 3.4.4. For each d ≥ 7 the d-regular hyperbolic triangulation Hd,3 has

vertex Cheeger constant ḣ(Hd,3) = αd.

Proof. Corollary 3.4.3 immediately gives ḣ(Hd,3) ≥ αd, and so it suffices to exhibit

a sequence of sets Sn satisfying |∂Sn| = (αd + o(1))|Sn|. In fact, the balls Bn have

this property. Note that, for n ≥ 1, ∂Bn forms a minimum vertex cut, the set of

vertices on the external face of Bn is precisely Bn \Bn−1, and the induced subgraph

on this set is a cycle.

Thus, following the proof of Lemma 3.4.1, we obtain |∂Bn| = (d − 5)|Bn \
Bn−1|+ (d− 6)|Bn−1|+ 6, or equivalently, noting that Bn ∪ ∂Bn = Bn+1,

|Bn+1| − (d− 4)|Bn|+ |Bn−1| = 6 . (3.2)

Notice that the roots of the polynomial x2− (d−4)x+1 = 0 are equal to 1+αd and

(1 + αd)
−1. Standard techniques on recurrence relations imply that the solution of

(3.2) is given by |Bn| = a(1 + αd)
n + b(1 + αd)

−n + c for suitable constants a, b, c.

Clearly in our case a has to be strictly positive, since the size of Bn converges to

infinity. In particular, |∂Bn| = |Bn+1| − |Bn| = (αd + o(1))|Bn|, as required.

Lemma 3.4.2 therefore shows that among planar graphs with minimum de-

gree d ≥ 7, Hd,3 minimises the vertex Cheeger constant. This fact already implies

an upper bound on the critical probability, using a result of Benjamini and Schramm

[1996b] that ṗc(G) ≤ (1+ḣ(G))−1. However, combining these facts with our method

of interfaces yields better bounds.

Theorem 3.4.5. Let G be a plane graph without any accumulation points and with

minimum degree d ≥ 7. Then ṗc(G) ≤ 2+αd
(d−3)(1+αd) .

Remark 3.4.6. For d = 7, (1 + αd)
−1 ≈ 0.3820, whereas 2+αd

(d−3)(1+αd) ≈ 0.3455.
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Proof. Let M,B be an outer interface and its boundary, let B◦ be the minimal

vertex cut part of B, and fix a triangulation T (M,B) as described in Section 3.3.

We can unzip B as in Lemma 3.3.5 and then apply Lemma 3.4.1 to obtain

(d− 5)|M | ≤ 2|B| − |B◦| . (3.3)

Also, applying Lemma 3.4.2 to the vertex cut B◦, we have αd(|M |+ |B\B◦|) ≤ |B◦|,
i.e.

αd|M | ≤ (1 + αd)|B◦| − αd|B| . (3.4)

Taking a linear combination of (3.3) and (3.4) we can cancel |B◦| to obtain (d− 5 +

(d− 4)αd)|M | ≤ (2 + αd)|B|. Now Theorem 3.2.1 gives ṗc(G) ≤ 2+αd
(d−3)(1+αd) .

3.5 Hyperbolic Quadrangulations

Let G be a plane graph without accumulation points, with no triangular faces, and

with minimum degree d ≥ 5, fixed throughout this section. While we will primarily

be interested in the case where G is a quadrangulation, our results in this section

apply more generally to any such graph, even though it is not necessarily possible

to create a quadrangulation from such a graph by adding edges. Our first step is an

analogue of Lemma 3.4.1.

Lemma 3.5.1. Fix a minimal vertex cut X separating o from infinity. Let Y be

the vertices of the finite component of G \X which are adjacent to X, and Z be the

other vertices of this component. Then |X| ≥ (d− 3)|Y |+ (d− 4)|Z|+ 3.

Remark 3.5.2. In fact, the proof gives |X| ≥ (d − 3)|Y | + (d − 4)|Z| + 4 unless

|Y | = 1.

Proof. We may assume |Y | > 1 since otherwise the result is trivial. Take the induced

subgraph on X∪Y ∪Z and add edges as necessary so that X is a cycle, giving a finite

graph H. Note that H may have faces of degree 3. Furthermore, the unbounded

face has degree |X| and, by minimality of X, each other face meets X at one vertex,

at two vertices with an edge between them, or not at all. Write A for the set of

internal faces meeting X along an edge; note that |A| = |X|. Write A′ for the set

of faces meeting X at a single vertex. Each face in A has degree at least 3; let q be

the number of faces in A of degree exactly 4, and p be the number of faces in A of

degree at least 5.

Once again the sum of face degrees equals 2E, hence we have 2E ≥ |X| +
4(F − |X| − 1) + 3|A|+ q + 2p = 4F − 4 + q + 2p, where F and E are the number
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of faces and edges of H. By Euler’s formula, F = E − |X| − |Y | − |Z| + 2. Thus

2E ≤ 4(|X| + |Y | + |Z|) − q − 2p − 4. Also, by the handshake lemma, 2E ≥
d|Y |+ d|Z|+

∑
x∈X d(x). The |X| edges on the unbounded face are double-counted

by this sum and there are as many edges between X and Y as faces because X

induces a cycle. We can now deduce that
∑

x∈X d(x) = 3|X|+ |A′|.
We now claim that |A′| ≥ |Y | − q − p. Indeed, write d′(y), y ∈ Y for the

number of edges between y and X. Since |A| + |A′| coincides with the number of

edges between X and Y , we have |A|+ |A′| =
∑

y∈Y d
′(y). We can rewrite the latter

sum as |Y |+
∑

y∈Y (d′(y)− 1). Notice that d′(y) > 1 only when y is incident with a

triangular face. Moreover, d′(y)− 1 is not less than the number of triangular faces

incident with y because |Y | > 1 and so not all faces incident with y are triangular.

Thus
∑

y∈Y (d′(y)− 1) ≥ |A| − p− q, which implies that |A′| ≥ |Y | − p− q.
Consequently we have 3|X|+ (d+ 1)|Y |+ d|Z| − q− p ≤ 4(|X|+ |Y |+ |Z|)−

q − 2p− 4; since p ≥ 0 the result follows.

We next give an analogue of Lemma 3.4.2 for this setting; perhaps surpris-

ingly, the same sequence of constants arises.

Lemma 3.5.3. We have αd+2|Y ∪ Z| < |X| − 3.

Proof. We prove this by induction on |Z|. If Z = ∅ then the required inequality

holds since αd+2 < d − 3. Otherwise, as in the proof of Lemma 3.4.2, Y contains

minimum vertex cuts (Yi)
k
i=1 separating clusters (Zi)

k
i=1, where

∑k
i=1|Zi| = |Z| and∑k

i=1(|Yi| − 2) ≤ |Y | − 2.

By the induction hypothesis, we have αd+2|Zi| ≤ |Yi| − 3, hence αd+2|Z| =∑k
i=1 αd+2|Zi| ≤

∑k
i=1(|Yi| − 3) ≤ |Y | − 2− k ≤ |Y | − 3.

Consequently |Y | > αd+2

1+αd+2
(|Y ∪ Z|), and applying Lemma 3.5.1 gives

(
d− 4 +

αd+2

1 + αd+2

)
|Y ∪ Z| < |X| − 3 ,

whence the result follows since αd+2 = d− 4 + αd
1+αd

Arguing as in the proof of Corollary 3.4.3, we obtain

Corollary 3.5.4. Let W be any finite subset of V (G). Then |∂W | ≥ αd+2|W |.

Again, this result is best possible.

Theorem 3.5.5. For each d ≥ 5 the d-regular hyperbolic quadrangulation Hd,4 has

vertex Cheeger constant ḣ(Hd,4) = αd+2.
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Proof. Again, it suffices to show that |∂Bn| = (αd+2 + o(1))|Bn|, where Bn is the

ball of radius n.

Note that, for n ≥ 1, ∂Bn forms a minimum vertex cut, the set of vertices in

Bn adjacent to ∂Bn is precisely Bn \ Bn−1, and in the graph obtained by adding a

cycle through ∂Bn to the induced subgraph on Bn+1, every vertex in Bn has degree

d, every face meeting ∂Bn along an edge has degree 3, and every other face has

degree 4. Thus, following the proof of Lemma 3.5.1, we have q = p = 0 and equality

at every step, giving |∂Bn| = (d− 3)|Bn \Bn−1|+ (d− 4)|Bn−1|+ 4, or equivalently

|Bn+1| − (d− 2)|Bn|+ |Bn−1| = 4 . (3.5)

Again, it follows that |Bn| = a(1 +αd+2)n+ b(1 +αd+2)−n+ c for suitable constants

a, b, c with a > 0, and so |∂Bn| = |Bn+1|−|Bn| = (αd+2 +o(1))|Bn|, as required.

Lemma 3.5.3 implies that ṗc(G) ≤ (1+αd+2)−1 if G has all vertex degrees at

least d ≥ 4 and all face degrees at least 4. Our method yields again better bounds.

Theorem 3.5.6. Let G be a plane graph without any accumulation points, with

minimum degree d ≥ 5 and no faces of degree 3. Then ṗc(G) ≤ (2+αd+2)(d−2)
(d2−3d+1)(1+αd+2)

.

Remark 3.5.7. For d = 5, (1 + αd+2)−1 ≈ 0.3820, whereas
(2+αd+2)(d−2)

(1+αd+2)(d2−3d+1)
≈

0.3769.

Proof. Let M,B be an outer interface and its boundary, and let B◦ be the minimal

vertex cut part of B. Delete all vertices of the infinite component of G \B. Notice

that any vertex of M belongs to a common face with a vertex of B. By adding edges

if necessary, we can achieve that all faces between M and B have degree 4 or 5 and

also preserve this property. Then every vertex of M has distance at most 2 from B.

We can argue as in the proof of Lemma 3.3.5 to unzip B and obtain a new

graph H with at most 2|B| − |B◦| ‘boundary’ vertices in its unbounded face. To

be more precise, we first add a set of edges, which we denote by S, to obtain the

triangulation T = T (M,B), and then we unzip B as in the proof of Lemma 3.3.5.

This process gives rise to a correspondence between the edges of the graph obtained

after unzipping B and the edges of T . The desired graph H is obtained after

removing the pre-images of S. Write X for the ‘boundary’ vertices of H. Let Y be

the set of vertices of H \X that are adjacent to B′, and Z the remaining vertices

of H. Lemma 3.5.1 implies that

2|B| − |B◦| ≥ |X| ≥ (d− 3)|Y |+ (d− 4)|M \ Y | = |Y |+ (d− 4)|M |.
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We now claim that |Y | ≥ (d− 3)(|M | − |Y |) + 3. Indeed, if the graph induced by Z

is connected we can apply Lemma 3.5.1 to Y ∪ Z, noting that all vertices of M \ Y
are adjacent to some vertex of Y because M has distance at most 2 from B. If

it is not connected we can split Y into minimal vertex cuts (Yi)
k
i=1 and Z into its

components (Zi)
k
i=1, and define Mi := (Yi ∪ Zi) ∩M . Then we have as above that

|Yi| ≥ (d − 3)(|Mi| − |Yi|) + 3. Arguing as in the proof of Lemma 3.4.2, we obtain

that
∑k

i=1(|Yi| − 2) ≤ |Y | − 2. The desired claim follows now from the fact that the

sets Mi \ Yi partition M \ Y .

We can now deduce that |Y | ≥ d−3
d−2 |M |, which implies that

(
d− 4 +

d− 3

d− 2

)
|M | ≤ 2|B| − |B◦|. (3.6)

Also, applying Lemma 3.5.3 to the vertex cut B◦, we have αd+2(|M |+ |B \B◦|) ≤
|B◦|, i.e.

αd+2|M | ≤ (1 + αd+2)|B◦| − αd+2|B| . (3.7)

Taking a linear combination of (3.6) and (3.7) we obtain(
αd+2 + (1 + αd+2)

(
d− 4 +

d− 3

d− 2

))
|M | ≤ (2 + αd+2)|B|.

Using Theorem 3.2.1 we deduce that ṗc(G) ≤ (2+αd+2)(d−2)
(d2−3d+1)(1+αd+2)

.
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Chapter 4

Square tilings

4.1 Introduction

In this chapter, we will discuss the convergence of certain discrete objects to their

continuous counterparts. This is a topic with a long history (see e.g. Courant

et al. [1928]; Lelong-Ferrand [1955]; Chelkak and Smirnov [2011] and the references

therein) and deep connections with several areas of mathematics. In particular, this

topic has recently emerged in percolation theory by the work of Smirnov [2001] on

the conformal invariance of the scaling limit of critical percolation.

Thurston [1987] proposed the following method for approximating the Rie-

mann map from a simply connected domain Ω ⊂ C to the unit disc D. Let k · T
denote the triangular lattice re-scaled by a factor of k > 0, and consider the plane

graph Gn := Ω ∩ 2−n · T. We can associate to Gn a circle packing (a collection

of circles in the plane with disjoint interiors) so that the graph with vertex set the

centres of the circles and edge set the straight lines connecting the centres of tangent

circles, is isomorphic to Gn. In fact, there are more than one such circle packings.

In order to fix one of them, we first add a new vertex un to Gn and we connect it to

every vertex at the boundary of Gn. We require the circle corresponding to un to

be the unit one. Moreover, we require the vertex closest to a given point p in Ω to

correspond to the circle of the circle packing containing 0. There is a unique circle

packing satisfying these properties. Consider now the map fn : Ω → D defined by

first sending the vertices of Gn to the centres of the circle packing, and then extend-

ing to the whole of Ω in a piecewise linear fashion. Thurston [1987] conjectured that

fn converges to a Riemann map from Ω to D, and this was proved by Rodin and

Sullivan [1987]. The aim of this chapter is to prove the analogous statement when

circle packings are replaced by another discrete version of the Riemann mapping
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theorem, the square tilings of Brooks et al. [1940].

The theorem of Rodin & Sullivan has been extended in various directions.

Convergence for lattices other than the triangular was proved by He and Rodin

[1993], under the assumption of bounded degree. Stephenson [1996] proved that

the convergence of fn to the Riemann map is locally uniform. Doyle et al. [1994]

improved the quality of convergence to convergence in C2. He and Schramm [1996]

gave an alternative proof of the convergence in C2, and their proof works in further

generality. In particular, it does not need the assumption of bounded degree of He

and Rodin [1993]. Finally, for the triangular lattice, He and Schramm [1998] proved

C∞-convergence of circle packings to the Riemann map. Our result for square tilings

also gives C∞-convergence. We work with the square lattice L for convenience, but

our proof applies to any lattice admitting a vertex-transitive action of the group Z2.

Theorem 4.1.1. Consider a Jordan domain Ω in C, and let sn : Ω→ C be defined

by linear interpolation of the Brooks et al. square tiling map of Ω ∩ 2−n · L. Then

(sn) converges in C∞(Ω) to a conformal map.

Detailed definitions are given in the following sections, before the precise

statement of Theorem 4.1.1 is given in Section 4.4.

Our result rests on a discrete version of the following remark. A classical

result of Kakutani states that Brownian motion is conformally invariant [Mörters

and Peres, 2010] (up to a time reparametrization that is irrelevant for our purposes).

It is known that this conformal invariance is still true when the Brownian motion

is reflected from ∂Ω back into Ω under the assumption that ∂Ω is in C1,α [Pascu,

2002]. This allows one to describe a Riemann map from a Jordan domain Ω in C
to a rectangle H := [0, `]× [0, 1] as follows. Consider four distinct points x1, x2, x3

and x4 in ∂Ω in clockwise ordering. These points subdivide ∂Ω into four subarcs T ,

R, B and L, appearing in that order along ∂Ω. Let f : Ω→ H be the Riemann map

mapping each xi to a corner of H (where we tacitly use Caratheodory’s theorem,

see Section 4.2.2). Let ` denote the extremal length (see Section 4.2.2) in Ω between

L and R. Then we have

Observation 4.1.2. For every z ∈ Ω we have f(z) = pLR + ipTB, where pTB is the

probability that a Brownian motion started at z and reflected along ∂Ω will reach T

before B, and similarly, pLR equals the probability that a Brownian motion started

at z and reflected along ∂Ω will reach L before R multiplied by `.

This follows immediately from the conformal invariance of reflected Brown-

ian motion and the fact that the formula is correct when Ω is replaced by a rectangle
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H. Observation 4.1.2 can be extended to all Jordan domains Ω by approximation

by a sequence of Jordan subdomains with C1,α boundaries. This follows from the

weak convergence of the reflected Brownian motion on the subdomains to the re-

flected Brownian motion on Ω [Burdzy and Chen, 1998], and the converge of the

corresponding conformal maps defined on the subdomains to f .

The construction of the square tilings of Brooks et al. can be thought of as a

discrete variant of Observation 4.1.2 (and in fact our results can be used to obtain

an alternative proof thereof), with reflected Brownian motion replaced by random

walk on a mesh Gn: it assigns coordinates to vertices and edges of Gn similarly to

the above function f . In contrast to circle packings where vertices correspond to

circles, now edges correspond to squares. We use a compactness argument to obtain

a convergent subsequence, and then verify that any limiting function f satisfies

the Cauchy-Riemann equations (4.3) by noticing that sn satisfies a discrete variant

thereof. We then proceed to show that f is a bijection and determine its boundary

behaviour. To this end, we first harness the combinatorial structure of our square

tiling and utilise their probabilistic construction in terms of random walk on Gn.

Certain complex analytic arguments are needed to determine the behaviour of f at

each xi. These properties uniquely define f and imply the convergence of the whole

sequence (sn).

The convergence of discrete functions like the ones we use to functions defined

in the continuum is by no means a new idea. Courant et al. [1928] considered

functions defined in discrete domains as the solutions of some discrete boundary

value problems and proved convergence to their continuous counterparts. Since then

several authors have considered similar approximation schemes, see e.g. Chelkak and

Smirnov [2011]; Lelong-Ferrand [1955] and the references therein.

Apparently, part of the motivation for Thurston’s question leading to the

Rodin–Sullivan theorem came from approximating Riemann maps by computer,

and he suggested an algorithm for doing so [Rodin and Sullivan, 1987, Appendix 2].

However, circle packing a given graph into a disc is a computationally challenging

problem, and according to Collins and Stephenson [2003], “In the numerical confor-

mal mapping of plane regions, it is unlikely that circle packing can ever compete in

speed or accuracy with classical numerical methods...”. On the contrary, computing

the square tiling boils down to solving a linear system of equations (Kirchhoff’s

laws) of size proportional to the number of vertices of the approximating graph Gn.

These equations come from the probabilistic construction of the square tiling and

they seem to be specific to squares. We are not yet sure to what extent our algorithm

can compete with or complement existing numerical methods, but we did implement

131



Figure 4.1: An approximation of a Riemann map between a Julia set and a square
obtained by implementing our algorithm on Mathematica. Each point in one figure
is the image, under the Riemann map, of the unique point in the other figure with
the same colour.

it on a computer and Figure 4.1 shows an example of a resulting approximation of

a Riemann map, while Figure 4.2 shows the corresponding square tiling.

According to Cannon et al. [1994], “Riemann, in formulating his famous

Riemann mapping theorem, surely relied on the physics of electrical networks and

conducting metal plates for motivation.” Some biographical evidence about Rie-

mann support this claim. He had a strong interest in the physics of electricity: “To

complete his Habilitation, Riemann had to give a lecture. He prepared three lectures,

two on electricity and one on geometry.1”. Both Riemann and Kirchhoff moved to

Berlin in 18472, at a time when the latter was working on his laws of electricity

(which we use in Section 4.3.2). Some of the ideas involved in the construction of

square tilings and in our proof support the belief that the physics of electrical net-

works influenced Riemann in formulating his mapping theorem in his thesis in 1851.

Indeed, the quantity pTB = pTB(z) in Observation 4.1.2 coincides with the voltage

v(z) at z when a unit potential difference is imposed between T and B because both

functions are harmonic and satisfy the same boundary conditions. The set of points

z with pLR(z) = x ∈ (0, `) form a field line of the resulting electrical current.

4.2 Preliminaries

4.2.1 Notation

In this chapter, we will be working with the square lattice L. Recall that its vertex

set is the set of points of R2 with integer coordinates, and its edge-set comprises

1http://www-groups.dcs.st-and.ac.uk/history/Biographies/Riemann.html
2http://www-history.mcs.st-andrews.ac.uk/Biographies/Kirchhoff.html
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Figure 4.2: The square tiling of a mesh lying inside the Julia set of Figure 4.1. The
dark regions consist of large amounts of squares.

the horizontal and vertical length 1 straight line segments connecting them. For an

integer n ≥ 0, we let 2−n ·L denote the plane graph obtained from L by multiplying

the coordinates of each point by 2−n. Thus each edge of 2−n · L has length 2−n.

With a slight abuse, we denote both this graph and its vertex set by 2−n · L for

convenience. Notice that L is a self-dual graph, i.e. its dual graph L∗ is isomorphic

to L.

4.2.2 Complex analytic definitions

Consider a simply connected domain Ω ( C, i.e. a connected open set such that its

complement C \ Ω is also connected. The Riemann mapping theorem states that

there is a conformal map φ from Ω to the unit disk D, i.e. a holomorphic and

injective function mapping Ω onto D. We will be working with bounded simply

connected domains Ω whose boundary is a simple closed curve γ (a homeomorphic

image of the unit circle). In this case, γ is called a Jordan curve, and Ω is called a

Jordan domain. A homeomorphic image of the unit interval is called a Jordan arc.

Caratheodory studied the boundary behaviour of conformal maps, and es-

tablished that φ witnesses the topological properties of the boundary of Ω. In

particular, when Ω is a Jordan domain, Caratheodory’s theorem (see e.g. Krantz

[2006]; Pommerenke [1992]) states that φ extends to a homeomorphism between the

closures Ω and D.

It follows from the Riemann mapping theorem that for every M > 0, there

133



is a conformal map from Ω to the rectangle (0,M) × (0, 1). By Caratheodory’s

theorem, when Ω is a Jordan domain, φ extends to a homeomorphism between the

closures Ω and [0,M ]× [0, 1]. Consider now four distinct points x1, x2, x3, x4 ∈ ∂Ω

in clockwise ordering, and let y1, y2, y3, y4 be the four corners of [0,M ] × [0, 1] in

clockwise ordering starting from the top left one. It is natural to ask whether there

is a conformal map from Ω to (0,M) × (0, 1), with φ(xi) = yi, i = 1, 2, 3, 4. As it

turns out, three boundary points determine uniquely a conformal map [Pommerenke,

1992, Corollary 2.7], hence for each choice x1, x2, x3, x4 of boundary points, there is

only one value of M (depending on these points) for which a conformal map with

the desired property exists.

To determine the value of M , we recall the classical notion of extremal length.

Let xixj denote the arc of ∂Ω from xi to xj traversed in the clockwise direction.

To define the extremal length between x1x2 and x3x4, given a Borel-measurable

function ρ : Ω→ C and a rectifiable curve γ in Ω connecting x1x2 to x3x4, we let

Lρ(γ) :=

∫
γ
ρ|dz|,

where |dz| denotes the Euclidean element of length. We also define

A(ρ) :=

∫∫
Ω
ρ2dxdy.

The extremal length between x1x2 and x3x4 is

sup
ρ

inf
γ

Lρ(γ)2

A(ρ)
,

where the infimum ranges over all rectifiable curves γ in Ω connecting x1x2 to x3x4,

and the supremum ranges over all Borel-measurable functions ρ : Ω → C with

0 < A(ρ) <∞.

The extremal length between the sides [0,M ]× {1} and [0,M ]× {0} of the

rectangle can be computed explicitly and is equal to 1/M [Ahlfors, 1973, p. 52-

53]. Moreover, the extremal length is conformally invariant [Ahlfors, 1973, p. 52].

Therefore, M is the reciprocal of the extremal length between x1x2 and x3x4.

4.2.3 Simple random walk and electrical networks

A walk on G is a (possibly infinite) sequence (vn)n∈N of elements of V such that

vi is always connected to vi+1 by an edge. The simple random walk on G begins

at some vertex and when at vertex x, traverses one of the edges −→xy incident to x
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according to the probability distribution

px→y :=
1

d(x)
,

where d(x) denotes the degree of x.

There is a well-known correspondence between electrical networks and simple

random walk. Given two vertices p and q of G, we connect a battery across the two

vertices so that the voltage at p is equal to 0 and the voltage at q is equal to 1. Then

certain currents will flow along the directed edges of G and establish certain voltages

at the vertices of G. It is a standard fact that for every vertex u, the voltage at u

is equal to the probability that the simple random walk from u visits q before p.

The physical notion of the electrical current can be defined in purely math-

ematical terms as follows. Let us first denote by
−→
E the set of ordered pairs (x, y)

with xy ∈ E. We write −→xy to denote (x, y). We say that a function f :
−→
E → R is

antisymmetric, and write f :
−→
E ↪→ R, if f(−→xy) = −f(←−xy) for every xy ∈ E. Given

two vertices p and q of G, we say that a function f :
−→
E ↪→ R is a p-q flow if it

satisfies Kirchhoff’s node law, which postulates that for every vertex x other than

p and q, ∑
y∈N(x)

f(−→xy) = 0,

where N(x) denotes the set of neighbours of x, i.e. the vertices connected to x

by an edge. The p-q current is the (unique) p-q flow i :
−→
E ↪→ R that satisfies

Kirchhoff’s cycle law. Kirchhoff’s cycle law postulates that for every cycle C =

x0e01x1e12x2 . . . xn in G, where the xj are vertices, the ejk are edges, and xn = x0,

we have
n−1∑
j=0

i(−−−−→xjxj+1) = 0.

The intensity I∗ of i is the sum∑
y∈N(x)

i(−→xy).

The effective resistance Reff between x and y admits several equivalent definitions,

among which the most useful for us is

Reff = 1/I∗. (4.1)

Duffin [1962] proved that the effective resistance coincides with the notion of ‘discrete
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extremal length’. We will utilise this fact later on.

4.2.4 Discrete partial derivatives and convergence in C∞

Consider an integer n ≥ 0. Any function g defined on a subset of 2−n · L can be

extended to the whole of 2−n · L by setting g(z) = 0 on the remaining vertices

z of 2−n · L. We will always assume that our functions are extended in this way

to the whole of 2−n · L. For every vertex z of 2−n · L we define the functions
∂g

∂x
(z) := 2n

(
g(u) − g(z)

)
and

∂g

∂y
(z) := 2n

(
g(v) − g(z)

)
, where u = z + 2−n and

v = z + 2−ni. The functions
∂g

∂x
and

∂g

∂y
are called the partial derivatives of g with

respect to x and y, respectively. For functions defined on the dual graph
(
2−n ·L

)∗
,

the partial derivatives are defined analogously. As usually, by repeatedly applying

the operators
∂

∂x
and

∂

∂y
in any order and any number k of times, we define the

partial derivatives of order k.

Consider now a domain Ω ⊂ C. We say that a sequence (fn) of functions

defined on 2−n · L converges in C∞(Ω) to a smooth function f : Ω→ C if for every

closed disk ∆ ⊂ Ω and for every k ≥ 0, the partial derivatives of fn of order k

converge uniformly in ∆ to the corresponding partial derivatives of f of order k.

For a sequence of functions defined on the dual graph
(
2−n · L

)∗
, the definition is

analogous.

4.3 Construction of the tiling

In this section, we will recall the construction of the square tiling of Brooks et al.

[1940], and we will formally define the sequence (sn) featuring in Theorem 4.1.1.

Consider a Jordan domain Ω in C, and four distinct points x1, x2, x3 and x4

in ∂Ω in clockwise ordering. These points subdivide ∂Ω into four subarcs T = x1x2,

R = x2x3, B = x3x4 and L = x4x1, where xixj denotes the arc of ∂Ω from xi to

xj traversed in the clockwise direction. We will refer to T , R, B and L as the top,

right, bottom and left arc of ∂Ω, respectively.

Without loss of generality we can assume that the origin lies in Ω. For every

n ≥ 0, we consider the subgraph of 2−n · L determined by those vertices and edges

lying entirely in Ω, and we define Ωn to be the connected component of the origin in

that graph. The boundary ∂Ωn of Ωn is the set of vertices z of Ωn that are incident

to an edge in 2−n ·L that intersects ∂Ω. By rescaling Ω if necessary we can assume

that for every n ≥ 0, no pair of adjacent edges of 2−n · L intersects opposite arcs

of ∂Ω (T and B or R and L). In particular, no edge of 2−n · L intersects opposite
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arcs of ∂Ω. We can now define Tn, Bn to be the sets of vertices of ∂Ωn that are

incident to an edge intersecting T , B, respectively. We also define Rn, Ln to be

the sets of vertices of ∂Ωn \ (Tn ∪ Bn) that are incident to an edge intersecting

R, L, respectively. It will be useful for the construction of our tiling to identify

the elements of Tn and Bn into single vertices, which we will denote by tn and bn,

respectively. We will write Gn = (Vn, En) for the graph obtained from Ωn after these

identifications. The boundary ∂Gn of Gn is the set of boundary vertices obtained

after these identifications, i.e. ∂Gn := {tn, bn} ∪Rn ∪ Ln.

4.3.1 The dual graph G∗n

We consider Gn as a plane graph, in other words, Vn is now a set of points of R2 and

En is a set of arcs in R2 each joining two points in Vn. The points in R2 occupied

by the elements of Vn and En can be chosen in such a way that the vertices tn

and bn are incident with the unbounded face of Gn, the position of every other

vertex of Vn remains the same after the identifications, and the arcs connecting

vertices of Vn \{tn, bn} are straight lines. It will be useful for the construction of the

square tiling to associate to Gn a new graph G∗n by slightly modifying the standard

definition of the dual graph of Gn. First, let tnbn be an arc in R2 connecting tn

with bn, every interior point of which lies in the unbounded face of Gn. Consider

the graph G′n = (Vn, En ∪ {tnbn}), and let (V ∗n , E
∗
n ∪ {lnrn}) be the dual graph of

G′n, where ln is the face incident to Ln, and rn is the face incident to Rn. Deleting

the edge lnrn we obtain the graph G∗n = (V ∗n , E
∗
n).

Notice that there is a bijection e 7→ e∗ from En to E∗n. The orientability of

the plane allows us to extend the bijection e 7→ e∗ between En and E∗n to a bijection

between the directed edges of Gn and G∗n in such a way that if
−→
E (u) is the set of

edges incident to a vertex u of Gn directed towards u, then {−→e ∗ | −→e ∈
−→
E (u)} is a

cycle oriented in the counter-clockwise direction.

4.3.2 The tiling

For any vertex u ∈ V (Gn), let hn(u) be the probability that simple random walk in

Gn starting from u hits tn before bn. Thus hn(tn) = 1 and hn(bn) = 0. Notice that

hn is harmonic at every vertex in V (Gn) \ {tn, bn}, i.e.

hn(u) =
1

d(u)

∑
v∈N(u)

hn(v).
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The values of hn will be used as ‘height’ coordinates in the construction of the square

tiling. Before defining the ‘width’ coordinates, let us consider the Ohm dual of hn,

namely the flow wn given by the relation

wn(−→xy) = hn(x)− hn(y)

for every directed edge −→xy of Gn. Observe that wn is antisymmetric, i.e. wn(−→xy) =

−wn(−→yx), and satisfies Kirchhoff’s laws.

Let us now define the functions w′n and h′n, the values of which will be used

as ‘width’ coordinates. Given a directed edge −→xy in the dual graph G∗n, we let

w′n(−→xy) = wn(−→xy∗),

where −→xy∗ is the directed edge of Gn corresponding to −→xy. It is a well-known

consequence of the duality between Kirchhoff’s laws in the primal and the dual

graph that the function w′n satisfies both Kirchhoff’s cycle law and Kirchoff’s node

law. To define h′n, set first h′n(ln) = 0. For every other vertex z ∈ V (G∗n), pick a

path Pz = z0z1 . . . zk, where z0 = z and zk = ln, and let h′n(z) =
∑

i<k w
′
n(−−−→zizi+1).

The value of h′n(z) does not depend on the choice of the path Pz because w′n satisfies

Kirchhoff’s cycle law.

It is not hard to see that the pair h′n, w′n satisfies Ohm’s law, i.e. w′n(−→xy) =

h′n(x) − h′n(y). Since w′n satisfies Kirchhoff’s node law, we deduce that h′n is a

harmonic function on the set V (G∗n) \ {ln, rn}. Furthermore, it follows from the

definition of h′n that

h′n(rn) = I∗n :=
∑

z∈N(tn)

wn(
−→
tnz),

since the directed edges
−→
tnz
∗ form a directed path from rn to ln.

Having defined w′n and h′n, we can now specify the squares Se of our square

tiling indexed by the edges of Gn. Consider an edge e = xy ∈ E(Gn) and assume

that hn(x) ≥ hn(y). Then the square Se has the form Ie × [hn(x), hn(y)]. To

define Ie, we consider the dual edge e∗ = x′y′ of e, and we let Ie be the interval

[h′n(x′), h′n(y′)], noting that h′n(y′) ≥ h′n(x′). For every u ∈ V (Gn), we define

Iu = ∪e∈E(u)Ie,

where E(u) is the set of edges incident to u. It is easy to check that Iu is an

interval. Brooks et al. [1940] proved that the interiors of the squares are disjoint

and the union of the squares is the rectangle [0, I∗n] × [0, 1]. In other words, the
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Figure 4.3: A graph and its square tiling with respect to the highlighted vertices.

collection S = {Se, e ∈ E(Gn)} is a tiling of the rectangle [0, I∗n] × [0, 1]. Figure

(4.3) gives an example of a square tiling. See also Benjamini and Schramm [1996a];

Georgakopoulos [2016] for a similar construction of a square tiling of a cylinder.

We remark that h′n(z) coincides with I∗npn(z) for every vertex z of G∗n, where

pn(z) denotes the probability that simple random walk from z visits rn before ln.

This follows from observing that both functions are harmonic at every vertex z 6=
ln, rn, and coincide at ln and rn because pn(ln) = 0 and pn(rn) = 1. This easily

implies

Lemma 4.3.1. The square tiling of G∗n with respect to ln, rn coincides with that of

Gn rotated by 90 degrees and re-scaled by 1/I∗n.

4.3.3 Definition of the interpolation sn

We will now define the functions sn : Ω → C. Given a vertex z of Ωn that does

not lie in Tn ∪ Bn, we define the imaginary part of sn(z) to be equal to hn(z). For

the real part of sn(z), let f1, f2, . . . fk be the faces incident to z in Gn, where k

denotes the number of such faces. The real part of sn(z) is defined to be the average

horizontal coordinate
∑k

i=1 h
′
n(zi)/k. For those vertices z lying in Tn∪Bn, we define

sn(z) in terms of hn and h′n in a similar manner, except that we now replace z by

tn or bn, as appropriate.

Notice that when Iz is not a single point, sn(z) belongs to the interior of

Iz × {hn(z)}. To extend sn to all of Ω, we first set sn to be equal to 0 on the

remaining vertices of 2−n ·L, and then extend it to every point in Ω (in fact to every

point in C) by linear interpolation. Thus, if (x1, y1), (x2, y1), (x2, y2) and (x2, y1)
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are the four corners of a square in 2−n ·L in counter-clockwise ordering with (x1, y1)

being the bottom left one, and (x, y) is a point lying in that square, then

sn(x, y) = 4n
(

(x2 − x)(y2 − y)sn(x1, y1) + (x− x1)(y2 − y)sn(x2, y1)+

(x− x1)(y − y1)sn(x2, y2) + (x2 − x)(y − y1)sn(x1, y2)
)
.

(4.2)

We remark that every point z ∈ Ω is mapped under sn in the rectangle [0, I∗n]× [0, 1]

since this holds for the lattice points 2−n · L and the rectangle [0, I∗n] × [0, 1] is a

convex set.

4.4 Proof of main result

In this section, we prove Theorem 4.1.1. The proof is split into several smaller parts.

Let us start by formulating it more precisely.

Theorem 4.4.1. Consider a Jordan domain Ω in C, and four distinct points x1,

x2, x3 and x4 in ∂Ω in clockwise ordering. Let E be the extremal length between the

arcs x1x2 and x3x4 of ∂Ω, and y1, y2, y3, y4 be the four corners of the rectangle

[0, 1/E]×[0, 1] in clockwise ordering with y1 being the top left one. Then the sequence

(sn) converges in C∞(Ω) to the conformal map f mapping Ω onto the rectangle

(0, 1/E)× (0, 1), with f(xi) = yi, i = 1, 2, 3, 4.

4.4.1 Convergence to a holomorphic map

Since sn is defined via h′n and hn, it will be useful to first establish the convergence

of h′n and hn. The following lemma is our first step in that direction.

Lemma 4.4.2. There is a strictly increasing sequence (kn) of natural numbers such

that both h′kn and hkn converge in C∞(Ω) to smooth functions u : Ω → R and

v : Ω → R, respectively, and the intensities Ikn converge to a non-negative real

number I.

For every n ≥ 0, let Dn be the subgraph L spanned by the vertices (x, y)

with both |x| ≤ 2n and |y| ≤ 2n. In order to prove Lemma 4.4.2 above, we will

utilise the next result about the partial derivatives of harmonic functions on Dn.

Theorem 4.4.3. Brandt [1966]; Lawler [1991] There is a constant C > 0 such that

for every harmonic function f on Dn we have∣∣∣∂f
∂x

(0)
∣∣∣ ≤ C‖f‖∞

2n
and

∣∣∣∂f
∂y

(0)
∣∣∣ ≤ C‖f‖∞

2n
.
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Since by definition ‖hn‖∞ ≤ 1, Theorem 4.4.3 gives after a suitable rescaling

and translation of Dn that for every closed disk ∆ ⊂ Ω, the partial derivatives of hn

on ∆ are bounded. It follows from the next lemma that h′n is uniformly bounded

too.

Lemma 4.4.4. There is a constant c = c(Ω) > 0 such that I∗n ≤ c for every n ≥ 0.

Proof. Since I∗n is by definition equal to the reciprocal of the effective resistance Reff
n

between tn and bn (4.1), it suffices to bound Reff
n from below by a strictly positive

real number.

Duffin [1962] proved that the effective resistance coincides with the discrete

extremal length; applied to Gn, this statement becomes

Reff
n = max

W
min
P

(∑
e∈E(P )We

)2∑
e∈E(Gn)W

2
e

,

where the minimum ranges over all paths connecting tn with bn, and the maximum

ranges over all assignments We ∈ [0,∞), e ∈ E(Gn)3. For every n ≥ 0, we will

assign to each edge of Gn some positive parameter We = We(n), and we will show

that (∑
e∈E(P )We

)2∑
e∈E(Gn)W

2
e

remains bounded from below for every path P connecting tn with bn. To this end,

for every e ∈ E(Gn), let We = 2−n. Notice that every path P connecting tn with

bn gives rise to a path in Ωn connecting Tn to Bn which we will still denote by P .

The sum
∑

e∈E(P )We is now equal to the length of P . Hence this sum is bounded

from below by the Hausdorff distance between Tn and Bn. This distance converges

to the distance between the arcs T and B, which is strictly positive, showing that

for every n ≥ 0,
(∑

e∈E(P )We

)2
remains bounded from below by a strictly positive

constant.

It remains to bound the denominator
∑

e∈E(Gn)W
2
e from above. Associate

to each edge e ∈ E(Gn) the square of side length 2−n that contains e (when viewed

as an edge in Ωn) and is dissected by e into two congruent rectangles. The area of

each of these squares is equal to W 2
e = 4−n. It is not hard to see that the interiors

of any pair of squares associated with distinct parallel edges of Gn (horizontal or

3The physical intuition behind this is the classical formula Reff
n =

V 2

E
, where V is the potential

difference of an electrical current and E its energy, combined with the fact that the electrical current
is the energy minimiser among all functions We achieving a given potential difference between the
source and the sink.
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vertical) are disjoint. Moreover, all squares constructed in this way have distance

at most 1 from a point in Ω, hence they lie in a bounded region Ω′ independent of

n. Therefore, ∑
e∈E(Gn)

W 2
e ≤ 2area(Ω′),

where the factor 2 comes from considering the squares associated with horizontal

edges and those associated with vertical edges. This completes the proof.

Since h′n = I∗npn and ‖pn‖∞ ≤ 1, Lemma 4.4.4 and Theorem 4.4.3 imply

that for every closed disk ∆ ⊂ Ω, the partial derivatives of h′n on ∆ are uniformly

bounded. We are now ready to prove Lemma 4.4.2.

Proof of Lemma 4.4.2. The sequence (I∗n) is bounded by Lemma 4.4.4, hence there is

a subsequence (I∗kn) of (I∗n) and a non-negative real number I such that Ikn converges

to I. Moreover, both hkn and pkn are positive harmonic functions bounded from

above by 1. We will use Theorem 4.4.3 to prove that both (hkn) and (pkn) have

further subsequences converging in C∞(Ω).

Extend the functions hkn and pkn in Ω by linear interpolation as in (4.2).

Denote these extensions by Hkn and Pkn , respectively. Notice that for any point r

lying in the interior of some horizontal edge zy of Gn, where y = z + 2−n, we have

∂Hkn

∂x
(r) =

∂hkn
∂x

(z)

and
∂Pkn
∂x

(r) =
∂pkn
∂x

(z),

where in the left-hand side we have the standard partial derivative and in the right-

hand side we have the discrete one. Similar equalities hold for the partial derivatives

with respect to y. Moreover, for every point r in the interior of some square of

2−n · L, the partial derivatives of Hkn and Pkn at r are linear combinations of their

partial derivatives at the boundary of the square. Theorem 4.4.3 now implies that

the partial derivatives of Hkn and I∗knPkn are locally bounded. Thus the sequences

(Hkn) and (I∗knPkn) are locally bounded and equicontinuous. The Arzelà-Ascoli

theorem now says that the sequences (Hkn) and (I∗knPkn), hence (hkn) and (I∗knpkn),

have further subsequences converging locally uniformly to some continuous functions

u : Ω → R and v : Ω → R, respectively. For convenience, we will assume without

loss of generality that the sequences converge along (kn).

To deduce the convergence in C∞(Ω), we observe that if h is a harmonic

function defined in a ball around a vertex of 2−n · L, then the function g(z) =
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h(z + 2−n) is harmonic at every vertex of the ball except possibly for those at

its boundary. It follows that the partial derivatives of h are also harmonic at every

vertex of the ball except possibly for those at its boundary, as differences of harmonic

functions. This implies that for every k ≥ 0, all partial derivatives of hkn and

pkn of order k, are harmonic functions on suitable subsets of V (Gn). It is easy

to prove inductively using Theorem 4.4.3 that all partial derivatives of order k of

hkn and I∗knpkn are locally bounded. Arguing as above, we deduce that all partial

derivatives of order k of hkn and I∗knpkn have a further subsequence that converges

locally uniformly. It follows by Lemma 4.4.5 below that the limiting functions are

the corresponding partial derivatives of order k of u and v, respectively. In other

words, all subsequential limiting functions coincide with the corresponding partial

derivatives of order k of u and v, respectively. This implies that all partial derivatives

of order k of hkn and I∗knpkn converge locally uniformly to the corresponding partial

derivatives of order k of u and v, respectively. This completes the proof.

We now state the lemma mentioned in the proof of Lemma 4.4.2 above, which

is an easy exercise.

Lemma 4.4.5. Consider a sequence of piecewise continuously differentiable func-

tions fn : [a, b] → R. Assume that there are continuous functions f, g : [a, b] → R
such that (fn) converges uniformly to f , and (f ′n) converges uniformly to g. Then

f is differentiable with f ′ = g.

We fix a sequence (kn), smooth functions u : Ω → R and v : Ω → R, and

a constant I as in Lemma 4.4.2, and we let f : Ω → C be the function defined as

f = u+ iv. In the next lemma, we show that (skn) converges to f .

Lemma 4.4.6. The sequence (skn) converges in C∞(Ω) to f .

Proof. Recall that for every vertex z ∈ V (Gn), the real part of sn is equal to∑k
i=1 h

′
n(fi)/k. Every partial derivative of order j of

∑k
i=1 h

′
n(fi)/k at z is a linear

combination of the corresponding partial derivatives of order j of h′n at fi. Hence

every partial derivative of order j of the real part of skn converges locally uniformly to

the corresponding partial derivative of order j of u by Lemma 4.4.2. The imaginary

part of sn is by definition equal to hn, hence converges in C∞(Ω) to v. Thus we

obtain the desired result.

Our aim is to show that f is the conformal map of Theorem 4.4.1. We first

show that f is holomorphic.

Lemma 4.4.7. The function f : Ω→ C is holomorphic.
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Proof. It follows from Lemma 4.4.2 that f ∈ C1(Ω) (in fact f ∈ C∞(Ω)). We will

verify that f satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
, (4.3)

which implies that f is holomorphic.

Consider a point z ∈ Ω with dyadic coordinates z = (k2−m, l2−m), k, l,m ∈
N. Notice that for every n large enough, z is occupied by a vertex of Gn of degree 4.

Let
−→
E (z) be the four edges of Gn incident to z directed towards z. Let C = C(n)

be the dual directed cycle oriented in the counter-clockwise direction. Recall that

for −→rz ∈
−→
E (z) we have

h′n(r′)− h′n(z′) = hn(r)− hn(z),

where r′ and z′ are the end-vertices of the dual directed edge −→rz∗ ∈ E(C) of −→rz. We

can use this property to deduce that the pair h′n, hn satisfies the following ‘discrete

Cauchy-Riemann’ equations

∂h′n
∂x

(z + (−1 + i)2−n−1) =
∂hn
∂y

(z) and
∂h′n
∂y

(z + (1− i)2−n−1) = −∂hn
∂x

(z).

(4.4)

Taking limits along the sequence (kn) of Lemma 4.4.2 we deduce that f satisfies

the Cauchy-Riemann equations at z. The continuity of the partial derivatives of f

combined with the density of the set of points with dyadic coordinates implies that

f satisfies the Cauchy-Riemann equations at every point of Ω.

4.4.2 Boundary behaviour

Consider a point z ∈ ∂Ω. We say that y ∈ C is an f -limit point of z if there is a

sequence (zk) in Ω converging to z such that f(zk) converges to y. Write T ′ (resp.

B′, L′, R′) for the top (resp. bottom, left, right) side of the rectangle [0, I]× [0, 1].

Using the weak convergence of simple random walk to Brownian motion, we

prove the following lemma about the f -limit points of ∂Ω \ {x1, x2, x3, x4}. To be

more precise, consider simple random walk on the graph 2−n · L, and let Sn(t),

t = 0, 1, . . . denote its position at time t. Extend Sn(t) on the whole interval

[0,∞) by linear interpolation, and define the process Wn(t) = Sn(4nt). It is an

easy application of Donsker’s invariance principle Mörters and Peres [2010] that Wn

converges weakly in the locally uniform topology to the 2-dimensional Brownian
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motion W . Notice that since we are rescaling our lattice, we do not need to further

scale Sn to obtain the convergence.

Lemma 4.4.8. Consider a point z ∈ ∂Ω \ {x1, x2, x3, x4}. If z ∈ U , where U ∈
{T,B,L,R}, then all f -limit points of z lie in U ′.

Proof. Consider a point y ∈ Ω. We claim that

v(y) ≥ Py(τT = τ∂Ω), v(y) ≤ 1− Py(τB = τ∂Ω),

u(y) ≥ IPy(τR = τ∂Ω) and u(y) ≤ I
(
1− Py(τL = τ∂Ω)

)
,

(4.5)

where Py denotes the probability measure of Brownian motion starting from y, and

τS denotes the first hitting time of a set S. We will prove only the first inequality.

The remaining ones follow similarly.

Assume first that y has dyadic coordinates, and let n be large enough that

y is occupied by a vertex of Gn. Clearly, hn(y) is at least the probability for simple

random in Gn to hit tn before hitting ∂Gn\{tn}. Notice that simple random walk in

Gn up to the fist hitting time of ∂Gn behaves like simple random in 2−n ·L up to the

first hitting time of ∂Ωn. Hence hn(y) is at least the probability Pn,y(τTn = τ∂Ωn),

where Pn,y denotes the probability measure of simple random walk in 2−n ·L starting

from y.

We will now prove that

Pn,y(τTn = τ∂Gn) converges to Py(τT = τ∂Ω), (4.6)

using the weak convergence in the locally uniform topology of Wn to Brownian mo-

tion. Indeed, there is a coupling of the simple random walk and Brownian motion

in the same probability space, such that Wn converges almost surely to Brownian

motion in the locally uniform topology by virtue of Skorokhod’s representation the-

orem Billingsley [1999]. Notice that a priori it is possible for Wn to exit Ωn at Tn

for every n large enough, even though W exits Ω at ∂Ω \ T . Our aim is to show

that this is almost surely never the case.

To this end, let U ∈ {T,B,L,R} denote the boundary arc first visited by

Brownian motion, which is almost surely well-defined since W exits Ω at the set

{x1, x2, x3, x4} with probability 0. By the almost sure continuity of the Brownian

paths, there is a number δ > 0 such that the Hausdorff distance between the compact

sets {W (t), t ∈ [0, τ∂Ω + δ]} and (∂Ω\U)∪{x1, x2, x3, x4} is strictly positive. Hence

for every n large enough, the distance between the sets {Sn(t), t ∈ [0, 4n(τ∂Ω + δ)]}
and ∂Ωn \ Un is strictly positive. For every point p ∈ ∂Ω, Brownian motion from p
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exits Ω immediately, i.e.

Pp(inf{t > 0 |W (t) ∈ C \ Ω} = 0) = 1

by Lemma 4.4.9 below. Therefore, there is some t between τ∂Ω and τ∂Ω + δ such

that W (t) lies in the complement of Ω by the strong Markov property. We can

now deduce that for every n large enough, Sn(t) lies in the complement of Ω for

some t between 4nτ∂Ω and 4n(τ∂Ω + δ), hence hits ∂Ωn before time 4n(τ∂Ω + δ).

Consequently, τUn = τ∂Ωn for Sn when n is large enough because Sn does not hit

∂Ωn \Un by time 4n(τ∂Ω + δ). This implies that the indicator of the event that Wn

exits ∂Ωn at Un converges almost surely to the indicator of the event that W exits

∂Ω at U . Taking expectations we obtain (4.6).

Thus when y has dyadic coordinates, the desired inequality

v(y) ≥ Py(τT = τ∂Ω) follows from the convergence of hkn to v. The continuity of

both v and Py(τT = τ∂Ω) gives the inequality for all y in Ω.

To obtain the assertion of the lemma, it remains to show the convergence

of Py(τU = τ∂Ω) to 1 as y tends to z. Consider the conformal map from Ω to

(0,M)× (0, 1) of Theorem 4.4.1, where M = 1/E, and notice that it maps any arc

U ∈ {T,B,L,R} to U ′. Since Brownian motion is conformally invariant Mörters and

Peres [2010], it suffices to prove the assertion when Ω is the rectangle (0,M)×(0, 1),

U is its top side, and z is some interior point of the top side. Write y = y1 + iy2,

and let W = W1 + iW2 be our 2-dimensional Brownian motion, where W1 and W2

are independent 1-dimensional Brownian motions. Let also PWi,yi , i = 1, 2 denote

the probability measure of Wi starting from yi. Notice that if W2 hits 1 before 0,

and W1 hits 0 or M after W2 hits 1, then W exits the rectangle from the top. The

probability PW2,y2(τ1 < τ0) of the first event is equal to y2 (see e.g. [Mörters and

Peres, 2010, Theorem 2.45]), which converges to 1 as y tends to z. Moreover, for

every r > 0 we have

PW2,y2(τ1 ≤ r) = PW2,y2(|W2(r)| ≥ 1− y2) = 2Φ
(1− y2√

r

)
PW1,y1(τ0 ≤ r) = PW1,y1(|W1(r)| ≥ y1) = 2Φ

( y1√
r

)
PW1,y1(τM ≤ r) = PW1,y1(|W1(r)| ≥M − y1) = 2Φ

(M − y1√
r

)
by the Reflection Principle (see [Mörters and Peres, 2010, Thoerem 2.18]), where Φ

is the cumulative distribution of the standard Gaussian random variable. Choosing

r = 1− y2 we obtain that PW2,y2(|W2(r)| ≥ 1− y2) converges to 1 as y converges to
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z. On the other hand, since both y1 and M − y1 remain bounded away from 0, the

probabilities PW1,y1(|W1(r)| ≥ y1) and PW1,y1(|W1(r)| ≥M − y1) converge to 0. By

the union bound the probability PW1,y1(τ ≤ r) converges to 0 as well, where τ is the

minimum of τ0 and τM . Thus with probability converging to 1 as y converges to z,

W2 hits 1 before 0, and W1 hits 0 or M after W2 hits 1. This proves the desired

convergence.

We now prove the lemma mentioned in the proof of Lemma 4.4.8 above.

Lemma 4.4.9. For every p ∈ ∂Ω we have Pp(inf{t > 0 |W (t) ∈ C \ Ω} = 0) = 1.

Proof. Since ∂Ω is a Jordan curve, every boundary point p ∈ ∂Ω is regular for

Brownian motion [Karatzas and Shreve, 1991, Problem 2.16], i.e.

Pp(inf{t > 0 |W (t) ∈ C \ Ω} = 0) = 1,

which is slightly weaker than the desired assertion. To remedy this, let γ be a Jordan

curve passing through p with the property that every other point of γ lies in C \Ω.

The existence of such a curve follows easily from the fact that p is accessible by an

arc in C\Ω, since ∂Ω is a Jordan curve. Let Ω′ be the bounded component of C\γ.

We have that

Pp(inf{t > 0 |W (t) ∈ C \ Ω′} = 0) = 1

as above. Since every point of C\Ω′ other than p lies in C\Ω, and Brownian motion

almost surely never visits p after time 0, we obtain the desired result.

4.4.3 Proof of injectivity

We now proceed with the proof of injectivity of f , for which we need the following

lemma.

Lemma 4.4.10. Consider a point z ∈ Ω, and let ∆ ⊂ Ω be a closed disk centred at

z. Let W (n) = W (n, z,∆) be the maximum side length of a square Se in the square

tiling of Gn over those edges e with both end-vertices in ∆. Then W (n) converges

to 0.

Proof. Notice that the side length of any square Se in the square tiling of Gn is

equal to either 2−n
∣∣∣∂hn
∂x

(p)
∣∣∣ or 2−n

∣∣∣∂hn
∂y

(p)
∣∣∣ for some vertex p of Gn, depending on

whether e is a vertical or a horizontal edge. We know that there is a constant C > 0

such that
∣∣∣∂hn
∂x

(p)
∣∣∣ ≤ C and

∣∣∣∂hn
∂y

(p)
∣∣∣ ≤ C for every p in ∆ by Theorem 4.4.3. The

desired assertion follows.
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We now prove that f is injective.

Lemma 4.4.11. The function f : Ω→ C is injective.

Proof. Suppose, to the contrary, there are points z, y ∈ Ω with z 6= y and f(z) =

f(y) = h′ + ih for some h ∈ [0, I], h′ ∈ [0, 1].

We have h′ + ih ∈ (0, I)× (0, 1), (4.7)

by (1.22) because all of Py(τT = τ∂Ω), Py(τB = τ∂Ω), Py(τL = τ∂Ω) and

Py(τR = τ∂Ω) are strictly positive.

Our aim is to find a countable set X ⊂ Ω that accumulates to either z or y on

which f is constant, as this contradicts the fact that f is a non-constant holomorphic

function. The latter follows from Lemma 4.4.8.

For this, pick a sequence (zn)n∈N of vertices of Gn such that zn is incident

with a face or edge containing z. Pick a sequence (yn)n∈N of vertices of G∗n, i.e. faces

of Gn, such that yn contains y in its closure. Let also Dz, Dy ⊂ Ω be two closed

disks centred, at z, y, respectively. Then for every large enough n, zn belongs to Dz,

and yn belongs to Dy. We will define a sequence of paths Pn ⊂ Ω in Gn ∪G∗n along

which the values of f are closer and closer to f(z) = f(y), and obtain the desired

X as a set of accumulation points of Pn.

Lemma 4.4.2 implies that limn hkn(zkn) = h. Let an := Re(sn(zn)) be the

first coordinate of zn in the interpolation sn of the square tiling map as introduced

in Section 4.3.3, and recall that an was defined as the average of the h′n values of the

faces incident with zn. Therefore, by Lemma 4.4.2 combined with Lemma 4.4.10, we

know that akn converges to h′. Similarly, we have limn h
′
kn

(ykn) = h, and recalling

that bn := Hn(yn) is a convex combination of the hkn values of the vertices incident

with yn, we obtain limn bkn = h by Lemmas 4.4.2 and 4.4.10. We will assume

without loss of generality that Im(sn(zn)) ≤ Im(sn(yn)).

In order to construct Pn, we will consider two cases according to the be-

haviour of sn on Dz, Dy. Consider at first the case that some Iw, w ∈ {zn, yn} is

trivial, i.e. a single point, and furthermore, that there is

a path P ′n in Gn or G∗n connecting w to the complement of Dw, such that

Iu is a single point for every vertex u of P ′n.
(4.8)

Then we let Pn = P ′n.

It remains to consider the case that no such path P ′n exists. We will obtain

Pn by combining two paths Qn ⊂ Gn and Q∗n ⊂ G∗n. We start the construction of

Qn by the set of edges e whose square Se in the square tiling of Gn has non-zero
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bn

Hn(zn)

an h′n(yn)

Figure 4.4: The situation in the proof of Lemma 4.4.11. The shaded squares depict
the constructed path Pn. The top figure corresponds to the simpler case where
(an, bn) lies in the interior of a square of the tiling. The bottom figure shows how
Pn is adapted locally in the other case.

width, and contains a point —possibly at its boundary— with coordinates (an, η)

with η ∈ [hn(zn), bn]. If for some value of η there are two such edges e, f , which

can only be the case when both Se, Sf are tangent on either side the vertical line L

with first coordinate an, we only keep the edge that lies on the left of L. We let En

denote the set of edges thus obtained. We remark that

En must contain an edge e such that Se contains a point (ζ, η) with ζ < an

and η > bn,
(4.9)

because some Se contains (an, bn) as well as such a point (see Figure 4.4).

Next, we claim that En spans a path of Gn. Indeed, we can linearly order

the edges e ∈ En by the second coordinates in Se, and note that any two consecutive

edges e1, e2 in this ordering share a vertex v, namely one with h(v) coinciding with

the vertical coordinate of Se1 ∩ Se2 . We let Q′n denote this path.

We take Qn = Q′n if the latter happens to start at zn, but this will fail if the

interval Izn is a single point Izn = {an}. In this case, we let Zn be the connected
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component of zn in Gn consisting of vertices u such that Iu is trivial, and let ∂Zn

denote the set of those vertices of Gn \ Zn that have a neighbour in Zn. It is not

hard to see that Iu = Izn for every u ∈ V (Zn). Moreover, for every vertex v of ∂Zn

we have that Iv is non-trivial and contains an, hence there is an edge e incident

with v such that the square Se is non-trivial, and contains sn(zn) as well as a point

with larger second coordinate than sn(zn). Now our assumption that no path P ′n as

defined in (4.8) exists, implies that Zn lies in Dz. Thus for every large enough n,

Zn has at least two boundary vertices, and so there is a boundary vertex qn and an

edge e incident with qn such that Se is non-trivial, and contains sn(zn) as well as

a point (c, d) with c < an and d > Im(sn(zn)). Pick now a path Rn in Zn ∪ {qn}
connecting zn to qn. Then Qn := Rn ∪ Q′n is a path starting at zn, and we have

completed the first half of the definition of Pn.

The other half is now easy: we recall that the square tiling of G∗n with

respect to ln, rn coincides with that of Gn rotated by 90 degrees and re-scaled by

1/I∗n by Lemma 4.3.1, and repeat the same construction with the role of zn and yn

interchanged, to obtain the path Q∗n ⊂ G∗n starting at yn.

We claim that Qn, Q
∗
n intersect when viewed as subsets of Ω. Indeed, they

both traverse the unique edge e such that Se contains the point (an, bn) as well as

a point (ζ, η) with ζ > an, η > bn. Therefore, Qn ∪ Q∗n contains a zn–yn arc in Ω,

which is our Pn. Write Ln for the curve in (0, I)× (0, 1) connecting sn(zn) to sn(yn)

that lies in the union of the lines x = an and y = bn.

We can assume without loss of generality that in both cases Qn contains the

vertex zn. Consider now a positive integer m, and let ∆m denote the closed annulus

centred at z of radii 1/2m and 1/(2m+1). Notice that for every m large enough, ∆m

lies entirely in Dz, and yn lies in the unbounded component of C \∆m. Moreover,

for every n large enough, zn lies in the bounded component of C \∆m. Therefore,

for every such m and n, there is a point of Qn contained in ∆m. Pick such a point

and denote it by xn(m). We can choose xn(m) to be a vertex of either Gn or G∗n.

For every fixed m, the sequence (xn(m))n∈N has an accumulation point in

∆m, which we denote by x(m). Let X be the set of all x(m). Notice that all x(m) are

pairwise distinct because the annuli ∆m are by definition disjoint, and furthermore,

x(m) converges to z as m→∞.

By construction, for every fixed m, the values of skn at xkn(m) are close to

f(z) = f(y): the points skn(zkn) and skn(ykn) converge to f(z) = f(y), and the

coordinates of every point of Lkn are bounded from above and below by the coor-

dinates of skn(zkn) and skn(ykn). Therefore, the points of Lkn converge uniformly

to f(z) = f(y). Furthermore, the distance between skn(xkn(m)) and Lkn converges
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to 0 by Lemma 4.4.10, hence skn(xkn(m)) converge to f(z) = f(y). Since skn con-

verges uniformly in ∆m to f , we have that f(x(m)) is an accumulation point of the

sequence
(
skn(xkn(m))

)
n∈N. Thus, f(x(m)) = f(z) = f(y). This proves that f is

constant on X, as desired.

4.4.4 Behaviour at the designated boundary points

We will now determine the behaviour of f near x1, x2, x3 and x4. The proof of the

next lemma is based purely on the boundary behaviour of f at ∂Ω \ {x1, x2, x3, x4},
and the fact that f is a conformal map.

Lemma 4.4.12. For each i = 1, 2, 3, 4, the only f -limit point of xi is yi.

Proof. Let us assume without loss of generality that i = 1. Consider a Riemann map

φ from the open unit disk D onto Ω, and recall that φ extends to a homeomorphism

between their closures D and Ω by Caratheodory’s theorem. Let X1 = φ−1(x1), and

define g = f ◦ φ, which is a conformal map, as f is conformal by Lemma 4.4.7 and

Lemma 4.4.11. For each r > 0, consider the curve C(r) = D∩{z ∈ C | |z−X1| = r},
and let l(r) be the length of the curve g

(
C(r)

)
. Write t(r) for the set {t ∈ [0, 2π] |

X1 + reit ∈ D} on which the standard parametrization X1 + reit of C(r) is defined.

Since g is a conformal map, the integral∫ 1/2

0

l(r)2

r
dr

is finite. This follows from applying the Cauchy-Schwarz inequality to the formula

l(r) =

∫
t(r)
|g′(X1 + reit)|rdt,

and then using the fact that∫∫
D
|g′(z)|2dxdy = area(g(D)),

which is finite; see e.g. [Krantz, 2006, Lemma 5.1.3] for a detailed proof. On the

other hand, the function 1/r is not integrable at 0, hence there is a sequence (rk)

of strictly positive real numbers converging to 0, such that the sequence
(
l(rk)

)
converges to 0 as well.

For every k large enough, l(rk) is in particular finite, implying that g(C(rk))

extends to a continuous curve γk defined on the closure of t(rk), which clearly has

the same length as g(C(rk)). Furthermore, for every k large enough, one of the two
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endpoints of C(rk) lies in φ−1(T ), while the other lies in φ−1(L). Hence one of the

two endpoints of γk lies in T ′, while the other lies in L′ by Lemma 4.4.8. Notice that

the endpoints of γk may possibly coincide, in which case they coincide with y1, but

the curve is otherwise injective. Consequently, γk is either a Jordan arc or a Jordan

curve. In both cases, γk divides (0, I)× (0, 1) into two components S1 and S2. We

claim that one of them, say S1, decreases to the empty set as k →∞. Indeed, if γk

is a Jordan curve, then we let S1 be the component bounded by γk, and otherwise,

we let S1 be the component whose boundary contains y1. Since the length of γk

converges to 0, the distance of its endpoints converges to 0 as well, which is possible

only when the endpoints of γk converge to y1. In both cases, the distance of each of

the boundary points of S1 from y1 converges uniformly to 0. Our claim now follows

easily.

Clearly, C(rk) divides D into two components C1 and C2 as well, with C1

decreasing to the empty set and C2 increasing to D as k →∞. Since g is injective,

one of the sets g(C1), g(C2) lies in S1, while the other lies in S2. To decide which

one lies in S1, notice that g(C2) increases to g(D). Therefore, g(C2) cannot lie in

S1 when k is large enough, hence g(C1) lies in S1 for those k. This implies that all

possible g-limit points of X1, hence all possible f -limit points of x1, belong to the

closure of S1. The closure of S1 decreases to {y1} as we have seen, and the desired

assertion follows.

4.4.5 Completing the proof

We are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. It follows from Lemma 4.4.7 and Lemma 4.4.11 that f is

a conformal map. Moreover, f maps open sets to open sets by the Open mapping

theorem for holomorphic functions. This shows that f(Ω) is an open set, and fur-

thermore the only boundary points of f(Ω) are the f -limit points of ∂Ω. We can

now deduce from Lemma 4.4.8 and Lemma 4.4.12 that the boundary of f(Ω) lies

at the boundary of the rectangle [0, I] × [0, 1]. The set f(Ω) lies in [0, I] × [0, 1]

because sn(Ω) lies in [0, I∗n] × [0, 1] for every n ≥ 0, and skn converges to f by

Lemma 4.4.6. There is a unique set satisfying the aforementioned properties of

f(Ω), namely (0, I)× (0, 1). Therefore, f maps Ω onto (0, I)× (0, 1).

Since ∂Ω is a Jordan curve, f extends to a homeomorphism between Ω

and [0, I] × [0, 1] by Caratheodory’s theorem, and maps xi, i = 1, 2, 3, 4 to yi by

Lemma 4.4.12. As mentioned in Section 4.2.2, I equals the reciprocal of the ex-

tremal length between T and B, and the above properties uniquely determine f .
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Consequently, all subsequential limits of sn coincide with f . Hence sn converges in

C∞(Ω) to f , as desired.

Since the only limit point of (I∗n) is I, we obtain that I∗n converges to I. More-

over, I is the reciprocal of the extremal length between T and B by the discussion

in Section 4.2.2, and Reffn = 1/I∗n. As a corollary, we obtain

Corollary 4.4.13. The effective resistance Reffn between Tn and Bn converges to

the extremal length between T and B.
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