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Abstract

This thesis consists of four papers on topics in empirical asset pricing with

a particular focus on applications of machine learning. The first paper investigates

the interplay of predictable trading behaviour and asset prices. We show that pre-

dictable order flow is associated with improved liquidity and market efficiency. In

addition, we find evidence for a priced factor constructed from order flow predict-

ability, contributing to the literature that connects market microstructure features

and asset prices. The second paper evaluates the efficacy of machine learning based

forecasts of bond excess returns and contributes to a better understanding of the

formation of bond risk premia. We show that machine learning techniques out-

perform the principal components benchmarks used in extant literature and deliver

substantial economic gains to investors. The third paper investigates the risk-reward

trade-off in index options through the lens of a factor modelling approach. We show

that a factor model with five factors and time-varying loadings instrumented with

option characteristics, explains the vast majority of variation in delta-hedged option

returns. The recovered factors point to jump, volatility and term structure spread

risks. Finally, the fourth paper studies the systematic drivers of asset holdings in

a novel factor modelling approach. I document the existence of a factor structure

in holdings changes that points to distinct, well-understood economic channels as

drivers of asset holdings. Using investor-specific factor loadings I find evidence for

pro-cyclical trading of banks and mutual funds as well as counter-cyclical trading

of investment advisors and pension funds. Furthermore, I document that changes

to institutional investor holdings driven by systematic factors are negatively associ-

ated with future returns, suggesting a price pressure channel as a driver for return

reversals.
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Introduction

Over the past few decades we have witnessed a unique marriage of two hitherto

distinct scientific fields, statistics & computer science, culminating in one powerful,

new paradigm: machine learning. In a multitude of applications ranging from image

recognition in medical diagnostics to natural language processing performed in smart

phones, machine learning has proven to be of essence to model complex statistical

relations. However, in the context of financial economics in general and asset pricing

in particular, our understanding of the benefits and shortcomings of machine learning

is relatively less well developed.1 This thesis explores various applications of machine

learning in the context of empirical asset pricing.

In this thesis, machine learning features both in its supervised and unsuper-

vised form.2 In supervised machine learning the objective is to find the mapping

between one (or more) target variables, e.g. a stock’s return, and a potentially

large number of predictive signals, e.g. a stock’s characteristics.3 In this regime,

commonly used models include neural networks, regression trees, or penalised re-

gressions. In contrast, unsupervised machine learning aims to uncover systematic

patterns in data without reference to a target variable - a typical example of such a

technique is principal components analysis.4 In (financial) economics, the choice of

supervised versus unsupervised learning is often motivated by economic principles

and prior knowledge. For example, in the context of the measurement of risk premia,

asset pricing theory posits the existence of a stochastic discount factor that links

conditioning information and expected returns, hence giving rise to a supervised

1Weigand (2019) performs a review of the recent, emerging literature on machine learning in
empirical asset pricing.

2For a comprehensive overview and textbook treatment of machine learning techniques in super-
vised and unsupervised form refer to, e.g., Friedman et al. (2001); Bishop (2006); Murphy (2012).

3This is essentially the setting faced in the context of measuring risk premia (cf., Gu et al., 2020).
4In the empirical asset pricing literature examples of unsupervised learning settings include Kelly

et al. (2019); Gu et al. (2019).

1



learning problem. In this context, supervised learning is a tool to recover, with

potentially little constraint on functional form, the mapping between conditioning

information and expected returns. In contrast, the study of asset returns in a stat-

istical factor modelling approach is a situation that allows the use of unsupervised

machine learning. In this context, the researcher forgoes the imposition of economic

theory and instead follows a data-driven approach to recover relevant patterns from

the observed data.

This thesis consists of four chapters that, although distinct in their focus on

different asset classes and market aspects, are connected by their statistical meth-

odology, i.e. applications of both supervised (Chapters 1 and 2) and unsupervised

machine learning (Chapters 3 and 4). Chapter 1 investigates the predictability of

order imbalances and the consequences of such predictability for market quality (i.e.

liquidity and efficiency) and asset prices. Methodologically, the chapter employs a

dynamic linear model in a big data context with millions of observations. The em-

pirical results point towards higher predictability of order flow being associated with

improved market quality and further suggest the existence of a risk factor associated

with order imbalance predictability that is priced in the cross-section of stock re-

turns. Chapter 2 investigates the use of machine learning techniques in the context

of regression-based measurement of bond risk premia and finds notable incremental

predictive power of machine learning models vis-à-vis benchmark approaches that

also manifests in significant economic gains to investors. Chapter 3 studies option

returns through the lens of an advanced statistical factor model that circumvents

the common shortcomings of simpler factor models such as principal components

analysis by modelling an option’s time-varying factor loadings as functions of asset

characteristics. The proposed model is able to capture the vast majority of variation

in delta-hedged option returns and delivers an economically meaningful factor struc-

ture. Finally, Chapter 4 extends the factor modelling technique used in Chapter 3 to

study the systematic drivers of institutional equity portfolio holdings, thereby con-

tributing to a better understanding of the main economic channels that determine

portfolio choice as well as investor-specific behaviour.

The chapters are presented in the form of self-contained papers and are sum-

marised in more detail below. Chapter 1 is co-authored with Prof. Daniele Bianchi

and Prof. Roman Kozhan, Chapter 2 is co-authored with Prof. Daniele Bianchi
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and Prof. Andrea Tamoni, Chapter 3 is co-authored with Prof. Bryan Kelly, and

Chapter 4 is my sole work.

Chapter 1 - Predictability of Order Imbalance, Market Quality and

Equity Cost of Capital

Order imbalances measure the difference between the amount of buyer- versus seller-

initiated trades and have been recognised as important drivers of asset prices in

many models of the market microstructure literature. This literature often assumes

market makers that decompose order imbalances into an informed and uninformed

component to efficiently set prices and provide liquidity. Anecdotal evidence suggests

that in practice market makers do not only try to assert the informativeness of order

imbalances, but also try to predict future order imbalances. The predictability of

order imbalances could affect market quality and expected returns in two contrasting

ways. On the one hand, high predictability of the uninformed component of order

imbalance could allow market makers to mitigate adverse selection and inventory

risks, therefore improving market quality. On the other hand, a high predictability

of the uninformed component of order imbalances could be detrimental for market

quality due to predatory trading or front-running by informed traders. While the

academic literature has studied the impact of order imbalances on market quality

and expected returns, little attention has been paid to the impact of predictability

of order imbalances. The aim of this paper is to address this aspect.

In order to investigate the impact of predictable order imbalances we take

the stance of a sophisticated market participant (e.g., a market maker) and predict

day-ahead order imbalances for a large sample of U.S. equities using a dynamic linear

model. From the forecasts we obtain a measure of realised forecast accuracy as a

proxy of order imbalance predictability - the predictive likelihood. To determine the

origins of predictability in order imbalances we use two different samples, i.e., the

total order imbalance across all market participants and the order imbalance of active

pension funds. We document both cross-sectional as well as time series variation

in the degree of predictability in both types of order imbalances. Importantly, we

find evidence that the degree of predictability of total order flow is related to the

predictability of order imbalances from pension fund trading.

Since the direction of the effect of predictability of order imbalances on mar-
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ket quality is not clear ex ante, we investigate the impact of predictability on meas-

ures of liquidity (spread measures) and proxies of market efficiency (return variance

ratios / autocorrelations). We find evidence of a negative and statistically significant

relation between order imbalance predictability and illiquidity, while controlling for

variables typically considered as important determinants of illiquidity. The effect

is economically large: a one standard deviation increase in predictability leads to a

3.00 bps change in effective spreads (a 3.6% change relative to the sample average).

Similarly, we find that price efficiency improves when order imbalances are more

predictable. These results suggest order imbalance predictability as an additional

channel in determining market quality.

We complement the results on market quality by exploring consequences of

order imbalance predictability for asset pricing. If the degree of predictability of

order imbalances captures a cost of asymmetric information it could pose a system-

atic risk to investors (Easley and O’Hara, 2004). In a portfolio sorting exercise we

document that the stocks with the highest degree of order imbalance predictability

earn substantially lower returns than those with low order imbalance predictabil-

ity. Following this evidence, we construct a low-minus-high factor, POI, that shorts

stocks with high predictability and longs stocks with low predictability. We find that

this factor earns an annualised Sharpe ratio of 1.00. In a Fama-MacBeth regression

exercise we find that the POI factor is priced in the cross-section of stock returns

after controlling for conventional risk factors (size, value, momentum) as well as a

host of factors considered as proxies of asymmetric information (liquidity, volatility

of order imbalances, trade-to-quote ratios).

Chapter 2 - Bond Risk Premia with Machine Learning

Interest rates, and in particular the interest rates on government-issued bonds such

as Treasury bonds, are of relevance to many market participants. A central question

in this regard is whether and to which extent changes in interest rates are predictable

and by means of which conditioning information. Our paper contributes to this

literature by investigating the use of machine learning methodologies in the context

of two traditional forecasting applications; one that uses only information from the

current yield curve as in Cochrane and Piazzesi (2005); and one that complements

yield curve information with a large data set of macroeconomic indicators as in
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Ludvigson and Ng (2009).

We compare a number of machine learning approaches such as regression

trees (including random forests, extreme trees, gradient boosted trees) and neural

networks in terms of their ability to predict the one-year holding period bond excess

returns with the de-facto academic benchmark, i.e. principal components regression.

Across both applications (yields-only and yield plus macroeconomic information),

we show that machine learning methods, and especially neural networks, are able

to detect predictable variation in bond excess returns above and beyond what is

explained by data compression techniques, i.e., principal components regressions. A

portfolio allocation exercise confirms that gains in statistical predictability translate

into economic gains for investors.

The finding that macroeconomic information is relevant above and beyond

yield curve information suggests significant deviations from the expectations hypo-

thesis which states that the time t term structure should contain all information

relevant for future interest rates. Relatedly, we document heterogeneity in the type

of macroeconomic variables that are relevant for forecasts of bond returns at differ-

ent maturities: stock and labour market variables are more important for short-term

maturities, whereas order and inventory variables are more relevant for long-term

maturities.

In addition to shedding light on the statistical aspects of predictability, we

investigate the economic properties of the machine learning based forecasts. We find

that the forecasts of bond excess returns are counter-cyclical and relate to proxies

of macroeconomic uncertainty and time-varying risk aversion. Hence, our findings

are consistent with theory models that feature both aforementioned channels as in,

e.g., Bekaert et al. (2009) and Creal and Wu (2018).

Overall, the paper demonstrates that machine learning can be useful to de-

tect predictable variation in a “small data” setting, suggesting that the benefits of

the machine learning toolbox are not only relegated to big data contexts. However,

it is important to note that heavy model regularisation and careful model choice are

important for the approach to be effective. In addition, the paper makes a contribu-

tion to the discussion around unspanned macro factors in bond returns, suggesting

that macroeconomic information contains useful predictive power for bond excess

returns beyond what is captured in the yield curve.
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Chapter 3 - A Factor Model for Option Returns

Factor structures present a common empirical approach to study risk-reward trade-

offs in asset pricing. While this approach has been employed successfully in asset

classes including equities and fixed income, less is known about the efficacy of factor

modelling approaches in the context of option returns. This is due to two chal-

lenges unique to the dynamics of option contracts. Firstly, options often have short

lifespans, making it challenging to estimate factor loadings using, e.g., rolling win-

dow regressions. Secondly, the risk attributes that determine the “identity” of an

option contract change more rapidly than those of the underlying asset. Instead, the

options literature has focussed on parametric, no-arbitrage based models to describe

options - an approach that benefits from enforcing economic restrictions such as no-

arbitrage and mathematical elegance, but that is likely too simplistic to describe

empirically observed patterns in option returns.

In this paper, we investigate the use of a latent factor model with time-

varying loadings, namely, Instrumented Principal Components Analysis (IPCA)

(Kelly et al., 2019), for describing option returns. In particular, IPCA is based

on employing asset-specific conditioning information, i.e. characteristics, to instru-

ment time-varying loadings. In the context of index options on the S&P 500 that

we study in this paper, a natural choice of characteristics are the basic option at-

tributes such as option strike price and time-to-maturity. In addition, a number of

characteristics implied by option Greeks from the Black and Scholes (1973) model,

present themselves as characteristics of primary relevance to determine an option’s

risk attributes.

We estimate IPCA models for the cross-section of S&P 500 options and assess

their performance using variations of measures of explained variance (R2). We find

that a single latent factor is sufficient to explain more than two thirds of the return

variation in monthly, delta-hedged option returns. For comparison, none of the

observable option factor models (Coval and Shumway, 2001; Frazzini and Pedersen,

2012) proposed in earlier literature achieves such performance, even if instrumented

with the same set of characteristics. Model performance increases become small after

four to five factors, at which point more than 90% of the variation in delta-hedged

returns is captured in the model.

To interpret the factors, we study the correlation structure of the factors with
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portfolios of option contracts sorted on moneyness (strike) and time-to-maturity as

well as observable factors proposed in earlier literature. We find evidence for a tail

risk factor, a maturity risk factor and a volatility risk factor (variance risk), suggest-

ing that the factors recovered by IPCA are not only relevant in a statistical, but also

economic sense. In further exercises, we assess the importance of the characteristics

used to instrument time-varying loadings and find that, overall, moneyness and im-

plied volatility contribute most strongly to the model fit performance. Finally, we

complement the monthly horizon result with results at the daily frequency. At daily

frequency, a traders’ rule-of-thumb approach, implied by the Black-Merton-Scholes

model (formalised in Carr and Wu (2020)), is used to benchmark our results.

Overall, the paper aims to contribute to a more systematic understanding of

the major drivers of index option returns, similar in spirit to the developments in

the literature focussed on factor models for the underlying asset. IPCA can provide

a rather universal benchmark approach that allows to distinguish alphas from factor

risk, hence contributing to the understanding of the risk-return trade-off investors

face when trading in options.

Chapter 4 - What Drives Asset Holdings? Commonality in Investor

Demand

A common assumption made in the asset pricing literature is to assume atomistic

investors, that is, trading behaviour across investors is assumed to be uncorrelated.

However, the fundamental mechanism of market clearing demands that - akin to a

zero-sum game - for every quantity of an asset bought an equal quantity is sold.

This induces an almost mechanical form of correlated trading across investors. The

aim of this paper is to model the correlated trading behaviour of investors in a novel

factor modelling approach to uncover the systematic drivers of asset holdings.

To track trading behaviour of investors, this paper uses institutional holdings

data. The use of holdings data in asset pricing research is still rather recent with

most of the literature relying on price and consumption data. However, holdings

data is an interesting complement to more commonly used data sets as it allows

the researcher to trace investor demands across assets and over time. In addition,

the study of holdings data allows a closer look into the processes through which

information gets incorporated into prices. More precisely, I use changes in holdings
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as a proxy for investor demands and investigate the existence of a factor structure

in holdings changes to account for correlated investor behaviour. This empirical

approach reflects an economy with aggregate shocks in the presence of which het-

erogeneous investors choose from a pool of differentiated assets (cf. Campbell et al.,

2003).

Methodologically, I extend a factor modelling approach known as Instru-

mented Principal Components Analysis (IPCA) to incorporate investor-specific factor

loadings. IPCA is distinguished by its use of conditioning information, i.e. asset

characteristics, to instrument time-varying factor loadings. Upon estimation of the

extended IPCA model, dubbed “IPCA3D” for distinction, I firstly recover a set of

factors in holdings changes common to all investors and secondly investor-specific

time-varying loadings on the aforementioned factors. Furthermore, the model in-

corporates an intercept term that allows for asset characteristics to explain changes

in holdings without the interaction of factors. This latter component is motivated

by a recent strand of literature (cf. Koijen and Yogo, 2019a,b) that has proposed a

particular way to think about holdings data, i.e. characteristics-based demand.

Using the data set of 13F U.S. investor holdings aggregated to (investor)

sector level, I estimate the IPCA3D model and find that holdings changes exhibit a

low-dimensional factor structure. Three factors are sufficient to capture the bulk of

the systematic variation in holdings changes. In a comprehensive correlation ana-

lysis, I find that the factors are related, firstly, to the state of the economy / business

cycle, and secondly, to financial conditions / constraints of investors. The sector-

specific factor loadings on the business cycle factor provide an interesting result on

the cyclicality of trading behaviour for different investor types: while banks and

mutual funds exhibit pro-cyclical trading, hedge funds and to some extent pension

funds exhibit counter-cyclical trading. Analysing the importance of different asset

characteristics used in the model, I find that contrary to the typical characteristics

used in factor models for returns such as the Fama and French (2015) five factors,

past returns and liquidity related characteristics dominate the importance ranking.

Finally, in an asset pricing analysis I use the decomposition of changes in holdings

implied by IPCA3D to reveal two interesting pricing effects. Firstly, systematic

demand from banks, mutual funds and pension funds is associated with negative

future returns on average. This finding is consistent with an institutional demand
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pressure induced return reversal effect. Secondly, I find that idiosyncratic demand

of hedge funds is a positive predictor of future returns up to four quarters ahead.

Overall, the paper contributes to a recent and growing literature that focusses

on using institutional holdings data to further our understanding of asset price

formation and expected returns. My paper makes an empirical contribution to

this literature by studying investor demand through the lens of a factor modelling

approach that allows for correlated investor behaviour. The findings of the paper

can be a useful guide for theory literature as to the economic channels that should

be considered as key drivers of asset demand.
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Chapter 1

Predictability of Order

Imbalance, Market Quality and

Equity Cost of Capital1

“The math works. Over the course of a season, there’s some predictability

to baseball. When you play 162 games, you eliminate a lot of random

outcomes. There’s so much data that you can predict individual players’

performances and also the odds that certain strategies will pay off.”

– Billy Beane; General Manager Oakland A’s

1.1 Introduction

Most market micro-structure models recognise order imbalance as the main driver of

the dynamics of asset prices. On the one hand, market makers use the information

contained in the observed order flow to efficiently set up prices and provide liquidity.

Therefore, the ability to accurately predict the uninformed part of order imbalance is

essential for both liquidity provision and market efficiency as it allows market makers

to mitigate both adverse selection and inventory risks. On the other hand, a high

degree of order imbalance predictability can be detrimental for market quality as it

facilitates predatory trading and front-running by informed traders. While academic

1This chapter is based on a research paper jointly authored with Daniele Bianchi and Roman
Kozhan. The paper has been presented at the Lancaster-Warwick PhD Workshop 2018, London
Empirical Asset Pricing Workshop (2018), Goethe University Finance Seminar 2020, and Warwick
University Finance Brown Bag Seminar.
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literature studies the effect of uninformed order imbalance on trading costs and price

efficiency, little attention has been devoted to the effect of the predictability of order

imbalance on market quality and expected returns. In this paper we fill this gap

and empirically address this question.

We estimate a dynamic linear regression model to predict the day-ahead order

imbalance for each stock in the sample and use a forecasting accuracy measure –

the predictive likelihood – to measure the degree of order imbalance predictability.

In order to contrast the effect of predictability of total versus uninformed order

imbalance we use two distinct samples: total order imbalance of a large cross-section

of U.S. equities for the period from 1995 to 2013 and order imbalance from pension

funds on a subset of U.S. stocks with active trading for the period from 2006 to

2010. We document substantial time series and cross-sectional variation in the

degree of predictability of the order imbalance for both types of order imbalance. In

addition, we show that order imbalance predictability is cross-sectionally correlated

with several stock characteristics, such as size, bid-ask spreads, share turnover, trade-

to-quote ratios, and the volatility of order imbalance.

We provide evidence of a negative and statistically significant relation between

the predictability of order imbalance and illiquidity, while controlling for variables

which have been widely shown to affect liquidity in addition to fixed effects. Given

the predictive nature of these regressions, the results strongly suggest that the pre-

dictability of order imbalance can be thought of as an additional channel in determ-

ining market liquidity. The effect is economically large: a one standard deviation

change in predictive likelihoods leads to a 3.00 bps change in effective spreads; this

corresponds to about 3.6% change relative to the sample average. The main em-

pirical results also show that the predictability of order imbalance has a significant

impact on price efficiency. By using the variance ratios and the autocorrelations

of daily stock returns as proxies for price efficiency, we show that an increase in

the predictability of order imbalance leads to increasing market efficiency; that is,

a higher predictive likelihood corresponds to a decrease in both variance ratios and

absolute autocorrelation compared to their sample averages. We obtain qualitatively

similar effects when the uninformed component of the order imbalance is proxied

by the order imbalance from active pension funds. Furthermore, the results remain

strong when splitting our sample into quintiles based on several firm characteristics,
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such as market capitalisation, trade-to-quote ratios, idiosyncratic volatility, passive

institutional ownership. Finally, we show that both effects for liquidity and price

efficiency are more pronounced during periods of high market uncertainty, as proxied

by the VIX index.

If the degree of order imbalance predictability captures the costs of informa-

tion asymmetry, it poses a systematic risk for investors (see, e.g., Easley and O’Hara,

2004). To test this intuition we examine if the predictability of order imbalance

proxies for a risk factor that is priced in the cross-section of stock returns. We

provide evidence that the forecasting accuracy of order imbalance correlates with

monthly future stock returns: the stocks with the highest predictive likelihoods un-

derperform stocks with lowest predictive likelihoods by 17.16%, on an annual basis.

Based on this evidence, we construct a low-minus-high Predictability of Order Im-

balance portfolio, denoted POI , and show that such strategy yields an annualised

Sharpe ratio of 1.00. For small stocks, the portfolio with highest predictive likeli-

hood under-performs stocks with lowest predictive likelihood by 23.96% annually.

Such economic significance is robust to a double-sorting procedure in which we con-

trol for other proxies of adverse selection, such as bid-ask spread, share turnover,

trade-to-quote ratio, and both the level and the volatility of the order imbalance.

Delving further into the asset pricing implications of order imbalance predict-

ability, we run a battery of regression-based asset pricing tests. First, we document

the existence of a positive relation between future monthly return and the expos-

ure to our POI factor. That is, for a given market cap quintile, stocks with lower

predictability of order imbalance exhibit higher beta to the POI factor. By imple-

menting a conventional Fama-MacBeth two-step regression we show that the risk

proxied by our POI factor is priced in the cross-section of stock returns. More pre-

cisely, the price of risk associated with our POI factor is positive and statistically

significant after controlling for Fama and French (1993a) factors, the Jegadeesh and

Titman (1993) momentum factor, and a number of factors that proxy asymmetric

information, such as the Pastor and Stambaugh (2003) liquidity factor, returns on

stocks sorted on both the level and the volatility of order imbalance (see, e.g., Chor-

dia et al., 2018), as well as on the trade-to-quote ratio. These results suggest that

the main mechanism behind the effect of order imbalance predictability on market

quality is via changes in adverse selection rather than reduction of inventory risk.
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Our paper contributes to an existing debate on the role of order imbalance

predictability in price discovery and the consequential effect on market quality. A

number of papers document an improvement of market quality during events where

order imbalance of uninformed parties can be predicted by market participants.2

The main argument in favour of this intuition is that an announced, or anticipated,

uninformed trade can attract additional liquidity suppliers and hence might improve

liquidity and market resiliency.3 On the contrary, there are a number of theoretical

and empirical results advocating for a negative effect of order imbalance predictabil-

ity on liquidity and efficiency due to predatory trading and front-running, especially

around events with predictable order flow.4 By estimating a dynamic regression

model with time-varying parameters we show, both statistically and economically,

that the positive effect of order imbalance predictability on market quality signific-

antly prevails in the data.

This paper also connects to a substantial literature that investigates the asset

pricing implications of asymmetric information and inventory risk. Several theory

papers argue that adverse selection costs generate a non-diversifiable risk for which

investors require compensation (see Admati, 1985, 1993; Dow and Gorton, 1953;

Easley and O’Hara, 2004). Madhavan and Smidt (1993), Brunnermeier and Pedersen

(2005), Duffie (2010), Hendershott and Menkveld (2014) demonstrate theoretically

how inventories of intermediaries generate substantial pricing errors in asset returns.

There is also a large body of empirical research testing for the pricing effects of

adverse selection and inventory risks, although the evidence is mixed. For instance, a

number of papers using different proxies of adverse selection show significant pricing

effects.5 On the opposite, existing research claims that some of these effects are not

2See Admati and Pfleiderer (1991); Degryse et al. (2013); Bessembinder et al. (2015); Skjeltorp
et al. (2017) among others.

3An emerging literature on endogenous liquidity provision also makes an implicit assumption that
predictability of order imbalance is a main factor that attracts high-frequency liquidity provision
(see Raman et al., 2016; Aı̈t-Sahalia and Saglam, 2017; Saglam, 2020; Brogaard et al., 2018).

4See Brunnermeier and Pedersen (2005); Chen et al. (2006); Carlin et al. (2007); Coval and
Stafford (2007); Cheng and Madhavan (2009); Petajisto (2011); Mou (2011); Tuzan (2013) among
others.

5Papers include, but are not limited to, Easley et al. (2002) who estimate the probability of
informed trading (PIN), Pastor and Stambaugh (2003) who estimate the price impact, Akbas et al.
(2011) who use volatility of liquidity, Hwang and Qian (2011) who estimate an information risk
measure based on the price discovery of large trades, Johnson and So (2018) who use the option-
to-stock volume ratio as a measure of information asymmetry, Choi et al. (2016) who consider
institutional ownership volatility, Yang et al. (2020) who use abnormal idiosyncratic volatility as
a measure of information asymmetry and Chordia et al. (2018) who consider volatility of order
imbalance.
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robust, possibly due to the fact that adverse selection costs are hard to measure

empirically (see, e.g. Mohanram and Rajgopal, 2009). Hendershott and Menkveld

(2014) show that specialist’s inventory contributes to pricing errors in stock prices

and Comerton-Forde et al. (2010) show that inventories affect market liquidity. We

contribute to this literature by documenting the asset pricing effects of predictability

of order imbalance, which is related to both adverse selection costs and inventory

risks.

Finally, this paper also speaks to a recent literature that investigates the role

of order imbalance in price discovery. Chordia et al. (2002) demonstrate that market-

wide returns are driven by lagged order imbalance after controlling for volumes and

liquidity measures. Chordia and Subrahmanyam (2004) focus on order imbalance

as predictors for individual stocks returns. In particular, they present evidence

for order imbalance as a significant force linking market makers’ inventories and

stock price movements. Andrade et al. (2008) show that order imbalance in one

stock affects prices in other stocks. More recent literature focuses on the effect

of non-informational order imbalance. Griffin et al. (2003) classify order imbal-

ance for NASDAQ stocks as institutional- vs. retail-originated and document that

institutional-driven order imbalance are persistent over several days and have a pos-

itive contemporaneous relation to returns. Boehmer and Wu (2008) document that

institutional program trades provide liquidity to the market. Finally, Hendershott

and Seasholes (2009) find that non-informational market-wide order imbalance affect

individual stock returns and their cross-sectional co-movement.

The paper proceeds as follows. Section 1.2 develops a set of testable hy-

potheses. Section 1.3 describes the data and the variables of interest. Section 1.4

contains the findings from the main empirical analysis. Finally, Section 1.5 reviews

our results and concludes.

1.2 Hypotheses Development

In well-functioning and competitive markets the predictability of order imbalance

can affect both market quality and prices via several channels. By observing a signal

about uninformed order imbalance market makers are able to filter out the informed

demand as the residual component of the total contemporaneous order imbalance.
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The ability to separate informed and uninformed order flow allows market makers

to adjust the level of liquidity in the market as a consequence of a reduced degree of

asymmetric information. Market efficiency also improves through new information

about future order imbalance being incorporated into the price. In addition, better

knowledge of future order imbalance helps market makers to better handle their

inventories and further improve liquidity and minimise price pressures due to a

reduction of inventory risk.

On the other hand, predictable uninformed order imbalance can also have a

detrimental effect on market quality. Sophisticated investors can incorporate know-

ledge of uninformed order imbalance into their trading strategies and better mask

their demand. Moreover, informed traders, in addition to exploiting knowledge of

fundamental information, can also front run the uninformed traders to earn addi-

tional returns. This reduces profits that market makers can earn to compensate

their potential losses against informed traders and forces them to widen the bid-ask

spread.

In order to guide the empirical analysis and demonstrate the competing effect

of these two forces, we extend the framework of Subrahmanyam (1991) and build an

equilibrium model whereby market makers face both adverse selection and inventory

concerns. We show that the net effect of predictability on market quality and prices

depends on the model parameters. The model is described in detail in Appendix

A. For most of the parameter values the positive effects of predictability of order

imbalance on market liquidity tend to dominate, whereas for some other values of

the parameters the opposite holds. As a result, understanding which one of the two

effects described above is dominating in the data becomes ultimately an empirical

question.

In the following we outline the main hypotheses that come from the model,

which we empirically test later on. The first two hypotheses concern the effect of

predictability of uninformed order imbalance on market quality:

Hypothesis 1 (H1) The predictability of uninformed order imbalance in a stock

has no effect on the liquidity of that stock.

Our second testable hypothesis relates price efficiency.
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Hypothesis 2 (H2) The predictability of uninformed order imbalance in a stock

has no effect on the price efficiency of that stock.

Our main goal is to establish the effect of predictability of total order im-

balance on market quality. It is not clear however if predictability of uninformed

order imbalance is automatically translated into predictability of total order imbal-

ance. In fact, although the uninformed order flow is a part of the total order flow,

the part of the informed traders’ demand is endogenously adjusted and might po-

tentially eliminate or reduce the predictability of total order imbalance. Yet, our

model establishes that in equilibrium the predictability of uninformed order imbal-

ance generates predictability of total order imbalance (see Appendix A). To test this

empirically, we re-formulate H1 and H2 by focusing on total order imbalance. Our

re-formulated first hypothesis is again related to market liquidity:

Hypothesis 1b (H1b) The predictability of total order imbalance in a stock has

no effect on the liquidity of that stock.

Similarly to H2 we are interested in the effect of the predictability of total

order imbalance on price efficiency. Therefore our re-formulated second hypothesis

is defined as

Hypothesis 2b (H2b) The predictability of total order imbalance in a stock has

no effect on the price efficiency of that stock.

Finally, our third hypothesis concerns the asset pricing implications of the

predictability of order imbalance. The latter potentially proxies for some source of

systematic risk through two channels: adverse selection and inventory management.

Easley and O’Hara (2004) provide a theoretical argument that adverse selection

costs are significant determinant of the equity cost of capital. In particular, they

show that investors demand a higher return to hold stocks with higher degree of

private information and that this higher return is a consequence of informed investors

being able to better adjust their portfolio to incorporate new information, and as

a result disadvantaging uninformed investors. On the other hand, Hendershott and

Menkveld (2014) demonstrate that shocks to inventories affect the pricing errors of

stocks. In both cases, changes in order imbalance predictability are expected to
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partly explain the cross-sectional variation of stock returns. Therefore, our third

hypothesis reads as follows:

Hypothesis 3 (H3) The predictability of total order imbalance has no effect on

the equity cost of capital.

By testing H3 we can investigate whether the predictability of order imbal-

ance proxies a source of systematic risk and hence contributes to the understanding

of the cross-sectional variation of stock returns alongside typical risk factors and

anomalies such as liquidity, size, value, and momentum, among others.

1.3 Data and Variable Definitions

We construct total order imbalance using data from the Trades and Quotes tape

(TAQ) spanning all market places with reporting obligations. The main sample

(we refer to this sample as Full sample of stocks) spans the period from January 1,

1995 to December 31, 2013. The TAQ data is pre-processed following Holden and

Jacobsen (2014) and then matched with CRSP data using CUSIP / NCUSIP pairs.

We exclude all securities with CRSP share code other than 10 or 11, as well as

those stocks with average closing price smaller than $5 and greater than $1,000. We

further require stocks to have more than 5 trades per day on average and a history

of quotes longer than three years within our sample period. All variables used in

the analysis are winsorised at the 0.1% and 99.9% quantiles so that values smaller

/ larger than these thresholds are set equal to the quantile value. After accounting

for all filters, our sample includes 6,121 firms in total.

We use the algorithm proposed by Lee and Ready (1991) to infer the trade

direction as “buy” or “sell” in the TAQ sample and use contemporaneous quotes to

sign trades and calculate effective spreads (see, e.g., Holden and Jacobsen, 2014).

We define order imbalance oibtotit of stock i on day t as the daily number of buyer-

initiated minus seller-initiated dollar volume of transactions scaled by total dollar

volume.

We use another sample of stocks in order to proxy for the predictability of

uninformed order imbalance. The uninformed order imbalance is approximated by

using pension fund trading from the ANcerno database.6 We obtain institutional

6For a discussion of the ANcerno data including fund reporting requirements see Hu et al. (2018).
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daily trading data for the period from January 1, 2006 to December 31, 2010.7

Each institution type identifier distinguishes between clients that are pension plan

sponsors vs. money managers. For each execution, the database reports the date

of the trade, the execution price of the trade, the stock traded, the number of

shares traded, whether the trade was a buy or a sell, and identity codes for the

institution making the trade. The granularity of the data makes it particularly

useful to compute stock level order imbalance of pension funds (denoted by oibpfit ).

In using the pension funds as a proxy for the “uninformed” part of order

imbalance we acknowledge that pension funds cover a fraction of the aggregate un-

informed order imbalance (that also includes, among others, order imbalance from

retail investors and ETFs). Moreover, there are many stocks where pension fund

trading is not intense. Sparse trading can lead to spurious evidence of low predict-

ability of order imbalance. To address this issue, we delete stocks with low level

of pension fund trading activity. That means, a stock is included in our ANcerno

sample if a trade has been executed for at least 50% of the days in the sample.

Our initial ANcerno sample includes 1,560 stocks that record at least one

trade by a pension fund. Figure 1.1 presents the empirical cumulative distribution

of the fraction of those firms as a function of the number of days during which we

observe at least one trade by a pension fund. It shows that about 50% of the firms

in the sample experienced a trade by pension funds for at least half their sample

length, i.e. on average 791 days of trades. By applying this filter, we retain 789

firms in our Active pension funds sample.

We measure liquidity using quoted and effective spreads for both samples.

The quoted spread qspreadit is the difference between the bid and ask quotes of stock

i scaled by the prevailing midpoint. The effective spread espreadit is the difference

between the midpoint of the bid and ask quotes and the actual transaction price

of stock i, expressed as a proportion of the prevailing midpoint. We use all trades

and quotes to calculate quoted and effective spreads for each reported transaction

and calculate a share-weighted average across all trades in a given day. In addition

we compute the realised spread rspreadit as the difference between the transaction

price and the midpoint five minutes after the trade scaled by the midpoint prevail-

ing immediately before the transaction. The price impact prcimpactit is obtained

7The data stops in 2010 since ANcerno database stops providing the client type identifier after
2010.
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from the difference of midpoint five minutes after the current trade and the current

midpoint scaled by the current midpoint. Finally, the intraday measures of rspread

and prcimpact are averaged within a day.

We use two measures of market efficiency for both samples in our analysis:

return autocorrelations and variance ratios. Return autocorrelations have been used

to assess price efficiency in a number of papers (see,.e.g. Chordia et al., 2008; Saffi

and Sigurdsson, 2011). We construct stock’s i daily return autocorrelation acit

based on a past 20 days rolling window basis. We use the past 20 observation

days to construct our measure to capture almost a full month of trading activity

which is also motivated by earlier literature on long-memory processes in financial

markets (see, e.g. Corsi, 2009). Given that we are interested in the magnitude of

the autocorrelation, we define an absolute value of a transformed autocorrelation

measure as8

abs acit =

∣∣∣∣1 + acit
1− acit

∣∣∣∣ .
The variance ratio represents our second measure of price efficiency. The

literature shows that the variance of longer horizon returns should equal the variance

of shorter horizon returns times the frequency of the short horizon returns in the

absence of autocorrelations (see Lo and MacKinlay, 1988). This finding is a property

of any random walk process since variance increases linearly with time. In the market

micro-structure literature variance ratios have been used by Chordia et al. (2008).

Similar to the autocorrelation measure we compute variance ratio using a 20-day

rolling window. In the case of a perfect random walk, the variance ratio, defined

as 2 var[r
(1)
it ]/var[r

(2)
it ] should be equal to one in expectation, where var[r

(1)
it ] and

var[r
(2)
it ] are the variance of one-day and two-day returns, respectively. We use

the absolute value of the deviation of this ratio from one as a measure of market

efficiency:

vratioit =

∣∣∣∣∣1− 2 var[ret
(1)
it ]

var[ret
(2)
it ]

∣∣∣∣∣ .
We use a set of order book and market characteristics to forecast order im-

balance for both samples. The choice of the predictors is motivated by taking the

perspective of a market maker who is interested in forecasting order imbalance. In a

typical setting, the market maker has access to past observed order imbalance and

8We transform this response variable to increase its variation from 0 to ∞.
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further order book measures such as volumes, intraday volatility, etc. Thus, we limit

our set of predictors to this class of variables. The daily realised variance rvarit is

defined as a sum of squared 5-minute midpoint price returns in stock i during day t.

The trade-to-quote ratio ttqit is constructed as a ratio of daily number of quotes (as

measured by the changes in bid and ask quotes in the TAQ dataset) with respect to

the number of trades in stock i on day t.9 In addition, we also construct a measure

of order book depth imbalance, i.e. the overhang of buy / sell orders in the order

book.10 It is defined a difference between depth on the ask side minus the depth on

the bid side of the market divided by the total depth:

dibit =
ask depthit − bid depthit
ask depthit + bid depthit

.

1.3.1 Predicting Order Imbalance

In order to predict order imbalance we focus on a linear regression approach of the

form

yt = x′t−1β + εt, εt ∼ N(0, σ2), (1.1)

where yt represents the one-day ahead order imbalance, xt−1 a (k+ 1)× 1 vector of

predictors (see description below) in addition to the intercept, and εt an orthogonal

error term with constant variance. A dynamic relationship between order imbalance

can be imposed by recursively estimating Eq.(1.1) in a rolling window fashion for

a constant window of size n. Although simple to implement such an approach is

both ad-hoc and inefficient, as the lack of a more specific parametric form makes

testing for time-variation highly dependent on hard-to-justify choices of the window

size. As a matter of fact, rolling window estimates β̂t exploit a limited amount of

information on order imbalance implicitly assigning equal weight to each observation

in the estimation sample, that is, betas are assumed to change (remain constant)

across (within) sub-samples with probability one.

In this paper, we follow existing research and assume stochastic dynamics for

the model parameters (see Hendershott and Menkveld, 2014; Pascual and Veredas,

9Rosu et al. (2018) demonstrate theoretically and empirically an association between order im-
balance and trade-to-quote ratio.

10Hagströmer (2018) shows that a micro-price effective spread measure, which is closely related
to the order book depth imbalance, can be a valuable source of fundamental information for market
makers.
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2010; Brogaard et al., 2014). In particular, we assume that the dynamics of the slope

parameters follow a random walk, resembling the information acquisition process

of market makers and informed traders who form beliefs based on the available

information, i.e.

βt = βt−1 + ηt, ηt ∼ N(0,Ω), (1.2)

where Ω is a (k + 1)× (k + 1) full covariance matrix. Such random walk dynamics

imply that the weights assigned to past information now decrease exponentially

rather than being constant, depending on how much the predictors are informative

about future order imbalance, i.e. the signal-to-noise ratio (see West and Harrison,

1997; Koopman and Durbin, 2012 for details). The missing parameters Ω and σ2 are

estimated by maximum likelihood, whereas the dynamic betas βt are assumed latent

and are extracted through a standard Expectation Maximisation (EM) algorithm.

In particular, we can obtain the forecast of the time t observation using data up to

time t− 1 as yt|t−1 and the associated forecast variance. The model parameters are

estimated by using the entire sample for each stock i.

Predictability Measure

Our objective is to forecast the one-day ahead order imbalance for stock i based on

some conditioning information available at time t− 1, xt−1. The predictor variables

are the order imbalance of stock i on day t− 1, oibi,t−1, the individual stock return

reti,t−1, the return on the S&P 500 index sprett−1, the realised variance rvari,t−1,

the trade-to-quote ratio ttqi,t−1 and the depth imbalance dibi,t−1.

The literature has entertained a number of out-of-sample forecast evaluation

measures. For instance, Campbell and Thompson (2008) uses out-of-sample R2

that is evaluating model forecast performance against historical mean forecasts in

the context of return predictability. We choose a measure of out-of-sample forecast

performance more related to the dynamic linear model. In particular, the model

introduced above provides a forecast of the order imbalance oibt|t−1 and the associ-

ated forecast variance V art(oibt|t−1). The normality assumptions in Equation (1.1)

ensure that the forecasted observations are distributed as N
(
oibt|t−1, V art(oibt|t−1)

)
.

Thus, we can obtain a measure of predictability that is akin to a predictive likelihood
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as

p̃l t = p
(
oibt | oibt|t−1, σ

2(oibt|t−1)
)
, (1.3)

where p(µ, σ2) is the density function of the Normal distribution with parameters

µ and σ2. This is the value of the normal probability density function evaluated

at oibt with mean oibt|t−1 and variance σ2(oibt|t−1). One comment is in order.

The predictive likelihood evaluated in (1.3) is not bounded from above such as for

example empirical R2. Notwithstanding, as we are interested in the degree of order

imbalance predictability in relative terms (across stocks and time) rather than its

absolute value, this does not pose any particular challenge for our analysis. Since a

daily measure of predictability derived from the predictive likelihood is inherently

noisy we opt to smooth the measure by taking its rolling 20-day average. Thus,

henceforth pl t is understood as the 20-day rolling average over p̃l t constructed from

past observations from t − 19 to t. We denote the predictability of total order

imbalance in firm i on day t by pl totit and the predictability of pension funds order

imbalance in firm i on day t by plpfit .

Summary Statistics

Table 1.1 reports the summary statistics for both samples: Active pension funds

(Panel A) and Full sample of stocks (Panel B). For both samples we sort stocks based

on their market capitalisation using the monthly NYSE breakpoints and present

summary statistics for each size quintile.11 We refer to the smallest value quintile,

e.g. small-cap, as Quintile 1 and to the highest value quintile as Quintile 5.

Consistent with prior evidence, smaller stocks tend to be less liquid than large

stocks. As a matter of fact, the average values of the four illiquidity variables are

monotonically decreasing with size. Stocks traded by active pension funds seem to be

more liquid, on average, than stocks in the aggregate sample. This is consistent with

the idea that pension funds trade more actively in large stocks. This observation

is also confirmed by the number of observations in the Q5 quintile. Both market

efficiency measures indicate that large stocks’ prices are more efficient than the

small stock ones. While for active pension funds this evidence is weaker, average

11The monthly NYSE breakpoints are retrieved from Kenneth French’s data library https://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_me_breakpoints.html.
Accessed 14th May 2020.
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price inefficiency monotonically decreases from Q1 to Q5 in the Full sample of stocks.

The average daily total order imbalance is -1.87% and monotonically increases

with the firm size, i.e. from -6.55% for small stocks to 4.32% for large stocks. The

order imbalances from the Active pension funds sample are smaller in magnitude

(see Panel A). For both samples, the order imbalance is autocorrelated with the

first order autocorrelation coefficients being about 15% for the order imbalance in

the Full sample of stocks and 33% for the order imbalance of Active pension funds,

respectively.

The Active pension funds sample average of the predictive likelihood is 36.62%.

This means that the probability of observing the order imbalance value of oibpft

within an ε-neighbourhood of oibt|t−1 is approximately 2ε× 0.3662 for small ε > 0.

The sample average of predictive likelihood for the total order imbalance sample is

34.76%. On average, the order imbalances of large stocks appear to be more predict-

able than the order imbalances of small stocks. This result holds for both samples.

The descriptive statistics of the additional predictors, such as trading volume, trade-

to-quote ratio, depth imbalance, realised variance and stock returns are summarised

in Table A.1 in the Appendix.

Figure 1.2 plots the cross-sectional mean and 95% quantiles of the predictive

likelihoods as well as the time series average of the predictive likelihoods across five

market capitalisation quintiles, both for the Active pension funds sample (Panel A)

and the Full sample of stocks (Panel B).

Figure 1.2 documents a substantial variation of predictive likelihood in both

the cross-section and time series. We observe that the median predictive likelihood

(see Panel A of Figure 1.2) drops noticeably during the global financial crisis of 2008.

The degree of predictability is the lowest for small cap stocks and is monotonically

increasing with size. Panel B of Figure 1.2 also reveals that the slump in predictive

likelihoods around the crisis is particularly pronounced for large cap stocks. Unsur-

prisingly, we find a trending behaviour in the time series of predictive likelihoods.

This can originate from the convergence characteristics of the dynamic linear model.

Through the accumulation of information the model estimates improve and converge

to their long-run levels. Another reason for the existence of trends can come from

the sample characteristics due to increasing number of institutional investors and

high-frequency trading in the market. In the following analysis, we will address both
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of those issues.

Table 1.2 reports the sample pairwise correlations of the predictors that are

used in the main empirical analysis (see above for a detailed description). With

the only exception of the quoted and effective spreads, correlations tend to be low.

The absence of contemporaneous correlations across predictors should rule out multi-

collinearity issues in the battery of panel regressions estimated in the main empirical

analysis. There is a potential concern that the degree of order imbalance predict-

ability is related to the direction of order imbalance. It it is worth stressing a low

correlation between predictive likelihood of order imbalance and the level of order

imbalance itself which mitigates this concern.

1.4 Empirical Results

In this section we test the hypotheses outlined in Section 1.2. Hypothesis 1 and 2

concern the effect of predictability of uninformed order imbalance on market quality.

We test both hypotheses by using the order imbalance from active pension funds.

Hypothesis 1b and 2b are based on the assumption that posits that the predictability

of uninformed order imbalance is translated in the predictability of the total order

imbalance. It is evident that this assumption does not hold automatically due to the

fact that the uninformed order imbalance is only a part of the total order imbalance.

Informed traders can endogenously adjust their trading activity in response to the

signal about the uninformed orders which might reduce or completely eliminate the

predictability of total order imbalance.

The theoretical model developed in the Appendix A.1 shows that, in equi-

librium, there is a clear association between the levels of predictability of the two

types of order imbalance. While there is a demand adjustment by informed traders,

its extent is insufficient to completely eliminate the predictability of the total order

imbalance. The empirical evidence supports the positive association between the

predictability of uninformed and total order imbalance. In particular, we merge our

two samples and estimate the following regression

pltotit = αi + ωt + βplpfit + uit, (1.4)
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where αi contains firm fixed effects, and uit is an idiosyncratic error term. Table 1.3

presents the estimation results for a simple pooled OLS, i.e. without firm and time

fixed effects, as well as two panel regressions with firm fixed effects as well as time

fixed effects. The estimates of β show that regardless the regression specification

there is a positive and statistically significant association between the predictability

of total versus uninformed order imbalance. Interestingly, there is a substantial

unobservable heterogeneity captured by firm-level fixed effects as suggested by a

much higher R2 that is obtained with respect to a simple pooled OLS regression.

1.4.1 Order Imbalance Predictability and Liquidity

Following, our hypotheses 1 and 1b we directly analyse the relationship between the

predictability of order imbalance and market quality by using a variety of liquidity

measures. Specifically, we estimate the following regression

illiqit = αi + βpli,t−1 + γ′Xit + εit, (1.5)

where illiqit corresponds to one of several illiquidity variables - qspreadit, espreadit,

rspreadit and prcimpactit - and pl i,t−1 stands for either plpfi,t−1 or pl toti,t−1. The set of

control variables Xit include the log market cap of the firm i (lsizeit), the inverse of

the price (1/prcit), the trade-to-quote ratio (ttqit), the share turnover (turnit), the

value of the VIX index (vixt), the lagged value of the dependent variable (illiqi,t−1)

and firm fixed effects dummies. We also control for contemporaneous order imbal-

ance oibtotit to mitigate a potential concern that predictability of order imbalance is

related to the level of order imbalance itself. While the regressions are predictive

in nature (with respect to the predictability measure pli,t−1) we still control for a

number of contemporaneous day t market variables to ensure that our results are

not driven by other factors known to impact liquidity (see, e.g., Hendershott et al.,

2011). Given that illiquidity levels are persistent on the daily timescale, we include

lagged spread as a control to proxy for any omitted but potentially relevant variables.

We report least-squares estimates of β̂ and γ̂ with the corresponding t-statistics (in

brackets) calculated based on double-clustered standard errors.

Panel A of Table 1.4 reports the estimation results using the Active pension

funds sample and plpf as the proxy for the predictability of the uninformed com-
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ponent of order imbalance. The empirical evidence supports a significant negative

relation between the predictability of uninformed order imbalance and illiquidity.

Such negative relationship holds across all of the liquidity measures used. In addi-

tion, the economic size of the effect is quite substantial; a one standard deviation

increase in predictive likelihoods leads to an average decrease in the quoted spreads

by 0.56 basis points and a decrease in the effective spreads by 0.27 basis points.

The coefficients for plpf are statistically significant at the 1% level. This

rejects our Hypothesis 1 in favour of the alternative that an increase in the predict-

ability of uninformed order imbalance improves market liquidity, on average. The

estimation results based on the Full sample of stocks and pl tot as the proxy for pre-

dictability of total order imbalance (see Panel B of Table 1.4) also rejects Hypothesis

1b. In fact, the effect of total order imbalance predictability on liquidity is an order

of magnitude larger than the predictability of pension funds order imbalance. A

one standard deviation increase in total order imbalance predictive likelihood leads

to an average decrease in the quoted and effective spreads by about 3.00 bps, re-

spectively. The coefficients for pl tot are also statistically significant at 1% level. As

far as the full sample of stocks is concerned, it is worth noting that the effect of

predictability of order imbalance on the adverse selection component of the effective

spread (prcimpact) is about three times higher than on the realised spreads. This

emphasises the claim that predictability of order imbalance is closely related to the

cost of adverse selection.

1.4.2 Order Imbalance Predictability and Market Efficiency

Next, we test the effect of predictability of order imbalance on market efficiency

(Hypotheses 2 and 2b). To do so we estimate the following regression

ineff it = αi + βpl i,t−1 + γ′Xit + εit, (1.6)

where ineff it corresponds to one of the two illiquidity variables vratioit and abs acit,

whereas pl i,t−1 stands for either plpfi,t−1 or pl toti,t−1. Similar to Eq.(1.5), the set of

control variables include the log market cap of the firm i (lsizeit), the inverse of

the price (1/prcit), the trade-to-quote ratio (ttqit), the share turnover (turnit), the

value of the VIX index (vixt). The parameters αi capture a firm fixed effect. The
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t-statistics are presented in brackets and are calculated based on double-clustered

standard errors.

Panel A of Table 1.5 provides the estimation results for the Active pension

funds sample and plpfi,t−1 as the independent variable. We find a significant negat-

ive relation between the predictability of order imbalance and the degree of market

inefficiency. Such negative relationship holds for both measures of market ineffi-

ciency. That is, an increase by one standard deviation in the predictive likelihood

corresponds to a decrease in the variance ratio by 0.20% (which is about 1.43% of its

sample average value) and absolute autocorrelation of daily returns by 0.37% (which

is about 1.02% of its sample average). Both of these effects are statistically signific-

ant at the 1% level. This results rejects Hypothesis 2 that a higher predictability of

uninformed order imbalance does not improve market efficiency, on average.

We obtain similar results for the predictability of order imbalance from the

Full sample of stocks, i.e. pl toti,t−1. Indeed, the coefficient β is still negative and sig-

nificant at the 1% level (see Panel B of Table 1.5). An increase by one standard

deviation in predictive likelihood of total order imbalance decreases the variance

ratio by 0.55% (which is about 3.44% of its sample average value) and the abso-

lute autocorrelation of daily returns by 0.98% (which is about 2.45% of its sample

average). This results rejects Hypothesis 2b that a higher predictability of order

imbalance does not improve market efficiency, on average.

1.4.3 Order Imbalance Predictability, Market Conditions and Stock

Characteristics

Next, we explore how the relation between order imbalance predictability and mar-

ket quality depends on aggregate market conditions. We interact the predictive

likelihoods with a time dummy corresponding to different levels of the VIX index,

which is a widely used proxy for aggregate market uncertainty (see, e.g., Bloom,

2009). We define a dummy variable Dhigh
t that takes value one whenever vixt falls

within the upper tercile of its historical distribution drawn from our sample and zero

otherwise. Similarly, dummy variables Dmed
t and Dlow

t take the value one when vixt

is in the middle and bottom terciles, respectively. Each of these dummy variables

are then interacted with the predictive likelihood to study the differential impact

of predictability on spreads during periods of high versus low market uncertainty.
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Specifically, we estimate a panel regression of the following form:

yit =
∑

j∈{high,med,low}

βj · pli,t−1 ·D(j)
t + αi + γ′Xit + εit, (1.7)

where yit represents either one of the illiquidity measures illiq it or one of the proxies

used for market inefficiency ineff it, and αi represents a firm fixed effect. Here, pl i,t−1

stands for either plpfi,t−1 or pl toti,t−1. The set of control variables is the same as in the

previous regressions. Standard errors are double clustered by firm and time.

Table 1.6 reports the estimation results. For the ease of exposition we present

the results for a measure of illiquidity and a measure of inefficiency, namely the

quoted spread qspreadit and the variance ratio vratioit. Panel A displays the es-

timation results for the Active pension funds sample. For all three levels of the

VIX index we confirm the positive effect of the predictive likelihoods on liquidity

and market efficiency. The marginal effect of the predictability of uninformed order

imbalance on market liquidity tends to increase as aggregate market uncertainty in-

creases. That is, bid-ask spreads decrease by a greater extent during periods of high

investors’ uncertainty. On the other hand, the effect of predictability of uninformed

order imbalance on market efficiency tends to be higher during calmer times.

Panel B reports the results for the Full sample of stocks. The effect is stronger

by an order of magnitude than for the sub-sample of pension funds. Nevertheless

the monotonic relationship of the interaction terms is preserved. Again, the effect

of predictability of total order imbalance on market liquidity is more pronounced

as aggregate uncertainty increases. On the opposite, the effect of predictability on

price efficiency decreases as the level of the VIX index increases. Table A.2 in the

Appendix shows further results for additional measures of market liquidity such

as the effective spread, espreadit, the realised spread, rspreadit, and price impact,

prcimpactit, as well as returns autocorrelation, abs acit, as additional measure of

market inefficiency. The results confirm the evidence provided in Table 1.6, namely

the higher the market uncertainty the bigger (smaller) is the impact of order imbal-

ance predictability on liquidity (inefficiency).

A potential concern is that the documented effects exist only for a specific

group of stocks and is attributed to size and volatility of a firm due to limits to

arbitrage, activity of institutional investors or high-frequency traders. We address
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this question by sorting the stocks in quintiles for a given characteristic and re-

estimating Equations (1.5) and (1.6) separately for each quintile.

Table 1.7 reports the estimates of the slope parameter β̂ on the measure of

predictability. Panel A reports the results for the sample of stocks traded by Active

pension funds, whereas Panel B reports the results for the Full sample of stocks.

For the ease of exposition we report the results for quoted spreads as a measure of

liquidity. A number of aspects emerge: when stocks are sorted by market cap, the

coefficient on plpft−1 (see Panel A) is negative and statistically significant for all five

quintiles. The effect is strongest for small stocks and weakest for large stocks. A

one standard deviation increase in predictive likelihood plpft−1 leads to about 2.28%

decline in quoted spreads of small stocks and about 1.63% decline in quoted spreads

of large stocks relative to their sample averages. We obtain qualitatively similar

results when stocks are sorted by trade-to-quote ratio, by idiosyncratic volatility and

passive institutional ownership. The highest magnitude of coefficient on plpft−1 is for

stocks with the lowest trade-to-quote ratio, with the highest idiosyncratic volatility

and with lowest passive institutional ownership. Our results are also robust to the

choice of liquidity measure.

Panel B confirms that the coefficient on the predictability measure pl tott−1 is

negative and statistically significant at 1% level for all specifications. The pattern

of the estimate across stock characteristics remains the same as for Panel A. These

results confirm that an increase in the predictability of order imbalance reduces the

extent of adverse selection in the market and overall improves liquidity, conditional

on a wide range of stock characteristics.

Table 1.8 confirms the relationship between the predictability of order im-

balance and market efficiency that we showed at the aggregate level (see Table 1.5).

Panel A reports the results for the sample of stocks traded by Active pension funds;

in the majority of cases, price efficiency – measured by the variance ratio – substan-

tially improves with an increase of order imbalance predictability for each quintile of

stocks sorted by market cap, trade-to-quote ratio, idiosyncratic volatility and passive

institutional ownership. The exceptions are mainly for stocks in the top and bottom

market cap quintiles, stocks in top trade-to-quote ratio quintile, stocks with the

highest idiosyncratic volatility and lowest passive institutional ownership. In these

cases the coefficient on plpft−1 is not statistically significant. Similar to Table 1.7,
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the results for the Full sample of stocks are stronger (see Panel B). The coefficient

on pl tott−1 is negative and statistically significant at the 1% level for all characteristic

quintiles, with the only exception of the largest stocks.

Table A.3 in the Appendix reports further results on alternative measures of

liquidity and market efficiency. Panel A displays the results for the stocks traded

by Active pension funds. Except few nuances, the effect of the predictability of

order imbalance on liquidity tends to be almost monotonically decreasing with the

market capitalisation, trade-to-quote ratio, and the amount of passive institutional

ownership. Panel B confirms the results for the Full sample of stocks; the magnitude

of the coefficients is higher and the monotonic behaviour of the beta on predictability

for the liquidity measures is retained. As far as abs ac is concerned, both Panel A

and Panel B confirm the results on market efficiency outlined in Table 1.8.

1.4.4 Detrending the Predictive Likelihood

In addition to the main empirical analysis we investigate the robustness of the results

to the concern of a spurious regression problem due to the trending behaviour of our

predictability measure pl t. To address this issue, we perform a linear detrend of the

predictive likelihood and repeat the regression exercises using the detrended series.

For each given stock, we define the detrended predictive likelihood pl∗t as residuals

from the regression of pl t on the corresponding time index t, i.e. pl t = α+β t+ pl∗t .

Table A.4 in the Appendix contains the results for regressions of quoted

spreads onto the detrended predictive likelihood. The coefficient on the detrended

predictive likelihood remains negative and statistically significant. Moreover its

magnitude increases in absolute value. This confirms the main results outlined

above, both in relation to the effect of predictability of order imbalance on market

quality and on efficiency. Notice the additional results for the detrended predictive

measure hold for both the sample of stocks traded by Active pension funds (Panel

A) and the Full sample of stocks available in our dataset (Panel B).

1.4.5 Asset Pricing Implications

In this section we test Hypothesis 3 which lays out the relation between the pre-

dictability of order imbalance and the cross-sectional variation of stock returns. In

Sections 1.4.1 - 1.4.3 we have shown that the predictability of pension funds and total
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order imbalance has similar positive effects on market quality. For the investigation

of asset pricing implications of the predictability of order imbalance, we concentrate

on the Full sample of stocks in order to benefit from the wider cross-section of stocks

and longer time period.

We start by presenting the portfolio characteristics across quintiles sorted by

the predictability of total order imbalance. To do so, we first aggregate our predict-

ability measure to monthly frequency by averaging the daily predictive likelihood

within a given month. Table 1.9 reveals the sorted portfolio characteristics. For

instance, stocks with the highest level of predictability in the order imbalance tend

to be growth stocks, larger in terms of market capitalisation, and experience past re-

turns which are both lower and less volatile. Although not exhaustive, this evidence

may imply that our predictability measure simply captures systematic risk features

such as size, value, and momentum. In addition, the fact that the order imbalance of

less liquid stocks tends to be more predictable may suggests that our predictability

may be subsumed by a liquidity risk factor. Hence, the following analysis will put an

emphasis on disentangling the asset pricing effect of order imbalance predictability

from the potentially confounding effects mentioned above.

1.4.6 Portfolio Analysis

We test the implications of our predictability measure to capture the cross-sectional

variation of stock returns against a variety of competing explanations both based

on a portfolio sorting procedure and a regression analysis. We start by presenting

univariate portfolio sort results for the predictability of order imbalance. The dark-

blue bars in Figure 1.3 show the average future returns for quintile portfolios sorted

on the previous month’s value of pl toti,t−1. We also present the average return of the

trading strategy that buys an equally weighted portfolio of stocks which experienced

a low level of predictability of order imbalance during the past month and sells short

the portfolio with high predictability instead (red bar, “Low-High”).

The average returns are monotonically decreasing with respect to the pre-

dictability of order imbalance. Stocks with lowest order imbalance predictability

experience a return of 2.14% per month, whereas stocks with highest predictability

of order imbalance generate a lower 0.86% monthly return over the period 01:1997-

12:2013. The second red bar from the right shows that our low-minus-high Predict-
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ability of Order Imbalance portfolio, which we denote by POI , generates statistically

significant returns at a conventional 1% credibility level. Such average return is also

economically large: the strategy yields on average 1.29% per month with the annu-

alised Sharpe ratio of 1.00. In addition, the first red bar from the right shows that

our strategy also generates a substantial risk-adjusted return calculated conditional

on several sources of systematic risks, such as market, size, value, momentum and

the liquidity factor introduced by Pastor and Stambaugh (2003).

Figure 1.4 plots the cumulative returns of our POI portfolio. The returns are

pro-cyclical and experience positive performance for most of the sample except 1999

and 2008 crises. The value-weighted strategy generates lower returns as compared

to its equally-weighted counterpart. This is consistent with the evidence that the

bulk of the economic magnitude is within small stocks, which are mechanically

underweighted in a value-weighted portfolio.

As discussed above, Table 1.9 reveals some monotonic relation of the pre-

dictability of order imbalance with other characteristics that are shown to be priced

in the empirical finance literature, e.g. size and value. To investigate the pricing

implications of POI , we perform a set of double sorts based on pl toti,t−1 and other

variables, that are size, bid-ask spread, turnover, trade-to-quote ratio, and volatility

of order imbalance. Table 1.10 reports the results.

Panel A reports the returns of 5×5 portfolios sorted on past predictability of

order imbalance and the lagged value of market capitalisation. The average return on

the low-minus-high predictability portfolio, conditional on small stocks, is positive

and statistically significant. Conditional on the smallest stocks, the portfolio yields

1.64% per month. For large stocks the return on the low minus high portfolio

is still positive but not statistically significant. When controlling for market, size,

value, momentum and liquidity factors, the Jensen’s alphas are large and statistically

significant at 1% level for all quintiles with the only exception of Q5, i.e. the largest

stocks.

Panel B shows the results for a double-sort of 5 × 5 portfolios based on

lagged predictability of order imbalance and past value of the bid-ask spread. A

conditional strategy based on low-minus-high predictability and high bid-ask spreads

generates the highest performance, with a 2.18% on a monthly basis and a risk-

adjusted return, once controlling for the aforementioned risk factors, equal to 2.4%
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per month. The first column shows that there is no significant premium captured by

our POI portfolio for highly liquid stocks. The results for a double sort based on past

order imbalance predictability and trade-to-quote ratios (Panel C) are significant

across all portfolios. All low-minus-high portfolios generate substantial risk-adjusted

returns in the range 1.92% for Q1 to 3.00% for Q5.

Panel D and E show the performance of our strategy conditional on different

levels of volatility of order imbalance and share turnover, respectively. Our strategy

tends to perform better for stocks with high levels of order imbalance volatility and

high turnover. As a matter of fact, when order imbalance volatility is low, i.e. in Q1,

our low-minus-high predictability strategy does not generate statistically significant

returns. On the opposite, for highly volatile stocks our POI strategy generates up

to 1.84% risk-adjusted returns on a monthly basis.

Finally, Panel F reports the returns of portfolios sorted on past order imbal-

ance predictability and the order imbalance. The average return on the low-minus-

high predictability portfolio, conditional on low order imbalance stocks, is 1.398%

per month. For high order imbalance stocks the average return on the high-low

portfolio drops to 1.036% per month.

Overall, the results suggest that the predictability of order imbalance proxies

some aggregate and non-diversifiable source of risk that is priced in the cross-section

of stock returns. Yet, this pricing effect is robust when controlling for other relevant

characteristics which are commonly assumed to proxy for systematic risks.

1.4.7 Cross-Sectional Regressions

If low predictability of order imbalance poses a risk to marginal investors due to

increased asymmetric information, we should observe a risk-return trade-off. To

investigate this we construct 25 portfolios based on size and the predictability of

order imbalance, and test the exposure of these test assets to a set of commonly

used systematic risk factors as well as the returns on our POI .12 More specifically,

we first estimate the following time series regression,

reti,t = αi + βiPOI t + γ′iF t + ui,t, i = 1, . . . , 25 (1.8)

12We sort by predictability of order imbalance to ensure that the POI betas have high vari-
ation across portfolios and we choose size as the second sorting characteristics because it is a hard
benchmark to beat given results in Table 1.10.
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where F t contains the excess returns on the market, the size and value factors of

Fama and French (1993a), the momentum factor calculated as in Jegadeesh and

Titman (1993), the liquidity risk factor from Pastor and Stambaugh (2003), as

well as the short-term reversals factor and the returns on high-minus low portfolios

sorted by past month trade-to-quote ratio and both the level and volatility of order

imbalance.

Table 1.11 reports the estimates of the slope parameter β̂i for each of the 25

test portfolios. Notice that the nature of the regression (1.8) implies that higher

estimates β̂i are associated with higher expected returns controlling for other risk

factors. Panel A shows the results for equally-weighted test assets. Conditional on

the level of predictability, the exposure to POI tends to decrease with the size of a

firm. Similarly, conditional on size, the exposure of stock returns to the POI returns

decrease with the level of predictability. That is, small size - low predictability stocks

tend to be the most correlated to the POI factor, whereas the opposite is true for

the large size-high predictability stocks.

Panel B shows the results for value-weighted test assets. The results are

largely similar to the equally-weighted portfolio both in terms of sign, magnitude

and significance of the slope parameter estimates. As a whole, the results for the

value-weighted test portfolios reinforce the evidence of Panel A whereby large size-

high predictability stocks tend to have the most negative correlation with the POI

factor, while small size-low predictability stocks tend to have the highest correlation

with the POI factor.

Although instructive, the results reported in Table 1.11 do not necessarily

imply that the risk associated with the time series variation of our POI factor

is priced in the cross-section of stock returns. To address this issue, and further

investigate the asset pricing implications of the predictability of order imbalance, we

perform a set of standard Fama-MacBeth regressions. This allows to estimate the

equilibrium price of risk implied by order imbalance predictability while controlling

for alternative, and possibly competing, sources of systematic risk (see Fama and

MacBeth, 1973). Specifically, we estimate the following cross-sectional regression

returnsi,t = λPOI,tβ̂i + λ′tγ̂i + ei,t, t = 1, . . . , T (1.9)
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where the parameters β̂i, γ̂i are estimated for each test portfolio by using the time

series regression in Eq.(1.8). The estimates λ̂POI , λ̂
′ are obtained as the sample

averages of λ̂POI,t, λ̂
′
t (see Ch.12 Cochrane, 2009).13 As additional control variables,

we use the returns on a set of alternative strategies such as a buy-and-hold exposure

on the market, long-short portfolios based on size, value, momentum, liquidity as

well as short-term reversals. In addition, we include the returns on two alternative

high-minus-low portfolio strategies constructed based on the past month trade-to-

quote ratio and the volatility of order imbalance (see Chordia et al., 2018).14 Panel

A of Table 1.12 reports the estimation results for 5 × 5 portfolios sorted on past

predictability of order imbalance and the lagged value of market capitalisation, and

each portfolio is equally weighted. The baseline specification is a four-factor Carhart

model with the addition of our POI factor. Then each of the competing risk factors

is added one by one to investigate the marginal effect of POI conditioning for

alternative risk factors which have been investigated in the market microstructure

literature. Last column shows an implementation in which all factors have been

included.

Two findings emerge: first, the price of risk for our POI factor is positive and

significant at the 1% confidence level for all regression specifications. This means

that the risk associated with the time series variation of our POI factor is priced in

the cross-section of stock returns. Given that POI is a tradable factor, the price of

risk estimated from the Fama-MacBeth regressions is statistically indistinguishable

from the average return on the POI portfolio documented earlier. Second, the prices

of risk for both the size factor and a long-short portfolio based on the volatility of

order imbalance – which is labelled VOIB in the table – remain positive and highly

significant across model specifications. The results for VOIB are consistent with

recent evidence provided by Chordia et al. (2018).

Panel B reports the results whereby the 5×5 test portfolios are still sorted on

past predictability of order imbalance and the lagged value of market capitalisation,

but now are value-weighted. The value weighting scheme naturally dilutes the effect

of small stocks in the time series variation of the test portfolios. Despite the different

13To address the time series correlation of the lambda estimates, the standard errors are calculated
based on a Newey-West estimator with 12 lags (see Newey and West, 1987a).

14Notice the two additional factors constructed based on the past month trade-to-quote ratio and
the volatility of order imbalance are built by sorting stocks into the corresponding quintiles on our
sample.
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weighting scheme, the sign, magnitude and significance of the price of risk for the

POI factor remain intact. Again, both the SMB and the VOIB risk proxies turn

out to be significant and positive across model specifications.

As a whole, Table 1.12 provides evidence that the risk associated with our

POI factor is neither subsumed nor substantially affected by other competing (or

alternative) risk factors, such as liquidity, short-term reversals, size and value. This

result, coupled with the portfolio evidence in Table 1.10, suggests that we can reject

Hypothesis 3 and therefore provide significant evidence that the predictability of

order imbalance affects the equity cost of capital.

1.5 Conclusion

In this paper, we provide evidence that the predictability of order imbalance is an

important determinant of market quality. We take the perspective of a sophisticated

market participant who forecasts order imbalances in a dynamic linear model. We

show that there is a significant and positive relationship between the predictability

of order imbalance and both measures of market liquidity and market efficiency.

This positive relationship is robust to controlling for periods of high and low mar-

ket uncertainty and across different groups of stocks sorted by size, idiosyncratic

volatility, trade-to-quote ratio and institutional ownership.

These findings are consistent with the notion that increases in predictability

of order imbalance reduce adverse selection costs and inventory risks. As a result,

order imbalance predictability significantly affects stocks prices. We document that

a strategy that buys stocks with low order imbalance predictability and sells short

stocks with high order imbalance predictability produces significant and econom-

ically large returns. Theses returns are not explained by a set of traditional risk

factors as well as other characteristics that capture different aspects of adverse se-

lection costs. The exposure of stock returns to the returns of this strategy commands

a systematic risk premium.

Our results document that features of market microstructure that potentially

influence predictability of order imbalance can affect firms’ equilibrium return. This

suggests that a firm’s cost of capital is influenced not only by information, but also

by market anonymity, organization of exchanges, and proliferation of high-frequency
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trading.
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Figures and Tables
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Figure 1.1: Number of Days with a Trade by a Pension Fund.
The figure presents a histogram for the number of observations with a trade from a pension fund
in the ANcerno dataset. It shows a fraction of firms in the original dataset (vertical axis) that has
a given proportion of trading days (horizontal axis) with a trade in the stock from a pension fund.
The sample is from January 1, 2006 to December 31, 2010 (1,144 trading days in total) and 1,560
firms.

38



Panel A: Predictive Likelihood of Order Imbalance from Pension Funds
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Panel B: Predictive Likelihood of Total Order imbalance
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Figure 1.2: Predictive Likelihoods.
This figure shows the daily estimates of the smoothed predictive likelihood as outlined in Section
(1.3.1). Top panel shows the results for the order imbalance of those stocks traded by active pension
funds, i.e. the ANcerno sample, whereas the bottom panel shows the results for the total order
imbalance. The left column of both panels report the 5%, 50% (median) and 95% quintiles across
the daily estimates at each time t. The right column shows the average predictive likelihood for
stocks sorted into quintiles based on the market capitalisation at each time t. The Ancerno sample
is from January 1, 2006 to December 31, 2010 (Panel A) and the full sample of stocks is from
January 1, 1997 to December 31, 2013 (Panel B).
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Univariate Portfolio Sort for the Main Sample
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Figure 1.3: Average Returns on Portfolios of Stocks Sorted on pl tott .
This figure shows the average returns on portfolios of stocks sorted based on the lagged predictive
likelihood of total order imbalance pl tott . Every month we sort stocks into quintiles, form five
portfolios and rebalance next month. Portfolio 1 corresponds to the quintile of stocks with the lowest
predictability of order imbalance pl tott and portfolio 5 is for stocks with the highest predictability of
order imbalance. The sample period is from January 1, 1997 to December 31, 2013. The red bars
report the returns on the low-minus-high portfolio and the Jensen’s alpha obtained once controlling
for the three Fama-French factors, momentum and liquidity as in Pastor and Stambaugh (2003).
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Figure 1.4: Cumulative Returns on the POI Portfolio.
This figure presents time series of cumulative returns on equally and value weighted portfolios
of stocks sorted based on the lagged predictive likelihood of total order imbalance pl tott . Every
month we sort stocks into quintiles, form five portfolios and rebalance next month. The returns
are generated long-short strategy which goes long on the portfolio of stocks with the lowest level of
predictability and short the portfolio of stocks with the highest level of predictability. The blue line
shows the cumulative returns when portfolios are equally weighted whereas the green line shows
the cumulative returns when portfolios are value weighted. The sample period is from January 1,
1997 to December 31, 2013.
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Table 1.3: Relation of Total & Uninformed Order Imbalance Predictability.
This table reports the estimation results from the following regression

pltotit = αi + ωt + βplpfit + uit,

where pl totit and plpfit are predictive likelihoods of total and pension funds order imbalance respect-
ively, and αi, ωt contain firm and time fixed effects, respectively. The t-statistics are given in
parentheses and are based on double-clustered standard errors. The sample period is January 1,
2006 to December 31, 2010.

pltott pltott pltott pltott

plpft 0.196 (9.67) 0.219 (18.5) 0.150 (6.13) 0.1339 (11.431)

const 0.398 (48.3)

fixed effects none firm time firm, time

R2 3.59% 29.30% 20.71% 18.62%

Nr. obs. 710,633 710,633 710,633 710,633
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Table 1.4: Predictability and Market Liquidity.
This table reports the results from the regression

illiqit = αi + βpli,t−1 + γ′Xit + εit,

where illiqit takes one of following illiquidity variables (expressed in basis points): quoted spread
qspread, effective spread espread, realised spread rspread, and price impact prcimpact. The pre-
dictive likelihood pl it is defined as the 20-day rolling average over p̃l it which is calculated as in
Eq.(1.3). Panel A: reports the results for the order imbalance of active pension funds. Panel B:
shows the results for the full sample of stocks. The vector of control variables Xit includes: the log-
market cap lsizeit of the firm i (scaled by 100), the inverse of the price 1/prcit (multiplied by 100),
the trade-to-quote ratio ttqit, the share turnover turnit (in percent), the value of the VIX index
vixt (in percent), the lagged value of the dependent variable (illiqi,t−1), and the contemporaneous
total order imbalance (oibtoti,t ). Sample period in Panel A is from January 1, 2006 to December 31,
2010 and in Panel B from January 1, 1997 to December 31, 2013. In parentheses we report the
t-statistics computed based on double-clustered standard errors.

Panel A: Active Pension Funds

qspread espread rspread prcimpact

plt−1 -0.057 (-11.50) -0.028 (-7.41) -0.022 (-11.33) -0.023 (-9.91)
illiqt−1 0.574 (23.70) 0.556 (7.62) 0.210 (8.18) 0.271 (11.73)
oibtott 0.001 (0.93) -0.001 (-0.61) -0.005 (-3.81) 0.006 (5.36)
lsize -0.017 (-6.01) -0.011 (-4.68) 0.003 (1.32) -0.020 (-10.89)
turn -0.069 (-2.20) 0.106 (4.19) -0.057 (-2.42) 0.162 (4.53)
1/prc 0.229 (4.32) 0.242 (3.86) 0.232 (6.53) 0.169 (4.19)
ttq -14.721 (-11.2) -3.702 (-5.06) -2.013 (-3.46) -1.114 (-1.64)
vix 0.094 (12.02) 0.039 (5.96) -0.007 (-2.98) 0.072 (22.33)

R2 54.96% 65.71% 16.67% 32.37%
No. obs. 764,825 764,825 764,825 764,825

Panel B: Full Sample of Stocks

qspread espread rspread prcimpact

plt−1 -0.263 (-11.73) -0.263 (-11.72) -0.163 (-3.56) -0.485 (-17.11)
illiqt−1 0.688 (171.41) 0.579 (125.56) 0.047 (22.90) 0.036 (21.37)
oibtott -0.052 (-22.12) -0.073 (-25.77) -0.086 (-5.99) -0.006 (-0.61)
lsize -0.168 (-31.93) -0.159 (-31.44) -0.262 (-24.97) -0.097 (-19.52)
turn -1.542 (-9.87) -1.182 (-9.75) -2.474 (-9.01) -0.014 (-0.24)
1/prc 0.559 (21.23) 0.611 (22.97) 1.174 (20.71) 0.371 (14.65)
ttq 1.722 (5.67) 7.342 (18.94) 16.460 (9.51) 1.433 (1.24)
vix 0.543 (17.49) 0.485 (19.34) 0.464 (11.61) 0.649 (28.07)

R2 59.84% 49.50% 1.04% 0.42%
No. obs. 12,906,715 12,906,715 12,906,715 12,906,715
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Table 1.5: Predictability and Market Efficiency.
This table reports the results from the regression

ineff it = αi + βpl i,t−1 + γ′Xit + εit,

where ineff it corresponds to one of the two market efficiency variables vratioit and abs acit. The
predictive likelihood pl it is defined as the 20-day rolling average over p̃l it which is calculated as in
Eq.(1.3). Panel A: reports the results for the order imbalance of active pension funds. Panel B:
shows the results for the full sample of stocks. The vector of control variables Xit includes: the
log-market cap lsizeit of the firm i (scaled by 100), the inverse of the price 1/prcit (multiplied by
100), the trade-to-quote ratio ttqit, the share turnover turnit (in percent), the value of the VIX
index vixt (in percent), and the contemporaneous order imbalance (oibtoti,t ). Sample period in Panel
A is from January 1, 2006 to December 31, 2010 and in Panel B from January 1, 1997 to December
31, 2013. In parentheses we report the t-statistics computed based on double-clustered standard
errors.

Panel A: Active Pension Funds

vratio abs ac

plt−1 -0.020 (-3.92) -0.037 (-3.08)

oibtott -0.002 (-0.97) -0.002 (-0.47)

lsize 0.009 (3.80) 0.010 (2.17)

turn 0.245 (7.02) -0.456 (-6.38)

1/prc 0.066 (3.88) 0.133 (5.36)

ttq -0.410 (-0.40) -4.222 (-1.76)

vix 0.024 (3.28) 0.040 (2.13)

R2 0.32% 0.18%

No. obs. 764,825 764,825

Panel B: Full Sample of Stocks

vratio abs ac

plt−1 -0.048 (-14.4) -0.086 (-11.4)

oibtott -0.002 (-8.60) -0.006 (-11.6)

lsize -0.008 (-18.9) -0.014 (-16.2)

turn 0.054 (6.45) -0.440 (-8.35)

1/prc 0.013 (8.48) 0.028 (9.98)

ttq -0.032 (-0.89) -0.095 (-1.25)

vix 0.035 (7.33) 0.050 (3.83)

R2 0.85% 0.49%

No. obs. 12,906,715 12,906,715
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Table 1.6: Market Uncertainty and Effect of Order Imbalance Predictability.
This table reports the results of the following regression

yit =
∑

j∈{high,med,low}

βj · pli,t−1 ·D(j)
t + αi + γ′Xit + εit,

where yit represents either one of the illiquidity measures illiqit or one of the proxies used for market
inefficiency ineff it, and αi represents a firm fixed effect. For the ease of exposition we present the
results for a measure of illiquidity and a measure of inefficiency, namely the quoted spread qspreadit
and the variance ratio vratioit. We define a dummy variable Dhigh

t that takes value one whenever
vixt falls within the upper tercile of its historical distribution drawn from our 1997-2013 sample
and zero otherwise. Similarly, dummy variables Dmed

t and Dlow
t take the value one when vixt is in

the middle and bottom terciles, respectively. The predictive likelihood pl it is defined as the 20-day
rolling average over p̃l it which is calculated as in Eq.(1.3). Panel A: reports the results for the
order imbalance of active pension funds. Panel B: shows the results for the full sample of stocks.
The vector of control variables Xit includes: the log-market cap lsizeit of the firm i (scaled by
100), the inverse of the price 1/prcit (multiplied by 100), the trade-to-quote ratio ttqit, the share
turnover turnit (in percent), the value of the VIX index vixt (in percent), the lagged value of the
dependent variable (illiqi,t−1), and the contemporaneous order imbalance (oibtoti,t ). Sample period
in Panel A is from January 1, 2006 to December 31, 2010 and in Panel B from January 1, 1997 to
December 31, 2013. In parentheses we report the t-statistics computed based on double-clustered
standard errors.

Panel A: Active Pension Funds

qspread vratio

plpft−1 ×D
high
t -0.065 (-10.2) -0.018 (-2.72)

plpft−1 ×Dmed
t -0.054 (-11.2) -0.022 (-4.26)

plpft−1 ×Dlow
t -0.050 (-7.59) -0.032 (-3.72)

oibtott 0.001 (0.79) -0.001 (-0.53)

illiqt−1 0.573 (23.8)

Controls Yes Yes

No. obs. 764,825 764,825

R2 54.97% 0.33%

Panel B: Full Sample of Stocks

qspread vratio

plpft−1 ×D
high
t -0.427 (-15.3) -0.032 (-7.11)

plpft−1 ×Dmed
t -0.223 (-9.79) -0.052 (-16.1)

plpft−1 ×Dlow
t -0.179 (-6.74) -0.053 (-14.6)

oibtott -0.052 (-21.9) -0.002 (-8.79)

illiqt−1 0.680 (171.3)

Controls Yes Yes

No. obs. 12,906,715 12,906,715

R2 59.85% 0.88%
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Table 1.7: Effect of Order Imbalance Predictability on Liquidity by Stock Character-
istics.
This table presents the results of the following regression

qspreadit = αi + βpli,t−1 + γ′Xit + εit,

where qspreadit is the quoted bid-ask spread and pl it is defined as the 20-day rolling average over
p̃l it which is calculated as in Eq.(1.3). We report the estimates β̂ by sorting stocks in quintiles
based on the following characteristics: market cap, trade-to-quote ratio, idiosyncratic volatility,
and passive institutional ownership. Panel A: reports the results for the order imbalance of active
pension funds. Panel B: shows the results for the full sample of stocks. The vector of control
variables Xit includes: the log-market cap lsizeit of the firm i (scaled by 100), the inverse of the
price 1/prcit (multiplied by 100), the trade-to-quote (TTQ) ratio ttqit, the share turnover turnit
(in percent), the value of the VIX index vixt (in percent), and the lagged value of the dependent
variable (illiqi,t−1), and the contemporaneous order imbalance (oibtoti,t ). Sample period in Panel A
is from January 1, 2006 to December 31, 2010 and in Panel B from January 1, 1997 to December
31, 2013. In parentheses we report the t-statistics computed based on double-clustered standard
errors. Results for analogous regression using the alternative liquidity measures espread, rspread
and prcimpact are reported in Table A.3.

Panel A: Active Pension Funds

Sorting variable Q1 Q2 Q3 Q4 Q5

Market cap -0.149 (-3.98) -0.069 (-7.39) -0.047 (-9.81) -0.023 (-9.51) -0.008 (-6.48)

TTQ ratio -0.072 (-7.20) -0.055 (-7.38) -0.046 (-9.80) -0.047 (-11.4) -0.051 (-5.47)

Idiosync. vol. -0.022 (-8.57) -0.041 (-9.95) -0.063 (-9.94) -0.073 (-10.0) -0.079 (-6.26)

Passive ownersh.-0.090 (-7.28) -0.044 (-7.83) -0.048 (-6.95) -0.039 (-8.86) -0.046 (-7.53)

Panel B: Full Sample of Stocks

Sorting variable Q1 Q2 Q3 Q4 Q5

Market cap -1.044 (-13.6) -0.354 (-13.9) -0.119 (-12.8) -0.084 (-7.34) -0.028 (-14.3)

TTQ ratio -0.702 (-14.6) -0.383 (-14.6) -0.354 (-14.3) -0.406 (-13.7) -0.417 (-8.41)

Idiosync. vol. -0.201 (-18.1) -0.300 (-18.1) -0.429 (-15.3) -0.712 (-16.1) -1.563 (-16.0)

Passive ownersh.-1.069 (-8.93) -0.575 (-11.0) -0.289 (-11.3) -0.257 (-13.7) -0.273 (-12.9)
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Table 1.8: Effect of Order Imbalance Predictability on Efficiency by Stock Character-
istics.
This table presents the results of the regression

vratioit = αi + βpli,t−1 + γ′Xit + εit,

where the variance ratio vratioit is calculated as shown in Section (1.3) and pl it is defined as the
20-day rolling average over p̃l it which is calculated as in Eq.(1.3). We report the estimates β̂ by
sorting stocks in quintiles based on the following characteristics: market cap, trade-to-quote ratio,
idiosyncratic volatility, and passive institutional ownership. Panel A: reports the results for the
order imbalance of active pension funds. Panel B: shows the results for the full sample of stocks.
The vector of control variables Xit includes: the log-market cap lsizeit of the firm i (scaled by 100),
the inverse of the price 1/prcit (multiplied by 100), the trade-to-quote (TTQ) ratio ttqit, the share
turnover turnit (in percent), the value of the VIX index vixt (in percent), and the lagged value of the
dependent variable (illiqi,t−1), and the contemporaneous order imbalance (oibtoti,t ). Sample period
in Panel A is from January 1, 2006 to December 31, 2010 and in Panel B from January 1, 1997 to
December 31, 2013. In parentheses we report the t-statistics computed based on double-clustered
standard errors. Results using the alternative measure of price efficiency abs ac are detailed in
Table A.3.

Panel A: Active Pension Funds

Sorting variable: Q1 Q2 Q3 Q4 Q5

Market cap -0.016 (-0.66) -0.028 (-1.88) 0.015 (0.13) -0.026 (-3.01) -0.011 (-1.19)

TTQ ratio -0.044 (-3.62) -0.017 (-2.03) -0.017 (-1.98) -0.019 (-1.91) -0.009 (-0.72)

Idiosync. vol. -0.033 (-3.31) -0.021 (-2.27) -0.029 (-3.54) -0.020 (-2.09) -0.007 (-0.75)

Passive ownership 0.001 (0.08) -0.026 (-2.33) -0.039 (-2.63) -0.014 (-1.21) -0.018 (-1.27)

Panel B: Full Sample of Stocks

Sorting variable: Q1 Q2 Q3 Q4 Q5

Market cap -0.170 (-19.1) -0.060 (-8.31) -0.040 (-7.30) -0.026 (-5.11) -0.004 (-0.79)

TTQ ratio -0.066 (-8.16) -0.038 (-8.40) -0.045 (-9.63) -0.059 (-11.8) -0.072 (-10.8)

Idiosync. vol. -0.031 (-6.31) -0.043 (-9.63) -0.047 (-10.3) -0.067 (-13.2) -0.133 (-16.1)

Passive ownership-0.191 (-13.7) -0.076 (-8.88) -0.039 (-6.44) -0.028 (-5.07) -0.029 (-4.98)
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Table 1.9: Characteristics of Stocks sorted by the Predictability of Order Imbalance.
This table reports the average value of the characteristics of stocks sorted on quintiles based on the
predictability of order imbalance as proxied by pl totit . The predictive likelihood for the full sample

of stocks is defined as the 20-day rolling average over p̃l
tot

it which is calculated as in Eq.(1.3). Here,
Size is the market capitalisation of the firm i (in million of dollars), BE/ME is the book-to-market
ratio, rett and σ(rett) are the monthly return and its standard deviation, qspread is the quoted
spread, ttq denotes the trade-to-quote ratio, voib is the volatility of order imbalance, and turnit is
the share turnover (in percent). Sample period is from January 1, 1997 to December 31, 2013.

Quint. of pltott Size BE/ME rett σ(rett) qspread ttq voib turn

Q1 (low) 1,756 0.93 1.87 3.07 212.38 0.32 0.43 0.38

Q2 2,565 0.79 1.65 2.90 129.06 0.34 0.32 0.54

Q3 3,373 0.70 1.59 2.89 89.98 0.36 0.26 0.67

Q4 5,643 0.62 1.55 2.80 62.79 0.40 0.21 0.81

Q5 (high) 6,310 0.54 1.58 2.92 41.28 0.47 0.15 1.13
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Table 1.10: Double Sorted Portfolio Returns.
This table reports the returns on portfolios sorted on the lagged value of a given stock characteristic
and the past predictability of order imbalance for the full sample of stocks. The latter is defined

as the 20-day rolling average over p̃l
tot

it which is calculated as in Eq.(1.3). The characteristics used
for double sorting are the market capitalisation (Panel A), the quoted bid-ask spread (Panel B),
share turnover (Panel C), the trade-to-quote ratio (Panel D), the volatility of order imbalance
(Panel E), and order imbalance (Panel F). We first sort stocks into quintile portfolios based on a
characteristic, and then sort on pl totit into quintile portfolios in each group at month t. Portfolio
returns and return differences (Low-High) in month t + 1 are reported. All returns are reported
in percent. The sample period is from January 1, 1997 to December 31, 2013. The t-statistics for
the low-minus-high predictability portfolio are based on Newey-West adjusted standard errors. The
Jensen’s alphas are calculated conditioning on the three Fama and French (1993a) factors along
with the momentum factor of Jegadeesh and Titman (1993) and the Pastor and Stambaugh (2003)
traded liquidity factor.

Panel A: Double sort by order imbalance predictability and market cap

Quintile of lsize

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 2.785 1.735 1.394 1.175 0.949

Q2 1.956 1.196 1.220 0.993 0.903

Q3 1.720 1.174 1.170 0.969 0.828

Q4 1.363 1.098 0.765 0.888 0.913

Q5 (high) 1.146 1.043 0.721 0.725 0.691

Low-High 1.639 (4.47) 0.691 (1.84) 0.673 (1.97) 0.450 (1.35) 0.259 (0.71)

Alpha 1.922 (4.64) 1.025 (2.48) 1.023 (2.82) 0.730 (2.05) 0.501 (1.45)

Panel B: Double sort by order imbalance predictability and quoted bid-ask spread

Quintile of qspread

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 0.983 1.418 1.886 2.873 3.216

Q2 1.006 1.178 1.324 1.812 2.009

Q3 0.916 1.020 1.234 1.518 1.810

Q4 0.896 1.078 1.220 1.229 1.485

Q5 (high) 0.832 0.804 1.048 1.196 1.033

Low-High 0.151 (0.46) 0.614 (1.56) 0.838 (2.04) 1.677 (3.58) 2.183 (5.50)

Alpha 0.392 (1.28) 0.975 (2.42) 1.139 (2.48) 2.076 (4.24) 2.369 (5.53)

Panel C: Double sort by order imbalance predictability and trade-to-quote ratio

Quintile of ttq

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 1.641 1.951 2.028 2.253 3.327

Q2 1.040 1.280 1.487 1.695 2.280

Q3 0.926 1.039 1.128 1.658 1.674

Q4 0.943 0.967 1.193 1.178 1.190

Q5 (high) 0.796 1.025 0.818 0.900 0.589

Low-High 0.845 (3.30) 0.926 (3.26) 1.210 (3.39) 1.353 (3.55) 2.74 (5.50)

Alpha 1.922 (3.82) 1.215 (4.01) 1.366 (3.94) 1.641 (4.29) 3.00 (5.85)
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Table 1.10 continued.

Panel D: Double sort by order imbalance predictability and volatility of order imbalance

Quintile of voib

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 1.142 1.753 2.402 2.802 2.621

Q2 1.122 1.466 1.699 1.799 1.650

Q3 1.131 1.160 1.397 1.623 1.291

Q4 0.890 1.061 1.153 1.048 1.032

Q5 (high) 0.650 0.874 1.144 1.136 0.880

Low-High 0.492 (1.19) 0.879 (2.58) 1.257 (3.35) 1.667 (3.80) 1.741 (5.00)

Alpha 0.834 (1.93) 1.188 (3.07) 1.407 (3.88) 1.856 (4.25) 1.835 (5.67)

Panel E: Double sort by order imbalance predictability and share turnover

Quintile of turn

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 1.831 2.719 2.485 2.469 2.631

Q2 1.049 1.705 1.661 1.606 1.832

Q3 0.903 1.157 1.442 1.349 1.249

Q4 0.557 0.915 0.971 1.247 1.098

Q5 (high) 0.759 0.903 1.049 0.663 0.641

Low-High 1.027 (3.71) 1.816 (3.57) 1.436 (3.67) 1.806 (4.46) 1.990 (4.65)

Alpha 1.166 (4.35) 1.968 (3.97) 1.559 (4.11) 1.984 (5.04) 2.176 (5.29)

Panel F: Double sort by order imbalance predictability and order imbalance

Quintile of oib

Quintile of pltott Q1 Q2 Q3 Q4 Q5

Q1 (low) 2.439 2.462 2.078 1.872 1.787

Q2 1.813 1.672 1.422 1.441 1.324

Q3 1.438 1.664 1.137 1.137 1.076

Q4 1.346 1.379 1.015 1.037 0.927

Q5 (high) 1.041 1.145 0.838 0.770 0.750

Low-High 1.398 (4.56) 1.317 (2.92) 1.240 (2.96) 1.102 (2.48) 1.036 (3.70)

Alpha 1.165 (4.85) 1.648 (3.52) 1.615 (3.91) 1.366 (3.28) 1.265 (4.81)
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Table 1.11: Betas on the Order Imbalance Predictability Factor.
This table reports the betas on the returns on the POI factor calculated from the following regres-
sion

returnsi,t = αi + βiPOIt + γ′iFt + ui,t, i = 1, . . . , 25

where Ft contains the excess returns on the market, the size and value factors of Fama and French
(1993a), the momentum factor calculated as in Jegadeesh and Titman (1993), the liquidity risk
factor from Pastor and Stambaugh (2003), as well as the short-term reversals factor and the returns
on high-minus low portfolios sorted by past month trade-to-quote ratio and both the level and
volatility of total order imbalance. The returns on the 5× 5 test assets are constructed by sorting
on both size and the predictability of order imbalance. The POI risk factor is defined as monthly
returns on the low minus high portfolio sorted by predictive likelihood of total order imbalance
pl totit . We report the estimates β̂i for each of these test portfolios. Panel A: reports the results for
test assets which are constructed as equally-weighted portfolios. Panel B: reports the results for
value-weighted test portfolios. The sample period is from January 1, 1997 to December 31, 2013.
The t-statistics are based on Newey-West adjusted standard errors. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.

Panel A: Equally-Weighted Portfolios

Decile of pltott Q1 (small) Q2 Q3 Q4 Q5 (large)

Q1 (low) 0.662*** 0.310*** 0.460*** 0.556*** 0.236***

Q2 0.320*** 0.212*** 0.208*** 0.271*** 0.236***

Q3 0.147** 0.073 0.072 0.139** 0.142***

Q4 -0.047 -0.137*** -0.022 0.024 0.021

Q5 (high) -0.345*** -0.437*** -0.349*** -0.209*** -0.240***

Panel B: Value-Weighted Portfolios

Decile of pltott Q1 (small) Q2 Q3 Q4 Q5 (large)

Q1 (low) 0.507*** 0.305*** 0.343*** 0.493*** 0.159**

Q2 0.240*** 0.204*** 0.180*** 0.222*** 0.189***

Q3 0.110** 0.085* 0.085 0.126** 0.124***

Q4 -0.095* -0.125** -0.015 0.027 -0.002

Q5 (high) -0.376*** -0.433*** -0.325*** -0.208*** -0.239***
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Table 1.12: Fama-MacBeth Regressions.
This table reports estimates of the cross-sectional regression

returnsi,t = λPOI,tβ̂i + λ′tγ̂i + ei,t, t = 1, . . . , T

where the parameters β̂i, γ̂i are estimated for each test portfolio by using the time series regression in
Eq.(1.8). The estimates λ̂POI , λ̂

′ are obtained as the sample averages of λ̂POI,t, λ̂
′
t. The predictive

likelihood pl it is defined as the 20-day rolling average over p̃l it which is calculated as in Eq.(1.3).
Panel A: reports the results for test assets which are constructed as equally-weighted portfolios.
Panel B: reports the results for value-weighted test portfolios. The sample period is from January
1, 1997 to December 31, 2013. The sample period is from January 1, 1997 to December 31, 2013.
The t-statistics (in parentheses) are based on Newey-West adjusted standard errors.

Panel A: Equally-Weighted Portfolios

POI 1.21 (2.97) 1.19 (3.48) 1.15 (2.88) 1.18 (3.30) 1.19 (3.29) 1.18 (2.96) 1.30 (2.96)

Mkt 0.60 (1.56) 0.60 (1.64) 0.57 (1.46) 0.62 (1.63) 0.59 (1.58) 0.60 (1.53) 0.58 (1.41)

SMB 0.70 (2.14) 0.54 (1.78) 0.65 (2.15) 0.53 (1.83) 0.66 (2.20) 0.56 (2.17) 0.77 (2.85)

HML -0.43 (-0.91) -0.40 (-0.92) -0.42 (-0.88) -0.33 (-0.80) -0.53 (-1.23) -0.38 (-0.92) -0.47 (-1.16)

MOM -0.64 (-0.82) -0.85 (-0.98)

REV 0.27 (0.40) -1.41 (-1.38)

LIQ 0.96 (0.89) 0.09 (0.14)

V OIB 0.71 (2.09) 0.55 (1.37)

TTQ -0.91 (-1.70) -0.80 (-1.62)

OIB -0.72 (-2.63) -1.01 (-3.08)

Panel B: Value-Weighted Portfolios

POI 1.43 (3.27) 1.44 (3.41) 1.42 (3.37) 1.44 (3.48) 1.43 (3.30) 1.44 (3.53) 1.57 (3.66)

Mkt 0.61 (1.62) 0.61 (1.62) 0.61 (1.61) 0.62 (1.61) 0.61 (1.62) 0.61 (1.62) 0.60 (1.52)

SMB 0.60 (2.09) 0.61 (2.11) 0.60 (2.21) 0.58 (2.12) 0.60 (2.25) 0.57 (2.08) 0.70 (2.48)

HML -0.49 (-1.03) -0.49 (-1.12) -0.50 (-1.14) -0.46 (-1.16) -0.50 (-1.34) -0.46 (-1.14) -0.56 (-1.20)

MOM -1.19 (-1.41) -1.19 (-1.26)

REV -0.03(-0.04) -0.14 (-1.09)

LIQ 0.51(0.62) -0.24 (-0.32)

V OIB 0.82 (2.24) 0.68 (1.52)

TTQ -1.03 (-1.64) -0.89 (-1.50)

OIB -0.86 (-2.50) -1.07 (-2.48)
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Chapter 2

Bond Risk Premia With

Machine Learning1

“There is a popular cliché ... which says that you cannot get out of com-

puters any more than you put in. Other versions are that computers only do

exactly what you tell them to, and that therefore computers are never creat-

ive. The cliché is true only in the crashingly trivial sense, the same sense in

which Shakespeare never wrote anything except what his first schoolteacher

taught him to write — words.”

– Richard Dawkins; The Blind Watchmaker (1986)

Recent advancements in the fields of statistics and computer science have

spurred interest in dimensionality reduction and model selection techniques, as well

as predictive models with complex features, such as sparsity and non-linearity, both

in finance and economics.2 Over the last two decades, however, the use of such meth-

ods in the financial economics literature has been mostly limited to data compression

techniques, such as principal component and latent factor analysis. A likely explan-

1This chapter is based on a research paper jointly authored with Daniele Bianchi and Andrea
Tamoni with the same title. Parts of the chapter have been accepted for publication in the Review
of Financial Studies as Bianchi et al. (2020). The chapter also incorporates results from the ac-
companying online appendix accessible on the publishers website. After acceptance for publication
an issue regarding overlapping observations was brought to our attention that is addressed in a
corrigendum which will be published alongside the main paper in the Review of Financial Studies.
Appendix B.3 presents additional results from the corrigendum.

2See, for example, Rapach et al. (2013), Kelly and Pruitt (2013; 2015), Freyberger, Neuhierl and
Weber (2020a), Giannone et al. (2017), Giglio and Xiu (2017), Heaton, Polson and Witte (2017),
Kozak, Nagel and Santosh (2017), Messmer (2017), Fuster et al. (2018), Gu, Kelly and Xiu (2020),
Kelly, Pruitt and Su (2019), Rossi (2018), Sirignano et al. (2018), Chen, Pelger and Zhu (2019),
Feng, Giglio and Xiu (2020), Feng, Polson and Xu (2019), and Huang and Shi (2019).
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ation for the slow adoption of advances in statistical learning is that these methods

are not suitable for structural analysis and parameter inference (see Mullainathan

and Spiess, 2017). Indeed, the primary focus of machine learning is prediction,

i.e. to produce the best out-of-sample forecast of a quantity of interest based on a

potentially large conditioning information set.

The suitability of machine learning methodologies for predictive analysis

makes them particularly attractive in the context of financial asset return predict-

ability and risk premia measurement (e.g. Gu, Kelly and Xiu, 2020). As a matter

of fact, while many problems in economics rely on the identification of primitive

underlying shocks and structural parameters, the quantification of time variation

in expected returns is essentially a forecasting problem. This practical view com-

plements the theory-driven approach, which often provides the building blocks for

the empirical analysis of financial markets. Modelling the predictable variation in

Treasury bond returns, which is the focus of this paper, provides a case in point.

Forecasting excess bond returns requires a careful approximation of the a priori un-

known mapping between the investors’ information set and excess bond returns (e.g.

Duffee, 2013, pp. 391-392).

In this paper, we employ machine learning methods to revisit the debate on

the presence of predictable variation in bond returns. We work with two traditional

frameworks; one that exploits information in the yield curve only, as in Cochrane

and Piazzesi (2005), and one that also uses information from a dataset of hundreds

of macroeconomic indicators as in Ludvigson and Ng (2009). The research design

follows the structure outlined in Gu et al. (2020), whereby a comparison of different

machine learning techniques is based on their out-of-sample predictive performance.

Methodologically, we consider a variety of machine learning techniques to forecast ex-

cess Treasury bond returns across different maturities including partial least squares,

penalised linear regressions, boosted regression trees, random forests, extremely ran-

domised regression trees, and shallow and deep neural networks (NNs). All of these

methods fall under the heading of “supervised learning” in the computer science

literature.3 Although not exhaustive, this list covers the vast majority of modern

3In “supervised” statistical learning the mapping between the quantity of interest y and the
predictors x is learned by using information on the joint distribution. Unsupervised learning (e.g.
PCA) instead does not explicitly condition on the quantity of interest y to summarise the inform-
ation content in x.
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statistical learning techniques (e.g. Friedman et al., 2001).

We also employ more classical dimensionality reduction techniques, such as

principal component analysis (PCA), which arguably represent an almost universal

approach to regression-based forecasting of Treasury bond returns.

Our contribution to the bond return predictability literature is threefold.

First, within each empirical application (i.e. yields-only or yields plus macroe-

conomic variables), we show that non-linear machine learning methods, such as

extreme trees and NNs, are useful to detect predictable variations in bond excess re-

turns, as indicated by out-of-sample predictive R2s that are significantly higher than

those obtained by data compression techniques (e.g. linear combinations of forward

rates, as in Cochrane and Piazzesi (2005), and factors extracted from macroeconomic

variables, as in Ludvigson and Ng (2009)) and penalised regression techniques. Im-

portantly, a battery of asset allocation exercises confirm that the deviations from the

Expectations Hypothesis documented in this paper are economically large. In this

regard, our paper contributes to the debate on the statistical evidence supporting

bond return predictability (e.g. Fama and Bliss (1987), Campbell and Shiller (1991)

and Cochrane and Piazzesi (2005), for applications with yields-only) or absence

thereof (e.g. Thornton and Valente, 2012).

Second, zooming in on non-linear methods, we document that using informa-

tion from macroeconomic and financial variables improves the predictive accuracy of

forecasts based only on (potentially non-linear transformations of) the yield curve.

Indeed, the best-performing NN that exploits macroeconomic and term struc-

ture information attains out-of-sample R2s that are about 10 percentage points lar-

ger (for maturities ranging from two to ten years) than the best-performing NN

that employs yields only. Similarly, we document that employing the NN forecasts

based on macroeconomic and yield information produces significantly higher cer-

tainty equivalent return values than those implied by the NN forecasts based only

on yield curve information. In this respect, our paper contributes to the debate on

whether there is macroeconomic variation not spanned by bond yields that helps

forecast excess bond returns (e.g. see Joslin et al., 2014 for evidence in favour of

unspanned macroeconomic information, and Bauer and Rudebusch, 2017; Bauer and

Hamilton, 2018 for a critical analysis of such evidence, along with a discussion of eco-

nometric issues plaguing the “spanning” linear regressions). On the one hand, our
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analysis reinforces the evidence in favour of unspanned macroeconomic information

useful to forecast excess bond returns (e.g. Cooper and Priestley, 2009; Ludvigson

and Ng, 2009; Duffee, 2011a; Joslin et al., 2014; Cieslak and Povala, 2015; Coroneo

et al., 2016; Gargano et al., 2019). On the other hand, our evidence is novel in three

respects. First, we continue to find support for unspanned macroeconomic risk even

after accounting for potential non-linearities in interest rates. Second, we find that

it is important to account for non-linearities within macroeconomic categories in

order to detect information useful for predicting excess bond returns above and bey-

ond the yield curve. Finally, we document substantial heterogeneity in the relative

importance of macroeconomic and financial variables across bond maturities: vari-

ables pertaining to the stock and labour markets are more important for short-term

maturity bonds, whereas variables pertaining to orders and inventories, and output

and income are more relevant for variation in long-term bonds. Thus, the type and

nature of unspanned factors may depend on bond maturity.

Our third contribution concerns the economic properties of the forecasts im-

plied by deep NNs. First, to provide insight into the origins of the improvements in

out-of-sample predictability, we investigate the ability of NNs to forecast the first

three principal components of the term structure: level, slope, and curvature. We

show that when using yields only as predictors, the NNs improve the forecast of

the level of the term structure. However, when both macroeconomic and financial

information is used in addition to yields, we find that the factors extracted from the

NNs contribute to the ability to predict the level of the yield curve, as well as the

slope. This is consistent with the idea that the slope of the yield curve is related

to the state of the economy, and an NN is able to extract the relevant information

from the large set of macroeconomic variables used. Next, we document that NN

forecasts are counter-cyclical and mostly related to variables that proxy for mac-

roeconomic uncertainty and time-varying risk aversion. Thus, our results support

models that feature both time variation in risk prices and time-varying risk as in,

e.g. Bekaert et al. (2009) and Creal and Wu (2018). However, our statistical meas-

ure of expected bond returns contrasts recent survey-based measures like the one

proposed by Buraschi et al. (2019), which is mostly related to financial (specifically,

bond) volatility.

In the context of machine learning in asset pricing, we document three novel
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facts.4 First, our result that extreme trees and NNs constitute the best-performing

methods even in the case when only information in the term structure is used to

forecast bond returns (i.e. in a low dimensional setting) is new and provides evidence

that the gain from non-linear machine learning methods is not relegated to a big

data context.

Second, we show that an economically-driven choice of the network structure

may perform on par with more data-driven network architectures. More specifically,

when macroeconomic data are included as potential bond return predictors, we find

that the out-of-sample predictive R2 increases almost monotonically when we move

from shallow specifications (one hidden layer) to deeper networks (up to three hidden

layers). However, we also find that economic priors about the role of variables may

improve the performance of the network. In particular, grouping variables within

economic categories and then training a shallow network within each group – a

network structure that we dub “group ensembling”– attains a performance that is

on par with the best-performing deep NN where no economic priors are utilised.

Thus, the depth of the network and the economic priors used to design the network

(e.g. grouping within categories) interact with one another, a result that is new to

the empirical finance literature.

Third, the fact that the group ensembled network outperforms more com-

plex and agnostic specifications is important since it highlights what type of non-

linearities are important from an economic perspective: Is it the interaction of many

variables (across categories) or rather a higher polynomial of the same variable

(within a category)? Since our group-ensembled network switches off interactions

across categories, our analysis shows that it is the non-linearity within a group that

is ultimately relevant for the performance of the network. In this respect, our results

for Treasury bond returns echo those in Gu et al. (2020) and Chen et al. (2019) for

the equity market: the success of NNs lies in their ability to exploit the non-linear

mapping between returns and the predictors. However, whereas Chen et al. (2019)

emphasise the importance of identifying the relevant interaction between firm char-

acteristics for equity returns, we document that, in the bond market, the interaction

across economic categories matters to a lesser extent than the interaction within a

4The literature on machine learning and asset pricing is rapidly growing (cf., footnote 1). Except
for Huang and Shi (2019), none of these papers explore machine learning methods to forecast excess
bond returns.
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category. Thus, different types of network structures may be needed for different

asset markets.

The remainder of this paper is organised as follows. Section 2.1 provides a

discussion why machine learning techniques can prove useful to measure expected

bond returns within the context of predictive regression. Section 2.2 outlines the

estimation strategy and machine learning methodologies used in the paper. Section

2.4 summarises the results on predictability of bond excess returns. Section 2.5

dissects the predictability of bond excess returns uncovered by machine learning

methods along various dimensions. Section 2.6 examines whether gains in predictive

accuracy translate into better investment performance. Section 2.7 considers the

economic drivers of bond return predictability. Section 2.8 concludes.

2.1 Motivating Framework

In this section, we provide a motivation for the use of machine learning to pre-

dict excess Treasury bond returns. The discussion is framed within the context of

regression approaches for forecasting treasury yields. We start with the account-

ing identity of Campbell and Shiller (1991). We consider a zero-coupon bond with

maturity t + n and a pay-off of one dollar. We denote its (log) price and (continu-

ously compounded) yield at time t by p
(n)
t and y

(n)
t = − 1

np
(n)
t , respectively. The

superscript refers to the bond’s remaining maturity. The (log) excess return to the

n-year bond from t to t + 1, when its remaining maturity is n − 1, is denoted by

xr
(n)
t+1 = p

(n−1)
t+1 − p(n)

t − y
(1)
t . Then, it is possible to express the log returns to bonds

as:

xr
(n)
t+1 = −(n− 1)

(
y

(n−1)
t+1 − y(n)

t

)
+
(
y

(n)
t − y(1)

t

)
. (2.1)

The identity states that (after controlling for the slope y
(n)
t − y

(1)
t ) any variable that

forecasts the change in the bond yield from t to t + 1, i.e.
(
y

(n−1)
t+1 − y(n)

t

)
, also

forecasts the log returns to bonds. Assuming that the investors’ information set at

time t can be summarised by a latent k-dimensional state vector xt, and exploiting

the identity y
(n)
t = 1

n

∑n−1
j=0 Et

(
y

(1)
t+j | xt

)
+ 1

n

∑n−1
j=0 Et

(
xr

(n−j)
t+j+1 | xt

)
, we can write:

yt = f(xt;N),
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where we stack time-t yields on bonds with different maturities in a vector yt, and

the maturities of the bonds in the vector N . Combining the equation above with

Equation (2.1), we obtain:

Et

[
xr

(n)
t+1

]
= g(xt;N) , (2.2)

for some function g(xt;N). Every term structure model reduces to a specific map-

ping between yields and state variables.

In the simplest case, yields are linear affine functions of the state variables:

yt = A + Bxt. The linearity of f (·), together with a dimensionality reduction of

the space of yields, gives rise to principal component regression (PCR) where the

quantity of interest (excess bond returns) is regressed onto principal components xt

(see Chapter 3.5 in Friedman et al., 2001):

Et

[
xr

(n)
t+1

]
= α̂+ β̂

>
xt with xt = Wyt + b, (2.3)

where the columns of W form an orthogonal basis for directions of greatest variance,

and b captures the average “reconstruction error” or bias.

Practically, the linear predictive system outlined in Equation (2.3) represents

a two-step procedure where researchers extract the latent factors xt, and then learn

the regression coefficients θ̂ =
(
α̂, β̂

>)
by minimising a loss function that depends on

the residual sum of squares. In addition to this yields-only specification, researchers

have often evaluated the role of macroeconomic variables as an important driver of

bond returns. This leads to an augmented predictive regression:

Et

[
xr

(n)
t+1

]
= α̂+ β̂

>
xt + γ̂>F t (2.4)

where F t ⊂ ft and ft is an r × 1 vector of latent common factors extracted from a

T ×N panel of macroeconomic data with elements mit, i = 1, . . . , N, t = 1, . . . , T ,

and r � N . This is the framework originally proposed by Ludvigson and Ng (2009).

Equations (2.3) and (2.4) constitute two important applications of unsuper-

vised data compression for bond forecasting.

Another very popular set of reduced-form term structure models consists

of Gaussian linear-quadratic models (e.g. Ahn, Dittmar and Gallant, 2002). In this
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case, the relation between yields and state variables is given by yt = A+Bxt+x
′
tCxt.

Note that in this case the mapping between yields and factors is non-linear in the

state variables, meaning that standard linear PCA represents a mere approximation

and does not necessarily give consistent estimates of the true underlying quadratic

factor (see Schölkopf et al., 1998). Non-linearities are also featured in reduced-form

term structure models with regime switches (e.g. Dai et al., 2007), in shadow rate

models (Black, 1995; Wu and Xia, 2016), and in the model by Feldhutter et al.

(2016) where the price of a bond is a time-varying weighted average of bond prices

in artificial, affine Gaussian economies.

Interestingly, non-linearity between bond yields and factors also emerges nat-

urally in structural models with habit formation. For example, Buraschi and Jiltsov

(2007) use habit formation preferences as a source of time varying market price

of risk in fixed income models. In their model, yields are non-linear in the state

variables, and depend on the habit stock and the factors affecting the monetary

aggregate. For completeness, Appendix B.1 provides a simple habit formation eco-

nomy that leads to bond yields being a linear-quadratic function of macroeconomic

variables like consumption growth, expected inflation, and habit.

Motivated by this literature, we investigate the possibility that a more precise

measurement of bond risk premia can be obtained by using non-linear transform-

ations of the data, an avenue that has also been advocated by Stock and Watson

(2002, p. 154) within the context of forecasting macroeconomic time series. Dif-

ferently from the Gaussian linear-quadratic models, we do not postulate a specific

functional form connecting bond yields and state variables; instead we use various

statistical techniques such as trees and networks to learn about it. Besides being

agnostic about the functional form between excess bond returns and macroeconomic

and financial variables, the use of machine learning techniques has two additional

advantages relative to the principal component regressions in Equations (2.3) and

(2.4).

First, the implementation of regression-based forecasts of excess bond returns

using principal components as outlined in Equations (2.3) and (2.4) typically implies

that no direct use of the response variable (i.e. the excess bond returns) is made to

learn about the state variables xt and F t. This is not surprising as data compression

methods such as PCA are a form of “unsupervised learning”.
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However, Equation (2.2) suggests that excess bond returns play the implicit

role of a conditioning argument, namely, one should be able to tailor the extraction

of hidden latent states xt to the response variable xr
(n)
t+1. In this respect, “supervised

learning” algorithms, such as the lasso, elastic net, partial least squares, regression

trees, random forests, and NNs, that explicitly condition on the response variables to

summarise the information in the predictors, may arguably prove useful to overcome

the limitations of standard data compression methods.5

Second, traditional PCA and factor analysis (FA) are based on the assump-

tion that all variables could bring useful information for the prediction of future

excess bond returns, although the impact of some of them could be small. However,

PCA or FA does not guarantee that by simply adding any number of predictors, we

can be sure that the extracted factors will provide an optimal summary. Boivin and

Ng (2006) formalise this argument by providing evidence that the structure of the

common components is sensitive to the input variables, and that more data does not

always mean there will be more sensible estimates. In this respect, one may want

to “select” the variables that actually matter for forecasting excess bond returns.

Penalised regressions, such as lasso and elastic net, as well as NNs exploit the entire

span of the input variables without imposing that they all carry useful information

for determining excess bond returns.

The existing literature on bond return predictability has vastly ignored the

potential capability of machine learning techniques to address the issue of non-

linearity and variable regularisation. Arguably, this comes at the expense of not

fully capturing the extent to which yields and macroeconomic variables are relevant

for the measurement of expected excess bond returns. This is the focus of our paper.

2.2 Research Design

In this section, we outline the research design for the empirical analysis. We start

with a description of the data, along with the specific applications. We then review

5Ludvigson and Ng (2009, p. 5034) acknowledge that “factors that are pervasive for the panel of
data [input] need not be important for predicting [the output]” and propose a three-step forecasting
procedure where a subset of principal components extracted from a large panel of macroeconomic
variables is selected according to the information criteria before running the bond return forecasting
regressions. In line with this intuition, we provide evidence that supervised learning methodologies,
such as NNs, are useful to exploit the information in predictors other than yields, and to improve
the out-of-sample forecast of bond returns.
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the methodologies implemented in the main empirical analysis. We conclude with a

short discussion of our estimation strategy.

2.2.1 Data and Empirical Applications

The empirical analysis is based on two main benchmark applications. The first

application concerns the forecasting of future bond excess returns based on the

cross-section of yields as originally proposed by Cochrane and Piazzesi (2005). We

use the novel zero-coupon Treasury yield curve dataset constructed by Liu and

Wu (2020). This dataset allows us to study bond returns with maturity greater

than five years (the longest maturity in the Fama-Bliss dataset). This is import-

ant since long maturity yields contain substantial extra predictive power over and

above the first five yields (Le and Singleton, 2013, discuss the importance of using

long-maturity bond yields in assessing the dynamic properties of risk premiums in

Treasury markets). Moreover, Liu and Wu (2020) construct the zero-coupon curve

using a non-parametric kernel-smoothing method that does not discard Treasury

bills, which is instead the case for the parametric approach adopted by Gurkaynak

et al. (2007). This is important since Liu and Wu (2020) find that securities at the

short end of the yield curve contain important information in disciplining the overall

behaviour of the curve. Using the Liu and Wu (2020) yield curve dataset, we then

construct forward rates and excess bond returns as described in Section 2.1. We fo-

cus on bonds with maturities up to 10 years. Since the U.S. Treasury started issuing

10-year notes in September 1971, this also defines the start of our sample period.

We do not use bonds with longer maturities for two reasons. First, the Treasury

began issuing 20-year bonds in July 1981, and 30-year bonds in November 1985.

This would force us to start the analysis later, reducing further the out-of-sample

period since training the NNs requires a sufficient amount of data.6 Second, the

issuance of long-maturity Treasury notes and bonds occurs at irregular intervals; to

compensate for the lack of observations at long-maturities, the Liu and Wu (2020)

method pulls information for the 20- and 30-year bonds from maturities that are 10

6Contrary to typical machine learning applications, such as image recognition, common signal-
to-noise ratios in financial data are low, exacerbating the need for sufficient data. Hence, we delay
the start of the out-of-sample period so far that we have at least a handful of observations per weight
to be estimated in our smallest NN (i.e. a single hidden layer with three nodes). For larger network
architectures in which the number of parameters exceeds the number of available observations,
regularisation methods are used to ensure satisfactory training.
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years (or more) away.

The second application consists of forecasting future bond excess returns

based on both forward rates and a large panel of macroeconomic variables as pro-

posed by Ludvigson and Ng (2009). We consider a balanced panel of N = 128

monthly macroeconomic and financial variables. A detailed description of how vari-

ables are collected and constructed is provided in McCracken and Ng (2016). The

series were selected to represent broad categories of macroeconomic time series:

real output and income, employment and hours, real retail, manufacturing and sales

data, international trade, consumer spending, housing starts, inventories and invent-

ory sales ratios, orders and unfilled orders, compensation and labour costs, capacity

utilisation measures, price indexes, interest rates and interest rate spreads, stock

market indicators, and foreign exchange measures. This dataset has been widely

used in the literature (e.g. Stock and Watson, 2002, 2006; Ludvigson and Ng, 2009),

and permits comparison with previous studies.

2.2.2 Forecasting Methods

Principal Component Regressions and Partial Least Squares

The first method we employ is a linear, dimensionality-reduction technique known as

principal component regressions (PCRs). Undoubtedly, PCRs constitute the most

common method used to forecast interest rates and Treasury bond returns.

In the classical implementation of PCRs, the target variable is discarded when

extracting the latent factors. Thus, we also consider an alternative data compression

methodology called partial least squares (PLS). Unlike PCR, with PLS the common

components of the predictors are derived by conditioning on the joint distribution

of the target variable and the regressors. Section 2.3.1 provides additional details

on PLS, while contrasting this method to PCRs and penalised regressions, which we

discuss next.

Penalised Regressions: Ridge, Lasso and Elastic Net

Confronted with a large set of predictors, a popular strategy is to impose sparsity /

shrinkage in the set of regressors via a penalty term. The idea is that by selecting a

subset of variables with the highest predictive power out of a large set of predictors,
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and discarding the least relevant ones, one can mitigate in-sample overfitting and

improve the out-of-sample performance of the linear model.

In its general form, a penalised regression entails adding a penalty term on

top of the OLS objective function LOLS (θ) = 1
t

∑t−1
τ=1

(
xr

(n)
τ+1 − α− β

>yτ

)2
with

θ =
(
α,β>

)
:

L (θ; ·) = LOLS (θ)︸ ︷︷ ︸
Loss Function

+ φ (β; ·)︸ ︷︷ ︸
Penalty Term

. (2.5)

Depending on the functional form of the penalty term, the regression coefficients

can be regularised and shrunk towards zero (as in ridge), exactly set to zero (as in

lasso), or a combination of the two (as in elastic net). In Section 2.3.2, we describe

each method in details.

Penalised regressions still do not account for non-linear relations. To address

this issue, we consider a third class of non-linear methods: “shallow learners”, such

as regression trees and more deep structures, such as neural networks.

Regression Trees

Regression trees are based on a partition of the input space into a set of “rectangles.”

Then, a simple linear model is fit to each rectangle. Figure 2.1 displays an example

of a binary partition (Panel (a)) and the corresponding regression tree (Panel (b)).

Regression trees are conceptually simple, yet powerful, and therefore highly popular

in the machine learning literature. In addition to a standard regression tree meth-

odology, we consider extensions that employ an ensemble of individual trees, like

“random forests’ (Breiman, 2001), and, furthermore, take into account the random-

ness in the predictors’ partition process, like “extremely randomised trees” (Geurts

et al., 2006). Section 2.3.3 provides additional technical details on the estimation of

regression trees (and their extensions).

Neural Networks

Neural networks (NNs) represent a widespread class of supervised learning methods.

We focus on traditional “feed-forward” networks or multi-layer perceptrons (MLP).

Throughout the paper, we follow Feng et al. (2018) and adopt the convention of
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counting only the hidden layers, without including the output layer.

For details on the estimation of NNs, see Section 2.3.4. Next, we provide a

high level description of the NNs structure we consider in our empirical applications.

Neural networks: yields-only. When we forecast bond returns using

only information from the term structure of interest rates, we use variants of the

NN architecture depicted in Figure 2.2. That is, we use a classical MLP. An MLP

consists of, at least, three layers of nodes (the case displayed in the figure): an input

layer, a hidden layer and an output layer.

The result is a learning method that can approximate virtually any continu-

ous function with compact support (Kolmogorov, 1957; Diaconis and Shahshahani,

1984; Cybenko, 1989; Hornik, Stinchcombe and White, 1989). In the empirical ap-

plication, we study the predictive accuracy of this classical network as we vary the

number of hidden layers, as well as the number of nodes per layer.

Neural networks: macro plus yields. When we forecast bond returns

using macroeconomic variables in addition to information from the term structure,

we consider three alternative specifications that extend the typical MLP structure

by taking into account the economic structure of the input data, as well as the nature

of the forecasting problem.

The first specification, displayed in Panel (a) of Figure 2.3, can be thought

of as a “hybrid” modelling framework in the sense that forward rates are simply

included as an additional predictor in the output layer (“fwd rates direct”). This

structure simulates the idea of Ludvigson and Ng (2009) in which the latent factors

F t are extracted from a large cross-section of macroeconomic variables and a linear

combination of forward rates is included as proposed by Cochrane and Piazzesi

(2005). We label this structure where forward rates have been pre-processed a

“hybrid neural network”.

The second specification, displayed in Panel (b) of Figure 2.3, ensembles two

separate networks at the output layer level: one network is trained for the forward

rates (“fwd rates net”) and one for the macroeconomic variables. In contrast to the

specification in Panel (a), this specification allows for a non-linear transformation of

forward rates.

The third specification, displayed in Panel (c) of Figure 2.3, entails a collec-

tion of networks, one for each group of macroeconomic variables, which are trained
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in parallel and ensembled at the output layer level. The groups of macroeconomic

variables are constructed following the classification provided by McCracken and

Ng (2016).7 This latter specification, which we call “group ensembling” switches off

the (non-linear) interactions across groups of macroeconomic variables, which are

instead present in the specifications of Panels (a) and (b).

To the best of our knowledge, these specifications have not been proposed

before in the empirical asset pricing literature within the context of non-linear pre-

dictive methods. We study the predictive accuracy of these networks as we vary the

number of hidden layers, and the number of nodes per layer.

2.2.3 Estimation Strategy

Following common machine learning practice, we split the data into three sub-

samples: a training set used to train the model, a validation set used to evaluate

the estimated model on an independent data set, and a testing set, which represents

the out-of-sample period in a typical forecasting exercise.8

We follow Gu et al. (2020) and, conditional on the estimates from the training

set, we produce forecasting errors over the validation sample. We then use the

prediction errors over the validation sample to iteratively search the hyperparameters

that optimise the objective function. Thus, the validation sample represents the part

of data that is used to provide an unbiased evaluation of a model fit. It is trivial

to see that predictions in the validation set are not out-of-sample as they are used

to tune the model hyperparameters. The third sub-sample, or the testing sample,

contains observations that are not used for estimation or tuning. This third sub-

sample is known as the “out-of-sample” period and can be used to test the predictive

performance on observations yet unseen by the machine learning model.9

There are a variety of splitting schemes that could be considered but the

7Specifically, we group 128 predictors into eight categories: i) output (16 series); ii) labour
market (31 series); iii) housing sector (10 series); iv) orders and inventories (10 series); v) money
and credit (14 series); vi) bond and FX and interest rates or financial (22 series); vii) prices or price
indices (16 series); and viii) stock market (5 series). Four series in our sample could not be matched
to McCracken and Ng (2016) and are left unclassified.

8See Chen et al. (2017) for an in-depth discussion of model fragility (i.e. the tendency of a model
to over-fit the data in-sample) at the expense of poor out-of-sample performance.

9Note, the out-of-sample period is only “pseudo” out-of-sample in the sense that its observations
are available to the researcher at the time of the study. Nevertheless, given that the observations in
the out-of-sample period have not been used to train the model itself, it is standard in the machine
learning literature (in asset pricing) to refer to the testing sample as the “out-of-sample” period
(e.g. see Gu et al., 2020; Feng et al., 2018).

67



trade-off between the size of the training and validation samples is ultimately an em-

pirical question (see Arlot et al., 2010 for a comprehensive survey of cross-validation

procedures for model selection). We keep the fraction of data used for training and

validation fixed at 85% and 15% of the in-sample data, respectively. The training

and the validation samples are consequential. In this respect, we do not cross-

validate by randomly selecting independent subsets of data to preserve the time

series dependence of both the predictors and the target variables. Forecasts are pro-

duced recursively by using an expanding window procedure, that is we re-estimate a

given model at each time t and produce out-of-sample forecasts for one-year holding

period excess returns.

Figure 2.4 provides a visual representation of the sample splitting scheme we

adopt in the empirical analysis. Notice that for some of the methodologies, validation

is not required. For instance, neither standard linear regressions nor PCA require

a pseudo out-of-sample period to validate the estimates. In these cases, we adopt

a traditional separation between in-sample versus out-of-sample period, where the

former consists of both the training data and the validation data.

We recursively forecast bond returns in excess of the short-term rate. We

focus on one-year holding period excess returns for comparability with the original

settings in Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009).

We recursively fit machine learning methods at each time t (i.e. we in-

crease the in-sample period by one monthly observation). This scheme allows us

to incorporate the most recent updates from the yield curve, as well as the set of

macroeconomic and financial variables.10 When enlarging the in-sample period, we

roll it forward to include the most recent information in a recursive fashion but keep

constant the ratio between the training sample and the validation sample. In this

respect, we always retain the entire history of the training sample, thus its window

size gradually increases. By keeping the proportion of the training and validation

sets fixed, the validation sample gradually increases as well.

The result is a sequence of performance evaluation measures that correspond

to each recursive estimate. Although computationally expensive, this leverages more

information for prediction. In each empirical application, the sample spans from

10Note that this is different from the implementation of machine learning methods for stock
returns, where trading signals from firm characteristics are often updated once per year, which
means that retraining of the models could be performed with lower frequency (Gu et al., 2020).
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1971:08 to 2018:12.

Since our forecasting exercise is iterative, the computational challenge be-

comes sizeable. Thus, we perform all computations on a high performance com-

puting cluster consisting of 84 nodes with 28 cores each, totalling to more than

2,300 cores. Appendix B.2 provides a complete description of the computational

specifications.

2.2.4 Statistical Performance

We compare the forecasts obtained from each methodology to a naive prediction

based on the historical mean of excess bond returns. In particular, we calculate the

out-of-sample predictive R2 as suggested by Campbell and Thompson (2008). The

R2
oos is akin to the in-sample R2 and is calculated as

R2
oos = 1−

∑T−1
t0=1

(
xr

(n)
t+1 − x̂r

(n)
t+1 (Ms)

)2

∑T−1
t0=1

(
xr

(n)
t+1 − xr

(n)
t+1

)2 , (2.6)

where xr
(n)
t+1 is the prediction obtained based on the historical mean and x̂r

(n)
t+1 (Ms)

is the forecast of the excess bond returns for maturity n obtained using model Ms,

and t0 is the date of the first prediction. The first forecast error obtains by comparing

the excess holding period return during the February 1989 through January 1990

period and its forecast made on January 1989.

We also build a portfolio-level return forecast from the individual maturity

forecasts produced by our models. We construct the forecast of an equally-weighted

portfolio by x̂r
(EW )
t+1 = 1

6

∑10
n=2 x̂r

(n)
t+1 (Ms). We compute R2

oos,EW by constructing

forecast errors using the realised return xr
(EW )
t+1 = 1

6

∑10
n=2 xr

(n)
t+1 and comparing to

the historical mean.

Testing the null hypothesis, R2
oos ≤ 0, against the alternative hypothesis,

R2
oos > 0, is tantamount to testing whether the predictive model has a significantly

lower mean squared prediction error (MSPE) than the historical average benchmark

forecast. Thus, to test whether R2
oos is significantly greater than zero, we implement

the MSPE-adjusted Clark and West (2007) statistic.

A limitation of the R2
oos measure is that it does not explicitly account for

the risk borne by an investor over the out-of-sample period. To this, end we also
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calculate realised utility gains for a mean-variance or power utility investor (see

Section 2.6).

2.3 Algorithmic Procedures

This section provides the details of the algorithmic procedures for the main forecast-

ing methods introduced in the previous section. The section starts with the linear

approaches, including partial least squares and penalised regressions, before moving

on to non-linear methods, including tree-based methods and neural networks. Read-

ers familiar with the details of the aforementioned techniques may safely decide to

skip this section.

2.3.1 Partial Least Squares

Following the extant practice (see Ch.3.5 Friedman et al., 2001), Partial Least

Squares (PLS) is constructed iteratively as a two-step procedure: in the first step

we regress excess bond returns on each predictor j = 1, . . . , p separately and store

the regression coefficient ψj . The first partial least squares direction is constructed

by multiplying the vector of coefficients by the original inputs, that is x1 = ψ′yt.

Hence the construction of x1 is weighted by the strength of the relationship between

the excess bond returns and the predictors. In the second step, excess bond returns

are regressed onto x1 giving the coefficient θ1. Then all inputs are orthogonalised

with respect to x1. In this manner, PLS produces a sequence of l < p derived inputs

(or directions) orthogonal to each other.11

Notice that since the response variable is used to extract features of the

input data, the solution path of PLS represents a non-linear function of excess bond

returns. Stone and Brooks (1990) and Frank and Friedman (1993) show that, unlike

PCA which seeks directions that maximise only the variance, the PLS maximises

both variance and correlation with the response variable subject to orthogonality

conditions across derived components.12 PLS does not require the calibration of

11It is easy to see that for l = p we go back to usual linear least squares estimates similar to PCR.
12In particular, the m-th direction solves:

max
γ

Corr2
(
xr(n),yγ

)
·Var (yγ)

subject to ‖γ‖ = 1, γ′Σψ̂j = 0, j = 1, . . . ,m− 1
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hyperparameters as the derived input directions are deterministically obtained by

the two-step procedure outlined above. In this respect, unlike penalised regressions

no shrinkage / regularisation parameters are required to be calibrated.

2.3.2 Penalised Regressions

We present the algorithms utilised to estimate the penalised regression models, i.e.

the ridge, lasso and elastic net regressions. To recall, penalised regressions add a

penalty term φ(β; ·) to the least squares loss function L (θ) where θ = (α,β>). The

penalty terms in the individual methods are given by

φ (β; ·) =



λ

p∑
j=1

β2
j Ridge regression (2.7a)

λ

p∑
j=1

|βj | Lasso (2.7b)

λµ

p∑
j=1

β2
j +

λ (1− µ)

2

p∑
j=1

|βj | Elastic net (2.7c)

Apart from the estimation of θ, we have to determine the level of the shrinkage /

regularization parameters λ and µ. Usually, this is achieved by cross-validation, i.e.

λ and µ are chosen from a suitably wide range of values by evaluating the pseudo

out-of-sample performance of the model on a validation sample and picking the

λ, µ that yield the best validation error. In the context of time series forecasts the

validation sample should be chosen to respect the time-dependence of the observed

data, meaning that the validation sample is chosen to follow upon the training

sample used to obtain θ in time. In the following we discuss in more detail the

algorithms that are used to obtain coefficient estimates for the penalised regression

models.

In contrast to ridge, which is discussed further below, lasso and elastic net

coefficient estimates cannot be obtained analytically because of the L1 component

that enters their respective penalty terms (cf. Eq. (2.7b) and (2.7c)). Hence, we

estimate θ by means of cyclical coordinate descent proposed by Wu et al. (2008) and

extended in Friedman et al. (2010). In our exposition of the algorithm of Friedman

et al. (2010) we focus on the elastic net case since the lasso case is contained as a

special case therein (i.e. by setting µ = 0).
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At a high-level coordinate descent can be described as an optimisation method

aimed at minimising a loss function one parameter at a time while keeping all other

parameters fixed. More precisely, consider the loss function for the elastic net

L(θ) =
1

2N

N∑
i=1

(yi − α− x>i β)2 + λµ

p∑
j=1

β2
j +

λ(1− µ)

2

p∑
j=1

|βj | (2.8)

where the factor two in the denominator in front of the sum is introduced to simplify

subsequent expressions for the gradient of the loss function. The minimisation of

the loss function is unaffected by multiplication with a scalar. Denote by L(θ)(k)

the loss function after the k-th optimisation step. The gradient of the loss function

with respect to βj evaluated at its current estimate β̂
(k)
j is given by

− 1

N

N∑
i=1

xij(yi − α− x>i β̂) + λ(1− µ)βj + λµ (2.9)

if β̂j > 0. A similar expression can be obtained for the case β̂j < 0 and β̂j = 0 (cf.

Friedman et al., 2007). Then, it can be shown that the optimal β is obtained by

following the Algorithm (1). Commonly, a “warm-start” approach is used to obtain

the parameter estimates over the range for λ and µ during cross-validation, meaning

that when moving from one set of regularization parameters λ, µ to the next, the

prior estimates β̂ are utilised as initial parameters for the subsequent coordinate

descent optimization.

In contrast to lasso and elastic net regressions, the Ridge regression has a

closed-form solution given by (e.g. see Friedman et al., 2001, Ch. 3)

β̂Ridge = (X>X + λI)−1X>y (2.10)

where X is the input N × p matrix of p regressors, I is an N ×N identity matrix

and y is the vector of dependent variables.

Although there exists an elegant analytical solution to the ridge regression

setup, it is common to apply a matrix decomposition technique to circumvent issues

incurred by matrix inversion. Thus, we use a singular value decomposition (SVD)
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Algorithm 1: Coordinate Descent

Choose initial estimates for α̂ = ȳ and β̂
(0)

for given λ and µ, where ȳ is the
unconditional mean of y.

Standardise the inputs xij such that
1
N

∑N
i=1 xij = 0, 1

N

∑N
i=1 x

2
ij = 1, for j = 1, . . . , p.

Set ε to desired convergence threshold
while there is an improvement in the loss function, i.e.
|L(θ)(k+1) − L(θ)(k)| > ε do

for all predictors j = 1, . . . , p do

ŷ
(j)
i = α̂+

∑
l 6=j xilβ̂l, i.e. the fitted value when omitting the covariate

xij

β̂j ←
S
(

1
N

∑N
i=1 xij(yi−ŷ

(j)
i ),λµ

)
1+(1−µ) , defines the parameter-wise update,

where S, the soft-thresholding operator, is given by

S(a, b) =


a− b, if a > 0 ∨ b < |a|
a+ b, if a < 0 ∨ b < |a|
0, b ≥ a

end

end

Output: Estimates β̂ for given level of λ, µ;

of the matrix X with the form

X = UDV > (2.11)

where U is a N ×N orthogonal matrix, V is a p× p orthogonal matrix and D is an

N × p diagonal matrix containing the singular values of X. Then it can be shown

that the fitted values are given as

Xβ̂Ridge = UD
(
D2 + λI

)−1
DD>y. (2.12)

The shrinkage parameter λ is chosen by cross-validation. Alternative estimation ap-

proaches such as conjugate gradient descent (Zou and Hastie, 2005) become relevant

when X gets larger in dimension.

2.3.3 Tree-Based Methods

Regression trees can approximate any a priori unknown function while keeping the

interpretation from a recursive binary tree. However, with more than two inputs,

the interpretation is less obvious as trees like the one depicted in Figure 2.1 grow
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exponentially in size. Nevertheless the algorithmic procedure is equivalent. Suppose

one deals with a partition of M regions A = {A1, . . . , AM} of the vector of yields yt

such that

g(yt;N) =
M∑
m=1

βmI (yt ∈ Am) .

By minimising the sum of squared residuals, one can show that the optimal estim-

ate β̂m is just the average of the excess bond returns in that region, i.e. β̂m =

E
[
xr

(1)
t+1

∣∣∣y1:t ∈ Am
]
. Finding the optimal partition by using a least squares proced-

ure is generally infeasible, however. We thus follow Friedman (2001) and implement

a gradient boosting procedure. Gradient boosting in a tree context boils down to

combining several weak trees of shallow depth.

Boosting is a technique for reducing the variance of the model estimates

and increasing precision. However, trees are “grown” in an adaptive way to reduce

the bias, and thus are not identically distributed. An alternative procedure would

be to build a set of de-correlated trees which are estimated separately and then

averaged out. Such modelling framework is known in the machine learning literature

as “Random Forests” (see Breiman, 2001). It is a substantial modification of bagging

(or bootstrap aggregation) whereby the outcome of independently drawn processes

is averaged to reduce the variance estimates. Bagging implies that the regression

trees are identically distributed – as the number of simulated trees increases, the

variance of the average estimates depends on the variance of each tree times the

correlation among the trees. Random forests aim to minimise the variance of the

average estimate by minimising the correlation among the simulated regression trees.

We also consider an extended version of the random forest procedure which

is called “Extremely Randomised Trees” (Geurts et al., 2006) . While similar to

ordinary random forests in that they still represent an ensemble of individual trees,

extreme trees have two main distinguishing features: first, each tree is trained us-

ing the whole training sample (rather than a bootstrap sample); and second, the

top-down splitting in the tree learner is randomised. That means that instead of

computing the optimal cut-point locally for each input variable under consideration,

a random cut-point is selected. In other words, with extreme trees the split of the

trees is stochastic; with random forests the split is instead deterministic.
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Tree-based methods such as Gradient Boosted Regression Trees or Random

Forests are essentially modifications of a universal underlying algorithm utilised for

the estimation of regression trees, commonly, that is the Classification and Regres-

sion Tree (CART) algorithm (Breiman et al., 1984) presented in Algorithm (2).

Algorithm 2: Classification and Regression Trees

Initialise tree T (D) where D denotes the depth; denote by Rl(d) the
covariates in branch l at depth d.

for d = 1, . . . , D do

for R̃ in
{
Rl(d), l = 1, . . . , 2d−1

}
do

Given splitting variable j and split point s define regions

Rleft(j, s) = {X | Xj ≤ s,Xj ∩ R̃} and

Rright(j, s) = {X | Xj > s,Xj ∩ R̃}

In the splitting regions set

cleft(j, s)←
1

|Rleft(j,s)|
∑

xi∈Rleft(j,s)

yi(xi)

cright(j, s)←
1

|Rright(j,s)|
∑

xi∈Rright(j,s)

yi(xi)

Find j∗, s∗ that optimise

j∗, s∗ = argmin
j,s

[ ∑
xi∈Rleft(j,s)

(yi−cleft(j, s))
2+

∑
xi∈Rright(j,s)

(yi−cright(j, s))
2
]

Set the new partitions

R2l(d)← Rright(j
∗, s∗) and R2l−1(d)← Rleft(j

∗, s∗)

end

end
Output: A fully grown regression tree T of depth D. The output is given by

f(xi) =

2L∑
k=1

avg(yi | xi ∈ Rk(D))1{x∈Rk(D)},

i.e. the average response in each region Rk at depth D.

Next, we present the Algorithm (3) used to populate random forests as sug-

gested by Breiman (2001). Random Forests consist of trees populated following an

algorithm like CART, but randomly select a sub-set of predictors from the original

data. In this manner, the individual trees in the forest are de-correlated and overall

predictive performance relative to a single tree is increased. The hyperparameters
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to be determined by cross-validation include first and foremost the number of trees

in the forest, the depth of the individual trees and the size of the randomly selected

sub-set of predictors. Generally, larger forests tend to produce better forecasts in

terms of predictive accuracy. Finally, Algorithm (4) delivers the gradient boosted

regression tree (GBRT) (Friedman, 2001). GBRTs are based on the idea of combin-

ing the forecasts of several weak learners. The GBRT comprises of trees of shallow

depth that produce weak predictions stand-alone, however, tend to deliver powerful

forecasts when aggregated adequately.

Algorithm 3: Random Forest

Determine forest size F
for t = 1, . . . , F do

Obtain bootstrap sample Z from original data.
Grow full trees following Algorithm (2) with the following adjustments:

1. Select p̃ variables from the original set of p variables.

2. Choose the best combination (j, s) (cf. Algorithm (2)) from p̃ variables

3. Create the two daughter nodes

Denote the obtained tree by Tt
end
Output: Ensemble of F many trees. The output is the average over the trees
in the forest given as

f(xi) =
1

F

F∑
t=1

Tt(xi)

2.3.4 Neural Networks

A commonly used algorithm to fit neural networks is stochastic gradient descent

(SGD). For this paper we make use of a modified form of gradient descent by adding

Nesterov momentum (Nesterov, 1983). In comparison to plain SGD which is often

affected by oscillations between local minima, Nesterov momentum (also known as

Nesterov accelerated gradient) accelerates SGD in the relevant direction. Algorithm

(5) outlines the procedure. It is best practice to initialise neural network parameters

with zero mean and unit variance or variations thereof such as He et al. (2015) like

we do in this paper. Over the course of the training process this normalisation

vanishes and a problem referred to as covariate shift occurs. Thus, we apply batch

normalisation (Ioffe and Szegedy, 2015) to the activations after the last ReLU layer.
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Algorithm 4: Gradient Boosted Regression Trees

Initialise a gradient boosted regression tree f0(x) = 0 and determine number
of learners F . Let L(y, f(x)) be the loss function associated with tree
output f(x).

for t = 1, . . . , F do
for i = 1, . . . , N do

Compute negative gradient of loss function evaluated for current state
of regressor f = ft−1

rit = −∂L(yi, ft−1(xi))

∂ft−1(xi)
.

end
Using the just obtained gradients grow a tree of depth D (commonly,
D � p where p is the number of predictors) on the original data
replacing the dependent variable with {rit,∀i}. Denote the resulting
predictor as gt(x).

Update the learner ft by

ft(x)← ft−1(x) + νgt(x)

where ν ∈ (0, 1] is a hyperparameter.
end
Output: fF (x) is the gradient boosted regression tree output.

Algorithm 5: Stochastic Gradient Descent with Nesterov Momentum

Initialise the vector of neural network parameters θ0 and choose momentum
parameter γ. Determine the learning rate η and set v0 = 0.

while No convergence of θt do
t← t+ 1
vt = γvt−1 + η∇θtL(θt)
θt ← θt−1 − vt

end
Output: The parameter vector θt of the trained network.
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Batch normalisation reduces the amount of variability of predictors by adjust-

ing and scaling the activations. This increases the stability of the neural network

and the speed of training. The output of a previous activation is normalised by

subtracting the batch mean and dividing by the batch standard deviation. This

is particularly advantageous if layers without activation functions, i.e. the output

layer, follow layers with non-linear activations, such as ReLU, which tend to change

the distributions of the activations. Since the normalisation is applied to each in-

dividual mini-batch, the procedure is referred to as batch normalisation. The SGD

optimisation remains largely unaffected; in fact, by using batch normalisation the

structure of the weights is more parsimonious. Algorithm (6) outlines the procedure

from the original paper.

Algorithm 6: Batch Normalisation per mini-batch

Let B = x1,...,m be a mini-batch of batch-size m. Set parameters λ, β.
µB ← 1

m

∑m
i=1 xi

σ2
B ←

1
m

∑m
i=1(xi − µB)2

x̂i ← xi−µB√
σ2
B+ε

yi ← γx̂i + β ≡ BNγ,β(xi)
Output: The normalised mini-batch BNγ,β(xi).

Algorithm (7) presents the early stopping procedure that is used to abort

the training process early when the loss on the validation sample has not improved

for a specific number of consecutive iterations. Early stopping is used to improve

the performance of the trained models and reduce over-fitting. By evaluating the

validation error, it prevents the training procedure from simply memorising the

training data (see Bishop, 1995 and Goodfellow et al., 2016). More specifically, by

means of early stopping the training process is stopped prematurely if the loss on

the validation sample has not improved for a number of consecutive epochs. In

detail, our algorithm is stopped early if any of the following is true: maximum

number of epochs reached the value of 1000, gradient of loss function falls below a

specified threshold, or the MSE on validation set has not improved for 20 consecutive

epochs. When early stopping occurs, we retrieve the model with the best validation

performance. Early stopping has two effects. Firstly, early stopping prevents over-

fitting by aborting the training when the pseudo out-of-sample performance starts

to deteriorate, hence it reduces over-fitting. Secondly, since the optimal number of

weight updates is unknown initially, early stopping helps to keep the computational
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cost at a minimum by potentially stopping the training far before the maximum

number of iterations is reached.

Algorithm 7: Early Stopping

Initialise the validation error ε = inf and define a patience φ, also set j = 0
while j < φ do

Update θ using Algorithm (5) to get θ(j), i.e. the parameter vector at
iteration j

Compute loss function on validation sample ε′ = Lval(θ; ·) if ε′ > ε then
j ← j + 1

end
else

j ← 0
ε← ε′

θ′ = θ
end

end
Output: The early-stopping optimised parameter vector θ′

Finally, it is important to highlight that we use a form of forecast averaging

/ ensembling, i.e. we train multiple copies of networks with different seeds for

the randomly drawn initial network weights. Using fixed seeds will in general lead

to replicable results. Nevertheless, different seeds will produce different forecasts

as discussed also in Gu et al. (2020). Therefore, in order to reduce prediction

variance, we average over forecasts from networks initialised with different seeds. To

be precise, for each time t we initialise 100 models with different but fixed seeds.

The 100 models are then trained and as part of the training we obtain the validation

sample loss. The validation sample loss is then used to select the 10 out 100 models

with the smallest validation sample error. Finally, we average the forecasts of those

10 in-sample best performing models.

2.4 An Empirical Study of U.S. Treasury Bonds

2.4.1 Bond Return Predictability and the Yield Curve

We start by forecasting the excess returns of Treasury bonds with the yield curve.

In this case, the classical specification is given by the principal component regression

(PCR) in Equation (2.3).

In words, excess returns are regressed on PCs of the Treasury term structure,

i.e. xt = [PC1,t . . . , PCk,t]. We use the first three, five, or ten PCs. The case with
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ten PCs essentially corresponds to the setting in Cochrane and Piazzesi (2005),

where excess returns are regressed on a linear combination of short-rate, y
(1)
t , and

nine forward rates for loans between t+ n− 1 and t+ n, f
(n)
t , n = 2, . . . , 10. Table

2.1 displays the out-of-sample R2
oos (and its p-value) for different bond maturities;

we also report the R2
oos for an equally-weighted portfolio.

Panel A of Table 2.1 displays the results for PCRs and partial least squares

(PLS). The first three rows show the predictive performance of PCRs for k = 3, 5,

and 10 PCs. The predictive R2 are negative across different maturities. A parsimo-

nious representation with only three PCs significantly outperforms the specification

with five and ten PCs, particularly at long maturities. Further, adding simple forms

of non-linearities such as squared PCs worsens the performance. Perhaps surpris-

ingly, a linear supervised learning method like PLS does not lead to any improvement

relative to PCR.

Panel B of Table 2.1 displays the results from various configurations of the

linear penalised regressions. Ridge regression performs poorly out-of-sample with

predictive R2
oos that are mostly negative across bond maturities. The second and

third rows of Panel B show that sparse modelling improves the forecasting perform-

ance of the current term structure relative to ridge: the R2
oos for both the lasso

and elastic net are positive for maturities greater than four years, as well as for

the equally-weighted bond portfolio. However, the performance of elastic net is on

par to that obtained from a principal component regression with three PCs, which

proves to be a tough benchmark.

Panel C of Table 2.1 shows the results for boosted regression trees, random

forests, extremely randomised trees, and neural networks. All these methods attain

good performance with significantly positive R2
oos across maturities. With respect to

trees, the randomisation of the feature split locations (i.e. for extreme trees) turns

out to improve the out-of-sample performance over random forests, particularly for

long maturities. Turning to NNs, we observe that a shallow network with a single

hidden layer and three nodes (cf. Figure 2.2) performs on par with the best, deeper

network with two hidden layers and seven nodes. Interestingly, further increasing

the depth of the network deteriorates its performance. This continues to be the case

even when we consider alternative structures, like an NN with three hidden layers

and pyramidal node architecture.
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The last row of Panel C presents the results of an interesting case. In their

paper, Cochrane and Piazzesi (2005) conclude that lags of forward rates (dated t−1

and earlier) contain information about excess returns that is not spanned by month

t forward rates. They note that this result is inconsistent with the logic that the

time-t term structure contains all information relevant to forecasting future yields

and excess returns (cf. Equation (2.2)). We therefore ask whether the flexibility of

a NN can help reconcile the theoretical assumption that yields at time t already

incorporate all information about the term structure that is needed to understand

bond risk premia. To this end, the last row in Panel C reports the results obtained

by feeding the NN with the ten forward rates at time t and lagged forward rates

from time t − 11 to t − 1. By comparing the last row to the NN with one hidden

layer and three nodes, we find no evidence that we can improve upon a NN that

uses just the month-t forward rates.13

The evidence in Table 2.1 confirms that, even in a small dimensional setting

using only information in the yield curve, we can improve bond risk premia meas-

urement by acknowledging that (1) the function g(yt;N) in Equation (2.2) can be

non-linear, and that (2) such improvement depends on the neural network specifica-

tion; a shallow NN with one hidden layer performs on par with a network with two

layers, but deeper networks worsen the performance. Finally, consistent with Equa-

tion (2.2), we find that lagged values of the yield curve cannot improve the forecast

obtained using just the time-t term structure when we account for non-linearities.

2.4.2 Bond Return Predictability and Macroeconomic Variables

Next, we consider the set-up where information embedded in the yield curve does

not necessarily subsume information contained in macro variables. In this case, the

classical specification is given by Equation (2.4), where the factors Ft now have

the potential to serve as the model’s state vector beyond yields only. To ensure

comparability with the literature, we adopt the specification proposed by Ludvigson

and Ng (2009), whereby F t is a subset of the first eight PCs extracted from a large

cross-section of macroeconomic variables and xt represents a linear combination of

forward rates as proposed by Cochrane and Piazzesi (2005), a.k.a. the CP factor.

13We report only the best specification with lagged forward rates (i.e. a shallow NN with seven
nodes). NNs with more layers or a different number of nodes underperform.
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Panel A in Table 2.2 displays results from a simple principal component re-

gression with eight PCs, the specification proposed in Equation (8) of Ludvigson and

Ng (2009) (i.e. F t =
(
F1t, F

3
1t, F3t, F4t, F8t

)
), and partial least squares (PLS). Panel

B shows the results from two alternative implementations of sparse and regularised

linear regressions. In the first implementation (“using CP factor”), we employ the

CP factor as an additional regressor; this specification ensures a closer comparability

to Ludvigson and Ng (2009). In the second implementation (“using fwd rates dir-

ectly”), we treat the whole set of forward rates as additional regressors with respect

to macroeconomic variables.

The results in Panels A and B shows that: (1) dense modelling, such as

data compression techniques and ridge regression, tends to perform poorly out-of-

sample; and (2) sparse modelling with both regularization and shrinkage (i.e. elastic

net regressions), perform well, particularly when restricting the linear combination

of forward rates. Comparing Panel B in Table 2.1 to that in Table 2.2, it seems

apparent that there is information beyond the term structure of interest rates that

can be used to predict bond returns.

Turning to non-linear machine learning methods, Panel C in Table 2.2 shows

the results from the three alternative network specifications discussed in Subsection

2.2.2: (1) a “hybrid” framework in which the forward rates enter linearly as addi-

tional predictors in the output layer (“fwd rates direct”; Figure 2.3, Panel (a)); (2)

a specification that ensembles one network for the forward rates (“fwd rates net”)

and one for the macroeconomic variables (Figure 2.3, Panel (b)); and (3) a specific-

ation that entails a collection of networks, one for each group of macroeconomic

variables (Figure 2.3, Panel (c)). This latter specification, dubbed “group ensem-

bling”, switches off the (non-linear) interactions across groups of macroeconomic

variables, which are present in the hybrid network, as well as in the specification

that ensembles separately forwards and macroeconomic variables.

The performance of hybrid networks stands out. Interestingly, and differently

from Table 2.1, increasing the depth of the NN from one- to three-layers improves

its accuracy.

However, a careful choice of network structure based on prior economic in-

formation exerts a great impact on performance. In particular, a one-layer group

ensembled model (see third-to-last row) performs on par with the three-layer hybrid
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NN for short- and medium-term maturities, and attains the highest predictive ac-

curacy for the 7- and 10-year bonds. Interestingly, adding more layers is detrimental

to the performance of the group ensembled NN.

Panel C in Table 2.2 also shows that the performances of boosted regression

trees, random forests, and extreme trees improve substantially when using a large

panel of macroeconomic information. In fact, the extreme trees perform better than

shallow (hybrid and ensembled) NNs but worse than the (best performing) one-layer

NN with group ensembling.

The results in Table 2.2 show that macroeconomic variables carry information

that is not contained in the yield curve. When we compare the best performing (one

layer and three nodes) NN in Table 2.1 to the 1-layer group ensembled NN, we

observe approximately a 10 percentage point increase in R2
oos for each maturity.

The results also show that the depth and structure of the network interact with

one another: having a separate network for each group of macroeconomic variables

compensates for the need of a deep NN when macroeconomic variables are processed

together without further classification.

2.4.3 Bond Return Predictability in Monthly Holding Periods

Bollerslev et al. (2009) show that short-horizon stock returns are very hard to predict.

Similarly, the monthly predictability of bond excess returns tends to be much lower

than predictability of annual holding period returns (see, e.g. Gargano et al., 2019).

To address this issue we now focus on the predictability of monthly holding period

returns in this section. Table 2.3 reports the results for the sample period from

1964:10 to 2016:12.14

We observe that the ranking displayed in Tables 2.1 is largely preserved. That

is, the performance (averaged across maturities) of non-linear models, specifically

NNs, is higher than the one obtained by data compression methods and penalised

linear regressions. For instance, at longer maturities neural networks attain an R2
oos

which is up to 50% bigger than the parsimonious PCA with three factors. The

statistical results from Tables 2.1 and 2.3 provide evidence that non-linear models

14The test assets are the Center for Research in Security Prices Treasury Fama bond portfolios.
These very same assets have been used, e.g. by Duffee (2002). Only non callable, non flower notes
and bonds are included in the portfolios. The portfolio returns are an equal-weighted average of
the unadjusted holding period return for each bond in the portfolios in excess of the risk-free rate.
We consider four buckets: bonds with maturity of 1-2 years, 2-3 years, 3-4 years, and 4-5 years.
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are able to detect substantial bond return predictability with the R2
ooss for NN

models are in positive territory for both monthly and annual holding period returns.

For the case in which macroeconomic information is used in addition to the

yield curve, Table 2.4 reports the performance in monthly holding period. The res-

ults obtained for annual bond excess returns are largely confirmed. In particular,

Panel C shows that imposing a sensible economic structure through group ensem-

bling significantly increases the out-of-sample predictive performance of the (two-

layer hybrid) NNs. I.e., grouping variables within economic categories and then

training a shallow network within each group – a network structure that we dub

“group ensembling”– attains a performance that is better than the best-performing

deep NN where no economic priors are utilised. Thus, the depth of the network and

the economic priors used to design the network (e.g. grouping within categories)

interact with one another.

Further, comparing Table 2.4 to Table 2.3, we find that a group ensemble NN

that exploits macroeconomic and term structure information attains out-of-sample

R2s that are more than three times larger than the best-performing NN that employs

yields only for maturities ranging from two to five years.

2.5 Dissecting Predictability

2.5.1 Bond Return Predictability in Expansions and Recessions

We start by investigating whether bond return predictability varies over the eco-

nomic cycle. To this end, we split the data into recession and expansion periods

using the NBER recession indicator.

Table 2.5 shows the R2
oos values computed separately for the recession and

expansion sub-samples. For yields-only PCA, we recover a classical result: predict-

ability is concentrated in economic recessions (in particular for long maturity bonds)

and is absent during expansions.

Turning to NNs, we continue to observe R2
oos that are generally higher dur-

ing recessions than in expansions. However, the difference in R2
oos values decreases

with bond maturity. More importantly, a formal test confirms that the bond return

prediction from NNs is statistically different from that of the expectations hypo-

thesis (EH) model both in expansion and recession. In contrast to NNs, the return
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predictability implied by trees is actually stronger during expansions. A formal

test confirms that the predictive accuracy of trees is significantly better than that

generated by the EH benchmark only for expansion periods. Finally, a pairwise

test (untabulated) confirms that the improvement of NNs over trees is mainly due

to the better predictive accuracy of networks in recessionary periods; however, the

predictions from trees and NNs are indistinguishable in expansions.

Our finding that the predictability of bond returns implied by machine learn-

ing methods is not concentrated exclusively in bad times, but is present also in

expansions is novel to the literature and contrasts with evidence for equities (Ra-

pach et al., 2010; Dangl and Halling, 2012) and bonds (Gargano et al., 2019). In

Section 2.5.2, we analyse the models’ performance in different periods using the cu-

mulative sum of squared errors and confirm that the out-performance of machine

learning-based forecasts versus the EH benchmark is not concentrated in isolated

events.

Interestingly, however, it is possible to relate, ex post, NN forecasts to specific

patterns of the yield curve. Table 2.6 shows that NNs, and in particular the group

ensemble network that exploits macroeconomic and financial information in addition

to interest rates, predict high excess bond returns when there is a steep slope in the

yield curve (e.g. right after recessions) and when the level of the yield curve is high.

Further, these NN predictions (conditional on specific shapes of the yield curve) are

highly correlated with realised returns, thus leading to high R2s.

2.5.2 Bond Return Predictability and Cumulative SSE

To identify the periods in which the models perform best, we follow Welch and Goyal

(2008) and compute the difference in the cumulative sum of squared errors (SSE) for

the EH model versus the machine learning model of interest, ∆CumSSE. Positive

and increasing values of ∆CumSSE suggest that the model under consideration

generates more accurate point forecasts than the EH benchmark.

Figure 2.5 plot the ∆CumSSE for the best performing regression tree spe-

cification, i.e. extreme tree (Panels (a) and (c)), and for the best performing neural

network, namely the NN 1 Layer (3 nodes) – when forecasting with only the forward

rates (Panel (b)) – and NN 1 Layer Group Ensem + fwd rate net – when including

also macroeconomic variables (Panel (d)) – (see Tables 2.1-2.2 for reference). We
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focus on the ten-year bond maturity. In general, the plots show that the various

machine learning models perform well relative to the EH model as manifested by

lines that are increasing for most periods. Indeed, only when we consider exclus-

ively yields-based predictors, we then observe occurrence of decreasing graphs (i.e.

periods where the models underperform against this benchmark). However, these

are few isolated occasions (e.g. around 2001 and 2008). Interestingly, adding mac-

roeconomic variables improves the predictive accuracy of the models relative to the

benchmark. Comparing panel (c) to (d), we note that: (1) the performance of ex-

treme trees is particularly effective in few, rather prolonged, periods, namely 1992

to 1996 and the aftermath of the financial crisis; (2) the performance of the NN

with group ensembling is instead characterised by an almost steady improvement in

performance.

Another interesting aspect to investigate is whether expected bond returns

could have evolved differently in response to availability of technology.15 However,

referring to our plots of out-of-sampleR2 over time, even in later years when adoption

of neural networks spread, we still notice the outperformance of neural networks vis-

a-vis the expectation hypothesis.

Overall, we take these patterns as rather reassuring that the value-added

through machine learning based forecasts is rather pervasive and not concentrated

in isolated events.

2.5.3 Understanding the Performance of Neural Networks: Level,

Slope or Both?

In this subsection we provide an heuristic interpretation of the performance of the

NNs based on the Campbell and Shiller (1991) accounting identity (Equation (2.1)).

Such identity posits that the forecasts of future yields (or their PCs) using current

yields are necessarily also forecasts of expected log returns to bonds.

15The theory necessary to apply our networks was available in the 1990s when our out-of-sample
period starts. The overarching concept of back-propagation in multi-layer neural networks was
introduced in Werbos (1974). The use of automatic differentiation (AD) that is necessary for fast
computation of gradients during back-propagation was used in Werbos (1982). An early example
of a study using neural networks for prediction in a finance context, on gas markets to be precise,
with similar models as used by us is Werbos (1988) and others exist before 1990. What is less clear
is whether the necessary computational power was available to estimate the models in a reasonable
amount of time. Also, while the most fundamental building blocks were in place in the late 1980s,
regularisation concepts such as dropout (Srivastava et al., 2014) and batch normalization (Ioffe and
Szegedy, 2015) were only introduced later.
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Thus, we investigate the ability of the latent factors extracted by the NN

to predict the year-on-year changes in the first three PCs extracted from the cross-

section of forward rates. We denote these principal components as PC1,t, PC2,t, and

PC3,t. The auxiliary forecasting regressions are:

PCi,t+1 − PCi,t = b0 + b>1 Pt + b>2 xt + εi,t+1 for i = 1, 2, 3,

where we stack the first three PCs of the term structure in the vector Pt and denote

by xt the hidden factors extracted by the NN.16

Table 2.7 reports the in-sample R2 of such predictive regressions. The first

row provides the benchmark results based on the sole vector Pt. In support of

Duffee (2011b, 2013), we find weak evidence that changes in the first PC (level) are

forecastable (R2 = 9.28% being the lowest), whereas the slope and curvature are un-

questionably forecastable with 21.66% (48.70%) of the variation in slope (curvature)

that is predictable.

Next, we add to the regression the hidden factors extracted from the two

best performing NNs in Table 2.1-2.2: the NN 1 Layer (3 nodes) – when forecasting

only with the forward rates – and NN 1 Layer Group Ensem + fwd rate net – when

including also macroeconomic variables. We observe that the factors extracted from

NNs that use yields-only (second row in Table 2.7) contribute substantially to the

predictability of the level and curvature. On the other hand, the statistical evidence

for slope forecasts - after controlling for the standard three principal components - is

weak. We conclude that there is substantial information in the time-t term structure

not only about future values of slope, but also about the level (and curvature).

Standard PCs are not entirely able to extract all the relevant information about

the level. A shallow NN is successful in extracting such information about the

future level of the curve, an information which leads to excess returns being more

predictable out-of-sample.

The last row in Table 2.7 focuses on factors extracted from a NN that exploits

macroeconomic variables in addition to forward rates. We observe that the factors

extracted from the group ensembled NN not only contribute to the ability to predict

16Take a shallow network with L = 1 hidden layers as an example, i.e.: Et
[
xr

(n)
t+1

]
= α̂n + β̂

>
nxt,

where, xt = h (Wyt + b). The latent factor xt is extracted at each time t conditional upon estimates
of the weights W and bias b from the vector of inputs yt.
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the level of the yield curve, but also the slope. This suggests that the slope of the

yield curve is related to the state of the economy, and our NN is able to extract the

relevant information from our large set of macroeconomic variables.

2.5.4 Relative Importance of Macroeconomic Variables

In this subsection, we investigate which variables drive the performance of NNs

studied in Tables 2.1-2.2. To this end, we examine the marginal relevance of single

variables based on the partial derivative of the target variable, xr
(n)
t+1, with respect

to each input, where the gradient is evaluated at the in-sample mean value of the

input, i.e.

E
[
∂

∂yit
xr

(n)
t+1

∣∣∣yit = yi

]
, (2.13)

where yi represents the in-sample mean of the input variable i. The partial derivative

represents the sensitivity of the output to the ith input evaluated at its sample

mean, conditional on the network structure and the average value of the other input

variables (see Dimopoulos et al., 1995). Further, we focus on the magnitude of the

gradients by taking their absolute values.

Figure 2.6 shows the relative importance of each input variable based on the

gradient in Equation (2.13). The analysis is carried out for the best-performing

NN in Table 2.2, the NN with one hidden layer where macroeconomic variables and

forward rates are modelled separately through ensembling at the output layer level.

For ease of exposition, we report only the top 20 most relevant predictors. Panels

(a) and (b) display results for the 2- and 10-year bond maturities, respectively. To

gain further intuition about the systematic patterns in the drivers of expected excess

bond returns, we also calculate the relative importance from the absolute gradients

averaged for each class of input variables as labelled in McCracken and Ng (2016).

The results, displayed in Panels (c) and (d), provide an indication of which economic

category dominates.

Comparing Panel (c) to (d) in Figure 2.6, we observe that the variables

pertaining to inflation, and money and credit are important independently from the

maturity considered. However, the results also show that the effect of other classes of

predictors is heterogeneous over the term structure. For instance, variables related
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to the stock and labour market are more important for the short-end of the yield

curve, while variables pertaining to the categories output & income and orders &

inventories become more relevant for the long-end of the curve.

This analysis is important for two reasons. First, it suggests that inflation has

a level-like effect on bond yields, whereas variables pertaining to the labour market

(order & inventories) are likely to have a slope effect acting mostly on short-term

(long-term) bonds, while leaving long-term (short-term) bonds unaffected. This

evidence can therefore provide guidance for theoretical models that include macro

risk factors as drivers of bond risk premia by highlighting their permanent or tran-

sient nature. Second, our analysis suggests that the use of excess bond returns

averaged across maturities is unlikely to flesh out the true impact of macro risk

factors on bond risk premia.17

In all, our results show that there is information in macroeconomic and finan-

cial variables beyond that conveyed by the yield curve, and this information improves

the predictions of bond returns (Tables 2.1-2.2). In addition, the type of unspanned

(by the yield curve) information may vary across different bond maturities. To our

knowledge, this fact is novel and provides a new angle to revisit a central question

in the term structure literature, which is whether yields data contain all the relevant

information to predict future bond returns.

2.5.5 Interactions Within or Across Categories?

The finding that a shallow group ensembled network performs on par with (or better

than) a deep, three layer NN that models all macroeconomic and financial variables

together is novel to the literature on machine learning and asset prices, and is im-

portant for two reasons. First, our results on group ensembled NNs show that the

depth of the network and the economic priors used to design it (e.g. grouping vari-

ables that pertain to the same category) interact with one another. In particular, for

the application at hand, group ensembling can compensate for the depth of the net-

work. Second, our results highlight what type of non-linearities are important from

17Our evidence of a level-like effect of inflation on bond yields is in line with the analysis in Joslin
et al. (2014, Section VI). Furthermore, within the orders & inventories category, we find that “New
Orders for Durable Goods” is of single-most importance for forecasts at the far end of the curve (see
Panel (b) in Figure 2.6). Yang (2011) provides theoretical and empirical evidence that is consistent
with our finding by showing that the impact of durable consumption growth on the yield curve
strengthens with bond maturity.
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an economic perspective: Is it the interaction of many variables (across categories)

or a higher polynomial of the same variable (within a category)? Since our group

ensembled network switches off interactions across categories, our results show that

it is the non-linearity within a group that drives the outperformance of the network.

Of course, this is true only in so far as cross-group network weights are not already

small in the fully connected network.

Table 2.8 shows that this is indeed not the case. More precisely, we calculate

the second order derivatives of the output with respect to each input conditional on

the inputs being in different groups of predictors.18 We estimate cross-group partial

derivatives for both a fully connected network and a network with group-ensembling.

The results in Panel A show that the absolute value of the sum of interaction

derivatives in the fully connected network is orders of magnitude larger than the

value obtained from a group-ensembled NN (i.e. the cross-group interactions are

indeed large in the fully connected network). In Panel B of Table 2.8, we provide

the within-group second order partial derivatives of the outputs with respect to the

inputs conditional on being in the same group. We find that the magnitude of

the within-group effects is similar between the fully connected and group-ensembled

NNs. Hence, the performance of the group-ensembled NN is driven by imposing the

absence of interactions across categories while allowing for non-linearity within an

economic category.

2.5.6 Model Uncertainty

Faced with multiple NN estimates, the question of how to best exploit ex-ante dif-

ferent forecasting specifications immediately arises. In particular, should we rely on

a single, ex post, dominant model specification or should a combination of different

forecasts be used to produce a better forecast? From a pure theoretical perspective,

unless the best forecasting model can be identified ex-ante, forecast combinations

may offer some diversification benefits (see Clemen, 1989, for a discussion). How-

ever, it may also be the case that a carefully designed validation procedure is able

18That is, we calculate:

E
[

∂2

∂yi∂yj
xr

(n)
t+1

∣∣∣yi ∈ GA, yj ∈ GB] , (2.14)

where GA and GB are two non-overlapping groups of variables defined as in McCracken and Ng
(2016), and we sum the absolute value of Equation (2.14) for each interaction of variables that do
not belong to the same group.
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to systematically pick the best out-of-sample model specification.

To answer this question, we first compare the best-performing NN within the

context of forecasting bond returns with both yields and macroeconomic variables –

the NN 1 Layer Group Ensem + fwd rate net (see Table 2.2) – against a combined

forecast of the form,

x̂r
(n)
c,t+1 =

M∑
i=1

ωi,t · x̂r(n)
i,t+1 (2.15)

where x̂r
(n)
c,t+1 denotes the one-step ahead combined forecast for maturity n, ωi,t is

the weight assigned to each individual prediction, x̂r
(n)
i,t+1, and i = 1, . . . ,M are

the forecasts from the set of NNs M in Table 2.2. We choose two representative

model combination schemes: (1) an equal weight assigned to each forecast, i.e.

ωi,t = 1/M, and (2) a linear combination of forecasts based on the validation losses,

i.e. ωi,t =
1/L(ei,t|θi)∑M

i=1(1/L(ei,t|θi))
, where L (ei,t|θi) is the validation loss obtained from the

cross-validation prediction error ei,t given the network hyperparameters θi.
19

In addition to an equal-weight and a relative-performance combination scheme,

we also compare our best-performing NN forecasts against a full-blown cross-validated

network. In particular, we expand the set of hyperparameters that are cross-

validated and selected every five years; that is, we let optimisation procedures not

only select the dropout rate and the L1/L2 penalties, but also the number of hidden

layers, the nodes per group of macroeconomic variables, and the nodes in the forward

rate network (see Appendix Table B.1 for details on the hyperparameters).20

The logic for comparing our best-performing model against two represent-

ative forecast combination schemes and a full-blown cross-validated network is to

make sure that our results are robust to more flexible and adaptive modelling

strategies. Table 2.9 reports the results. Two interesting aspects emerge from the

table. First, the group-ensembled NN (see first row) outperforms both forecast com-

bination schemes (second and third rows), the sole exception being at the two-year

maturity. Second, our group-ensemble network specification tends also to perform

on par with, or better than, the full-blown cross-validated network for maturities

19Note that the loss function we use is a simple mean squared error plus a penalty to induce
regularisation in the weights. This means that the weighting scheme reflects the performance of
each model relative to the performance of the average model (e.g. Bates and Granger, 1969; Newbold
and Granger, 1974; Stock and Watson, 1998; Elliott and Timmermann, 2004).

20We thank an anonymous referee for suggesting this exercise.
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greater than three years. Hence, we conclude that the optimal structure of layers

and nodes, which is endogenously chosen through an adaptive cross-validation ex-

ercise, does not improve (except for the very short-end) upon a more parsimonious

and economically motivated network structure, like our one-layer group-ensemble

NN.

We next examine the recursive performance, meaning cross-validation error,

of the top performing neural network. In principle, the performance of the NN 1

Layer Group Ensem + fwd rate net specification could be justified by the fact that

such network is consistently chosen through cross-validation and across time. In

Table 2.10, we compare how often the four on average best-performing NN structures

from Table 2.2 are selected throughout the out-of-sample period. Two interesting

facts emerge. First, our best-performing group-ensembled NN generates the smallest

validation error (and thus it would be chosen through cross-validation) for about

a half of the out-of-sample period. This could explain the similar performance

between the best-performing (group-ensemble) NN in Table 2.2 and the full-blown

cross-validated model, which contains the benchmarking specification in the model

set. Second, shallow NNs tend to consistently deliver lower validation errors. This

reinforces our result that network depth and structure interact with one another:

in fact, a carefully designed network outperforms a deeper, and more data-driven,

network structure.

2.6 Economic Value of Excess Bond Return Forecasts

So far, our analysis concentrated on statistical measures of predictive accuracy. Next

we evaluate whether the apparent gains in predictive accuracy translate into better

investment performance relative to the no-predictability alternative. This is import-

ant since Thornton and Valente (2012) find that yield-based predictors, when used

to guide the investment decisions of an investor with mean-variance preferences, do

not lead to higher out-of-sample Sharpe ratios compared with investments based on

a no-predictability expectations hypothesis (EH) model. Sarno et al. (2016) reach a

similar conclusion. However, the large time variation in expected bond returns that

is detectable in real time by machine learning methods naturally calls for revisiting

these findings.
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2.6.1 The Asset Allocation Framework

In order to assess the economic importance of machine learning methods (particu-

larly trees and NNs) in forecasting bond returns, we use a classic portfolio choice

problem (Della Corte et al., 2008; Thornton and Valente, 2012). Specifically, we

consider an investor who optimally invests in a portfolio comprising K + 1 bonds: a

risk-free one-period bond and K risky n-period bonds.

We consider both univariate and multivariate asset allocation exercises. In

the univariate case, the investor selects between an n-year bond and the risk-free

return based on the expected return implied by a given model. We focus on the

results for n = 2 and n = 10 years. In the joint asset allocation exercise, the investor

selects bonds with maturities of two- to ten-years, and the risk-free return. We

present the asset allocation decisions of a mean-variance and power utility investor.

Mean-Variance Utility Investor At each time t, the decision-maker selects the

weights on the risky n-period bonds wt =
[
w

(2)
t . . . w

(10)
t

]
to maximise the quadratic

utility:

max
wt

E [Rp,t+1]− γ

2
Var (Rp,t+1) ,

where γ is the risk aversion coefficient of the mean-variance investor, Rp,t+1 = 1 +

y
(1)
t + w′txrt+1 is the gross return on the portfolio, E [Rp,t+1] is the sample mean

portfolio return, and Var (Rp,t+1) is the sample variance portfolio return. Then the

solution of the above optimisation is wt,s = 1
γΣ−1

t+1|tx̂rt+1 (Ms), where x̂rt+1 (Ms)

is the vector of bond returns’ forecast obtained using model Ms, and Σt+1|t =

V art (xrt+1 − Et [xrt+1]). For the univariate allocation exercise we have: w
(n)
t,s =

x̂r
(n)
t+1(Ms)

γσ
(n)
t+1|t

where x̂r
(n)
t+1 (Ms) is the bond returns’ forecast for maturity n given model

Ms, and σ
(n)
t+1|t the diagonal element of Σt+1|t relative to the bond with n-year

maturity.

To proxy for Σt+1|t, we employ a rolling sample variance estimator as in

Thornton and Valente (2012): Σ̂t+1|t =
∑∞

l=0 Ωt−l�εt−lε′t−l, where εt =
[
ε
(2)
t . . . ε

(10)
t

]′
are forecast errors, Ωt−l = α exp (−α) 11′ is a symmetric matrix of weights, � de-

notes element-by-element multiplication, and we set the decay rate α to 0.05 (same

value as in Thornton and Valente (2012) and within the range of those reported in

studies like Fleming et al. (2001)). We also winsorise the weights for each of the
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n-period bonds to −1 ≤ w
(n)
t ≤ 2 to prevent extreme investments; however, we

evaluate the robustness of our results to alternative assumptions about the portfo-

lio weights. Finally, to make our results directly comparable to other studies (e.g.

Thornton and Valente, 2012; Gargano et al., 2019), we assume a coefficient of risk

aversion of five.

Given the Markowitz optimal weights on the risky bonds, we compute the

realised utilities. Then, following Fleming et al. (2001), we obtain the certainty

equivalent gains (annualised and in percentages) by equating the average utility of

the EH model with the average utility of any of the alternative models.

To test whether the certainty equivalent return (CER) values are statistically

greater than zero, we use a Diebold and Mariano (1995) test. Specifically, to evaluate

the allocation implied by the NN forecasts, we estimate the following regression:

ut+1,NN − ut+1,EH = α(n) + εt+1 ,

where ut+1,s = w′t,sxrt+1 − γ
2w
′
t,sΣt+1wt,s and s = {EH,NN}, i.e. we use the

optimal weights together with the realised returns.

Power Utility Investor Next, we consider the investment decision of a repres-

entative investor that has a power utility of the form,

U (wt,xrt+1) =

[
(1−w′tι) exp

(
y

(1)
t

)
+w′t exp

(
y

(1)
t ι+ xrt+1

)]1−γ

1− γ
, γ > 0

(2.16)

where γ captures the investor’s risk aversion and ι is a vector of ones. We follow

Campbell and Viceira (1999), Campbell and Viceira (2004) and Gargano et al. (2019)

and assume excess bond returns are jointly log-normal distributed so that the excess

returns on a portfolio of treasury bonds can be approximated by

Rp,t+1 = 1 + y
(1)
t +w′txrt+1 +

1

2
w′tσ

2
t+1|t −

1

2
w′tΣt+1|twt (2.17)

where Σt+1|t denotes the covariance matrix of the excess bond returns, and we denote

with σt+1|t its diagonal elements. Campbell and Viceira (2004) show that under log-

normality of excess returns, the optimal allocation on a maturity-specific bond can
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be defined as

w
(n)
t =

1

γ
(
σ

(n)
t+1|t

)2

[
x̂r

(n)
t+1 +

(
σ

(n)
t+1|t

)2
/2

]
(2.18)

Given these optimal set of weights, the realised utility for, say, the univariate case

can be computed by plugging wt into Equation (2.16).

Similar to the mean-variance case presented above we proxy for Σt+1|t by

using a rolling sample variance estimator as in Thornton and Valente (2012), and

set the coefficient of relative risk aversion equal to γ = 5. Further, to test if the

annualised CER values are statistically greater than zero, we employ again a Diebold

and Mariano (1995) test. Specifically, for a power utility investor that selects a

single risky asset with maturity n using when the forecast from a NN, we estimate

the regression

u
(n)
t+1,NN − u

(n)
t+1,EH = α(n) + εt+1

where

u
(n)
t+1,j =

1

1− γ

[
(1− ω(n)

t,j ) exp(y
(1)
t ) + ω

(n)
t,j exp(y

(1)
t + xr

(n)
t+1)

]1−γ

and j = {EH,NN}.

2.6.2 Asset Allocation: Results

Table 2.11 shows the annualised CER values computed relative to the EH model.

Positive values indicate that the predictive model performs better than the EH

model. We focus on the best predictive models from Tables 2.1-2.2, the extreme

trees and the NN 1 Layer (3 nodes) – when forecasting only with forward rates –

or NN 1 Layer Group Ensem + fwd rate net – when including the macroeconomic

variables.

With the sole exception of the mean-variance investor selecting the two-year

bond, the remaining CER values for the trees and NNs are significantly higher

than those generated by the EH benchmark. The CER values increase with bond

maturity, but the highest CER values are found in the multivariate setting, which

suggests that the economic gains associated with NNs forecasts are not limited to

specific maturities.
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Interestingly, when the (mean-variance or power utility) investor makes no

use of information beyond the term structure of interest rates, then trees deliver

CER values that are 0.2%-0.7% greater than those obtained using NNs. However,

when the investor also considers information from macro and financial variables,

then NNs outperform trees by 0.6% (power utility and 10-year bond) to 1% (mul-

tivariate setting). A pairwise test confirms that this improvement of NNs over

trees is statistically significant. Furthermore, the results in Table 2.11 also show

that (for the univariate and multivariate allocation, independently from utility) the

group-ensemble NN that exploits macroeconomic information produces significantly

higher CER values than those implied by the best-performing NN using yields-only.

Overall, our machine learning-based forecasts of bond returns provide support for

the hypothesis that a (statistically and economically) significant portion of macroe-

conomic information is not captured by the yield curve, even after accounting for

non-linearity in interest rates.21

In summary, we find that a NN that exploits the non-linearities within groups

of macroeconomic variables delivers high predictive accuracy (see Table 2.2), which,

in turn, translates into investment strategies with large economic value (see Table

2.11).

2.7 Economic Drivers of Bond Return Predictability

and Portfolio Performance

In this section, we investigate whether our forecasts of excess bond returns are

consistent with explanations based on time-varying risk premia. We then examine

the economic drivers of bond return predictability and portfolio performance.

2.7.1 Cyclical Patterns of Expected Excess Bond Returns

We start by investigating the cyclicality of our forecasts of excess bond returns.

Indeed, standard asset pricing models featuring habit persistence like Wachter (2006)

suggest that bond risk premia are counter-cyclical.

21The p-values based on power utility (Panel B) are lower than those reported for mean-variance
(Panel A). This is because the power utility setting generates less volatile CER series. To address
the higher persistence of power utility CER, we compute Newey-West standard errors using a larger
truncation parameter equal to 20 lags (see Lazarus et al., 2018). Even in this case, we continue to
find statistical support for our conclusions.
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In Panels (a) and (b) in Figure 2.7, we plot the forecast of 10-year bond

returns obtained from the best-performing NNs against the industrial production

index growth. The results are similar for alternative maturities. We report the

prediction based on yields only (Panel (a)), as well as the prediction obtained by

adding macroeconomic variables to forward rates (Panel (b)). In Panels (c) and (d),

we overlay our forecasts with the realised ten-year excess bond returns series.22

Independently of the set of predictors employed, Panels (a) and (b) in Figure

2.7 reveal that the bond risk premium obtained from NNs displays a clear counter-

cyclical pattern. In particular, the contemporaneous correlations between forecasts

of the ten-year excess bond returns and industrial production is −12.4% (p-value of

0.07) when only information in the term structure is used (Panel (a)). This correla-

tion almost doubles to −24.6% (p-value of 0.01) when we add macroeconomic vari-

ables to forward rates (Panel (b)).23 Thus, using macroeconomic variables greatly

improves the estimates of the risk premium.

This prima facie evidence suggests that our forecasts may be consistent with

the fact that investors want to be compensated for bearing recession-related risks.

To the extent that our forecasts of excess bond returns reflect time-varying risk

premia, we would also expect higher Sharpe ratios in recessions. To this end, Table

2.12 reports, for the 2- and 10-year bond maturities, the Sharpe ratios computed

separately for recession and expansion periods. We find that, across all maturities

and forecasting models, the Sharpe ratios are substantially higher during recessions

than in expansions.

2.7.2 Economic Drivers of Expected Excess Bond Returns

Having established that our forecasts of excess bond returns, and the associated

Sharpe ratios, move counter-cyclically, we next investigate whether these forecasts

are linked to key drivers of bond risk premia suggested by asset pricing theory

and previous evidence. In particular, we regress the forecasts of ten-year excess

bond returns obtained from the best-performing NNs in Tables 2.1-2.2 on a set of

22Relative to yields-only, the addition of macroeconomic variables leads to: (1) NN forecasts that
are higher in the recession of 2007-2009, and (2) better predictive performance. In Section 2.5.2,
and in particular Panels (b) and (d) of Figure 2.5, we examine the predictive accuracy of NNs
throughout our sample period.

23The correlation p-values are computed using Newey and West (1987b) standard errors with 12
lags.
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structural risk factors that arise in equilibrium models and generate time-varying

bond risk premia. Each row in Table 2.13 corresponds to a different specification.

Motivated by the literature on the role of disagreement in asset prices (e.g.

Buraschi and Jiltsov, 2007; Dumas et al., 2009), we examine the role played by dif-

ferences in beliefs for the dynamics of excess bond returns. The results are in row

(i) in Table 2.13. We proxy for real disagreement (DiB(g)) and nominal disagree-

ment (DiB(π)) using the interquartile range of four-quarter-ahead forecasts of GDP

and consumer prices (CPI), respectively, obtained from the Survey of Professional

Forecasters (SPF).

We investigate the link between time-varying risk aversion and excess bond

returns in rows (ii) and (iii) of Table 2.13. Asset pricing models featuring habit

persistence suggest that risk premia should be higher during recessions due to a

reduced surplus consumption ratio. Following Wachter (2006), we proxy for risk

aversion using (the negative of) a weighted average of 10 years of quarterly con-

sumption growth rates (dubbed −Surplus). We also employ the new measure of

time-varying risk aversion proposed by Bekaert et al. (2019) (dubbed RAbex). This

risk aversion measure is calculated from observable financial information at high

frequencies.

We next examine the role played by economic growth and inflation uncer-

tainty, UnC(g) and UnC(π), for expected bond returns in row (iv). This link can

be motivated by long-run risk models like Bansal and Shaliastovich (2013) or by

habit-models that allow for time variation in quantities of risk like Creal and Wu

(2018).24

Finally, we examine the link between bond volatility and our forecasts of

excess bond returns in row (v) of Table 2.13. To assess this link, we employ two

proxies: (1) the intra-month sum of squared yield changes (returns) on a constant

maturity 10-year zero-coupon bond (denoted as σ(n)); and (2) the one month implied

10-year maturity bond risk-neutral volatility published by the CME (denoted as

TY V IX).25

24To proxy for uncertainty, we adapt the procedure of Bansal and Shaliastovich (2013). In the
first step, we use our SPF on consensus expectation of four-quarter GDP growth and inflation and
fit a bivariate VAR(1). In a second step, we compute a GARCH(1,1) process on the VAR residuals
to estimate the conditional variance of expected real growth and inflation.

25http://www.cboe.com/products/vix-index-volatility/volatility-on-interest-rates/

cboe-cbot-10-year-u-s-treasury-note-volatility-index-tyvix. Accessed 10th February
2020.
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Several conclusions emerge from the results in Table 2.13. First, the link

between structural risk factors and realised returns is generally weak. The sole factor

that is statistically linked to realised bond returns is the risk neutral volatility (Panel

A, row v).

Our forecasts of excess bond returns paint a completely different picture.

Independently from the set of predictors we use, we find a strongly positive coefficient

on uncertainty about economic growth but not on inflation uncertainty (Panels

B and C, row iv). We also find strong support for the prediction of equilibrium

models based on habit preferences (Panels B and C, row ii). Adding macroeconomic

information strengthens this conclusion: in this case, the slope coefficient on the risk

aversion measure proposed by Bekaert et al. (2019) is also positive and statistically

significant (Panel C, row iii). Finally, in line with Duffee (2002), we find only a weak

link between expected bond returns and bond volatility (Panels B and C, row v; the

link is marginally significant in Panel B, but the R2 is small).

There are minor differences between Panel B and C. In particular, the addi-

tion of macroeconomic variables leads to a positive and statistically significant slope

coefficient on nominal disagreement (Panel C, row i). However, in a horse race only

(habit) risk aversion and macroeconomic uncertainty continue to stay significant,

leading to a large R2 of about 25%. Instead, (nominal) disagreement is driven out

(Panel C, row vi). This is also the case in Panel B. Comparing row (vi) in Panels B

and C to Panel A, it is apparent that using the measure of excess bond returns im-

plied by NNs instead of realised returns leads to stronger support of the predictions

of equilibrium models.26

The evidence in Table 2.13 for bond returns forecasts confirm that the vari-

ation in expected bond returns implied by NNs can be understood in terms of time

variation in risk prices and time-varying (macroeconomic) risk. Overall, our results

support models that feature both channels, such as Bekaert et al. (2009) and Creal

and Wu (2018).

Our evidence stands in stark contrast to the recent finding of Buraschi et al.

(2019). They find that the quantity of risk as measured by bond volatility has a

26A saturated regression that includes all variables simultaneously leads to the same conclusion:
only habit-based risk aversion and macroeconomic uncertainty remain significant. The R2 from
the saturated regressions are 12%, 25.51%, and 25.60%, adding little explanatory power to the
specification (vi) in Panels A, B, and C.
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strong role, whereas habit-based risk aversion matters little. Thus, our statistical

measure of bond risk premia likely captures a potentially different channel compon-

ent from the subjective bond risk premia of Buraschi et al. (2019). We investigate

this point further in the next subsection.

2.7.3 Statistical vs. Subjective Forecasts

Table 2.14 reports the correlations between our forecasts of ten-year excess bond re-

turns obtained from the best-performing tree and NNs in Tables 2.1-2.2 with three

recent proxies for risk premia that rely on interest rates forecasts as surveyed by

the Blue Chip Financial Forecasts (BCFF): (1) the measure of subjective bond risk

premia (EBR∗) proposed by Buraschi et al. (2019) based on aggregation of expecta-

tions of (the top decile of) professional forecasters; (2) the Piazzesi et al. (2015) con-

sensus measure of subjective bond risk premia constructed as the difference between

subjective and VAR interest-rate expectations, E∗t

[
i
(n−h)
t+h

]
− Et

[
i
(n−h)
t+h

]
; and (3)

the forecasts by Giacoletti et al. (2016) based on a learning rule that updates beliefs

using the history of bond yields and disagreement among forecasters.27

The results in Table 2.14 show that, across all bond maturities and model

specifications, the correlation between our forecasts and the subjective bond risk

premia of Buraschi et al. (2019) is small, and not statistically significant. This is

in line with our previous analysis of economic drivers of bond return predictability

(Table 2.13): our forecasts are associated with proxies for time-varying risk aversion

and macroeconomic uncertainty whereas Buraschi et al. (2019) find a strong link

between the quantity of risk channel (as proxied by bond volatility) and their proxy

for bond risk premia.

We instead find a strong and positive association between our forecasts and

the Piazzesi et al. (2015) measure of bond risk premia, in particular when yields-only

based forecasts are considered. This is perhaps not surprising given the evidence

in Buraschi et al. (2019): the consensus is not a sufficient statistic for the cross-

section of expectations so that aggregation of subjective bond risk premia for each

27We measure E∗t

[
i
(n−h)
t+h

]
using the median survey forecast of i

(n−h)
t+h for the 10-year Treasury

bond from the Survey of Professional Forecasters. Importantly, Piazzesi et al. (2015) find that
“median forecasts from the SPF are similar to those from the Bluechip survey.” The statistical
forecasts follow Piazzesi et al. (2015): we compute the forecasts by running OLS directly on the
system Yt+h = µ + φYt + εt+h, so that we can compute the h-horizon forecast simply as µ + φYt.
The vector of interest rates Y includes the 1-, 2-, 3-, 4-, 5-, 7-, and 10-year maturity.
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single contributor (as in EBR∗) may differ from measures that rely on the simple

arithmetic average of the cross-section of forecasters (as in Piazzesi et al., 2015).

However, we note that adding macroeconomic variables weakens the correlation

between our forecasts and subjective measures based on consensus.

Finally, the correlation between our forecasts and those of Giacoletti et al.

(2016) are quite large and mostly significant. This effect is generally stronger for

long maturity bonds and when yields-only based forecasts are considered. Over-

all, dynamic learning effects could account for some of our findings of bond return

predictability.

2.8 Conclusion

In this paper we evaluate the benefits of using machine learning methods for under-

standing bond price fluctuations. Three main findings emerge from our analysis.

First, we show that non-linear machine learning techniques, such as extreme

trees and neural networks, detect predictable variations in bond returns that are

statistically large; importantly, the forecasts implied by these methods translate

into similarly large out-of-sample economic gains. Second, we document that em-

ploying the NN forecasts based on macroeconomic and yield information produces

significantly higher certainty equivalent return values than those implied by the NN

forecasts based on yields-only variables, thus providing support for information that

is unspanned by (potentially non-linear transformations of) the yield curve and yet

useful to forecast bond returns. We also provide evidence of a significant heterogen-

eity in the relative importance of macroeconomic variables across bond maturities.

Hence, the type and nature of unspanned factors may depend on the bond maturity.

Finally, we document that NN forecasts are counter-cyclical and mostly related to

variables that proxy for macroeconomic uncertainty and time-varying risk aversion.

Our results provide support for models that feature both time variation in risk prices

and time-varying risk as in, for example, Bekaert et al. (2009) and Creal and Wu

(2018). However, our statistical measure of expected bond returns contrasts with

recent survey-based measures like the one proposed by Buraschi et al. (2019), which

is mostly related to financial (specifically, bond) volatility.

From a pure machine learning perspective in the context of asset pricing,
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we make three contributions. First, we find that NNs perform well even when, in

the context of bond return regressions, we employ just yield-based variables (i.e.

in a low dimensional setting). This finding emphasises that the success of NNs is

largely due to their ability to capture complex non-linearities in the data. Second, we

document that non-linearities within macroeconomic categories (output, inflation,

labor market, etc.) are more important than interactions across categories. Finally,

we document that a carefully chosen structure of the network (like group ensembling)

may compensate for the depth of the network.

Overall machine learning methods that dispense with the linearity assump-

tion in the return-predicting function may prove useful to improve our empirical

understanding of asset price movements.
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Figures & Tables

(a) Recursive Binary Splitting

(b) Partition Tree

Figure 2.1: Example of a Regression Tree
This figure shows an example of a regression tree for a predictive regression with a univariate target
variable, e.g., the holding period excess return of a one-year treasury bond, and two predictors, e.g.,
the two-year and the five-year forward rates, which we label y

(2)
t and y

(5)
t . The left panel shows the

partition of the two-dimensional regression space by recursive splitting. The right panel shows the
corresponding regression tree.
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Figure 2.2: Examples of a Neural Network with only Forward Rates
This figure shows a neural network with one hidden layer when forecasts are based only on forward
rates as e.g. in Cochrane and Piazzesi (2005).
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Training + Validation Sample

Test Sample

Time

Figure 2.4: Sample Splitting Strategy
This figure shows the sample splitting used for cross-validation of the hyper-parameters of the
penalised regressions, i.e. lasso, elastic net, ridge, and the neural networks. The forecasting exercise
involves an expanding window that starts in January 1990. The full sample period is from 1971:08
to 2018:12. The training sample consists of the first 85% of the observations while the validation
sample consists of the final 15% of observations. The training and the validation samples are
consequential and not randomly selected in order to preserve the time series dependence. The
testing sample consists of observations on one-year holding period excess Treasury bond returns.
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Figure 2.5: Squared Forecast Errors Across Time
This figure plots the time series of difference in squared forecast errors from a given model versus
the expectations hypothesis. We scale the forecast errors by the variance of the dependent variable

times T − 1, i.e. each month t we plot the value attained by
(ε̂EH

t+1)2−(ε̂Model
t+1 )

(T−1)Var(rxt+1)
. The out-of-sample

period starts in 1990. The expectation hypothesis uses all data starting from the in-sample period
in 1971:08. The figures present results for the 10-year maturity and focus on the best performing
regression tree and neural network when forecasts are generated either based on forward rates only
or by macroeconomic variables + forward rates.
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Figure 2.6: Relative Importance of Macroeconomic Variables
This figure shows the relative importance of different macroeconomic variables used to forecast
bond excess returns. Panels (a) and (b) show results for individual variables, while panels (c) and
(d) present results for groups of macro variables. The groups are labelled according to McCracken
and Ng (2016). The relative importance of an input variable is computed based on the absolute
value of the gradient of the network outputs with respect to the input variable. The gradient is
evaluated at the in-sample mean of the input variable. The gradient-at-the-mean is calculated for
each time t of the recursive forecasting exercise and then averaged over the out-of-sample period.
For the grouped results in panels (c) and (d) the relative importance is averaged within groups.
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Figure 2.7: Bond Excess Returns, Model-implied Risk Premia, and Economic Growth
Panels (a) and (b) plot the model-implied expected bond excess returns for the 10-year maturity
(solid lines) against the annual growth rate of industrial production (IP) in the US (dashed line).
Panels (c) and (d) display the time series of annual realised (dashed line) and expected (solid line)
ten-year bond excess returns (in percentage terms). We report the two best performing forecasts
from the neural nets, that is the NN 1 Layer (3 nodes) – when forecasting with only the forward
rates – and NN 1 Layer Group Ensem + fwd rate net – when including also macroeconomic variables
(see Table 2.1-2.2 for reference). The left panels report the results for the expected bond excess
returns obtained by using the forward rates, whereas the right panels report the results for the
expected bond excess returns obtained by using a large set of macroeconomic variables in addition
to the forward rates.
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Table 2.5: Forecasting Performances in Expansions and Recessions.
This table reports the out-of-sample performances, measured by R2

oos, separately for expansions
(Exp) and recessions (Rec) as defined by the NBER recession index. For ease of exposition, we report
the results for the Principal Component Regression with three PCs and for the best performing
non-linear methodologies, that is extreme trees and the NN 1 Layer (3 nodes) – when forecasting
with only the forward rates – and NN 1 Layer Group Ensem + fwd rate net – when including also
macroeconomic variables – (see Table 2.1-2.2 for reference). We focus on the prediction exercise
with two- and ten-year maturity bonds. We denote in boldface values for which the predictive
accuracy of a given model is better than that obtained from the EH benchmark at the 5% level
(p-value calculated as in Clark and West (2007)). The out-of-sample predictions are obtained by a
recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Forward rates Fwd rates + Macro

R2
oos R2

oos

Exp Rec Exp Rec

PCA (10-year maturity) 7.69% 34.88% -1.08% -41.19%
PCA (2-year maturity) -15.27% -30.04% -8.30% 22.98%
Extreme tree (10-year maturity) 26.80% 2.85% 33.38% -8.74%
Extreme tree (2-year maturity) 7.19% -14.18% 25.08% 11.63%
Neural net (10-year maturity) 26.28% 27.33% 35.70% 42.54%
Neural net (2-year maturity) 9.42% 30.31% 17.34% 34.23%
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Table 2.6: Conditional Forecast Accuracy: Double Sorts on Prevailing Yield Curve
Level & Slope
This table reports the forecast accuracy when conditioning on the prevailing shape of the yield
curve, i.e. its level and slope. As a measure of the yield curve level we use the 2-year yield, while
the measure of yield curve slope is the difference between the 10-year and 2-year yield. We sort
all observations in our out-of-sample period based on the median level and slope of the yield curve
prevailing at the start of the holding period. The double sort is performed unconditionally. We
denote observations below the median by “Low” and observations above the median by “High”.
For example, “Level Low - Slope High” refers to all observations for which the prevailing yield
curve level was below the median, while the yield curve slope was above the median. The median
yield curve level over our out-of-sample period is 3.84% and the median yield curve slope is 1.33%.
Forecast accuracy is proxied by the R2 in regressions of realised returns, xr

(i)
t+1, on the predicted

bond risk premium, x̂r
(i)
t+1: xr

(i)
t+1 = α + βx̂r

(i)
t+1 + ε

(i)
t+1, where the regressions are performed using

all the observations that fall into the four distinguished yield curve shape cases. Predicted bond
risk premia stem from forecasting either with only the forward rates (Panel A) – using NN 1 Layer
(3 nodes) – or with forward rates plus macroeconomic variables (Panel B) – using NN 1 Layer
Group Ensem + fwd rate net – (see Table 2.1-2.2 for reference). The out-of-sample predictions are
obtained by a recursive forecast which starts in January 1990. The sample period is from 1971:08-
2018:12. For each case, we report R2, the mean fitted value, the p-values for the hypothesis tests
H0 : α = 0 and H0 : β = 1, and the fraction of the sample period falling into the respective case.

Panel A: Forecasting with Forward Rates

R2 (%) Mean Fitted Value p-val (α = 0) p-val (β = 1) Sample Fraction

All 21.97 4.33% 0.69 0.10 100.0%

Level Low - Slope Low 7.79 -2.27% 0.00 0.91 9.8%

Level Low - Slope High 16.18 6.26% 0.76 0.70 40.2%

Level High - Slope Low 23.79 3.60% 0.00 0.15 40.2%

Level High - Slope High 58.84 5.96% 0.09 0.00 9.8%

Panel B: Forecasting with Forward Rates + Macro

R2 (%) Mean Fitted Value p-val (α = 0) p-val (β = 1) Sample Fraction

All 27.95 4.33% 0.91 0.21 100.0%

Level Low - Slope Low 14.06 -2.27% 0.00 0.99 9.8%

Level Low - Slope High 18.48 6.26% 0.83 0.42 40.2%

Level High - Slope Low 28.16 3.60% 0.01 0.12 40.2%

Level High - Slope High 65.75 5.96% 0.06 0.01 9.8%

Table 2.7: Ex-post Diagnostics Based on Principal Components Forecasts.
This table reports the in-sample R2 of a predictive regression where the dependent variable is the
year-on-year change in the first three principal components extracted from the term structure of
interest rates. The first row reports results when the independent variables are the lagged first three
principal components. The second and third rows display the in-sample R2 when, in addition to the
first three principal components, we include the factors extracted from the best performing neural
networks obtained using either forward rates only or forward rates plus a large set of macroeconomic
variables (see Table 2.1-2.2 for reference).

Level Slope Curvature

PCA 9.28% 21.66% 48.70%
Neural net (fwd rates only) 36.67% 22.05% 70.52%
Neural net (fwd rates + macro) 30.98% 30.91% 65.43%
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Table 2.8: Magnitude of Cross- and Within-group Interactions
This table reports the sum of the absolute value of the cross-group (/Panel A) and within-group
(Panel B) interactions obtained from an ensembled neural network with one hidden layer (“Groups
ensemble”) and a (non-ensembled) neural network with three hidden layers (“Fully connected net-
work”). See Table 2.2 for their performance (row “NN 3 Layer (32, 16, 8 nodes), fwd rates direct”
and “NN 1 Layer Group Ensem (1 node per group), fwd rates Net (1 layer: 3 nodes)”). Interactions
magnitudes are computed by numerically approximating the network Hessian’s, i.e. the second de-
rivatives of network outputs with respect to two distinct network inputs. The NNs take as inputs
both macroeconomic variables and forward rates. The out-of-sample prediction errors are obtained
by a recursive forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Panel A: Sum of Cross-Group Hessian Absolute Values

Model 2y 3y 4y 5y 7y 10y

Fully connected network 60.24 108.61 153.22 184.43 247.84 336.49

Groups ensemble 0.04 0.07 0.09 0.11 0.14 0.18

Panel B: Sum of Within-Group Hessian Absolute Values

Model 2y 3y 4y 5y 7y 10y

Fully connected network 11.93 21.30 30.12 36.03 48.51 65.77

Groups ensemble 16.93 32.05 45.09 54.70 78.85 117.05

Table 2.9: Alternative Model Combination Strategies
This table reports the out-of-sample R2

oos obtained using a large panel of macroeconomic variables
and forward rates to predict annual excess bond returns for different maturities. In addition to the
best performing neural network – NN 1 Layer Group Ensem + fwd rate net (see Table 2.2), we
compute the R2

oos for three alternative model combination strategies. The first is a recursive full
cross-validation that selects every five years not only the dropout rate and the L1/L2 penalties, but
also the number of layers, the nodes per macro group, and the nodes in fwd rate net. The second
and third model combination are based on a weighted average of each neural network forecasts
with weights that are calculated as the inverse of the validation loss or, alternatively, simply as
1/N where N is the number of neural networks estimated. The out-of-sample R2

oos is calculated
by considering the expectations hypothesis as a benchmark. That is, we compare the forecasts
obtained from each methodology to the prediction based on the historical mean of bond excess
returns. In addition to the R2

oos we report the p-value calculated as in Clark and West (2007) in
parentheses. The out-of-sample prediction errors are obtained by a recursive forecast which starts
in January 1990. The sample period is from 1971:08-2018:12.

Models R2
oos R2

oos EW

xr
(2)
t+1 xr

(3)
t+1 xr

(4)
t+1 xr

(5)
t+1 xr

(7)
t+1 xr

(10)
t+1 xr

(EW )
t+1

NN 1 Layer Group Ensem + fwd rate net 20.0% 25.6% 29.5% 31.2% 33.6% 36.3% 34.0%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Inverse Val. Loss Weighted Model (across all NNs) 22.3% 25.6% 29.1% 30.8% 32.0% 34.4% 32.6%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Equally Weighted Model (across all NNs) 22.0% 25.2% 28.6% 30.4% 31.6% 33.9% 32.1%

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Full CV Model 24.7% 27.6% 30.4% 31.7% 32.3% 34.7% 33.4%

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 2.10: Stability of the Neural Network Ranking
This table reports how often the four best performing neural networks are selected throughout the
sample. More specifically, we select the top 4 models based on the unconditional average of (inverse)
validation loss. Then we count how often the four models rank 1st, 2nd, 3rd and 4th, in terms of
their inverse validation error. The sum of the values in each column equals the number of periods in
our out-of-sample period. This gives an approximate measure of how often one model ranks on top
in terms of validation loss. The out-of-sample prediction errors are obtained by a recursive forecast
which starts in January 1990. The sample period is from 1971:08-2018:12.

Ranking

Model 1st place 2nd place 3rd place 4th place

NN 1-Layer Group Ensem + Fwd. Rate Net 170 42 115 21

NN 1-Layer Group Ensem + Fwd. Rates 137 50 154 7

NN 3-Layer + Fwd. Rates 31 112 16 189

NN 2-Layer Group Ensem + Fwd. Rates Net 10 144 63 131
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Table 2.12: Sharpe Ratios in Expansions and Recessions.
This table reports the out-of-sample annualised Sharpe ratio, separately for expansions (Exp) and
recessions (Rec) as defined by the NBER recession index. We report the results for the bench-
marking regression that employ the first three principal components of the yield curve, and for the
best performing non-linear methodologies, that is extreme trees and the NN 1 Layer (3 nodes) –
when forecasting with only the forward rates – and NN 1 Layer Group Ensem + fwd rate net –
when including also macroeconomic variables – (see Table 2.1-2.2 for reference). We focus on the
prediction of two- and ten-year bonds. The out-of-sample predictions are obtained by a recursive
forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Forward rates Fwd rates + Macro

Exp Rec Exp Rec

PCA (10-year maturity) 0.087 1.364 -0.118 0.190
PCA (2-year maturity) 0.037 1.524 0.403 1.356
Extreme tree (10-year maturity) 0.261 0.521 0.491 0.555
Extreme tree (2-year maturity) 0.253 1.688 0.740 1.541
Neural net (10-year maturity) 0.506 1.769 0.749 1.707
Neural net (2-year maturity) 1.077 2.384 1.093 2.098
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Table 2.13: Drivers of Bond Risk Premia.
This table reports the regression estimates of realised (Panel A) and expected (Panel B and
C) bond excess returns on 10-year bonds on a set of structural determinants of risk premia (see
discussion in the paper for details). The expected bond return (dependent variable) is based on
the predictions implied by the best performing neural network, namely the NN 1 Layer (3 nodes) –
when forecasting with only the forward rates – and NN 1 Layer Group Ensem + fwd rate net – when
including also macroeconomic variables – (see Table 2.1-2.2 for reference). We standardise both left-
and right-hand side variables, so that a 1-standard deviation change in the right hand variables
implies a β-standard deviation in the dependent variable. We report the regression estimates as
well as Newey-West p-values. Bold font indicates significance at the 5% level. The out-of-sample
predictions are obtained by a recursive forecast which starts in January 1990. The sample period
is from 1971:08-2018:12.

Panel A: 10-year realised bond excess returns

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.19 0.29 6.43
(0.41) (0.19)

(ii) 0.01 0.25
(0.90)

(iii) 0.01 0.25
(0.81)

(iv) -0.14 0.28 5.82
(0.42) (0.14)

(v) 0.25 -0.22 6.36
(0.02) (0.38)

(vi) 0.27 0.04 -0.03 0.09 7.01
(0.08) (0.66) (0.67) (0.14)

Panel B: 10-year expected bond excess returns (fwd rates)

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) 0.02 0.31 3.06
(0.96) (0.22)

(ii) 0.35 9.85
(0.01)

(iii) 0.15 1.58
(0.21)

(iv) 0.40 -0.11 10.34
(0.00) (0.72)

(v) -0.11 0.74 3.30
(0.53) (0.04)

(vi) 0.01 0.43 0.04 0.28 23.69
(0.95) (0.00) (0.77) (0.00)

Panel C: 10-year expected bond excess returns (fwd rates + macro)

DiB(g) DiB(π) −Surplus RAbex UnC(g) UnC(π) TY V IX σ
(n)
B R2(%)

(i) -0.35 0.55 8.22
(0.43) (0.01)

(ii) 0.32 11.80
(0.02)

(iii) 0.27 6.06
(0.02)

(iv) 0.38 -0.15 8.49
(0.01) (0.71)

(v) 0.05 0.59 5.44
(0.80) (0.14)

(vi) 0.19 0.35 0.15 0.21 25.22
(0.35) (0.00) (0.14) (0.09)
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Table 2.14: Statistical vs. Subjective Forecasts of Bond Risk Premia.
This table reports the correlation between our machine learning implied forecasts and existing
measures of bond risk premia based on subjective forecasts or on asset pricing models with learning
dynamics. Panel A: shows the results for the forecasts generated using only the forward rates,
whereas Panel B: shows the results for the forecasts generated using both forward rates and a
large panel of macroeconomic variables. Correlations are computed with respect to the subjective
bond risk premia in Buraschi et al. (2019) (EBR∗10y and EBR∗2y), the subjective risk premia measure
proposed by Piazzesi et al. (2015) (SUBJ BRP), and the out-of-sample bond returns forecasts in
Giacoletti et al. (2016) (GLS). In parentheses we report Newey-West p-values with 12 lags. Bold
font indicates significance at the 5% level. The out-of-sample predictions are obtained by a recursive
forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Panel A: Forecasting with forward rates

10-year maturity
EBR∗

10y SUBJ BRP GLS

Extreme tree -7.5% 49.5% 52.3%
(0.45) (0.00) (0.00)

NN - 1 Layer (3 nodes) 3.3% 56.3% 59.5%
(0.75) (0.00) (0.00)

2-year maturity
EBR∗

2y SUBJ BRP GLS

Extreme tree -18.7% 42.7% 63.8%
(0.17) (0.00) (0.00)

NN - 1 Layer (3 nodes) 4.1% 53.8% 50.3%
(0.78) (0.00) (0.00)

Panel B: Forecasting with forward rates and macro variables

10-year maturity
EBR∗

10y SUBJ BRP GLS

Extreme tree -1.6% 40.9% 48.3%
(0.88) (0.00) (0.00)

NN - 1 Layer Group Ensem + fwd rate net 13.4% 38.0% 47.2%
(0.26) (0.00) (0.00)

2-year maturity
EBR∗

2y SUBJ BRP GLS

Extreme tree 3.5% 21.3% 20.0%
(0.80) (0.13) (0.16)

NN - 1 Layer Group Ensem + fwd rate net 6.4% 27.5% 30.3%
(0.61) (0.03) (0.03)
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Chapter 3

A Factor Model for Option

Returns1

“Order and simplification are the first steps towards mastery of a subject.

The actual enemy is the unknown.”

– Thomas Mann; The Magic Mountain (1924)

3.1 Introduction

Asset pricing aims to understand the risk-reward trade-off that investors face in

financial markets. The most common empirical approach for evaluating this trade-off

is to model returns with a low-dimensional common factor structure. The structure

of options contracts makes it difficult to model their returns in this way. Instead,

the literature has studied the risk-return trade-off in options using parametric no-

arbitrage pricing models. These models are parametric in the sense that they require

a full specification of underlying distributions and dynamics of the underlying. While

this approach benefits from arbitrage-free pricing and mathematical elegance, it is

prone to model misspecification and likely too simplistic to describe empirically

observed patterns of options returns. In fact, when applying no-arbitrage models

in practice the researcher finds that they fail to account for a large part of the

empirically observed variation in option returns (e.g. see Israelov and Kelly, 2017).

1This chapter is based on a similarly titled research paper jointly authored with Bryan Kelly.
The paper has been presented at the FMA Derivatives & Volatility Workshop 2019, Western Fin-
ance Association Meeting 2020, the Econometric Society Word Congress 2020, and the Warwick
University Finance Brown Bag Seminar.
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Our objective is to develop an understanding for the risk-return trade-off

in option markets using the factor pricing approach commonly applied in other

asset classes. The motivation for factor modelling is independent of the asset class

studied: from the asset pricing Euler equation and the assumption of no-arbitrage,

a stochastic discount factor, mt+1, exists that satisfies Et[mt+1ri,t+1] = 0, and hence

Et[ri,t+1] = −Covt (mt+1, ri,t+1)

Vart (mt+1)

Vart (mt+1)

Et [mt+1]
. (3.1)

For the first ratio in Equation (3.1) we adopt the notation βi,t and note that it

describes the exposure of asset i to systematic risk factors. For the second ratio

we adopt the notation λt. It can be interpreted as the price of risk associated with

factors. When mt+1 is linear in factors ft+1, as assumed in many asset pricing

studies, the cross-section of excess returns satisfies a linear factor model:

ri,t+1 = αi,t + β′i,tft+1 + εi,t+1, (3.2)

where for all i and t we have Et[εi,t+1] = E[εi,t+1ft+1] = 0, Et[ft+1] = λt, and

αi,t = 0.

Typical factor models used in asset pricing are significantly less restrictive

than parametric no-arbitrage option pricing models since they forgo the need to fully

specify underlying distributions and dynamics. However, the common factor mod-

elling approaches frequently rely on pre-ordained factors and require a reasonably

long time series of asset returns to estimate betas. This factor modelling approach

is difficult to apply to options data for a few reasons. First, the short lives and rapid

migration of option risk attributes (such as moneyness and maturity) make it hard

to estimate betas with time series regression. Second, the factors are difficult to

ascertain a priori. If instead one were to consider estimating a latent factor model,

the same complications that make it difficult to estimate option betas take the de

facto method of principal components analysis off the table due to its reliance on

static betas.

In this paper we take a different tack by treating risk factors as latent, but al-

lowing for time variation in the factor structure. We use the instrumented principal

components analysis (IPCA) methodology of Kelly, Pruitt and Su (2019), which

explicitly accounts for time variation in individual asset behaviour by allowing risk
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factor loadings, βi,t, to depend on observable characteristics of options. These char-

acteristics function as instrumental variables for conditional betas and avoid the

limitations of estimating betas with time series regression.

The riskiness of options changes constantly as the contract maturity winds

down and as the underlying price and volatility evolve. Previous literature studying

the cross-section of option returns, which has dealt with this complication by using

empirical techniques such as portfolio sorts to construct ad hoc pre-specified factors,

has seen limited success in describing option returns.2 The fraction of variation

in option returns explained by such approaches is comparatively small. This is

primarily due to standard equity-based asset pricing techniques being ill-equipped

to deal with time-varying factor loadings. For example, rolling regressions are too

slow to capture changes in contract risk. In contrast, IPCA offers an internally

consistent approach to estimate conditional loadings and factors simultaneously.

And option contracts are special in that some of their characteristics, like moneyness

and maturity, are easy to measure and unambiguously relevant to the contract’s

factor risk. IPCA is in this way particularly well-suited to the analysis of option

returns.

3.1.1 Findings

We assess the performance of option return factor models in two dimensions. The

first is how well the estimated factors and betas capture the contemporaneous vari-

ation in realised returns. In particular, we evaluate candidate models in terms of

their “total R2” which measures the fraction of variance in individual option contract

returns ri,t+1 explained by β̂′i,tf̂t+1, where β̂i,t are estimates of conditional loadings

on estimated latent risk factors f̂t+1.

Second, we inspect a model’s match of differences in expected returns across

assets, which describes the accuracy of the model-implied risk-return trade-off. We

measure this as a “predictive R2” or the fraction of variance in realised returns ri,t+1

explained by the model-implied conditional expected returns β̂′i,tλ̂, where λ̂ denotes

the model’s estimated risk prices.3 We compute both measures by aggregating over

2These papers include among others Coval and Shumway (2001); Goyal and Saretto (2009);
Frazzini and Pedersen (2012); Cao et al. (2015); Karakaya (2013)

3Alternatively, one might entertain time-varying λt. However, the gains from allowing for time-
varying risk prices, if any, are small.
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all option contracts and time periods.

We apply the IPCA methodology to the panel of monthly S&P 500 option

returns from 1996 to 2017. Most prior literature restricts their analysis of option re-

turns to particular subsets of option contracts, for example focusing on at-the-money

contracts with one month to maturity, because it makes their analyses less sensitive

to misspecification biases that are exacerbated when looking across contracts with

different moneyness and maturities. In contrast, our goal is to achieve an accurate

description of return variation and risk compensation for a wide heterogeneity of

contracts in a single model.

We begin with a one-factor IPCA specification and with a set of character-

istics consisting of option moneyness, time to maturity, implied volatility, embedded

leverage, and Black-Merton-Scholes (BMS) “Greeks.” A single latent factor is suffi-

cient to explain around 73% of the return variation in delta-hedged option returns.

None of the pre-specified factor models that we study, including variations of the

Fama-French-Carhart model and two models that additionally include the Frazzini

and Pedersen (2012) betting-against-beta (or embedded leverage) factor and the

Coval and Shumway (2001) option straddle factor, achieve a total R2 close to that

of IPCA. Additional factors in IPCA improve the models ability to describe joint

fluctuations in the panel of option returns. The total R2 for the model with five

factors reaches 91%.

Further, the IPCA model allows us to test whether average option returns

are explained by factor risk or if some contracts earn additional compensation (i.e.,

alpha) above and beyond that warranted by their risks. Across all numbers of factors

examined we find, on average, no evidence of alpha in option returns. However,

note that this finding does not rule out existence of significant alphas in subsets of

contracts, similar to the findings of Jones (2006). Indeed, in an analysis of alphas

in subsets of our sample (i.e. characteristics managed portfolios) we find evidence

for some significant managed portfolio alphas.

In terms of predictiveR2, the IPCA model generally outperforms pre-specified

factor models by producing more accurate model-based option return forecasts (both

in-sample and out-of-sample). IPCA is particularly dominant when the competing

pre-specified factors models use static betas. When we introduce dynamic betas on

pre-specified factors as functions of contract characteristics similar to those in the
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IPCA specification, the predictive R2 for pre-specified factor models rises to match

what we find for IPCA, though the total R2 remains substantially lower than in

IPCA. Overall, we find that the IPCA model provides the most accurate description

of the risk-return trade-off for index options – its portfolio alpha is on average about

one percentage point per annum smaller than those in the model with pre-specified

factors.

We arrive at an interpretation of the factors recovered by IPCA through a

comprehensive correlation analysis with a number of relevant financial time series,

including returns on moneyness and maturity-sorted option portfolios, option return

factors studied in prior literature, and proxies of liquidity and intermediary capital

constraints. Our analysis shows that IPCA recovers a tail risk factor (Factor 1)

that is highly correlated with returns on deep out-of-the-money options and a vari-

ance risk premium factor (Factor 5) that behaves similarly to returns on a strategy

that sells at-the-money straddles.4 The interpretation of the other factors is more

challenging. We find evidence for a maturity-risk factor (Factor 3) that captures

differences in returns of short- and long-dated contracts. This factor also correlates

with the volatility term structure factor of Karakaya (2013). The next factor (Factor

4), exhibits similarity to the “value” factor in Karakaya (2013) that is constructed as

the spread between historical and BMS implied volatility. Following the interpret-

ation attempt by Karakaya (2013), this factor might capture institutional demand

pressures. In support of this idea, we find evidence that this factor is related to

measures of option market liquidity such as bid-ask spreads and open interest. The

final factor (Factor 2), is most challenging to interpret. It correlates most strongly

with the returns on a portfolio of options with one month to maturity that shorts

high moneyness contracts and longs low moneyness contracts.

IPCA factor Sharpe ratios range from 0.2 for the tail risk factor to around

1.9 for the variance risk premium factor. Furthermore, we calculate out-of-sample

Sharpe ratios for the tangency portfolio of IPCA factors and compare with the

Sharpe ratios corresponding to observable factor models. We find that for any num-

ber of factors studied, the IPCA factors generate out-of-sample tangency portfolio

Sharpe ratios that exceed those of the observable factor models. The out-of-sample

tangency portfolio Sharpe ratio peaks for the IPCA model with K = 3 factors at

4For ease of reference, we adopt the convention to order factors by their variances, i.e. “Factor
1” corresponds to the factor with highest time series variance, while “Factor 5” has lowest variance.
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1.30. Along with evidence for three priced factors in the in-sample analysis, we con-

clude that the empirical evidence points towards three priced factors in delta-hedged

option returns as being most likely.

We examine which characteristics are the most important contributors to

the accurate fits of IPCA. Option moneyness and implied volatility matter most for

describing time variation in betas and produce the largest contributions to total R2.

Options’ BMS Gamma, a measure of sensitivity to jump risk, also enters promin-

ently. In addition to studying the importance of characteristics in our baseline model

specification, we assess our choice of characteristics against an economically motiv-

ated choice of characteristics from an option return decomposition. We find that

although the economically motivated set of characteristics is able to capture a sim-

ilar amount of variation in option returns, our more agnostic baseline specification

yields a superior risk description in terms of predictive R2.

While most of our analysis uses monthly data, we also evaluate the IPCA

model performance for daily returns. This analysis is motivated by Carr and Wu

(2020), who propose a decomposition of daily option returns using a BMS approx-

imation that attributes return performance to each of the BMS Greeks. While this

attribution reliably captures returns of short-dated at-the-money contracts (where

the approximation is most apt), it struggles to describe returns of out-of-the money

contracts and of contracts with longer maturities. We show that, in contrast to the

Carr and Wu (2020) attribution, IPCA offers a uniformly accurate description of

risk and return for options throughout the moneyness-maturity spectrum.

3.1.2 Related Literature

Our paper relates to three strands of literature. The first seeks to understand option

returns by sorting options into portfolios based on a small number of characteristics,

then measuring the full sample average returns of these portfolios. This literature in-

cludes among others Coval and Shumway (2001), Bakshi and Kapadia (2003), Goyal

and Saretto (2009), Frazzini and Pedersen (2012), Cao and Han (2013), Karakaya

(2013), Cao, Han, Tong and Zhan (2015),Vasquez (2017), and Israelov and Tummala

(2017).

A second strand of literature models option prices directly by enforcing no-

arbitrage restrictions and specifying the full distributional properties and dynamics
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of the underlying asset. Starting from the seminal Black and Scholes (1973) model

for vanilla options, this literature develops refinements that allow for various forms

of stochastic volatility and jumps (Heston, 1993; Duffie et al., 2000; Carr and Wu,

2004).5 While this approach has the advantage of imposing economically mean-

ingful no-arbitrage restrictions that guarantee consistent pricing across strikes and

maturities, they ultimately lead the researcher to sacrifice some realism for the sake

of mathematical tractability. In fact, earlier empirical research demonstrates that

arbitrage opportunities in option markets exist.6 As a result these models often have

difficulty matching the empirical behaviour of option returns (Israelov and Kelly,

2017).

The third, and most closely related, literature acknowledges the limitations

of no-arbitrage option pricing models, and directly models option returns with pre-

specified factors. Jones (2006) estimates non-linear factor models for short-term deep

out-of-the-money S&P 500 index options, allowing for potentially latent factors that

eventually manifest as volatility and jump risks factors. Karakaya (2013) is focused

on single-name equity options and proposes a three factor model consisting of a level,

slope and value factor that capture much of the variation in delta-hedged option re-

turns. Israelov and Kelly (2017) propose an approach for estimating conditional

option return distributions using semi-parametric time series techniques. Carr and

Wu (2020) develop a valuation framework that attributes daily option returns to

variation in the first and second moments of the underlying price and underlying

volatility. Brooks, Chance and Shafaati (2018) employ the LASSO estimator in the

context of individual equity options to uncover the characteristics that provide inde-

pendent information for the cross-section of option returns. Finally, Christoffersen,

Fournier and Jacobs (2018) investigate a factor structure in single-name equity op-

tions using principal components of equity volatility, skews and term structures and

document that these principal components explain a sizeable fraction of the cross-

sectional variation in option returns.

Our paper differs from prior literature by proposing an internally consistent

factor-based approach to modelling option returns. It tackles the challenges of estim-

5Further papers studying models with price and volatility jump specifications are Eraker et al.
(2003); Eraker (2004); Broadie et al. (2007).

6For example, see Ofek and Richardson (2003); Ofek, Richardson and Whitelaw (2004); Con-
stantinides, Jackwerth and Perrakis (2009); Chambers, Foy, Liebner and Lu (2014)
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ating factor betas by leveraging contract characteristics as conditioning instruments.

Apart from delivering a richer factor model for returns through characteristics, our

IPCA approach estimates latent factors without ex ante knowledge of the cross-

section of returns, hence eliminating the need for the researcher to take a prior

stance on the nature of the factors. And, in contrast to the prior literature, our

approach models conditional factor loadings, which is critical due to the rapidly

evolving risks at the individual option level. Notably, our approach does not en-

force no-arbitrage across contracts, which allows us more flexibility in modelling the

cross-section of index option returns and results in a better fit for realised returns.

Importantly, the benefits of this flexibility are not an artefact of overfit. We show

that our model continues to excel in purely out-of-sample assessments.

The paper proceeds as follows. Section 3.2 introduces the data and variables

used in the analysis, Section 3.3 recaps the instrumented principal components meth-

odology, Section 3.4 summarises our empirical results, and Section 3.5 concludes.

3.2 Data

In this paper we focus on options on the S&P 500 index.7 Daily option data is

obtained from OptionMetrics for the period of January 1996 to December 2017.

The information provided by OptionMetrics includes contract specifications (exercise

date, strike, etc.) as well as underlying index values, historical dividend yields, and

option sensitivity measures such as the BMS Delta, Gamma, Vega, and Theta. Data

for the VIX index is obtained through CBOE.

To introduce notation, each option contract i is defined by its strike price Ki

and maturity date Ti. Hence, the time-to-maturity is given as Ti−t. As a measure of

the position of an option contract i relative to its strike Ki, we compute moneyness

standardised by implied volatility as

mi,t =
log(Ki/Si,t)

IV i,t

√
Ti − t

,

where IV i,t denotes the BMS implied volatility of the contract.8

7Note, the framework employed here also lends itself to the study of single-name options in a
characteristics-rich environment. However, for the sake of simplicity, in this paper, we focus on
index options.

8In our definition of contract moneyness we follow Israelov and Kelly (2017).
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Our results focus on monthly holding period returns that are delta-hedged

daily.9 Option returns are computed for periods defined by the expiration date in a

given month which usually is the third Friday in a month, i.e. we compute monthly

holding period returns from daily data over periods starting on the next trading day

after the expiration date and ending with the expiration date.

Variation in the price of the underlying is the most important driver of option

returns. By delta-hedging the option contracts daily, we obtain an option return

in excess of the fraction explained by variation in the underlying. This choice is

common in the academic context (e.g., see Cao and Han, 2013). The delta-hedged

option gain for a contract with value F over a period t = 1, . . . , T is given by

Π[1,T ] =
T−1∑
t=1

Ft+1 − Ft

−
T−1∑
t=1

∆F,t (St+1 − St)

−
T−1∑
t=1

at,t+1rt
365

(Ft −∆F,tSt) ,

(3.3)

where the first term is the raw option profit / loss, the second term captures the

adjustment from delta-hedging the position, and the last term adjusts for the cost

of funding the delta-hedged portfolio at the risk-free rate where at,t+1 is the number

of calendar days between trading dates t and t+ 1.

We compute returns not against the prevailing option mid-price, but against

the mid-price of the underlying. This ensures that returns are well-behaved even

in situations when the option mid-price is close to zero as is common for deep out-

of-the-money (OTM) options. We denote the delta-hedged return against the spot

price by r∆
Spot.

We apply a number of filters to the OptionMetrics data. We remove ob-

servations with negative bid-prices, observations where the bid-price exceeds the

ask-price, and observations that violate no-arbitrage conditions. In a small number

of cases OptionMetrics has missing information for contract implied volatility, we

delete those observations. Furthermore, numerous contracts have a zero observation

for open interest, i.e. the number of open positions in the option contract. This is

9In Section 3.4.8, we perform a robustness exercise and assess the performance of our model at
daily frequency.
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particularly true for deep in-the-money options for which liquidity is generally low.

We remove observations with zero open interest. Following Karakaya (2013), we

remove the most extreme contracts as measured by embedded leverage

Ω = |∆ · S/F | . (3.4)

Specifically, we drop observations below (above) the 1st (99th) percentile of the

distribution of embedded leverage on our portfolio formation dates.

After applying the aforementioned filters, we limit the set of options to at-

the-money (ATM) and out-of-the-money (OTM) contracts that are generally more

liquid and hence at the centre of most academic and practitioner research. To do so,

we limit the moneyness range to 0 to 2 for call options and -2.5 to 0 for put options.

Furthermore, we limit our sample to options with time-to-maturity (TTM) between

1 month and 12 months. Although, we “limit” our sample in this way, our sample

still encompasses a far larger fraction of the outstanding contracts than most papers

in the literature that limit their sample to, say, at-the-money contracts. The main

motivation behind our choice of filters is to remove outliers and contracts with little

liquidity that are of little economic relevance in the market place.

Table 3.1 contains summary statistics for our sample. After applying all

aforementioned filters, we arrive at a sample of approximately 77,000 option-month

observations. Out of those observations a little more than two-thirds are put op-

tions. This is a consequence of our choice of filters that considers a wider range of

moneyness for puts than for calls. Also, since over the course of our sample period

the underlying S&P 500 index appreciates considerably, OTM put options are nat-

urally more abundant than OTM calls. In addition, the put / call ratio for options

on the S&P 500 is commonly higher than one as market participants demand more

put options for insurance purposes.

Construction of the Implied Volatility Surface For replication of the Carr

and Wu (2020) P&L attribution in Section 3.4.8, we construct an implied volatility

surface to obtain moments of the underlying and its volatility under the risk-neutral

measure. We construct implied volatility surfaces using the daily OptionMetrics

volatility file that contains volatilities over a prespecified moneyness / maturity grid.

For the construction of the volatility surface we carry out a second order smooth
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bivariate spline interpolation in the time-to-maturity vs. moneyness space.10 Since

it is common for implied volatilities of put and call options at the same moneyness /

maturity to disagree as a consequence of differences in price pressure, we construct

three different volatility surfaces: the first is constructed solely from observations

of put options in the OptionMetrics volatility files, the second is constructed from

observations of call options, and the third is constructed using both put and calls.

In the latter case, the implied volatilities of put and call options are weighted by

their market capitalisation, i.e. open interest times option mid-price.

3.3 Methodology

In this paper, we aim to recover a factor structure in realised option returns. To

this end, we use the instrumented principal components model of Kelly et al. (2019).

The model is specified for a general excess return ri,t+1 as follows

ri,t+1 = αi,t + βi,tft+1 + εi,t+1

αi,t = z′i,tΓα + να,i,t, βi,t = z′i,tΓβ + νβ,i,t

(3.5)

The system is estimated over a total of N assets and T periods. The loadings, βi,t,

are time-varying and partially depend on an L× 1 vector of (option) characteristics

zi,t. For ease of notation we assume that zi,t includes a constant. The vector of

factors, ft+1, is of dimensionality K × 1, where the number of factors, K, is to

be determined in a data-driven approach. Following Kelly et al. (2019), the IPCA

model can be estimated by means of an alternating least squares approach that

effectively switches back and forth between the first order conditions of Γ11 and

ft+1.12

The application of IPCA in the context of option returns can be motiv-

ated in several ways. First, observable characteristics feature centrally in the IPCA

framework as they make the estimation of factors more efficient and improve model

performance. Contrary to common equity, option contracts are defined through

10For details, see the SciPy function SmoothBivariateSpline, documented at https://docs.

scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.

html.
11For brevity, we denote Γα and Γβ jointly as just Γ. The IPCA model can equivalently be stated

as ri,t+1 = z′tΓf̃t+1 + εi,t+1 where Γ = [Γβ ,Γα] is a horizontally stacked matrix and f̃t+1 = [ft+1, 1].
12For the Python implementation used to carry out the estimation we refer the reader to https:

//github.com/bkelly-lab/ipca.
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a set of precisely measured characteristics such as their strike, time-to-maturity,

implied volatility, their location on the implied volatility surface, and market / di-

vidend yields. Through the dimensionality reduction that is integral to IPCA, a

large number of potential characteristics can be entertained simultaneously. IPCA

will then form a linear mapping Γβ between characteristics and factors that isolates

the informative signal coming from characteristics and averages out the noise. This

eliminates the need for the researcher to take an ad-hoc stance on the characterist-

ics that matter. Second, time-varying loadings βi,t that depend on characteristics

zi,t allow us to model the conditional behaviour of option returns. The “identity”

of an option contract is to a good extent determined by its location in the time-

to-maturity / moneyness space. IPCA tracks the migration of the asset in this

space through the conditional betas. Furthermore, time-varying betas allow the

researcher to entertain a large number of characteristics even if they are are only

relevant during specific periods. Third, by restricting the IPCA model (3.5) such

that Γα = 0, we can test whether risk compensation in option returns solely arises

from exposure to systematic factors, ft, or whether returns partially line up with

characteristics directly (i.e. Γα 6= 0), hence constituting compensation without risk.

Fourth, existing approaches in the literature that construct observable risk factors

for option returns have had limited success and usually explain only a fraction of the

empirically observed variation in option returns. IPCA forms factors in a statistical

approach. The researcher is then tasked with interpreting the estimated factors by

relating them to economic theory.

Asset Pricing Performance To assess the performance of the IPCA factors in

pricing option returns, we use two measures following Kelly, Pruitt and Su (2019).

Similar to a common R2 goodness-of-fit measure we compute

R2
total = 1−

∑
i,t

(
ri,t+1 − z′i,t(Γ̂α + Γ̂β f̂t+1)

)2∑
i,t r

2
i,t+1

. (3.6)

This total R2 measures how well the set of factors and loadings captures realised

returns. As a second measure, we compute

R2
pred = 1−

∑
i,t

(
ri,t+1 − z′i,t(Γ̂α + Γ̂βλ̂)

)2∑
i,t r

2
i,t+1

, (3.7)
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where λ̂ denotes the unconditional time series mean of the factors. This predictive R2

captures how well differences in average returns are explained through the model’s

description of conditional expected returns, i.e. the model’s ability to describe risk.

In addition to studying the pricing performance for individual option con-

tracts, it is insightful to examine the pricing performance for portfolios. The IPCA

methodology elegantly incorporates a portfolio notion that circumvents a common

problem in the asset pricing literature that is the choice of relevant test assets. To

this end, Kelly et al. (2019) employ the notion of characteristics managed portfolios.

Let Zt be an N × L matrix of characteristics at time t. Then managed portfolios

can be constructed via

xt+1 =
Z ′trt+1

Nt+1
, (3.8)

where Nt+1 is the number of outstanding options at time t + 1. The managed

portfolios, xt+1, are a weighted average of option returns where the weights are

determined by the characteristics in Zt. Analogously to total and predictive R2

at the individual option level, we can define performance measures for managed

portfolios

R2
total,x = 1−

∑
l,t

(
xl,t+1 − z′l,tzl,t(Γ̂α + Γ̂β f̂t+1)

)2∑
l,t x

2
l,t+1

, (3.9)

R2
pred,x = 1−

∑
l,t

(
xl,t+1 − z′l,tzl,t(Γ̂α + Γ̂βλ̂)

)2∑
l,t x

2
l,t+1

, (3.10)

where l = 1, . . . , L.

3.4 Empirical Results

3.4.1 Data

From the data set described in Section 3.2, we collect a number of option charac-

teristics and market variables. Option-level variables include moneyness (mness),

time-to-maturity (ttm), embedded leverage (embed lev), BMS implied volatility

(impvol), BMS Theta (theta), BMS Gamma (gamma), BMS Vega (vega), BMS

Volga (volga).13 In all specifications we interact aforementioned variables with

13The sensitivity of Vega to changes in volatility, here referred to as Volga = ∂V ega
∂σ

, is not part
of the set of Greeks computed by OptionMetrics as standard and therefore computed from the
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both a constant and an indicator variable that is equal one for put options and

equal zero for calls, i.e. we allow for the possibility that characteristics determine

option returns differently for calls and puts. In order to limit the impact of out-

liers and aid the interpretation of the IPCA results, we re-scale all characteristics

to the range [−0.5, 0.5]. By scaling the characteristics in this manner, we focus on

the ranking of characteristics in the cross-section which is the main determinant of

differences in returns across contracts.14

3.4.2 IPCA Performance

To begin with, we estimate IPCA for a set of common option characteristics that

have both academic and practical relevance. The baseline set of characteristics

includes mness, ttm, embed lev, impvol, theta, gamma and vega, yielding a total

of 15 characteristics after interaction with the put / call dummy and addition of

a constant. The dependent variable is the monthly holding period return that is

delta-hedged daily, r∆
Spot, as defined in Section 3.2.

Table 3.2 details the performance of the restricted (Γα = 0) and unrestricted

(Γα 6= 0) IPCA models with K = 1, . . . , 5 factors. With a single factor, IPCA ex-

plains more than 72% of the observed variation in option returns in the restricted

model (Γα = 0) and more than 74% in the unrestricted model (Γα 6= 0). When in-

cluding an additional IPCA factor, the R2
total increases by about 10% to around 80%

for the restricted and 82% for the unrestricted specification. Adding further factors,

the increases become more gradual. We find that five factors are needed to explain

more than 90% of the variation in monthly delta-hedged index option returns. To

disentangle the gain from allowing for latent factors from the fraction of return vari-

ation explained by the characteristics on their own, we run a panel regression of

option returns on the same set of characteristics as used in IPCA. These regressions

are identical to the estimation of IPCA with a single pre-specified constant factor.

Table 3.3 details the results of the panel regression. We find that characteristics on

their own explain around 3.4% of the empirically observed variation in returns.

The estimation of IPCA through a least squares criterion targets the total

Black-Scholes pricing formula.
14Rescaling is carried out before interacting the characteristics with the put / call dummy vari-

able. This ensures that the scaling on both the non-interacted and the interacted characteristic is
comparable.
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R2. This makes the factors identified by IPCA optimal to capture return variation

across options. However, the IPCA factors are not ex ante designed to yield a good

description of expected returns as measured through the predictive R2. We find that

the monthly predictive R2 for a single factor is 5.48% in the restricted model and

7.22% in the unrestricted model. When including additional factors, the predictive

R2 increases in the restricted model, while it decreases slightly in the unrestricted

model.

It is common practice in the empirical asset pricing literature to examine

the explanatory power of asset pricing models using portfolios such as, for example,

the 5 × 5 Fama-French size and book-to-market sorted portfolios as test assets.15

The IPCA framework can be approximately stated in terms of managed portfolios

xt = Z ′t−1rt/Nt−1 (see Section 3.3 for a discussion), where Nt is the number of

assets in the cross-section at time t. This construction yields an L × 1 vector xt,

where L corresponds to the number of considered characteristics. We then proceed

to compute the performance measures for the managed portfolios as test assets. We

notice that the R2
total is markedly higher for managed portfolios than for individual

contracts. For example, using just a single factor the total R2 is 96.00% in the

unrestricted model and 95.47% in the restricted model. When moving from indi-

vidual options to managed portfolios we find that the predictive R2 increases for the

restricted model, while it slightly decreases for the unrestricted model with Γα 6= 0.

In Panel C of Table 3.2 we display p-values from a bootstrap with 1000 draws

for the hypothesis test H0 : Γα = 0. The bootstrap follows the residual bootstrap

procedure outlined in Kelly et al. (2019). In all specifications of the IPCA model

with K = 1, . . . , 5 factors, we find that we cannot reject the null. We interpret

this result as evidence that characteristics help to explain risk through systematic

factors, but not on their own. It is important to point out that Γα captures the

aggregate effect that characteristics have on returns. Hence, it is still a possibility

that characteristics on their own explain returns for a subset of contracts such as for

example deep OTM options that are commonly considered mispriced. This finding is

related to Jones (2006) who finds that on average alpha’s are close to zero. However,

he argues that this finding is a consequence of alpha’s averaging out in aggregate.

15The asset pricing literature has entertained a large range of potential test assets. This is a sign
for the struggle that this literature has long faced in determining the set of assets that need to be
priced in order for a model to be accepted.
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Indeed, Jones finds significant mispricing of specific sub-groups of option contracts

as for example deep OTM options. We examine mispricing of particular sub-groups

of options in a more detailed asset pricing study in Section 3.4.3. Furthermore,

Jones notes that mispricing is reduced by increasing the number of factors. We find

evidence in a similar spirit: as we increase the number of factors the discrepancy

in terms of total / predictive R2 between the unrestricted model with Γα = 0 and

the restricted model with Γα 6= 0 vanishes. This suggests that as we allow for

more factors, the incremental contribution of characteristics lining up with returns

on their own becomes smaller. For the model with K = 5 factors, the relative

difference in total R2 between the restricted and unrestricted models is a mere 0.2%

at the individual asset level and effectively zero at the portfolio level.

Performance in the Cross-Section of Contracts The IPCA framework is

designed to target the aggregate R2
total across all option contracts simultaneously.

While a small number of factors explains a high degree of empirically observed option

returns on aggregate, it is less clear how IPCA fares in the cross-section when we

focus on groups of contracts that are of particular interest to practitioners as for

example out-of-the-money options.

For the following analysis, we focus on the restricted IPCA model with K = 5

factors. We choose this specification for two reasons. First, the earlier bootstrap test

of the hypothesis Wα motivates our choice of the restricted model in favour of the

unrestricted counterpart. Second, our focus on the specification with K = 5 factors

is motivated by our finding of increasing predictive R2 in the restricted specifications.

Also, the increase in total R2 when including additional factors one at a time appears

to level off at around four to five factors as is noticeable in the modest increase in

total R2 when moving from the model with K = 4 to the model with K = 5.

Table 3.4 breaks down the IPCA performance by bins sorted on moneyness, time-

to-maturity, and VIX index level. The results by bin are obtained by computing the

total and predictive R2 only from those option-month observations corresponding

to a particular bin.

Panel A of Table 3.4 shows that IPCA performance is particularly strong in

terms of both total and predictive R2 for ATM options. Panel B of Table 3.4 details

results sorted on the option’s time-to-maturity. We find that IPCA performs best
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for options with maturities greater than one month in terms of the total R2, while

the predictive R2 peaks for contracts with two months to maturity. Performance

is noticeably weaker for short-dated contracts with 1 month to expiry, highlighting

that these contracts present themselves as particularly challenging. In order to assess

the model’s performance in different market environments (low vs. high volatility

regimes), Panel C dissects the performance by level of the CBOE VIX index. We

find that the IPCA model captures return variation across a range of market regimes.

Only for very extreme market conditions as indicated by VIX levels greater than

50%, the predictive R2 turns negative.

These results suggest that IPCA captures not only observed return variation

in a subset of the cross-section of index options but in the overwhelming majority

of them. Due to their abundance in our sample, at-the-money contracts have a

relatively higher weight during the IPCA estimation and as evidenced above they

are the sort of contracts best captured by our model. Nevertheless, option contracts

more extreme in moneyness and implied volatility are reasonably well captured in

an IPCA model using only standard option characteristics and a small number of

factors.

Comparison with Extant Factor Models

We now turn to comparing the performance of the IPCA framework to a number

of observable risk factor models entertained in earlier literature. We consider five

different observable factors. As a model with a single factor, the market factor, we

use the capital asset pricing model (CAPM). The Fama-French (1993) three factor

model (FF3) includes additionally the size (SMB) and value factors (HML). We add

the momentum factor (UMD) to obtain the Carhart four factor model (FFC4). As

demonstrated in earlier literature, the standard risk factors used to price equities

are insufficient to price delta-hedged option returns.16 For this reason, we include

two additional factors constructed specifically from S&P 500 index options.

The first is the betting against the beta (bab) factor of Frazzini and Pedersen

(2012) constructed from embedded leverage, Ω, as defined in Equation (3.4). Spe-

cifically, bab is constructed by sorting options into a high- and low-embedded leverage

16See, e.g., Coval and Shumway (2001); Cao and Han (2013); Frazzini and Pedersen (2012);
Karakaya (2013) for factor models entertained in the earlier literature.
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portfolio using the cross-sectional median of embedded leverage as the breakpoint.

We weight returns in the two portfolios using the option’s market capitalisations,

open interest times price. Then the self-financing, zero-beta factor return is given

by

babt = rLt /Ω
L
t−1 − rHt /ΩH

t−1,

where ΩL
t and ΩH

t are the weighted average embedded leverage of the low and high

embedded leverage portfolios, respectively. The bab factor is constructed separately

for call and put options. Finally, we average the bab factor of calls and puts to give

an aggregate factor as follows

babt = (babCallt + babPutt )/2.

The second option risk factor we include is the straddle factor of Coval and

Shumway (2001) as constructed in Frazzini and Pedersen (2012). For construction

of the straddles we limit the set of considered contracts to those with 1 month to

expiry. Then, we construct straddles from all pairs of put and call options with

absolute BMS Delta between 0.4 and 0.6. The straddle factor return is obtained by

weighting the delta-hedged straddle returns with the market capitalisations of the

constituting options as measured by open interest times price.

We add the bab factor to the “FFC4” four factor model and refer to the

resulting five factor model as “FFCB5”. Finally, we add the straddle factor to the

“FFCB5” model and refer to the resulting model as “FFCBS6”.

The factors just introduced are examined in two different model implement-

ations. The first version places the observable risk factors in a setting akin to

the IPCA latent factor model by allowing for characteristics as instruments (see

Equation (14) in Kelly et al. (2019)). We can estimate this implementation by pre-

specifying the factors in the IPCA model with one of the observable factor models

above, leaving us only with an estimation of the loadings matrix Γβ by evaluating

the associated first order condition. The second implementation follows a rather

standard empirical asset pricing procedure in which betas are estimated from time

series regressions. Following Kelly et al. (2019), we implement this approach by

means of a panel regression of option returns onto the set of factors (without an

intercept).
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Table 3.5 compares the different implementations. In Panel A we recap the

performance for the restricted (Γα = 0) IPCA model with K = 1, . . . , 5 factors for

both individual option returns as well as characteristics managed portfolios.

Panel B reports results for the implementation of IPCA with prespecified

observable risk factors and characteristics as instruments, i.e. here we allow for

characteristics to instrument time-varying loadings for observable risk factors. We

find that the IPCA model with a single factor outperforms the fits of the observable

factor models in terms of the total R2 for all combinations of observable factors

that we examine. We note that adding the observable factors constructed from

option returns (models “FFCB5” and “FFCBS6”) considerably improves the model

fit. The R2
total increases by around 16% versus the Carhart model (“FFC4”) when

the embedded leverage factor is included and by around 62% when also the straddle

factor is included. With respect to the observable factor models’ ability to describe

risk across assets (predictive R2) the IPCA model with K = 5 factors generates

a predictive R2 that is on par with the best performing observable factor model

“FFCBS6”.

In Panel C, we summarise the fits from panel regressions without instruments.

It is easy to see that static betas are detrimental to model fit: total R2s for individual

options as test assets shrink by about one third, while the effect is less strong when

characteristics managed portfolios are examined. Similarly, the models ability to

explain average returns in terms of predictive R2 is noticeably weaker such that

the best performing observable factor model “FFCBS6” is now outperformed by all

IPCA model specifications.

Taken together, this evidence suggests that the IPCA framework captures

differences in average returns across assets (R2
pred) similarly well as a number of

benchmark observable factor models instrumented with characteristics. However,

IPCA is able to better capture the empirically observed variation (R2
total) in option

returns. Furthermore, when observable factor models are not instrumented with

characteristics (Panel C), both total and predictive R2 are noticeably lower. This

suggests that introducing time-varying loadings via option characteristics plays a

major role in describing risk differences across options.

140



3.4.3 Unconditional Asset Pricing Performance

The IPCA model is a conditional asset pricing model since loadings are instrumented

by a set of conditioning characteristics. Thus, it is not clear ex ante whether the set

of IPCA factors is unconditionally mean-variance efficient, i.e. whether they price

assets unconditionally. So far, when testing for the significance of Γα, we have found

that characteristics on their own do not align with returns. This suggests that our

factors are conditionally mean-variance efficient. In order to test the unconditional

mean-variance efficiency of our factors, we carry out a number of asset pricing tests.

We test the model’s ability to price test portfolios unconditionally by running

time series regressions of test portfolio returns on the set of IPCA factors. As

a benchmark, we pick the best performing observable factor model that includes

the Fama-French three factor, momentum, the straddle factor as well as the betting

against beta factor constructed from embedded leverage (“FFCBS6”). We study two

sets of anomaly portfolios. First, the managed portfolio notion in IPCA immediately

provides us with a set of tests assets that weights assets by their characteristics.

Second, we use a set of 20 moneyness / maturity double-sorted portfolios of call

and put options. We re-leverage all portfolios to yield 10% annualised volatility for

comparability.

Figure 3.1 shows portfolio alphas from time series regressions of managed

portfolio returns onto the set of factors. Significant alphas are denoted by filled-in

diamond markers. We find that both in the observable factor model FFCBS6 and

the IPCA model (Panels (a) and (b)) there is only one out of 15 portfolios with

significant alpha, indicating that the unconditional pricing performance of IPCA is

at least on par with a benchmark observable factor model. Furthermore, we find

that the average portfolio alphas in the IPCA case are more than a percentage

point lower than those in the observable factor model FFCBS6. For comparison, we

plot the portfolio alphas from using IPCA in its originally intended form, that is,

using conditional loadings (Panel (c) and (d)). Portfolio alphas are obtained as the

time series averages of period-by-period portfolio residuals in the conditional IPCA

model. We find that both for the observable factor model and IPCA four portfolios

have significant alphas. However, the average absolute alpha in IPCA is more than

two absolute percentage points lower.

We check the robustness of our previous results on the unconditional mean-
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variance efficiency of our factors by using a set of 20 BMS Delta / maturity double-

sorted portfolios that could provide a more challenging test case.17 Figure 3.2 shows

the results of this test. We find that using the observable factor model, FFCBS6, six

portfolios have significant alphas, while eight portfolios have significant alphas using

the five IPCA factors. Although IPCA appears to be slightly weaker at pricing the 20

double sorted portfolios, its overall performance is on par with the observable factor

model: average portfolio alphas are around 1 percentage point lower when using

the IPCA factors than when the observable factors are used. Furthermore, when

visually assessing the distribution of alphas, we find that portfolio alphas from the

FFCBS6 model exhibit a clear pattern: portfolio alphas increase with raw portfolio

returns. This suggests a systematic shortcoming of the observable factors in pricing

the test portfolios. In fact, except for one portfolio out of the six portfolios with

significant alphas in panel (a) of Figure 3.2, all significant portfolio alphas occur for

the portfolios with highest average returns. In contrast, significant portfolio alphas

from using IPCA pricing factors are more evenly distributed (panel (b)).

In the previous analysis of mean-variance efficiency of our IPCA factors we

have focused on the model with K = 5 factors. In order to inspect the behaviour

of portfolio alphas as we increase the number of factors, we now re-run the previous

tests for the models with K = 1, . . . , 5 factors and compute the conditional and

unconditional portfolio alphas as before. Table 3.6 summarises the results. We find

that unconditional and conditional alphas decrease as we increase the number of

factors. Note, this finding is not a guaranteed result of increasing the number of

factors. Further, this result is in line with Jones (2006) who finds decreasing alphas

in option portfolios with increasing number of estimated factors.

3.4.4 Out-of-Sample Performance

So far, we have demonstrated that the IPCA model achieves a description of option

return variation in-sample that is at least on par with observable factors in terms

of its asset pricing performance and likely better in terms of its ability to describe

variation in realised returns. However, it is not clear whether this performance

17Double sorting on moneyness (Delta) and maturity creates a set of portfolios that is relevant in
practice: according to their risk preferences investors hold options of varying riskiness and maturity.
For example, investors that require portfolio insurance create a considerable demand for out-of-the
money options.
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translates into meaningful fits out-of-sample. Hence, we now turn to analysing

IPCA’s out-of-sample fits.

Procedurally, we carry out a recursive estimation of the IPCA model in a

backward-looking fashion. The IPCA model is estimated for an expanding window

starting at half the available sample length, i.e. the first forecast is made in January

2007. The computation of the out-of-sample realised factor returns, f̂t+1, exactly

follows Kelly et al. (2019, see Section 4.4).18

We evaluate the out-of-sample fit of the restricted IPCA models with K =

1, . . . , 5 factors using the same performance metrics introduced above, i.e. the total

and predictive R2 using both individual options as well as managed portfolios as

test assets. Table 3.7 details the results of our analysis. We find that the strong

in-sample performance of IPCA in terms of capturing observed return variation

carries over into the out-of-sample exercise. For the model with K = 5 factors

that most of our analysis focuses on, the total R2 only reduces from 90.61% to

88.88%. Despite this small deterioration, IPCA still outperforms all of the in-sample

fits of observable factor models such as FFCBS6. However, with reference to the

predictive R2 the deterioration is more pronounced. At the individual contract level

the predictive R2 shrinks from 6.40% to 4.37%. The predictive R2 at the portfolio

level drops from 6.51% to 2.73%. Furthermore, we notice that a model with a single

factor performs best out-of-sample with respect to predictive R2. This finding is in

line with the typical bias-variance trade-off involved in fitting models. Essentially,

the researcher needs to decide whether the objective is to better capture in-sample

variation by allowing for more model flexibility through an increased number of

factors, or whether the objective is to create a model that generalises well to unseen

data, hence favouring relatively sparse models with fewer factors. While the model

with a single factor has a somewhat higher predictive R2 out-of-sample than the five

factor model, the five factor model has a considerably higher total R2.

Out-of-Sample Factor Tangency Portfolios Over and above the out-of-sample

predictive accuracy of the IPCA model stands the question of whether the mean-

18We briefly summarise the computation of the factor realizations here: starting from an estim-
ation of Γ̂β,t using the available in-sample data up to time t, the out-of-sample factor realization is
computed as

f̂t+1 =
(

Γ̂′β,tZ
′
tZtΓ̂β,t

)−1

Γ̂′β,tZ
′
t.
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variance efficiency of the IPCA factors carries over into an out-of-sample setting.

We assess the out-of-sample mean-variance efficiency of both the observable factor

models entertained earlier and the IPCA model by computing out-of-sample Sharpe

ratios of the individual factors and tangency portfolios formed from the sets of

factors. We rescale portfolio weights using only backward-looking information such

that a volatility target of 1% per month is attained. Table 3.8 collects the out-of-

sample Sharpe ratios. The table reports in column k the univariate Sharpe ratio of

the respective factor as well as the Sharpe ratio of the tangency portfolio formed

from the factors 1 through k. Panel A contains the results for the IPCA factors.

A single factor (K = 1), yields a Sharpe ratio of 0.60. Adding further factors,

the Sharpe ratio peaks for the model with K = 3 factors at 1.30, before declining

again when moving to higher numbers of factors. Despite the decline in the Sharpe

ratio for more than three factors, they still exceed those of the observable factor

models such as the FFCBS6 model that generates a Sharpe ratio of 0.51. Joint

with the evidence of three significant in-sample factor Sharpe ratios (see Table 3.9),

this suggests that out of the five factors recovered by IPCA three factors are priced

factors.

3.4.5 Interpreting the IPCA Factors

Arguably, understanding the drivers of the IPCA model’s performance is as crucial

as a strong fit performance itself. To this end, we now examine both the mapping

between characteristics and factors Γβ as well as the time series of the IPCA factors

themselves. As earlier, we focus on the IPCA model with K = 5 factors. We adopt

the convention to order factors by their variance such that “Factor 1” corresponds

to the factor with highest time series variance, and “Factor 5” corresponds to the

factor with lowest time series variance.

In order to give interpretation to the factors, we primarily draw on correl-

ations of the factors with portfolios of options sorted on maturity and moneyness.

Figure 3.5 shows the correlation for each of the five factors with those portfolios. For

additional evidence we draw on the correlations of the factors with the observable

factors mentioned above and two further sets of factors. The first, dubbed “OPT3”,

follows Karakaya (2013) and consists of three factors constructed as follows: a level

factor defined as the return on ATM delta-hedged contracts of all maturities; a slope
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factor defined as the difference in returns of short-dated options with at most 2

months to expiry and longer-dated options with between four to six months to ex-

piry; and a value factor defined as the difference in returns of options with high value

and options with low value, where value is defined as the difference between BMS

implied volatility and historical, realised volatility. In addition, we construct a set

of factors constructed based on the shape of the implied volatility surface: a short-

dated skew factor (“opt skew - short”) is constructed as the difference in returns of

options with moneyness between -1 and -0.5, and options with moneyness between

0.5 and 1, where all options have one month to expiry. Similarly, we construct a

long-dated skew factor (“opt skew - long”) using the same moneyness ranges, but

options with six to 12 months to expiry. The skew twist factor (“opt skew twist”) is

constructed as the difference between the short-dated and long-dated skew factors

(opt skew - short / long). The correlations between the IPCA factors and the sets

of observable factors constructed as above are summarised in Table 3.10.

We now interpret the factors in turn. The first factors’ correlation with

moneyness / maturity sorted portfolios reveals that the factor strongly relates to

the returns on deep OTM options (correlation peaks at 76% for the 3- to 6-months

portfolio). Deep OTM contracts are often perceived as lottery-like due to their

extreme returns in rare events and periods of crisis. Indeed, a time series plot of

cumulative return on the first factor (see Figure 3.3) reveals a striking pattern: factor

returns are predominantly related to crisis periods such as the dot-com bubble in

the early 2000s, during the downturn of 2002, and during the great financial crisis

of 2007/08. Furthermore, the factor exhibits a correlation in excess of 50% with

changes in the VIX index (see Table 3.11). In terms of the contract characteristics

instrumenting the conditional loadings on this factor, moneyness and BMS Gamma

are most notable. In conjunction, this evidence suggests an interpretation of the

first factor in line with a (volatility) jump factor, similar to those documented in

Eraker et al. (2003) and Broadie et al. (2007). However, the factor’s Sharpe ratio is

small with only 0.21 (see Table 3.9).

The second factor is challenging to interpret. A multitude of characteristics

enter its loadings (see Figure 3.4). The factor’s correlation pattern with moneyness

/ maturity sorted portfolios is to some extent similar to that of factor one: high pos-

itive correlations with OTM contracts and smaller (or even negative) correlations
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with ITM contracts. However, given that the factors recovered by IPCA are ortho-

gonal, the second factor likely captures an effect that although related to factor 1

in some regards (e.g., see the large positive factor return during 2008 in Figure 3.3)

is ultimately distinct (negative return during the early 2000s). The factor’s Sharpe

ratio is comparable to that of the first factor with 0.30.

The third factor’s correlations with portfolios sorted on moneyness / maturity

(see Figure 3.5), reveal a distinct effect related to contract maturity: while the

shortest contracts (1-month) exhibit primarily positive correlation with this factor,

longer maturity contracts are almost entirely negatively correlated with this factor.

This suggests that the factor captures a form of term-structure or maturity related

effect. In addition, we find a 54% correlation with the OPT3 model slope factor,

confirming the notion of a maturity factor. The factors Sharpe ratio is sizeable with

0.96 on an annualised basis.

The fourth factor correlates most strongly with the returns on high money-

ness contracts. A correlation of 68% with the OPT3 model’s value factor stands out.

Karakaya (2013) motivates his value factor by reference to differences in institutional

demand pressures. In the context of index options, investor attention is typically

focused on put options for forms of portfolio insurance / volatility selling, leading

to a relatively smaller demand for call options, an effect potentially captured in this

factor.

Finally, the fifth factor exhibits another distinct pattern in its correlation

with moneyness / maturity sorted portfolios: the factor is most strongly correlated

with ATM contracts and relatively less so with OTM contracts. The effect is more

pronounced for shorter maturities. In addition, the factor loadings (see Figure 3.4)

are dominated by a positive coefficient on the BMS Theta. In terms of correla-

tions with observable factors a -80% correlation with the returns on the Coval and

Shumway (2001) straddle factor stands out. In conjunction, this suggests that the

factor is strongly related to a variance risk premium, i.e. the return to shorting

straddles. As expected, the time series plot of the cumulative factor return (see

Figure 3.3) shows that the factor loses during typical tail risk events such as the

dot-com bubble and the 2007/08 crisis. The loading on BMS Theta is consistent

with this idea: when buying straddles, traders have high negative Theta exposure,

i.e. the position quickly loses value as time passes. In addition, the fifth factor has
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the largest annualised Sharpe ratio in our set of IPCA factors with 1.88, strongly

suggesting this factor to be priced.

3.4.6 Which Characteristics Matter?

The IPCA model allows us to test for the incremental contribution of individual char-

acteristics. To this end, Kelly et al. (2019) develop a bootstrap approach that tests

the significance of an individual characteristic by setting it to zero, while keeping

all other characteristic loadings fixed at their estimated values. We briefly outline

the procedure now. Characteristics enter the IPCA model through the loadings

matrix Γβ that contains the loadings for specific characteristics in each of its rows.

The bootstrap test essentially tests the magnitude of the difference of a given row

in Γβ from zero. We start by estimating the unrestricted model, (i.e. the model

that does not force the coefficients of a given characteristic in Γβ to zero) and save

the estimated model parameters for Γ̂β,
{
f̂t

}T
t=1

, as well as the residuals from the

fitted model {dt}Tt=1. Using the residuals we generate a bootstrap sample under the

null hypothesis that the l-th characteristic does not affect loadings.19 We can then

compare a Wald-type test statistic of the form Wβ,l = γ̂′β,lγ̂β,l from the alternative

model with unrestricted Γβ, to the analogous test statistic W̃ b
β,l for the model es-

timated on the bootstrapped data, where the super-script b indexes the bootstrap

draw. Finally, p-values can be computed as the fraction of test statistics W̃ b
β,l that

exceed Wβ,l.

Table 3.12 summarises the results from the significance tests. We measure

the reduction in total R2 when setting the row pertaining to a specific characteristic

to zero and report the associated p-values from the bootstrap exercise.

We find that moneyness, implied volatility and BMS Gamma appear at the

top of the variable importance ranking. Comparing with our earlier discussions of

the loadings matrices Γβ in Figure 3.4, the bootstrap exercise confirms that the

majority of characteristics that factors load on strongly, are also the ones that are

most relevant in terms of generating the models ability to capture the panel variation

in option returns.

19For details, we refer the reader to Kelly et al. (2019), Section 3.3.
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3.4.7 Alternative Sets of Characteristics

While the IPCA model potentially allows for a large number of characteristics to be

entertained as instruments for conditional loadings simultaneously, the researcher

ultimately has to take a stance on the set of characteristics taken into account. In

our analysis so far the set of characteristics included moneyness, time-to-maturity,

implied volatility, embedded leverage, Gamma and Vega, and all characteristics were

interacted with both a constant and the put / call dummy variable. In order to put

our choice of characteristics into perspective, we run two sets of analysis.

Firstly, we compare the performance of the baseline model against a model in

which the choice of characteristics is motivated economically from an option return

decomposition. A standard option return decomposition is obtained via a simple

Taylor expansion of the option price Ft along its most relevant dimensions as follows

∆Ft =
dFt
dSt

∆St +
dFt

dIV t
∆IV t +

1

2

d2Ft

dSt
2 (∆St)

2 + ... . (3.11)

This can be re-arranged to yield the relative change in the option price
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The terms ∆Decomp, VDecomp, and ΓDecomp can be understood as coefficients on a

set of factors that attribute the option return variation to a Delta, Gamma and

Vega component. Table 3.13 details the performance of an IPCA model that uses

the three model-implied coefficients as characteristics. We find that the model with

characteristics following the return decomposition in Eq.(3.12), achieves only slightly

lower total R2 than the baseline model (e.g. for K = 5 and Γα = 0, 85.3% vs.

90.6%), but at higher numbers of factors, the predictive R2 of the decomposition

based model is notably lower (e.g. for K = 5 and Γα = 0, 4.7% vs. 6.4%). This

may provide evidence that although the decomposition based characteristics provide

roughly similar ability to capture empirically observed variation in option returns

(measured by total R2), the wider set of characteristics in our baseline specification is

yielding a better risk description (measured by predictive R2). Overall, this evidence

shows that the choice of characteristics in our baseline specification stacks up well

against a more economically driven choice of characteristics.
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Secondly, we estimate a battery of models with varying sets of character-

istics to assess further the dependence of our baseline model’s performance on the

choice of characteristics. Although the setting of index options naturally constrains

the potential set of characteristics in contrast to individual equity options, there

are a number of additional characteristics that can plausibly be used. Table 3.14

contains an overview of IPCA specifications using different sets of characteristics

as conditioning information. Starting from a first specification that only includes

moneyness, maturity and embedded leverage as characteristics, we find that adding

characteristics such as Theta and implied volatility one by one gradually increase

the total R2. This finding is somewhat expected as allowing for additional char-

acteristics increases the model’s number of free parameters. Consequentially, the

models ability to capture observed return variation improves. However, increases

in total R2 do not necessarily entail increases in predictive R2 which measures the

model’s ability to describe differences in average returns. In fact, we find that a

model which excludes BMS Gamma and Vega from our baseline specification pro-

duces even higher predictive R2 at both the individual contract and portfolio level.

This finding is likely explained by the correlation structure of the characteristics

that can potentially affect a model’s generalisation ability in a detrimental way.

3.4.8 Model Performance at Daily Frequency

The analysis so far has demonstrated that IPCA offers a favourable description of

realised returns and risk at monthly frequency when compared to observable factor

models that include factors such as the Fama-French three factors, momentum, and

option factors such as straddle returns as well as the embedded leverage / betting

against beta factor. In this section, we estimate the IPCA model for daily frequency,

delta-hedged returns. This horizon is of particular interest to market makers and

traders that often only hold contracts for short periods of time and that place an

emphasis on risk managing a book of derivatives.

As a benchmark, we compare IPCA against the profit and loss attribution

framework proposed by Carr and Wu (2020) that is developed particularly with

shorter horizon returns in mind. Their framework attributes option returns to vari-

ation in the first and second moments of the underlying process and the implied

volatility process. This framework is a formalisation of the typical trader’s “rule-of-
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thumb” model for managing option risk. The framework is obtained by performing a

Taylor series expansion of the Black-Merton-Scholes (BMS) pricing formula, taking

expectations under the risk-neutral measure and enforcing a no-arbitrage condition.

A particularly neat version of their P&L attribution is obtained by scaling option

gains by their cash Gamma

dF

FSSSt
=
FS
FSS

dSt
St

+ IV 2
t Stτ

(
dIVt
IVt

− µtdt
)

+
1

2
St

((
dSt
St

)2

− σ2
t dt

)

+
1

2
Stz+z−

((
dIVt
IVt

)2

− ω2
t dt

)
+ z+St

((
dSt
St

dIVt
IV t

)
− γtdt

)
,

(3.13)

where FS denotes the BMS option Delta, FSS denotes the BMS option Gamma, τ =

(Ti − t)/365 is the standardised time-to-maturity, and z± = (log(Ki/St)± 1
2IV

2
t τ).

Further, the moments under the risk-neutral measure are

µt = Et
[

dIVt
IVt

]
/dt, σ2

t = Et

[(
dSt
St

)2
]
/dt,

ω2
t = Et

[(
dIVt
IVt

)2
]
/dt, γ2

t = Et
[(

dSt
St

,
dIVt
IVt

)]
/dt,

i.e. µt is the expected rate of change in the BMS implied volatility, σ2
t and ω2

t are

the conditional variance rate of underlying and implied volatility, respectively, and

γt is the conditional covariance between the two processes. Note that in contrast to

the BMS framework itself, Carr and Wu (2020) do not require us to fully specify

the dynamics of the underlying.

The risk-neutral moments above can be obtained from the implied volatility

surface. However, since we are not limiting the analysis to ATM options on a grid

of fixed maturities as in Carr and Wu (2020), a few generalisations are necessary.

We estimate µt from the implied volatility term-structure, but instead of using

fixed maturity points to obtain the term structure slope, we approximate the slope

by taking a symmetric 60-day window around the location of a given contract on

the implied volatility surface. For contracts close to the edges of the surface, we

shift the window from which we compute the slope to ensure a window size of 60

days. The variance rate ωt is estimated from a 63-day rolling window variance

of daily implied volatility changes where we ensure the availability of at least 21

observations. The covariance rate γt is estimated from the rolling 21-day covariance
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between spot changes and implied volatility changes and we ensure availability of at

least 10 observations. Finally, we estimate σ2
t from the ATM implied volatility at a

maturity of one month.

Asset Pricing Performance We measure the performance of the Carr and Wu

(2020) approach individually for each of the risk attributions. To this end we define

the set of series

R0 =
dF

St
− FS

dSt
St

R1 = R0 − IV 2
t StFSSτ

(
dIVt
IVt

− µtdt
)

R2 = R1 −
1

2
StFSS

((
dSt
St

)2

− σ2
t dt

)

R3 = R2 −
1

2
StFSSz+z−

((
dIVt
IVt

)2

− ω2
t dt

)

R4 = R3 − z+StFSS

((
dSt
St

dIVt
IV t

)
− γtdt

)
.

We then compute the fraction of variation in delta-hedged option returns r∆
Spot ex-

plained by sequentially accounting for Vega risk, Gamma risk and so on as

R2
i = 1− V ar[Ri]/V ar[r∆

Spot], i = 1, . . . , 4. (3.14)

Since there is no direct analogue of R2
pred in this framework, we focus our analysis

on the total R2.

Results We summarise the results from a comparison of the Carr & Wu model and

the restricted IPCA frame work in Table 3.16. Before diving into the comparison

of the two approaches, we note that IPCA also performs well at daily frequency

and delivers high total R2 across a large range of option contracts. In analogy to

our earlier exercise, we present results for K = 1, . . . , 5 factors to highlight how the

IPCA performance increases as we allow for more factors to mirror progressively

hedging additional sources of risk in the Carr & Wu model. For completeness, Table

3.15 reports a more detailed set of results for IPCA model.

Comparing with the results from the no-arbitrage model, we find that when

allowing for a sufficient number of factors, IPCA almost always outperforms (Table

151



3.16, Panel A), and also when sorting the sample on moneyness, time-to-maturity,

and VIX (Panel B-D). Here we note that while the improvement in performance

of the IPCA model with increasing number of factors is almost mechanical, Table

3.15 demonstrates that the models ability to describe risk (as measured by the

predictive R2) does not decrease when allowing for more factors. While the Carr

& Wu model performs reasonably well for options close to the money, performance

deteriorates when moving to OTM options. Furthermore, we find that the no-

arbitrage model exhibits relatively poor performance for short-dated options with

one month to maturity (Panel C). Finally, Panel D demonstrates that both models

are able to capture option return variation, albeit to varying degrees of accuracy,

over a wide range of market conditions as proxied by the VIX index.

3.5 Conclusion

In this paper we study a latent factor approach that uses characteristics as condi-

tioning information for time-varying betas to describe empirically observed option

returns. Our findings from this study are threefold. First, we find that a low dimen-

sional latent factor model is successful in capturing variation in option returns and

describing differences in risk across a wide range of options. Especially, we confirm

that our approach, instrumented principal components analysis (IPCA), performs

notably better than observable factor models in terms of its ability to capture the

variation in realised option returns, and at least as well in terms of its ability to

describe risk. Importantly and in contrast to earlier findings in the literature, we

demonstrate that when using the IPCA factors, there are on average no signific-

ant intercepts associated with the characteristics managed portfolios. Furthermore,

we test the robustness of our findings in an out-of-sample exercise and find that

IPCA’s performance remains strong, still outperforming the in-sample results from

observable factor models.

Second, the factors recovered by IPCA are interpretable and relate to jump

risk, maturity risk, volatility risk and the shape of the implied volatility surface.

One of the recovered factors, correlates highly with the returns on ATM straddles

that have often been understood as a proxy for market implied volatility risk. The

Sharpe ratios on the IPCA factors reach as high as 1.88. Furthermore, we examine
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the characteristics that are important in recovering the latent IPCA factors. Nat-

urally, due to the study of index options the set of potential option characteristics

is limited to contract specific characteristics such as moneyness, time-to-maturity,

option Greeks, etc. and cannot make use of underlying characteristics as is the case

when studying single-name options. Nevertheless, we find that only about a half of

the total 14 characteristics used are statistically relevant to describe returns. Among

the most important characteristics we find option moneyness, implied volatility and

option Gamma.

Third, we test the IPCA model with shorter horizon returns at daily fre-

quency and compare to a no-arbitrage model. The findings show that IPCA not

only captures return variation well at monthly frequency, but also robustly describes

shorter horizon returns across a wide range of option contracts, outperforming a

benchmark no-arbitrage model which implements a trader’s “rule-of-thumb” ap-

proach to P&L attribution.
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(d) IPCA Cond.

Figure 3.1: Test of Mean-Variance Efficiency using Managed Portfolios.
This figure plots portfolio alphas from a time series regression of portfolio returns on the set of
factors from either an observable factor model (FFCBS6) and the IPCA model with K = 5 factors.
The test portfolios are the managed portfolios constructed from the set of characteristics included
in the estimated IPCA model: moneyness, maturity, implied volatility, embedded leverage, gamma
and vega interacted with both a constant and the put / call dummy variable. This yields a total of
15 portfolios including the equally weighted portfolio. Portfolio alphas are plotted against the raw
portfolio returns. All portfolios are re-leverage to yield 10% annualised volatility. Filled diamond
markers correspond to alphas with t-statistic greater than 2.0. Panels (a) and (b) show results
from unconditional asset pricing tests, while panel (c) and (d) show results from the conditional
FFCBS6 / IPCA model, i.e. alphas are computed as time series averages of period-by-period
portfolio residuals.
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Figure 3.2: Test of Unconditional Mean-Variance Efficiency using Double Sorted Port-
folios.
This figure plots portfolio alphas from a time series regression of portfolio returns on the set of
factors from either an observable factor model (FFCBS6) and the IPCA model with K = 5 factors.
The test portfolios are constructed by double sorting all option contracts on their time-to-maturity
and option delta. Specifically, we construct portfolios of options with 1 month, 2 months, 3 to 6
months and 7 to 12 months to maturity and absolute option deltas between zero and 0.1, 0.1 and 0.2,
and so on up to an absolute delta of 0.5. This generates 20 double sorted portfolios. Portfolio alphas
are plotted against the raw portfolio returns. All portfolios are re-leverage to yield 10% annualised
volatility. Filled diamond markers correspond to alphas with t-statistic greater than 2.0. Panels
(a) and (b) show results from unconditional asset pricing tests, while panel (c) shows results from
the conditional IPCA model, i.e. alphas are computed as time series averages of period-by-period
portfolio residuals.
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Figure 3.3: Cumulative Factor Returns
This figure shows the cumulative returns on the IPCA factors for the restricted IPCA model with
K = 5 factors. The factors are ordered by their variance, from highest to lowest, i.e. the first factor
“F1” has the highest time series variance and “F5” has the lowest time series variance.
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(e) Factor 5

Figure 3.4: Plots of loadings Γβ
This figure shows the loadings, Γβ , that create the mapping between characteristics and factors.
Each sub-plot corresponds to one column of Γβ , i.e. one IPCA factor. The IPCA model fitted
is the restricted model with K = 5. The colon notation is used to indicate interaction with
another variable, e.g. ttm:put refers to the interaction between an option’s time-to-maturity with
an indicator variable that is equal one for puts and zero for calls.
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(e) Factor 5

Figure 3.5: Factor Correlations with Moneyness / Maturity Portfolios
This figure displays correlations of the latent factors extracted by the restricted (Γα = 0) IPCA
model with K = 5 factors with returns of double sorted portfolios on moneyness and maturity. The
portfolios are constructed from equally weighting the returns on all options that fall in a given bin on
the portfolio formation date. The breakpoints for portfolio construction are as follows: moneyness
bins start at -2.5 going up to 2.0 in increments of 0.5; time-to-maturity (TTM) bins are 1 month,
2 months, 3 to 6 months and 7 - 12 months to expiry.
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Table 3.1: Summary Statistics of Option Level Variables.
This table reports summary statistics for the sample of monthly S&P 500 index option contracts.
Panel A contains results for call option contracts, while Panel B contains results for put option
contracts. The sample period is 1996 to 2017. For option level variables the table shows the time-
to-maturity ttm, moneyness mness computed as mness = ln(K/S)/(IV ·

√
ttm) with strike K and

spot price S, Black-Scholes implied volatility IV, option Delta, option Gamma, option Vega, option
Theta, and the annualised delta-hedged return versus spot price r∆

Spot.

Panel A: Call Option Contracts

ttm mness embed lev iv delta gamma vega theta r∆
Spot

Mean 132 0.86 28.93 0.16 0.24 0.003 215.81 -63.95 -3.60%
Median 91 0.79 23.01 0.15 0.23 0.002 181.31 -52.45 -3.35%
Std. Dev. 100 0.57 19.82 0.07 0.16 0.002 146.06 47.10 25.24%
No. Obs. 22,067 22,067 22,067 22,067 22,067 22,067 22,067 22,067 22,067

Panel B: Put Option Contracts

ttm mness embed lev iv delta gamma vega theta r∆
Spot

Mean 116 -1.32 19.30 0.28 -0.13 0.001 141.50 -64.83 -4.72%
Median 63 -1.36 17.28 0.26 -0.08 0.001 96.81 -51.75 -3.35%
Std. Dev. 95 0.71 10.75 0.11 0.13 0.002 137.34 50.08 23.33%
No. Obs. 54,881 54,881 54,881 54,881 54,881 54,81 54,881 54,881 54,881
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Table 3.2: IPCA Performance.
This table reports the IPCA fit performance as measured by R2

total and R2
pred using both the

restricted model (Γα = 0) and the unrestricted model (Γα 6= 0) with K = 1, . . . , 5. The employed
option characteristics mness, ttm, embed lev, theta, impvvol, gamma, vega are each interacted with
a constant and an indicator variable that is equal one if the option is a put and is zero otherwise.
Additionally, a constant is included in the set of characteristics. In Panel A performance measures
are computed with respect to individual option contracts, while in Panel B performance measures
are computed with respect to the characteristics-managed portfolios. Panel C reports p-values for
the test with null hypothesis H0 : Γα = 0 from a bootstrap with 1000 draws for each time t.

No. Factors

1 2 3 4 5

Panel A: Individual Options

R2
total Γα = 0 72.69% 80.18% 85.31% 89.15% 90.61%

Γα 6= 0 74.24% 81.61% 86.09% 89.53% 90.83%

R2
pred Γα = 0 5.48% 5.29% 6.11% 6.31% 6.40%

Γα 6= 0 7.22% 7.34% 7.25% 7.08% 6.98%

Panel B: Managed Portfolios

R2
total Γα = 0 95.47% 97.54% 99.08% 99.63% 99.73%

Γα 6= 0 96.00% 98.03% 99.25% 99.65% 99.73%

R2
pred Γα = 0 6.23% 6.06% 6.38% 6.49% 6.51%

Γα 6= 0 6.71% 7.18% 7.04% 6.79% 6.71%

Panel C: Bootstrap Test (H0 : Γα = 0)

Wα p-value 99.9% 99.4% 94.6% 76.9% 62.4%
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Table 3.3: Panel Regression of Option Returns on Option Characteristics.
The dependent variable is the monthly delta-hedged return versus the prevailing spot price
r∆
Spot. Regression specification (1) uses a common intercept for all observations, while specifica-

tion (2) uses time-fixed effects. As regressors we include the moneyness computed as mness =
ln(K/S)/(IV ·

√
ttm), time-to-maturity ttm, Black-Merton-Scholes (BMS) gamma, vega, theta and

the BMS implied volatility (IV). In addition to the characteristics themselves, we include the inter-
action of the characteristics with a put / call dummy that has value one if the option contract is a
put and is zero otherwise. For example, the interaction of moneyness and the put / call indicator
is denoted mness:put. All predictors are standarised by their sample standard deviation. Standard
errors are clustered by option contract and in parentheses we report t-statistics.

r∆
Spot

(1) (2)

Intercept -0.0006
(-0.3642)

mness 0.1212 0.0654
(1.3761) (0.8360)

ttm 0.0397 0.0505
(2.1013) (1.9910)

embed lev -0.0219 -0.0058
(-0.8734) (-0.4110)

gamma 0.0105 0.0217
(0.4761) (1.5546)

vega -0.0015 0.0016
(-0.0507) (0.0711)

theta -0.0538 -0.0240
(-1.7241) (-0.8829)

IV -0.1311 -0.1545
(-1.5084) (-2.7647)

mness:put -0.1765 -0.1282
(-1.1220) (-1.2194)

ttm:put -0.0237 -0.0400
(-1.5188) (-1.7509)

embed lev 0.0381 0.0256
(1.9839) (1.1326)

gamma:put -0.0321 -0.0384
(-1.8850) (-2.6538)

vega:put -0.0148 -0.0091
(-0.9335) (-0.6323)

theta:put 0.0872 0.0776
(2.3337) (3.7570)

IV:put 0.1071 0.1248
(1.7136) (2.8630)

Effects Time
R2 3.41% 6.77%
No. Obs. 76948 76948
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Table 3.4: IPCA Performance by Bins of Moneyness, Maturity, and VIX.
The table details the total and predictive R2 by bins sorted on option characteristics for the re-
stricted IPCA model with K = 5 factors. Note, total and predictive R2 is computed using only
observations from the respective bin examined.

Panel A: Moneyness Bin

Range R2
total R2

pred No. Obs.

-2.5 to -2 65.81% 1.46% 12,178
-2 to -1.5 86.50% 3.21% 12,017
-1.5 to -1.0 86.28% 6.41% 11,155
-1.0 to -0.5 91.87% 8.25% 10,253
-0.5 to 0.0 89.92% 9.02% 9,278
0.0 to 0.5 89.70% 2.43% 7,460
0.5 to 1.0 90.78% 3.16% 5,895
1.0 to 1.5 79.70% 4.20% 4,848
1.5 to 2.0 57.50% 2.85% 3,864

Panel B: Time-to-Maturity Bin

Range R2
total R2

pred No. Obs.

1 Month 77.76% 6.19% 17,778
2 Months 92.14% 8.25% 19,280
3 to 6 Months 94.65% 7.75% 22,446
6 to 12 Months 93.40% 3.19% 17,444

Panel C: VIX

Range R2
total R2

pred No. Obs.

10% to 20% 87.66% 3.18% 48,318
20% to 30% 86.50% 18.64% 21,012
30% to 50% 94.61% 3.82% 5,578
50% to 90% 83.71% -5.61% 665
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Table 3.5: IPCA versus Observable Factor Models.
The table compares the total and predictive R2 of the restricted IPCA model with K = 1, . . . , 5
factors (Panel A) and a number of observable factor models (Panel B / C). Starting from
the Fama-French three factor model (FF3), we add the Carhart momentum factor (FFC4), the
Frazzini and Pedersen (2012) ’betting against beta’ factor (FFCB5), and the Coval and Shumway
(2001) straddle factor (FFCBS6). Panel B contains the results when loadings are dynamic by
instrumenting with characteristics, while in Panel C loadings are static corresponding to a panel
regression. We report performance measures for individual options as test assets R2

total / R2
pred and

for characteristics managed portfolios as test assets R2
total,x / R2

pred,x.

Panel A: IPCA

K

1 2 3 4 5

R2
total 72.69% 80.18% 85.31% 89.15% 90.61%

R2
pred 5.48% 5.29% 6.11% 6.31% 6.40%

R2
total,x 95.47% 97.54% 99.08% 99.63% 99.73%

R2
pred,x 6.23% 6.06% 6.38% 6.49% 6.51%

Panel B: Observable Factors - With Instruments

CAPM FF3 FFC4 FFCB5 FFCBS6

R2
total 25.64% 29.31% 31.19% 36.49% 50.59%

R2
pred 2.42% 2.58% 2.75% 4.10% 6.55%

R2
total,x 29.98% 37.46% 40.39% 43.67% 58.85%

R2
pred,x 3.12% 3.30% 3.59% 4.90% 6.70%

Panel C: Observable Factors - No Instruments

CAPM FF3 FFC4 FFCB5 FFCBS6

R2
total 18.86% 19.41% 19.44% 24.40% 31.71%

R2
pred 2.51% 2.46% 2.53% 3.35% 4.06%

R2
total,x 25.75% 27.91% 28.23% 32.57% 45.56%

R2
pred,x 2.62% 2.65% 2.79% 4.38% 5.66%

Table 3.6: IPCA Portfolio Alphas.
The table summarises the conditional and unconditional portfolio average absolute alphas when the
factors come from the restricted (Γα = 0) IPCA model with K = 1, . . . , 5 factors. The test portfolios
are the characteristics managed portfolios. Unconditional portfolio alphas are obtained from time
series regressions of portfolio returns onto the set of factors. Conditional alphas are obtained as the
time series averages of period-by-period portfolio residuals in the main IPCA model. The reported
values are the average absolute alphas across the set of test portfolios.

K=1 K=2 K=3 K=4 K=5

Unconditional 3.39% 2.11% 1.83% 1.55% 1.47%
Conditional 3.24% 2.87% 0.54% 0.38% 0.39%
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Table 3.7: Out-of-Sample Performance
The table shows the out-of-sample performance of the restricted IPCA model with K = 1, . . . , 5
factors. The out-of-sample exercise starts at 50% of our sample length, i.e. the first forecast is
made for January 2007. Panel A contains results for individual option contracts, while Panel B
examines the out-of-sample performance of managed portfolios.

K=1 K=2 K=3 K=4 K=5

Panel A: Individual Options

R2
total 71.99% 75.75% 82.56% 88.10% 89.28%

R2
pred 4.77% 4.39% 4.15% 4.38% 4.37%

Panel B: Managed Portfolios

R2
total 95.76% 96.79% 98.47% 99.50% 99.52%

R2
pred 3.31% 2.82% 2.19% 2.76% 2.73%

Table 3.8: Out-of-Sample Factor Portfolio Sharpe Ratios.
The table summarises the out-of-sample Sharpe ratios of the individual factors (“Univariate”) and
mean-variance optimal portfolios (“Tangency”). We assume a portfolio volatility target of 1% per
month and rescale the portfolio weights accordingly. The observable factor models start with the
CAPM and progressively add further factors: size (“FF2”), value (“FF3”), momentum (“FFC4”),
betting-against-beta for options (“FFCB5”), and straddles (“FFCBS6”). Panel A details the
results for the IPCA model, while Panel B reports results for the observable factor models. The
out-of-sample period starts at 50% of the total available sample length, i.e. in January 2007.

Panel A: IPCA
K=1 K=2 K=3 K=4 K=5

Univariate 0.60 0.46 0.44 0.88 1.18
Tangency 0.60 1.04 1.30 0.96 0.73

Panel B: Observable Factors
CAPM FF2 FF3 FFC4 FFCB5 FFCBS6

Univariate 0.46 0.13 -0.09 0.12 0.36 0.55
Tangency 0.46 0.41 0.10 0.27 0.32 0.51

Table 3.9: IPCA Factor Summary Statistics. This table reports summary statistics of the
restricted IPCA model, estimated using five factors and as characteristics mness, ttm, embed lev,
impvol, gamma, theta, vega. Reported measures are annualised. Note, interpreting factor returns
comes with the caveat that we compute delta-hedged option returns using the prevailing spot price
as demnominator, i.e. we compare the excess return on the delta-hedged option position to the
value of the underlying. Significance of the Sharpe ratio is obtained from a regression of the factor
return series on a constant where the regression is using Newey-West standard errors with up to 10
lags. The significance levels are: p < 0.10 - *, p < 0.05 - **, p < 0.01 - ***. The sample period is
from 1996 to 2017 covering 261 months.

F1 F2 F3 F4 F5

Mean 0.02 0.02 0.03 0.01 0.03
Std. Dev 0.11 0.05 0.03 0.02 0.02
Sharpe Ratio 0.21 0.30 0.96*** 0.60*** 1.88***
Skewness 3.63 3.34 -0.66 0.18 -0.75
Kurtosis 32.62 25.11 3.29 2.71 1.81
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Table 3.10: IPCA Factors versus Asset Pricing Factors: Correlations
The table relates the IPCA factors extracted by the restricted IPCA model with K = 5 factors to
a set of asset pricing factors studied in previous empirical option returns literature. The observable
factors include the Fama-French three factors (mktrf, smb, hml), the Carhart momentum factor
(umd), the Frazzini and Pedersen (2012) betting against beta factor (bab), and the Coval and
Shumway (2001) straddle factor (straddle). We construct the level (opt3 level), slope (opt3 slope)
and value factors (opt3 value) of Karakaya (2013). We enlarge the set of factors constructed in the
spirit of Karakaya (2013) and construct a set of implied volatility skew and skew twist factors. The
short-dated skew factor (opt skew - short) is constructed as the difference in returns of options with
moneyness between -1 and -0.5, and options with moneyness between 0.5 and 1, where all options
have one month to expiry. Similarly, we construct the long-dated skew factor (opt skew - long)
using the same moneyness ranges, but options with six to 12 months to expiry. The skew twist
factor (opt skew twist) is constructed as the difference between the short-dated and long-dated skew
factors (opt skew - short / long). The table contains pairwise correlations of the two sets of factors
and p-values from the associated F-statistic. Bold font indicates correlations significant at the 5%
level or better.

F1 F2 F3 F4 F5

mktrf corr. -46.16% 3.98% 18.27% -37.55% 17.46%
p-value 0.00 0.52 0.00 0.00 0.00

smb corr. -8.81% -8.85% 4.30% -21.68% 22.05%
p-value 0.16 0.16 0.49 0.00 0.00

hml corr. 1.82% 6.73% 6.03% -10.55% 6.18%
p-value 0.77 0.28 0.33 0.09 0.32

umd corr. 4.27% -3.10% -2.08% 27.63% -4.46%
p-value 0.49 0.62 0.74 0.00 0.47

bab call corr. -24.96% 15.48% -2.37% -13.91% 37.34%
p-value 0.00 0.01 0.70 0.03 0.00

bab put corr. -35.97% -11.65% -13.62% 39.85% 23.03%
p-value 0.00 0.06 0.03 0.00 0.00

bab corr. -39.89% 0.61% -11.04% 20.33% 37.81%
p-value 0.00 0.92 0.08 0.00 0.00

straddle corr. -5.54% -2.39% -1.86% 27.57% -79.83%
p-value 0.37 0.70 0.77 0.00 0.00

opt3 level corr. 28.30% 38.87% -33.17% 65.39% -49.05%
p-value 0.00 0.00 0.00 0.00 0.00

opt3 slope corr. -32.69% -34.00% 54.46% -45.63% -13.67%
p-value 0.00 0.00 0.00 0.00 0.07

opt3 value corr. -6.68% -16.21% -21.93% 68.19% -26.16%
p-value 0.28 0.01 0.00 0.00 0.00

opt skew - short corr. 21.96% 47.14% 5.52% -22.12% 0.31%
p-value 0.00 0.00 0.38 0.00 0.96

opt skew - long corr. 26.81% 32.03% -2.72% -30.08% -5.71%
p-value 0.00 0.00 0.67 0.00 0.36

opt skew twist corr. 11.23% 35.03% 8.56% -9.44% 1.95%
p-value 0.07 0.00 0.17 0.13 0.76
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Table 3.11: Correlations of IPCA Factors and Measures of Liquidity Provision.
This table contains correlations of IPCA factors for the model with K = 5 factors with measures
of liquidity, funding and volatility risks. All correlations are computed using the monthly first
differences in the liquidity measures. The variables are as follows: TED spread is the TED spread
obtained from the FRED database, intermed capital is the intermediary capital factor from He
et al. (2017), openint puts is the open interest in put options, openint calls is the open interest in
call options, openint tot is the total open interest in both puts and calls, baspread is the bid-ask
spread in the option contract, volume is the traded volume in the option contract in a given month,
pcratio is the ratio of open interest in puts to calls, and vix is the CBOE VIX index. Values in bold
font indicate significance at the 5% level or better.

F1 F2 F3 F4 F5

TED spread 34.6% 7.2% -2.0% 1.1% -23.3%
intermed capital -36.0% -8.2% -10.3% 8.0% 0.1%
openint puts 6.7% 12.7% -4.0% 13.0% -11.0%
openint calls 15.3% 10.3% -2.3% 22.3% -17.6%
openint tot 10.5% 12.2% -3.4% 17.4% -14.2%
baspread 0.4% -6.4% 17.2% -18.3% 2.5%
volume 9.3% 11.6% -12.3% 8.4% -11.3%
pcratio 2.3% -4.4% 2.5% -4.8% 10.8%
vix 56.1% 10.2% -26.3% 36.9% -28.8%

Table 3.12: IPCA Instrument Significance.
This table contains results from the bootstrap test for individual characteristics contributions
to overall fit in the restricted IPCA specification with K = 5 factors. The test sets all ele-
ments in Γβ related to a given characteristics equal to zero and compares the overall model
fit against the model with fully specified Γβ . The first column summarises the absolute reduc-
tion in total R2 from setting the row in the matrix Γβ pertaining to a given characteristic to
zero. The second column contains p-values for the bootstrap test Wβ with 1000 draws that tests
H0 : Γβ = [γβ,1, . . . , γβ,l−1,0K×1, γβ,l+1, . . . , γβ,L] against the alternative H1 : [γβ,1 . . . , γβ,L]. The
table is sorted by the reduction in total R2 from largest to smallest.

Reduction R2
total (abs.) Wβ p-value

mness:put 1.24 0.00
impvol 0.90 0.00
gamma:put 0.44 0.00
mness 0.43 0.00
gamma 0.40 0.00
theta 0.16 0.00
vega 0.16 0.00
impvol:put 0.13 0.00
embed lev:put 0.10 0.10
ttm:put 0.05 0.53
ttm 0.03 0.46
theta:put 0.03 0.12
embed lev 0.03 0.17
vega:put 0.02 0.64
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Table 3.13: IPCA Performance - Robustness This table reports the IPCA fit performance
as measured by R2

total and R2
pred using both the restricted model (Γα = 0) and the unrestricted

model (Γα 6= 0) with K = 1, . . . , 5. In contrast to Table 3.2, the model estimated in this table uses
charachteristics as implied by a Taylor expansion of the BMS model price as shown in Equation
(3.12). The resulting characteristics are each interacted with a constant and an indicator variable
that is equal one if the option is a put and is zero otherwise. Additionally, a constant is included
in the set of characteristics. In Panel A performance measures are computed with respect to
individual option contracts, while in Panel B performance measures are computed with respect to
the characteristics-managed portfolios.

No. Factors

1 2 3 4 5
Panel A: Individual Options

R2
total Γα = 0 71.27% 77.83% 81.81% 83.98% 85.26%

Γα 6= 0 71.76% 78.26% 82.03% 84.09% 85.28%

R2
pred Γα = 0 5.77% 5.85% 5.23% 4.92% 4.71%

Γα 6= 0 6.14% 6.08% 5.28% 4.93% 4.76%

Panel B: Manged Portfolios

R2
total Γα = 0 98.43% 99.47% 99.65% 99.78% 99.91%

Γα 6= 0 98.43% 99.50% 99.68% 99.77% 99.90%

R2
pred Γα = 0 7.14% 7.23% 6.74% 6.73% 6.67%

Γα 6= 0 7.03% 7.03% 6.77% 6.71% 6.67%
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Table 3.15: IPCA Performance - Daily Frequency.
This table reports the performance as measured by R2

total and R2
pred using both the restricted model

(Γα = 0) and the unrestricted model (Γα 6= 0) with K = 1, . . . , 5. Option characteristics mness, ttm,
embed lev, theta, iv, gamma, vega are each interacted with a constant and an indicator variable
that is equal one if the option is a put and is zero otherwise. In Panel A performance measures
are computed with respect to individual option contracts, while in Panel B performance measures
are computed with respect to the characteristics managed portfolios. Panel C reports p-values for
the test Γα = 0 from a bootstrap with 1000 draws for each time t.

No. Factors

1 2 3 4 5
Panel A: Individual Options

R2
total Γα = 0 69.89% 85.57% 91.11% 92.73% 93.57%

Γα 6= 0 70.33% 85.72% 91.23% 92.84% 93.56%

R2
pred Γα = 0 0.37% 0.41% 0.39% 0.40% 0.42%

Γα 6= 0 0.66% 0.64% 0.62% 0.61% 0.61%

Panel B: Managed Portfolios

R2
total Γα = 0 94.34% 97.35% 99.31% 99.67% 99.76%

Γα 6= 0 94.31% 97.37% 99.31% 99.67% 99.77%

R2
pred Γα = 0 0.35% 0.34% 0.34% 0.35% 0.37%

Γα 6= 0 0.24% 0.37% 0.35% 0.33% 0.35%

Panel C: Bootstrap Test (H0 : Γα = 0)

Wα p-value 99.8% 95.6% 90.2% 44.4% 99.4%
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Table 3.16: Comparison of IPCA against a No-Arbitrage Model at Daily Frequency.
This table details the performance of both the Carr and Wu (2020) model and the restricted IPCA
model with K = 1, . . . , 5 factors at daily frequency. The daily returns are delta-hedged. For the no-
arbitrage model the total R2 is computed as follows: for a series Ri, 1, . . . , 4 as specified in Section
3.4.8 the R2 is computed as R2

total,i = 1− Var(Ri)/Var(R0) where R0 is the series of delta-hedged
daily returns. The computation of the total R2 in the IPCA model follows the usual form.

Panel A: Average Performance

Carr & Wu - R2
total IPCA - R2

total

R1 R2 R3 R4 K=1 K=2 K=3 K=4 K=5

All Options 74.2% 83.0% 79.8% 83.1% 69.9% 85.6% 91.1% 92.7% 93.6%

Panel B: Average Performance by Moneyness Bin

Carr & Wu - R2
total IPCA - R2

total

mness R1 R2 R3 R4 K=1 K=2 K=3 K=4 K=5

-2.5 to -2 33.4% 38.4% -55.5% -45.8% 33.1% 28.5% 29.2% 47.6% 48.7%
-2 to -1.5 53.5% 62.9% 37.4% 40.5% 65.2% 67.2% 72.1% 82.1% 83.3%
-1.5 to -1.0 67.3% 78.6% 73.4% 71.9% 77.7% 82.5% 88.0% 91.1% 92.1%
-1.0 to -0.5 72.0% 85.1% 84.2% 83.1% 77.0% 87.2% 93.4% 94.0% 94.7%
-0.5 to 0.0 71.2% 85.0% 84.9% 84.3% 66.9% 87.0% 93.3% 94.2% 94.9%
0.0 to 0.5 77.8% 85.3% 85.1% 86.7% 65.6% 88.2% 92.9% 93.9% 94.7%
0.5 to 1.0 81.1% 83.8% 80.8% 90.4% 72.9% 87.1% 91.7% 93.2% 94.2%
1.0 to 1.5 83.7% 77.4% 63.4% 89.9% 72.4% 79.4% 84.7% 88.6% 90.1%
1.5 to 2.0 87.5% 68.2% 25.4% 84.9% 57.6% 47.8% 59.8% 68.2% 70.2%

Panel C: Average Performance by Time-to-Maturity Bin

Carr & Wu - R2
total IPCA - R2

total

ttm R1 R2 R3 R4 K=1 K=2 K=3 K=4 K=5

1 Month 46.3% 62.1% 52.0% 60.1% 69.5% 80.2% 91.3% 94.0% 95.0%
2 Months 79.1% 92.6% 91.7% 94.6% 78.3% 91.8% 93.4% 94.9% 95.6%
3 to 6 Months 85.8% 92.8% 92.2% 93.8% 72.6% 90.2% 92.4% 93.5% 94.0%
6 to 12 Months 85.6% 88.4% 88.2% 88.6% 56.8% 78.2% 86.5% 87.8% 89.0%

Panel D: Average Performance by VIX bin

Carr & Wu - R2
total IPCA - R2

total

VIX R1 R2 R3 R4 K=1 K=2 K=3 K=4 K=5

10% to 20% 65.7% 78.1% 74.9% 76.9% 63.5% 85.2% 90.3% 91.6% 92.6%
20% to 30% 78.0% 85.4% 82.5% 84.7% 71.3% 84.8% 90.7% 92.4% 93.3%
30% to 50% 76.2% 84.3% 80.8% 85.8% 83.8% 89.4% 95.0% 96.4% 97.0%
50% to 90% 76.0% 83.6% 80.3% 87.4% 83.3% 89.4% 94.1% 96.1% 96.4%
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Chapter 4

What Drives Asset Holdings?

Commonality in Investor

Demand1

“The special sphere of finance within economics is the study of allocation

and deployment of economic resources, both spatially and across time, in

an uncertain environment. To capture the influence and interaction of

time and uncertainty effectively requires sophisticated mathematical and

computational tools.”

– Robert C. Merton; Nobel Lecture 1997

4.1 Introduction

Asset pricing models rely on market clearing to equate the equilibrium demands

of all investors. Akin to a zero-sum game, for every quantity of an asset sold an

equal quantity has to be purchased. Hence, market clearing introduces an almost

mechanical correlation structure in investor demands. In this paper, I investigate the

economic and statistical properties of this correlation structure. Specifically, I study

whether changes in investor holdings exhibit a factor structure, what a potential set

of factors in holdings changes captures economically, and what the existence of a

factor structure in holdings can mean for asset pricing.

1Parts of the chapter have been presented at the 2020 AEFIN PhD Mentoring Day, and the
Warwick University Finance Brown Bag Seminar.
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Contrary to most asset pricing models that focus on return and consumption

data, this paper studies holdings data. Holdings data complements price / return

data by allowing the researcher to explicitly track investor demand across assets and

time. Using this data, I revisit the investor portfolio choice problem and empirically

model asset demand as measured through changes in holdings. Studying holdings

changes in a factor structure approach is both novel to the literature and import-

ant for a number of reasons. Firstly, there is a notion that financial markets are

risk-sharing markets. This means asset supply and demand shocks should reflect

changes in risks. Hence, to first order, a factor modelling approach should allow

us to obtain a better understanding for the factors that investors consider in their

investment decisions. Secondly, a factor modelling approach could help in discerning

how different investor types act in different market conditions (e.g., mutual funds vs.

hedge funds). Given market clearing, it is obvious that not all investors can trade

in the same direction at the same time. A factor model can capture differences in

investor behaviour by means of signed, investor-specific factor loadings. Thirdly, a

suitably constructed factor model can also aim to be comprehensive in the sense that

it describes not only a single asset or investor type, but many assets and investors

simultaneously.

My modelling approach has two essential ingredients: aggregate factors that

capture the shocks to asset supply / demand and investor specific exposure to the

factors. This empirical approach reflects an economy with aggregate shocks in the

presence of which heterogeneous investors choose from a pool of differentiated assets

(cf. Campbell et al., 2003). By extracting factors in a data-driven manner, I do not

take an ex ante stance on the nature of the shocks, that is, whether they originate on

the demand or supply side. Rather, I will shed light on the nature of the extracted

factors by relating them to relevant economic time series.

Methodologically, I build on Instrumented Principal Components Analysis

(IPCA) (Kelly et al., 2019, 2017), a latent factor modelling approach originally ap-

plied in the context of equity returns. After an extension to allow for a third dimen-

sion in the input data, i.e. the investor dimension, IPCA provides a comprehensive

approach to jointly model latent, systematic factors as well as investor-specific, time-

varying factor loadings that partially depend on observed asset characteristics. Asset

characteristics enter IPCA akin to instruments allowing for efficient and consistent
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recovery of latent factors and loadings.

This paper is linked to a recent strand of literature that draws on investor

holdings data to better understand asset prices. Koijen and Yogo (2019a) propose

a particular way in which we can think about holdings data, i.e. a characteristics-

based demand system. In their paper the optimal portfolio choice differs across

investors with heterogeneous beliefs and depends on observed asset characterist-

ics and latent demand. Contrary to their work, this paper explicitly models the

correlated trading of different investors. Thus, this paper effectively relaxes the

commonly made assumption of atomistic investors. However, this paper accommod-

ates a characteristics-based demand notion of Koijen and Yogo, in which investor

holdings are determined by asset characteristics alone, alongside a set of systematic

factors common to all investors (albeit with differing loadings).

4.1.1 Findings

Using a data set of nearly forty years of changes in U.S. equity holdings across seven

broad investor types, I estimate an extended IPCA model. My extension of IPCA,

dubbed “IPCA3D” for distinction, allows for heterogeneous characteristics loadings

across different investor types, but assumes a latent factor structure common to all

investors. Initially, without any latent factors, I find that a set of six characteristics

as used in Koijen and Yogo (2019a) explains less than 1% of the variation in holdings

changes in my sample. Allowing for a wider set of characteristics as in Kelly et al.

(2019) improves the model fit performance by a factor of six. I then proceed to

allow for latent factors in the relation between asset characteristics and changes in

holdings. With a single latent factor the fraction of explained variance in holdings

more than doubles relative to the model that only allows for a characteristics based

intercept term. Adding more than three factors contributes little to model fit per-

formance. For parsimony I focus on a model with K = 2 factors, and find a stock

level R2 of roughly 10%. Instead of focusing on variation in holdings at stock level

alone, I also form characteristics-managed portfolios for each of the 36 character-

istics in the model. At portfolio level, the model with K = 2 factors has an R2 in

excess of 90%, highlighting IPCA3D’s ability to accurately track changes in investor

holdings as a function of asset characteristics. In a sub-sample analysis I assess the

model’s performance in explaining the changes in holdings for particular investor
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types. The model performs particularly well in explaining variation in holdings for

mutual funds, investment advisors (which includes many hedge funds), as well as

the small investors sector. The holdings of insurance companies and pension funds

are explained least well.

To understand the economic character of the factors recovered by IPCA3D,

I run a comprehensive correlation analysis relating the factors to relevant economic

time series. Starting with a set of principal components from a well-known macro

data set as used in Ludvigson and Ng (2009) & Stock and Watson (2012), I find

that the first latent factor clearly relates to the macro state of the economy (in-

cluding industrial production, employment, productivity, etc.). Importantly, the

factor exhibits pro-cyclicality. The second factor in my benchmark specification is

related to household and business sector balance sheet variables, especially measures

of (household) debt to income. Therefore, I interpret this second factor as a measure

of financial constraints of investors.

To gain an understanding for what differentiates the investment behaviour of

different investor types, I study the time-varying, sector-specific loadings obtained

alongside the factors. Analysing the loadings on the first factor (business cycle),

I establish that banks and mutual funds act in a pro-cyclical manner, while hedge

funds and pension funds act in a counter-cyclical manner. These patterns broadly

match those found in Timmer (2018). The loadings on the second factor exhibit a

clear split between the institutional and small investor (household) sector. Given

the correlation of this factor with measures of investors’ financial constraints, this

suggests that as smaller investors become more financially constrained they divest,

while larger institutions act as counter-parties.

Next, I assess the overall importance of the 36 characteristics used in the

baseline specification. I find that among the eight characteristics significant at the

1% level in a bootstrap exercise, momentum and liquidity related variables stand out.

This suggests that in addition to the characteristics used in Koijen and Yogo (2019a)

there is evidence that investors take into account past returns and liquidity when

choosing their portfolios. In a set of panel regressions of the decomposed changes

in holdings onto past returns, I find that past returns are particularly important in

explaining the characteristics-based part of the holdings changes, while their impact

on systematic holdings changes is far less pronounced. This finding also helps to
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further pin down the source of the cyclicality captured in the systematic factors

mentioned earlier: it mostly derives from macroeconomic channels such as industrial

production, employment, etc., and less from past returns. Overall, the relevance of

past returns as drivers of portfolio holdings is in line with studies such as Grinblatt

et al. (1995); Nofsinger and Sias (1996); Sias (2004) that investigate different drivers

of mutual fund herding. Liquidity considerations are consistent with Gompers and

Metrick (2001), who document a particular institutional demand for larger, more

liquid stocks.

The paper concludes by investigating relations between asset prices and

changes in holdings. In particular, using the fitted values of an IPCA3D model

estimated in expanding window fashion, I decompose the holdings changes for each

investor sector into three components: intercept, systematic part, idiosyncratic part.

Then, in a host of predictive regressions, I analyse which parts of investors’ holdings

changes predict future returns. Changes in the holdings of mutual funds in response

to systematic shocks are negatively associated with future returns, consistent with

the idea of institutional price pressure effects (see, e.g., Coval and Stafford, 2007).

A similar effect obtains for banks. Further, I find that the changes in holdings of

investment advisors, unrelated to systematic shocks are predictive of future returns.

Both the characteristics-based and idiosyncratic changes in investment advisor hold-

ings predict returns for up to two quarters ahead. The relevance of idiosyncratic

investment advisor demand suggests that in addition to the conventional character-

istics entertained by investors (and used in the estimation of IPCA3D), investment

advisors possess superior information that is useful for market-timing.

4.1.2 Related Literature

This paper relates to three streams of literature. First, this paper builds on a

growing literature in demand-based asset pricing. In Koijen and Yogo (2019a) (KY

hereafter), log-utility maximising investors face an inter-temporal budget constraint

and a short sale restriction. Assets are differentiated by characteristics and their risk

attributes are fully determined through characteristics loadings in a low-dimensional

factor structure of returns. At the heart of their paper, there is an estimation which

in stylised form can be summarised as follows. For investor i at time t the portfolio

175



weight wi,j,t is regressed on a set of asset characteristics zj,t

wi,j,t
wi,0,t

=

L∑
l=1

βl,i,t zl,j,t︸ ︷︷ ︸
Characteristics-Based Demand

+ εi,j,t︸︷︷︸
Latent Demand

, (4.1)

where wi,0,t denotes the weight of investor i on the outside asset, i.e. the aggregate

holding in all assets not modelled immediately in their study.2 KY refer to latent

demand as the part of demand related to characteristics unobserved by the econo-

metrician and demonstrate that latent demand explains the vast majority of stock

returns.3 My paper examines more closely the structure and economics of what KY

term “latent demand”, albeit this paper pursues a reduced-form, factor modelling

approach to synthesise cross-sector and aggregate macroeconomic effects.

Second, this paper’s modelling relates to a large literature concerned with

state-/ regime-based asset pricing going back to at least Harrison and Kreps (1978).

Brennan et al. (1997) develop a model in which investors choose portfolios in the

presence of aggregate state variables for a mean-variance optimising investor. In re-

lated research, Campbell et al. (2003) solve a more complex version of the portfolio

choice problem when the investor has Epstein-Zin utility. Guidolin and Timmer-

mann (2007) examine asset allocation in the presence of regime switches in asset

returns, finding evidence for four separate regimes: crash, recovery, slow growth and

bull markets. Investors’ asset allocation varies over these states and depends on their

heterogeneous preferences, e.g., a short-horizon investor’s portfolio weights are far

less stable than those of a long-horizon investor. Brennan and Xia (2002) extends

Brennan et al. (1997) and accounts for inflation. My paper contributes an empir-

ical perspective on this literature by recovering the main macroeconomic channels

that drive asset demand and can therefore provide a useful guide for further theory

research.

Third, since this paper’s results are based on data pertaining to a hand-

2Note, this stylised summary is intended to give a simplified idea of the core estimation in Koijen
and Yogo. Their estimation requires an instrumental variable approach that addresses the issue
that demand shocks across investors are likely correlated and that latent demand and asset prices
are potentially endogenous.

3In a related paper Koijen and Yogo (2019b) estimate an international demand system for 36
countries. Using their demand system they decompose exchange rates, yields and equity prices into
three channels: macro variables, policy variables, and latent demand. Finally, Koijen et al. (2019)
use a demand system approach to study how different investors contribute to the price formation
process and which characteristics matter most for prices.

176



ful of broad investor types (banks, pension funds, insurance firms, etc.), it relates

to a whole range of literatures that have examined investment behaviour in these

different sectors. Perhaps most prominently and due to data availability, a large

literature has focused on understanding mutual fund performance and manager be-

haviour. This literature has on the one hand examined fund investment styles as

drivers of their asset demand (e.g., see Brown and Goetzmann, 1997; Chan et al.,

2002; Berk and Green, 2004; Barber et al., 2016). On the other hand, momentum

based trading and herding have been found to explain some mutual funds’ beha-

viour (e.g., see Grinblatt et al., 1995; Nofsinger and Sias, 1996; Wermers, 1999;

Sias, 2004). In addition, a number of papers focused on debt holdings provide evid-

ence for cyclicality in investor holdings. Timmer (2018) finds banks and investment

funds behaving pro-cyclically, while insurance firms and pension funds act counter-

cyclically. Abbassi et al. (2016) document differences in bank trading behaviour in

debt markets during the great financial crisis driven by differing trading expertise of

banks. Another growing literature looks at the investment behaviour of individual

investors and households. Behavioural factors such as disposition effects and over-

confidence are key characteristics of individual investor behaviour.4 Odean (1998)

demonstrates an individual investor disposition effect that makes them reluctant to

realise investment losses / gains, i.e. holding losing investments too long and selling

winning investments too soon. Relatedly, Barber and Odean (2000) shows that in-

dividual investor portfolios with high turnover underperform those of investors with

less inclination to trade by a significant margin. My paper adds to this literature,

by studying the interplay between different sectors of investors that have commonly

been studied in isolation from each other. In this regard, my paper shows which

investors “take the other end of the trade” on average.

This paper proceeds as follows. In Section 4.2, I introduce instrumented

principal components analysis and extend the method to allow for an additional

dimension in the data. Section 4.3 describes the construction of the data and its

properties. Section 4.4 presents results for the factor structure in holdings changes,

interprets the recovered factors, and investigates differences in investor exposure

to the recovered factors. Section 4.5 documents a number of asset pricing results

following from the factor structure in holdings. Finally, Section 4.6 concludes.

4Barber and Odean (2013) perform a comprehensive and detailed review of this literature.
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4.2 Methodology

In this section, I introduce the methodology used in the later analysis. I start by

briefly summarising the original IPCA model of Kelly et al. (2019), before demon-

strating an extension of IPCA that allows me to handle the additional investor

dimension in the holdings data.

4.2.1 Recap: Instrumented Principal Components

Instrumented Principal Components Analysis (IPCA) (Kelly et al., 2019) simultan-

eously estimates common factors and dynamic loadings from a panel of data.5 In

particular, IPCA allows the researcher to include conditioning information that aids

recovery of latent factors. For example, in the case examined by Kelly et al. (2019)

latent factors are extracted from a panel of asset returns using asset characteristics

as conditioning information. As suggested by the name of the method, the condi-

tioning information effectively functions as a set of instruments for the conditional

loadings.

The IPCA model specification for an excess return ri,t+1 is given as

ri,t+1 = αi,t + βi,tft+1 + εi,t+1 (4.2)

αi,t = z′i,tΓα + να,i,t, βi,t = z′i,tΓβ + νβ,i,t,

for i = 1, . . . , N assets and t = 1, . . . , T periods. The dynamic factor loadings βi,t

are a 1 × K vector, and ft+1 is a K × 1 vector of latent factors. Conditioning

information such as assets characteristics enter the model through a L × 1 vector

zi,t containing L characteristics for asset i. In order to uniquely pin down factors

and loadings, Kelly et al. (2019) impose that Γ
′
βΓβ = IK and Γ

′
αΓβ = 0K×1, that

the unconditional second moment matrix of ft is diagonal with descending entries,

and that the mean of ft is non-negative.

The role of characteristics as conditioning information in IPCA is two-fold.

On the one hand observable instruments increase estimation efficiency, on the other

hand time-variation in characteristics gives rise to dynamic factor loadings βi,t. In-

cluding characteristics as conditioning information follows the idea of asset migra-

5A Python package implementing the IPCA method of Kelly et al. (2019) that I am jointly
maintaining with Leland Bybee is available on GitHub: https://github.com/bkelly-lab/ipca.
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tion, i.e. assets changing their “identity” as time passes by. Characteristics are

mapped onto the set of latent factors ft+1 via a matrix Γβ. This mapping impli-

citly carries out a dimensionality reduction that isolates characteristics that provide

independently relevant information about expected returns and averages out those

characteristics that do not. Furthermore, the IPCA feature of dimensionality re-

duction provides the researcher with an opportunity to entertain a large number of

characteristics simultaneously, hence foregoing the need to take a potentially sub-

optimal stance on the set of relevant characteristics ex-ante.

4.2.2 Extending IPCA to the Third Dimension

The three-dimensional instrumented principal components methodology (IPCA3D)

introduced here, extends the instrumented principal components approach of Kelly

et al. (2019) to allow for an additional dimension of the dependent variable. I assume

a setup with I investors, Nt assets, and T periods. The dependent variable ∆hi,t

is a vector of holdings changes for investor i at time t. As in the original model,

IPCA3D assumes that dynamic factor loadings are potentially dependent on a set of

L asset characteristics collected in a matrix Zt of dimensions Nt ×L. The IPCA3D

model is stated as follows

∆hi,t = αi,t + βi,tft + εi,t,

αi,t = ZtΓα,i + να,i,t,

βi,t = ZtΓβ,i + νβ,i,t,

(4.3)

where hi,t is a Nt × 1 vector of the holdings (portfolio weights) that investor

group i assigns to the Nt assets at time t. In this way, IPCA3D has two central

assumptions. First, IPCA3D assumes that the cross-section of assets which each

investor group i holds is the same for all investors, hence ensuring that hi,t is of

dimension Nt × 1 for all i. This assumption is made workable by including zero

holdings in the vector of holdings. The decision of not holding an asset may well be

as informative as the decision of holding an asset. Second, IPCA3D assumes that

each of the investor groups i is present throughout the entire sample period. This

assumption will later allow me to re-state IPCA3D analogous to the original IPCA

model, thereby facilitating efficient estimation of the model. Furthermore, this as-

sumption of panel balancedness at the investor group level resolves a dimensionality
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issue resulting from the usually large number of individual investors that typically

reaches into the thousands, making estimation at the individual investor level very

challenging. The assignment of individual investors to the i groups is at the dis-

cretion of the researcher and should be guided by the investor characteristics that

distinguish different sets of investors. For example, investor groups could be created

by classifying the type of an investor as pension funds, hedge funds, banks, etc.

as in Koijen and Yogo (2019a). Alternative classifications could see funds labelled

according to their investment style such as “value”, “growth”, or “momentum”.

Estimation I now turn to the procedure for estimating IPCA3D. The estimation

of IPCA3D can be greatly simplified by re-phrasing the model as a special case of

IPCA. This is achieved by stacking the I equations for all investors. I begin by

vertically stacking the vectors of holdings hi,t such that h̃t = [h1,t; . . . ;hI,t] is an

NtI × 1 vector. Then, denoting the diagonally stacked matrix of characteristics as

Z̃t = II×I ⊗ Zt, IPCA3D can be re-stated as

∆h̃t = Z̃tΓ̃α + Z̃tΓ̃βft + ε̃t, (4.4)

where Γ̃α = [Γα,1; . . . ; Γα,I ] and Γ̃β = [Γβ,1; . . . ; Γβ,I ] are the vertically stacked

matrices of the investor mapping matrices Γα,i and Γβ,i. This re-statement fully

maps IPCA3D into the original IPCA specification of Kelly et al. (2019). Estim-

ation of the model then proceeds by an alternating least squares (ALS) procedure

that switches back and forth between the first order condition of Γ̃α / Γ̃β and ft, in

which the original IPCA matrices are replaced with the re-stated objects introduced

above. Note, the identification restrictions applied in IPCA above now apply to the

matrices Γ̃α and Γ̃β.

Evaluating Model Fit To assess the performance of the IPCA3D factors in cap-

turing variation in holdings, building on Kelly et al. (2019), I use two measures, the

total R2 at investor-asset level, as well as the total R2
x at investor-characteristics

managed portfolio level. The investor-asset level R2 is defined as

R2 = 1−

∑
i,j,t

(
∆hi,j,t − z′j,t(Γ̂α,i + Γ̂β,i f̂t)

)2∑
i,j,t ∆h2

i,j,t

, (4.5)
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while the characteristics-managed portfolio R2
x is defined as

R2
x = 1−

∑
i,t

(
∆xi,t − Z ′tZt(Γ̂α,i + Γ̂β,if̂t)

)2∑
i,t ∆x2

i,t

, (4.6)

where the characteristics managed portfolio holdings changes are given by ∆xi,t =

Z ′t∆hi,t. Essentially, the characteristics managed portfolio is a characteristics weighted

average of holdings across assets. These two formulations of the R2 allow assessment

of model fit at different levels of granularity. While the general R2 takes into ac-

count individual assets at investor level, the R2
x instead focuses on matching holdings

changes in the characteristics managed portfolios of each investor.

4.3 Data & Variables

This paper makes use of two main data sets. Firstly, stock information including

prices and returns from the Center of Security Prices (CRSP) and stock charac-

teristics (accounting data) from Compustat. Secondly, institutional holdings data

provided in quarterly fillings of form 13F at the Securities & Exchange Commission

(SEC). I will describe both data sets in more detail now.

4.3.1 Stock Characteristics

The construction of monthly stock characteristics data follows Freyberger et al.

(2020b) and Kelly et al. (2019). This baseline set of characteristics deviates from

KY, by many additional characteristics (6 characteristics in KY vs 36 in Kelly et al.

(2019)). In particular, I include variables constructed on past returns and trad-

ing frictions.6 The characteristics are: assets-to-market-equity (a2me), total assets

(at), sales-to-assets (ato), book-to-market (beme), market beta (beta), cash-to-

short-term-investment (c), capital turnover (cto), ratio of change in property, plants

and equipment to the change in total assets (delta pi2a), earnings-to-price (e2p),

cash flow-to-book (freecf), idiosyncratic volatility with respect to the FF3 model

(idiovol), investment (investment), dividend-price-ratio (ldp), leverage (lev),

market capitalisation (lme), turnover (lturnover), net operating assets (noa), op-

erating accruals (oa), operating leverage (ol), price-to-cost margin (pcm), profit

6KY exclude past return variables as they could pose a threat to identification in their framework.
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margin (pm), gross profitability (prof), Tobin’s Q (q), price relative to its 52-week

high (rel to high price), return on net operating assets (rna), return on assets

(roa), return on equity (roe), momentum (r12 2), intermediate momentum (r12 7),

short-term reversal (r2 1), long-term reversal (r36 13), sales-to-price (s2p), capital

intensity (sat), the ratio of sales and general administrative costs to sales (sga2s),

bid-ask spread (spread), and unexplained volume (suv).

The above set of characteristics will form my baseline set for the later analysis.

Using an initially large set of characteristics leverages IPCA3D’s ability to filter out

those characteristics from the set that provide independently relevant information

to describe the left-hand-side variable. However, in order to compare with results

from KY, I will also make use of the original set of six characteristics used by KY.

The KY set of characteristics includes market beta, book equity, market equity,

dividend-to-book-equity, profitability, and investment.

With regards to the assets I study, I follow KY and focus on ordinary common

shares (CRSP share codes 10 and 11) with non-missing characteristics.

Asset characteristics are merged with the holdings data (described in the

next section), using their CRSP PERMNO identifier. The characteristics are lagged

such that they are available at the beginning of the quarter over which holdings are

observed in order to mitigate concerns around a look-ahead bias. An obvious caveat

of lagging asset characteristics relative to the holdings is that some characteristics

will likely change over the quarter, while the IPCA3D loadings are assumed fixed

for the quarter. For simplicity, I choose not to dive deeper into this issue, but

future research could investigate mixed frequency approaches in the spirit of MIDAS

(Ghysels et al., 2005, 2007; Andreou et al., 2010, 2013) for more efficient pairing of

holdings and characteristics within the quarter.

4.3.2 Institutional Holdings

The construction of the data on institutional holdings follows Koijen and Yogo

(2019a).7 The holdings data under Form 13F covers all institutional investment

firms exercising investment discretion over more than $100 million in aggregate mar-

ket value and is available from the first quarter of 1980 onwards. Access to Form 13F

7Replication code, including code for sample construction, is provided online at the Journal of
Political Economy : https://www.journals.uchicago.edu/doi/10.1086/701683.
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is provided through the Thomson Reuters Institutional Holdings Database (s34 file).

Contrary to the s12 file that covers individual mutual fund holdings, s34 is aggreg-

ated to the investment firm level and hence does not allow to distinguish between

individual funds run by the same management company. I follow the institutions

grouping in KY and group institutions into six types: banks, insurance companies,

investment advisors, mutual funds, pension funds, and other 13F institutions. The

investment advisors category includes many hedge funds. The group of “other” 13F

institutions includes university endowments, foundations and non-financial corpor-

ations. Given the total number of outstanding shares as provided by CRSP, I infer

the residual holdings by non-13F institutions. These non-13F institutions include

both retail investors and institutions below the $100 Million filing threshold. In the

rest of the paper the non-13F sector will be dubbed “small investor” sector.

For a brief inspection of the sample properties, Figure 4.1 shows the market

share held by the seven different institutional sectors in the sample. At the start of

the sample period, small investors which includes households, account for about two-

thirds of the total outstanding market capitalisation. Over the course of the sample

period from 1980 to 2017, this share decreases to around one third. Accordingly, the

mutual fund and investment advisor sectors gain in size, with mutual funds making

up around one third of the market share and investment advisors contributing about

20%. The size of the market share held by banks declines only slightly over the forty-

year sample period. The pension fund sector holds less than 5% of the equity market

with little fluctuation over the sample period.

Changes in Holdings The quantity of interest studied in this paper, i.e. changes

in holdings, differs from Koijen and Yogo (2019a) in two ways. Firstly, KY perform

their analysis looking at the level of holdings, while I focus on changes in holdings

to capture dynamic effects. Secondly, I focus on the number of shares held by

an investor instead of U.S. dollar holdings as in Koijen and Yogo (2019a). This

choice allows me to single out the part of variation in holdings that comes from

active trading, i.e. changing the quantity of an asset owned, opposed to changes in

holdings driven by changes in market prices.

For each stock and investor, I compute the change in the number of shares

held by the investor relative to the outstanding number of shares of the stock. Using
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shares outstanding as a normalising constant has the benefit that it is independent of

the investor, hence, providing a way to focus on variation in holdings across investors

instead of variation across assets. Precisely, I compute for investor i and asset j

∆hi,j,t =
(S̃i,j,t − S̃i,j,t−1)

Sj,t
− (4.7)

where S̃i,j,t is the split adjusted number of shares of investor i in asset j at time t

and Sj,t is the total number of (split-adjusted) shares outstanding.

Note that the panel of holdings is highly unbalanced at the investor level

due to investors entering and exiting the sample over time. In order to estimate the

IPCA3D model in Equation (4.3), I require the data of holdings to be balanced at

the investor level. This is achieved by aggregating holdings for each asset in each

of the investor types / sectors of the 13F data. This means instead of studying

changes in the holdings of individual investors (e.g. an individual mutual fund),

my paper focusses on changes in the holdings at the sector level (e.g. the mutual

fund sector defined as the aggregate of all shares held by mutual funds). The shares

not held by 13F institutions are assigned to the small investor sector.8 Naturally,

the study of sector-level holdings changes shifts the focus of the paper from the

intra-sector to the inter-sector margin, i.e. I investigate asset exchange behaviour

between institutional sectors rather than individual investors in those sectors. While

this restriction reduces the granularity of my data, it also eases a concern around the

dimensionality of the individual investor level data that would require the estimation

of thousands of characteristics-loadings matrices Γβ,i.

Since the choice of focusing on sectors instead of individual investors is poten-

tially restrictive, it is necessary to understand to which extent sector level holdings

reflect holdings of individual investors within the sector. I assess this question by

performing a principal components analysis (PCA) of the panel of individual investor

holdings changes on an asset-by-asset basis. Given the missing observations in this

panel, standard PCA is not feasible. Instead, following Tipping and Bishop (1999),

I use a probabilistic PCA procedure that allows to handle missing data. Table 4.2

details the portion of variation in holdings changes explained by the first to third

8Koijen and Yogo (2019a) assign shares not held by 13F investors to a household sector. However,
note that rather than being held by households a sizeable part of these shares are in fact held by
institutions smaller than the 13F threshold or foreign institutional investors without reporting
obligations.
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principal component on average across all assets. I find that across all investor

types the first principal component explains around two thirds of the variation in

holdings changes of individual investors. The second and third principal component

explain progressively less with about 18% and 7%. Given that principal components

can be regarded as particular linear combinations of the inputs, this result suggests

that (up-to an approximation) the sector level holdings changes are representative

of holdings changes at individual investor level.

Next, I inspect the properties of the sector-level holdings changes by testing

their stationarity in an Augmented Dickey and Fuller (1979) (ADF) test. Figure 4.3

shows the cumulative distribution (CDF) of p-values from the ADF tests performed

individually for each time series ∆hi,j . Comparing Panels (A) and (B) in Figure

4.3, I find that the first difference is sufficient to reject the presence of a unit root

for the vast majority of investors and stocks in my sample.

Summary Statistics In order to provide some initial intuition for the proper-

ties of the holdings changes constructed in this paper, Figure 4.2 plots the trading

activity for two exemplary cases: the IBM and Pfizer stocks. The plots detail the

quantity of assets bought and sold by each sector every quarter in terms of the mar-

ket capitalisation outstanding. Consistent across the two examples, the time series

of holdings changes appear stationary and show spikes around the typical distress

periods in the dot-com bubble and the great financial crisis. To complement the

exemplary results, Table 4.1 provides summary statistics of the changes in holdings

by investor type split by quarters in which an investor type was an overall buyer

/ seller of a stock. The summary statistics indicate that the small investor sector

that is comprised of non-13F investors is the largest buyer and seller on average, to

be followed by mutual funds and investment advisors. This finding is not surprising

given that in the early parts of the sample the 13F investors only hold about one

third of the market (see Koijen and Yogo, 2019a, Table 2), indicating that the resid-

ual holdings of small investors are relatively larger. However, over the course of the

sample period, this fact is reversed with more than two thirds of the market being

held by 13F institutions. Econometrically, this change in the size of the individual

sectors is handled by allowing for time-varying loadings, βi,t, that are sector-specific.

Nevertheless, this fact rules out comparison of the absolute sizes of the time-varying
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loadings across investors, instead, calling for comparison in relative terms.

Studying the unconditional sample summary statistics as above, masks in-

teresting exchange behaviour between institutional types. One way to gain a more

detailed understanding of the broad patterns of asset exchange between investors is

to condition the computation of summary statistics on certain institutional types

buying / selling a given stock and then to observe the contemporaneous behaviour

of the other types of investors. Table 4.3 details those results. The left half of the

table conditions on a certain institutional type buying a given asset, while the right

half conditions on that institutional type selling the asset. I find that the buying

of small investors is on average met primarily by mutual funds, investment advisors

and banks selling the asset. Similarly, when small investors are selling, mutual funds

and investment advisors acquire the lions share of the assets sold. This finding sug-

gests that one interesting exchange margin could be between the institutional and

small investor sector. In fact, in Section 4.4.3 I find that one of the latent holdings

factors essentially captures this interaction. Another interesting finding emerges for

investment advisors. While the majority of their buying is met by small investors

that sell, the majority of their selling is met not only by small investors but also

mutual funds that buy.

4.4 Empirical Results: Dissecting Investor Demand

4.4.1 Estimation

I estimate the IPCA3D system (Equation (4.3)) using the data described in Section

4.3. In particular, I use two sets of characteristics. First, I follow Koijen and Yogo

and use six characteristics that include market equity, book equity, profitability,

investment, dividends to book equity, and market beta. Second, in order to assess

the impact from using a wider set of characteristics, I employ the set of 36 asset

characteristics as used in Kelly et al. (2019) and described in Section 4.3.1. Note, in

order to mitigate the influence of outliers in characteristics, I cross-sectionally rank-

transform each characteristic at a given observation date to the interval [−0.5, 0.5].

This transformation focuses on the cross-sectional ordering of characteristics instead

of their absolute magnitude. Furthermore, I winsorise the period-by-period distribu-

tion of changes in holdings at the 1% and 99% quantile to mitigate concerns around
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erroneous holdings records.

4.4.2 Model Fit Performance

Using the entire sample period of available data, i.e. 1980:Q1 to 2017:Q4, I fit the

IPCA3D model to the data of holdings changes in Section 4.3. Table 4.4 summar-

ises the fit performance for models with K = 0, . . . , 5 factors for the two sets of

characteristics.

I start by comparing the impact from using a wider set of characteristics

than originally used in KY. To that end, I focus on a specification that does not

include any latent factors (i.e. K = 0) which is akin to running a panel regression of

changes in holdings onto asset characteristics. Comparing the first row of Panels A

and B of Table 4.4 (“Intercept Only”), I find that allowing for more characteristics

increases the R2 at stock level by a factor of six. The increase in R2
x is more moderate

with an increase from around 9% to about 16%. This evidence suggests that it is

necessary to consider a wider set of characteristics to explain variation in holdings

across investors and time. The result is robust to accounting for the higher number

of model parameters by means of an adjusted R2 at both stock and portfolio level.

Hence, in the following I will focus on models that make use of the larger set of 36

characteristics.

Next, I turn to models that allow for latent factors in the mapping between

characteristics and holdings changes (see Equation (4.3)). Allowing for a single latent

factor, i.e. K = 1, the R2 at stock level more than doubles from 3.5% to 8.3% (Table

4.4, Panel B). At the portfolio level, the R2
x increases by more than a factor of five.

Increasing the number of latent factors further, the fraction of explained variation

in changes of holdings keeps increasing, however, gains become quite gradual after

two to three factors. Interestingly, comparing the results between the models with

few vs. many characteristics, i.e, Panel A vs. Panel B in Table 4.4, I find that the

impact of allowing for more characteristics becomes relatively smaller once latent

factors are employed. For example, with K = 2 latent factors, the difference in R2
x

is a mere 0.3%.

In the interest of parsimony, my following analysis will focus on the model

with K = 2 factors. This is motivated by the fact that allowing for more than two

factors only marginally increases the R2 at single stock level. Simultaneously, two
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factors appear to be sufficient to capture the vast majority of variation in holdings

changes at the level of the 36 characteristics-managed portfolios as evidenced by an

R2
x of 92.4% (see Table 4.4, Panel A).

Since little is known from earlier literature about changes in holdings as

modelled here, it is interesting to put the fit performance of the IPCA3D model

into perspective by comparing with IPCA model fit for stock returns. Kelly et al.

(2019) find that for monthly returns, on a sample of stocks comparable to the one

used in this paper, the stock level R2 ranges from about 15% to 20%, depending on

the number of latent factors (see Table 1 in their paper). Recall, the R2 for changes

in holdings discussed above reaches roughly 10% at the stock level when using the

enlarged set of characteristics (see 4.4, Panel B). Hence, the amount of variation in

holdings that can be explained in a latent factor model with time-varying loadings

is of comparable magnitude to that of returns.

Fit Performance by Investor Type

In addition to studying the average fit performance of the IPCA3D model pooled

across investor types, it is interesting to dissect the fit performance conditional on

investor type. Therefore, I compute the stock level R2 and characteristics-managed

portfolio level R2
x only from those observations pertaining to each investor type.

Tables 4.5 and 4.6 report the results. For brevity, I focus on the results at stock

level in Table 4.5.

Focusing on the model with K = 2 and the enlarged set of characteristics

as motivated above, IPCA3D best captures the variation in holdings of the small

investor sector (R2 = 13.4%), closely followed by mutual funds (R2 = 10.1%) and

banks (R2 = 3.1%). With exception of the “Other” category, holdings changes of

insurance companies are least well captured (R2 = 1.3%). The latter could partially

be a consequence of fewer observations with trading activity as evidenced in Table

4.1, suggesting that insurance companies tend to leave their positions untouched

more often than other investor types. Similar reasoning could explain the equally

low fit performance for the pension fund category and the “Other” category that

includes, e.g., university endowments and foundations. It could equally be the case

that pension fund / endowments holdings move in a more idiosyncratic manner

detached from the systematic factors captured by IPCA3D.
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4.4.3 What are the Factors Capturing?

Based on the analysis in the previous section, it is reasonable to focus on a parsimoni-

ous model with a low number of factors since increases in explanatory power become

marginal after allowing for a couple of factors. However, the empirical evidence is

in favour of a higher number of characteristics than used in KY being necessary to

more accurately track changes in holdings. Therefore, the following analysis of the

economic properties of the latent holdings factors will focus on the model with the

large set of 36 characteristics and K = 2 latent factors. In order to aid interpretation

of the factors, the factors are rotated such that the banking sector always exhibits

an on average positive factor loading (see Figure 4.6). This means that a positive

shock to any of the factors will on average increase bank sector stock holdings. A

more detailed analysis of the resulting factor loadings is performed in Section 4.4.4.

In the following, I will provide evidence on the economics behind the re-

covered factors in holdings changes by relating them to proxies of economic activity,

interest rates and balance sheet measures.

Macroeconomic Activity Following economic theories with heterogeneous be-

liefs and imperfect risk sharing, the demand for risky assets should primarily be

related to the business cycle and the wider state of the economy (e.g., see Harrison

and Kreps, 1978). I start my investigation in this direction by relating the factors

to a well-known proxy of economic activity, i.e. the Chicago FED National Activity

Index (CFNAI).9 Figure 4.4 plots the first holdings factor versus the CFNAI meas-

ure. The figure shows that the first-factor is clearly pro-cyclical. A regression of

the first factor onto the CFNAI measure in Table 4.10 confirms that the positive

correlation is statistically significant.

Next, I estimate multiple regressions of the estimated factors onto principal

components of a large panel of macroeconomic variables, i.e. the well known FRED

data set (McCracken and Ng, 2016). Specifically, following Ludvigson and Ng (2009)

and Stock and Watson (2012), I estimate principal components from a subset of the

quarterly FRED data set that consists of 132 individual time series.10

9The Chicago FED National Activity Index is obtained from https://www.chicagofed.org/

publications/cfnai/index. Accessed 11th February 2020.
10The series used are listed in the FRED-QD documentation appendix (column “SW FACTORS”)

provided on Michael McCracken’s website https://research.stlouisfed.org/econ/mccracken/

fred-databases/. Accessed 11th February 2020.
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Ludvigson and Ng (2009) find that the first few principal components of

this macro data set can be linked to distinct economic concepts. They dub the

first factor the “real factor” due to its heavy loadings on measures of employment,

production, capacity utilisation and manufacturing orders, while exhibiting only low

correlation with financial variables. The second factor is strongly associated with

interest rate spreads. The third and fourth factors exhibit very little correlation with

the aforementioned concepts, and instead are strongly associated with measures of

inflation and (commodity / consumer) prices. Table 4.7 displays the results of the

regression of the holdings change factors on the first four principal components of the

FRED data. The first factor exhibits strongly significant covariation with the first

principal component (PC) of the FRED data. The first FRED PC is low in recessions

and high in expansions. Hence, the positive sign in the regression confirms the

previous evidence on the pro-cyclical behaviour of the first latent factor. In addition

to the covariation with the first FRED PC, I find a significant relation of the factor

with the third and fourth PC that pertain to concepts such as inflation and price

pressure. When regressing the second factor onto the same set of macroeconomic

principal components, I find no significant relationship with the first FRED PC,

but a strongly significant association with the fourth PC. Furthermore, comparing

the regression R2s between the regression of the first and second factor in holdings

changes, it is evident that while a sizeable part of the variation in the first factor is

explained through measures of the macroeconomy, the second factor is clearly less

well explained through the first four FRED data principal components.

For a more granular study of the macroeconomic drivers of holdings changes,

I construct principal components individually for groups of macroeconomic variables.

The grouping of the variables follows the FRED-QD appendix (see Footnote 10).

Table 4.8 displays the results of univariate regression of the holdings factors on each

of the first principal components extracted from the 14 macro groups.

Consistent with the full sample FRED principal components analysed earlier,

I find that the first holdings factor exhibits strongly positive associations with vari-

able groups pertaining to the real economy including industrial production, employ-

ment, inventories, orders & sales, as well as earnings & productivity. However, a

strongly significant covariation with measures of the stock market (R2 of 12.4%)

stands out. Drilling down into the individual variables in the stock market category,
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I find positive and significant correlations with stock market indices including S&P

500 and Nikkei 225 (untabulated).

Interest & Exchange Rates It is to be expected that the demand for equity

correlates with the demand for safer assets. In the spirit of “risk on - risk off”

episodes, the demand for equity versus fixed income should primarily be related to

the expected rates of return on both types of assets. Therefore, it is natural to ask

how the holdings factors relate to measures of interest rates. Panel A in Table 4.9

details results of univariate regressions of the holdings factors onto a set of common

interest rate measures. The three interest rate measures I focus on are the three-

month T-Bill in excess of the risk free rate, the three-month commercial paper rate

in excess of the risk free rate and the yield spread on Moody’s BAA rated 10-year

corporate bonds minus 10-year treasury bills. Across all measures I find a negative

correlation with the first and second holdings factor. This means that, in general,

increases in interest rates will lead to decreased equity demand. The relation is

particularly strong for the commercial paper rate that is a relevant interest rate

in the context of corporate short-term funding. The explanatory power of interest

rates for asset demand is slightly higher for the first latent holdings factor with R2

ranging from 6.9% to 10.4%, while R2 range from 1.9% to 10.3% for the second

holdings factor.

Following from earlier evidence in Table 4.8, the second holdings factor is

related to foreign exchange rates. I provide more evidence in this direction in Panel

B of Table 4.9. In univariate regressions on log-changes in exchange rate measures,

I find that equity demand is positively correlated with USD/EUR and USD/GBP

exchange rate pairs. An explanation for this finding could be that a weaker U.S.

dollar, incentivises more foreign investor demand for U.S. stocks. Conversely, a

negative correlation with changes in the trade-weighted U.S. index backs up this

explanation.

Initial Public Offerings A large literature has demonstrated cyclical patterns

in the market for initial public offerings (IPOs) (e.g., see Ritter and Welch, 2002;

Loughran and Ritter, 2002; Pastor and Veronesi, 2005). IPOs are commonly timed

to coincide with times of positive economic outlook and therefore exhibit a pro-

cyclicality. Hence, given the cyclical properties of the first factor, I ask whether
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asset demand is potentially connected to the timing of IPOs. To that end, I correlate

the holdings factors with two measures of IPO volume:11. Gross IPO volume which

includes penny-stocks, units, closed-end funds, etc., and net IPO which volume

excludes those kinds of offerings. The results are detailed in Panel A of Table 4.10.

Consistent with the cyclical patterns established above, I find significant positive

correlations of the first holdings factor with measures of IPO volume.

Financial Constraints Large literatures focusing on both households (Atif and

Sufi, 2009; Mian and Sufi, 2011; Mian et al., 2013) and intermediaries (Adrian and

Shin, 2010; Adrian et al., 2014; He and Krishnamurthy, 2013; He et al., 2017) em-

phasise the relevance of financial constraints, especially leverage, for different eco-

nomic agents. Hence, it is likely that, in addition to changes in the perceived riskiness

of assets, the risk-taking capacity of households and businesses plays an important

role in explaining the demand for risky assets. I find clear evidence consistent with

this idea. Table 4.8 shows that the second holdings factor exhibits a strongly posit-

ive association with measures of household and non-household balance sheets (R2 of

14.2% and 14.6%, respectively). More specifically, Table 4.10 (Panel B) shows strong

covariation of the second holdings factor with measures of household liabilities (R2

of 11.6%) and business sector assets (R2 of 11.1%). Therefore, the second holdings

factor appears to be related to the capitalisation of institutions and households.

In summary, the evidence suggests that the first holdings factor is closely re-

lated to the state of the macroeconomy and interest rates, while the second holdings

factor relates to financial conditions including leverage constraints of households as

well as exchange rates. These findings align with extant theories of asset pricing

such as Campbell et al. (2003), which think about asset choice in the presence of

aggregate state variables: the state of the business cycle (inflation), interest rates,

and dividend expectations.

4.4.4 How are Different Investors Exposed to the Factors?

In addition to interpreting the economic nature of the factors in holdings changes, it

is insightful to study the exposure of different investor types to these factors. As a

first pass, I assess average factor loadings for each institutional type. To that end, I

11IPO Volume is obtained from Jay Ritter’s website https://site.warrington.ufl.edu/

ritter/ipo-data/. Accessed 12th November 2019.
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compute averages of the conditional loadings, βi,t, in Equation (4.3) across all assets

for each investors, yielding a time series of average factor loadings for each investor

type. In Figure 4.6, I plot the time series averages of those factor loadings as well

as their time series standard deviation. Recall that the factors are rotated to ensure

an average positive loading of “Banks” on each of the factors. I now describe the

results for each factor in turn.

For the first factor, I find interesting heterogeneity in loadings across insti-

tutional types: investment advisors (i.e. hedge funds) and pension funds display on

average negative loadings, while banks (by construction) and mutual funds exhibit

on average positive loadings. Given that the first holdings factor is broadly pro-

cyclical, these results suggest that investment advisors and pension funds act in a

counter-cyclical manner, i.e. they sell risky assets after high returns and buy after

low returns. An explanation for this finding is that hedge funds and pension funds

often are deep-pocketed, and hence these investors have the ability to withstand

immediate selling pressure when the aggregate market declines. On the contrary,

bank and mutual fund trading behaviour appears to be pro-cyclical. This in line

with stricter investment mandates for banks and mutual funds that force them to

hold portfolios that are on average closer to market weights, and therefore suffer

more in market downturns. Overall, these findings on the cyclicality of investment

behaviour across different institutional types are consistent with Timmer (2018).

Loadings on the second factor clearly separate the small investor sector from

the institutional sectors. This evidence is consistent with the earlier study of the

conditional buying / selling behaviour of small investors presented in Table 4.3 and

discussed in Section 4.3.

For a more detailed glimpse into the investor loadings, I next turn to analys-

ing the characteristics loadings matrices Γβ,i. Figures 4.7 and 4.8 plot the entries of

the loadings matrix separately for each factor and investor type.

Starting with the first holdings factor (Figure 4.7), one characteristic stands

out in particular for banks and investment advisors: leverage. Bank holdings have a

positive coefficient on leverage, while investment advisors have a negative coefficient

on leverage. Given the notion that non-financial firm leverage is pro-cyclical, this

finding provides an explanation for the pro-cyclicality of the first factor demonstrated

above. A positive shock to the first factor (i.e. during an economic expansion) leads
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to a relative increase of holdings in higher leverage firms for banks, while the op-

posite is true for investment advisors. Given the inverse relation between leverage

and assets-to-market-equity, the negative (positive) coefficient for banks (investment

advisors) on assets-to-market-equity confirms the remarks regarding leverage. For

the other investor types, in particular mutual funds and small investors, the num-

ber of characteristics that appear relevant is relatively larger, therefore making an

interpretation based on leverage alone challenging. Following leverage related char-

acteristics in magnitude is profitability (prof) which presents itself as the third

largest characteristic loading in absolute value for banks, investment advisors and

mutual funds, while being the fourth to fifth largest for small investors. Other inter-

esting loadings are a positive coefficient on momentum (r12 2) for small investors

while insurance firms and mutual funds exhibit a negative loading on momentum.

Turning to the second factor (Figure 4.8), I find the sales-to-assets (sat, i.e.

asset turnover) and operating leverage (ol) characteristics to stand out for small

investors and mutual funds. While small investors exhibit a positive loading on

operating leverage and negative loading on asset turnover, investment advisors and

mutual fund holdings exhibit a negative loading on operating leverage and positive

loading on asset turnover. For ease of interpretation, it is insightful to think about

these two characteristics, i.e. operating leverage and asset turnover, in conjunction.

The ratio of asset turnover to operating leverage yields a measure of operating

efficiency, that is, the ratio of sales to operating expenses (OPEX). In general, a firm

with a higher ratio of sales to OPEX, will be regarded as more efficient. Therefore,

while investment advisors and mutual funds exhibit positive coefficients on this

measure operating efficiency, small investors are negatively correlated with it.

4.4.5 Which Characteristics Matter Most?

In addition to studying the mapping between characteristics and factors, it is relevant

to know which characteristics contribute most to overall model fit, that is, across

all components of the model. Characteristics enter the model through the loadings

matrices Γ̃α and Γ̃β (see, Eq. (4.3)). Denote by Γ̃ the matrix which horizontally

stacks Γ̃β and Γ̃α (in that order). Then the entries pertaining to the characteristic

l-th in zj,t are in the rows l + l · i, i = 0, . . . , I of Γ̃. I partition the matrix Γ̃ as

follows
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Γ̃ = [γ1,1; . . . ; γ1,L; γ2,1; . . . ; γ2,L; . . . ; γI,L].

The hypotheses I test are

H0 : Γ̃ =[γ1,1; . . . ; γ1,l−1; 0(K+1)×1; γ1,l+1; . . . ;

γ2,l−1; 0(K+1)×1; γ2,l+1; . . . ; γI,l−1; 0(K+1)×1; γI,l+1; . . . ; γI,L]

versus

H1 : Γ̃ = [γ1,1; . . . ; γ1,L; γ2,1; . . . ; γ2,L; . . . ; γI,L].

That is, the null hypothesis assumes that the l-th characteristic has no impact on the

model and therefore cannot impact any of the factors / the intercept. Hypothesis

testing relies on a residual bootstrap as outlined in Kelly et al. (2019).

The earlier analysis above demonstrated that including additional charac-

teristics in addition to those used in Koijen and Yogo (2019a) notably improved

model fit. The bootstrap exercise helps in getting a better understanding for the

characteristics that matter most for model fit. Figure 4.5 reports the results from

the bootstrap exercise.

Out of the 36 characteristics used, only 8 are significant at the 1% level.

These characteristics are total assets, turnover, closeness to 52-week highest price,

profitability, momentum (12-2), idiosyncratic volatility and unexplained volume.

This set of characteristics is markedly different from the smaller set of six charac-

teristics used in Koijen and Yogo (2019a). In terms of their contribution to model

fit, characteristics based on past returns stand out. They make up three out of

the top five variables in the importance ranking in Figure 4.5. The importance of

past returns is in line with an earlier literature including Grinblatt et al. (1995);

Nofsinger and Sias (1996); Sias (2004) that investigates institutional herding and

demonstrates that institutional investors trade on momentum more strongly than

individual investors. In addition to past returns, liquidity characteristics such as

spread and turnover feature high up in the importance ranking. The importance

of liquidity related measures is consistent with studies such as Gompers and Met-

rick (2001), who find that institutional investors have a particular demand for more

liquid assets in order to satisfy their institutional constraints.
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4.5 Holdings Factors & Asset Prices

A tight link exists between equilibrium demands and prices in asset pricing mod-

els. While the previous section has investigated the economic fundamentals behind

the common drivers of demand, I now turn to investigating the relation of the

components of demand identified by IPCA to asset prices. Firstly, I study if the

factor structure in holdings relates to the factor structure in returns as captured

in popular risk factor models and in IPCA itself. Secondly, I study the time series

relations between asset prices and demand components in a two-part exercise. First,

I provide additional evidence on the cyclical patterns in investor behaviour by relat-

ing demand components to past returns, and second, I demonstrate the predictive

power of demand components for future returns.

4.5.1 Factors in Holdings vs. Factors in Returns

As motivated in the introduction, the factors in holdings changes could be related

to changes in risk. Therefore, it is insightful to ask whether the commonly found

factor structure in returns corresponds to the factor structure in holdings. This

line of inquiry relates to Barber et al. (2016) who show that mutual fund flows of

sophisticated investors covary with common risk factors. In order to investigate this

aspect I draw on two sets of risk factors.

Firstly, IPCA factors from returns present a natural benchmark for the IPCA

factors from holdings. To that end, I estimate an IPCA model on asset returns

following Kelly et al. (2019). Since holdings data is only observed at quarterly fre-

quency in this paper, I re-sample the corresponding returns at quarterly frequency

to estimate the IPCA factors. In line with Kelly et al., I find that increases in total

/ predictive R2 level off for about five factors. At quarterly frequency, the restric-

ted IPCA model with five factors explains 32.3% of the cross-sectional variation in

returns.

I run regressions of the holdings factors onto the set of returns factors. Table

4.11 details the result. In general, I find that the explanatory power of the factors

in returns for factors in holdings is small with adjusted R2 measures of 7.6% and

6.44% for the first and second holdings factor, respectively.12

12For the study of the regression coefficients it is necessary to understand what the returns factors
capture. Since the nature of the IPCA returns factors is potentially different from the findings in
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Secondly, I investigate how the factors in holdings relate to popular risk

factors studied in the asset pricing literature (Fama and French, 2015; Carhart,

1997; Pastor and Stambaugh, 2003). Table 4.12 reports results from univariate

regressions of the two holdings factors onto individual risk factors. For the first

factor, no coefficients are significant at the 1% and 5% levels, and only borderline

significance at the 10% level is found for the regression on the value factor and

short-term reversal. For the second factor, a significant coefficient is found only

for the size factor and the Pastor and Stambaugh (2003) liquidity factor, however,

the overall explanatory power in these regressions is low with R2s of 2.7% an 5.5%,

respectively.

Overall, the evidence from these regressions suggests that the set of factors in

holdings has a rather small contemporaneous overlap with factors in returns, both

of fundamental and statistical nature. This finding is important for the following

reason. It suggests that the set of factors explaining returns and the set of factors

explaining changes in portfolio holdings are mostly distinct. Further, it means that

while the broad patterns in portfolio choice can be explained along well-understood

economic dimensions (business cycle & financial frictions), they do not necessarily

correspond to the risk compensations captured in the common factor models. This

result further suggests that while (mutual) fund flows correspond to risk factors (cf.

Barber et al., 2016), there is only weak evidence that aggregate sector level changes

in portfolio holdings correspond to common risk factors.

4.5.2 Time Series Evidence

In this section, I investigate time series relations between (components of) changes in

holdings and returns. In the first part of the section, I establish a link between past

returns and changes in holdings. In the second part, I demonstrate the predictive

relations between specific components of demand and future returns over longer

horizons.

Kelly et al. following the change from monthly to quarterly frequency, I compute correlations with
common risk factors and identify them as follows. The first factor has a 52% correlation with the
market as well as a 40% correlation with the Fama-French size factor. The second factor has a -56%
correlation with 12-2 momentum. The third factor has a 45% correlation with the Fama-French
value factor. The fourth factor has a -50% correlation with value and a -44% correlation with
short-term reversal. Finally, the fifth factor exhibits smaller correlations with a number of different
factors and is therefore challenging to interpret clearly.
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Past Returns as Drivers of Investor Demand

It is a well-known fact that past performance is an important driver of future flows

into mutual funds and, more generally, the demand for assets (Grinblatt et al.,

1995; Nofsinger and Sias, 1996; Wermers, 1999; Sias, 2004; Timmer, 2018). The

decomposition of holdings changes via IPCA3D provides a novel take on this idea

by giving a more detailed understanding for which components of holdings changes

are driven by past returns. To that end, I estimate the IPCA3D model using an

expanding window starting in 1990:Q1 up to 2018:Q1.13 From the estimated model,

I recover the intercept, systematic part and residual as follows:

∆hi,t︸ ︷︷ ︸
Realised

= α̂i,t−1︸ ︷︷ ︸
Intercept

+ β̂i,t−1f̂t︸ ︷︷ ︸
Syst. Part︸ ︷︷ ︸

Fitted

+ ε̂i,t︸︷︷︸
Residual

.

Then, separately for each sector of investors i, I estimate a panel regression of the

following form

∆̂h
(comp)

i,j,t = γi Returnj,t−1 + bj + bt + εj,t, (4.8)

where comp ∈ {Realised,Fitted, Intercept, Syst. Part,Residual} is a component of

the decomposed holdings changes. Table 4.13 reports the results from the panel

regressions.

The first finding from these regressions is that the sector-specific cyclicalities

established earlier using the loadings on the recovered factors are broadly consistent

with the way in which different investors react to past returns. Column “Realised”

of Table 4.13 reports how the overall sector holdings change in response to past

returns. Banks, investment advisors, mutual funds and insurance companies expand

their stock holdings after recent positive returns, suggesting that their holdings are

overall pro-cyclical. In contrast, pension funds and small investor holdings respond

counter-cyclically to past returns. The finding that the small investor category

(which includes many households) reacts inversely to past returns is in line with

Odean (1998) who finds that individual investors tend to stick to losing investments

too long and sell winning investments too early. With the exception of the investment

13The use of an expanding window in this exercise limits the look-ahead bias. However, note that
the IPCA3D model is estimated using information from time t, while returns are observed at time
t− 1.
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advisor sector, these findings confirm the cyclicalities established in Section 4.4.4 and

Figure 4.6 (Panel (a)). Furthermore, this finding broadly agrees with Timmer (2018),

who investigates sector level holdings in response to past returns, albeit in a fixed

income setting. In addition, I find that the small investor sector appears to exhibit

properties of a deep-pocketed long-horizon investor, that is, sector-level holdings

increase after recent negative returns. This is also in line with the idea that smaller

investors can tilt their portfolios away from market weights more strongly than larger

institutions which are constrained by their institutional mandates (Koijen and Yogo,

2019a).

Secondly, the panel regressions of decomposed holdings changes on past re-

turns in Table 4.13 yield a better understanding for how investors respond to past

returns: via characteristics alone (Intercept), through systematic factors in holdings,

or both. For most sectors the response of holdings to past returns is mainly driven

by characteristics on their own, i.e. the intercept term. Across almost all sectors,

the regressions of the intercept on past returns attract the highest R2 measures,

with past returns explaining between around one fifth to one third of the variation

in the part of the holdings change that is unrelated to common factors. In contrast,

past returns only explain between about 0.1% to roughly 8% of the variation in

systematic holdings changes. This result provides further evidence on the nature of

the cyclicality of the factors established earlier in Section 4.4.3: while past returns

matter to some extent (see column “Syst. Part”), the bulk of the impact of past

returns on changes in holdings is captured in the intercept part of IPCA3D. There-

fore, the cyclicality in the first latent factor discussed earlier, is primarily related to

macroeconomic channels such as industrial production / output, employment, and

productivity, etc., rather than past returns.

In this context, it is important to recall that this finding is not simply a

mechanical result from past returns entering the set of characteristics in IPCA3D.

Ex ante, a large number of characteristics is allowed to explain changes in holdings.

IPCA3D then “picks” those characteristics that are most relevant in explaining the

dependent variable.
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Demand Components & Future Price Changes

In this section I investigate how the different components of changes in holdings

relate to future asset returns. Literature has demonstrated that future returns re-

spond differently to investment behaviour of different sectors (see, e.g., Timmer,

2018). The decomposition of investment behaviour using IPCA3D therefore allows

to ask a more granular question: which parts of demand from which investors relate

to future prices?

As a first step, I present results for regressions that use the total changes in

holdings, ∆hi,j,t to predict future prices. Table 4.14 summarises the results from the

following panel regressions that are estimated separately for each investor sector i

and each horizon k

Returnj,t+k = γi ∆hi,j,t + bt + εj,t+k, (4.9)

where Returnj,t+k is stock j’s cumulative excess log-return over the period t to

t+ k. The results suggest that over the next quarter the prices of stocks that have

been bought by banks and insurance companies fall, while the prices of stocks that

have been bought by investment advisors increase. No immediate impact on prices

of stocks bought by the mutual fund and pension fund sectors can be found. For

the stocks bought by investment advisors the positive relation to future returns

holds for horizons up to one year, after which coefficients become insignificant. One

interesting result obtains for the small investor sector. Although no impact on prices

in the immediately following period is noticeable, at longer horizons stocks bought

by small investors experience positive returns, supporting the idea that the small

investor sector exhibits properties of a long-horizon investor.

When considering these results it is important to recall that the relation

between sector-level holdings changes and prices is likely different from the impact

that certain groups of funds within each sector have on prices. Furthermore, the

regressions do not reflect rebalancing of portfolios in the future. Nevertheless, the

regressions provide an idea for the direction in which prices move following the

purchases / sales by certain sectors.

Building on this preliminary evidence, I now use the changes in holdings as

decomposed by IPCA3D to shed some light on which “parts” of changes in holdings

200



are potentially predictive of future prices. Table 4.15 summarises the results from

panel regressions estimated separately for each investor sector and horizon as follows

Returnj,t+k = γ1 ∆̂h
(Intercept)

i,j,t +γ2 ∆̂h
(Syst. Part)

i,j,t +γ3 ∆̂h
(Residual)

i,j,t + bt+ εj,t+k. (4.10)

The regression includes a time-fixed effect to capture market wide events. For ease

of economic interpretation, I divide the right-hand-side variables by their pooled

standard deviations.

The previous set of regressions of future returns on total changes in hold-

ings revealed that bank sector holdings changes have a negative relation to future

returns. The regressions (4.10) reveal that over the next quarter this relation is

primarily driven by the part of the holdings change that is systematic. A one

standard deviation sized systematic holdings change is associated with a negative

log-return of 1.14% over the next quarter. For the mutual funds sector, the above

analysis using total changes in holdings demonstrated no significant relation between

their sector-level holdings changes and future returns. However, decomposing mu-

tual fund sector holdings changes in IPCA3D reveals that the total change masks

an interesting, more granular effect: while the characteristics-based component of

demand positively predicts future returns, I find that the systematic part of the

holdings change is negatively associated with future returns. The latter finding is

consistent with the idea of price pressures created by correlated institutional demand

(Coval and Stafford, 2007), i.e. prices become dislocated in response to a systematic

shock to investor holdings, hence leading to a subsequent reversal. In contrast, the

positive return of assets bought by investment advisors demonstrated above appears

to be unrelated to systematic demand shocks. Rather, the purely characteristics-

based change in holdings of investment advisors as well as their residual demand

component appear to predict future prices. This effect persists for up to two quar-

ters ahead. The persistence beyond the first quarter is particularly important from a

practical perspective, since 13F holdings are released with a delay, hence, potentially

rendering the first quarter ahead return unattainable in practice. Finally, while the

total change in holdings of small investors was not found to be predictive of future

returns, I find that decomposed changes in holdings of the small investor sector are:

a one standard deviation systematic shock to their holdings is associated with a
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1.43% log-return over the next quarter. This effect is partially counterbalanced by

a negative return from the characteristics-based demand component.

4.6 Conclusion

I study changes in sector-level equity holdings through the lens of a factor model with

time-varying loadings. Using an extended version of instrumented principal com-

ponents analysis dubbed “IPCA3D”, I recover aggregate factors (shocks) common

to all investors as well as investor-specific exposure to the aforementioned factors. I

find that two factors capture the bulk of systematic variation in holdings changes.

The recovered factors relate to the state of the real economy (business cycle) and

investors’ financial conditions. Sector-specific loadings allow me to distinguish the

effects of demand shocks on particular investor groups. I find evidence for banks and

mutual funds partially acting in a pro-cyclical manner, while investment advisors

(i.e. hedge funds) and pension funds partially act counter-cyclical. Further, I find

that the set of asset characteristics relevant for explaining changes in holdings is

likely wider than those entertained in common risk factor models. Finally, I invest-

igate asset pricing effects of changes in holdings as decomposed by IPCA3D. I find

evidence consistent with a return reversal induced by institutional price pressures

in response to systematic shocks to holdings as well as evidence for market-timing

ability of investment advisors that is unrelated to common asset characteristics.

Overall, this paper provides evidence supporting the existence of a low-

dimensional factor structure in sector-level holdings changes. In doing so, the paper

connects the literatures that have studied behaviour of specific, single investor types,

such as mutual funds or individual investors, in isolation with each other. The find-

ings contribute to our understanding of asset exchange patterns across different

institutional types. A promising direction for future research lies in extending the

modelling approach presented in this paper to allow for investor specific character-

istics, e.g. their investment style, fee structure, etc., to enter the conditional IPCA

loadings, in addition to the asset characteristics incorporated already.
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Figures & Tables

Small InvestorsSmall Investors

Figure 4.1: Sample Composition by Market Share. This figure shows sample composition
for the 13F institutions studied in this paper. For each institutional type (banks, mutual funds,
etc.) the figure shows the share of the total outstanding market capitalisation held by that sector.
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Small Investors

(a) Holdings Changes: IBM Co.

Small Investors

(b) Holdings Changes: Pfizer Inc.

Figure 4.2: Example of Holdings Changes for IBM & Pfizer. This figure shows the changes
in holdings computed as in Equation (4.7) by investor type / sector for two exemplary cases, i.e.
the IBM and Pfizer stocks. The holdings changes are constructed as quarter on quarter change in
the number of shares held by a given sector divided by the number of shares outstanding. For ease
of exposition, the figure does not report the holdings changes for the investor type “Other”. The
“Small Investor” sector is composed of all residual holdings by non-13F insitutions.
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Figure 4.3: Augmented Dickey-Fuller Test of Portfolio Weights. This figure shows the
cumulative distribution of p-values from an Augmented Dickey and Fuller (1979) (ADF) test per-
formed individually for each investor-by-asset time series of holdings. The ADF test null hypothesis
is that a unit root is present in the time series of portfolio weights wi,j,t. The test is performed
using a constant and no trend. The number of ADF lags employed is determined by means of an
Akaike Information Criterion (AIC). Panel (A) shows the cumulative distribution of p-values for
the null hypothesis that a unit root is present when the level of the relative holdings wi,j,t is used,
i.e. shares held over number of shares outstanding. Panel (B) shows the cumulative distribtuion of
p-values when the first difference of the portfolio weight ∆wi,j,t = wi,j,t − wi,j,t−1 is used. In both
panels, the red dashed line indicates the location of the distribution median and the black dashed
line indictes the 10% critical value threshold.
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(a) Factor 1

Figure 4.4: Cyclical Properties of First Demand Factor. This figure plots the first factor
of holdings changes (solid, orange line) against a business cycle proxy (dashed, blue line), i.e. the
Chicago FED National Activity Index (CFNAI). The IPCA3D factors are rotated such that the
bank sector exhibits an on average positive loading on each factor. The correlation measure is robust
to autocorrelation and heteroskedasticity. Vertical, grey bands indicate NBER recession periods.
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Figure 4.5: Characteristics Importance. This figure shows the contribution of the 36 charac-
teristics to model performance. The performance contribution is measured by the change in total
R2 for the full model containing all characteristics versus a model that drops one characteristic
each from its set of characteristics. For ease of interpretation, the change in model performance is
rescaled to the range 0 to 1. The characteristic with the biggest contribution to model fit attains
a value of 1, the characteristic with the smallest contribution attains a value of zero, i.e. I focus
on the ranking of the characteristics relative to each other. In addition, the figure reports the
significance of the characteristics contribution from the bootstrap exercise outlined in Section 4.4.5.
The significance thresholds are: p < 0.1 - *, p < 0.05 - **, and p < 0.01 - ***.
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Figure 4.6: Average Factor Loadings by Sector. This figure shows the average factor loadings
on each of the latent demand factors by investor type / sector. The investor specific factor loading
βi,t in the IPCA model equation (4.3) is an Nt ×K dimensional object, where Nt is the number of
investable assets at time t and K is the number of factors. Let β̄i,t be the factor loading of investor
type i averaged across all assets, i.e. β̄i,t =

∑Nt
j=1 βi,j,t/Nt. The plotted value is the time series

mean of β̄i,t computed separately for each factor. The error bars report one standard deviation of
the time series variation of β̄i,t. The IPCA factors are ordered by their time series variance from
largest to smallest. In order to aid interpretation, the factors are rotated such that the average
factor loading of “Banks” is always positive (see Figure 4.6).
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Table 4.1: Summary Statistics of Changes in Holdings.
This table presents summary statistics of the quarterly changes in holdings normalised by market
capitalisation on a stock by stock basis. Each column corresponds to one particular investor type,
i.e. Banks, Small Investors (13F residual), etc. Panel A presents summary statistics for stocks
for which an investor type was an overall buyer in a given quarter, while Panel B shows summary
statistics for stocks for which an investor type was an overall seller in a given quarter.

Banks Small Inv. Insurance Investment Mutual Other Pension
companies advisors funds funds

Panel A: Buying Quarters

Mean 0.65% 1.68% 0.40% 1.20% 1.38% 0.29% 0.27%
Median 0.33% 0.98% 0.16% 0.67% 0.82% 0.09% 0.12%
Std. Dev. 0.89% 1.91% 0.68% 1.43% 1.56% 0.61% 0.45%

No. Obs. 251,105 244,149 198,475 260,682 275,652 133,457 206,674

Panel B: Selling Quarters

Mean -0.58% -1.80% -0.31% -0.96% -1.32% -0.16% -0.23%
Median -0.24% -1.18% -0.08% -0.46% -0.67% -0.02% -0.07%
Std. Dev. 0.91% 1.86% 0.64% 1.33% 1.66% 0.46% 0.47%

No. Obs. 279,424 300,208 267,091 257,168 246,417 215,229 228,670

Table 4.2: Principal Components Analysis of Holdings Changes.
This table details the results from a principal components analysis (PCA) of the panel of holdings
changes. The principal components are computed asset-by-asset from the holdings changes of all
investors falling into a particular group, e.g., for the bank sector. The reported means are the
fractions of explained variance for the first to third principal component averaged across assets.
Respectively, the reported standard deviations are computed across all assets. Due to missing
observations in the panel of holdings, principal components are computed using a probabilistic
variant of PCA proposed in Tipping and Bishop (1999). In order to reduce the number of missing
observations in the holdings panel, investors that are present in the sample for less than two years
are dropped. The sample period is 1980:Q1 to 2017:Q4.

1st PC 2nd PC 3rd PC

Mean Std. Dev Mean Std. Dev. Mean Std. Dev.

Banks 60.79% 20.64% 18.63% 9.60% 8.84% 5.69%
Insurance companies 67.31% 18.85% 18.82% 10.85% 7.39% 5.88%
Investment advisors 66.08% 19.52% 18.16% 10.15% 7.52% 5.73%
Mutual funds 55.71% 21.04% 18.70% 8.75% 9.36% 5.35%
Other 78.29% 16.57% 15.10% 11.66% 4.23% 5.02%
Pension funds 58.64% 20.67% 18.90% 9.33% 9.31% 5.72%
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Table 4.4: IPCA Fit Performance.
This table summarises the in-sample performance of the fitted IPCA model as per Equation 4.3.
Panel A uses the six characteristics used in Koijen and Yogo (2019a), the six characteristics are
market equity, book equity, profitability, investment, dividends to book equity, and market beta.
Panel B employs the 36 characteristics also used in Kelly et al. (2019) and described in Section
4.3.1. Each row corresponds to a different model starting with a model that only includes the
intercept term, K = 0. Subsequent rows allow for a number of latent factors, K = 1, ..., 5. For
each specification the table reports the R2 measured at the individual stock level, as well as the R2

measured at the characteristics-managed portfolio level. The sample period is 1980:Q1 to 2017:Q4.

Panel A: 6 Characteristicis

K R2 (Stock Level) R2
adj (Stock Level) R2 (Portf. Level) R2

adj (Portf. Level)

Intercept Only 0.62% 0.62% 9.38% 8.78%

1 5.20% 5.20% 78.90% 78.61%
2 6.13% 6.12% 92.34% 92.19%
3 6.53% 6.53% 96.17% 96.06%
4 6.81% 6.81% 97.05% 96.94%
5 7.06% 7.06% 98.15% 98.07%

Panel B: 36 Characteristics

K R2 (Stock Level) R2
adj (Stock Level) R2 (Portf. Level) R2

adj (Portf. Level)

Intercept Only 3.50% 3.50% 15.97% 15.41%

1 8.27% 8.26% 81.95% 81.71%
2 9.29% 9.28% 92.58% 92.43%
3 9.85% 9.84% 96.03% 95.92%
4 10.31% 10.30% 97.50% 97.41%
5 10.63% 10.62% 98.09% 98.02%
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Table 4.5: IPCA Fit Performance at Stock Level - By Sector.
This table summarises the in-sample performance of the fitted IPCA model as per Equation 4.3 for
individual investor groups / sectors. Panel B employs the 36 characteristics also used in Kelly et al.
(2019), described in Section 4.3.1; Panel A uses the six characteristics used in Koijen and Yogo
(2019a), the six characteristics are market equity, book equity, profitability, investment, dividends
to book equity, and market beta. Each column corresponds to a different model with K = 1, ..., 5
latent factors. For each specification the table reports the R2 measured at the individual stock level
only from those observations falling into the specified investor group / sector. The sample period
is 1980:Q1 to 2017:Q4.

Panel A: 6 Characteristicis

K

Inst. Type 1 2 3 4 5

Banks 0.6% 1.8% 3.4% 3.7% 4.8%
Small Investors 8.0% 8.3% 8.7% 9.0% 9.3%
Insurance companies 0.4% 0.5% 0.5% 0.7% 0.9%
Investment advisors 1.4% 3.2% 3.7% 3.7% 3.9%
Mutual funds 5.7% 7.1% 7.2% 7.5% 7.7%
Other 0.3% 0.5% 0.5% 0.6% 0.6%
Pension funds 0.4% 0.9% 2.0% 2.4% 2.9%

Panel B: 36 Characteristics

K

Inst. Type 1 2 3 4 5

Banks 1.9% 3.1% 5.1% 5.5% 5.9%
Small Investors 12.9% 13.4% 13.9% 14.5% 14.9%
Insurance companies 1.2% 1.3% 1.4% 1.6% 1.7%
Investment advisors 2.2% 3.8% 4.2% 4.6% 4.8%
Mutual funds 8.6% 10.1% 10.5% 10.9% 11.2%
Other 0.5% 0.6% 0.8% 0.9% 0.9%
Pension funds 0.8% 1.9% 2.5% 3.8% 4.5%
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Table 4.6: IPCA Fit Performance at Portfolio Level - By Sector.
This table summarises the in-sample performance of the fitted IPCA model as per Equation 4.3 for
individual investor groups / sectors. Panel B employs the 36 characteristics also used in Kelly et al.
(2019), described in Section 4.3.1; Panel A uses the six characteristics used in Koijen and Yogo
(2019a), the six characteristics are market equity, book equity, profitability, investment, dividends to
book equity, and market beta. Each column corresponds to a different model with K = 1, ..., 5 latent
factors. For each specification the table reports the R2

x measured at the characteristics-managed
portfolio level only from those observations falling into the specified investor group / sector. The
sample period is 1980:Q1 to 2017:Q4.

Panel A: 6 Characteristicis

K

Inst. Type 1 2 3 4 5

Banks 11.5% 36.8% 72.9% 80.2% 95.8%
Small Investors 96.6% 99.1% 99.4% 99.7% 99.8%
Insurance companies 25.5% 29.3% 27.6% 40.7% 48.6%
Investment advisors 37.0% 84.2% 96.1% 97.6% 98.6%
Mutual funds 81.2% 98.5% 99.4% 99.5% 99.6%
Other 18.3% 28.1% 28.9% 32.9% 32.1%
Pension funds 5.6% 16.5% 30.2% 38.3% 42.4%

Panel B: 36 Characteristics

K

Inst. Type 1 2 3 4 5

Banks 22.1% 46.9% 83.1% 87.3% 92.6%
Small Investors 97.2% 98.7% 99.3% 99.5% 99.6%
Insurance companies 39.9% 46.4% 53.2% 58.7% 61.7%
Investment advisors 45.8% 82.1% 92.1% 96.8% 97.4%
Mutual funds 83.6% 97.8% 98.2% 99.4% 99.5%
Other 25.6% 32.2% 36.4% 41.4% 44.3%
Pension funds 10.4% 30.2% 39.6% 54.1% 63.6%

Table 4.7: Covariation with FRED-QD Principal Components.
This table presents results from a regression of the first two IPCA factors onto the first four prin-
cipal components of the FRED-QD data (Ludvigson and Ng, 2009; McCracken and Ng, 2016).
For purposes of interpreation, all variables have been standarised using their standard deviation.
The regressions are heteroskedasticity and autocorrelation robust. Standard errors are reported in
parentheses. The p-value thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

Factor 1 Factor 2

PC1 0.3115*** 0.2036
(0.0577) (0.1172)

PC2 0.0206 -0.0235
(0.0854) (0.0987)

PC3 -0.1603** -0.0877
(0.0773) (0.0803)

PC4 -0.2122*** -0.3466***
(0.0793) (0.0800)

N 151 151
R2 (adj.) 25.55% 12.67%
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Table 4.8: Covariation with Macro Groups.
This table shows regression results for univariate regressions of the first two IPCA factors onto the
first principal components extracted from variables in each of 14 macroeconomic groups. Each row
corresponds to one univariate regression of one of the factors onto the first principal components of
one of the groups. The variable assignments to the macroeconomic groups follow McCracken and Ng
(2016). Transformations of macroeconomic variables ensuring stationarity also follow McCracken
and Ng. For purposes of interpretation, all variables have been standarised using their standard
deviation. The regressions are heteroskedasticity and autocorrelation robust. The sample period is
1980:Q2 to 2017:Q4, corresponding to 151 observations in each univariate regression. The p-value
thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

Factor 1 Factor 2

1st Princip. Comp. Coeff. t-Statistic R2 (adj.) Coeff. t-Statistic R2 (adj.)

NIPA 0.28** 2.49 7.1% 0.21 1.25 3.9%
Ind. Prod 0.29*** 2.91 8.0% 0.22 1.35 4.3%
Employment 0.31*** 2.94 9.2% 0.11 0.67 0.6%
Housing 0.28** 2.43 7.1% 0.21 1.36 3.8%
Invent., Orders, Sales 0.27** 2.41 6.4% 0.35*** 2.59 11.6%
Prices 0.08 0.59 0.0% 0.19 1.29 2.9%
Earnings & Productivity 0.09 1.12 0.2% -0.05 -0.49 -0.4%
Interest Rates -0.08 -0.76 -0.1% -0.05 -0.56 -0.4%
Money & Credit 0.03 0.32 -0.6% 0.03 0.26 -0.6%
Household Balance Sheets 0.19 1.41 2.9% 0.38*** 3.08 14.2%
Exchange Rates 0.08 0.68 0.0% 0.26** 2.32 6.1%
Other -0.06 -0.63 -0.3% 0.07 0.75 -0.1%
Stock Markets 0.36*** 3.56 12.4% 0.16 0.91 1.8%
Non-Household Balance Sheets -0.01 -0.07 -0.7% 0.39*** 3.18 14.6%

Table 4.9: Determinants of Asset Demand: Interest & Exchange Rates.
This table presents results from univariate regression of the first demand factor on a set of interest
rate measures (Panel A) and a set of foreign exchange rates (Panel B). The variables in Panel
A are: the 3-month treasury rate - Fed. funds, the commercial paper rate minus 3-month Fed.
funds, and the 10-year Moody’s BAA corporate bond yield minus 10-year treasury. The variables
in Panel B are: the trade-weighted USD exchange rate index, the USD/GBP exchange rate, and
the USD/EUR exchange rate. All variables in are taken from the FRED-QD panel and are trans-
formed as described in the FRED-QD appendix documentation (see Footnote 10). For purposes of
interpretation, all variables have been standardised using their standard deviation. All regressions
are heteroskedasticity and autocorrelation robust. The p-value thresholds are: * - p < 0.1, ** -
p < 0.05, *** - p < 0.01.

Panel A: Interest Rates

Factor 1 Factor 2

Coeff. t-Statistic R2 (adj.) Coeff. t-Statistic R2 (adj.)

3-Month T-Bill -0.30*** -4.26 8.1% -0.16** -2.03 1.9%
Comm. Paper Rate -0.33*** -3.31 10.4% -0.33*** -2.70 10.3%
BAA Corp Bond -0.27** -2.42 6.9% -0.28* -1.84 7.3%

Panel B: Exchange Rates

Factor 1 Factor 2

Coeff. t-Statistic R2 (adj.) Coeff. t-Statistic R2 (adj.)

Trade-Weighted USD -0.06 -0.54 -0.3% -0.21** -1.99 3.6%
US/UK FX Rate 0.05 0.36 -0.5% 0.26** 2.09 6.2%
US/EUR FX Rate 0.14 1.47 1.3% 0.24** 2.36 5.2%
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Table 4.10: Determinants of Latent Demand: Business Cycle Proxies & Sector Assets
/ Liabilities.
This table presents results from univariate regression of the first latent demand factor on a set of
business cycle proxies (Panel A) and second latend demand factor on a set of proxies for sector
assets / debt (Panel B). The variables in Panel A are: the gross and net IPO volume given as
the number of IPOs per quarter, and the Chicago FED National Activity Index (CFNAI) as well
as its three-month moving average (CFNAI - MA(3)). The variables in Panel B are taken from
the FRED-QD panel and are transformed as described in the FRED-QD appendix documentation
(see Footnote 10). The variables in Panel B are: real non-financial non-corporate business sector
assets (Real Business Sector Assets, FRED MNEMONIC: TABSNNBx), real total liabilities of
households and non-profits (FRED MNEMONIC: TLBSHNOx), and liabilities of households and
non-profits relative to personal diposable income (FRED MNEMONIC: LIABPIx). For purposes of
interpretation, all variables have been standardised using their standard deviation. All regressions
are heteroskedasticity and autocorrelation robust. The p-value thresholds are: * - p < 0.1, ** -
p < 0.05, *** - p < 0.01.

Panel A: Interest Rates & Business Cycle Proxies

Factor 1

Coeff. t-Statistic R2 (adj.)

Gross IPO Volume 0.38*** 3.90 13.8%
Net IPO Volume 0.25** 2.20 5.5%
CFNAI 0.31*** 3.00 9.2%
CFNAI - MA(3) 0.33*** 3.14 10.0%

Panel B: Sector Assets / Debt

Factor 2

Coeff. t-Statistic R2 (adj.)

Real Business Sector Assets 0.34*** 2.72 11.1%
Real Household Liabilities 0.27*** 2.99 6.5%
Household Liabilities / Disposable Income 0.35*** 3.15 11.6%

Table 4.11: Relation to IPCA Returns Factors.
This table details regression results from regressing the IPCA factors extracted from holdings onto
a set of the five IPCA factors extracted from the underlying sample of asset returns as in Kelly
et al. (2019). In order to match the sampling frequency of the returns and holdings data, returns
are computed at quarterly frequency. The IPCA returns factors are obtained from a model with
K = 5 factors consistent with Kelly et al. (2019). The return factors are ordered by their time
series variance from largest to smallest. The sample period is 1980:Q2 to 2017:Q4. In parentheses,
I report standard errors. The p-value thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

Factor 1 Factor 2

IPCA Ret F1 -0.0040 -0.0026
(0.0041) (0.0028)

IPCA Ret F2 -0.0135*** 0.0089
(0.0052) (0.0059)

IPCA Ret F3 -0.0041 -0.0165**
(0.0095) (0.0078)

IPCA Ret F4 -0.0385*** 0.0001
(0.0110) (0.0092)

IPCA Ret F5 -0.0015 -0.0407***
(0.0184) (0.0141)

N 151 151
R2 (adj.) 7.60% 6.44%
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Table 4.12: Common Risk Factors vs. Demand Factors.
This table presents results from univariate regressions of the first and second IPCA3D demand
factors onto a set of common risk factors. The risk factors are the five factors from Fama and
French (2015) (market excess return, size, value, profitability, investment), the momentum factor
(12-2), short term reversal (2-1), long term reversal (36-13), and the Pastor and Stambaugh (2003)
liquidity factor. Returns on the risk factors are contemporaneous to the quarterly periods over
which holdings changes are observed. Left- and right-hand side variables are standardized using the
sample standard deviation. The regression are heteroskedasticity and autocorrelation robust. The
p-value thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

Factor 1 Factor 2

Risk Factor Coeff. t-Statistic R2 (adj.) Coeff. t-Statistic R2 (adj.)

Market 0.14 1.36 1.5% 0.15 1.40 1.5%
Size -0.09 -1.35 0.5% 0.15*** 2.58 2.7%
Value 0.20* 1.82 2.9% 0.08 0.74 -0.2%
Profitability -0.08 -0.71 -0.1% 0.01 0.04 -0.7%
Investment 0.07 0.77 -0.1% 0.04 0.52 -0.5%
Momentum -0.04 -0.53 -0.5% 0.11 1.32 0.7%
ST Reversal 0.13* 1.66 1.7% 0.08 1.01 0.1%
LT Reversal 0.02 0.45 -0.6% -0.03 -0.61 -0.5%
Liquidity (Pastor & Stambaugh) 0.01 0.00 -0.7% 0.25** 2.55 5.5%
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Table 4.13: Past Returns & Components of Demand.
This table details results from a panel regression of components of investor demand dissected as fol-

lows
∆hi,t = α̂i,t−1︸ ︷︷ ︸

Intercept

+ β̂i,t−1f̂t︸ ︷︷ ︸
System. Part

+ ε̂i,t︸︷︷︸
Residual

.

onto the previous quarter return (Returnt−1). The panel regression is run separately for each
investor type. The regression controls for time and stock fixed effects. Standard errors are double
clustered at the stock and time level. T-statistics are reported in parentheses. The dependent
variable is standardised by its standard deviation for ease of interpretation. The sample period is
1990:Q1 to 2017:Q4. The p-value thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

Realised Fitted Syst. Part. Intercept Residual

Banks

Returnt−1 0.30*** 0.81*** 0.08*** 1.50*** 0.12***
(11.79) (26.89) (3.38) (27.77) (4.91)

R2 0.52% 10.02% 0.14% 21.69% 0.23%

Small Inv.

Returnt−1 -0.73*** -1.41*** -0.42*** -2.49*** -0.23***
(-17.59) (-31.27) (-9.48) (-24.54) (-4.89)

R2 6.68% 26.76% 4.84% 35.50% 4.58%

Pension funds

Returnt−1 -0.12*** -0.05* 0.05* -0.23*** -0.11***
(-3.81) (-1.77) (1.75) (-7.84) (-3.40)

R2 0.25% 0.07% 0.03% 0.87% 0.21%

Investment advisors

Returnt−1 0.05 0.98*** 0.06*** 1.77*** -0.14***
(1.42) (33.29) (3.21) (33.02) (-4.18)

R2 0.41% 20.71% 0.52% 33.16% 0.44%

Mutual funds

Returnt−1 0.65*** 1.27*** 0.49*** 1.9*** 0.29***
(19.27) (26.45) (9.62) (19.27) (7.71)

R2 5.03% 26.43% 7.70% 32.98% 3.60%

Insurance companies

Returnt−1 0.38*** 1.25*** 0.43*** 1.53*** 0.24***
(15.04) (18.93) (6.99) (24.68) (9.61)

R2 0.75% 15.02% 2.14% 21.83% 0.42%

Observations 112419 112419 112419 112419 112419
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Table 4.14: Future Returns & Total Demand.
This table details results from a panel regression of the return over the period t to t + k, k =
1, 2, 3, 4, 6, 8, 12 quarters ahead onto the realised changes in holdings. The panel regression is run
separately for each investor type. The panel regression uses time-fixed effects to capture market-
wide events. Standard errors are clustered by time. T-statistics are reported in parentheses. The
independent variable is standardised using its standard deviation. The sample period is 1990:Q1 to
2017:Q4. The p-value thresholds are: * - p < 0.1, ** - p < 0.05, *** - p < 0.01.

t+1 t+2 t+3 t+4 t+6 t+8 t+12

Banks

∆hi,t -0.0027*** -0.0038*** -0.0049*** -0.0063*** -0.0074*** -0.0051** -0.0049*
(-3.95) (-3.65) (-3.71) (-4.06) (-3.81) (-2.21) (-1.83)

R2 0.02% 0.02% 0.02% 0.03% 0.03% 0.01% 0.01%

Small Inv.

∆hi,t -0.0001 0.0023* 0.0061*** 0.0093*** 0.015*** 0.0136*** 0.0131***
(-0.07) (1.85) (3.79) (4.89) (5.99) (4.64) (3.77)

R2 0.00% 0.01% 0.03% 0.05% 0.10% 0.07% 0.05%

Pension Funds

∆hi,t -0.001 -0.0027** -0.004*** -0.0038** -0.003 -0.0029 -0.0048
(-1.39) (-2.29) (-2.75) (-2.18) (-1.35) (-1.01) (-1.47)

R2 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%

Investment Advisors

∆hi,t 0.0047*** 0.0043*** 0.0042*** 0.0035** -0.0008 0.0023 0.0004
(6.67) (3.68) (2.89) (2.01) (-0.34) (0.92) (0.14)

R2 0.05% 0.02% 0.01% 0.01% 0.00% 0.00% 0.00%

Mutual funds

∆hi,t -0.0002 -0.0011 -0.004** -0.0063*** -0.0095*** -0.0084*** -0.0068**
(-0.23) (-0.88) (-2.53) (-3.34) (-4.04) (-3.16) (-2.14)

R2 0.00% 0.00% 0.01% 0.03% 0.04% 0.03% 0.01%

Insurance companies

∆hi,t -0.003*** -0.0051*** -0.0071*** -0.0071*** -0.0052** -0.007*** -0.0081***
(-4.25) (-4.65) (-4.99) (-4.31) (-2.54) (-3.01) (-3.06)

R2 0.02% 0.03% 0.04% 0.04% 0.01% 0.02% 0.02%

Observations 112,433 104,953 98,577 92,845 83,104 74,636 60,661
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Table 4.15: Future Returns & Decomposed Demand.
This table details results from a panel regression of the cumulative excess log re-
turn over the period t to t + k, k = 1, 2, 3, 4, 6, 8, 12 quarters ahead onto the de-
composed changes in holdings. The decomposition is based on IPCA3D as follows

∆hi,t = α̂i,t−1︸ ︷︷ ︸
Intercept

+ β̂i,t−1f̂t︸ ︷︷ ︸
System. Part

+ ε̂i,t︸︷︷︸
Residual

.

The IPCA3D system is estimated using an expanding window in order to avoid a look-ahead bias.
The panel regression is run separately for each investor type. The panel regression uses time-fixed
effects to capture market-wide events. Standard errors are clustered by time. T-statistics are re-
ported in parentheses. The independent variables are standardised using their sample standard
deviation. The sample period is 1990:Q1 to 2017:Q4. The p-value thresholds are: * - p < 0.1, ** -
p < 0.05, *** - p < 0.01.

t+1 t+2 t+3 t+4 t+6 t+8 t+12

Banks

Intercept -0.0018* -0.0055*** -0.0108*** -0.0136*** -0.0150*** -0.0166*** -0.0039
(-1.65) (-2.89) (-4.06) (-4.12) (-3.47) (-3.07) (-0.50)

Syst. Part-0.0114*** -0.0203*** -0.0298*** -0.0289*** -0.0381*** -0.0488*** -0.0485***
(-6.18) (-7.29) (-8.57) (-7.15) (-7.76) (-7.99) (-6.42)

Residual -0.0022*** -0.0029*** -0.0034*** -0.0046*** -0.0054*** -0.0029 -0.0033
(-3.43) (-2.92) (-2.72) (-3.14) (-2.92) (-1.31) (-1.31)

R2 0.06% 0.11% 0.18% 0.17% 0.18% 0.21% 0.13%

Small Inv.

Intercept -0.0072*** -0.0079*** -0.0043** -0.0001 0.0044 0.006 -0.0021
(-7.94) (-5.05) (-2.02) (-0.04) (1.32) (1.50) (-0.39)

Syst. Part 0.0143*** 0.0284*** 0.0444*** 0.0530*** 0.0574*** 0.0748*** 0.0690***
(7.18) (9.55) (11.93) (11.41) (10.36) (11.01) (8.09)

Residual 0.0002 0.0018 0.0042*** 0.0063*** 0.0109*** 0.0085*** 0.0094***
(0.21) (1.58) (2.84) (3.69) (4.86) (3.25) (2.97)

R2 0.14% 0.17% 0.25% 0.30% 0.31% 0.39% 0.24%

Pension funds

Intercept -0.0028** -0.0110*** -0.0220*** -0.0285*** -0.0415*** -0.0463*** -0.0444***
(-2.29) (-5.03) (-7.08) (-7.11) (-7.28) (-6.37) (-4.32)

Syst. Part-0.0049*** -0.0103*** -0.0186*** -0.0182*** -0.0163*** -0.0270*** -0.0443***
(-3.98) (-5.41) (-7.50) (-6.07) (-4.22) (-5.60) (-6.91)

Residual -0.0008 -0.0019* -0.0026* -0.0022 -0.0012 -0.0006 -0.0022
(-1.07) (-1.72) (-1.88) (-1.34) (-0.56) (-0.23) (-0.71)

R2 0.02% 0.07% 0.19% 0.22% 0.32% 0.34% 0.31%

221



Table 4.15 continued.

t+1 t+2 t+3 t+4 t+6 t+8 t+12

Investment advisors

Intercept 0.0093*** 0.0093*** 0.0042 -0.0015 -0.0054 -0.0097* 0.0029
(7.51) (4.28) (1.42) (-0.43) (-1.14) (-1.70) (0.38)

Syst. Part -0.0021 -0.0049 -0.0104* -0.0187*** -0.0242*** -0.0395*** -0.0118
(-0.74) (-1.08) (-1.74) (-2.68) (-2.87) (-3.78) (-0.89)

Residual 0.0046*** 0.0042*** 0.0043*** 0.0037** -0.0004 0.0028 0.0005
(6.67) (3.72) (3.02) (2.20) (-0.18) (1.16) (0.17)

R2 0.14% 0.07% 0.03% 0.03% 0.03% 0.07% 0.01%

Mutual funds

Intercept 0.0098*** 0.0129*** 0.0104*** 0.0072** 0.0028 0.0011 0.0075
(8.83) (6.75) (4.04) (2.28) (0.71) (0.22) (1.07)

Syst. Part -0.0059*** -0.0179*** -0.0350*** -0.0510*** -0.0554*** -0.0689*** -0.0568***
(-2.61) (-5.09) (-7.78) (-9.16) (-8.24) (-8.40) (-5.53)

Residual -0.0007 -0.0013 -0.0032** -0.0045*** -0.0071*** -0.0054** -0.0048
(-0.97) (-1.13) (-2.16) (-2.59) (-3.29) (-2.22) (-1.64)

R2 0.11% 0.13% 0.16% 0.23% 0.21% 0.25% 0.13%

Insurance companies

Intercept 0.0091*** 0.0119*** 0.0111*** 0.0094*** 0.0066 0.0036 0.0074
(8.10) (6.09) (4.10) (2.80) (1.53) (0.67) (0.97)

Syst. Part -0.0161*** -0.0293*** -0.0391*** -0.0374*** -0.0410*** -0.0427*** -0.0331***
(-11.27) (-12.57) (-12.59) (-10.16) (-9.57) (-8.45) (-5.26)

Residual -0.0026*** -0.0043*** -0.0057*** -0.0058*** -0.0036* -0.0053** -0.0070***
(-3.82) (-3.97) (-4.13) (-3.59) (-1.78) (-2.30) (-2.65)

R2 0.35% 0.51% 0.57% 0.40% 0.31% 0.27% 0.15%

Observations 112,433 104,953 98,577 92,845 83,104 74,636 60,661
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Appendix A

Predictability of Order

Imbalance, Market Quality and

Equity Cost of Capital

A.1 A Simple Microstructure Model

We present a simple equilibrium model that guides our empirical analysis. Before

describing it formally, we outline its main ingredients and discuss why these are

required for our analysis. In our model, one risky security is traded by three types

of traders: informed traders, liquidity traders, and a competitive, risk-averse market

maker. The model is in spirit of Subrahmanyam (1991) with one substantial differ-

ence: order imbalance of liquidity traders is predictable to both informed traders

and market makers. Our main goal it to establish the effect of order imbalance

predictability on market liquidity and efficiency. In the model, the market maker

absorbs the net demand of the other traders and sets the price such that he expects

to earn zero utility conditional upon observing the net total market order imbalance.

Predictability of uninformed order imbalance has two effects on liquidity. On the

one hand predictable order imbalance helps the market maker to better estimate

the total order imbalance and reduce costly inventory. This effect improves market

liquidity. On the other hand it might exacerbate the adverse selection problem lead-

ing to deterioration of liquidity. Our model aims to answer which effect and when

dominates in the market and helps us to formulate testable hypotheses.
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There are three types of agents: an informed trader, uninformed / liquidity

traders, and a competitive risk-averse market maker.1 The informed trader is as-

sumed to be risk-neutral. Market maker has risk aversion coefficient Am and CARA

utility. The agents trade in one risky security and market makers absorb the resid-

ual demand of the other types of traders. Market makers set prices such that their

expected profit conditional on their signals is zero. Trading taking place at time 0

and liquidation of the security taking place at time 1. The security is liquidated at

time 1 for value δ, where δ is a random variable with δ ∼ N
(
0, σ2

δ

)
. The informed

trader observes the fundamental value δ. Uninformed traders submit an order z,

z ∼ N
(
0, σ2

z

)
, and both the informed trader and the market maker observe a noisy

signal of the uninformed order imbalance in form of z + y, y ∼ N
(
0, σ2

y

)
. The total

order imbalance is denoted by ω.

We focus on characterising the unique linear Nash equilibrium. The pricing

rule of the market maker has the form

p = λ1ω + λ2 (z + y) , (A.1)

where λ1 and λ2 are measures of price impact (inverse market depth / liquidity)

for the total order imbalance ω and the predictable portion of the order imbalance,

respectively. The term λ2 (z + y) captures the partial price impact originating from

the predictability of uninformed order imbalance z.

Let us denote the order of the informed trader as x. The informed trader’s

profit is

x (δ − p) = x (δ − λ1ω − λ2 (z + y)) . (A.2)

We conjecture the linear demand function of the informed trader in the form

x = β1δ + β2 (z + y) . (A.3)

This assumption is the linear extension of the original response function from Sub-

rahmanyam (1991) to account for the impact of order imbalance predictability.

Given x, the total order imbalance ω can be written as ω = x+z = β1δ+β2 (z + y)+

1Introducing a number of competing informed traders as in Subrahmanyam (1991) does not
change the results qualitatively, so we consider only a single informed trader for simplicity of
exposition.
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z.

The following proposition summarises the price at t = 2 obtained in equilib-

rium and the informed trader’s orders, given the linear pricing rule and the publicly

observed dividend signal.

Proposition 1. The price impact coefficients λ1 and λ2 and informed

traders’ demand response coefficients β1 and β2 are the solutions to the following

system of equations:

β1 =
1

2λ1
, (A.4)

β2 = − σ2
z

2(σ2
z + σ2

y)
− λ2

2λ1
, (A.5)

λ1 = − λ2

β2 + σ2
z/(σ

2
z + σ2

y)
+
Am
2
V ar[δ | ω, z + y] (A.6)

λ2 = −
β1σ

2
δ (β2 + σ2

z/(σ
2
z + σ2

y))

β2
1σ

2
δ + σ2

zσ
2
y/(σ

2
z + σ2

y)
, (A.7)

where

V ar[δ | ω, z + y] = V ar[δ | p] = σ2
δ

(
1−

(
0.5
√
σ2
δ/V ar[p]

)2
)
, (A.8)

V ar[p] = λ2
1

[
β2

1σ
2
δ + β2

2

(
σ2
z + σ2

y

)
+ σ2

z + 2β2σ
2
z

]
+λ2

2

(
σ2
z + σ2

y

)
+2λ1λ2β2

(
σ2
z + σ2

y

)
(A.9)

Proof of Proposition 1. The informed trader derives his utility from the

profit as2

E
[
U (x (δ − p)) | δ, z + y

]
= E

[
x (δ − λ1ω − λ2 (z + y)) | δ, z + y

]
−
(
A

2

)
V ar

[
x (δ − λ1ω − λ2 (z + y)) | δ, z + y

]
. (A.10)

Maximising the expected utility with respect to x yields

x =
δ − λ1

σ2
z(z+y)
σ2
z+σ2

y
− λ2(z + y)

2λ1 +Aλ2
1
σ2
zσ

2
y

σ2
z+σ2

y

. (A.11)

2For completeness the proof allows for a risk-aversion coefficient of the informed trader, A.
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The second order condition for the maximisation is

λ1 > λ2
1

σ2
zσ

2
y

σ2
z + σ2

y

. (A.12)

We obtain the unique linear Nash equilibrium by setting x = β1δ + β2(z + y) in

Equation (A.11) and solving for β1 and β2. We obtain

β1 =
1

2λ1 +Aλ2
1
σ2
zσ

2
y

σ2
z+σ2

y

, (A.13)

β2 = −
λ1

σ2
z

σ2
z+σ2

y
+ λ2

2λ1 +Aλ2
1
σ2
zσ

2
y

σ2
z+σ2

y

. (A.14)

The market maker’s objective function is

E
[
Um (ω(p− δ)) | ω, z+y

]
= E

[
ω(p−δ) | ω, z+y

]
−
(
Am
2

)
V ar

[
ω(p−δ) | ω, z+y

]
.

(A.15)

Following standard procedure we assume Bertrand competition between market

makers and, thus, market makers set the prices so that their expected utility equals

zero. Rearranging the previous equation we obtain an equation of bivariate regres-

sion layout

E [δ | ω, z + y] =

(
λ1 −

(
Am
2

)
V ar [δ | ω, z + y]

)
︸ ︷︷ ︸

=:γ1

ω + λ2(z + y). (A.16)

Comparing this equation with the general bivariate regression design equations we

obtain the coefficients as

γ1 =
V ar[z + y]Cov[δ, ω]− Cov[ω, z + y]Cov[z + y, δ]

V ar[ω]V ar[z + y]− Cov2[ω, z + y]
(A.17)

λ2 =
V ar[ω]Cov[δ, z + y]− Cov[ω, z + y]Cov[ω, δ]

V ar[ω]V ar[z + y]− Cov2[ω, z + y]
, (A.18)
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where

V ar[z + y] = σ2
z + σ2

y , (A.19)

V ar[ω] = β2
1σ

2
δ + β2

2

(
σ2
z + σ2

y

)
+ σ2

z + 2β2σ
2
z , (A.20)

Cov[δ, ω] = β1σ
2
δ , (A.21)

Cov[ω, z + y] = β2

(
σ2
z + σ2

y

)
+ σ2

z (A.22)

Cov[z + y, δ] = 0. (A.23)

Finally,

V ar[δ | ω, z + y] = V ar[δ − γ1ω − λ2(z + y)]

= V ar[δ − γ1ω − λ2(z + y)] = σ2
d + γ2

1σ
2
ω + λ2

2(σ2
z + σ2

y)

− 2γ1Cov[δ, ω] + 2γ1λ2Cov[ω, z + y]

Q.E.D.

Price Efficiency We follow Subrahmanyam (1991) and compute a measure of

price efficiency as

Q = (V ar[δ | P ])−1 , (A.24)

where we can use the result from Equation (A.9). This definition of price efficiency

can be interpreted as the uncertainty about the fundamental value conditional on

observing the price. The smaller the uncertainty about the fundamental value given

all available information, the greater price efficiency.

Total Price Impact One of our main variables of interest is the market quality

as measured by the price impact of the total order imbalance unconditional of the

predicted part of uninformed order imbalance. Writing p = α+ λtotal ω, we get

λtotal =
cov[p, ω]

V ar[ω]
=
Cov[λ1ω + λ2(z + y), ω]

V ar[ω]
(A.25)

= λ1 +
λ2

(
β2

(
σ2
z + σ2

y

)
+ σ2

z

)
β2

1σ
2
δ + β2

2

(
σ2
z + σ2

y

)
+ σ2

z(1 + 2β2)
. (A.26)

Order Imbalance Predictability Predictability of the order imbalance of un-

informed traders affects the optimal strategy of the informed trader who adjusts
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his optimal demand to extract maximum revenue. Despite this, the total order

imbalance remains predictable.

We define the predictability of order imbalance in two ways. Firstly, we

consider how the market quality (as measured by total price impact and market

efficiency) is affected by the predictability in the uninformed order imbalance. We

define the degree of uninformed order imbalance predictability as the ratio of the

variance of predicted uninformed order imbalance to the total variance of the unin-

formed order imbalance:

R2
u =

V ar[ẑ]

V ar[z]
=

σ2
z

σ2
z + σ2

y

. (A.27)

Secondly, we consider how the market quality is affected by the predictability

in the total order imbalance (resulted from the predictability of the uninformed

orders). We define the degree of total order imbalance predictability as the ratio

of the variance of predicted total order imbalance to the variance of the total order

imbalance:

R2 =
V ar[ω̂]

V ar[ω]
=

(
β2 + σ2

z
σ2
z+σ2

y

)2 (
σ2
z + σ2

y

)
β2

1σ
2
δ + β2(σ2

z + σ2
y) + σ2

z(1 + 2β2)
, (A.28)

where we have used that V ar(ω̂) = γ2(σ2
z + σ2

y) with γ given as γ = Cov[ω, z +

y]/V ar[z + y].

Numerical solution & comparative statics The system of four Equations

(A.13), (A.14), (A.17), (A.18) with respect to variables λ1, λ2, β1, β2 cannot be

solved analytically. Instead, we present numerical solutions to the system and per-

form comparative statistics for a set of parameter values. The focus of this exercise

is to gain an intuition for the model reaction to changes in the predictability of total

and uninformed order imbalance R2 and R2
u respectively.

We set our baseline scenario set of parameters as σ2
z = 1, σ2

δ = 1 and let

the noise of the uninformed order imbalance component vary according to σ2
y =

(1, . . . , 100). The predictability variables R2 and R2
u are then computed from the

specific combination of parameters in each of the scenarios analysed. We perform

our analysis for two different values of market maker’s risk aversion: Am = 0 and

Am = 1.3

3We keep the risk-aversion parameter Am rather small since earlier empirical work by Hende-
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Figure A.1 plots the relation between the two measures of predictability: R2

and R2
u. It reveals that for a wide range of parameter values, R2 is monotonically

increasing in R2
u. This goes in line with a common belief that predictability of

uninformed order imbalance is translated into predictability of total order imbalance

despite the endogenous nature of informed traders’ demand.

The optimal demand of informed traders increases with fundamental value

of the asset (see Figure A.2). Moreover, the sensitivity of informed orders to funda-

mental value monotonically declines with predictability of order imbalance. Higher

degree of order imbalance predictability makes it harder for informed traders to hide

behind uninformed orders. This leads to optimal reduction of trading aggressive-

ness as R2 increases. This is true regardless of the degree of market-makers’ risk

aversion. The response of informed demand to the predictive part of uninformed

order imbalance is zero when market maker is risk neutral (Panel A of Figure A.2).

Price impact of total order imbalance increases (Panel A of Figure A.3) while price

response to the predicted part of uninformed order imbalance decreases with R2

(Panel B of Figure A.3).

Figure A.4 presents numerical comparative statics of λtotal – price impact of

total order imbalance ω unconditional of predicted uninformed order imbalance. In

general the relationship between the liquidity and order imbalance predictability is

non-monotonic and has an inverse U-shape. When the degree of order imbalance

predictability is low, marginal increase in informed trader’s profit from front-running

the uninformed orders is higher than marginal decrease in profit due to revelation of

private information (price impact). For higher degrees of order imbalance predict-

ability marginal profit from front-running drops and eventually a positive effect on

market quality prevails.

Figure A.4 reveals that the sensitivity of the total price impact to predict-

ability of order imbalance increases in magnitude with σ2
δ . This suggests that order

imbalance predictability reduces the degree of asymmetric information the most

where such asymmetries are the most pronounced: during periods of high uncer-

tainty and in stocks with high volatility of the fundamental values. In Figure A.4,

we also show that price impact sensitivity of the total price impact to order imbal-

ance predictability exhibit similar patterns for different values of uninformed order

rshott and Seasholes (2009) concludes that there is little evidence for overly limited risk-bearing
capacity of market makers.
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imbalance volatility σ2
z .

Similarly, Figure A.5 presents numerical comparative statics of the level and

the market efficiency measure Q with respect to predictability of order imbalance

R2
t . In general efficiency increases with order imbalance predictability. The higher

the predictability, the easier it is for the market maker to infer the information from

the total order imbalance. Although the informed trader tends to reduce the amount

of trading as predictability of order imbalance increases, the positive effect of market

efficiency still dominates.

Finally, Figures A.6 and A.7 present comparative statics of λuncond and Q

with respect to R2
u. The results are similar qualitatively to those presented in Figures

A.4 and A.5.
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Figures and Tables

Panel A: Risk-neutral market maker
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Panel B: Risk-averse market maker
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Figure A.1: Comparative Statics: R2
tot vs. R2

u.
This figure plots the values of R2 coefficient of total order imbalance predictability as a function of
the predictability of total order imbalance R2. The data points correspond to individual numerical
solutions of the non-linear system (A.13)-(A.18) using the parameter set as indicated by the figure
titles and legends. Simultaneously, σ2

y is varied in the range 0, . . . , 100. The dependent variable is
plotted over the R2

u derived from the chosen parameter set. Panel A corresponds to the case of
risk-neutral market maker (Am = 0) and Panel B presents the case of risk-averse market maker.
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Panel A: Risk-neutral market maker
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Panel B: Risk-averse market maker
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Figure A.4: Comparative Statics: Price Impact vs. Predictability of Total Order
Imbalance.
This figure plots the value of total price impact λuncond as a function of the predictability of total
order imbalance R2. The data points correspond to individual numerical solutions of the non-
linear system (A.13)-(A.18) using the parameter set as indicated by the figure titles and legends.
Simultaneously, σ2

y is varied in the range 0, . . . , 100. The dependent variable is plotted over the
R2 derived from the chosen parameter set. Panel A corresponds to the case of risk-neutral market
maker (Am = 0) and Panel B presents the case of risk-averse market maker.
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Panel A: Risk-neutral market maker
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Panel B: Risk-averse market maker
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Figure A.5: Comparative Statics: Efficiency vs. Predictability of Total Order Imbal-
ance.
This figure plots the value of price efficiency Q as a function of the predictability of total order im-
balance R2. The data points correspond to individual numerical solutions of the non-linear system
(A.13)-(A.18) using the parameter set as indicated by the figure titles and legends. Simultaneously,
σ2
y is varied in the range 0, . . . , 100. The dependent variable is plotted over the R2 derived from the

chosen parameter set. Panel A corresponds to the case of risk-neutral market maker (Am = 0) and
Panel B presents the case of risk-averse market maker.
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Panel A: Risk-neutral market maker
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Panel B: Risk-averse market maker
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Figure A.6: Comparative Statics: Price Impact vs. Predictability of Uninformed
Order Imbalance.
This figure plots the value of total price impact λuncond as a function of the predictability of total
order imbalance R2

u. The data points correspond to individual numerical solutions of the non-
linear system (A.13)-(A.18) using the parameter set as indicated by the figure titles and legends.
Simultaneously, σ2

y is varied in the range 0, . . . , 100. The dependent variable is plotted over the
R2
u derived from the chosen parameter set. Panel A corresponds to the case of risk-neutral market

maker (Am = 0) and Panel B presents the case of risk-averse market maker.
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Panel A: Risk-neutral market maker
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Panel B: Risk-averse market maker
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Figure A.7: Comparative Statics: Efficiency versus Predictability of Uninformed Order
Imbalance.
This figure plots the value of price efficiency Q as a function of the predictability of total order
imbalanceR2

u. The data points correspond to individual numerical solutions of the non-linear system
(A.13)-(A.18) using the parameter set as indicated by the figure titles and legends. Simultaneously,
σ2
y is varied in the range 0, . . . , 100. The dependent variable is plotted over the R2

u derived from
the chosen parameter set. Panel A corresponds to the case of risk-neutral market maker (Am = 0)
and Panel B presents the case of risk-averse market maker.
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Table A.2: Aggregate Market Uncertainty and the Effect of Order Imbalance Predict-
ability: Additional Results.
This table reports the results of the following regression

yit =
∑

j∈{high,med,low}

βj · pli,t−1 ·D(j)
t + αi + γ′Xit + εit,

where yit represents either some of the additional liquidity measures, such as the effective spread
(espread), the realised spread (rspread) and price impact (prcimpact), or the additional measure
of market inefficiency defined as abs ac = |(1 + ac)/(1 − ac)|, where ac is the autocorrelation of
daily returns. The predictive likelihood pl it is defined as the 20-day rolling average over p̃l it which
is calculated as in Eq.(1.3). Panel A: reports the results for the order imbalance of active pension
funds. Panel B: shows the results for the full sample of stocks. The vector of control variables Xit

includes: the log-market cap lsizeit of the firm i (scaled by 100), the inverse of the price 1/prcit
(multiplied by 100), the trade-to-quote ratio ttqit, the share turnover turnit (in percent), the value
of the VIX index vixt (in percent), the lagged value of the dependent variable (illiqi,t−1), and the
contemporaneous order imbalance (oibtoti,t ). Sample period in Panel A is from January 1, 2006 to
December 31, 2010 and in Panel B from January 1, 1997 to December 31, 2013. In parentheses we
report the t-statistics computed based on double-clustered standard errors.

Panel A: Active Pension Funds

espread rspread prcimpact abs ac

plpft−1 ×D
high
t -0.031 (-6.57) -0.018 (-6.55) -0.032 (-9.92) -0.013 (-0.74)

plpft−1 ×Dmed
t -0.025 (-7.19) -0.022 (-11.7) -0.019 (-8.31) -0.047 (-3.88)

plpft−1 ×Dlow
t -0.010 (-1.97) -0.015 (-3.23) -0.004 (-1.05) -0.076 (-4.02)

oibtott -0.002 (-1.47) -0.006 (-4.05) 0.005 (4.39) 0.0001 (0.01)

illiqt−1 0.554 (7.58) 0.209 (8.14) 0.268 (11.7)

lsize -0.011 (-4.22) 0.003 (1.33) -0.021 (-10.5) 0.011 (2.37)

turn 0.118 (4.33) -0.053 (-2.09) 0.176 (4.67) -0.484 (-6.79)

1/prc 0.244 (3.78) 0.233 (6.40) 0.169 (4.17) 0.135 (5.49)

ttq -4.032 (-4.82) -2.156 (-3.04) -1.475 (-2.07) -3.596 (-1.52)

vix 0.051 (4.87) -0.008 (-1.63) 0.091 (15.3) -0.003 (-0.11)

No. obs. 764,825 764,825 764,825 764,825

R2 65.76% 16.67% 32.49% 0.21%

Panel B: Full Sample of Stocks

espread rspread prcimpact abs ac

plpft−1 ×D
high
t -0.410 (-15.9) -0.429 (-8.41) -0.580 (-18.8) -0.054 (-4.39)

plpft−1 ×Dmed
t -0.229 (-10.1) -0.098 (-2.13) -0.464 (-16.4) -0.096 (-13.0)

plpft−1 ×Dlow
t -0.179 (-7.19) -0.021 (-0.42) -0.424 (-13.9) -0.096 (-11.6)

oibtott -0.073 (-25.7) -0.086 (-5.95) -0.006 (-0.59) -0.006 (-11.8)

illiqt−1 0.578 (125.1) 0.047 (22.8) 0.036 (21.2)

lsize -0.161 (-31.5) -0.264 (-24.9) -0.099 (-19.6) -0.014 (-16.1)

turn -1.177 (-9.74) -2.462 (-9.00) -0.010 (-0.17) -0.442 (-8.35)

1/prc 0.606 (22.7) 1.166 (20.5) 0.367 (14.5) 0.029 (10.2)

ttq 7.241 (18.3) 16.22 (9.32) 1.378 (1.19) -0.041 (-0.55)

vix 0.755 (16.3) 0.956 (12.8) 0.828 (21.1) -0.001 (-0.11)

No. obs. 12,906,715 12,906,715 12,906,715 12,906,715

R2 49.58% 1.05% 0.43% 0.51%
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Table A.3: Effect of Order Imbalance Predictability on Liquidity and Market Efficiency
by Stock Characteristics: Additional Results. This table presents the results of the following
regression

yit = αi + βpli,t−1 + γ′Xit + εit,

where yit represents either some of the additional liquidity measures, such as the effective spread
(espread), the realised spread (rspread) and price impact (prcimpact), or the additional measure
of market inefficiency defined as abs ac = |(1 + ac)/(1 − ac)|, where ac is the autocorrelation
of daily returns. The predictive likelihood pl it is defined as the 20-day rolling average over p̃l it
which is calculated as in Eq.(1.3). For the ease of exposition, only the loading and t-statistics on
plt are reported. The sample stocks are sorted into quintiles Q1 to Q5 based on NYSE market
capitalisation breakpoints, trade-to-quote ratio, idiosyncratic volatility and passive institutional
ownership. Panel A: reports the results for the order imbalance of active pension funds. Panel B:
shows the results for the full sample of stocks. The vector of control variables Xit includes: the log-
market cap lsizeit of the firm i (scaled by 100), the inverse of the price 1/prcit (multiplied by 100),
the trade-to-quote ratio ttqit, the share turnover turnit (in percent), the value of the VIX index vixt
(in percent), the lagged value of the dependent variable (illiqi,t−1), and the contemporaneous order
imbalance (oibi,t). Sample period in Panel A is from January 1, 2006 to December 31, 2010 and
in Panel B from January 1, 1997 to December 31, 2013. In parentheses we report the t-statistics
computed based on double-clustered standard errors.

Panel A: Active Pension Funds

Q1 Q2 Q3 Q4 Q5

Sorting by Market Cap

estpread -0.05 (-3.96) -0.03 (-8.06) -0.04 (-4.47) -0.02 (-8.28) -0.01 (-5.16)

rspread -0.03 (-1.69) -0.02 (-7.33) -0.02 (-9.42) -0.02 (-11.42) -0.01 (-6.10)

prcimpact -0.07 (-4.11) -0.02 (-5.61) -0.02(-7.77) -0.01 (-5.57) -0.01 (-4.13)

abs ac -0.11 (-2.07) -0.02 (-0.97) 0.00 (0.17) -0.05 (-2.56) -0.03 (-1.35)

Sorting by Trade-to-Quote ratio

estpread -0.04 (-6.09) -0.02 (-10.30) -0.03 (-4.80) -0.03 (-7.58) -0.02 (-4.71)

rspread -0.02 (-6.44) -0.02 (-10.39) -0.02 (-9.34) -0.02 (-10.11) -0.03 (-5.21)

prcimpact -0.03 (-6.81) -0.02 (-7.92) -0.02 (-7.87) -0.02 (-8.67) -0.02 (-3.65)

abs ac -0.06 (-2.43) -0.04 (-1.98) -0.02 (-1.32) -0.04 (-2.02) -0.01 (-0.24)

Sorting by Idiosyncratic Volatility

estpread -0.02 (-7.33) -0.03 (-5.94) -0.04 (-5.43) -0.04 (-5.95) -0.03 (-7.40)

rspread -0.01 (-10.07) -0.01 (-11.47) -0.02 (-9.10) -0.03 (-9.99) -0.03 (-5.50)

prcimpact -0.01 (-5.80) -0.02 (-8.68) -0.03 (-9.11) -0.03 (-8.77) -0.03 (-6.48)

abs ac -0.05 (-2.22) -0.06 (-2.53) -0.03 (-1.35) -0.04 (-1.69) -0.01 (-0.013)

Sorting by Passive Institutional Ownership

estpread -0.03 (-7.80) -0.02 (-6.71) -0.02 (-6.61) -0.03 (-5.87) -0.02 (-4.19)

rspread -0.03 (-7.63) -0.01 (-5.79) -0.01 (-6.34) -0.01 (-6.51) -0.01 (-6.00)

prcimpact -0.03 (-6.47) -0.02 (-6.26) -0.02 (-5.91) -0.02 (-4.77) -0.02 (-4.58)

abs ac -0.00(-0.05) -0.04 (-1.51) -0.05 (-1.54) -0.05 (-2.12) -0.03 (-1.56)
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Table A.3 continued.
Panel B: Full Sample of Stocks

Q1 Q2 Q3 Q4 Q5
Sorting by Market Cap

estpread -1.25 (-16.81) -0.40 (-9.98) -0.15 (-5.81) -0.14 (-5.49) -0.14 (-5.99)
rspread -1.61 (-10.82) -0.40 (-5.79) 0.02 (0.35) 0.01 (0.24) -0.05 (-1.82)
prcimpact -1.15 (-15.07) -0.44 (-9.47) -0.29 (-6.19) -0.23 (-6.25) -0.13 (-6.24)
abs ac -0.27 (-16.30) -0.12 (-7.73) -0.07 (-5.63) -0.05 (-4.09) -0.010 (-0.85)

Sorting by Trade-to-Quote ratio
estpread -0.80 (-16.10) -0.30 (-12.43) -0.28 (-11.41) -0.38 (-13.09) -0.41 (-9.34)
rspread -0.78 (-10.92) -0.15 (-3.74) -0.34 (-4.94) -0.39 (-5.19) -0.47 (-4.54)
prcimpact -0.59 (-16.52) -0.37 (-12.68) -0.30 (-6.35) -0.48 (-10.08) -0.47 (-8.19)
abs ac -0.09 (-5.65) -0.07 (-7.10) -0.09 (-9.34) -0.10 (-8.90) -0.12 (-8.86)

Sorting by Idiosyncratic Volatility
estpread -0.15 (-12.56) -0.26 (-15.31) -0.39 (-14.23) -0.70 (-16.06) -1.54 (-16.50)
rspread -0.26 (-4.10) -0.16 (-2.99) -0.36 (-6.17) -0.77 (-9.04) -2.16 (-12.86)
prcimpact -0.08 (-1.75) -0.36 (-9.01) -0.46 (-11.86) -0.67 (-12.82) -1.25 (-14.98)
abs ac -0.06 (-5.17) -0.05 (-5.38) -0.06 (-6.34) -0.09 (-8.92) -0.23 (-14.19)

Sorting by Passive Institutional Ownership
estpread -1.21 (-10.02) -0.61 (-11.64) -0.28 (-11.05) -0.23 (-12.91) -0.23 (-11.57)
rspread -1.67 (-7.26) -0.58 (-4.19) -0.22 (-2.73) -0.16 (-3.00) -0.18 (-2.92)
prcimpact -0.94 (-8.60) -0.83 (-8.91) -0.44 (-7.77) -0.37 (-9.74) -0.32 (-7.98)
abs ac -0.32 (-12.93) -0.12 (-7.32) -0.08 (-6.44) -0.05 (-4.40) -0.065 (-5.18)
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Table A.4: De-trended Predictive Likelihood.
This table reports the results for the main regression analysis but with the predictive likelihood
replaced by its de-trended transformation. For each given stock, we define the de-trended predictive
likelihood pl∗t as residuals from the regression of pl t on the corresponding time index t, i.e. pl t =
α + β t + pl∗t . As a result, for instance, the effect of order imbalance (de-trended) predictability is
investigated by the following regression

illiqit = αi + βpl∗i,t−1 + γ′Xit + εit,

where illiqit takes one of following illiquidity variables (expressed in basis points): quoted spread
qspread, effective spread espread, realised spread rspread, and price impact prcimpact. We run
the same regression for market inefficiency measures, such as the variance ratio vratioit and a
measure of absolute correlation abs acit. Panel A: reports the results for the order imbalance
of active pension funds. Panel B: shows the results for the full sample of stocks. The vector of
control variables Xit includes: the log-market cap lsizeit of the firm i (scaled by 100), the inverse
of the price 1/prcit (multiplied by 100), the trade-to-quote ratio ttqit, the share turnover turnit
(in percent), the value of the VIX index vixt (in percent), and the lagged value of the dependent
variable (illiqi,t−1), and the contemporaneous order imbalance (oibtoti,t ). Sample period in Panel A
is from January 1, 2006 to December 31, 2010 and in Panel B from January 1, 1997 to December
31, 2013. In parentheses we report the t-statistics computed based on double-clustered standard
errors.

Panel A: Active Pension Funds

qspread espread rspread prcimpact vratio abs ac

pl∗t−1 -0.02 (-6.00) -0.01 (-4.91) -0.01 (-3.77) -0.01 (-4.60) -0.02 (-2.94) -0.03 (-2.21)

illiqt−1 0.58 (23.88) 0.56 (7.75) 0.21 (8.24) 0.27 (11.81)

oibtott 0.003 (2.08) 0.001 (0.06) -0.001 (-3.16) 0.07 (5.99) -0.001 (-0.63) -0.001 (-0.23)

lsize -0.02 (-5.79) -0.01 (-4.22) 0.003 (1.11) -0.02 (-10.36) 0.01 (3.72) 0.01 (2.09)

turn -0.16 (-4.31) 0.06 (2.22) -0.09 (-3.70) 0.12 (3.49) 0.22 (6.27) -0.50 (-6.80)

1/prc 0.23 (4.28) 0.24 (3.76) 0.23 (6.37) 0.17 (4.17) 0.07 (3.94) 0.13 (5.45)

ttq -10.50 (-8.35) -1.60 (-1.70) -0.22 (-0.30) 0.55 (0.78) 0.75 (0.70) -1.99 (-0.76)

vix 0.09 (9.45) 0.04 (4.67) -0.01 (-1.79) 0.07 (15.24) 0.02 (3.00) 0.04 (1.99)

No. obs. 764,825 764,825 764,825 764,825 764,825 764,825

R2 54.67% 65.52% 16.44% 32.21% 0.30% 0.16%

Panel B: Full Sample of Stocks

qspread espread rspread prcimpact vratio abs ac

pl∗t−1 -0.43 (-15.27) -0.42 (-15.52) -0.65 (-10.80) -0.43 (-12.42) -0.09 (-18.55) -0.17 (-16.99)

illiqt−1 0.68 (170.8) 0.58 (125.21) 0.05 (22.87) 0.04 (21.34)

oibtott -0.05 (21.44) -0.07 (-25.16) -0.08 (-5.90) -0.01 (-0.28) -0.001 (7.13) -0.001 (-10.51)

lsize -0.18 (-36.23) -0.17 (-35.37) -0.27 (-26.61) -0.13 (-25.92) -0.01 (-23.29) -0.02 (-19.82)

turn -1.61 (-9.86) -1.27 (-9.75) -2.45 (-9.11) -0.21 (-3.60) 0.04 (5.61) -0.46 (-8.38)

1/prc 0.53 (20.54) 0.59 (22.24) 1.15 (20.39) 0.33 (13.10) 0.01 (5.43) 0.02 (6.90)

ttq 2.27 (7.46) 7.89 (20.50) 16.61 (9.76) 2.63 (2.31) 0.07 (1.62) 0.08 (0.89)

vix 0.53 (17.11) 0.48 (18.69) 0.49 (11.46) 0.63 (26.41) 0.03 (6.92) 0.05 (3.57)

No. obs. 12,906,715 12,906,715 12,906,715 12,906,715 12,906,715 12,906,715

R2 59.84% 49.50% 1.05% 0.41% 0.88% 0.51%
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Appendix B

Bond Risk Premia With

Machine Learning

B.1 A Simple Motivating Framework

Relying on the large literature on time varying risk premia (see e.g. Campbell and

Cochrane, 1999, Wachter, 2006 and Buraschi and Jiltsov, 2007) we present a simple

model with external habit formation which leads to the Quadratic Linear model.1

The representative agent maximises

E

[∫ ∞
0

u(Ct, Xt, t)dt

]
,

where the instantaneous utility function is given by

u(Ct, Xt, t) =


e−ρt (Ct−Xt)1−γ

1−γ if γ > 1

e−ρt log (Ct −Xt) if γ = 1

where Xt is an external habit level as in Campbell and Cochrane (1999). Consider

now the Surplus Consumption Ratio

St =
Ct −Xt

Ct
.

1This material is based on the 2015 Version of Pietro Veronesi’s lecture notes on “Topics in
Dynamic Asset Pricing”.
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We model external habit formation as in Pastor and Veronesi (2005), i.e. we assume:

St = est

st = a0 + a1zt + a2z
2
t

dzt = kz (z̄ − zt) dt+ σzdWc,t .

Pastor and Veronesi (2005) show that by choosing ai appropriately (in particular,

a2 < 0), then st < 0→ St ∈ [0, 1]. In addition, we must have ∂s(y)
∂y = a1 + 2a2yt > 0

so that positive shocks to consumption dWc,t translate into positive shocks to the

surplus consumption ratio St. The rest of the model is defined by:

dct = gtdt+ σcdWc,t

dqt = itdt + σqdWq,t

where we let ct = logCt and qt = logQt be log consumption and log inflation.

Finally assume that Xt = (gt, it, zt)
′ follows the process

dXt = K(Θ−Xt)dt+ ΣdW t , (B.1)

where dW t is a vector of Brownian motions.

In this economy, the SDF is given by Mt = eηt−γ(ct+a0+a1zt+a2y2
t )−qt and the interest

rate has a linear quadratic structure

rt = δ0 + γgt + it + δzzt + δzzz
2
t (B.2)

Finally, denote the zero coupon bond price by P (Xt, t;T ). Given the specification

of the model (B.1), the price of the zero coupon bond P (Xt, t;T ) is the solution to

the Partial Differential Equation (PDE)

rZ =
∂P

∂t
+
∂P

∂X
K(Θ−Xt) +

1

2
tr

(
∂2P

∂X∂X ′
ΣΣ′

)

subject to the final condition P (XT , T ;T ) = 1. Using the method of undetermined

coefficients and exploiting the risk free rate equation (B.2), we can verify that the
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log bond price is given by

logP (Xt, t;T ) = A(t;T ) + B(t, T )′Xt + X′tC(t;T )Xt

where A(t;T ),B(t, T ) and C(t;T ) satisfy a set of ODEs - see Ahn et al. (2002) and

Leippold and Wu (2003).2 Hence, the bond pricing formula is also linear-quadratic

with factors given by consumption growth gt, expected inflation it and habit zt.

For a fairly general framework with non-linear dynamics under the historical

measure, and encompassing many equilibrium models with recursive preferences

and habit formation see Le et al. (2010). Finally, note that besides habit-based term

structure models, non-linearities are also featured in state-dependent, learning-based

models (see, e.g. Veronesi, 2004).

2More precisely, we conjecture P (Xt, t;T ) = eA(t;T )+B(t,T )′Xt+X′tC(t;T )Xt , we compute deriv-

atives ∂P
∂t

, ∂P

∂X , and ∂2P

∂X∂X ′
, we substitute r and partial derivatives in the PDE, and we collect

terms.
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B.2 Computational Details

For our implementation of the various machine learning techniques in Python we

utilise the well-known packages Scikit-Learn3 and Tensorflow4 in the Keras5

wrapper. Scikit-Learn provides the functionality to estimate regression trees (both

gradient boosted regression trees and random forest), partial least squares and pen-

alised regressions (ridge, lasso, elastic net). Furthermore, we make use of numerous

auxiliary functions from Scikit-Learn for data pre-processing such as input stand-

ardisation / scaling and train-test splits. A particularly useful Scikit-Learn func-

tion is GridSearchCV, which allows streamlined systematic investigation of neural

network hyperparameters. Our neural networks are trained using Keras and Google’s

Tensorflow. The Keras wrapper provides two distinct approaches to construct

neural networks, i.e. a sequential API and a functional API. The sequential API

is sufficient to construct relatively simple network structures that do not require

merged layers, while the functional API is used to build those networks that re-

quire merged layers as for example in the case of the exogenous addition of forward

rates into the last hidden layer. Keras also implements a wide range of regularisa-

tion methods applied in this paper, i.e. early-stopping by cross-validation, L1 / L2

penalties, drop-out, and batch normalisation.

B.2.1 Setup

Since the forecasting exercise in this paper is iterative and since we use model aver-

aging, the computational challenge becomes sizeable. For that reason, we perform

all computations on a high performance computing cluster consisting of 84 nodes

with 28 cores each, totalling to more than 2300 cores. We parallelise our code using

the Python multiprocessing6 package. Specifically, we parallelise our code exe-

cution at the point of model averaging such that for each forecasting step a large

number of models can be estimated in parallel and averaged before moving to the

next time step. Although it is common in applications such as image recognition

to perform neural network training on GPUs, we refrain from doing so since the

speed-up from GPU computing would be eradicated by the increased communica-

3http://scikit-learn.org/stable/, as of 26th October 2018
4https://www.tensorflow.org/, as of 26th October 2018
5https://keras.io/, as of 26th October 2018
6https://docs.python.org/3.4/library/multiprocessing.html, as of 26th October 2018
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tion over-head between CPU and GPU as the computational effort of training an

individual neural network is relatively small in our exercise.

B.2.2 Full Cross-Validated Neural Network vs. Group-Ensemble

In Section 2.5.6 we compare our best performing group-ensemble model (labelled

as NN 1 Layer Group Ensem (1 node per group), fwd rate net (1 layer: 3 nodes))

against two different types of model averaging schemes, i.e. weighting based on

the inverse of the validation loss and an equal-weighted model as well as a fully

cross-validated (CV) network. While the logic of the weighting schemes for the

model-averaging may be intuitive, the specifications for the fully CV network may

be not. Table B.1 gives an outline of these specifications vis-a-vis the choice made

for the group-ensemble structure.

Table B.1: Specifics of Full Cross-Validation vs. Group-Ensembling
This table reports the hyperparameters for the full cross-validated network vs. the shallow network
with group ensemble (see Table 2.9). The out-of-sample predictions are obtained by a recursive
forecast which starts in January 1990. The sample period is from 1971:08-2018:12.

Hyperparameter Set Full CV CV for group ensemble

Number of Layers 1, 2 1

Nodes Per Group 1, 2, 3 1

Nodes in Fwd Rate Net 1, 3 3

Dropout - Group Net 0.1, 0.3, 0.5 0.1, 0.3, 0.5

Dropout - Fwd Rate Net 0, 0.3 0

L1/L2 Penal - Group Net 0.01, 0.001, 0.0001 0.01, 0.001

L1/L2 Penal - Fwd Rate Net 0.001, 0.0001 0.0001

Combinations per retraining 432 6

CV frequency 5 years 5 years

A number of aspects should be discussed; in the fully CV setting we recurs-

ively choose the number of hidden layers (between 1 and 2) as well as the number

of nodes for each group of macroeconomic variables. Similarly, the number of nodes

in the forward rate net is allowed to change whereas for the group-ensemble it is

kept fixed. In addition, the full CV allows for a bit more flexibility in the L1/L2

penalty terms for both the group-specific networks as well as for the forward rates.

Increasing the flexibility comes at the cost of increased computational expense (423

possible combinations vs. 6). To keep the computational cost manageable we em-

ploy a procedure referred to as randomised cross-validation that randomly draws

combinations of hyperparameters from the set of available combinations. Specific-
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ally, we perform randomised cross-validation over 60 specifications from the set of

hyperparameters above. Note, even under randomised cross-validation as we employ

it here the effective training time increases by a factor of 10 (60 specifications vs. 6

specifications).

B.3 Accounting for Overlapping Observations

In this section we address an aspect related to the empirical execution of Bianchi

et al. (2020) which has been brought to our attention after the acceptance for pub-

lication.7 To set the stage, it is important to redefine notation. Specifically, define

the one-year holding period return as r
(n)
t+12 = log

P
(n−12)
t+12

P
(n)
t

where the time units are in

months (i.e., 12 refers to twelve months). In forecasting r
(n)
t+12, Bianchi et al. (2020)

made use of information brought about by r
(n)
t+11 = log

P
(n−12)
t+11

P
(n)
t−1

(this was the case

also for the benchmark historical returns).8 Due to the high persistence in bond

returns, it is important to re-evaluate the findings in Bianchi et al. (2020) when one

calculates the forecasts of r
(n)
t+12 exploiting the return series only up to r

(n)
t .

We revisit the main empirical analysis in the original paper. Specifically,

we consider both a framework that exploits information in the yield curve only,

as in Cochrane and Piazzesi (2005), as well as a framework that uses information

from a dataset of a large set of macroeconomic indicators as in Ludvigson and Ng

(2009). We employ the same list of models analysed in the main paper to ensure

full comparison of the results.

Moreover, in addition to the analysis of one-year holding period excess re-

turns, we also report evidence for the one-month holding period returns. This ana-

7We thank Tobias Hoogteijling for bringing this aspect to our attention.
8Note that defining rt,t+1 = log Pt+1

Pt
for stock returns, we have rst,t+12 = rt,t+1 + rt+1,t+2 +

rt+2,t+3+rt+3,t+4+rt+4,t+5+rt+5,t+6+rt+6,t+7+rt+7,t+8+rt+8,t+9+rt+9,t+10+rt+10,t+11+rt+11,t+12,
and rst−1,t+11 = rt−1,t+rt,t+1+rt+1,t+2+rt+2,t+3+rt+3,t+4+rt+4,t+5+rt+5,t+6+rt+6,t+7+rt+7,t+8+
rt+8,t+9 +rt+9,t+10 +rt+10,t+11; there are clearly 11 observations that are exactly the same between
rst−1,t+11 and rst,t+12. However, for bonds this is not immediately the case since the n-year bond
becomes an n− 1 month bond, one month later. Indeed,

r
(n)
t+12 = log

P
(n−1)
t+1

P
(n)
t

P
(n−2)
t+2

P
(n−1)
t+1

P
(n−3)
t+3

P
(n−2)
t+2

P
(n−4)
t+4

P
(n−3)
t+3

P
(n−5)
t+5

P
(n−4)
t+4

P
(n−6)
t+6

P
(n−5)
t+5

P
(n−7)
t+7

P
(n−6)
t+6

P
(n−8)
t+8

P
(n−7)
t+7

P
(n−9)
t+9

P
(n−8)
t+8

P
(n−10)
t+10

P
(n−9)
t+9

P
(n−11)
t+11

P
(n−10)
t+10

P
(n−12)
t+12

P
(n−11)
t+11


vs.

r
(n)
t+11 = log

P
(n−1)
t

P
(n)
t−1

P
(n−2)
t+1

P
(n−1)
t

P
(n−3)
t+2

P
(n−2)
t+1

P
(n−4)
t+3

P
(n−3)
t+2

P
(n−5)
t+4

P
(n−4)
t+3

P
(n−6)
t+5

P
(n−5)
t+4

P
(n−7)
t+6

P
(n−6)
t+5

P
(n−8)
t+7

P
(n−7)
t+6

P
(n−9)
t+8

P
(n−8)
t+7

P
(n−10)
t+9

P
(n−9)
t+8

P
(n−11)
t+10

P
(n−10)
t+9

P
(n−12)
t+11

P
(n−11)
t+10


with no immediate evidence of overlapping observations. The issue arises because of the time series
autocorrelation in bond returns (e.g., for the 10-year bond, the autocorrelation of the annual holding
period return series is ca. 92% when using monthly, overlapping observations).
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lysis appeared in an early draft of the paper, but was dropped during the revision

process. However, this evidence is important because it provides a cleaner setup to

test the effect of overlapping returns on the main results of the paper.

The empirical evidence from the revised analysis confirms the main mes-

sage of the paper, that is: (1) within each empirical application (i.e., yields-only or

yields plus macroeconomic variables), non-linear machine learning methods, in par-

ticular neural networks (NNs), are helpful to detect predictable variations in bond

excess returns, as indicated by out-of-sample predictive R2s that are significantly

higher than those obtained by data compression techniques (e.g., linear combina-

tions of forward rates, as in Cochrane and Piazzesi (2005), and factors extracted from

macroeconomic variables, as in Ludvigson and Ng (2009)) and penalised regression

techniques; (2) zooming in on non-linear methods, we document that using informa-

tion from macroeconomic and financial variables improves the predictive accuracy of

forecasts based only on (potentially non-linear transformations of) the yield curve;

(3) NN gains in predictive accuracy translate into better investment performance

compared to a naive strategy based on the recursive mean; (4) the economic gains

from NN forecasts based on macroeconomic and yield information are significantly

larger than those obtained using yields alone.

Research Design

We consider as a burn-in sample the period from 1971:08 to 1989:01.9 Using only

information up until the end of this period we estimate the forecasting model for

individual bond excess return and lagged predictors (macro and/or yields). Due

to the predictive nature of the regression, the last observation in the right-hand-

side variables is that of January 1988. We use the estimates and the value of the

predictors on January 1989 to produce out-of-sample forecasts of one-year excess

returns for each maturity. The first forecast error obtains by comparing the excess

holding period return during the February 1989 through January 1990 period and its

forecast made on January 1989. We then include the February 1989 information and

follow the same procedure to produce forecasts of the March 1989 through February

9We use the Liu and Wu (2020) dataset, for which the full set of ten forward rates is available
starting from 1971:08.
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1990 returns, and so on until the end of 2018.10

Bond Return Predictability and the Yield Curve

Table B.2 displays results when we forecast excess returns of Treasury bonds with

the yield curve.

Panel A of Table B.2 displays the results for PCRs and partial least squares

(PLS). Consistent with the original paper, the predictive R2 are negative across

different maturities. A parsimonious representation with only three PCs signific-

antly outperforms the specification with five and ten PCs, particularly at longer

maturities.

Panel B displays the results from various configurations of linear penalised

regressions. Differently from the paper, we now see that sparse modelling performs

poorly out-of-sample, independently from the bond maturity. In fact, they perform

even worse than a parsimonious data compression method (PCA) for almost all

maturities.

Panel C of Table B.2 shows the results for the non-linear methods. With

the only difference of regression tree methods, the main results of the paper holds.

That is, neural networks continue to attain good performance with significantly

positive R2
oos across maturities. We also observe that a shallow network with a

single hidden layer and three nodes performs only marginally worse than the best,

deeper network with two hidden layers and three nodes. Further increasing the

depth of the network deteriorates its performance. This continues to be the case

even when we consider alternative structures, like a NN with three hidden layers

and pyramidal node architecture.

One may argue that the forecasting results can depend on a particular struc-

ture of neural network. To address this issue, we complement and extend some of

the results reported in the original paper and report the R2
oos for two model com-

bination strategies that are based on two alternative model averaging schemes: the

first model combination scheme combines forecasts of each neural network based

on the inverse of the validation loss, which is akin to combine forecasts based on a

10In the exercise with one-month holding periods, we use the Center for Research in Security
Prices Treasury Fama bond portfolios. In this case the sample period is from 1964:01 to 2016:12,
as in the draft version of the paper. The start of the out-of-sample period remains the same, i.e.
January 1990.
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pseudo-out-of-sample prediction error. The second combination scheme is more ag-

nostic and simply gives equal weights to the forecasts of each neural network. While

an equal-weight strategy may seem overly simplistic, the forecasting literature has

shown that it may outperform the optimal weights based on log-score or in-sample

calibration (see, e.g., Elliott and Timmermann, 2004, Smith and Wallis, 2009, and

Diebold and Shin, 2017). The results show rather unequivocally that even when

averaged out, neural networks perform best in out-of-sample forecasting of annual

holding period returns.

To summarise, our analysis correcting for non-overlapping returns confirms

that NNs constitute the best-performing methods even in the case when only inform-

ation in the term structure is used to forecast bond returns (i.e., in a low dimensional

setting). This, again, suggests that the gain from non-linear machine learning meth-

ods may not necessarily be relegated to a big data context. Overall, we continue to

confirm the main results in Section 3.1 of Bianchi et al. (2020).

Bond Return Predictability and Macroeconomic Variables

Next, we consider the setup where information embedded in the yield curve does

not necessarily subsume information contained in macro variables.

The results in Panels A and B in Table B.3 show that: (1) dense modelling,

such as data compression techniques and ridge regression, tends to perform poorly

out-of-sample; and (2) sparse modelling with both regularisation and shrinkage (i.e.,

elastic net regressions), perform well at long maturities, particularly when restricting

the linear combination of forward rates.

Turning to non-linear machine learning methods in Panel C of Table B.3, we

observe that the performance of hybrid networks stands out. The only difference

relative to the original paper is that increasing the depth of the NN from one- to

three-layers does not improve its accuracy.

We also confirm that a careful choice of network structure based on prior

economic information exerts a great impact on performance. In particular, a one-

layer group ensembled model performs better than the hybrid NN for the 2-, 3-, 4-

years maturities and attains slightly lower predictive accuracy for long-term bonds.

Also for group ensembling NN, adding more layers is detrimental to the performance.

In line with the analysis reported for the case with yields only above, we
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also compute the performance of model combination strategies that are based on a

weighted average of each neural network’s forecasts (see also Section 4.5 of Bianchi

et al. (2020)). This is a natural strategy to exploit, since we have observed that

different network structures perform differently at short- and long-maturity (e.g.,

the 1-layer NN with group ensembling and the hybrid 1-layer network perform best

at short- and long-maturity, respectively). As before, we consider a forecast combin-

ation strategy whereby each neural network is weighted based on the inverse of the

validation loss, as well as a second, more agnostic, combination scheme which gives

equal weight to each neural network prediction. The results show that as a class of

model, on average, neural networks unequivocally outperform both data compres-

sion, penalised regression and shallow non-linear models, therefore confirming the

main results of the original paper.

Finally, comparing Table B.2 to Table B.3, we confirm that macroeconomic

variables carry information that is not contained in the yield curve. For instance, a

group ensembled NN that exploits macroeconomic and term structure information

attains out-of-sample R2s that are about twice as large as the best-performing NN

that employs yields only for maturities ranging from two to ten years.

Economic Value of Return Forecasts from Neural Networks

We re-examine the findings in Section 5 of Bianchi et al. (2020). Again, since our

goal is solely to correct for the persistence in one-year holding period returns, we

consider an asset allocation framework that is identical to that described in Section

5.1 of the main paper.

Table B.4 shows the annualised certainty equivalent return (CER) values

computed relative to the EH model. Positive values indicate that the predictive

model performs better than the EH model. For the sake of completeness, we focus

on the predictions implied by (1) the best performing neural network as in Tables

B.2-B.3, (2) a model-average neural-network based on equal weights, (3) a model-

average neural network where the weights of each model are based on the validation

loss, and (4) for the exercise with macro + fwd rates the group-ensemble approach

outlined in the main paper. We flag in bold those values that are statistically

significant at the 5% confidence level.

Two facts emerge; first, there is strong evidence for the economic value of us-
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ing neural network forecasts both for the univariate case exploiting the long maturity

bond, and for the multivariate asset allocation strategy. Second, including macroe-

conomic information in the conditioning information set significantly increases the

economic performance of the forecasts; specifically, the NN forecasts that exploit

macroeconomic information produce significantly higher CER values than those im-

plied by a NN using yields-only (for the univariate and multivariate allocation,

independently of the form of utility).

Overall, with now the exception of regression trees, we largely confirm the

analysis in Section 5.2 of Bianchi et al. (2020) that neural network-based forecasts of

bond returns provide support for the hypothesis that a (statistically and economic-

ally) significant portion of macroeconomic information is not captured by the yield

curve, even after accounting for non-linearity in interest rates.
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Appendix C

What Drives Asset Holdings?

Commonality in Investor

Demand

C.1 Data

The construction of the asset characteristics data mostly follows Freyberger et al.

(2020b). In order to ensure that balance sheet data is available at the time market

price information is available, I follow the Fama and French (1993b) timing conven-

tion and use balance sheet information from fiscal year t − 1 for returns from July

of year t to June of year t− 1.

• a2me: Following Bhandari (1988), assets-to-market equity can be defined as

total assets over the market capitalisation as of December in year t− 1.

• at: Total firm assets as in Gandhi and Lustig (2015).

• ato: Net sales over lagged net operating expenses as in Soliman (2008), where

net operating assets are the diferrence between operating assets and operating

liabilities.

• beme: Book value of equity over market value of equity.

• beta: Following Frazzini and Pedersen (2014), CAPM beta can be defined

as the product of correlations between excess returns of a stock and market
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excess returns over the ratio of their volatilities. Correlations are estimated

using overlapping three-day windows over five-year periods with at least 750

non-missing observations. Volatilities are computed from standard deviation

of at least 120 observations of daily log-excess returns over a one-year horizon.

• c: Ratio of cash plus short-term investments to total assets as in Palazzo

(2012).

• cto: Following Haugen et al. (1996), capital turnover can be defined as ratio

of net sales to lagged total assets.

• delta pi2a: Change in property, plants, and equipment over lagged total

assets as in Lyandres et al. (2008).

• e2p: Following Basu (1981), earnings to price ratio can be defined as income

before extraordinary items to market capitalisation as of December in year

t− 1.

• freecf: Free cash flow to book value of equity can be defined as net income of

the firm plus depreciation and amortization minus change in working capital

and capital expenditure divided by book value of equity.

• idiovol: Idiosyncratic volatility defined as in Ang et al. (2006) is the standard

deviation of residuals from a regression of excess returns on the Fama and

French (1993b) three factors where one month of daily data with at least 15

non-missing observations is used.

• investment: Following Cooper et al. (2008), investment can be defined as the

year-on-year growth rate in total assets in percent.

• lev: Following Bhandari (1988), leverage can be defined as the ratio of long-

term debt plus debt in current liabilities over market equity.

• ldp: Following Litzenberger and Ramaswamy (1979), dividend-price ratio can

be defined as a measure of annual dividends over last month’s price. Annual

dividend is measured as the sum of dividends over the past 12 months.

• lme: Total market capitalisation defined as price times number of shares out-

standing.
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• lturnover: Following Datar et al. (1998), trading turnover can be defined as

traded volume in the previous month over number of shares outstanding.

• noa: Following Hirshleifer et al. (2004), net operating assets can be defined

as operating asset minus operating liabilities divided by lagged total assets.

• oa: Following Sloan (1996), operating accruals can be defined as changes in

non-cash working capital minus depreciation divided by lagged total assets.

• ol: Following Novy-Marx (2011), operating leverage can be defined as the sum

of cost of goods sold plus selling, general and administrative expense over total

assets.

• pcm: Following Gorodnichenko and Weber (2016) and D’Acunto et al. (2018),

price-to-cost margin can be defined as the difference between net sales and cost

of goods sold over net sales

• pm: Following Soliman (2008), profit margin can be defined as operating

income after depreciation over lagged sales.

• prof: Following Ball et al. (2015), profitability can be defined as gross profit

divided by book value of equity.

• q: Tobin’s Q is defined as total assets plus market equity minus cash and

short-term investments minus deferred taxes divided by total assets.

• rel to high price: Current return relative to the previous 52 week high.

• rna: Following Soliman (2008), return on net operating assets is given as

operating income after depreciation divided by nlagged net operating assets.

• roa: Following Balakrishnan et al. (2010), return-on-assets is given as income

before extraordinary items divided by total assets.

• roe: Following Haugen et al. (1996), return-on-equity can be defined as income

before extraordinary items divided by book value of equity.

• r12 2: Momentum defined as return over past 12 months excluding the most

recent two months like in Fama and French (1996).
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• r12 7: Intermediate momentum defined as return over past 12 months ex-

cluding most recent seven months as in Novy-Marx (2012).

• r2 1: Short-term reversal defined as return over past two months excluding

the most recent month as in Jegadeesh (1990).

• r36 13: Long-term reversal defined as return over the past three years ex-

cluding the most recent 13 months as in De Bondt and Thaler (1985).

• s2p: Following Lewellen (2015), sales-to-price is the ratio of net sales to market

capitalisation as of last December.

• sat: Following Soliman (2008), asset turnover can be defined as the ratio of

sales to lagged total assets.

• sga2s: Ratio of selling, general and administrative expenses to net sales.

• spread: Following Chung and Zhang (2014), a measure of bid-ask spread can

be computed as the average daily spread in the previous month.

• suv: Following Garfinkel (2009), standarised unexplained volume is computed

as actual volume minus a measure of predicted volume. Predicted volume is the

fitted value from a regression of daily volume on a constant and the absolute

value of returns. Standardization is achieved by dividing by the standard

deviation of residuals from the regression.
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Coordinate Optimization”, The Annals of Applied Statistics, Vol. 1, No. 2, pp. 302–332.

Fuster, Andreas, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther (2018)

“Predictably unequal? the effects of machine learning on credit markets”, SSRN Working

Paper 3072038.

Gandhi, Priyank and Hanno Lustig (2015) “Size anomalies in US bank stock returns”,

Journal of Finance, Vol. 70, No. 2, pp. 733–768.

271



Garfinkel, Jon A. (2009) “Measuring investors’ opinion divergence”, Journal of Accounting

Research, Vol. 47, No. 5, pp. 1317–1348.

Gargano, Antonio, Davide Pettenuzzo, and Allan Timmermann (2019) “Bond Return Pre-

dictability: Economic Value and Links to the Macroeconomy”, Management Science, Vol.

65, No. 2, pp. 508–540.

Geurts, Pierre, Damien Ernst, and Louis Wehenkel (2006) “Extremely randomized trees”,

Machine learning, Vol. 63, No. 1, pp. 3–42.

Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov (2005) “There is a risk-return trade-

off after all”, Journal of Financial Economics, Vol. 76, No. 3, pp. 509–548.

Ghysels, Eric, Arthur Sinko, and Rossen Valkanov (2007) “MIDAS regressions: Further

results and new directions”, Econometric Reviews, Vol. 26, No. 1, pp. 53–90.

Giacoletti, Marco, Kristoffer Laursen, and Kenneth J Singleton (2016) “Learning, dispersion

of beliefs, and risk premiums in an arbitrage-free term structure model”, Working Paper.

Giannone, Domenico, Michele Lenza, and Giorgio Primiceri (2017) “Economic predictions

with big data: The illusion of sparsity”, Working Paper, Federal Reserve Bank of New

York.

Giglio, Stefano and Dacheng Xiu (2017) “Inference on Risk Premia in the Presence of Omit-

ted Factors”, NBER Working Paper 23527, National Bureau of Economic Research.

Gompers, Paul A. and Andrew Metrick (2001) “Institutional investors and equity prices”,

Quarterly Journal of Economics, Vol. 116, No. 1, pp. 229–259.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (2016) Deep learning,

Vol. 1, Cambridge, MA, USA: MIT Press.

Gorodnichenko, Yuriy and Michael Weber (2016) “Are sticky prices costly? Evidence from

the stock market”, American Economic Review, Vol. 106, No. 1, pp. 165–99.

Goyal, Amit and Alessio Saretto (2009) “Cross-Section of Option Returns and Volatility”,

Journal of Financial Economics, Vol. 94, No. 2, pp. 310–326.

Griffin, John M., Jeffrey H. Harris, and Selim Topaloglu (2003) “The Dynamics of Institu-

tional and Individual Trading”, Journal of Finance, Vol. 58, No. 6, pp. 2285–2320.

Grinblatt, Mark, Sheridan Titman, and Russ Wermers (1995) “Momentum Investment

Strategies, Portfolio Performance, and Herding: A Study of Mutual Fund Behavior”,

American Economic Review, Vol. 85, No. 5, pp. 1088–1105.

272



Gu, Shihao, Bryan T. Kelly, and Dacheng Xiu (2019) “Autoencoder asset pricing models”,

Journal of Econometrics, Forthcoming.

(2020) “Empirical Asset Pricing via Machine Learning”, Review of Financial Stud-

ies, Vol. 33, No. 5, pp. 2223–2273.

Guidolin, Massimo and Allan Timmermann (2007) “Asset allocation under multivariate

regime switching”, Journal of Economic Dynamics and Control, Vol. 31, No. 11, pp.

3503–3544.

Gurkaynak, Refet S., Brian Sack, and Jonathan H. Wright (2007) “The U.S. Treasury yield

curve: 1961 to the present”, Journal of Monetary Economics, Vol. 54, No. 8, pp. 2291–

2304, November.
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