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Abstract
Applied researchers most often estimate the demand for differentiated prod-
ucts assuming that at most one item can be purchased. Yet simultaneous
multiple purchases are pervasive. Ignoring the interdependence among mul-
tiple purchases can lead to erroneous counterfactuals, in particular, because
complementarities are ruled out. I consider the identification and estima-
tion of a random coefficient discrete choice model of bundles, namely sets
of products, when only product-level market shares are available. This last
feature arises when only aggregate purchases of products, as opposed to in-
dividual purchases of bundles, are available, a very common phenomenon in
practice. Following the classical approach with aggregate data, I consider
a two-step method. First, using a novel inversion result in which demand
can exhibit Hicksian complementarity, I recover the mean utilities of prod-
ucts from product-level market shares. Second, to infer the structural pa-
rameters from the mean utilities while dealing with price endogeneity, I use
instrumental variables. I propose a practically useful GMM estimator whose
implementation is straightforward, essentially as a standard BLP estimator.
Finally, I estimate the demand for Ready-To-Eat (RTE) cereals and milk
in the US. The demand estimates suggest that RTE cereals and milk are
overall complementary and the synergy in consumption crucially depends on
their characteristics. Ignoring such complementarities results in misleading
counterfactuals.
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1 Introduction
Since the seminal work of Berry (1994) and Berry et al. (1995) (henceforth BLP),
BLP-type models have been widely used in empirical literature of demand esti-
mation.1 Researchers most often estimate models of demand for single products,
assuming that individual purchases at most one single product. Yet, the behaviour
of making multiple simultaneous purchases is pervasive. In many economic analyses
(e.g. multi-category demand, nonlinear pricing, supermarket competition), interde-
pendence among multiple purchases in demand is key, which is, however, assumed
away in models of demand for single products. In particular, Hicksian complemen-
tarities are ruled out.2 As a result, estimating demand models of single products
may lead to biased estimates and misleading policy counterfactuals.3

This paper proposes a random coefficient discrete-choice model of demand for
bundles.4 This model has various notable advantages. First, its application only
requires the availability of aggregate demand data at product level (e.g. aggre-
gate choice probability, or sales quantities, of products) defined in form of “market
shares”. Such data is widely accessible in most industries.5 Differently, models
of demand for bundles routinely used in the empirical literature often rely on the
availability of individual-level choice data of bundles (e.g. individual transaction
data), which may be costly to obtain. Second, different from models of demand for
single products, the proposed model does not restrict products to be substitutes.
It incorporates individuals’ behaviour of multiple purchases, allowing for Hicksian
complementarities among products. Notably, the model enables to encompass var-
ious mechanisms that can drive Hicksian complementarity, while still allowing for
endogenous prices.6 Third, the identification arguments are constructive and lead
to a practically useful Generalized Method of Moments (GMM) estimator. In par-
ticular, it can handle potentially large choice sets in multiple purchases. Finally, the
implementation of the GMM estimator is straightforward, essentially as a standard
BLP estimator.

To motivate the identification discussion, I distinguish two sets of demand prim-
1BLP-type models also gain popularity outside of empirical industrial organisation, e.g. anal-

ysis of voting data (Rekkas (2007), Milligan and Rekkas (2008), Gordon and Hartmann (2013),
Merlo and Paula (2017), Gillen et al. (2019)), asset pricing (Koijen and Yogo, 2019).

2Hicksian complementarity is defined as negative (compensated) cross-price elasticity between
two products. For a survey of different concepts of complementarity, see Samuelson (1974).

3See section 3.3 for Monte Carlo evidences of such bias in various counterfactual analyses.
4In the empirical literature, the terminology “bundle” is often referred to as a set of products

purchased by individuals. In this paper, I use this terminology and formalise it in Assumption 1.
5This data requirement is the same as classical BLP models of single products.
6Examples of such mechanisms include shopping cost (Pozzi (2012), Thomassen et al. (2017)),

preference for variety (Hendel (1999), Dubé (2004)), and synergies in consumption (Gentzkow,
2007).
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itives that are sufficient for different kinds of economic analyses in models of de-
mand for bundles. The first set includes product-level market share functions; I
show that they are sufficient for economic analyses (e.g. identification of price elas-
ticities, marginal costs, and mergers) under linear pricing.7 The second set includes
bundle-level market share functions; I prove that they are sufficient for the analyses
under nonlinear pricing.8

I then organise the identification discussion in two parts. In the first part, as
in classical demand models using aggregate data, I use a two-step strategy to iden-
tify product-level market share functions. In the first step, I invert the observed
product-level market shares to the mean utilities of products. Because of possible
Hicksian complementarities among products, the typical conditions that guarantee
the invertibility of product-level market share functions (connected substitutes con-
ditions, see Berry et al. (2013)) may not hold. To solve this challenge, I use a novel
demand inverse argument that hinges on two elements. First, the affine relationship
between the utilities of bundles and its single products: the average utility of any
bundle equals the sum of those of its single products plus an extra term capturing
their potential demand synergy. Second, the P-matrix property by Gale and Nikaido
(1965) which crucially does not restrict the products to be Hicksian substitutes. In
the second step, I use instrumental variables (IVs) to deal with endogenous prices
and construct conditional moment conditions. Based on these moment conditions,
the identification can be achieved under the general but high-level completeness con-
ditions along the lines of Berry and Haile (2014).9 To complement the discussion,
I also propose low-level sufficient conditions for the identification of product-level
market share functions in a mixed-logit model of demand for bundles. In particular,
I show that under some common regularity conditions, product-level market share
functions are identified when demand and supply shocks are jointly normal, or the
data generating process (DGP) is a model of demand for multiple products across
categories.

In the second part, assuming the identification of product-level market share
functions, I study that of bundle-level market share functions. This is to disentan-
gle the demand synergies among products from the unobserved correlations in the
utilities of products (Gentzkow, 2007). Because only product-level market shares
are observed, this task is more challenging than the usual case in which bundle-level

7Under linear pricing, firms set prices for single products and the price of a bundle is the sum
of the prices of its single products.

8Under nonlinear pricing, the price of a bundle can be different from the sum of the prices of
its single product, and firms can further set discounts or surcharges on the bundles of their own
products.

9For various forms of completeness conditions, the testability, and the sufficient conditions of
completeness, see Mattner (1993), D’Haultfoeuille (2011), Canay et al. (2013), Andrews (2017),
Freyberger (2017), Hu and Shiu (2018).
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market shares are observed. I provide both positive and negative results. First, I
prove that the identification can be achieved in mixed-logit models of demand for
bundle up to size two that are often used in the empirical literature.10 Second, I
show that using only product-level market shares may have limited power in iden-
tifying bundle-level market share functions in other types of models. I provide an
example of non-identification in a model of demand for multiple units.

I propose a GMM estimation procedure that is similar to that in BLP models of
single products. In the first step, given a guess of the demand synergy parameters
and the distribution of the random coefficients, I invert the observed product-level
market shares to the mean utilities of products. In the second step, I instrument
out the unobserved demand shocks in the mean utilities of products and construct
the GMM objective function. There are nontrivial challenges that BLP models of
single products do not have. In particular, the implementation of the demand in-
verse is complicated due to possible Hicksian complementarities among products:
when used to implement the demand inverse in the first step, the fixed-point al-
gorithm proposed by Berry et al. (1995) may not have the contraction-mapping
property and therefore may not converge. To solve this challenge, I propose to
use Jacobian-based algorithms. To enhance their numerical performance, I suggest
using a starting value of parameters directly constructed from the observed product-
level market shares. In Monte Carlo simulations, I show that using this starting
value significantly improves the numerical performance of Jacobian-based methods,
reducing the convergence time by 70% compared to using standard starting value
in large applications (the number of bundles being about 5000).

Finally, I illustrate the practical implementation of the methods and estimate
the demand for Ready-To-Eat (RTE) cereals and milk in the US. First, the demand
estimates suggest that RTE cereals and milk are overall Hicksian complementary.
Moreover, the extent to which a RTE cereal product and a milk product are com-
plementary crucially depends on the match of their characteristics (e.g. flavours,
grain type, fat content), some pairs being less complementary than others. Second,
I simulate a merger between a major RTE cereal producer and a milk producer.
The results are aligned with Cournot (1838)’s insight: in the presence of Hicksian
complementarity, mergers can be welfare enhancing. Third, I estimate the demand
and replicate the same merger exercise using two alternative models: a model that
completely ignores demand synergy between RTE cereals and milk, and a model
that restricts all synergies to be the same across bundles of RTE cereal and milk.
The first alternative model imposes that the demand of RTE cereals and that of milk
are independent, predicting the merger to have no effect on welfare. The second
alternative model seems to overestimate the amount of complementarity between

10See Gentzkow (2007), Fan (2013), Grzybowski and Verboven (2016).
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RTE cereals and milk, overestimating the consumer welfare gain due to the merger.

Related Literature Empirical literature dealing with multiple purchases typi-
cally employs models of demand for bundles that rely on individual-level choice
data of bundles (e.g. individual transaction data).11 Differently, the methods in
this paper only requires the availability of aggregate product-level demand data
(e.g. aggregate choice probability, or sales quantities, of products) and can be ap-
plied when bundle-level demand data is not accessible. In particular, this paper
is different from Iaria and Wang (2019) in three aspects. First, the methods pro-
posed by two papers work under different data availabilities; those in this paper
work when only aggregate product-level demand data is available, while those of
the other paper apply when individual-level choice data of bundles is accessible.
Second, identification strategies are different; in this paper, I exploit the exoge-
nous variation in IVs to achieve identification, while that paper fully exploits the
affine relationship between the utilities of the bundle and its single products due
to the availability of bundle-level demand data. Third, estimation methods are
different; this paper uses a GMM estimation procedure, while that paper proposes
a likelihood-type estimator that resolves the dimensionality challenge due to many
market-product fixed effects.

Identifying and estimating models of demand for bundles from aggregate demand
at product level is a challenging task. Moreover, prices are often endogenous, which
introduces additional difficulty in identification. To the best of my knowledge,
this is the first paper that provides a systematic treatment of both issues in BLP-
type models of demand for bundles that may exhibit Hicksian complementarity.12

In particular, the paper proposes a novel demand inverse argument to deal with
possible Hicksian complementarities among products. Berry et al. (2013) propose
the connected substitutes conditions that guarantee the invertibility of the market
share functions. In model of demand for bundles with only product-level market
shares being available, these conditions rely on the products to be substitutes. Some
papers have employed similar concepts of demand inverse of product-level market
shares in model of demand for bundles. Fan (2013) studies newspaper market in

11Examples include consumer choice in supermarket (Hendel (1999), Dubé (2004), Lee et al.
(2013), Kwak et al. (2015), Thomassen et al. (2017), Ershov et al. (2018)), household choice
among motor vehicles (Manski and Sherman, 1980), choice of telecommunication services (Liu
et al. (2010), Crawford and Yurukoglu (2012), Grzybowski and Verboven (2016), Crawford et al.
(2018)), subscription decision (Nevo et al. (2005), Gentzkow (2007)), firms’ decision on technology
adoptions (Augereau et al. (2006), Kretschmer et al. (2012)). See Berry et al. (2014) for a survey of
complementary choices and sections 4.2-4.3 of Dubé (2018) for a survey of econometric modelling
of complementary goods.

12Dunker et al. (2017) also deal with price endogeneity in identification. However, instead of
using the product-level market shares, they assume the availability of a vector of bundle-level
market shares that has the same dimension as the number of products.
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the US and assumed households subscribe to at most two newspapers. She gives
sufficient conditions for the connected substitutes conditions and therefore rules out
Hicksian complementarities among different newspapers. In a model of demand for
multiple products across categories, Song and Chintagunta (2006) implement the
demand inverse of brand-level market shares. However, they do not have theoretical
results on the invertibility of the brand-level market share functions. Iaria andWang
(2019) employ the demand inverse to concentrate out fixed effects in estimation
when individual-level choice data of bundles is available. In contrast, I prove the
invertibility of product-level market share functions in general models of demand for
bundles (e.g. mixed-logit, probit) and use the demand inverse as a key identification
argument when only product-level market shares are available.

This paper also contributes to the recent literature of random-utility models
of demand in the presence of multiple purchases and potentially complementarity.
Fosgerau et al. (2019) employ a different approach and model Hicksian comple-
mentarity via overlapping nests. Sher and Kim (2014)’s identification arguments
crucially rely on substitutes assumptions in consumers’ utility,13 while this paper
does not restrict utility functions to be submodular or supermodular. Allen and
Rehbeck (2019a)’s main results imply the identification of product-level market
share functions in discrete choice models with additively separable heterogeneity.
The following paper, Allen and Rehbeck (2019b), gives identification results of cer-
tain distributional features of the random coefficients in the case of two products
(and therefore one bundle). Differently, the current paper achieves the identifi-
cation using IVs and further provides identification results of bundle-level market
share functions that allow for any finite number of products (and bundles). No-
tably, except for Fosgerau et al. (2019), all the other papers mentioned assume away
endogenous prices.

Organisation In section 2, I introduce the model and necessary notations. In
section 3, I motivate the model from three aspects. First, I provide various examples
in the literature that can be formulated via the model. Second, I illustrate how
the model can allow for Hicksian complementarity. Third, I provide Monto Carlo
evidences that accent the economic relevance of the proposed model to various
counterfactual analyses. In section 4, I present the main identification results. In
section 5, I describe the GMM estimation procedure and its implementation. In
section 6, I illustrate the practical implementation of the methods with an empirical
application. Section 7 concludes. All proofs are in Appendices A-G. Figures and
tables can be found in Appendix I. Additional Monte Carlo simulations can be

13When each consumer is assumed to consume at most one unit of each good, they impose
submodularity restriction in consumers’ utility (see their Assumption 2); when multi-unit demand
is allowed, they use a stronger “M-natural concavity” restriction (see their Assumption 3).
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found in Appendix K.

2 Model
Denote market by t = 1, ..., T . The definition of market depends on the concrete
application. For example, one could have different geographic areas in the case of
cross sectional data, or different periods in the case of panel data, or a combination
of these. For individuals in market t, let J be the set of J market-specific products
that can be purchased in isolation or in bundles. A bundle b is defined as a collection
of single products in J and denote the set of available bundles in market t by C2.14

Denote the outside option by 0. Individuals in market t can either choose a product
j ∈ J, a bundle b ∈ C2, or the outside option denoted by 0. Denote by C1 = J∪C2

the set of available products and bundles, and by C = C1 ∪ {0} the choice set of
individuals in market t. Let ptj denote the price of product j in market t, and
xtj ∈ RK the market-product specific vector of other characteristics of j in t.

For individual i in market t, the indirect utility from purchasing product j ∈ J
is:

Uitj = uitj + εitj

= xtjβi − αiptj + ηij + ξtj + εitj

= x
(1)
tj β

(1) + x
(2)
tj β

(2)
i − αiptj + ηij + ξtj + εitj

= [xtjβ − αptj + ξtj] + [x(2)
tj ∆β(2)

i −∆αiptj + ηij] + εitj

= δtj + µitj + εitj,

(1)

where uitj = δtj+µitj with δtj = xtjβ−αptj+ξtj being market t-specific mean utility
of product j ∈ Jt and µitj = x

(2)
tj ∆β(2)

i −∆αiptj + ηij being an individual i-specific
deviation from δtj, while εitj is an idiosyncratic error term. x(1)

tj ∈ RK1 is the vector
of product characteristics that enter Uitj with deterministic coefficient(s), β(1), i.e.
consumers have homogeneous taste on x(1)

tj , while x
(2)
tj ∈ RK2 and ptj enter Uitj with

potentially individual i-specific coefficients, β(2)
i and αi. They capture consumers’

heterogeneous tastes on characteristics x(2)
tj and sensitivities to price change. The

term ηij captures individual i’s (unobserved) perception of the quality of product
j.15 ξtj is a market-product specific demand shock, observed to both firms and
individuals but not observed to the researcher.
Throughout the paper, denote by j ∈ b the relationship of product j being in

14The set of products and bundles can be both market-specific, i.e. Jt and Ct2, and the results
of the paper do not change. In the empirical illustration, I will adopt market-specific Jt and Ct2;
while in the theory part, having Jt = J and Ct2 = C2 greatly facilitates the exposition.

15Any characteristic of product j that does not vary across markets is encapsulated by the mean
part of ηij . Equivalently, one can specify this mean as part of β(2), i.e. product-specific intercepts
in δtj and the results in this paper do not change.
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bundle b. The indirect utility for individual i in market t from purchasing products
in bundle b ∈ C2 is:

Uitb =
∑
j∈b

uitj + Γitb + εitb

=
∑
j∈b

(δtj + µitj) + Γtb + (Γitb − Γtb) + εitb

=
∑
j∈b

δtj + Γtb +
∑
j∈b

µitj + ζitb

+ εitb

= δtb(Γtb) + µitb + εitb,

(2)

where δtb(Γtb) = ∑
j∈b δtj + Γtb is market t-specific mean utility of bundle b,

µitb is an individual i-specific utility deviation from δtb(Γtb), Γitb and Γtb are the
individual-market it- and market t-specific demand synergies among the products
of bundle b, ζitb is (observed or unobserved) individual deviation from average
demand synergies Γtb, and εitb is an idiosyncratic error term. Demand synergies
Γitb’s capture the extra utility individual i obtains from purchasing the products
in bundle b’s in market t jointly rather than separately. Consequently, individuals
may find it more (or less) appealing to purchase products jointly than separately.

Finally, the indirect utility of choosing the outside option 0 is normalized as:

Uit0 = εit0,

where εit0 is an idiosyncratic error term. To complete the model, I write µitj =
x

(2)
tj ∆β(2)

i −∆αiptj+ηij = µj(θit;x(2)
tJ , ptJ) and µitb = ∑

j∈b µitj+ζitb = µb(θit;x(2)
tJ , ptJ)

as functions of random coefficients θit = (∆β(2)
i ,∆αi, (ηij)j∈J, (ζitb)b∈C2) and θit is

distributed according to F ∈ ΘF .16 Moreover, εit = (εit0, {εitj}j∈J, {εitb}b∈C2) are
assumed to be i.i.d. according to a known continuous distribution Φ (e.g. Gumbel,
Gaussian), and θit and εit are independently distributed.
Denote the vector of market t-specific mean utilities for products in J by δtJ =
(δtj)j∈J, and the vector collecting all average demand synergies by Γt = (Γtb)b∈C2 .
Define δt(Γt) = (δtJ, (δtb(Γtb))b∈C2). The market share function of b ∈ C1 in market

16Typically, the distribution of θit depends on individual i’s demographic characteristics di ∈ D.
In this case, F is a mixture of distributions of θi|di: F =

∑
di∈D πt(di)F (·|di), where πt(·) is the

distribution of demographics in market t.
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t is:17

sb(δt(Γt);x(2)
tJ , ptJ, F ) =

∫ ∫
1{Uitb > Uitb′ for any b′ 6= b,b′ ∈ C}dΦ(εit)dF (θit)

=
∫
sb(δt(Γt);x(2)

tJ , ptJ, θit)dF (θit),
(3)

where sb(δt(Γt);x(2)
tJ , ptJ, θit) is individual i’s choice probability of b in market t

given θit.18 Then, product-level market share function of j ∈ J is defined as a
weighted sum of the market share functions of b’s that contain j:

sj.(δtJ;x(2)
tJ , ptJ,Γt, F ) =

∑
b∈C1

wjbsb(δt(Γt);x(2)
tJ , ptJ, F )

= wj s(δt(Γt);x(2)
tJ , ptJ, F )

(4)

where wj = (wjb)b∈C1 is of dimension 1×C1, wjb is the number of times j appears
in b (and known to the researcher), and s(δt;x(2)

tJ , ptJ, θit) = (sb(δt;x(2)
tJ , ptJ, θit))b∈C1

is the vector of market share functions of products and bundles and of dimension
C1×1. If j /∈ b, then wjb = 0 and the market share of bundle b does not contribute
to the product-level market share of j; if j ∈ b, then wjb is a positive integer. When
there is no bundle that contains multiple units of the same product, i.e. a situation
of qualitative choice, wjb = 1 for j ∈ b. Then, (4) represents the population-level
marginal choice probability of j. When a bundle contain multiple units of the same
product, i.e. a situation of quantity choice, wjb is equal to the units of product j
purchased in the form of bundle b and may be greater than 1. Then, (4) represents
the population-level total purchases of product j. In both cases, the aggregation in
(4) is consistent with the typical product-level aggregate demand data available to
the researcher.

3 Demand Synergies in Model (4)
Demand model (4) exhibits two features that are crucial in many economic analyses
that models of demand for single products do not have. First, it allows for simul-
taneous purchases of multiple products and/or quantities. Second, it captures rich
substitution patterns among products, and in particular, Hicksian complementarity.
Demand synergy parameters Γitb’s are the key to generate both features.

In this section, I illustrate the economic relevance of demand synergies from
three aspects. First, I show that by imposing specific restrictions on Γitb, model
(4) covers a wide range of economic models. I provide various examples in the

17I abuse the expression b ∈ C1 for both product j and bundle b.
18Because Φ is a continuous distribution, then the event of having equal indirect utilities between

two alternatives is zero.

9



literature and explain the economic interpretation of Γitb’s in each setting. Second,
I demonstrate how Γitb’s generate flexible substitution patterns in demand and,
in particular, Hicksian complementarity. Finally, I report Monte Carlo evidences,
showing that ignoring these synergy parameters in demand estimation results in
considerable bias in counterfactual analyses.

3.1 Examples and Interpretations of Demand Synergies

Example 1: Demand for Single Products, within Category This example
can be seen as a particular case of (4) with C2 = ∅, or equivalently, Γitb = −∞, for
all b ∈ C2. This restriction on Γitb rules out simultaneous purchases of more than
one product and restricts products to be substitutes.

Example 2: Demand for Multiple Products, within Category. Gentzkow
(2007) considers household’s choice over bundles of at most 2 different newspapers:
C2 = {(j1, j2) : j1 < j2, j1, j2 ∈ J} and C = {0} ∪ J∪C2. In general, one can allow
for choice over bundles of up to L different products: C2 = {(j1, ..., jl) : j1 < ... <

jl, j1, ..., jL ∈ J}. As shown in Iaria and Wang (2019), demand synergy Γitb can
proxy, for example, preferences for variety, synergies in consumption.

Example 3: Demand for Multiple Products, across Categories. Grzy-
bowski and Verboven (2016) and Ershov et al. (2018) consider purchases of prod-
ucts across different categories. In the simplest case in which a bundle is defined
as a collection of 2 different products (chips and soda) with each belonging to a
different category (salty snacks and carbonated drinks), we have C2 = J1 × J2 =
{(j1, j2) : j1 ∈ J1, j2 ∈ J2}. In the example of potato chips and carbonated soda
(Ershov et al., 2018), Γitb’s are interpreted as synergies in consumption.

Example 4: Quantity Choice, Multiple Units. As a deviation from Ex-
ample 1, individuals purchase not only one out of J products but also a discrete
quantity of the chosen product. This can be captured by C2 = {(j, ..., j) : j ∈
J, the length of (j, ..., j) ≤ L.}, where L is the maximal units individuals can pur-
chase. In the simplest case, individuals can purchase the outside option 0, a
unit of product j ∈ J (single product), or a bundle of two identical units (j, j),
j ∈ J. Demand synergy Γit(j,j) is then interpreted as extra utility individual i
obtains from purchasing an additional unit of product j relative to the first unit:
Γit(j,j) < 0(> 0) implies a decreasing (increasing) marginal utility of purchasing
product j. If Γit(j,j) = 0, then individual i’s utility from purchasing the second unit
of product j remains the same as that from purchasing the first unit.

10



Example 5: Multiple Discreteness. Demand model of multiple discreteness
(see Hendel (1999) and Dubé (2004)) can be seen as an extension of Example 4 that
further includes bundles defined as a collection of multiple units of different prod-
ucts: b = ( (j, ..., j︸ ︷︷ ︸

nj

) )j∈J, where nj is the number of units of product j. As shown in

Iaria and Wang (2019) (Appendix 8.1), Dubé (2004)’s model of multiple discrete-
ness can be formulated by specifying Γitb = ∑

j∈J Γit(j,...,j), where Γit(j, ..., j︸ ︷︷ ︸
nj

) ≤ 0

for any nj > 1 and j ∈ J. The non-positive Γit(j,...,j) represents non-increasing
marginal utility of consuming additional units of product j during one consump-
tion moment and the additivity in Γitb across j ∈ J represents the independence
between consumption moments.19

Example 6: Multi-Category Multi-Store Demand. Thomassen et al. (2017)
study a multi-category multi-store demand model, in which individual purchases
multiple units in each ofK product categories and purchase all the units of the same
category in the same store. Consider a simple case in which individual purchases
at most one unit in each of 2 product categories (k1 and k2) from 2 stores (S1 and
S2). This can be captured by J = {j = (j1, j2) : j1 = k1, k2, j

2 = S1, S2} and
C2 = {(j, r) : j, r ∈ J, j1 6= r1}. A product is defined as a Cartesian product
of categories and stores with first coordinate being category and the second being
store (category 1 in store 2) and a bundle is defined as a Cartesian product of two
products that differ in their first coordinate (category 1 in store 2 and category 2 in
store 2). Demand synergy Γit(j,r) is interpreted as shopping cost due to store choice:
Γit(j,r) = 0 if j2 = r2 (one-stop shopping, buy products of both categories from the
same store), and negative otherwise (multi-stop shopping, purchase products in one
category from store 1 and those in the other category from store 2).

3.2 Hicksian Substitutions and Demand Synergies

Using a mixed-logit model of demand for multiple products across categories (see
Example 3 of section 3), I illustrate how the signs of cross-price elasticities in model
(4), i.e. Hicksian substitutability (positive cross-price elasticities) or complemen-

19Due to Dubé (2004)’s perfect substitute specification, individual will consume up to one
product during one consumption moment.
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tarity (negative cross-price elasticities) are determined by demand synergies Γitb.20

To ease exposition, I drop the notation of market t and product characteristics
in product-level market share functions. Let’s consider the cross-price elasticity
between products j ∈ J1 and r ∈ J2:21

εjr = pr
sj.

∫
αi[sj.(δ(Γ); θi)sr.(δ(Γ); θi)− sjr(δ(Γ); θi)]dF (θi),

where αi > 0. Different from models of demand for single products, the cross-price
elasticity εjr has an additional term −sjr(δ(Γ); θi). When this term is relatively
large, i.e. the joint purchase probability for products j and r is relatively large,
we may have a negative εjr, i.e. Hicksian complementarity between j and r. In
the case of two products and one bundle, i.e. J = {1, 2} and C2 = {(1, 2)},
Gentzkow (2007) shows that Γjr = 0 is the cut-off value for Hicksian substitutability
and complementarity: ε12 < 0 if and only if Γ(1,2) > 0. When there are more
than 2 products, even though Γ(j,r) = 0 may not be the cut-off value for Hicksian
substitutability and complementarity between j and r, the intuition remains similar.
Note that whether j and r are substitute, complementary or independent, i.e. εjr >
0, εjr < 0 or εjr = 0, is determined by the weighted average of sij.sir. − sijr. The
latter is further determined by the magnitude of synergy between j and r, Γjr,
relative to other demand synergies. If Γjr is sufficiently negative, then sijr is close
to zero and thus εjr > 0. As an extreme case, when Γjr = −∞, i.e. bundle (j, r) is
not in the choice set, j and r are always substitute and therefore εjr is positive. If
Γjr is positive and large enough relative to Γj′r′ for all (j′, r′) 6= (j, r), then sij.−sijr
and sir.−sijr are negligible relative to sijr. Then, the sign of εjr is determined by the
population average of s2

ijr − sijr. Since sijr is strictly between 0 and 1, s2
ijr − sijr is

always negative and therefore εjr < 0. If Γjr takes some medium value in (−∞,∞),
we can expect εjr = 0 and j and r are independent.

3.3 Ignoring Demand Synergies in Demand Estimation: Bias
in Counterfactual Simulations

I provide Monte Carlo evidences and show that ignoring demand synergies in de-
mand estimation potentially leads to substantial bias in counterfactual analyses.

20In both (1) and (2), income effect is ruled out (or enters linearly in the direct utilities of
all alternatives). Consequently, in most part of the paper, Hicksian complementarity (substi-
tutability) coincides with negative (positive) cross-price elasticities. One can adopt income effect
by using a different specification of indirect utilities. For example, one specification in Berry
et al. (1995) is that price pj enters the indirect utility via −αi log(yi − pj), where yi is individ-
ual i’s income. Note that if pj � yi, i.e. the income is much larger than product price, then
−αi ln(yi − pj) ≈ −αi ln yi − αi

yi
pj , and the specification in (1) and (2) is suitable.

21See Appendix A for details of the computation.
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To simplify the exposition while still capturing the economic essence, in each of
the scenario below, I will suppose that the data generating process (DGP) is a
multinomial-logit model of demand for bundles.22 Consider a simple setting in
which there are two product categories J1 = {1, 2} and J2 = {3, 4}. An individual
can purchase a product j ∈ J1 ∪ J2, or a bundle (j1, j2), where j1 ∈ J1 and j2 ∈ J2,
or the outside option denoted by 0. Each product j ∈ J1 ∪ J2 has a price pj and a
characteristic xj, and the price of a bundle (j1, j2) is equal to pj1 + pj2 , i.e. there is
neither discount nor surcharge. For each bundle (j1, j2), the corresponding demand
synergy is Γj1j2 , constant across individuals. Demand synergy parameters are not
zero in the true DGP of each scenario below. In addition, I estimate a model of
demand that ignores synergies in demand and imposes Γj1j2 = 0 for all j1 ∈ J1 and
j2 ∈ J2. Note that this estimated model is equivalent to two independent models of
demand for single products in J1 and in J2. I use this estimated model to predict
the counterfactuals in each scenario and compare the outcomes to those predicted
by the true model. For details of the DGPs, see Appendix J.

Multi-category demand. First, I consider multi-category demand in which
products in J1 and J2 are complementary in consumption (i.e. demand syner-
gies are positive). Suppose that all synergy parameters are equal to Γ. Moreover,
there are an equal number of producers to that of products, each producing one
product. I simulate two counterfactual scenarios: cross-category merger and tax on
products in J1. Table 1 summarise the results.

In the upper panel, I simulate a merger between the producer of product 1 ∈ J1

and the producer of 3 ∈ J2. The outcomes predicted by the true model (columns 1
and 3) confirm Cournot (1838)’s intuition: the merged producer internalises comple-
mentarity between 1 and 3 and prices decrease after the merger, enhancing consumer
surplus. Moreover, the more products are complementary, the more consumer sur-
plus is enhanced after the merger. In contrast, the estimated model imposes Γ = 0
and restricts the demand of products in J1 and J2 to be independent, ruling out
the complementarity. As a result, the estimated model predicts neither an increase
nor a decrease in prices after the merger (columns 2 and 4).

In the lower panel, I simulate a scenario in which the government imposes a
25-cent tax on the prices of products in J1. Excise tax may have both positive
and negative consequences on consumers’ welfare. As pointed out by Dubois et al.

22There are two reasons for this choice. First, a multinomial-logit model of demand for bun-
dles rules out unobserved correlation in utilities of products and therefore accents the economic
consequences of synergies in demand. Second, I will estimate a model of demand that rules out
the demand synergies using IV’s, and compare the counterfactual outcomes predicted by this es-
timated model to those by the true model. Using a multinomial-logit DGP makes the estimation
procedure transparent (a linear IV regression), and minimises econometric errors.
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(ming), on one hand, soda taxes may considerably reduce sugar consumption. Con-
sumers then benefit from the averted internalities achieved by the tax (e.g. less
health problem in the future); on the other hand, there is also a direct consumer
welfare loss from higher prices induced by the tax. In the recent literature using
discrete-choice models to study the impact of excise tax, this direct welfare loss is
quantified by models of demand for single products, and in most cases, within a
product category.23 However, these models may not take into account the external-
ities of taxes on the consumption of products in other categories. Depending on the
shape of multiple-category demand, this could under or over-estimate the welfare
loss, biasing the evaluation of net effect of taxes on consumer welfare.

As shown in the last row of Table 1, in the presence of synergy in consumption,
the direct consumer welfare loss due to the tax is substantially underestimated by
the estimated model. When the synergy in consumption (Γ) is moderate (columns
1 and 2), the estimated model underestimates the consumer welfare loss by about
13.5%;24 when Γ is large (columns 3 and 4), the estimated model underestimates
the consumer welfare loss by about 25.5%. Intuitively, the estimated model with
Γ = 0 switches off externality of the tax on the consumption of products in J2. Even
if the predicted price and demand changes in category J1 are quantitatively similar
across the true and the estimated models, the estimated model fails to predict the
decreasing demand in category J2, underestimating the consumer surplus loss.

Table 1: Counterfactual simulations, multi-category demand

Synergy in consumption Moderate (Γ = 2) Large (Γ = 5)
Model True Estimated True Estimated

Γ = 2 Γ = 0 Γ = 5 Γ = 0
Merger across categories

∆p, cat.1 −1.27% 0% −1.55% 0%
∆p, cat.2 −2.19% 0% −1.11% 0%

∆ Consumer Surplus 5.88% 0% 6.24% 0%
25-cent tax on prods. in cat. 1

∆p, cat.1 11.61% 11.55% 8.80% 8.59%
∆s, cat.1 −23.54% −24.20% −16.31% −16.77%

Pass-through 87.10% 86.77% 87.84% 86.38%
∆p, cat.2 −0.72% 0% −1.04% 0%
∆s, cat.2 −7.10% 0% −6.41% 0%

∆ Consumer Surplus −16.08% −13.91% −14.85% −11.07%

23See Bonnet and Réquillart (2013), Wang (2015), Griffith et al. (2018, 2019), Dubois et al.
(ming) among others. Note that Dubois et al. (ming) employs a model of demand for non-alcoholic
drinks with an outside option that include snacks.

24The number is obtained using the welfare losses in columns 1 and 2: 13.5% = (16.08% −
13.91%)/16.08%.
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Supermarket competition. Second, I consider supermarket competitions. Sup-
pose that there are two supermarkets, S1 and S2. S1 owns product 1 ∈ J1 and
3 ∈ J2; S2 owns product 2 ∈ J1 and 4 ∈ J2. In the factual scenario, S1 and S2

simultaneously set prices for their own products and implement linear pricing. I
simulate two counterfactual scenarios: a merger between S1 and S2, and duopoly
under nonlinear pricing. Table 2 summarises the results.

In the upper panels, I suppose that S1 and S2 are geographically distant and buy-
ing products from different supermarkets incurs a shopping cost: Γ14 = Γ23 = Γ < 0;
purchasing products from the same supermarket does not incur such shopping cost:
Γ13 = Γ24 = 0. As argued in Thomassen et al. (2017), individuals may prefer
to purchase products of different categories from one shop, rather than from dif-
ferent shops (captured by Γ). This behaviour of one-stop shopping can generate
complementary cross-category pricing effects and may have different implications
for supermarket competition from the multiple-stop shopping behaviour. Conse-
quently, the extent to which individuals are one-stop shoppers, i.e. the magnitude
of Γ, is crucial when studying supermarket competition; using a model of demand
that ignores shopping cost Γ may lead to substantial bias. I simulate a merger be-
tween S1 and S2, and find that the estimated model imposing Γ = 0 (i.e. ignoring
the shopping cost) substantially underestimates price increases in both categories,
and therefore underestimates consumer welfare loss due to the merger.25 When
the shopping cost is large (columns 3 and 4), the consumer welfare loss is almost
underestimated by 50%. As found by Thomassen et al. (2017), in the presence of
shopping cost (Γ < 0) and supermarket competition, one-stop shoppers may create
cross-category complementarity in pricing and have greater pro-competitive impact.
Once S1 and S2 are merged, purchasing products from the same or different super-
markets is irrelevant to the profit of the merged firm and this pro-competitive effect
disappears. The estimated model imposes Γ = 0, ruling out this pro-competitive
effect from one-stop shoppers. As a result, the consumer surplus loss due to the
merger is underestimated.

In the lower panels, I suppose that S1 and S2 are geographically close (e.g. ex-
press stores in city centre) and study nonlinear pricing competition when consumers
purchase products from complementary categories (Γj1j2 = Γ > 0, e.g. sandwich
and soft drink). It is largely acknowledged that supermarkets offer bundles of (com-
plementary) products with a discount and there may exist several rationales for the
bundling behaviour, with or without complementarity in demand.26 The welfare
implication of nonlinear pricing competition is ambiguous and crucially depends

25Both supermarkets are still physically distant after the merger and the synergy parameters
remain the same.

26See Adams and Yellen (1976), McAfee et al. (1989), Matutes and Regibeau (1992),Armstrong
and Vickers (2010), Armstrong (2016a) among others.
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on the shape of demand (Armstrong and Vickers, 2010). As shown in the bottom
panel, in both scenarios of moderate (column 1) and large synergies (column 3) in
consumption, the true model predicts an increase in prices of single products (con-
sumer surplus loss when consumers purchase single product), but a discount on
the bundles provided by the same supermarket (consumer surplus gain when con-
sumers purchase bundles of products from the same supermarket). The net welfare
effect is then determined by the magnitude of synergy in consumption, i.e. Γ: when
Γ is large, consumers tend to purchase more bundles from the same supermarket
(relative to single product) and therefore there is an overall consumer welfare gain
(column 3); when Γ is small or moderate, more consumers tend to purchase single
product and therefore there is an overall consumer welfare loss (column 1). The
estimated model (columns 2 and 4) imposes Γ = 0 and predicts too much purchase
of single products, amplifying the consumer welfare loss. This leads to overestimate
consumer surplus loss when Γ is moderate, and underestimate consumer surplus
gain when Γ is large. Moreover, the profit change predicted by the estimated model
is also misleading (last row); even the sign can be wrongly predicted (column 2).

Table 2: Counterfactual simulations, supermarket competition

Shopping cost Moderate (Γ = −2) Large (Γ = −5)
Model True Estimated True Estimated

Γ = −2 Γ = 0 Γ = −5 Γ = 0
Supermarket merger

∆p, cat.1 15.76% 8.61% 17.49% 8.56%
∆p, cat.2 15.95% 8.77% 17.69% 8.72%

∆ Consumer Surplus −22.36% −12.35% −24.01% −12.27%
Synergy in consumption Moderate (Γ = 2) Large (Γ = 5)

Model True Estimated True Estimated
Γ = 2 Γ = 0 Γ = 5 Γ = 0

Nonlinear pricing
∆p, cat.1 11.10% 9.64% 10.70% 12.08%
∆p, cat.2 11.12% 9.66% 10.61% 12.00%
Discount 16.34% 17.65% 14.02% 16.54%

∆ Consumer Surplus −0.29% −0.46% 6.34% 2.99%
∆ Profit −0.79% 2.25% −8.38% −5.62%

4 Identification
I first give the assumptions the identification and estimation will rely on.

Assumption 1. For any t ∈ T,
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(i). (Data availability) Product-level market shares, stj. = ∑
b∈C1 wjbstb, are ob-

served to the researcher for j ∈ J.

(ii). (Mix and match) If bundle b ∈ C2, then j ∈ J, for any j ∈ b.

(iii). (Many-market) The total number of products, |J|, and bundles |C2|, are fixed
while the number of markets, T = |T|, is large.

Assumption 1(i) specifies the data environment in which only product-level (rather
than bundle-level) market shares are available to the researcher. To simplify the
exposition, I assume that product-level market shares are observed without error,
i.e. the number of individuals in each market is sufficiently large. In estimation,
one can allow for the number of individuals to increase fast enough relative to the
number of markets; the results of the paper still hold.27 Assumption 1(ii) clarifies
that bundle is a result of individuals’ multiple purchases, i.e. a bundle is defined
as a set of products purchased by individuals. The definition of product may vary
from application to application. If some single products are always sold together
(e.g. business-class flight is only available via bundle of business-class seat and large
allowance of luggage), as long as purchase data of such combinations is available,
i.e. Assumption 1(i) holds, then one can define such combination as a product and
Assumption 1(ii) is not violated. Assumption 1(iii) focuses on the many-market
setting in which the numbers of products and bundles are fixed while the number
of markets increases asymptotically.

As a result of Assumption 1(iii), without further restrictions, the number of
demand synergy parameters to be identified (i.e. Γt for all t ∈ T) increases as
T increases. This challenge of dimensionality introduces substantial difficulty in
identification and estimation.28 To overcome this challenge, I propose the following
assumption along the lines of Gentzkow (2007)’s model of demand for bundles (and
also its generalised version in Iaria and Wang (2019)):

Assumption 2. For any b ∈ C2 and t ∈ T,

Γtb = g(xtb; Σg) + Γb,

where xtb a vector of observed market-bundle specific non-price characteristics,
g(·; Σg) a function of xtb parametrized by and continuously differentiable with respect
to Σg ∈ ΘΣg , and Γb is a bundle-specific fixed effect.

27In models of demand for single products, Freyberger (2015) allows for sampling errors in
the observed market shares. He shows the consistency and asymptotic normality of the GMM
estimator by requiring the number of individuals to increase fast enough relative to the number
of markets.

28In particular, these parameters become incidental in estimation. Providing a solution to this
problem is beyond the scope of the current paper.
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Assumption 2 reduces the dimension of demand synergy parameters to the sum of
dim(Σg) and dim(Γ) = dim((Γb)b∈C2) = |C2|, which remains fixed as T increases.
The main motivation for this assumption is that bundle-level market shares are
not observed to the researcher. If they were all available, then one could directly
identify and estimate model (3), rather than model (4), à la BLP with bundle-level
instruments. In this case, Assumption 2 is redundant.

Different from the model used in Iaria and Wang (2019), Assumption 2 assumes
linear pricing in the factual, i.e. the observed price of a bundle is the sum of the
prices of its single products. This excludes market-specific nonlinear pricing in the
factual, i.e. bundle-specific discounts or surcharges. While it is possible to extend
the main results of the paper to allow for nonlinear pricing in the factual, I fo-
cus on the situations covered by Assumption 2 and will explore this extension in
future research. Note that Assumption 2 does not rule out the possibility of simu-
lating counterfactuals under nonlinear pricing. In such scenarios, this assumption
implies that the source of unobserved variations across markets is limited to the
market-product specific demand shocks ξtJ. As a result, conditional on the ob-
served characteristics of products and bundles, prices vary across markets only due
to variations in ξtJ.

Assumption 2 summarises situations with or without exogenous characteristics
of bundles. Both situations can be similarly treated in the discussion of identifi-
cation and estimation. To simplify the exposition, I will focus on the leading case
g ≡ 0, i.e. Γtb = Γb.

4.1 Economic Analyses and Sufficient Demand Primitives

Under Assumptions 1 and 2, the identification problem the researcher faces is the
following: for any j ∈ J and t ∈ T,

stj. = sj.(δtJ;x(2)
tJ , ptJ,Γ, F ), (5)

where δtJ = (δtj)j∈J with δtj = xtjβ − αptj + ξtj, (stj., xtj, ptj) is observed to the
researcher, and (α, β,Γ, F ) are the structural parameters. Identifying (α, β,Γ, F )
does enable to conduct most economic analyses in practice. However, this may be
overly sufficient and challenging.

In this section, I characterise two sets of demand primitives that are respectively
sufficient for two classic types of economic analyses in model of demand for bun-
dles: those under linear pricing and under nonlinear pricing. Under linear pricing
strategy, firms set prices of their single products; the price of a bundle is defined
as the sum of the prices of its single products. Under nonlinear pricing strategy,
firms can not only set prices of its single products but also the bundles of their own

18



products. Then, the price of a bundle can be different from the sum of the prices
of its products when there is a discount or surcharge. The proposed sets of demand
primitives are “coarser” than (α, β,Γ, F ) and therefore easier to be identified. The
following proposition sheds light on the set of demand primitives needed to conduct
each of the two types of analyses in merger simulations.29

Proposition 1. Suppose that Assumptions 1-2 and condition 4 hold, αi > 0, and
the observed prices ptJ (and also those after mergers) are uniquely generated from a
simultaneous Bertrand price-setting game under complete information with constant
marginal cost ctj for j ∈ J.

• Suppose that (α, β) are identified and stJ.(δtJ;x(2)
tJ , ptJ,Γ, F ) are identified as

functions of (δtJ, x(2)
tJ , ptJ). Then,

– price elasticities at ptJ are identified.
– ctj’s are identified.
– assuming linear pricing after the merger, the changes of prices, profits,

consumer surplus, social welfare are identified.

• Suppose that (α, β,Γ) are identified and ctb = ∑
j∈b ctj for b ∈ Ct2. If one of

the following conditions holds:

– αi = α, and sb(δt;x(2)
tJ , ptJ, F ) is identified as a function of (δt, x(2)

tJ , ptJ),
for any b ∈ C1.

– F is identified,

then, assuming nonlinear pricing after the merger, the changes of prices, prof-
its, consumer surplus, social welfare are identified.

Proof. See Appendix B.

Remark 1. The condition ctb = ∑
j∈b ctj implies that there is no additional cost

for firms to set bundle-specific prices. The second statement of Proposition 1 still
holds if there is such additional cost and it is known to the researcher.

The take-away of Proposition 1 is clear: identifying (α, β) and sJ.(δtJ;x(2)
tJ , ptJ,Γ, F )

(as functions of (δtJ, x(2)
tJ , ptJ)) is already enough for merger simulations under linear

pricing; for those under nonlinear pricing, one has to further separately identify Γ
and F (or sb(δt;x(2)

tJ , ptJ, F ), as a function of (δt, x(2)
tJ , ptJ) for all b ∈ C2). In the

next section, I will discuss the identification of model (4) in two parts. In the first
part, I discuss the identification of (α, β) and sJ.(δtJ;x(2)

tJ , ptJ,Γ, F ); in the second
part, assuming the identification of (α, β) and sJ.(δtJ;x(2)

tJ , ptJ,Γ, F ), I study the
separable identification of Γ and F (or sb(δt;x(2)

tJ , ptJ, F ) for b ∈ C2).
29Proposition 1 also applies to analyses other than merger simulations.
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4.2 Identification of Product-Level Market Share Functions

I follow the classical approach in demand models of aggregate market shares and
use a two-step identification strategy. In the first step, I recover the mean utilities of
products using a novel demand inverse to deal with possible Hicksian complemen-
tarities among products; in the second step, I construct moment conditions using
IVs to deal with endogenous prices and identify product-level demand primitives.

Demand Inverse in Model (4) with Complementarity. The first step hinges
on the invertibility of product-level market share functions:

Theorem 1. Suppose that Assumption 1-2 holds. Then, under regularity con-
dition 4 in Appendix C, for any (Γ′, F ′), there exists at most one δ′tJ such that
sJ.(δ′tJ;x(2)

tJ , ptJ,Γ′, F ′) = stJ..

Proof. See Appendix C.

When (Γ′, F ′) are the true parameters (Γ, F ), the vector of the true mean utilities
of products, δtJ, is the unique solution of sJ.(δ′tJ;x(2)

tJ , ptJ,Γ, F ) = stJ.. As a result,
the function sJ.(·;x(2)

tJ , ptJ,Γ, F ) is globally invertible. Denote its inverse by:

δtJ = s−1
J. (stJ.;x(2)

tJ , ptJ,Γ, F ). (6)

Iaria and Wang (2019) prove a similar result in a mixed logit model of demand
for bundles and use it to reduce the dimensionality of fixed effects in a likelihood
estimation procedure. Theorem 1 differs from theirs in two aspects. First, Theorem
1 applies to any random utility model that satisfies Assumptions 1-2 and condition
4. The mixed-logit model of demand is a particular case. Second, this invertibility
result is used as a fundamental identification argument in this paper, and is the
key step to construct moment conditions when only product-level market shares
are available.
Importantly, the demand inverse in Theorem 1 is different from the classical demand
inverse in demand models of single products in two ways. First, the invertibility
in Theorem 1 builds on different arguments. In general, the invertibility of market
share functions in demand models of single products follows from the connected
substitutes conditions (Berry et al., 2013). These conditions may not apply to model
(4) because products can be Hicksian complementary.30 Instead, the invertibility of
product-level market share functions in Theorem 1 builds on the affine relationship
between the utilities of bundles and single products (see equation (2)) and on the

30Moreover, it seems hard to find a transformation of product-level market share functions in
model (4) under which the transformed market shares functions satisfy the connected substitutes
conditions.

20



P-matrix property by Gale and Nikaido (1965), which-crucially-does not require
the products to be Hicksian substitutes. Second, the demand inverse in Theorem 1
may not be implemented by the fixed-point contraction mapping algorithm proposed
by Berry et al. (1995). This is because the contraction mapping property of the
algorithm may not hold when (some) products are Hicksian complementary in model
(4). I propose to use Jacobian-based algorithms to implement this demand inverse.31

See section 5.2 for details of the implementation.
When (Γ′, F ′) 6= (Γ, F ), it is possible that there is no δ′tJ such that sJ.(δ′tJ;x(2)

tJ , ptJ,Γ′, F ′) =
stJ..32 In this case, such (Γ′, F ′) are directly ruled out of the identification set of
(Γ, F ). The following identification discussion will restrict to (Γ′, F ′) such that δ′tJ
exists.

Instrumental Variable Approach. Combining equation (6) and δtJ = xtJβ −
αptJ + ξtJ, I obtain:

xtJβ − αptJ + ξtJ = s−1
J. (stJ.;x(2)

tJ , ptJ,Γ, F ). (7)

The source of price endogeneity is ξtJ: ξtJ are observed to firms and therefore ptJ are
set based on ξtJ. Consequently, ptJ and ξtJ are correlated, while ξtJ are not observed
to the researcher. Beyond the price endogeneity, Γ and F constitute parameters
that cannot be pinned down without further assumption. I use IVs to solve these
challenges:

Assumption 3. There are random variables ztJ = (ztj)j∈J, such that E[ξtJ|ztJ, xtJ] =
0 almost everywhere.

Assumption 3 gives rise to conditional moment restrictions:

E [ξj(β, α,Γ, F ; stJ., xtJ, ptJ)|ztJ, xtJ] = 0 a.e., (8)

for j ∈ J, where ξj(β, α, η,Γ, F ; stJ., xtJ, ptJ) = s−1
j (stJ.;x(2)

tJ , ptJ,Γ, F )−xtjβ+αptj.

The identification of sJ.(δtJ;x(2)
tJ , ptJ,Γ, F ) (or equivalently its inverse s−1

J. (stJ.;x(2)
tJ , ptJ,Γ, F ))

by moment conditions (8) can follow from general arguments in nonlinear models
using IVs. In demand models of single products, one can leverage completeness con-
ditions of the joint distribution of (ztJ, xtJ, stJ., ptJ) with respect to (stJ., ptJ) (Berry
and Haile, 2014). Intuitively, this requires sufficiently rich variation in (ztJ, xtJ)

31Conlon and Gortmaker (2020) provide a review of numerical methods for implementation of
demand inverse in demand models of single products.

32For example, if the DGP is such that the sum of observed product-level market shares is larger
than one, then any demand models of single products (Γb = −∞ for any b) cannot rationalise the
observed product-level market shares and hence the demand inverse is not feasible with Γ′ = −∞.
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that can distinguish any function of the endogenous variables (stJ., ptJ) from oth-
ers. In the context of (8), the same general arguments also apply. One needs
variation in (ztJ, xtJ) to distinguish ξJ(β, α,Γ, F ; · · · ) from ξJ(β′, α′,Γ′, F ′; · · · ) for
any (β′, α′,Γ′, F ′) 6= (β, α,Γ, F ). As long as such variation is available, having de-
mand synergy parameters Γ does not conceptually introduce additional difficulty
for identification.

Despite the generality, these arguments and required conditions are often high-
level. In what follows, I propose low-level sufficient conditions for the identification
of product-level market share functions in the case of mixed-logit models of demand
for bundles. In the following, I will focus on cost-type variables.33 In Appendix L,
I propose similar sufficient conditions for other commonly used instruments (e.g.
BLP-type instruments, exogenous product characteristics).

Denote by D(1)
x the support of x(1)

tJ and by D(2)
x the support of x(2)

tJ . Moreover,
both D(1)

x and D(2)
x open. Suppose that the ownership of each product is the same

across markets and that prices are generated from a simultaneous Bertrand pricing
game under complete information with constant marginal cost ctj, for j ∈ J. With-
out loss of generality, I specify ctj = ztj + wtj, where ztj is cost shifter for product
j and wtj is exogenous supply shock that is observed to firms but not observed
to the researcher. The main identification result of the product-level market share
functions is the following:

Theorem 2. Suppose that Assumptions 1-3 and regularity condition 1 in Appendix
D holds. Moreover, the following conditions hold:

1. (xtJ, ztJ) is independent of (ξtJ, wtJ), the support of ztJ is RJ .

2. αi = α > 0

3. Given x
(2)
tJ , ptJ = pJ(βxtJ + ξtJ, ctJ;x(2)

tJ ) is a continuous function of (βxtJ +
ξtJ, ctJ).

4. F has compact support.

Then,

• If (ξtJ, wtJ) is Gaussian distributed, then (α, β) is identified and sJ.(δJ;x(2)
J , pJ,Γ, F )

are identified as functions of (δJ, x
(2)
J , pJ) ∈ RJ ×D(2)

x × RJ .

• If the DGP is a model of demand for multiple products across categories (see
section 3.1), then under regularity condition 2 in Appendix D, (α, β) are iden-
tified and sJ.(δJ;x(2)

J , pJ,Γ, F ) are identified as functions of (δJ, x
(2)
J , pJ) ∈

RJ ×D(2)
x × RJ .

33Common examples of cost-type variables and its proxies are input prices, variables correlated
with marginal costs, prices of the same products in other markets (e.g. Hausman-type instru-
ments).
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Remark 2. The two statements of Theorem 2 are complementary: the first state-
ment achieves the identification by restricting the distribution of demand and supply
shocks and remains agnostic on the DGP.34 The second statement restricts the DGP
and does not posit on the distribution of (ξtJ, wtJ).

Proof. See Appendix D.

The first condition reinforces Assumption 3 to strong exogeneity of (xtJ, ztJ) and
assumes large support of ztJ. The second condition simplifies the price coefficient to
be homogeneous for all individuals but still allows for random coefficients on other
product characteristics. The third condition imposes the uniqueness of the Bertrand
price competition in the factual scenario. The fourth condition is technical and can
be further relaxed to allow for “thin tail” distributions F .

Relying on the same data availability, the main result of Allen and Rehbeck
(2019a) implies the identification of product-level market share functions in the
context of model (4) with additive separable unobservable heterogeneity. While
their identification strategy crucially relies on the assumption of additively separa-
ble unobservable heterogeneity and does not allow for endogenous prices, I exploit
exogenous variation in cost shifters and product characteristics to deal with endoge-
nous prices and market shares, achieving the identification of product-level market
share functions.

4.3 Identification of Bundle-Level Market Share Functions

In this section, I assume that product-level market share functions are identified
and aim to separately identify Γ and F .35 To simplify the notation, I include ptJ
in x

(2)
tj . The task of separable identification s challenging because only product-

level (rather than bundle-level) market shares are available. First,I provide an
identification result for a class of mixed-logit models of demand for bundles widely
used in the empirical literature.36

Theorem 3. Suppose that C2 = {(j, j′) : j < j′, j, j′ ∈ J}, or C2 = {(j1, j2) :
j1 ∈ J1, j2 ∈ J2}, Γitb = Γb for b ∈ C2, and sJ.(δJ;x(2)

tJ ,Γ, F ) is identified for
(δJ, x

(2)
tJ ) ∈ RJ ×D(2)

x . Then,

• Γ and sb(δt;x(2)
tJ , F ) are identified in RC1 ×D(2)

x , for any b ∈ C1.
34The identification in Theorem 2 can also be achieved when the distribution of (ξtJ, wtJ) has

“fat tail”. See Mattner (1992) and D’Haultfoeuille (2011) for details.
35As shown in the second statement of Proposition 1, one can also aim to identify Γ and

sb(δt;x(2)
tJ , ptJ, F ) when αi = α.

36See Gentzkow (2007), Fan (2013), Kwak et al. (2015), Grzybowski and Verboven (2016).
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• If D(2)
x is open, and (∆β(2)

i ,∆αi) and (ηij)Jj are mutually independent given
xtJ, then Γ and F are identified.

Proof. See Appendix E.

Remark 3. If for some bundle b, the true Γb is equal to −∞, i.e. bundle b is not
in the choice set, then Theorem 3 implies that Γb = −∞ is identified.

The first statement of Theorem 3 achieves the separable identification of Γ and
sb(δt;x(2)

tJ , F ). The second statement achieves the separable identification Γ and F
under a mild support on x

(2)
tJ and the conditional independence between random

slopes (∆β(2)
i ,∆αi) and random intercepts (ηij)Jj=1. This independence condition is

employed in many empirical papers.37

Theorem 3 shows that observing demand data at product level already suffices to
identify bundle-level demand primitives in models of demand for multiple products
within/across categories. Consequently, researchers are able to conduct nonlinear
pricing counterfactuals using these models (see Proposition 1). However, the sepa-
rable identification in Theorem 3 may not be achieved in some other types of model
(4). The following corollary gives an example.

Corollary 1 (Non-separable identification of Γ and F ). Suppose that the data
generating process is a model of demand for multiple units: J = {1} and C2 =
{(1, 1)}, Γi(1,1) = Γ > −∞. Moreover, product-level market share function

s1.(δ; Γ, F ) =
∫ eδ+µ + 2e2δ+2µ+Γ

1 + eδ+µ + e2δ+2µ+ΓdF (µ). (9)

is identified. Then, there exists (Γ, F ), such that Γ and F are not separably identi-
fied.

Proof. See Appendix F.

Corollary 1 illustrates the limited power of product-level market shares in models
of demand for multiple units to separably identify Γ and F . Intuitively, one cannot
distinguish Γ and F because it is impossible to shift the mean utility of the first
unit without shifting that of the second unit. When bundle-level demand data
is available, Iaria and Wang (2019) shows how to identify and estimate model of
demand for bundles by exploring the same bundle-specific fixed effects Γb across
markets. This gives rise to additional moment restrictions that separately identify

37In particular, when the random intercepts are degenerated (see Nevo (2000, 2001), Petrin
(2002), Berto Villas-Boas (2007), Fan (2013) among many others), or the random coefficients
(rather than the random intercepts) are degenerated (see Gentzkow (2007) for example), this
condition is automatically satisfied.
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Γ and F . With only product-level demand data, this source of identification is no
longer available in model (9). Then, unless imposing additional assumptions on
synergy parameters or the distribution of random coefficients, the availability of
bundle-level demand data may be necessary to disentangle Γ and F and to conduct
nonlinear pricing counterfactuals in models of demand for multiple units.38

5 Estimation and Implementation
In this section, I propose a GMM estimation procedure for model (4) and discuss
its implementation. The proposed estimation procedure is conceptually similar to
that used in BLP models of single products. However, due to multiple purchases,
the implementation has non-trivial challenges. I consider parametric estimation of
model (4) and F is characterised by Σ ∈ ΘΣ ⊂ RP . Define the true value of pa-
rameter vector as θ0 = (α0, β0,Σ0,Γ0). Suppose that (xtJ, ztJ) are valid instruments
and θ0 is identified.

5.1 Estimation Procedure

I construct unconditional moment conditions from (D.1) using a finite set of func-
tions of (xtJ, ztJ), Ψ = {φg(xtJ, ztJ)}Gg=1:

m(θ′; {stJ., ptJ, xtJ, ztJ}Tt=1,Ψ) = (E [ξj(β′, α′,Γ′, F ′; stJ., xtJ, ptJ)φg(ztJ, xtJ)])Gg=1 ,

The finite-sample counterparts are:

mT (θ′; {stJ., ptJ, xtJ, ztJ}Tt=1,Ψ) =
 1
T

T∑
t=1

1
J

J∑
j=1

[
s−1
j (stJ.;x(2)

tJ , ptJ,Γ′,Σ′)− xtjβ′ + α′ptj
]
φg(xtj, ztj)

G
g=1

.

Then, the GMM estimator of θ0, θ̂GMM
T , is defined as:

θ̂GMM
T = argmin

θ′∈Θ
mT (θ′; {stJ., ptJ, xtJ, ztJ}Tt=1,Ψ)TWTmT (θ′; {stJ., ptJ, xtJ, ztJ}Tt=1,Ψ),

(10)
where Θ is a compact set and WT ∈ RG×G is a weighting matrix that converges
in probability to a positive-definite matrix W . If θ0 lies in the interior of Θ, then
under standard regularity conditions (see Newey and McFadden (1994)), θ̂GMM

T is
consistent and asymptotically normal.39

38For other papers on the identification with bundle-level demand data, see Fox and Lazzati
(2017), Allen and Rehbeck (2019b).

39If some parameters (e.g. distributional parameters Σ) are on the boundary, the GMM estima-
tor may not be asymptotically normal. See Ketz (2019) for an inference procedure that is valid
when distributional parameters are on the boundary and Andrews (2002) for a general treatment.
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A basic requirement for the good finite-sample performance of (10) is that we
have at least as many moment conditions as the dimension of (α0, β0,Γ0,Σ0). In
particular, we have dim(Γ0) demand synergy parameters in (10) that BLP models
of single products do not have. Therefore, we need at least dim(Γ0) more moment
conditions. If the number of valid instruments or variability of these instruments
is limited, one can also specify Γ0 and reduce its dimensionality according to the
economic setting. For example, two products of the same producer (products of
the same store), or of complementary ingredients (flavoured RTE cereals with un-
flavoured milk), may have greater demand synergies. Then, one can specify demand
synergy as a function of product characteristics in a bundle.

In BLP models of single products, a suggested practice is to approximate the
optimal instruments in the form of Amemiya (1977) and Chamberlain (1987) that
achieve the semi-parametric efficiency bound. Reynaert and Verboven (2014) and
Conlon and Gortmaker (2020) report significant gain when impelenting Berry et al.
(1995)’s GMM estimator using optimal instruments. However, the difficulty of
approximating optimal instruments still remains in estimation procedure (10). A
good approximation of optimal instruments relies on the knowledge of the true
parameters. Moreover, when the number of products is large, even low order of such
approximation may be subject to a curse of dimensionality and the number of needed
basis functions is exponentially proportional to the number of products. Gandhi and
Houde (2019) provide a solution that breaks the dependence of basis functions on
product identity under symmetry conditions among products. The number of basis
functions is then invariant with respect to the number of products. However, due
to potentially heterogeneous synergy parameters across bundles, product identity
matters in (10). The extension of their method to models of demand for bundles is
beyond the scope of this paper and I leave it as future research.

5.2 Implementation of Demand Inverse

A key step of the estimation procedure is implementation of the demand inverse
in Theorem 1. Given (x(2)

tJ , ptJ,Γ′, F ′), it seeks for the solution of the following
equation:

sJ.(δ′tJ;x(2)
tJ , ptJ,Γ′, F ′)− stJ. = 0. (11)

In most cases, sJ.(·;x(2)
tJ , ptJ,Γ′, F ′) does not have an analytic form. In practice,

researchers often use Monte Carlo method to approximate sJ.(·;x(2)
tJ , ptJ,Γ′, F ′). In

this method, one first draws a finite set of random numbers and then use these fixed
random numbers to approximate F ′.40 As a result, F ′ is numerically implemented

40A typical method is to simulate a fixed set of random numbers from uniform distribution in
[0, 1] and use (F ′)−1 to transform these random numbers to those under distribution F ′.
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by a discrete distribution with finite (and therefore compact) support. For this
reason, I will assume that F ′ has compact support when analysing the numerical
performance of the implementation of the demand inverse (11).

In models of demand for single products, Berry et al. (1995) propose a fixed-point
iterative algorithm to implement the demand inverse. An essential property of this
algorithm is contraction mapping, which guarantees the convergence of the iteration.
However, the contraction-mapping property may not hold if one uses the same
iterative algorithm to solve (11) because products can be Hicksian complementary.
To solve this challenge, I propose to use Jacobian-based approach to solve (11).
This approach has been adopted in the literature. Conlon and Gortmaker (2020)
tests performances of different Jacobian-based algorithms to implement the demand
inverse in models demand for single products, and find supportive evidences for the
numerical efficiency of Jacobian-based methods. A leading example is Newton-
Raphson method:

δ(0) = δ(0),

δ(n+1) = δ(n) − J−1
s (δ(n))[sJ.(δ′tJ;x(2)

tJ , ptJ,Γ′, F ′)− stJ.],
(12)

where Js(δ′tJ) = ∂sJ.(δ′tJ;x(2)
tJ ,ptJ,Γ

′,F ′)
∂δ′tJ

. To solve (11), Algorithm (12) is well-defined be-
cause Js(δ′tJ) is everywhere symmetric and positive-definite. Moreover, the unique-
ness of solution is guaranteed by Theorem 1: if (12) converges, then it must converge
to the unique solution of (11).

It is well-known that the numerical performance of Jacobian-based algorithms
such as (12) crucially depends on the quality of starting value δ(0) : the closer δ(0)

is to the solution δ′tJ, the faster Algorithm (12) converges.41 In the setting of (11),
we can leverage econometric properties of the demand model to construct such a
starting value that is directly constructed from data and “close” to the solution of
(11). The next proposition gives an example:

Proposition 2. Suppose that stJ. in (11) are generated from a model of demand
for multiple products across K categories, for K ≥ 1 (see Section 3.1) and the
distribution F ′ has compact support DF . Denote the solution to (11) by δ′J. For
products of category k, define δ(0)

k∗ =
(
δ

(0)
jk∗

)
j∈Jk

, where δ(0)
jk∗ = ln stj.

1−
∑

j∈Jk
stj.

, and

δ
(0)
∗ = (δ(0)

k∗ )Kk=1. Then, there exists a constant A(DF ,Γ′) > 0 such that

|δ′J − δ(0)
∗ | ≤ A(DF ,Γ′).

Proof. See Appendix G.
41One basic result on global convergence of Newton-Raphson method in numerical analysis is

Newton-Kantorovich Theorem. See Ortega (1968) for the statement and one proof.
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Even though it is hard to derive similar results in a general model (4), Proposition
2 sheds light on how to find a good starting value for Jacobian-based algorithms:
it suggests to use a starting point as if the DGP is a multinomial logit model. In a
model with the bundle size being up to size K, an starting value along the lines of
Proposition 2 can be defined as

δ
(0)
j∗ = ln sj.

K −∑j∈J sj.
. (13)

for j ∈ J. Here K −∑j∈J sj. serves as the “market share” of the outside option.42

In Appendix K, I report numerical gains of using δ(0)
∗ in Monte Carlo simulations.

6 Empirical Illustration
In this section, I illustrate the practical implementation of the proposed methods
and estimate the demand for Ready-To-Eat (RTE) cereals and milk in the US.
In particular, I demonstrate the economic importance of having (flexible) deman
synergies between RTE cereal and milk products in demand.

To do so, I first estimate three models of demand for bundles: model I in which
demand synergy parameters Γb = 0 for all b, model II in which Γb = γ0 for any b
but not necessarily zero (it will be estimated), and a full model in which Γb’s vary
across bundles as functions of product characteristics in the bundle. In model I,
the demand for RTE cereals and that for milk are restricted to be independent for
each household (the cross-price elasticities between RTE cereals and milk are hence
zero); in model II, the single synergy parameter γ0 captures the prevalent synergy
in consumption of RTE cereals and milk, but not the potential heterogeneity in
synergies across different bundles; the full model allows such synergies to depend
on the composition of a bundle, i.e. how well RTE cereal and milk characteristics
are matched. I simulate a merger between a major RTE cereal producer and a
milk producer using each model. Comparisons of the merger simulations across the
three models show that ignoring the synergies (model I), or restricting them to be
uniform (model II) may result in important bias in welfare prediction.

6.1 Data and Definitions

I use the store-week level datasets of the RTE cereal and milk categories from the
IRI data. The IRI data has been used in the empirical literature of demand (see

42When the bundle size is up to K, since product-level market shares of two different products
overlap on up to K − 1 bundle-level market shares. Consequently, the sum of all product-level
market shares is strictly smaller than K.
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Nevo (2000, 2001)). I will give a succinct description and refer to these papers and
also Bronnenberg et al. (2008) for a thorough discussion.

I focus on the period 2008-2011 and the city of Pittsfield in the US. I define
a market t as a combination of store and week and obtain 1387 markets. In each
market, the sales (in lbs and dollars) of RTE cereals and fluid milk are observed
at Universal Product Code (UPC) level. For the RTE cereal category, similarly to
Nevo (2001), I define a product as a combination of brand, flavour, fortification,
and type of grain. For fluid milk category, I define a product as a combination
of brand, flavour, fortification, fat content, and type of milk. Then, the sales of
product j of category k ∈ K = {RTE cereal, f luid milk} in market t is the sum
of the sales in lbs of all the UPC’s that this product collects. The price of j of
category k in market t, pktj, is defined as the ratio between its sales in dollars and
in lbs. I define the choice set of RTE cereals as that of the 25 largest RTE cereal
products (in terms of sales in lbs), collecting all the other smaller products in the
outside option for cereal category. Similarly, I define the choice set of milk as that
of the 20 largest fluid milk products.43 Denote the choice set by Jk for k ∈ K.

For each market, I consider the weekly consumption of breakfast cereals as the
market size for RTE cereal category, and weekly consumption of fluid milk for milk
category. To calibrate the market size for each category, I assume that households
go shopping once per week for breakfast cereals and fluid milk. Then, the market
size for RTE cereal category (or milk) is the product of the weekly per capita
consumption of breakfast cereals (or fluid milk) and the sampled population size.
I obtain the former information from external sources and the latter from the IRI
data. Finally, for each market, the product-level market share of j ∈ Jk is then the
ratio between its total sales in lbs and the market size for category k. Appendix
H provides computational details of the construction of the product-level market
shares. Tables 9-10 in Appendix I summarise product characteristics.

6.2 Model Specification

For each store-week combination t, denote the set of available products in category
k ∈ K by Jtk ⊂ Jk. Denote by 1 the RTE cereal category, 2 the milk category, and
Jt = Jt1 ∪ Jt2. The set of bundles Ct2 is defined as Jt1 × Jt2, where each bundle
contains a RTE cereal product and a milk product.44 Household’s choice set is then
defined as Ct = Jt ∪ Ct2 ∪ {0}, where 0 represents the outside option.45 The size

43The purchase of the 25 RTE cereal products represents 38% of the total purchase of RTE
cereals in the IRI data, and that of the 20 fluid milk represents around 88%.

44I do not include bundles of products of the same category.
45According to the definition of products and the market sizes, the outside option collects RTE

cereals or milk products that are not included in Jk, relevant products not present in the categories
(e.g. cereal biscuits), and the bundles of these products (e.g. cereal biscuits and milk).
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of Ct is up to 546 (45 products, 500 bundles, 1 outside option) if all products in J
are available in market t.
For household i in market t, the indirect utility from purchasing product j ∈ Jtk is:

Uk
itj = −pktjαi + ηkij + ξktj + εkitj

= [−pktjα + ηkj + ξktj] + [∆ηkij −∆αipktj] + εkitj

= δktj + µkitj + εkitj,

µkitj = ∆ηkij − (di∆α + vi)pktj,

and

∆ηkij =

 ∆ηi,flavor(j) + ∆ηi,fortification(j) + ∆η1
i,brand(j), if k = 1,

∆ηi,flavor(j) + ∆ηi,fortification(j) + ∆η2
i,brand(j) + ∆η2

i,fat content(j), if k = 2,

where δktj is market t-specific mean utility for j ∈ Jtk, µkitj is a household i-specific
utility deviation from δktj, and εkitj is an idiosyncratic error term. α is population-
average price coefficient, and ∆αi = di∆α + vi is household i-specific price co-
efficient deviation from α and is the sum of an observed part that is a function
of the household characteristics di (income groups) and an unobserved compo-
nent vi. ∆ηkij is an unobserved household i-specific preference for product j of
category k, where ∆ηi,flavor(j) captures household i’s unobserved preference for the
flavour of j of category k (unflavoured, flavoured), ∆ηi,fortification(j) captures i’s unob-
served preference for the nutrition in product j of category k (unfortified, fortified),
∆ηki,brand(j) captures i’s unobserved preference for the brand of j of category k,
and ∆η2

i,fat content(j) captures i’s unobserved preference for the fat content in milk j
(whole fat, low fat, skimmed). Note that because RTE cereals and milk have both
flavour and fortification characteristics. Then, for products j ∈ J1 and r ∈ J2, if
they have the same flavour (or fortification type), then ∆ηi,flavor(j) = ∆ηi,flavor(r) (or
∆ηi,fortification(j) = ∆ηi,fortification(r)).
The indirect utility of household i in market t from purchasing bundle b = (j, r) is:

Uitb =
[
−p1

tjαi + η1
ij + ξ1

tj

]
+
[
−p2

trαi + η2
ir + ξ2

tr

]
+ Γb + εitb

=
[
δ1
tj + δ2

tr + Γb
]

+
[
µ1
itj + µ2

itr

]
+ εitb

= δtb(Γb) + µitb + εitb,

where δtb(Γb) = δ1
tj + δ2

tr + Γb is market t-specific mean utility for bundle b, µitb
is household i-specific utility deviation from δtb, Γb = Γ(j,r) is demand synergy
between RTE cereal j and milk r, and εitb is an idiosyncratic error term. Demand
synergy parameter Γ(j,r) captures the extra utility household obtains from buying
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RTE cereal j and milk r jointly rather than separately. One prominent reason
for the joint purchase is synergy in consumption, i.e. members in the household
consume together RTE cereals and milk for their breakfasts.46 The quality of match
between the characteristics of RTE cereal j and milk r may determines the extra
utility Γ(j,r). Consequently, I specify Γ(j,r) as a function of the characteristics of j
and r:

Γ(j,r)(γ) = γ0 + 1{j is multi-grain}γ1 + 1{j is granola}γ2

+ 1{r is skimmed}γ3 + 1{r is low fat}γ4

+ 1{j is flavoured}γ5 + 1{r is chocolate milk}γ6

+ 1{j is flavored and r is chocolate milk}γ7

+ 1{j is fortified, r is chocolate milk}γ8 + 1{j is fortified, r is fortified}γ9.

(14)
Parameter γ0 represents the synergy in consumption of the reference bundle (un-
flavoured unfortified uni-grain RTE cereal and unflavoured whole-fat milk).γ1 and
γ2 quantify additional synergies due to other types of grains (multi-grain, granola).
γ3 and γ4 measures additional synergies due to lower fat content (skimmed, low
fat). γ5, γ6 and γ7 proxy additional synergies due to flavour combinations. γ8 and
γ9 quantify additional synergies due to combinations of fortified nutrition in RTE
cereals and milk products.

Finally, the indirect utility of household i in market t from purchasing the outside
option is normalised to be Uit0 = εit0. Denote the random coefficients by

θit = (vi,∆ηi,unflavoured,∆ηi,flavoured,∆ηi,unfortified,∆ηi,fortified,
{∆η1

i,br.}br.∈B1 , {∆η2
i,br.}br.∈B2 ,∆η2

i,whole fat,∆η2
i,low fat,∆η2

i,skimmed),

where Bk denotes the set of brands in category k. I assume that θit follows a
centred Gaussian distribution F and the components are uncorrelated. Note that
this specification already allows for unobserved correlation among products of the
same characteristics within and across categories (e.g. same flavour). Define δtJt =
(δ1
tJt1 , δ

2
tJt2) and ptJt = (p1

tJt1 , p
2
tJt2). Write µkitj = µktj(di, θit, pktj). Finally, assume

that εit0, ε1
itj’s, ε2

itj’s, and εitb’s are i.i.d. Gumbel. Then, the product-level market
46Another reason can be shopping cost, i.e. household may not want to go shopping twice to

buy RTE cereals and milk. However, this is ruled out in this application because the purchases
are made within the same store.
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share function of j ∈ Jt1 in market t is:

sj.|Jt(δtJt ; ptJt , γ, F )

=
∫ eδ

1
tj+µ

1
tj(di,θit,p

1
tj)
[
1 + ∑

r∈Jt2
eδ

2
tr+µ2

tr(di,θit,p2
tr)+Γ(j,r)(γ)

]
1 + ∑∑

k=1,2 j′∈Jtk
e
δk
tj′+µ

k
tj′ (di,θit,p

k
tj′ ) + ∑

(j′,r)∈Jt1×Jt2
e
δ1
tj′+δ

2
tr+µ1

tj′ (di,θit,p
1
tj′ )+µ

2
tr(di,θit,p2

tr)+Γ(j′,r)(γ)dF (θit)dΠt(di),

(15)
where Πt(·) is the distribution function of demographics di in market t. The formula
for r ∈ Jt2 is similar.

6.3 Demand Estimates

Table 3 summarises demand estimates. In column “IV regression”, I estimate a
multinomial logit with Γb = 0 for all b ∈ C2. Columns “Model I”, “Model II”, and
“Full Model” show the estimates by using model I, model II, and the full model,
respectively. In all the models, I control for product-specific intercepts and use
the same Hausman-type instruments. These instruments include prices of the same
products in the same store and week but in other cities (Boston for RTE cereals
and Hartford for milk), the prices of other products of the same category with the
same product characteristics.

Price coefficient (α) is estimated −0.59 in the multinomial logit model. The
estimates of the other three models with random coefficients show important het-
erogeneity in price sensitivities across income groups. Without surprise, households
with higher income are estimated to have a lower (in absolute value) price coef-
ficient and therefore less sensitive to price change. The standard variance of the
unobserved heterogeneity in the price coefficient (σv) is estimated small. Moreover,
after controlling for the product-specific intercepts, households’ preference seems to
be almost homogeneous for products within some types (e.g. unflavoured, fortifi-
cation, fat content). One potential reason is that products are little differentiated
within each of these types. In contrast, households’ preference for flavoured prod-
ucts seems to be more heterogeneous. This is also intuitive because flavours of RTE
cereals and milk are much more horizontally differentiated and different households
may have their favourite flavours. I also find that households’ preference for RTE
cereal brands is more heterogeneous than that for milk brands.

In model II, synergy parameter γ0 is estimated to be 0.902 and significant.
This specification constraints all bundles of RTE cereal and milk to have the same
synergy, regardless of their characteristics. In the full model, the demand synergies
are allowed to vary across bundles. In column “Full Model”, γ0 = −1.540 represents
the synergy in consumption between the unflavoured unfortified uni-grain RTE
cereal and unflavoured whole-fat milk. Regarding the characteristics of RTE cereals,
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γ1 is estimated positive, meaning that multi-grain cereals are preferred (over uni-
grain ones) when consumed with milk. Moreover, granola, which contains oats and
other whole grains as well as ingredients such as dried fruit and nuts, is estimated to
be even preferred over multi-grain cereals (γ2 > γ1). For the characteristics of milk,
products with lower fat are estimated to be preferred when consumed with cereals
(γ3 > γ4 > 0). Another interesting finding is households’ preference for flavour
combinations of cereals and milk. Flavoured cereals are estimated to be preferred
over unflavoured ones (γ5 > 0). For chocolate milk, households’ preference seems to
be more complicated. When consumed with unflavoured cereals, chocolate milk is
preferred over unflavoured milk (γ6 > 0). While, I find that it is seldom consumed
with flavoured or fortified cereals, i.e. γ7 and γ8 are estimated very negative.47 One
potential reason is that flavoured (or fortified) RTE cereals are more likely frosted.
Very negative γ7 and γ8 may reflect households’ disutility for bundles with too much
sugar. Finally, I also find that bundles of fortified cereals and milk are less appealing
than the reference one (γ9 < 0). In the data, the types of added nutrition in RTE
cereals and milk are the same, e.g. vitamins, calcium. γ9 < 0 may reflect that the
same types of added nutrition in cereals and milk are substitute.

6.4 Price Elasticities

I compute the average (across markets) estimated self- and cross-price elasticities
obtained from the full model. Because there is no income effect in the specifi-
cation, negative (positive) cross-price elasticities are then interpreted as Hicksian
complementarity (substitutability). To facilitate the exposition, I report the price
elasticities at the level of product characteristics and producers. This illustrates
how RTE cereals and milk are complementary along each of these dimensions. The
results are illustrated in Tables 4-7. Each entry reports the percent change in the
sum of the product-level market shares of the products collected by the row pro-
ducer (or characteristics) with respect to a 1% increase in the prices of the products
collected by the column producer (or characteristics).48

Overall, RTE cereals are estimated to have larger self-price elasticities than
47In Table 3, the estimates of γ7 and γ8 are −∞. This means that the model with γ7, γ8 = −∞,

i.e. the corresponding bundles are not in the choice set, performs statistically as well as the
one without these restrictions in terms of the value of GMM objective function. Concretely, I
first estimate a model with γ7 and γ8 being finite. I find that the estimated γ7 and γ8 are very
negative. Then, I estimate the model with γ7, γ8 = −∞. The difference in the value of the two
GMM objective functions is less than 10−9, or equivalently, one cannot reject the “hypothesis”
that γ7, γ8 = −∞. In the future, I will consider a formal testing procedure.

48Concretely, denote by Cm the set of products that row (column) producerm represents. Then,

the price elasticity between brands m and n, Emn, is defined as Emn =
∑

j∈Jm
sj.

∑
r∈Jn

εjr∑
j∈Jm

sj.
, where

εjr is the price elasticity between products j and r.
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milk. This may reflect that households view milk more necessary than RTE cereals
and therefore are less sensitive to price change of milk. Given the specification
of model (15), RTE cereals are always substitutes to each other and the cross-
price elasticities among them are positive. Similarly, the cross-price elasticities
among milk products are also positive. These are shown by the positive off-diagonal
elements in the diagonal blocks (RTE cereals-RTE cereals, Milk-Milk) of Tables 4-7.
Differently, the cross-price elasticities between RTE cereal and milk products, i.e.
the elements in the off-diagonal blocks (RTE cereals-Milk, Milk-RTE cereals), can
be either positive or negative.

Table 4 shows the substitution patterns along the dimensions of grain type and
fat content. Granola is estimated to be complementary to milk with any level of
fat and skimmed milk is complementary to cereals with any kind of grain. More-
over, milk with lower fat content is uniformly more complementary to any kind
of grain than milk with higher fat content. This reveals that households do not
seek for fat in milk when consuming it with RTE cereals. As to flavours (Tables
5-6), unflavoured cereals and flavoured milk (and the reverse) are shown to be com-
plementary. In contrast, flavoured cereals and chocolate milk are estimated to be
(strong) substitutes. Coherent with the estimates of γ’s in Table 3, the relationship
between chocolate milk and RTE cereals is more complicated. Chocolate milk is
estimated to be complementary to unflavoured or unfortified cereals. However, it is
estimated to be substitute to flavoured or fortified cereals. Finally, I find that most
RTE cereals and milk are complementary at producer level.

As a comparison, the demand synergies in model I are constrained to be zero.
The cross-price elasticities between RTE cereals and milk are therefore mechanically
zero. In model II, all the bundles are restricted to have the same demand synergy
which is estimated to be positive (see the column “Model II” of Table 3). I re-do
the exercises in Tables 4-7 using the demand estimates from model II (see Tables
11-14 of Appendix I). In contrast to those obtained from the full model, the results
show that RTE cereals and milk are complementary along every dimension.
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Table 3: Demand Estimates

IV Regression Model I Model II Full Model
Γb = 0 Γb = 0 Γb = γ0

Price Coef.
uniform, α −0.59

(0.011)

(baseline) low income, α1 −1.369
(0.042)

−1.128
(0.060)

−1.062
(0.075)

medium income, ∆α2 0.218
(0.164)

0.148
(0.096)

0.164
(0.0764)

high income, ∆α3 0.947
(0.045)

0.718
(0.029)

0.712
(0.0269)

Random Coef.
σv 0.115

(0.070)
0.086
(0.072)

0.046
(0.1244)

σunflavoured 0.015
(2.754)

0.018
(1.490)

0.023
(2.6772)

σflavoured 2.353
(0.259)

1.684
(0.038)

1.010
(0.1615)

σunfortified 0.048
(3.047)

0.004
(3.870)

0.017
(2.2994)

σfortified 0.010
(5.393)

0.010
(2.388)

0.015
(6.8129)

σfat 0.077
(1.099)

0.062
(0.660)

0.034
(1.6161)

σcereal brand 0.780
(0.049)

0.660
(0.058)

0.847
(0.0705)

σmilk brand 0.005
(6.156)

0.003
(5.368)

0.004
(6.9505)

Demand Synergies
γ0 0.902

(0.155)
−1.540
(0.3437)

multi-grain, γ1 0.533
(0.0359)

granola, γ2 4.363
(0.0891)

skimmed, γ3 2.880
(0.2111)

low fat, γ4 0.514
(0.1282)

flavoured cereal, γ5 1.816
(0.2324)

chocolate milk, γ6 13.625
(0.2621)

flavoured cereal and chocolate milk, γ7 −∞
fortified cereal, chocolate milk, γ8 −∞

fortified cereal and milk, γ9 −1.538
(0.3512)

GMM Objective Function 0.1636 0.1599 0.1434

Notes: Standard errors are reported in brackets. For all the models, instruments are the
same and product-specific intercepts are included. In the “IV Regression”, week dummies
and store dummies are also included.
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Table 4: Average Estimated Own- and Cross-Price Elasticities (Full Model), Grain
Type and Fat Content

RTE cereals Milk
uni-grain multi-grain granola skimmed low fat whole fat

RTE cereals, uni-grain −1.407
(0.221)

0.194
(0.049)

0.009
(0.002)

−0.032
(0.007)

0.007
(0.003)

0.009
(0.003)

multi-grain 0.266
(0.063)

−1.492
(0.221)

0.009
(0.011)

−0.034
(0.007)

0.001
(0.003)

0.009
(0.003)

granola 0.220
(0.054)

0.168
(0.182)

−1.335
(0.207)

−0.084
(0.015)

−0.071
(0.011)

−0.005
(0.006)

Milk, skimmed −0.350
(0.068)

−0.243
(0.051)

−0.053
(0.010)

−0.252
(0.043)

0.047
(0.029)

0.023
(0.013)

low fat 0.010
(0.012)

−0.005
(0.007)

−0.020
(0.003)

0.018
(0.012)

−0.262
(0.040)

0.028
(0.018)

whole fat 0.056
(0.023)

0.045
(0.018)

−0.005
(0.004)

0.018
(0.011)

0.054
(0.036)

−0.307
(0.055)

Notes: Each entry reports the percent change in the sum of the product-level market shares of
the products collected by the row characteristics with respect to a 1% increase in the prices of the
products collected by the column characteristics. Standard errors are reported in brackets and
computed from a parametric bootstrap as in Nevo (2000, 2001) with 200 draws.

Table 5: Average Estimated Own- and Cross-Price Elasticities (Full
Model), Flavours

RTE cereals Milk
unflavoured flavoured unflavoured chocolate

RTE cereals, unflavoured −1.397
(0.242)

0.190
(0.062)

0.016
(0.004)

−0.014
(0.003)

flavoured 0.145
(0.047)

−1.381
(0.240)

−0.051
(0.007)

0.003
(0.001)

Milk, unflavoured 0.031
(0.007)

−0.130
(0.017)

−0.214
(0.029)

0.001
(0.001)

chocolate −1.319
(0.273)

0.378
(0.141)

0.071
(0.049)

−0.264
(0.045)

Notes: Each entry reports the percent change in the sum of the product-level mar-
ket shares of the products collected by the row characteristics with respect to a 1%
increase in the prices of the products collected by the column characteristics. Stan-
dard errors are reported in brackets and computed from a parametric bootstrap as
in Nevo (2000, 2001) with 200 draws.
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Table 6: Average Estimated Own- and Cross-Price Elasticities (Full
Model), Fortification and Flavours

RTE cereals Milk
unfortified fortified unflavoured chocolate

RTE cereals, unfortified −1.263
(0.261)

0.060
(0.021)

−0.029
(0.004)

−0.006
(0.002)

fortified 0.393
(0.132)

−1.668
(0.349)

0.043
(0.009)

0.002
(0.000)

Milk, unflavoured −0.124
(0.017)

0.025
(0.006)

−0.214
(0.029)

0.001
(0.001)

chocolate −1.004
(0.320)

0.063
(0.007)

0.071
(0.049)

−0.264
(0.045)

Notes: Each entry reports the percent change in the sum of the product-level
market shares of the products collected by the row characteristics with respect
to a 1% increase in the prices of the products collected by the column character-
istics. Standard errors are reported in brackets and computed from a parametric
bootstrap as in Nevo (2000, 2001) with 200 draws.
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6.5 Counterfactual Simulations

I simulate a merger between a major RTE cereal producer (General Mills) and a milk
producer (Garelick Farms). To do so, I assume constant market-product specific
marginal production costs and these marginal costs remain unchanged after the
merger, i.e. there is no efficiency gain from the merger. Moreover, I assume that in
both factual and counterfactual scenarios producers play a simultaneous Bertrand
price-setting game with complete information and linear pricing strategies. Then,
I can back out these marginal costs from the estimated demand and the observed
prices by inverting the First-Order Conditions of the pricing game in the factual
scenario. Finally, I simulate the merger using the estimated demand and marginal
costs. I replicate this merger simulation using the full model, model I (Γb = 0),
and model II (Γb = γ0). Table 8 summarises the results.

Model I restricts all the demand synergies between RTE cereals and milk to
be zero. As a result, their cross-price elasticities are always zero and the merger
between General Mills and Garelick Farms will not lead to any change in prices
and consumer surplus (row “Model I” in Table 8). In contrast, both model II
and the full model allow for demand synergies and estimate that RTE cereals and
milk products exhibit substantial complementarity at the producer level (Tables
7 and 14). The merged producer internalises the complementarity in the pricing
and therefore reduces the prices of General Mills RTE cereals and Garelick Farms
milk. As a result, the overall prices in both categories decrease after the merger
and consumer surplus increases. This is coherent with Cournot (1838)’s intuition
that mergers between producers selling complementary products can be socially
desirable.

It is worth noting that model II seems to overestimate the consumer surplus gain,
nearly 70.3% more than the full model. This is due to the specification Γb = γ0

that restricts all RTE cereals and milk to have the same level of synergy in con-
sumption, regardless of their characteristics, resulting in too much complementarity.
In contrast, the full model specifies the synergy as a function of characteristics of
RTE cereals and milk, allowing for flexible synergy patterns in consumption. Con-
sequently, as shown in Tables 4-6, the cross-price elasticities between RTE cereals
and milk depend crucially on the match of their characteristics (flavours, grain type,
fat content, etc.), some pairs creating less synergy than others (e.g. flavoured RTE
cereal and milk in Table 5). Even though both model II and the full model cap-
ture the first-order effect of complementarity between RTE cereals and milk, the
cross-price elasticities and this merger exercise suggest that it is plausible in empir-
ical research to use a model of demand for bundles that allows for flexible synergy
patterns in demand.
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Table 8: Merger Simulation, General Mills and Garelick Farms

Price change Consumer Surplus
RTE Cereals Milk change

Model I, Γb = 0 0% 0% 0%
Model II, Γb = γ0 −0.49% −4.49% 3.44%
Full Model −0.67% −3.49% 2.02%

Notes: The Table reports average price changes (first two columns)
and consumer surplus change (last column) after the merger be-
tween General Mills and Garelick Farms, with respect to the observed
oligopoly. The first row refers to the model of demand imposing Γb = 0
for any b in demand estimation (column “Model I” in Table 3). The
second row refers to model II that restricts all Γb = γ0 in estimation
(column “Model II” in Table 3). The third row refers to the full model
model II (column “Full Model” in Table 3). The counterfactual is sim-
ulated for markets in which all RTE cereal products and private label
products are available.

7 Conclusion
This paper considers the identification and estimation of a random coefficient dis-
crete choice model of bundles, namely sets of products, when only product-level
market shares are available. This last feature arises when only aggregate purchases
of products, as opposed to individual purchases of bundles, are available, a very
common phenomenon in practice. Following the classical approach with aggregate
data, I consider a two-step method. First, using a novel inversion result in which
demand can exhibit Hicksian complementarity, I recover the mean utilities of prod-
ucts from product-level market shares. Second, to infer the structural parameters
from the mean utilities while dealing with price endogeneity, I use IVs. I propose a
practically useful GMM estimator whose implementation is straightforward, essen-
tially as a standard BLP estimator. Finally, I estimate the demand for RTE cereals
and milk in the US. The demand estimates suggest that RTE cereals and milk are
overall complementary and the synergy in consumption crucially depends on their
characteristics. Ignoring such complementarities results in misleading counterfac-
tuals.

As shown in Proposition 1, merger simulations under linear pricing only require
the identification of product-level market share functions. This implies that one may
not need to point estimate the demand synergy parameters and the distribution of
random coefficients in the GMM procedure to conduct such analyses. However,
the estimation procedure in the current paper still assumes that the full model
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is identified. An interesting avenue for future research is to develop an adapted
inference procedure for these counterfactuals that do not require the identification
of the full model.

In practice, even though bundle-level market shares may not available, other
bundle-level information may still be accessible. For example, household with mem-
bership card may receive a discount if she/he purchases a specific bundle of products.
An extension of the current paper is to explore identification under endogenous and
observed bundle-level discounts.

Similar to Allen and Rehbeck (2019a), the identification of product-level market
share functions remains agnostic about whether a bundle is in the choice set, i.e.
Γb 6= −∞. As shown in Theorem 3, one can identify whether Γb 6= −∞ in some
models of demand for bundles. However, allowing for some Γb being −∞ may
introduce boundary problems in estimation and therefore complicates inference (see
Andrews (2002)). In practice, an important question is how to select out (and test)
those Γb that are potentially −∞.

Finally, in the context of models of demand for single products, Reynaert and
Verboven (2014) report remarkable efficiency gain by using optimal instruments.
As mentioned in section 5, one may have non-trivial difficulties to construct the
optimal instruments in the context of demand for bundles. An important question
is whether and the extent to which a similar approach can be used to further improve
the practical performance of the proposed methods.
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Appendix

A Cross-Price Elasticities
For the cross-price elasticity between j and r:

∂sj.
∂pr

=
∫ ∑

b:b3j

∂sib
∂pr

dF (θi)

= −
∫
αi

∑
b:b3j

∂sib
∂δir

dF (θi)

= −
∫
αi

− ∑
b:b3j,r /∈b

sir.sib + sijr − sir.sijr

 dF (θi)

=
∫
αi [sij.sir. − sijr] dF (θi).

B Proof of Proposition 1
Without loss of generality, I fix xtJ = x and drop it in the proof. Moreover, I also
drop the notation t to simplify the exposition. Denote the ownership matrix in the
factual by Ω and that after the merger by Ωm.
Under Assumptions 1-2 and condition 4, due to Theorem 1, δJ are identified. More-
over, because (α, β) are identified, then ξJ is identified.

First statement. For the price elasticity εjr at pJ between j and r, I obtain:

εjr = pj
sj.

[
−α∂sj.(δJ; pJ,Γ, F )

∂δr
+ ∂sj.(δJ; pJ,Γ, F )

∂pr

]
,
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where −α∂sj.(δJ;pJ,Γ,F )
∂δr

captures the variation of pr that enters via the index δr,
and ∂sj.(δJ;pJ,Γ,F )

∂pr
captures the variation of pr that enters via the unobserved devia-

tion in uitr. If α and sj.(δJ; pJ,Γ, F ) are identified, then both −α∂sj.(δJ;pJ,Γ,F )
∂δr

and
∂sj.(δJ;pJ,Γ,F )

∂pr
are identified, and therefore, εjr is identified.

For the marginal costs cJ, I first derive the first-order conditions (FOCs) of the
Bertrand game in the factual:[

Ω� dsJ.

dpJ

]
(pJ − cJ) + sJ.(δJ; pJ,Γ, F ) = 0.

First, note that dsJ.
dpJ

= −α∂sJ.
∂δJ

+ ∂sJ.
∂pJ

is identified. In addition, when αi > 0 and
condition 4 hold, as shown in the proof of Theorem 1 (see Appendix C), dsJ.

dpJ
is

negative definite and therefore Ω� dsJ.
dpJ

is also negative-definite and invertible. Then,
cJ = pJ +

[
Ω� dsJ.

dpJ

]−1
sJ.(δJ; pJ,Γ, F ) is identified.

Given the uniqueness of the prices after the merger, it suffices to examine the
FOCs of the Bertrand pricing game after the merger that uniquely determine the
prices. In the case of mergers under linear pricing, the FOCs are:[

Ωm �
dsJ.

dpJ

]
(pmJ − cJ) + sJ.(δmJ ; pmJ ,Γ, F ) = 0, (B.1)

where pmJ are the prices after merger and δmJ = −αpmJ + βx + ξJ are the mean
utilities of products after merger. Note that dsJ.

dpJ
is an identified function of pmJ .

In addition, ξJ and cJ are already identified. Then, pmJ is uniquely determined by
(B.1). Because the profit after merger is a function of pmJ − cJ and product-level
market shares after merger, the profit change is also identified. Finally, denote the
consumer surplus function by

V (δJ; pJ,Γ, F ) = E[uitb] = E

ln
1 +

∑
b∈J∪C2

eδb(Γb)+µb(θi;pJ)

 .
Note that ∂V

∂δJ
= sJ.(δJ; pJ,Γ, F ), for any pJ. Then, for any δJ and pJ, ∂V

∂δJ
and

therefore V (δJ; pJ,Γ, F ) are identified. Given (α, β, ξJ) and prices before and after
the merger, the consumer surplus change, ∆V = V (δmJ ; pmJ ,Γ, F )− V (δJ; pJ,Γ, F ),
is identified.

Second statement. First, because ctb = ∑
j∈b ctj, then bundle-level marginal

costs are also identified. When there is nonlinear pricing after the merger, bundle-
level market share functions will further depend on the discounts or surcharges set
by firms, which is written as sb(δC1 ; pC1 , F ), where pC1 = (pJ, pC2).
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Suppose (α, β,Γ) are identified. For the first case in which F is further identified,
then sb(δC1 ; pC1 , F ) is directly identified as a function of (δC1 , pC1). For the second
case, note that if αi = α, then prices enter market share functions only via the
mean utilities of products or bundles. As a consequence, bundle-level market share
functions sb(δC1 ; pC1 , F ) do not directly depend on pC1 and they can be re-written
as: sb(δC1 ; pC1 , F ) = sb(δC1 ;F ). Similarly, in the factual scenario, sb(δt; ptJ, F )
can be re-written as sb(δt; ptJ, F ) = sb(δt;F ). If identifying sb(δt;F ) in the factual
implies the identification of sb(δC1 ;F ) in the counterfactual. In either case, one can
then apply similar arguments to those in the proof of the first statement to mergers
under nonlinear pricing.

C Proof of Theorem 1
We need the following regularity condition:

Assumption 4. ∂s(δt;x(2)
tJ ,ptJ,θit)
∂δt

is symmetric and positive definite.

In fact, when Φ is continuous, the inclusive value function of individual i in market
t,
∫
max{uitb}b∈CdΦ(εit), is already convex function of δt.49 As a result, the Hessian

matrix of the inclusive value function, ∂s(δt;x
(2)
tJ ,ptJ,θit)
∂δt

, is symmetric and semi-positive
definite. This assumption strengthens the Hessian matrix to be positive-definite.
This assumption is generically true and holds for often used distributions Φ (e.g.
Gumbel, Gaussian).
I drop the notation t to simplify the exposition. Denote by W a matrix of dimension
J × C1 and the jth row is wj. Note that the first J × J component is the identify
matrix of size J × J . Therefore, W is of full row rank. We can re-write (4) as:

sJ. = sJ.(δJ;x(2)
J , pJ,Γ, F )

= W s(WTδJ + (0, ..., 0,Γ)T;x(2)
J , pJ, F )

(C.1)

Then,

∂sJ.(δJ;x(2)
J , pJ,Γ, F )
∂δJ

= W
∂s(WTδJ + (0, ..., 0,Γ)T;x(2)

J , pJ, F )
∂δ

WT. (C.2)

Note that
∂s(δ;x(2)

J , pJ, F )
∂δ

=
∫ s(δ;x(2)

J , pJ, θi)
∂δ

dF (θi).

49Or equivalently, the expenditure function of individual i in market t is concave in δt, when
the price coefficient αi is negative.
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Because of Assumption 4, s(δ;x
(2)
J ,pJ,θi)
∂δ

is symmetric and positive definite for each θi.
Then, ∂s(δ;x

(2)
J ,pJ,F )
∂δ

is also symmetric and positive definite. Moreover, W is of full row
rank. Consequently, ∂stJ.(δJ;x(2)

J ,pJ,Γ,F )
∂δJ

is still symmetric and positive definite, and
therefore positive quasi-definite. Then, given (x(2)

J , pJ,Γ, F ), for δJ ∈ RJ , according
to Theorem 6 of Gale and Nikaido (1965), sJ.(δJ;x(2)

J , pJ,Γ, F ) defines a bijection
from RJ to sJ.(RJ ;x(2)

J , pJ,Γ, F ).
Similarly, for any (x(2)

J , pJ,Γ′, F ′), sJ.(δJ;x(2)
J , pJ,Γ′, F ′) defines a bijection from

RJ to sJ.(RJ ;x(2)
J , pJ,Γ′, F ′). If the true sJ. ∈ sJ.(RJ ;x(2)

J , pJ,Γ′, F ′), then there is
a unique δ′J such that sJ. = sJ.(δ′J;x(2)

J , pJ,Γ′, F ′). If sJ. /∈ sJ.(RJ ;x(2)
J , pJ,Γ′, F ′),

then there is no such δ′J. The proof is completed.

D Proof of Theorem 2
In what follows, I fix x(2)

tJ = x(2) and prove the conclusion for each x(2) ∈ D(2)
x . To

start with, I plug the definition of ξJ(·) into (8):

E[s−1
J. (stJ.;x(2), ptJ,Γ, F ) + αptJ − βxtJ|ztJ = z, xtJ = x] = 0, (D.1)

where z ∈ Dz, x ∈ Dx = D(1)
x × D(2)

x , and Dz denote the support of ztJ. I also
assume the following regularity condition:
Condition 1. For any (Γ′, F ′) and any z ∈ Dz, there exists Mz > 0, such that

E
[∣∣∣s−1

J. (stJ.;x(2), ptJ,Γ, F )
∣∣∣ ∣∣∣z] ,E [|ptJ| ∣∣∣z] ≤Mz.

Sketch of the proof. The proof is proceeded in three steps. In the first step, I
prove that under conditions 1-3 in Theorem 2, the identification by moment restric-
tions (8) is equivalent to uniquely solving a convolution equation. This convolution
equation is generated by the distribution of demand and shocks, and the trans-
lation in the convolution equation is defined by ztJ ∈ RJ . In the second step,
using condition 4 in Theorem 2 and that D(1)

x and D(2)
x are both open, I prove

that the property that the zero function is the unique solution to the convolution
equation is sufficient for the identification of α and sJ.(δJ;x(2),Γ, F ) as functions
of (δJ, x

(2)) ∈ RJ × D(2)
x . In the final step, by leveraging the completeness of lo-

cation families in Mattner (1992), I demonstrate that when (ξtJ, wtJ) is Gaussian
distributed (or their joint distribution satisfies some “fat-tail” conditions), the prop-
erty that the zero function is the unique solution to the convolution equation will
hold; under regularity condition 1 of Appendix D, by leveraging the polynomial
completeness in D’Haultfoeuille (2011), I prove that the same property will hold
when the DGP is a model of demand for multiple products across categories.
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D.1 Moment Restrictions (D.1) and Convolution Equation

When αi = α, sJ.(δtJ;x(2), ptJ,Γ, F ) depends on ptJ only via the index δtJ. Then,
sJ.(δtJ;x(2), ptJ,Γ, F ) can be written as sJ.(δtJ;x(2),Γ, F ). The following theorem
transforms (D.1) to a convolution equation:

Theorem D.1. Suppose that Assumptions 1-3 and regularity condition 1 hold.
Moreover, the following conditions hold:

1. ztJ is independent of (ξtJ, wtJ).

2. αi = α 6= 0

3. Given x(2), ptJ = pJ(βxtJ + ξtJ, ctJ;x(2)) is a continuous function of (βxtJ +
ξtJ, ctJ).

Then, for any z ∈ Dz and x ∈ Dx, (α′, β′,Γ′, F ′) satisfies moment conditions (D.1)
if and only if the following convolution equation∫

G(t;α′, β,Γ′, F ′)ΛG(t− z; fξ,w)dt = 0, (D.2)

holds, where

G(t;α′, β,Γ′, F ′) = s−1
J. (sJ.(−αpJ(0, t;x(2));x(2),Γ, F );x(2),Γ′, F ′)

+ α′pJ(0, t;x(2)) +
(
α′

α
β − β

)
x,

ΛG(λ; fξ,w) =
∫
αfξ,w(α(w − λ)− βx, w)dw,

and fξ,w is the density function of (ξtJ, wtJ).

Proof. Since x(2) is fixed, I drop this notation in this proof and also the notation of
pJ(·) and sJ.(·; Γ′, F ′). To start with, I prove the following Lemma:

Lemma 1. Suppose that αi = α and pJ(βx+ξtJ, ctJ) is a function of (βx+ξtJ, ctJ).
Then, for any ∆ ∈ RJ ,

pJ(βx+ ξtJ + α∆, ctJ + ∆) = pJ(βx+ ξtJ, ctJ) + ∆.

Proof. Denote by Ω the factual ownership matrix. Then, I can derive the FOCs of
the simultaneous Bertrand pricing game:

− α
[
Ω� ∂sJ.

∂δtJ

]
(ptJ − ctJ) + sJ.(δtJ; Γ, F ) = 0, (D.3)
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where δtJ = −αptJ +βx+ξtJ. Suppose that ctJ increases by ∆ and βx+ξtJ increases
by α∆. Then, the FOCs (D.3) with p′tJ = pJ(ξtJ, ctJ) + ∆, c′tJ = ctJ + ∆ and δtJ
still hold because δtJ and ptJ − ctJ remain unchanged. Due to the uniqueness
of ptJ as function of (βx + ξtJ, ctJ), I obtain that pJ(βx + ξtJ + α∆, ctJ + ∆) =
pJ(βx+ ξtJ, ctJ) + ∆.

First, I prove the sufficiency part of Theorem D.1. For any ∆ ∈ RJ , by using
Lemma 1, I obtain:

E[ptJ|ztJ = z, xtJ = x] =
∫
pJ(βx+ ξtJ, z + wtJ)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=
∫ [

pJ(0, z + wtJ −
βx+ ξtJ

α
) + βx+ ξtJ

α

]
fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=
∫
pJ(0, z + wtJ −

βx+ ξtJ
α

)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ) + βx

α
(D.4)

Similarly, for (α′, β′,Γ′, F ′) satisfying (D.1), I compute

E[s−1
J. (stJ.; Γ′, F ′)|ztJ = z]

=
∫
s−1

J. (sJ.(βx+ ξtJ − αpJ(βx+ ξtJ, ztJ + wtJ); Γ, F ); Γ′, F ′)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

=
∫
s−1

J. (sJ.(−αpJ(0, z + wtJ −
βx+ ξtJ

α
); Γ, F ); Γ′, F ′)fξ,w(ξtJ, wtJ)d(ξtJ, wtJ)

(D.5)
I now plug (D.4) and (D.5) in (D.1) evaluated at (α′, β′,Γ′, F ′), and transform
(ξtJ, wtJ) to (z + wtJ − βx+ξtJ

α
, wtJ):

E[s−1
J. (stJ.; Γ′, F ′) + α′ptJ − β′x|ztJ = z]

=
∫

[s−1
J. (sJ.(−αpJ(0, t); Γ, F ); Γ′, F ′) + α′pJ(0, t) +

(
α′

α
β − β′

)
x]αfξ,w(α(z + wtJ − t)− βx, wtJ)d(t, wtJ)

=
∫

[s−1
J. (sJ.(−αpJ(0, t); Γ, F ); Γ′, F ′) + α′pJ(0, t) +

(
α′

α
β − β′

)
x]ΛG(t− z; fξ,w)dt.

The proof of sufficiency is completed. To obtain the necessity part, one can reverse
the argument of the sufficiency.

D.2 Unique Solution for Convolution Equation (D.2) and
Identification of Product-Level Market Share Functions

Denote the identification set derived from moment conditions (D.1) by

Θ = {(α′, β′,Γ′, F ′) : (D.1) holds at (α′, β′,Γ′, F ′) for any z ∈ Dz, x ∈ Dx},
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and that derived from (D.2) by

ΘG = {(α′, β′,Γ′, F ′) : (D.2) holds for any z ∈ Dz, x ∈ Dx}.

Theorem D.1 establishes Θ = ΘG. Define Θ0
G = {(α′, β′,Γ′, F ′) : G(·;α′, β′,Γ′, F ′) =

0}, the set of parameters that deliver G(·) = 0. Note that Θ0
G ⊂ ΘG and the true

parameters (α, β,Γ, F ) ∈ Θ0
G ⊂ ΘG = Θ. Then, a necessary condition for the

identification of (α, β,Γ, F ) by moment conditions (D.1), i.e. Θ = {(α, β,Γ, F )}, is
Θ0
G = ΘG, i.e. G = 0 is the unique solution of convolution equation (D.2). This is

the completeness of the location families generated by ΛG(·; fξ,w). The next theorem
characterises the implications of this completeness for identification:

Theorem D.2. Suppose that conditions of Theorem D.1 hold.

1. If Θ = {(α, β,Γ, F )}, then Θ0
G = ΘG.

2. If Θ0
G = ΘG, then (α, β) are identified and sJ.(δJ;x(2),Γ, F ) are identified as

functions of (δJ, x
(2)) ∈ RJ ×D(2)

x .

Remark 4. The first statement of Theorem D.2 shows that the completeness of the
location families (Θ0

G = ΘG) is necessary for the identification of the full model by
moment conditions (8). The second statement shows that the completeness condition
is also sufficient for the identification of (α, β) and sJ.(·;x(2),Γ, F ).

Proof. We have proven the first statement in the previous paragraph. We prove
the second statement for any fixed x(2). Note that if G(t;α′, β′,Γ′, F ′) = 0 for any
t ∈ RJ , then we have

sJ.(−αpJ(0, t); Γ, F ) = sJ.(−α′pJ(0, t) + v; Γ′, F ′), (D.6)

for any t ∈ RJ , where v =
(
α′

α
β − β′

)
x.

We first prove that Dp = {p′ ∈ RJ : p′ = pJ(0, t), t ∈ RJ} is an open set in
RJ . As shown in the proof of Proposition 1 (Appendix B), marginal costs ctJ are
identifiable: for any p′tJ, there exists a unique c′tJ such that the FOCs of the Bertrand
pricing game hold. Moreover, this mapping from p′tJ to c′tJ is C1. Because pJ(0, c′tJ)
is a continuous function, then p′tJ = pJ(0, c′tJ) defines a continuous bijection between
prices and marginal costs. Consequently, Dp is an open set in RJ and (D.6) holds
in Dp.

According to Iaria and Wang (2019) (Theorem Real Analytic Property), given
any (Γ′′, F ′′), sb(δ′tJ; Γ′′, F ′′) is real analytic with respect to δ′tJ. Then, sJ.(δ′tJ; Γ′′, F ′′)
is real analytic with respect to δ′tJ. Consequently, sJ.(−αp′tJ; Γ, F ) and sJ.(−α′p′tJ +
v; Γ′, F ′) are both real analytic with respect to p′tJ. Because these two real analytic
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functions coincide on open set Dp ⊂ RJ , then they coincide for all ptJ ∈ RJ : (D.6)
holds for any ptJ ∈ RJ .

We now prove α = α′. To do this, we first let the ptj’s, j 6= 1, tend to infinity.
Then, we obtain a choice set that only include product 1 and the outside option
0. As a consequence, Γ (Γ′) do not enter the left-hand (right-hand) side of (D.6).
Then,

s1(−αp1;F ) =
∫ exp{−αp1 + µ1(θi)}

1 + exp{−αp1 + µ1(θi)}
dF (θi)

= s1(−α′p1 + v;F ′)

=
∫ exp{−α′p1 + v + µ1(θi)}

1 + exp{−α′p1 + v + µ1(θi)}
dF ′(θi).

(D.7)

We prove α = α′ by contradiction. Without loss of generality, suppose that 0 < α′ <

α. Denote the compact supports of F and F ′ by DF and DF ′ , respectively. Then,
for sufficiently large p1 > 0, the set {−αp1 +µ1(θi) : θi ∈ DF} will be completely on
the left of {−α′p1 +v+µ1(θi) :, θi ∈ DF ′}.50 Since the function exp{x}/(1+exp{x})
is a strictly increasing function, we obtain that s1(−αp1;F ) < s1(−α′p1 + v;F ′),
which contradicts (D.7). α = α′ is proved.

Plugging α′ = α in (D.6), we obtain that for any p ∈ RJ :

sJ.(−αp; Γ, F ) = sJ.(−αp+ v; Γ′, F ′).

where v on the right-hand side is equal to
(
α′

α
β − β′

)
x = (β − β′)x. Because x(1)

varies in open set D(1)
x , then we obtain β(1) = β′(1). We now prove β(2) = β′(2). Note

that given β(1) = β′(1) and α = α′, we have:

sJ.(−αp+ β(2)x(2); Γ, F ) = sJ.(−αp+ β′(2)x(2); Γ′, F ′).

We re-use the technique used to prove α = α′:

∫ exp{−αp1+(β(2)+∆β(2)
i )x(2)+ηi1}

1+exp{−αp1+(β(2)+∆β(2)
i )x(2)+ηi1}

dF (θi) =
∫ exp{−αp1+(β(2)+∆β(2)

i )x(2)+ηi1}
1+exp{−αp1+(β(2)+∆β(2)

i )x(2)+ηi1}
dF ′(θi).

(D.8)
Then, according to Theorem 1 of Wang (2020), the distribution of (β(2)+∆β(2)

i )x(2)+
ηi1 conditional on x(2) is identified. Then, its mean (conditional on x(2)) is also iden-
tified: β(2)x(2) + EF [ηi1] = β′(2)x(2) + EF ′ [ηi1]. As a result, for any x(2), x′(2) ∈ D(2)

x ,
we obtain (β(2) − β′(2))(x(2) − x′(2)) = 0. Since D(2)

x is open, we obtain β(2) = β′(2)

and v = 0. The proof holds for any x(2) ∈ D(2)
x . Finally, we proved sJ.(δJ; Γ, F ) =

50When F and F ′ have unbounded support, the two sets are not disjoint. However, if the tails
of F and F ′ are sufficiently thin, then the probability weights are mostly concentrated around
−αp1 + µF and −α′p1 + µF ′ , where µF and µF ′ are the mean of F and F ′, respectively. Since
−αp1 + µF and −α′p1 + µF ′ are still sufficiently distant, the argument here will still go through.
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sJ.(δJ; Γ′, F ′) for (δJ, x
(2)) ∈ RJ ×D(2)

x . The proof is completed.

D.3 Sufficient Conditions for the Completeness of Location
Families

In general, depending on the regularity of G(·) (bounded, polynomially bounded,
integrable with respect to ΛG(·), etc.), the completeness of location families can be
achieved with different sufficient conditions on ΛG(·) (and hence on fξ,w).51 The
next theorem establishes two sets of sufficient conditions for the completeness of
location families (Θ0

G = ΘG):

Theorem D.3. Suppose that (D.2) holds for z ∈ RJ .

• If fξ,w is Gaussian, then Θ0
G = ΘG.

• If the DGP is a model of demand for multiple products across categories, then
under regularity conditions 2, Θ0

G = ΘG.

Proof. Note that the location families are generated by ΛG(·; fξ,w), which is the
density function of a translation of demand and supply shocks in model (4). When
fξ,w is Gaussian, ΛG(λ; fξ,w) is also Gaussian. Then, the first statement follows
directly from Theorem 2.4 of Mattner (1993).
For the second statement, I leverage Theorem 2.1 of D’Haultfoeuille (2011). To do
so, I require the following regularity conditions:

Condition 2.

(i). (ξtJ, wtJ) are continuous random variables with finite moments.

(ii). The characteristics function of ΛG is infinitely often differentiable in RJ except
for some finite set. Moreover, the characteristics function of ΛG does not
vanish on RJ .

(iii). There exists B and l, such that |ptJ(0, ctJ)−ptJ(0, 0)| ≤ B|ctJ|l, where |.| refers
to Euclidean norm.

Condition 2(i) implies Assumption A3 of D’Haultfoeuille (2011). Condition 2(ii)
implies his Assumption A4. The differentiability requirement and the zero-freeness
requirement are satisfied by many commonly used distributions. Condition 2(iii)
restricts pricing behaviours to be controlled by a polynomial of marginal costs and
is satisfied at least by mixed logit models of demand for single products. Moreover,
together with Condition 2(i), it implies Assumption A5 of D’Haultfoeuille (2011).

51For different concepts of completeness, see Mattner (1992, 1993), D’Haultfoeuille (2011), and
Andrews (2017).

55



First, I re-write G as a function of ptJ(0, t):

G = G(ptJ) = s−1
J. (sJ.(−αptJ;x(2),Γ, F );x(2),Γ′, F ′) + α′ptJ +

(
α′

α
β − β′

)
x.

To apply statement (ii) of Theorem 2.1 in D’Haultfoeuille (2011), it is enough to
prove that G can be polynomially controlled by ptJ:

Lemma 2. There exists A,M > 0, such that |G(ptJ)| ≤ A|ptJ| + M , for any
ptJ ∈ RJ .

Combining this lemma with Conditions 2(i)-(iii), I can apply the P-completeness
result in Theorem 2.1 of D’Haultfoeuille (2011): if G satisfies convolution equation
(D.2) for any z ∈ RJ , then G ≡ 0. In the remaining part, I prove Lemma 2.

Without loss of generality, normalize the support of F and F ′ to [0, 1]R, where
R is the dimension of random coefficients. Note that it is sufficient to prove

s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′)| ≤ A′|ptJ|+M ′

for some constant A′ andM ′. First, consider a model of demand for single products.
For any δ′J ∈ RJ , denote sJ = sJ.(δJ;F ) = sJ.(δ′J;F ′). Then, we have for any j ∈ J:

ln sj − ln s0 = δj + ln

∫ eµtj(θi)

1+
∑

j∈J e
δj+µtj(θi)dF (θi)∫ 1

1+
∑

j∈J e
δj+µtj(θi)dF (θi)

= δj + µtj(θ̃),

where θ̃ is some value in [0, 1]R. We apply the same arguments to F ′ and obtain:

ln sj − ln s0 = δ′j + µtj(θ̃′),

where θ̃′ is some value in [0, 1]R. Then, we have δj − δ′j = µtj(θ̃′) − µtj(θ̃). Be-
cause both θ̃ and θ̃′ are bounded by 1, then µtj(θ̃) and µtj(θ̃′) are also bounded.
As a result, we obtain that there exists a constant Mj that does not depend on δJ,
such that |δj − δ′j| ≤ Mj. Consequently, |δ − δ′| ≤ M ′ =

√∑J
j=1M

2
j , or equiva-

lently, |s−1
J. (sJ.(δJ; Γ, F ); Γ′, F ′) − δJ| ≤ M ′ for any δJ ∈ RJ . Plug δJ = −αptJ into

this inequality, we obtain |s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′) + αptJ| ≤ M ′ and therefore

|s−1
J. (sJ.(−αptJ; Γ, F ); Γ′, F ′)| ≤ α|ptJ|+M ′.
For models of demand for multiple products acrossK categories, for any δ′J ∈ RJ ,

denote sJ = sJ.(δJ;x(2),Γ, F ) = sJ.(δ′J;x(2),Γ′, F ′). Take product category J1 and
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define s̃0 = 1−∑j∈J1 sj.. Note that

s̃0 =
∫ ∑

b=((jk)jk∈Jk,k=2,...,K) e
∑K

k=2 δjk+Γb+
∑K

k=2 µtjk (θi)∑
b=(jk)jk∈Jk,k=1,...,K e

∑K

k=1 δjk+Γb+µtb(θi)
dF (θi)

and for j ∈ J1,

sj. =
∫ ∑

b=((jk)jk∈Jk,k=2,...,K) e
δj+µtj(θi)e

∑K

k=2 δjk+Γb∪{j}+
∑K

k=2 µtjk (θi)∑
b=(jk)jk∈Jk,k=1,...,K e

∑K

k=1 δjk+Γb+µtb(θi)
dF (θi).

Then, similar to demand models of single products, we obtain:

ln sj. − ln s̃0 = δj + µtj(θ̃) + Γb̃∪{j} − Γb̃,

where θ̃ is some value in [0, 1]R and b̃ is some bundle without j ∈ J1. We apply the
same arguments to (Γ′, F ′) and obtain:

ln sj. − ln s0 = δ′j + µtj(θ̃′) + Γb̃′∪{j} − Γb̃′ ,

where θ̃′ is some value in [0, 1]R and b̃′ is some bundle without j ∈ J1. Then, similar
arguments in the model of demand for single product apply and |δj−δ′j| is bounded
by some constant that only depends on the support of θ̃ and θ̃′ and the bounds of
Γ. The proof of the second statement is completed.

Combining Theorems D.1-D.3, we obtain Theorem 2.

E Proof of Theorem 3
The proof is proceeded in two steps. In the first step, I prove Γ(j,r) is identified
for j, r ∈ J, j 6= r. In the second step, I prove that the sb(δt;x(2)

t , F ) is identified
for b ∈ C1 and (δt, x(2)

t ) ∈ RC1 × D(2)
x . Steps 1 and 2 prove the first statement.

The proof of the second statement is a combination of that of the first statement
and a direct application of Theorem 3 of Wang (2020). We prove steps 1 and 2 for
any given x

(2)
tJ ∈ D(2)

x . To simplify the exposition, I drop x
(2)
tJ from the notation.

Throughout the proof, denote the Fourier transformation of function φ by F(φ).
Suppose that there exist (Γ′, F ′) such that

sj.(δJ; Γ′, F ′) = sj.(δJ; Γ, F )

for any j ∈ J and δ ∈ RJ .
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Step 1: Γ′ = Γ. Without loss of generality, we show Γ(1,2) = Γ′(1,2). First, note
that by letting all δ′tl’s, l 6= 1, 2 tend to −∞, market shares of single products l and
of all bundles that contain any product l 6= 1, 2 converge to zero. Consequently, we
obtain:

s1.(δ′t{1,2}; Γ′(1,2), F
′) = s1.(δ′t{1,2}; Γ(1,2), F ),

s2.(δ′t{1,2}; Γ′(1,2), F
′) = s2.(δ′t{1,2}; Γ(1,2), F ),

(E.1)

for any δ′t{1,2} = (δ′t1, δ′t2) ∈ R2. Take the first equation in (E.1) and compute the
partial derivatives with respect to δ′t2:

∂s1.(δ′t{1,2}; Γ′(1,2), F
′)

∂δ′t2
=
∫ (eδ′t1+δ′t2+µt1(θit)+µt2(θit))(eΓ′(1,2) − 1)

(1 + eδ
′
t1+µt1(θit) + eδ

′
t2+µt2(θit) + e

δ′t1+µt1(θit)+δ′t1+µt1(θit)+Γ′(1,2))2
dF ′(θit),

∂s1.(δ′t{1,2}; Γ(1,2), F )
∂δ′t2

=
∫ (eδ′t1+δ′t2+µt1(θit)+µt2(θit))(eΓ(1,2) − 1)

(1 + eδ
′
t1+µt1(θit) + eδ

′
t2+µt2(θit) + eδ

′
t1+µt1(θit)+δ′t1+µt1(θit)+Γ(1,2))2

dF (θit),

∂s1.(δ′t{1,2}; Γ′(1,2), F
′)

∂δ′t2
=
∂s1.(δ′t{1,2}; Γ(1,2), F )

∂δ′t2
.

I can then cancel out eδ′t1+δ′t2 in the nominators of ∂s1.(δ
′
t{1,2};Γ

′
(1,2),F

′)
∂δ′t2

and ∂s1.(δ′t{1,2};Γ
′
(1,2),F

′)
∂δ′t2

.
Letting δt2 → −∞, I obtain:

[eΓ′(1,2) − 1]
∫ eµt1(θit)+µt2(θit)

(1 + eδ
′
t1+µt1(θit))2dF

′(θit) = [eΓ(1,2) − 1]
∫ eµt1(θit)+µt2(θit)

(1 + eδ
′
t1+µt1(θit))2dF (θit).

(E.2)
From (E.2), if Γ(1,2) = 0, then Γ′(1,2) = Γ(1,2) = 0.Suppose Γ(1,2) 6= 0. Denote the
density functions of µit = (µit1, µit2) = (µt1(θit), µt2(θit)) for θit ∼ F and θit ∼ F ′

by fµ and f ′µ, respectively. Then, I can re-write (E.2) as:

[eΓ′(1,2)−1]
∫ eµit1+µit2

(1 + eµit1)2f
′
µ(µit1−δ′t1, µit2)dµit = [eΓ(1,2)−1]

∫ eµit1+µit2

(1 + eµit1)2fµ(µit1−δ′t1, µit2)dµit.

Define g(λ) = eλ

(1+eλ)2 . Then,

[eΓ′(1,2)−1]
∫
g(µit1)f̃ ′µ(µit1−δ′t1)dµit1 = [eΓ(1,2)−1]

∫
g(µit1)f̃µ(µit1−δ′t1)dµit1, (E.3)

where f̃ ′µ(µit1) =
∫
eµit2f ′µ(µit1, µit2)dµit2 and f̃µ(µit1) =

∫
eµit2fµ(µit1, µit2)dµit2. Ei-

ther side of (E.3) defines a convolution. Note that g(·), f̃ ′µ, f̃µ ∈ L1(R). Conse-
quently, I apply Fourier transformation on both sides of (E.3) and obtain:

[eΓ′(1,2) − 1]F(g)(t)F(f̃ ′µ)(t) = [eΓ(1,2) − 1]F(g)(t)F(f̃µ)(t),
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for any t ∈ R. Particularly, at t = 0, F(g)(0) > 0. Then,

[eΓ′(1,2) − 1]F(f̃ ′µ)(0) = [eΓ(1,2) − 1]F(f̃µ)(0), (E.4)

Note that F(f̃ ′µ)(t) = Ef̃ ′ [eµit2 ] and F(f̃µ)(t) = Ef̃ [eµit2 ]. If they are equal, then
Γ′(1,2) = Γ(1,2). In particular, if Γ(1,2) = −∞, i.e. bundle (1, 2) is not in the choice
set, I obtain that Γ′(1,2) = −∞ and therefore identify that bundle (1, 2) is not in the
choice set. In what follows, we prove Ef̃ ′ [eµit2 ] = Ef̃ [eµit2 ].

Take the second equation of (E.1) and let δ′it1 → −∞. I then obtain:

∫ eδ
′
t2+µit2

1 + eδ
′
t2+µit2

f ′µ(µit) =
∫ eδ

′
t2+µit2

1 + eδ
′
t2+µit2

fµ(µit). (E.5)

I cancel out eδ′t2 from the nominators on both sides of (E.5) and let δ′2t → −∞. I
then obtain

∫
eµit2f ′µ(µit) =

∫
eµit2fµ(µit), i.e. Ef̃ ′ [eµit2 ] = Ef̃ [eµit2 ].

Step 2: sb(δC1 ;F ′) = sb(δC1 ;F ) for any b ∈ C1 and δC1 ∈ RC1. I prove this
result for for the model of demand for multiple products within category. The proof
is similar for the model of demand for multiple products across two categories.

Recall that the density function of µitJ = µtJ(θit) for θit ∼ F ′ and θit ∼ F are
f ′µ and fµ, respectively. It suffices to prove that f ′µ = fµ almost everywhere. In
the model of demand for multiple products within category in Theorem 3, plug
Γ′ = Γ into the product-level market share function of j. I then have for any
δ′tJ ∈ RJ , sj.(δ′tJ; Γ, F ) = sj.(δ′tJ; Γ, F ′). According to the arguments in Appendix
8.13 of Iaria and Wang (2019), given the product-level market share functions and
Γ, one can uniquely determine the bundle-level market shares, as function of δtJ.
Because both the product-level market share functions and Γ are identified, then
sb(δt(Γ);F ), where δt(Γ) = (δt1, ..., δtJ , (δtb)b∈C2 + Γ), is identified as a function of
δtJ, for any b ∈ C1. Consequently, the market share function of the outside option,
s0(δt(Γ);F ), is identified as a function of δtJ: for any δ′tJ ∈ RJ

s0(δ′tJ(Γ);F ) = s0(δ′tJ(Γ);F ′). (E.6)

I compute the higher-order cross derivative of both sides of (E.6):

∂Js0(δ′tJ(Γ);F )
∂δ′t1, ..., ∂δ

′
tJ

=
∫ PΓ(δt1 + µit1, ..., δtJ + µitJ)
QΓ(δt1 + µit1, ..., δtJ + µitJ)fµ(µit)dµit,

∂Js0(δ′tJ(Γ);F ′)
∂δ′t1, ..., ∂δ

′
tJ

=
∫ PΓ(δt1 + µit1, ..., δtJ + µitJ)
QΓ(δt1 + µit1, ..., δtJ + µitJ)f

′
µ(µit)dµit,

∂Js0(δ′tJ(Γ);F )
∂δ′t1, ..., ∂δ

′
tJ

= ∂Js0(δ′tJ(Γ);F ′)
∂δ′t1, ..., ∂δ

′
tJ

,

(E.7)
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where
QΓ(uit1, ..., uitJ) = 1 +

∑
j∈J

euitj +
∑
j<j′

eΓ(j,j′)euitj+uitj′ .

and

PΓ(uit1, ..., uitJ) =
∑
S∈S

A(S)
∏

(j,j′)∈S

euit(j,j′)

QΓ(uit1, ..., uitJ)
∏
j∈S

∑
b:b3j e

uitb

QΓ(uit1, ..., uitJ)

=
∏
j∈J

euitj
∑
S∈S

A(S)
∏

(j,j′)∈S

eΓ(j,j′)

QΓ(uit1, ..., uitJ)
∏
j∈S

1 +∑
j′ 6=j e

uitj′+Γ(j,j′)

QΓ(uit1, ..., uitJ)
(E.8)

where S is a partition of {1, ..., J} with each part being at most size 2, S collects all
such partitions which are the results of the higher-order cross derivative ∂J

∂δ′t1,...,∂δ
′
tJ
,

and A(S) is a constant depending on the partition S ∈ S. An example of S is
{{1}, {2, 5}, {4}, {3, 6}}. Each term in the products of PΓ corresponds to the choice
probability of either bundle (j, j′) or the product-level choice probability of product
j, evaluated at uitJ and Γ, and bounded by 1. From (E.7), I obtain:

∫ PΓ((eλitj)j∈J)
QΓ((eλitj)j∈J) [fµ(λitJ − δ′tJ)− fµ(λitJ − δ′tJ)]dλitJ = 0, (E.9)

for any δ′tJ ∈ RJ . I prove the following lemma:

Lemma 3.

• PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

∈ L1(RJ).

• The zero set of F
(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
in RJ is of zero Lebesgue measure.

Note that the right-hand side of (E.9) is a convolution. Because of the first state-
ment of Lemma 3, I can apply Fourier transformation on both sides and obtain:

F

(
PΓ((eλj)j∈J)
QΓ((eλj)j∈J)

)
F(fµ − f ′µ) = 0.

Applying the second statement of Lemma 3, I obtain F(fµ) = F(f ′µ) almost ev-
erywhere. Due to the continuity of characteristics functions, F(fµ) = F(f ′µ) every-
where and hence the distribution of µit is identified. In the remaining part, I prove
Lemma 3.

Proof. First, we make the transformation of variables λJ to eλJ :

∫ ∣∣∣∣∣PΓ((eλj)j∈J)
QΓ((eλj)j∈J)

∣∣∣∣∣ dλJ =
∫
RJ+

∣∣∣∣∣PΓ(y1, ..., yJ)
QΓ(y1, ..., yJ)

1∏J
j=1 yj

∣∣∣∣∣ dyJ.
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For the first statement, because of (E.8), it suffices to prove that for each S ∈ S,∣∣∣∣∣∣ 1
QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)
∏
j∈S

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ (E.10)

is integrable in RJ
+. To show this, I divide RJ

+ into 2J regions: RJ
+ = ×Jj=1Ij,

where Ij = (0, 1], (1,+∞). Then, it is enough to prove that (E.10) is integrable
in each of these regions. Without loss of generality, suppose that the region is
Rk = {(y1, ..., yJ) : yj ∈ (0, 1), j = 1, ..., k; yj′ ≥ 1, j′ = k + 1, ..., J}. Then, for a
given j, we have four cases to control:

1. j ≤ k and j appears in S as (j, j′).

2. j ≤ k and j appears in S as j.

3. j > k and j appears in S as (j, j′).

4. j > k and j appears in S as j.

Note that for cases 1 and 2, the corresponding terms in (E.10) can be controlled by
eΓm with Γm = max{0, (Γ(j,j′))j≤j′}. For case 3, e

Γ(j,j′)

QΓ(y1,...,yJ ) ≤
eΓm

yj
. For case 4,

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ) ≤
1 +∑

j′ 6=j yj′e
Γ(j,j′)

yj +∑
j′ 6=j yjyj′e

Γ(j,j′)
= 1
yj
≤ eΓm

yj
.

Moreover,

QΓ(y1, ..., yJ) ≤ 1∑
j>k yj +∑

k<j<j′ yjyj′e
Γ(j,j′)

≤ 2

(J − k)(J − k + 1)(∏k<j<j′ e
Γ(j,j′))

2
(J−k)(J−k+1)

∏J
j=k+1 y

2
J−k+1
j

.

The last step is due to the inequality of arithmetic and the geometric means. Then,
for all the four cases, we have:∣∣∣∣∣∣ 1
QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)
∏
j∈S

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ ≤ A(J, k,Γ)
J∏

j=k+1
y
−1− 2

J−k+1
j ,

(E.11)
whereA(J, k,Γ) = 2eJΓm

(J−k)(J−k+1)(
∏
k<j<j′ e

Γ(j,j′) )
2

(J−k)(J−k+1)
. Note that∏J

j=k+1 y
−1− 2

J−k+1
j

is integrable in Rk and A(J, k,Γ) is a constant. Then,∣∣∣∣∣∣ 1
QΓ(y1, ..., yJ)

∏
(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)
∏
j∈S

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣
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is integrable in {(y1, ..., yJ) : yj ∈ (0, 1), j = 1, ..., k; yj′ ≥ 1, j′ = k + 1, ..., J}. The
proof of the first statement is completed.

To prove the second statement, according to Mityagin (2015), it suffices to show
that the real (or imaginary) part of F

(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
is non-constant real analytic

function. In order to prove the real analytic property, the key is to control the
higher order derivatives of F

(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
(y):

∂LF
(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
(y)∏J

j=1 ∂y
lj
j

= F

 J∏
j=1

(−iλj)lj
PΓ((eλj)j∈J)
QΓ((eλj)j∈J)

 (y), (E.12)

where ∑J
j=1 lj = L and i is the imaginary unit. I now prove that this higher order

derivative can be controlled by
(
J+1

2

)L∏J
j=1 lj!. This result will then imply that

for any y ∈ RJ , there exist 0 < ε < 2
J+1 such that for y′ ∈ RJ and |y′ − y| <

ε, the Taylor expansion of F

(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
(y′) around y uniformly converges to

F

(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
(y′). Consequently, F

(
PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

)
(y) is everywhere real analytic

in RJ . It is not constantly zero because PΓ
QΓ

is not constantly zero. In the remaing

part of the proof, I prove (E.12) can be controlled by
(
J+1

2

)L∏J
j=1 lj!.

It suffices to study
∫ ∣∣∣∣∏J

j=1(|λj|)lj PΓ((eλj )j∈J)
QΓ((eλj )j∈J)

∣∣∣∣ dλ, or equivalently,
∫
RJ+

∣∣∣∣∣∣
J∏
j=1

(| ln yj|)lj
PΓ((yj)j∈J)
QΓ((yj)j∈J)

1∏J
j=1 yj

∣∣∣∣∣∣ dyJ.

I follow the same technique as in the proof of the first statement and evaluate, for
each S ∈ S,∣∣∣∣∣∣

J∏
j=1

(| ln yj|)lj
1

QΓ(y1, ..., yJ)
∏

(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)
∏
j∈S

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣ (E.13)

in each of the 2J regions. Without loss of generality, for region Rk, using (E.11),
we have:∣∣∣∣∣∣

J∏
j=1

(| ln yj|)lj
1

QΓ(y1, ..., yJ)
∏

(j,j′)∈S

eΓ(j,j′)

QΓ(y1, ..., yJ)
∏
j∈S

1 +∑
j′ 6=j yj′e

Γ(j,j′)

QΓ(y1, ..., yJ)

∣∣∣∣∣∣
≤ A(J, k,Γ)

k∏
j=1
| ln yj|lj

J∏
j=k+1

| ln yj|ljy
−1− 2

J−k+1
j .
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Finally,

∫ 1

0
, ...,

∫ 1

0

∫ ∞
1

...
∫ ∞

1
A(J, k,Γ)

k∏
j=1
| ln yj|lj

J∏
j=k+1

| ln yj|ljy
−1− 2

J−k+1
j dyJ

= A(J, k,Γ)(J − k + 1
2 )L+J−k

J∏
j=1

lj!

≤ A(J, k,Γ)(J + 1
2 )J(J + 1

2 )L
J∏
j=1

lj!

Consequently, when I sum over all the integrals in the 2J regions and all S ∈ S,

∫
RJ+

∣∣∣∣∣∣
J∏
j=1

(| ln yj|)lj
PΓ((yj)j∈J)
QΓ((yj)j∈J)

1∏J
j=1 yj

∣∣∣∣∣∣ dyJ

will be bounded by (J+1
2 )L∏J

j=1 lj! multiplied by some constant only depending on
J and Γ. The proof is completed.

F Proof of Corollary 1
I will construct (Γ0, F

′
0) and (Γ′0, F0) such that Γ0 6= Γ′0 and F0 6= F ′0, while

s1.(·; Γ0, F
′
0) = s1.(·; Γ′0, F0). Because F0 6= F ′0, then s(1,1)(·;F0) 6= s(1,1)(·;F ′0).

First, I compute the derivative of s1.(δ; Γ, F ) with respect to δ:

∂s1.(δ; Γ, F )
∂δ

=
∫ eδ+µ + 4e2δ+2µ+Γ

(1 + eδ+µ + e2δ+2µ+Γ)2dF (µ)

=
∫
R(δ + µ; Γ)dF (µ),

(F.1)

where R(x; Γ) = ex+4e2x+Γ

(1+ex+e2x+Γ)2 . Note that R(·; Γ) ∈ L1(R). Define γ = eΓ and

V (γ) =
∫
R
R(x; Γ)dx =

∫
R+

1 + 4γt
(1 + t+ γt2)2dt

V (γ) is a continuous function of γ ∈ [0,∞), with V (0) = 1 > V (∞) = 0. Moreover,
lim
γ→0+

dV
dγ

= +∞ > 0. As a consequence, there exist γ0 6= γ′0 and γ0, γ
′
0 > 0, such that

V (γ0) = V (γ′0). Therefore, there exists Γ0 = ln γ0 > −∞ and Γ′0 = ln γ′0 > −∞,
such that Γ0 6= Γ′0 and V0 =

∫
RR(x; Γ0) =

∫
RR(x; Γ′0)dx. Note that R(·;Γ0)

V0
and R(·;Γ′0)

V0

are both well-defined but different density functions. Denote the corresponding
distribution functions by F0 and F ′0, respectively: dF0

dµ
= R(µ;Γ0)

V0
and dF ′0

dµ
= R(µ;Γ′0)

V0
.
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Based on (F.1), consider the Fourier transformation of ∂s1.(δ;Γ0,F ′0)
∂δ

and ∂s1.(δ;Γ′0,F0)
∂δ

:

F

(
∂s1.(δ; Γ0, F

′
0)

∂δ

)
(t) = F (R(·; Γ0)) (t)F

(
dF ′0
dµ

)
(t),

F

(
∂s1.(δ; Γ′0, F0)

∂δ

)
(t) = F(R(·; Γ′0))(t)F

(
dF0

dµ

)
(t).

Then,

F

(
∂s1.(δ; Γ0, F

′
0)

∂δ

)
(t) = F

(
∂s1.(δ; Γ′0, F0)

∂δ

)
(t),

Consequently, ∂s1.(δ;Γ0,F ′0)
∂δ

= ∂s1.(δ;Γ′0,F0)
∂δ

for δ ∈ R, and s1.(δ; Γ′0, F0)− s1.(δ; Γ0, F
′
0) is

a constant function in R. Taking δ = +∞, we obtain that this constant is zero and
hence s1.(δ; Γ′0, F0) = s1.(δ; Γ0, F

′
0) for δ ∈ R. The construction is completed.

G Proof of Proposition 2
The proof directly follows from that of Lemma 2.

H Construction of Product-Level Market Shares
In this appendix, I illustrate the construction of product-level market shares from
market-level sales data. I suppress t to simplify the exposition. Suppose that there
are I households and the size of household i = 1, ..., I is ni ∈ {1, ..., N}. Denote by qk
the weekly per capita consumption of the relevant products of category k (breakfast
cereals or milk). Then, for product j in category k, the total consumption Djk, is:

Djk =
I∑
i=1

∑
b:b3j

1{i buys b}niqk

= qk
N∑
n=1

n
∑

b:b3j

I∑
i=1

1{i buys b, ni = n}

= Iqk
N∑
n=1

n
∑

b:b3j

∑I
i=1 1{i buys b, ni = n}

I
.
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Denote by snb the average purchase probability of bundle b among households of
size n. Then, when I is very large,

Djk

Iqk
=

N∑
n=1

n
∑

b:b3j

∑I
i=1 1{i buys b, ni = n}

I

≈
N∑
n=1

nπn
∑

b:b3j
snb

=
N∑
n=1

nπns
n
j.,

Djk

IN̄qk
≈

N∑
n=1

π̄ns
n
j. = sj.,

where N̄ = ∑N
n=1 nπn is the average household size and {π̄n}Nn=1 is the distribution of

household sizes weighted by size. Note that when computing product-level market
shares, one should use the weighted distribution {π̄n}Nn=1 rather than {πn}Nn=1 to
properly take into account heterogeneous consumption across households of different
sizes.

Under the assumptions in section 6, Djk is equal to the sales in lbs of product j of
category k. Moreover, the IRI dataset contains information the sampled households
with which we can infer the number of households I and the distribution of their
demographics. Finally, for dk, k ∈ K, I use external sources: the weekly per capita
consumption of breakfast cereals is 0.19 lbs and that of fluid milk is 3.4 lbs.52 Based
on these pieces of information, we construct sj.’s.53

I Main Tables

52See https://hypertextbook.com/facts/2006/LauraFalci.shtml for a collection of these reports.
53Another implicit assumption is that the ratio of consumption between breakfast cereals and

fluid milk is the same across households of different sizes. However, it is possible that this is not
true. For example, households with children may consume relatively more fluid milk.

65



Table 9: RTE Cereal Products

Brand Flavour Fortification Grain
General Mills Cherrios Toasted Missing WHOLE GRAIN OAT
General Mills Cinnamon TST CR Cinnamon Toast 12 ESSNTL VTMN&MNRL WHOLE WHEAT AND RICE
General Mills Cinnamon TST CR Cinnamon Toast Missing WHOLE WHEAT AND RICE
General Mills Honey Nut Cheer Honey Nut Missing WHL GRAIN OAT & BRLY
General Mills Honey Nut Cheer Honey Nut Missing WHOLE GRAIN OAT
General Mills Lucky Charms Toasted CALCIUM & VITAMIN D WHOLE GRAIN OAT
General Mills Lucky Charms Toasted Missing WHOLE GRAIN OAT
General Mills Multi Grain Che. Regular 10 VITAMINS&MINERALS MULTI GRAIN
Kashi Go Lean Crunch Regular Missing MULTI GRAIN
Kellogg’s Apple Jacks Apple Cinnamon Missing 3 GRAIN
Kellogg’s Corn Flakes Regular Missing CORN
Kellogg’s Frosted Flakes Regular VITAMIN D CORN
Kellogg’s Frosted Mini Wheats Regular Missing WHOLE GRAIN WHEAT
Kellogg’s Raisin Bran Regular Missing WHL GRN WHT WHT BRN
Kellogg’s Rice Krispies Toasted Missing RICE
Kellogg’s Special K Toasted Missing RICE
Kellogg’s Special K Fruit & Yo Regular Missing OAT RICE WHEAT
Kellogg’s Special K Red Berrie Regular Missing RICE AND WHEAT
Kellogg’s Special K Vanilla AL Regular Missing RICE AND WHEAT
Post Grape Nuts Regular Missing WHOLE GRN WHT & BRLY
Post Honey Bunches of Oats Honey Missing WHOLE GRAIN OAT
Post Honey Bunches of Oats Honey Roasted Missing WHOLE GRAIN OAT
Post Raisin Bran Regular Missing WHOLE GRAN WHT & BRN
Post Selects Great Grains Regular Missing MULTI GRAIN
Private Label Regular Missing GRANOLA

Table 10: Milk Products

Brand Flavour Fortification Fat Content Type of Milk
GARELICK FARMS WHITE VITAMIN A & D skimmed dairy
GARELICK FARMS WHITE VITAMIN A & D low fat dairy
GARELICK FARMS WHITE VITAMIN D whole fat dairy
GARELICK FARMS TRUMOO CHOCOLATE MISSING low fat dairy
GUIDAS WHITE VITAMIN A & D skimmed dairy
GUIDAS WHITE VITAMIN A & D low fat dairy
GUIDAS WHITE VITAMIN D whole fat dairy
HIGH LAWN FARM WHITE VITAMIN A & D whole fat dairy
HIGH LAWN FARM WHITE VITAMIN A & D skimmed dairy
HIGH LAWN FARM WHITE VITAMIN A & D low fat dairy
HOOD WHITE VITAMIN A C D W CLCM skimmed dairy
HOOD WHITE VITAMIN A C D W CLCM low fat dairy
HOOD WHITE VIT C D CALCIUM whole fat dairy
HOOD LACTAID WHITE VITAMIN A & D low fat dairy
HOOD SIMPLY SMART WHITE VIT A & D W/CALC&PROTN skimmed dairy
PRIVATE LABEL CHOCOLATE MISSING low fat dairy
PRIVATE LABEL WHITE VITAMIN A & D skimmed dairy
PRIVATE LABEL WHITE VITAMIN A & D W/CALC skimmed dairy
PRIVATE LABEL WHITE VITAMIN A & D low fat dairy
PRIVATE LABEL WHITE VITAMIN D whole fat dairy
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Table 11: Average Estimated Own- and Cross-Price Elasticities (Model II), Grain Type
and Fat Content

RTE cereals Milk
uni-grain multi-grain granola skimmed low fat whole fat

RTE cereals, uni-grain -1.512 0.231 0.009 -0.007 -0.017 -0.008
multi-grain 0.318 -1.642 0.010 -0.007 -0.018 -0.009

granola 0.214 0.185 -1.518 -0.009 -0.019 -0.009
Milk, skimmed -0.078 -0.061 -0.005 -0.327 0.056 0.029

low fat -0.079 -0.061 -0.005 0.022 -0.280 0.029
whole fat -0.078 -0.061 -0.005 0.022 0.056 -0.319

Notes: Each entry reports the percent change in the sum of the product-level market shares of
the products collected by the row characteristics with respect to a 1% increase in the prices of the
products collected by the column characteristics.

Table 12: Average Estimated Own- and Cross-Price Elasticities (Model II),
Flavours

RTE cereals Milk
unflavoured flavoured unflavoured chocolate

RTE cereals, unflavoured -1.504 0.179 -0.036 -0.0003
flavoured 0.137 -1.425 -0.028 -0.001

Milk, unflavoured -0.071 -0.072 -0.235 0.002
chocolate -0.036 -0.185 0.096 -0.366

Notes: Each entry reports the percent change in the sum of the product-level market
shares of the products collected by the row characteristics with respect to a 1%
increase in the prices of the products collected by the column characteristics.

Table 13: Average Estimated Own- and Cross-Price Elasticities (Model
II), Fortification and Flavours

RTE cereals Milk
unfortified fortified unflavoured chocolate

RTE cereals, unfortified -1.355 0.070 -0.032 -0.001
fortified 0.454 -1.804 -0.033 -0.001

Milk, unflavoured -0.123 -0.019 -0.235 0.002
chocolate -0.197 -0.023 0.096 -0.366

Notes: Each entry reports the percent change in the sum of the product-level
market shares of the products collected by the row characteristics with respect
to a 1% increase in the prices of the products collected by the column charac-
teristics.
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Online Appendix

J Data Generating Process in Section 3.3
In this appendix, I provide details on the DGP used in the counterfactual simula-
tions in section 3.3. There are t = 1, ..., T markets and T = 1000. In each market,
we have two product categories J1 = {1, 2} and J2 = {3, 4}. The indirect utility of
individual i from purchasing product j ∈ J1 ∪ J2 in market t:

Uitj = −2ptj + xtj + ξtj + εitj,

the indirect utility from purchasing a bundle b = (j1, j2) ∈ J1 × J2 is

Uitb = −2(ptj1 + ptj2) + (xtj1 + xtj2) + (ξtj1 + ξtj2) + Γj1j2 + εitb,

and the indirect utility from purchasing the outside option 0 is Uit0 = εit0, where
εitj, εitb and εit0 are i.i.d. Gumbel, for j ∈ J1 ∪ J2, b ∈ J1 × J2. Prices ptj are
generated from a Bertrand-price setting game in which the marginal production
cost of product j in market t is positive and constant:

ctj = 0.5 exp{0.5} exp{ztj + 0.2wtj},

where ztj is a product-market specific cost shifter and wtj is a product-market
specific supply shock. I solve the first-order conditions (FOCs) of the pricing
game, from which I derive the price for each product in each market.54 Finally,
(xtj, ztj, ξtj, wtj) are mutually independent and i.i.d. across j’s and t’s, with each
being generated from a centred normal distribution with a variance 0.5. When es-
timating the model of demand with Γ = 0, I use (xtj, ztj) as instruments. When
simulating the supermarket nonlinear pricing competition, I also assume that there
is no additional cost of implement discounts, i.e. ctb = ∑

j∈b ctj.

K Implementing (11) Using Jacobian-based Meth-
ods: Numerical Performance

In this appendix, I explore the numeric performance of Jacobian-based algorithms
in implementing the demand inverse in (11). I compare convergence time across
different algorithms and starting values—particularly, the proposed starting value
in section 5.2—for various sizes of choice set.

54When solving the FOCs, I use the vector of marginal costs as starting value. The algorithm
in Matlab returns an unique price vector.
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Table 15 summarises the main results of the simulations. The DGP is a discrete
choice model of bundles up to size two and the prices are generated from a Bertrand
pricing game under complete information with constant marginal costs. I simulate
50 markets with the same structural parameters. The unobserved demand shocks
ξtJ are Gaussian and i.i.d. across markets and products. I implement the demand
inverse using the true model and also using a demand model of single products.55

I report the median convergence time (in seconds). Moreover, I compare the per-
formances of these inverses using the starting value δ(0)

∗ defined in (13) and the
standard starting value δ(0) = 0. I replicate this setting for various sizes of choice
set (J = 10, 50, and 100). For example, when J = 100, the true model has 5051
alternatives (100 single products, 4950 bundles of two different products, and an
outside option). The demand inverse s−1

J. will then treat the observed market shares
as those generated from the true model, while the demand inverse s−1

J will treat the
same observed market shares as if they are generated from a demand model of 100
single products.

Table 15: Demand Inverse of Product-Level Market Shares: Convergence Time

Algorithm Trust-Region-Dogleg Trust-Region-Reflective Levenberg-Marquardt
s−1

J. s−1
J s−1

J. s−1
J s−1

J. s−1
J

Init. Point δ
(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0 δ

(0)
∗ 0

# Products
J = 10 0.04 0.09 0.03 0.08 0.05 0.09 0.04 0.08 0.08 0.09 0.07 0.09

50 0.49 1.45 0.10 2.64 0.41 1.31 0.13 0.34 1.31 1.92 0.19 0.12
100 4.50 12.22 0.12 3.21 3.32 12.15 0.27 0.60 12.25 20.21 0.33 0.18

Notes: Trust-region-dogleg, trust-region, and Levenberg-Marquardt algorithms are built-in algo-
rithms of function fsolve in Matlab. All of them are large-scale and minimise the sum of squares
of the components of (11). Median convergence time (in seconds) of 50 independently simulated
markets is reported. Tolerance level in the stop criterion of all algorithms is set to 10−16.

There are two main observations. First, for s−1
J. , using the recommended starting

value δ(0)
∗ remarkably reduces convergence time in all cases. The gain is larger

when the number of products is larger. When J = 100, trust-region-dogleg and
trust-region-reflective algorithms reduce around 70% convergence time by using
δ

(0)
∗ than using δ(0) = 0. The numerical gain for s−1

J using δ(0)
∗ is similar.56 Second,

as the problem size increases, using δ(0)
∗ does not seem to increase the number of

iterations required to converge. For example, the convergence time for J = 100 by
55The structural parameters are chosen so that the sum of the simulated product-level market

shares is always smaller than one. This allows to implement the inverse of these simulated product-
level market shares using models of demand for single products

56In this demand inverse, K in (13) is 1.
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using the three Jacobian-based algorithms with δ(0)
∗ is roughly 100 times of that for

J = 10. Because the bundle size is at most two, then the size of choice set increases
quadratically with respect to the number of products. Therefore, the number of
required computations for one evaluation of market share functions also increases
quadratically. While, the total convergence time when using δ(0)

∗ seems to increase
only quadratically for s−1

J. with respect to the number of products, implying that
the number of iterations does not increase as J increases.

L Identification of Product-Level Market Share
Functions Using Other IVs.

In this Appendix, I develop similar identification arguments with other types of IVs.
I will focus on BLP-type instruments and exogenous product characteristics.

BLP-type instruments Cost shifters are not always available to the econometri-
cian. Moreover, the validity of Hausman-type instruments requires independence of
demand shocks across markets of the same region or of the same time period. This
can be violated whenever there is unobserved correlated demand shock across mar-
kets, such as national advertisement. In demand models of single products, Berry
et al. (1995) proposed to use characteristics (and their functions) of other prod-
ucts in the same market as instruments. Their validity follows from the intuition
that products with similar characteristics are closer substitutes. Then, “distance”
in the space of product characteristics will be a good proxy of substitution among
products.

Because such variables for product j, denoted as xt,−j, are excluded from indirect
utility of j, then, they can provide useful variation in price ptj via the markup of
product j that identifies (Γ, F ). Formally, in (D.1), for the equation of product j,
one can fix xtj = xj and let xt,−j = (xtr)r 6=j varies in RJ−1.

It is worth noting that, different from cost shifters, BLP instruments may not
always be able to provide useful variation even though they vary exogenously. For
example, if prices ptj’s are not responsive to xt,−j, then there is no variation in
ptj due to the variation of xt,−j. The unresponsiveness of prices with respect to
BLP instruments can occur in a large-market setting when the number of products
increases to infinity and therefore the competition between two products becomes
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very weak.57 Asymptotically, product prices are no more functions of characteristics
of other products, but only of their own characteristics. Then, BLP instruments
(say, xtj for product different from j) does not enter pricing functions of any other
product (pt,−j) and hence do not produce any exogenous variation in prices. In this
paper, because I focus on many-market settings and the number of products is fixed
(see Assumption 1(iii)), BLP instruments are still valid for the identification of the
price coefficient, demand synergy parameters, and the distribution of the random
coefficients.

L.1 Exogenous product characteristics

Suppose that prices are generated from a linear pricing simultaneous Bertrand game
under complete information with constant marginal cost ctj for j ∈ J. I abstract
from cost shifters in ctj and denote the joint density function of (ξtJ, ctJ) by fξ,c. I
propose the following identification result:

Theorem L.1. Suppose that Assumptions 1-3 and regularity condition 2 hold. If
the following conditions hold:

1. xtJ is independent of (ξtJ, ctJ) and the domain of xtJ is an open set in RK1.

2. αi = α 6= 0, and there exists a k such that βik = βk and βk/α is identified.

3. Given x(2), ptJ = pJ(βx + ξtJ, ctJ;x(2)) is a continuous function of (βx +
ξtJ, ctJ).

4. F has compact support.

• If (ξ, c) is Gaussian distributed, then (α, βk) and sJ.(·;x(2)
tJ ,Γ, F ) are identified.

• If the DGP is a model of demand for multiple products across categories,
then under regularity condition 2 in Appendix D, α and stJ.(·;x(2),Γ, F ) are
identified.

The proof is similar to that of Theorem 2 and will proceed in three steps. I will
skip similar parts and accent differences.

57Assuming that the distribution of random coefficients is priorly identified, Armstrong (2016b)
provides conditions under which BLP instruments are weak for prices and therefore invalid for the
identification of price coefficient. Intuitively, because prices and BLP instruments are correlated
via markups, in his large-market setting, when the number of products increases fast enough,
markups converge to constants fast enough that this correlation disappears.
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Conditional Moment Restrictions and Convolution Equation.

Theorem L.2. Suppose that Assumptions 1-3, regularity condition 1, and condi-
tions of Theorem L.1 hold. Then, for any xk ∈ Dxk , (α′, β′k,Γ′, F ′) satisfies moment
conditions (D.1) if and only if the following equation

∫
H(t;α′, β′,Γ′, F ′)ΛH(t+ βk

α
xk; fξ,c)dt = 0, (L.1)

holds, where

H(t;α′, β′,Γ′, F ′) = s−1
J. (sJ.(−αpJ(0, t;x(2));x(2),Γ, F );x(2),Γ′, F ′) + α′pJ(0, t;x(2))

+
(
α′ − β′k

βk
α

)
(µc − t)−

(
β′−k −

β′k
βk
β−k

)
x−k,

ΛH(λ; fξ,c) =
∫
αfξ,w(α(c− λ)− β−kx−k − η, c)dc,

where fξ,c is the density function of (ξ, c) and µc is the expectation of c.

The proof is similar to that of Theorem D.1.
According to Condition 2 of Theorem L.1, βk/α is identified. Then, we can further
simplify H:

H(t;α′, β′,Γ′, F ′) = s−1
J. (sJ.(−αpJ(0, t;x(2));x(2),Γ, F );x(2),Γ′, F ′) + α′pJ(0, t;x(2))

−
(
β′−k −

β′k
βk
β−k

)
x−k.

Unique Solution for Convolution Equation (L.1) and Identification of
Product-Level Market Share Functions. Define

Θ = {(α′, β′,Γ′, F ′) : (D.1) hold at (α′, β′,Γ′, F ′) for xk ∈ Dxk},

and
ΘH = {(α′, β′,Γ′, F ′) : (L.1) holds for xk ∈ Dxk}

Theorem L.2 establishes Θ = ΘH . Define Θ0
H = {(α′, β′,Γ′, F ′) : H(·;α′, β′,Γ′, F ′) =

0}. Note that the true parameters (α, β,Γ, F ) ∈ Θ0
H ⊂ ΘH = Θ. Then, a neces-

sary condition for the identification of (α, β,Γ, F ) by moment conditions (D.1), i.e.
Θ = {(α, β,Γ, F )}, is Θ0

H = ΘH , i.e. H = 0 is the unique solution for convolu-
tion equation (L.1). This is the completeness of the location families generated by
ΛH(·; fξ,c). Similar to Theorem D.2, the next theorem characterises the implications
of this completeness:

Theorem L.3. Suppose that conditions of Theorem L.2 hold.
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1. If Θ = {(α, β,Γ, F )}, then Θ0
H = ΘH .

2. If Θ0
H = ΘH , then α and sJ.(·;x(2)

tJ ,Γ, F ) are identified.

The proof is similar to that of Theorem D.2.

Sufficient Conditions for the Completeness of Location Families. As in
Theorem D.3, we propose the following result:

Theorem L.4. Suppose that (L.1) holds for xk ∈ RJ .

• If fξ,c is Gaussian, then Θ0
H = ΘH .

• If the DGP is a model of demand for multiple products across categories, then
under regularity conditions 2, Θ0

H = ΘH .

Note that H can be written as

H(p;α′, β′,Γ′, F ′) = s−1
J. (sJ.(−αp;x(2),Γ, F );x(2),Γ′, F ′) + α′p−

(
β′−k −

β′k
βk
β−k

)
x−k.

The proofs of both statements are then similar to those of Theorem D.3. Finally,
combining Theorems L.2-L.4, I obtain Theorem L.1.
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