
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/152560  

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/152560
mailto:wrap@warwick.ac.uk


M A
OD C

S

Coalescing Random Walks and

Universality in Two Dimensions

by

Jamie Peter Lukins

Thesis

Submitted for the degree of

Doctor of Philosophy

in Mathematics and Statistics

Mathematics Institute

The University of Warwick

October 2020



Contents

Acknowledgments iv

Declarations vi

Abstract vii

Chapter 1 Introduction 1

1.1 Introduction to Coalescing Random Walks and Relevant Background 1

1.2 The Heuristic Argument of van den Berg and Kesten . . . . . . . . . 10

1.3 Applications and Further Work . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Application to the N-point Correlation Function and Non-

Coalesence Probabilities . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Slowly Coalescing Random Walks in All Dimensions and Re-

lated Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2 The Governing Stochastic Differential Equations 19

2.1 Existence and Uniqueness for the Instantly Coalescing System . . . . 19

2.2 The Non-Instantaneous Regime . . . . . . . . . . . . . . . . . . . . . 32

2.3 Properties of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3 Negative Correlation Results for Systems of Coalescing

Random Walks 62

3.1 Introduction to Negative Correlation . . . . . . . . . . . . . . . . . . 62

i



3.2 Pairwise Negative Correlation for an Instantly Coalescing Particle

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Description of Paths . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2 A First Example of Negative Correlation . . . . . . . . . . . 66

3.2.3 Site Independent Random Initial Conditions . . . . . . . . . 67

3.3 Coloured Paths and Various Notions of Negative Dependence . . . . 69

3.3.1 Description of Coloured Paths . . . . . . . . . . . . . . . . . 69

3.3.2 Pairwise Negative Correlation for a System of Slowly Coalesc-

ing Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.3 A Negative Dependence Result for the Factorial Moments of

the Occupancy of a Site in a Slowly Coalescing System . . . . 75

3.4 Convergence in Distibution of the Approximating Discrete Time Models 82

3.4.1 Convergence of the Discrete Time Markov Chain to the Con-

tinuous Time Markov Process . . . . . . . . . . . . . . . . . . 82

3.4.2 Convergence to the Solution of (2.14) . . . . . . . . . . . . . 88

Chapter 4 Rate Equations 94

4.1 Instantaneously Coalescing Particles in d = 2 . . . . . . . . . . . . . 94

4.1.1 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.2 A Priori Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.3 A Two Point Estimate . . . . . . . . . . . . . . . . . . . . . . 96

4.1.4 A Variance Estimate . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.5 A One Point Estimate . . . . . . . . . . . . . . . . . . . . . . 112

4.1.6 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Non-Instantaneously Coalescing Particles in d = 2 . . . . . . . . . . 118

4.2.1 A Priori Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2.2 A One Point Estimate . . . . . . . . . . . . . . . . . . . . . . 122

4.2.3 A Two Point Estimate . . . . . . . . . . . . . . . . . . . . . . 134

4.2.4 A Variance Estimate . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.5 Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 138

ii



Chapter 5 Random Walk Estimates 142

5.1 General Estimates for Continuous Time Random Walks . . . . . . . 142

5.2 A Random Walk Estimate in d = 2 . . . . . . . . . . . . . . . . . . . 143

5.3 λ Reluctant Random Walk . . . . . . . . . . . . . . . . . . . . . . . 154

Appendices 164

Appendix A Proofs from Chapter 2 164

A.1 Proof of Proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Proof of Lemma 2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Appendix B Proof of Proposition 3.4.3 180

iii



Acknowledgments

I would like to begin by expressing my sincere gratitude for my supervisors, Doctor

Roger Tribe and Professor Oleg Zaboronski, who have both shown an immense level

of patience and support during my entire period of study. I am particularly indebted

to Roger for his guidance and supervision, and for engaging me in an interesting

and satisfying project.

I am grateful for the opportunity afforded to me by the Engineering and

Physical Research Council (EPSRC) to undertake this research and produce this

work. The funding I have received was an invaluable part of the puzzle. Additionally,

I give thanks to the organisers of MASDOC at the Mathematics department for my

inclusion to the programme.

To my fellow MASDOC cohort, and those that came before and after, I’d

like to thank for your companionship and for stuggling alongside me through all the

trials and tribulations of PhD life.

There are of course, too many other people who have supported me in all

kinds of ways throughout the course of my studies. I hope that those that are not

named here specifically will still know they are appreciated. However, I’d like to

acknowledge the impact of my secondary school teachers Melinda Aldred and Sarah

Blainey Ansquer in inspiring in me an interest in learning, nurturing my young mind

and setting me on the journey that culminates here. Finally, special thanks go to

the Lukins family, the Bakewell Stuarts, Endika Arquero Ugarte for their continued

encouragement, emotional support and cups of tea.

iv



This thesis is dedicated to the life and memory of my father,

Colin Graham Lukins,

13/04/1956 - 06/02/2018.

�

“In life, all anyone is looking for is that Second Moment”

-Roxanne Douglas, 15/02/2019.

v



Declarations

I, Jamie Peter Lukins, declare that, to the best of my knowledge, the material con-

tained in this thesis is original and my own work except where otherwise indicated,

cited, or commonly known.

The material in this dissertation is submitted to the University of Warwick

for the degree of Doctor of Philosophy, and has not been submitted to any other

university or for any other degree.

vi



Abstract

We study infinite systems of coalescing nearest neighbour random walks on
the integer lattice, Z2. We are interested in the decay of the probability that the
origin is occupied as time increases. This is a well known result for the case that
the random walks coalesce instantaneuously and was first proved by Bramson and
Griffeath in [2]. We rederive this result and strengthen it by providing an error
bound by using the methods employed by van den Berg and Kesten in [27], where
they worked in dimensions greater than 2. We further study coalescing random
walks that do not coalesce immediately on collision, but can occupy the same site
for an exponential (rate λ ∈ (0,∞)) random time before coalescing, in this was they
have a chance to walk away before coalescing. We derive the analogous asymptotic
for the decay of the probability of the occupation of the origin and find that, in two
dimensions, this decay is independent of the coalescence rate λ in the leading order
and agrees with the decay for the instantaneuously coalescing walks.
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Chapter 1

Introduction

1.1 Introduction to Coalescing Random Walks and Rel-

evant Background

We study an infinite system of independent continuous time random walks on the

integer lattice that can react on collision. There will be an initial spread of particles

on the entire lattice Z2 and each particle will evolve by independent rate 1 continuous

time simple random walks until there is a reaction. Specifically, the reaction we are

interested in is coalescence of the colliding particles. When a particle moves to a site

that is occupied by another particle there is the potential for the particles to react

and coalesce forming a particle that now follows a random walk that is independent

of the walks of its parent particles. We will consider two regimes, instantly coalescing

particles and slowly coalescing particles. The topic of interest is the decay in the

density of the particles in space as time grows large.

Such systems and the decay in density have been studied for many decades.

An infinite system of instantly coalescing nearest neighbour random walks

was constructed in [12] in all dimensions by making use of a graphical constuction

using the well known methods that can be found in [16] and [6]. Due to the instan-

taneous nature of their reactions, there can only be at most one particle per site.

Both there and in [11], the authors asked the question of the rate of decay in the
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density of the particles. One sensible measure of the density is the occupation of the

origin by a particle at large times. In [11] and [12] it is determined quite naturally

that the probability that a particle can be found at the origin at large times t tends

to 0 as t tends to infinity. The asymptotic rate at which this quantity decays to 0

was then found for all dimensions in [2]. If we call this quantity pd(t), with d being

the dimension, then the leading order of the rate of decay was found to be

pd(t) ∼


1√
πt

when d = 1

log(t)
πt when d = 2

1
γdt

when d ≥ 3

(1.1)

where by f(t) ∼ g(t) we mean that limt→∞f(t)/g(t) = 1 and γd is the probability

that a random walk in d dimensions starting at the origin never returns to the origin.

These are the so-called Pólya constants. Their methods do not provide a bound on

the lower order terms.

Some time later in [27], van den Berg and Kesten studied a variant for di-

mensions ≥ 3 of the infinite system where the particles do not necessarily coalesce

upon meeting. Instead, particles can stack. In their model, if a particle jumps to a

site that contains a pile of particles then this particle will coalesce with one of the

particles already present with some probability depending on the size of the stack.

If the probabilities are chosen so that the probability that particles coalesce given

that there is only 1 particle present, then their model exactly recovers the instan-

taneously coalescing random walk system as Bramson and Griffeath in dimensions

≥ 3.

For their more general process, they were also interested in the decay in

the probablility of the occupation of the origin at large times. In particular, they

actually study the expected number of particles at the origin at time t since there

can be more than 1 particle at a site at any time. Not only does their method

recover the original result of Bramson and Griffeath, as this is a specialisation of

their model, it also strengthens the result by providing an estimate for the error in
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the leading order asymptotic that wasn’t given originally.

If the probabilities are chosen as to allow for stacks of particles, then it

was shown that the expected number of particles at the origin at time t has the

same leading order asymptotics as for the probability that there is only 1 particle

present at the origin at time t. That this is true, is a result of a property of some

cancelative processes such as coalescing systems. These properties are sometimes

given the name negative correlation, and in this instance its significance is that in

systems of coalescing walks the probability that there are two or more particles

at a site should be unlikely. Negative correlation will be a main focus of one of

our chapters. Various notions of negative correlation exist and can be reviewed

in [20] and [21]. Arratia proved appropriate negative correlation results for the

instantaneous coalescing random walks in [1], making use of duality with the voter

model. Note, that for van dan Berg and Kesten, while coalescence does not always

occur, when it does occur, the reaction is an instantaneous one. They improve the

asymptotic for the instantly coalescing random walks in dimensions ≥ 3 and also

show that asymptotic for the expected number of particles at the origin is

pd(t) =
1

Cdt
+O

(
1

t1+ζ

)

for some ζ > 0 and some absolutely determined constant Cd depending on dimension

and the choice of probabilities. In particular, this constant reduces to γd when the

probability that a particle coalesces given that there is at least 1 particle at the

coincident site is chosen to be 1. They are able to achieve the error estimate by

using a method that differed greatly from the original result. Their method is based

on a heuristic argument which we repeat in the next section for the instantaneous

coalescing particle system. To make their arguments rigorous, they were able to

derive an approximate differential equation for the quantity in interest, controlling

the error in this approximation so that they can prove that the solution to the

approximate equation has correct asymptotic behaviour.

We have three aims:

3



1. The first is to sharpen the result of Bramson and Griffeath for the instantly

coalescing random walks in dimension 2 by providing an error bound for the

lower order terms like van den Berg and Kesten were able to do in dimensions

≥ 3.

2. The second, is to study a non-instantly coalescing system in dimension 2 for

which the coalescing mechanism is governed differently from the mechanism

studied by van den Berg and Kesten. We will call these systems slowly coalesc-

ing walks. This is a system in which particles may occupy the same site and

only coalesce at a certain exponential rate λ > 0. That is to say, they must

occupy the same site for a random exponentially distributed time in order to

react so that the particles have a chance to walk away before coalescing.

3. Thirdly, that the decay in the density, as measured by the expected number

of particles at the origin at time t, enjoys a certain universality property in

dimension 2. Call pλ2(t) the expected number of particles. The leading order

term in the decay in density will be seen to be independent of the rate of

coalescence. It will remain unchanged if we replace p2(t) with pλ2(t) for any

λ > 0. In fact, it will be shown that

pλ2(t) =
log(t)

πt

(
1 +O

(
1√
log t

))
(1.2)

for all λ > 0. Note, we can consider the instantly coalescing particles as a

slowly coalescing system with λ = ∞. The constant factor, π, in (1.2) is

therefore a universal constant amongst this class of coalescing random walks.

This universalilty phenomemon is restricted to processes in dimensions 2 or

fewer, and it seems to be entirely determined by the recurrent nature of simple

random walks in these dimensions. It can be seen easily by repeating for dimensions

≥ 3 the work done here for dimension 2, that slowly coalescing walks in dimensions

≥ 3 do not have this universality property. Indeed, the asymptotics for pλd(t) with
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d ≥ 3 turn out to be

pλd(t) =
1

λβdt
+O(t−(1+ζ)) (1.3)

for ζ > 0 and βd = γd/(γd + λ). (Again the instantaneous system is recovered by

letting λ → ∞ since then λβd = λγd/(γd + λ) → γd.) The constants βd have the

interpretation that they are the probability that in a system of just two particles

both starting at the origin, these particles never coalesce. Of course, in the tran-

sient dimensions, the Pólya constants γd are strictly positive but in the recurrent

dimensions γd = 0, it is in this difference that we see the introduction of π and the

loss of dependence on λ. There is some intuition to support the claim of this di-

chotomy of universality at the critical dimension 2. Since recurrent walks are bound

to meet each other infinitely often, and also each bound to reach the origin and

return infinitely often, it becomes less of a question of if particles will coalesce but

when they will. As such, the information of how slowly the particles coalesce is lost

in the asymptotic. No matter how quickly or slowly the particles react (compared

to the rate at which they walk, in our case rate 1) they are asymptotically bound

to have met at a coincident site and remained together for an exponential random

time sufficientlly long enough to react. In the transient dimensions, there is positive

probability that a pair of particles never meet, let alone spend enough time together

to react. As such, in each and every meet that they have, if any, their coalescence

depends strongly on the interplay between the coalescence rate and the walk rate.

Therefore, the information on the coalescence rate is retained in the asymptotic.

The calculations for d ≥ 3 largely follow the calculations presented in Chapter 4.

The proof of these results only differ significantly in two ways. Firstly, the order of

the error estimates are different and their calculation is easier since they do not rely

on strengthening the bounds from come from negative correlation. Secondly, the

random walk estimates are easier due to transience and the appearence of the Pólya

constants. The existence and uniqueness of the stochastic differential equation and

the negative correlation properties immediately generalise to all dimensions.
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The original method of Bramson and Griffeath to prove the decay for in-

stantly coalescing random walks required a deep theorem of Sawyer, given in [24],

relating to the voter model which is dual to the the instantly coalescing random

walks. This was fundamental for the identification of the constants given in equa-

tion (1.1) for the leading order term. For more general coalescing random walks, it

is not always clear that a useful dual exists in order to mimic the original method.

And even if we could, more work would be required to develop the error bounds that

the original result forgoes. However, the heuristic argument of van den Berg and

Kesten has been used successfully elsewhere for different processes. See for example

[25] and [27]. So not only does it have the benefit that it produces a bound for

the error in the large time approximation, but it also proves to be quite robust. Of

course, having good control of the error bound has the immediate benefit of also

providing tight enough estimation to correctly identify the constant in the leading

order.

While we do employ their heuristic, our calculations differ significantly since

we construct our processes as the solution to a system of stochastic differential equa-

tions (SDEs) driven by Poisson processes rather than by the graphical construction.

The constructions are very closely related but in proving the error estimates we can

make extensive use of the SDEs through calculus. These calculations are given for

the instantly coalescing process in Chapter 4 together with the asymptotic of the

decay in density for the finite rate reaction process. Universailty follows immediately

from this asymptotic.

While we will be chiefly interested in an initial condition of one particle

per site, we can investigate other deterministic and some random initial conditions.

Random initial conditions for instantly coalescing random walks have been studied

in [2] and [3]. However, as seen in [15], random initial conditions can sometimes

disrupt the negative correlation properties that would otherwise have held. So some

care will need to be taken about the class of random initial conditions that we can

consider.

It is also possible to consider massive coalescing particles. These particles
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will have a mass associated to them and upon coalescence, they will form a particle

that has a mass of the sum of its parents masses. In these models, there is only

ever one particle per site, but we can ask the question of the expected mass of a

particle at the origin at time t. A system of massive coalescing random walks with

spontaneous loss or gain of unit mass (evaporation/deposition respectively) has been

studied in [4], for example.

We now give definitions and formulate our problem. In the instantaneous

case, we begin with the maximal initial condition of a particle occupying every site

of Z2 and define the family

(Pt(x, y) : t ≥ 0, x, y ∈ Z2, x ∼ y) (1.4)

of independent, identically distributed (IID) rate 1/4 Poisson processes that control

the jumps of a particle at x to a neighbouring site y. The total rate of walking away

from x is then 1. Let ξ = {ξt(x)|x ∈ Z2, t ≥ 0} be our infinite system of coalescing

random walks on Z2. Then each coordinate of ξ records whether or not the site x

is occupied at time t, that is

ξt(x) =


1 if x is occupied at time t,

0 if x is not occupied at time t.

The SDE that governs the occupation of x is

dξt(x) =
∑
y:y∼x

(
1{ξt−(y) = 1, ξt−(x) = 0}dPt(y, x)− 1{ξt−(x) = 1}dPt(x, y)

)
.

(1.5)

Indeed the first terms arises from the introduction of a particle to x coming

from one of its neighbours y and the second term arises from the departure of a

particle from the site x.

In the non-instantaneous case, let 0 < λ < ∞ be the finite reaction rate for

coalescence. Spread an initial distribution of particles of one per site. Since particles

have a finite rate of reaction, it is entirely possible for mulitple particles to occupy
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the same site. Therefore, in the slowly coalescing regime ξ = {ξt(x)|x ∈ Z2, t ≥ 0}

will be an NZ2
valued process with ξt(x) ∈ N for all x ∈ Z2 and t > 0 It denote

the number of particles present at x at time t. We introduce the following Poisson

families

• (P (i, x, y) : i ∈ N, x, y ∈ Z2, x ∼ y) of IID rate 1/4 Poisson processes that

govern the jump of the ith particle at x to the neighbouring site y.

• (P c(i, j, x) : i, j ∈ N, x ∈ Z2) of IID rate λ Poisson processes that will control

the coalescence of the ith particle onto the jth at site x (the total rate of

coalesence for each pair will be 2λ).

The SDE that governs the occupation number of x is

dξt(x) =
∑
y:y∼x

∑
i≥1

(
1{i ≤ ξt−(y)}dPt(y, x)− 1{i ≤ ξt−(x)}dPt(i, x, y)

)
−
∑
i,j≥1

1

(
max{i, j} ≤ ξt−(x), i 6= j

)
dP c(i, j, x). (1.6)

Indeed, the only changes that can occur in the particle numbers in the system is

accounted for by particles walking to and from a site and the coalescence of particles

at a site.

In Chapter 2, we will prove that equations (1.5) and (1.6) have unique solu-

tions amongst a suitable class of processes. Since the particle numbers for (1.6) can

be unbounded, the convergence of the infinite sums in (1.6) is called into question.

To circumvent this we will construct a solution of (1.6) as a limit of a sequence of

solutions to modified SDEs that keep the number at each site capped. In this way,

in each approximating system of SDEs there are only finite sums and so no issue of

convergence. Some of the proofs of results in this chapter are given in the appendix.

As noted already, the concept of negative correlation will be the focus of

Chapter 3. The results here will reflect the intuition that for coalescing random

walks the presence of a particle at one site lowers the chance of a particle elsewhere.

And, for slowly coalescing random walks, the presence of a particle at a site lowers

the chance of another particle sharing the site because they have had the chance
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to coalesce. They will be needed especially in the estimation of each error in the

approximations.

Correlation inequalities are often proved using the van den Berg-Kesten-

Reimer (BKR) inequality which was conjectured to hold in full generality in [29]

and proved by Reimer [22]. For the application of the inequality we require a finite,

discrete time structure. Negative correlation results like the ones we will require

were established for van den Berg and Kesten’s randomly coalescing random walks

in [28] by discretizing the time axis and cutting off sites that are too far from the

origin in order to make use of the BKR inequality. We will prove our results in

a different way. We will define a discrete time process on a symmetric box about

the origin of fixed size that mimics our continuous time process but only allows

for a bounded number of particles per site. For this process, negative correlation

results can be proved using the BKR inequality. It will then be shown that our

full continuous time process can be obtained from the discrete time, finite volume

process by means of a chain of limit theorems, first by passing to continuous time,

then by allowing for unbounded number of particles and finally by allowing the

length of the box tend to infinity. This allows us to prove statements like if ξt(x) is

the solution to (1.6) then for all x 6= y

E[ξt(x)ξt(y)] ≤ E[ξt(x)]E[ξt(y)]

and

E[ξt(x)(ξt(x)− 1)] ≤ E[ξt(x)]2

which capture the intuitive properties that slowly coalescing random walks should

enjoy, as discussed in the preceding paragraph.

Chapter 5 will collect various random walk estimates that are also necessary

for our estimates. One of these estimates has a significant relation to our universality

for the class of slowly coalescing random walks. It is an asymptotic estimate for the

probability that a random walk starting at the origin never spends more than a
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rate λ exponential random time there on any of its visits by time t, for now we

call it γλ2 (t). It is the analogy to the role played by γd in dimensions d ≥ 3. The

other important estimate is the analogy to Lemma 12 of [27] where they prove,

for non-interacting random walks (although baring the instantly coalescing random

walks in mind as an application) in d ≥ 3 that the probability that two independent

random walks starting at some distinct x and y travel to the origin and one of its

neighbours e respectfully by time t without coalescing is well approximated by γd

times the product of the free random walk probability transition functions for the

random walk started at the origin to x and y−e respectfully through time t. We use

free here to mean that the trajectories have been decoupled and have no interaction

through time t. Since we don’t mind if our slowly coalescing particles meet, our

result is similar but with γd swapped out for γλ2 (t).

1.2 The Heuristic Argument of van den Berg and Kesten

We will repeat here the heuristic argument of van den Berg and Kesten given in

either of [27] or [28]. We will give the argument for the instantaneously coalescing

random walks. Our starting point is the exact ordinary differential equation given

by compensating the poisson processes in (1.5) (by which we mean writing dPt =

d(Pt − t/4) + dt/4) and taking expectation to arrive at

d

dt
E[ξt(x)] = −E[ξt(O)ξt(e)]

where e is any of the four neighbours of the origin and this is independent of the

choice of neighbour by translational and rotational invariance. Write ξ̂t = E[ξt(x)]

which is independent of x by translation invariance. In each approximation below

there is an error incurred. We shall not be explicit here as to the order of each error

but we will indicate the relevant result in which the correct error is specified. The

expectation in the right hand side is equal to the probability that there is a particle

present at both the origin and one of its neighbours e at time t since the argument

of the expectation is just a product of indicator functions. For there to be a particle

10



at the origin and a neighbour of the origin there must have existed sites x and y such

that there had been particles located at each of those sites at some earlier time t−s.

These particles must then have walked to the origin and a neighbour respectively

without meeting along the way, or else the particles will have coalesced. So, using

the informal notation x → y to mean that a particle at x walks to y through time

s, we have

dξ̂t
dt

= −
∑
x,y

P[x is occupied at time t− s, y is occupied at time

t− s, x→ O, y → e, paths do not meet in the interval [t− s, t]].

The time s is to be chosen carefully so that it is large enough compared with t

so that the sites x and y that contribute to the derivative are sites that are well

seperated, but it must be sufficiently small compared to t to avoid, for example,

the possibility of the particle at x coinciding with another particle while on its way

to the origin since then this other particle would have been located at another site

x′ at t − s. Choosing s small enough will guarantee that the main contribution to

the derivative comes from particles that have no coalescing event over the interval

[t − s, t] and so the sites x and y are, in a sense, well defined in that we can trace

back the location of the particles to unique sites at time t − s. The advantage of

the sites x and y being “well seperated” is that there is then near independence

of the events {x is occupied at time t − s} and {y is occupied at time t − s}. This

near independence is quantified by a variance estimate Lemma 4.1.8. So as a first

approximation (by Lemma 4.1.6) we have

dξ̂t
dt
≈ −

∑
x,y

P[x is occupied at time t− s]

× P[y is occupied at time t− s]

× P[x→ O, y → e, paths do not meet in the interval [t− s, t]]

= −ξ̂2
t−s
∑
x,y

P[x→ O, y → e, paths do not meet in the interval [t− s, t]].
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By time reversal of the simple random walk we can replace

P[x→ O, y → e, paths do not meet in the interval [t− s, t]]

by

P[O → x, e→ y, paths do not meet in the interval [t− s, t]].

The random walk paths in the event

{O → x, e→ y, paths do not meet in the interval [t− s, t]}

must not meet through time s. Choosing s carefully will allow us to decouple

the random walks and approximate this probability by the product of two free

probability transition densities which can meet, together with a correction factor

to account for this. This factor has leading order π/ log s and is the probability

that a random walk in d = 2 started at the origin does not return to the origin by

time s. This is the main diversion from the heuristic of van den Berg and Kesten.

In dimensions d ≥ 3, the transience of the random walks implies the probabilities

γd are strictly positive. Of course, in two dimensions, simple random walks always

return eventually to the origin and so γ2 = 0. This random walk estimate is proved

in Chapter 5. This leads us to

dξ̂t
dt
≈ −

πξ̂2
t−s

log s
. (1.7)

With the appropriate choice of s, Lemma 4.1.10 shows that ξ̂t−s is close to ξ̂t and also

log s will be close to log t so that we arrive at the approximate ordinary differential

equation for ξ̂t

dξ̂t
dt
≈ − πξ̂

2
t

log t
. (1.8)
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Finally, notice that if we write pt = log t
πt , then taking its derivative we have

dpt
dt

=
1

πt2
− log t

πt2

=
1

πt2
− πp2

t

log t

so that pt is nearly the solution of the solution to (1.8). The results of Chapter 4

make these approximations rigorous and show that pt is indeed the leading order of

the solution to (1.8) and provides the necessary bounds on the errors to conclude

ξ̂t =
log t

πt

(
1 +O

(
1√
log t

))
. (1.9)

The same approximations and estimations will allow us to conclude the same asymp-

totic for the slowly coalescing randoms walks and deduce universality in the second

section of Chapter 4.

1.3 Applications and Further Work

We briefly describe some applications of the results of this work.

1.3.1 Application to the N-point Correlation Function and Non-

Coalesence Probabilities

Consider the instantaneously coalescing random walks on Z2 with each site occupied

initially. Once the asymptotic decay (1.9) is established for the probability that the

origin is occupied at large times, it is natural to ask what is the asymptotic decay

of the correlation function

P[x1, . . . , xN are occupied at time t] = E[ξt(x1) · · · ξt(xN )]

for distinct x1, . . . , xN . This gives a more general measure of the decay in density of a

system of coalescing random walks than ξ̂t. This has been answered by Lukins, Tribe

and Zaboronski [17], using results and similar ideas as that of this thesis and confirms
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the prediction of Munasinghe, Rajesh and Zaboronski [19] where predictions were

made in all dimensions using a renormalisation group method. It is given by

P[x1, . . . , xN are occupied at time t] (1.10)

=
c0(x1, . . . , xN )

πN
(log t)N−(N2 )t−N

(
1 +O

(
1

log
1
2
−δ
t

))
(1.11)

for some constant c0(x1, . . . , xN ) and any 0 < δ < 1/2. The constant c0(x1, . . . , xN )

and the logarithmic correction (log t)(
N
2 ) accounts for the discrepancy in the use of

the negative correlation that results in a bound of

E[ξt(x1) · · · ξt(xN )] ≤ ξ̂Nt

(see Chapter 3). This result therefore, is of interest not just as a measure of the

decay of density of particles but also because it quantifies the error in the use of

negative correlation.

The two key tools needed for the application are the sharpened asymptotic

ξ̂t =
log t

πt

(
1 +O

(
1 +

1

log1/2 t

))

given in Chapter 4 and the non-collision probability PNC(t), that no pair from a

finite collection of N two dimensional random walks meet by time t. The asymptotic

for PNC(t) is known and was proved by Cox, Merle and Perkins in [5]. There,

it is given that PNC(t) ∼ c0 log(t)−(N2 ), however it is rederived in [17] using the

asymptotic given for the probability that only two random walks manage to avoid

each other by time t, the full strength of which is given by the asymptotic

π

log t
+O

(
1

log2 t

)

in Lemma 5.1.2. The result of the rederivation is a sharpened asymptotic for PNC(t)
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given by

PNC(t) = c0 log(t)−(N2 )
(

1 +
log log t

log t

)
.

Not only do the asymptotics for both the N -point density

P[x1, . . . , xN are occupied at time t]

and the non-coalescence probability PNC(t) depend upon and generalise results in

this thesis, but their derivations also showcase the strength of van den Berg and

Kesten heuristic, in that they also arise as the solution to an approximate SDE. To

the best of our knowledge, the instances in this thesis and the paper [17] are the

only ones for which this strategy has been employed for these types of problems in

2 dimensions, having only previously been used in dimensions ≥ 3.

There is future work do be done in this area. The dependence on the sites

x1, . . . , xN in the constant c0 is unknown although it has been conjectured in [17]

that

c0(x1, . . . , xN ) ≈ Πi<j log (|xi − xj |2) (1.12)

so long as

O(1) << |xi − xj | << O(t1/2)

so that the walks starting at xi and xj have a chance to meet.

It is likely that the same method as employed in [17] will work in d ≥ 3,

and similar methods have been used in d = 1 in [18] to produce the correct decay

in time in the leading order but the estimates were not strong enough to get the

correct constant. This constant is known and was found later in [26] where the

authors recognised that the system was exactly solvable using the Karlin-McGregor

formula for Brownian motions and takes on a similar form as the conjecture (1.12).

This work would also extend easily to the slowly coalescing random walks,

where the independence of the coalescing rate is expected to hold firm.
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1.3.2 Slowly Coalescing Random Walks in All Dimensions and Re-

lated Problems

We have already briefly discussed slowly coalescing random walks in d ≥ 3. The same

methods used in this thesis derive the asymptotics given in equation (1.3). It is not

clear if these methods can be extended to d = 1. The problem seems to be regarding

the strength of the negative correlation bounds. As we will see in this thesis, the

pairwise negative correlation bounds as they are, are not strong enough alone to

provide an error bound of low enough order for most of our approximations. For

us, it is necessary to use recurrence for the random walks to force an a logarithmic

correction that is apparent in the formula for the generalised correlation function

(1.10). This extra factor of a logarithm in our pairwise correlations proves vital in

obtaining an error bound tight enough to solve the SDE. In the transient dimensions,

the pairwise correlation bounds are immediately strong enough to be applied and do

not need any improvement. In d = 1, improvements will certainly need to be made

in order to mimic the heuristic presented here. One thing that can be considered in

the future, is if the pairwise correlations in d = 1 are too strong for this to be done.

At least for d ≥ 2 we can ask more questions related to slowly coalescing

random walks. One potential topic of interest, is a system of multiple species that

react with each other, and themselves, at different rates.

We give an example. Suppose in d ≥ 3 we have a system of particles that we

shall call A particles, that in the absence of any other species, behave as a slowly

coalescing system with rate λA and walk rate 1. Therefore, their rate of decay of

density is given by (1.3), with λA replacing λ. We introduce another species of

particles labelled B that walk with some rate D and have a rate λB at which it will

coalesce with an A particle and lose its B label if they share a site. We can think

of the B particle being deleted or annihilated by the reaction with the A particle.

The question now is determine the rate of decay of the B particles. Let pBd (t) be

the probability that the origin is occupied by a B particle at time t.

We highly suspect that this can be achieved in all d ≥ 2 through the use of

the van den Berg and Kesten heuristic, and making use of the ideas presented in this

16



work, particularly in d = 2, where the recurrence will present an issue. However,

the existence and uniqueness of the SDEs and the results in the negative correlation

chapter for the A particles are applicable in any dimension.

We conjecture that, for d ≥ 3,

pBd (t) ∼ Ct−λBβB/λAβd , (1.13)

where βB = γd(1+D)
γd(1+D)+λB

. This is quite intuitive. When λA is small, the A particles

will coalesce with themselves more slowly and hence be more abundant. If λB is

large compared to λA, the B particles will be disappearing rapidly as they continue

to meet the abundant A particles. These values will give a very negative exponent in

(1.13) and so the quantity PBd (t) is driven to 0 quickly. On the other hand, λA very

large could mean that the B particles are able to thrive and decay at an arbitrarily

slow rate. Similar rationale follows by considering the interplay between the walk

rate D and λB, since if the B particles walk at a greater rate than they coalesce

with the A particles they may manage to avoid coalescing.

The most difficult step in studying these multiple species processes seems to

be in decoupling the pairwise correlations involving A and B type particles. That is

because we don’t know how to prove negative correlation results for the joint A/B

system. Considerable work could be done in this area. It seems possible, in d ≥ 3

at least, to resort to higher moments in order to perform the necessary decouplings.

In d = 2, it is likely that these decouplings will be more subtle as they were just in

the case of the A particles, even if negative correlation can be established.

It would be interesting to see how the interplay between the walk rate D and

the coalesce rate λB affect the d = 2 asymptotics. We highly suspect that we will

once again see some kind of universality in the asymptotic amongst the joint two

species system with respect to their coalescence rates. The intuition follows exactly

as it would for the A system alone. That the value of λA is inconsequential is an

immediate corollary of the fact that it is so in the leading asymptotic of the decay of

the A particles. The value of λB ought not to matter since recurrence will guarantee
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that B particles always eventually meet A particles and so in the asymptotic the

information about how the coalescence rate compares with the walk rate will be

lost. Of course, the asymptotic will depend on D.

This work is ongoing.
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Chapter 2

The Governing Stochastic

Differential Equations

We remark that the results of this chapter hold in all dimensions. In order to

highlight this generality, we will prove existence and uniqueness for any dimension

d.

2.1 Existence and Uniqueness for the Instantly Coalesc-

ing System

We start with an initial condition ξ0 ∈ {0, 1}Z
d

that assigns to each site of Zd a 0

or 1 which corresponds to the site initially being empty or occupied by a particle.

Integrating (1.5) gives

ξt(x) = ξ0(x) +

∫ t

0

∑
y∼x

(
1{ξs−(y) = 1, ξs−(x) = 0}dPs(y, x)

− 1{ξs−(x) = 1}dPs(x, y)

)
. (2.1)

Proposition 2.1.1. For an initial condition satisfying E
[∑

x e
−θ|x|ξ2

0(x)
]
<∞ for

some fixed θ > 0 that is independent of the Poisson processes, there exists a unique
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solution to (2.1) and the solution satisfies

sup
t∈[0,T ]

E

[∑
x

e−θ|x||ξt(x)|2
]
<∞.

Proof. Let ξ
(0)
t ≡ ξ0 for all t and define sucessive iterates by

ξ
(n)
t (x) = ξ0(x) +

∫ t

0

∑
y∼x

1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}dPs(y, x)

−
∫ t

0

∑
y∼x

1{ξ(n−1)
s− (x) = 1}dPs(x, y). (2.2)

We will use the usual iteration argument to prove existence and a standard Grönwall

argument for uniqueness.

While it is clear that if there is a solution to the original equation it has values

in {0, 1}, this is not necessarily true for the iterates. Indeed, if ξ
(0)
t (x) = ξ0(x) = 1

then

ξ
(1)
t (x) = 1−

∑
y∼x

Pt(x, y)

which agrees with ξ
(0)
t (x) until the first jump of one of the Pt(x, ·) Poisson processes.

Immediately after this jump, ξ
(1)
t (x) = 0. But then it only takes one more jump

from any of the Pt(x, ·) for ξ
(1)
t (x) to take a negative value. In fact, ξ

(1)
t (x) ∈

{. . . ,−2,−1, 0, 1} if ξ0(x) = 1. Similarly, if ξ0(x) = 0, then ξ
(1)
t (x) ∈ {0, 1, 2, . . . }.

The best that we can say about the iterates is that they lie in Z. Notice however

the iterates satisfy the following inequalities,

1{ξ(n)
t (x) = 1} ≤ |ξ(n)

t (x)|,

1{ξ(n)
t (y) = 1, ξ

(n)
t (x) = 0} ≤ |ξ(n)

t (y)|,

|1{ξ(n)
t (x) = 1} − 1{ξ(n−1)

t (x) = 1}| ≤ |ξ(n)
t (x)− ξ(n−1)

t (x)|,
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|1{ξ(n)
t (y) = 1, ξ

(n)
t (x) = 0} − 1{ξ(n−1)

t (y) = 1, ξ
(n−1)
t (x) = 0}|

≤ |ξ(n)
t (y)− ξ(n−1)

t (y)|+ |ξ(n)
t (x)− ξ(n−1)

t (x)|. (2.3)

The first of these inequalities is clear. The indicator is only ever 1 if ξ
(n)
t (x) also takes

the value 1, in which case there is equality. There is also equality if ξ
(n)
t (x) = 0. If

ξ
(n)
t (x) takes any other integer value, the indicator is 0 and ξ

(n)
t (x) is strictly greater

than 0 in modulus. The second inequality is also immediate. For the third, there

will be equality if both ξ
(n)
t (x) and ξ

(n−1)
t (x) take values that agree and both sides of

the inequality will vanish. If their values do not coincide the left hand side will be at

most 1, being the difference of indicator functions, while the right hand side will be

at least 1, being the difference of distinct integer values, hence the third inequality

is shown. The final inequality is similar, the left hand side is once again no larger

than 1. In the worst case scenario that the left hand side is 1, it must be the case

that one indicator achieves the value 1 while the other vanishes. If, without loss

of generality, it is the second indicator that vanishes. Suppose that this indicator

vanishes because exactly one of the arguments of the indicator fails, then the right

hand side of the inequality is at least one since one or other of the summands on the

right hand side is the dfference of distinct integers. If the indicator vanishes because

both events fail then the right hand side is at least 2, since both summands in the

right hand side are the difference of distinct integers. If both indicators vanish, or

neither, the worst case for the right hand side is that both summands also vanish,

otherwise the right hand side is strictly larger than 0. We will need to make use of

these together with the following inequality for positive f : Zd → R,

∑
x

e−θ|x|
∑
y:y∼x

f(y) =
∑
y

f(y)
∑
x∼y

e−θ|x|

=
∑
y

f(y)e−θ|y|
∑
x∼y

eθ(|y|−|x|)

≤
∑
y

f(y)e−θ|y|
∑
x∼y

eθ(|y−x|)

= 2deθ
∑
x

f(x)e−θ|x| (2.4)
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where the inequality on the third line is by the reverse triangle inequality since

θ > 0, We split the proof into several steps, the structure of which follows from [10].

Step 1 We aim to show that

sup
t∈[0,T ]

E

[∑
x

e−θ|x|ξ
(n)
t (x)2

]
<∞.

For an induction argument, assume

sup
t∈[0,T ]

E

[∑
x

e−θ|x|ξ
(n−1)
t (x)2

]
<∞,

the base case is satisfied by the initial condition. Compensating the Poisson pro-

cesses in the expression for the nth iterate

ξ
(n)
t (x) = ξ0(x) +

∑
y∼x

∫ t

0
1{ξ(n−1)

s− (y) = 1, ξ
(n−1)
s− (x) = 0}d

(
Ps(y, x)− s

2d

)
+

1

2d

∑
y∼x

∫ t

0
1{ξ(n−1)

s (y) = 1, ξ(n−1)
s (x) = 0}ds

+
∑
y∼x

∫ t

0
1{ξ(n−1)

s− (x) = 1}d
(
Ps(x, y)− s

2d

)
+

∫ t

0
1{ξ(n−1)

s (x) = 1}ds

=:

5∑
i=1

Ii(t, x)

where the ith term in the final line is defined by the ith term in the right hand side of

the equality with ξ
(n)
t (x). We can expand the square of this by the Cauchy-Schwarz

inequality to give

ξ
(n)
t (x)2 ≤ 5

5∑
i=1

I2
i (t, x). (2.5)
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We will estimate each of the I2
i individually in expectation.

E
[
I2

2

]
= E

(∑
y∼x

∫ t

0
1{ξ(n−1)

s− (y) = 1, ξ
(n−1)
s− (x) = 0}d

(
Ps(y, x)− s

2d

))2
 .

Expanding the square gives many cross terms that vanish in expectation due to the

independence of the Poisson processes, therefore we may extract the sum over the

neighbours of x

E
[
I2

2

]
=
∑
y∼x

E

[(∫ t

0
1{ξ(n−1)

s− (y) = 1, ξ
(n−1)
s− (x) = 0}d

(
Ps(y, x)− s

2d

))2
]
.

The Itô isometry then gives

E
[
I2

2

]
=

1

2d

∑
y∼x

E
[∫ t

0
1{ξ(n−1)

s (y) = 1, ξ(n−1)
s (x) = 0}ds

]

≤ 1

2d

∑
y∼x

E
[∫ t

0
1{ξ(n−1)

s (y) = 1}ds
]

≤ 1

2d

∑
y∼x

E
[∫ t

0
|ξ(n−1)
s (y)|ds

]

≤ 1

2d

∑
y∼x

E
[∫ t

0
ξ(n−1)
s (y)2ds

]
.

It can be seen immediately that I4 satisfies the similar bound of

E
[
I2

4

]
≤ E

[∫ t

0
ξ(n−1)
s (x)2ds

]
. (2.6)

Turning our attention to I3

E
[
I2

3

]
=

1

(2d)2
E

(∑
y∼x

∫ t

0
1{ξ(n−1)

s (y) = 1, ξ(n−1)
s (x) = 0}ds

)2
 .

The Cauchy-Schwarz inequality applied to the sum over y and also to the integral
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gives the upper bound

E
[
I2

3

]
≤ t

2d
E

[∑
y∼x

∫ t

0
1{ξ(n−1)

s (y) = 1, ξ(n−1)
s (x) = 0}ds

]

≤ t

2d
E

[∑
y∼x

∫ t

0
1{ξ(n−1)

s (y) = 1}ds

]

≤ t

2d
E

[∑
y∼x

∫ t

0
ξ(n−1)
s (y)2ds

]
.

Once again, it is clear that we have

E
[
I2

5

]
≤ tE

[∫ t

0
ξ(n−1)
s (x)2ds

]
. (2.7)

By multiplying by the e−θ|x|, summing over x ∈ Zd and using (2.4) we find that

E

[∑
x

e−θ|x|(I2
2 + I2

4 )

]
≤ (1 + t)eθE

[∫ t

0
ξ(n−1)
s (x)2ds

]
. (2.8)

Returning to (2.5), multiplying by e−θ|x|, summing and substituting (2.6),(2.7) and

(2.8) gives for each t ∈ [0, T ]

E

[∑
x

e−θ|x|ξ
(n)
t (x)2

]
≤ 5E

[∑
x

e−θ|x|ξ0(x)2

]

+ 5(1 + eθ)(1 + t)E

[∑
x

e−θ|x|
∫ t

0
ξ(n−1)
s (x)2ds

]

which is finite by assumption. By the principle of mathematical induction the

moments are finite for all n. Taking supremum over t ∈ [0, T ] gives

sup
t∈[0,T ]

E

[∑
x

e−θ|x|ξ
(n)
t (x)2

]
≤ Cθ,ξ0

+ 5(1 + eθ)(1 + T )E

[∑
x

e−θ|x|
∫ T

0
ξ(n−1)
s (x)2ds

]
<∞.

Step 2 With finite second moments established, we show that there exists
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constants C,L such that

E

[∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|2
]
≤ C(Lt)n

n!
.

That the left hand side is finite follows from the Cauchy-Schwarz inequality and

Step 1. For t ∈ [0, T ], Cauchy-Schwarz gives

E

 ∑
|x|≤N

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|2


≤ 4E
[ ∑
|x|≤N

e−θ|x|
∣∣∣∣ ∫ t

0

∑
y∼x

(
1{ξ(n)

s− (y) = 1, ξ
(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}

)
d
(
Ps(y, x)− s

2d

) ∣∣∣∣2]
+

4

(2d)2
E
[ ∑
|x|≤N

e−θ|x|
∣∣∣∣ ∫ t

0

∑
y∼x

(
1{ξ(n)

s (y) = 1, ξ(n)
s (x) = 0}

− 1{ξ(n−1)
s (y) = 1, ξ(n−1)

s (x) = 0}
)
ds

∣∣∣∣2]
+ 4E

[ ∑
|x|≤N

e−θ|x|
∣∣∣∣ ∫ t

0

∑
y∼x

(
1{ξ(n)

s− (x) = 1}

− 1{ξ(n−1)
s− (x) = 1}

)
d
(
Ps(x, y)− s

2d

) ∣∣∣∣2]

+ 4E

 ∑
|x|≤N

e−θ|x|
∣∣∣∣∫ t

0

(
1{ξ(n)

s (x) = 1} − 1{ξ(n−1)
s (x) = 1}

)
ds

∣∣∣∣2


=: I + II + III + IV (2.9)

when the Roman numerals represent each of the terms coming before them in order.
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We will bound each of the terms. The first can be bounded as follows

I = 4E
[ ∑
|x|≤N

e−θ|x|
∣∣∣∣ ∫ t

0

∑
y∼x

(
1{ξ(n)

s− (y) = 1, ξ
(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}

)
d
(
Ps(y, x)− s

2d

) ∣∣∣∣2]
= 4E

[ ∑
|x|≤N

e−θ|x|
∑
y∼x

∣∣∣∣ ∫ t

0

(
1{ξ(n)

s− (y) = 1, ξ
(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}

)
d
(
Ps(y, x)− s

2d

) ∣∣∣∣2]
≤ 8

2d
E
[ ∑
|x|≤N

e−θ|x|
∑
y∼x

∫ t

0

( ∣∣∣ξ(n)
s (y)− ξ(n−1)

s (y)
∣∣∣2

+
∣∣∣ξ(n)
s (x)− ξ(n−1)

s (x)
∣∣∣2)ds]

≤ 8(1 + eθ)E

[∑
x

e−θ|x|
∫ t

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds] (2.10)

where the first equality is definition, the second equality is by expanding the quadratic

and losing the cross terms in expectation, the first inequality is a use of the Itô isom-

etry and then the inequality for the indicators given in (2.3), and the final inequality

is from (2.4) and also by including in the sum |x| > N . III is similar but easier

III ≤ 4E

[∑
x

e−θ|x|
∫ t

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds] . (2.11)
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Estimating II,

II ≤ 4t

2d
E
[∑

x

e−θ|x|
∑
y∼x

∫ t

0

∣∣1{ξ(n)
s− (y) = 1, ξ

(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}

∣∣2ds]
≤ 8t

2d
E
[∑

x

e−θ|x|
∑
y∼x

∫ t

0

(∣∣ξ(n)
s (y)− ξ(n−1)

s (y)
∣∣2

+
∣∣ξ(n)
s (x)− ξ(n−1)

s (x)
∣∣2)ds]

≤ 8(1 + eθ)tE

[∑
x

e−θ|x|
∫ t

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds] (2.12)

where we have used two applications of Cauchy-Schwarz, firstly on the integral,

secondly on the sum and then we have included the x with |x| > N . IV is similar

but easier.

IV ≤ 4tE

[∑
x

e−θ|x|
∫ t

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds] . (2.13)

Gathering all of the bounds for I − IV in equations (2.10) through (2.13) and

substituting them into (2.9) for t ∈ [0, T ]

E

 ∑
{|x|≤N}

e−θ|x|
∣∣∣ξ(n+1)
t (x)− ξ(n)

t (x)
∣∣∣2


≤ 4(1 + T )(3 + 2eθ)E

[∑
x

e−θ|x|
∫ t

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds] .

Let N →∞ and set L = 4(1 + T )(3 + 2eθ) and C = supt∈[0,T ] E[
∑

x e
−θ|x||ξ(1)

t (x)−

ξ
(0)
t (x)|2] which is finite by Step 1. Then

E

[∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|2
]
≤ C(Lt)n

n!
.
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This follows by induction:

E

[∑
x

e−θ|x||ξ(2)
t (x)− ξ(1)

t (x)|2
]

≤ L
∫ t

0
E

[∑
x

e−θ|x|
∣∣ξ(1)
s (x)− ξ(0)

s (x)
∣∣2] ds

≤ CLt

and if

E

[∑
x

e−θ|x||ξ(n)
t (x)− ξ(n−1)

t (x)|2
]
≤ C(Lt)n−1

(n− 1)!

then

E

[∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|2
]

≤ L
∫ t

0
E

[∑
x

e−θ|x|
∣∣ξ(n)
s (x)− ξ(n−1)

s (x)
∣∣2] ds

≤ L
∫ t

0

C(Ls)n−1

(n− 1)!
ds

=
C(Lt)n

n!
.

Step 3 Next we show that

E

( sup
t∈[0,T ]

∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|

)2
 ≤ CθC(LT )n

n!

where C,L are as before and Cθ =
∑

x e
−θ|x|. We take the supremum over t ∈ [0, T ]

of the difference in absolute value of successive iterates, and we exploit the increasing
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sample paths of Poisson processes.

sup
t∈[0,T ]

|ξ(n+1)
t (x)− ξ(n)

t (x)|

≤ sup
t∈[0,T ]

∑
y∼x

∫ t

0

∣∣1{ξ(n)
s− (y) = 1, ξ

(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}

∣∣dPs(y, x)

+ sup
t∈[0,T ]

∑
y∼x

∫ t

0

∣∣1{ξ(n)
s− (x) = 1} − 1{ξ(n−1)

s− (x) = 1}
∣∣dPs(x, y)

=
∑
y∼x

∫ T

0
|1{ξ(n)

s− (y) = 1, ξ
(n)
s− (x) = 0}

− 1{ξ(n−1)
s− (y) = 1, ξ

(n−1)
s− (x) = 0}|dPs(y, x)

+
∑
y∼x

∫ T

0
|1{ξ(n)

s− (x) = 1} − 1{ξ(n−1)
s− (x) = 1}|dPs(x, y)

≤
∑
y∼x

∫ T

0
|ξ(n)
s− (y)− ξ(n−1)

s− (y)|+ |ξ(n)
s− (x)− ξ(n−1)

s− (x)|dPs(y, x)

+
∑
y∼x

∫ T

0
|ξ(n)
s− (x)− ξ(n−1)

s− (x)|dPs(x, y)

=
∑
y∼x

∫ T

0

(
|ξ(n)
s− (y)− ξ(n−1)

s− (y)|

+ |ξ(n)
s− (x)− ξ(n−1)

s− (x)|
)
d
(
Ps(y, x)− s

2d

)
+

1

2d

∑
y∼x

∫ T

0

(
|ξ(n)
s (y)− ξ(n−1)

s (y)|+ |ξ(n)
s (x)− ξ(n−1)

s (x)|
)
ds

+
∑
y∼x

∫ T

0
|ξ(n)
s− (x)− ξ(n−1)

s− (x)|d
(
Ps(x, y)− s

2d

)
+

1

2d

∑
y∼x

∫ T

0
|ξ(n)
s (x)− ξ(n−1)

s (x)|ds.

Then, by Cauchy-Schwarz twice, (writing e−θ|x| = e−θ|x|/2e−θ|x|/2 in the first in-
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equality)

E

( sup
t∈[0,T ]

∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|

)2


≤ CθE

∑
x

e−θ|x|

(
sup
t∈[0,T ]

|ξ(n+1)
t (x)− ξ(n)

t (x)|

)2


≤ 4CθE
[∑

x

e−θ|x|
(∑
y∼x

∫ T

0

(
|ξ(n)
s (y)− ξ(n−1)

s (y)|

+ |ξ(n)
s (x)− ξ(n−1)

s (x)|
)
d
(
Ps(y, x)− s

2d

))2]
+

4Cθ
(2d)2

E
[∑

x

e−θ|x|
(∑
y∼x

∫ T

0

(
|ξ(n)
s (y)− ξ(n−1)

s (y)|

+ |ξ(n)
s (x)− ξ(n−1)

s (x)|
)
ds

)2]

+ 4CθE

∑
x

e−θ|x|

(∑
y∼x

∫ T

0
|ξ(n)
s− (x)− ξ(n−1)

s− (x)|d
(
Ps(x, y)− s

2d

))2


+
4Cθ

(2d)2
E

∑
x

e−θ|x|

(∑
y∼x

∫ T

0
|ξ(n)
s (x)− ξ(n−1)

s (x)|ds

)2
 .

A repeat of calculations we have already seen gives

E

( sup
t∈[0,T ]

∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)|

)2


≤ CθLE

[∑
x

e−θ|x|
∫ T

0

∣∣ξ(n−1)
s (x)− ξ(n)

s (x)
∣∣2ds]

≤ CθL
∫ T

0

C(Ls)n−1

(n− 1)!
ds

≤ Cθ
C(LT )n

n!

which concludes Step 3.

Step 4 Markov’s inequality implies that

sup
t∈[0,T ]

∑
x

e−θ|x||ξ(n+1)
t (x)− ξ(n)

t (x)| ≤ 1

n2

30



almost surely for large n. This in turn implies that

∑
x

e−θ|x|ξ
(n)
t (x) =

∑
x

e−θ|x|

(
ξ0(x) +

n∑
k=1

(ξ
(k)
t (x)− ξ(k−1)

t (x))

)

=
∑
x

e−θ|x|ξ0(x) +
∑
x

e−θ|x|
n∑
k=1

(ξ
(k)
t (x)− ξ(k−1)

t (x))

=
∑
x

e−θ|x|ξ0(x) +

n∑
k=1

∑
x

e−θ|x|(ξ
(k)
t (x)− ξ(k−1)

t (x))

converges almost surely uniformly in t ∈ [0, T ]. Let ξt(x) = limn→∞ ξ
(n)
t (x). Now,

∣∣∣∣ ∫ t

0

∑
y∼x

1{ξ(n)
s− (y) = 1, ξ

(n)
s− (x) = 0}dPs(y, x)

−
∫ t

0

∑
y∼x

1{ξs−(y) = 1, ξs−(x) = 0}dPs(y, x)

∣∣∣∣
≤
∫ t

0

∑
y∼x

∣∣∣∣1{ξ(n)
s− (y) = 1, ξ

(n)
s− (x) = 0}

− 1{ξs−(y) = 1, ξs−(x) = 0}
∣∣∣∣dPs(y, x)

≤
∫ t

0

∑
y∼x

∣∣∣ξ(n)
s− (y)− ξs−(y)

∣∣∣+
∣∣∣ξ(n)
s− (x)− ξs−(x)

∣∣∣ dPs(y, x)→ 0

as n→∞ and similarly

∣∣∣∣ ∫ t

0

∑
y∼x

1{ξ(n)
s− (x) = 1}dPs(x, y)−

∫ t

0

∑
y∼x

1{ξs−(x) = 1}dPs(x, y)

∣∣∣∣
≤
∫ t

0

∑
y∼x

∣∣∣ξ(n)
s− (x)− ξs−(x)

∣∣∣ dPs(x, y)→ 0

so that taking limits in (2.2) implies that the limit ξt(x) is a solution to (2.1).

Step 5 Uniqueness amongst the class of processes satisfying

sup
t∈[0,T ]

E

[∑
x

e−θ|x|ξt(x)2

]
<∞

is implied by Grönwall’s inequality. Let (ξt) and (ηt) be two solutions satisfying the
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finite second moment condition. Indeed, the previous calculations can be repeated

and give

E

[∑
x

e−θ|x||ξt(x)− ηt(x)|2
]
≤ 4(1 + t)(3 + 2eθ)E

[∑
x

e−θ|x|
∫ t

0

∣∣ξs(x)− ηs(x)
∣∣2ds] .

This implies ξt ≡ ηt for each t almost surely. Since the solutions have càdlàg paths,

it follows that they are identically equal for all times simultaneously.

2.2 The Non-Instantaneous Regime

Integrating (1.6) gives

ξt(x) = ξ0(x) +

∫ t

0

∑
y:y∼x

∑
i≥1

(
1{ξs−(y) ≥ i}dPs(i, y, x) (2.14)

− 1{ξs−(x) ≥ i}dPs(i, x, y)

)
−
∫ t

0

∑
i,j≥1

1

(
ξs−(x) ≥ i ∨ j, i 6= j

)
dP cs (i, j, x).

We are interested in proving existence and uniqueness for this equation. We need

to know that the Poisson sums converge since in each of them there infinitely many

summands. To establish that the Poisson sums converge, we will instead consider a

“finitely reactive” model satisfying the modified SDE

ξ
(m)
t (x) = ξ0(x) +

∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (x) < m}dPs(i, y, x)

− 1{ξ(m)
s− (x) ≥ i}dPs(i, x, y)

)
−
∫ t

0

m∑
i,j=1

1

(
ξ

(m)
s− (x) ≥ i ∨ j, i 6= j

)
dP cs (i, j, x). (2.15)

Here, we start we the same initial spread of particles (having enough finite moments,

which will be quantified later) but only the first m particles at x or one of its

neighbours has the chance to react. The process ξ
(m)
t (x) records the total number
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of particles at x at time t (even if this is larger than m). However, notice that if

the particle number at x ever drops beneath m then it will never exceed m since

whenever ξ
(m)
· (m) = m the only Poisson processes that can increase the particle

number vanish. In particular, if ξ0(x) ≤ m, then ξ
(m)
t (x) will, almost surely, never

exceed m. Also, note that, while in the infinite system (ξt(x))x∈Zd governed by

(2.14) there are no incidents of instantaneous coalescence. Any particle that walks

to x at time t almost surely increases the number of particles by 1. The situation

is slightly different for the system (ξ
(m)
t (x))x∈Zd . Consider x with ξ

(m)
t (x) = m and

a neighbour w ∼ x such that ξ
(m)
t (w) > 0. Then if any of the Poisson processes

Pt(i, w, x) for i ∈ {1, . . . , ξ(m)
t (w)} reacts, then there is a loss of a particle at w, while

there is no increase of the number at x because the indicator attached to Pt(i, w, x)

vanishes. In a sense, the particle arriving at x from w has instantaneously coalesced

with one of the m at x. We aim to show that there exists a unique solution to (2.15)

and then that this “finitely reactive” model converges to our infinite model so that a

solution to the infinite model arises as the limit of the solutions to successive finitely

modified models. The effect of the instantaneously coalescing particles will be lost

in this limit. It will then remain to show that the solution that arises in this fashion

is the only solution in amongst a certain class of processes.

Proposition 2.2.1. Let ξ0 ∈ NZd be an initial distribution of particles independent

of the driving Poisson processes satisfying E
[∑

x e
−θ|x|ξ2

0(x)
]
< ∞ for any θ ≥ 0,

then for each m, there exists a unique solution to (2.15) and the solution satisfies

sup
t∈[0,T ]

E

[∑
x

e−θ|x||ξ(m)
t (x)|2

]
<∞.

Lemma 2.2.2. Fix p ≥ 1 and let ξ0 ∈ NZd be an initial condition satisfying

E
[∑

x e
−θ|x||ξ0(x)|p

]
< ∞ for all θ > 0. Let ξ

(m)
t be the solution to (2.15) with

initial condition ξ0 then

E

[(
sup
t∈[0,T ]

∑
x

e−θ|x||ξ(m)
t (x)|

)p]
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is finite and bounded uniformly in m.

Refer to Section A of the Appendix for the proofs of the two previous results.

Theorem 2.2.3. Let ξ0 ∈ NZd satisfy E
[∑

x e
−θ|x||ξ0(x)|2

]
<∞ for all θ > 0. The

sequence of solutions (ξ
(m)
t (x))m to (2.15) converge to an adapted càdlàg process

ξt(x) that is a solution to (2.14). Furthermore, amongst the class of processes that

satisfy {η : supt∈[0,T ] E
[∑

x e
−θ|x||ηt(x)|2

]
<∞ for all θ > 0}, the solution to (2.14)

is unique.

Proof. We will show that ξ
(m)
t (x) forms a Cauchy sequence. Letm > k. Our strategy

will be to derive a Grönwall inequality that will control the sum
∑

x e
−θ|x||ξ(m)

t (x)−

ξ
(k)
t (x)|2 for large k. There are a large number of terms that arise in the difference.

We cannot proceed immediately since one of the terms that contributes to the

integrand of the Grönwall inequality is a non-linear function of
∑

x e
−θ|x||ξ(m)

s (x)−

ξ
(k)
s (x)|2 and the Grönwall Lemma does not produce a bound that vanishes in any

sensible way. Instead, we split the sum at x ∈ {z : |z| ≤ N} = BN . The benefit

of this is that for such x, we can take k > max|x|≤N ξ0(x) (this max is almost

surely finite by the moment conditions the initial condition satisfies) whereupon it

is necessarily true that ξ
(m)
t (x) ≥ ξ(k)

t (x) for all t almost surely.

To see this, looking at (2.15) it is clear that, almost surely, the particle

number at x can only increase if there are fewer than m particles already occupying

x by the presence of the indicator 1{ξ(m)
s− (y) ≥ i, ξ

(m)
s− (x) < m}. The only way that

there can be more than m particles at x is if there were more than m particles at

x at time 0. If this is the case, the particle number can only drop until it first dips

beneath m, in which case it could then potentially take on more particles, but only

up to m. In this way, so long as there are fewer than m particles at x at time 0,

the particle number will, almost surely never exceed m. Similarly, if there are fewer

particles than k at x at time 0, ξ
(k)
t (x) will almost surely not exceed k. Since ξ

(m)
t (x)

and ξ
(k)
t (x) are run from the same initial condition, taking k > max|x|≤N ξ0(x)

means that their dynamics are the same (and so ξ
(m)
t (x) = ξ

(k)
t (x)) up until the

first time that they take on the value k. If at this point there is a neighbour w ∼ x
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such that ξ
(m)
t (w), ξ

(k)
t (w) > 0, and any of the Poisson processes Pt(i, w, x) for

i ∈ {1, . . . , ξ(m)
t (w) ∧ ξ(k)

t (w)} reacts, then there is a loss of a particle at w in both

systems ξ
(m)
t , ξ

(k)
t but only a gain of a particle at x in the ξ

(m)
t system. Beyond this

time it is the case that ξ
(m)
t (x) ≥ ξ(k)

t (x).

This will allow us to throwaway the term that causes us to have a non-linear

Grönwall inequality (as well as many other terms). The sum over x /∈ BN will not

contribute to the integrand in the Grönwall inequality and will make up the error

the results from the Grönwall Lemma and will vanish due to the uniform moment

bounds given by Lemma 2.2.2.

As such fix N and let k > max|x|≤N ξ0(x). Then for x ∈ BN

0 ≤ξ(m)
t (x)− ξ(k)

t (x)

=
∑
y∼x

k∑
i=1

∫ t

0
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (y) < m} − 1{ξ(k)

s− (y) ≥ i, ξ(k)
s− (x) < k}

× dPs(i, y, x)

+
∑
y∼x

m∑
i=k+1

∫ t

0
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (x) < m}dPs(i, y, x)

−
∑
y∼x

k∑
i=1

∫ t

0
1{ξ(m)

s− (x) ≥ i} − 1{ξ(k)
s− (x) ≥ i}︸ ︷︷ ︸

≥0

dPs(i, x, y)

−
∑
y∼x

m∑
i=k+1

∫ t

0
1{ξ(m)

s− (x) ≥ i}dPs(i, x, y)

−
k∑

i,j=1

∫ t

0
1{ξ(m)

s− (x) ≥ i ∨ j, i 6= j} − 1{ξ(k)
s− (x) ≥ i ∨ j, i 6= j}︸ ︷︷ ︸

≥0

× dP cs (i, j, x)

−
m∑

i=k+1

k∑
j=1

∫ t

0
1{ξ(m)

s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
k∑
i=1

m∑
j=k+1

∫ t

0
1{ξ(m)

s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
m∑

i,j=k+1

∫ t

0
1{ξ(m)

s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x).
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So for x ∈ BN ,

0 ≤ξ(m)
t (x)− ξ(k)

t (x)

≤
∑
y∼x

k∑
i=1

∫ t

0
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (y) < m} − 1{ξ(k)

s− (y) ≥ i, ξ(k)
s− (x) < k}

× dPs(i, y, x)

+
∑
y∼x

m∑
i=k+1

∫ t

0
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (x) < m}dPs(i, y, x)

≤
∑
y∼x

k∑
i=1

∫ t

0
1{ξ(m)

s− (y) ≥ i} − 1{ξ(k)
s− (y) ≥ i}dPs(i, y, x)

+
∑
y∼x

k∑
i=1

∫ t

0
1{ξ(k)

s− (y) ≥ i, ξ(k)
s− (x) = k}dPs(i, y, x)

+
∑
y∼x

m∑
i=k+1

∫ t

0
1{ξ(m)

s− (y) ≥ i}dPs(i, y, x)

=

3∑
i=1

Ii.

The Ii each represent (respectfully) the double sums before the last equality.

Since k is random, instead of working with the expectation proper, we need

to condition on the initial condition ξ0. The difference can be estimated by

E

[∑
x

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
∣∣∣∣ξ0

]

= E

 ∑
|x|>N

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
∣∣∣∣ξ0

+ E

 ∑
x∈BN

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
∣∣∣∣ξ0


≤ E

 ∑
|x|>N

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
∣∣∣∣ξ0

+ E

 ∑
x∈BN

e−θ|x|

(
3∑
i=1

Ii

)2 ∣∣∣∣ξ0


≤ E

 ∑
|x|>N

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
∣∣∣∣ξ0

+ 3

3∑
i=1

E

 ∑
x∈BN

e−θ|x|I2
i

∣∣∣∣ξ0

 . (2.16)

Beginning with I1 carrying out all the familiar calculations (squaring, compensating
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the Poisson processes, Cauchy-Schwarz etc.)

I2
1 ≤ 2

∑
y∼x

k∑
i=1

(∫ t

0

∣∣∣1{ξ(m)
s− (y) ≥ i} − 1{ξ(k)

s− (y) ≥ i}
∣∣∣ d(Ps(i, y, x)− s

2d

))2

+
2t

2d

∑
y∼x

∫ t

0

∣∣∣ξ(m)
s (y) ∧ k − ξ(k)

s (y)
∣∣∣2 ds+ c.t.

where in c.t. we have collected the cross terms that result from expanding the square.

Taking conditional expectation gives

E
[
I2

1

∣∣∣∣ξ0

]
≤ 2

∑
y∼x

E

[
k∑
i=1

(∫ t

0

∣∣∣1{ξ(m)
s− (y) ≥ i} − 1{ξ(k)

s− (y) ≥ i}
∣∣∣ d(Ps(i, y, x)− s

2d

))2 ∣∣∣∣ξ0

]

+
2t

2d

∑
y∼x

E
[∫ t

0

∣∣∣ξ(m)
s (y)− ξ(k)

s (y)
∣∣∣2 ds∣∣∣∣ξ0

]
+ E[c.t.|ξ0].

Since the Poisson processes are independent of the initial condition and ξ
(m)
t and

ξ
(k)
t are adapted,

E[c.t.|ξ0] = E[c.t.]

and they vanish in the usual way since the Poisson processes are also independent

of each other for different choices of i and y, and the compensated processes are

martingales. Conditioning on ξ0 gives us information on k by its definition, which

allows us to take out the sum that ranges over i ∈ {1, . . . , k} as known from the

expectation. This gives

E
[
I2

1

∣∣∣∣ξ0

]
≤ 2

∑
y∼x

k∑
i=1

E
[(∫ t

0

∣∣∣1{ξ(m)
s− (y) ≥ i} − 1{ξ(k)

s− (y) ≥ i}
∣∣∣

× d
(
Ps(i, y, x)− s

2d

))2∣∣∣∣ξ0

]
+

2t

2d

∑
y∼x

E
[∫ t

0

∣∣∣ξ(m)
s (y)− ξ(k)

s (y)
∣∣∣2 ds∣∣∣∣ξ0

]
.

Now, we again use that ξ
(m)
t and ξ

(k)
t are adapted and the independence of the Pois-

son processes from the initial condition, use the stability of conditional expectation
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and apply the usual isometry to get

E
[
I2

1

∣∣∣∣ξ0

]
≤ 2(1 + t)

2d

∑
y∼x

∫ t

0

∣∣∣ξ(m)
s (y)− ξ(k)

s (y)
∣∣∣2 ds.

Multiplying by e−θ|x|, summing over x ∈ BN , taking expectation and using the total

law of probability gives

E

 ∑
x∈BN

e−θ|x|I2
1

 ≤ 2(1 + t)

2d
E

∫ t

0

∑
x∈BN

e−θ|x|
∑
y∼x

∣∣∣ξ(m)
s (y)− ξ(k)

s (y)
∣∣∣2 ds


≤ 2(1 + t)

2d
E

[∫ t

0

∑
x

e−θ|x|
∑
y∼x

∣∣∣ξ(m)
s (y)− ξ(k)

s (y)
∣∣∣2 ds]

≤ 2(1 + t)eθE

[∫ t

0

∑
x

e−θ|x|
∣∣∣ξ(m)
s (x)− ξ(k)

s (x)
∣∣∣2 ds] . (2.17)

I3 should not contribute to the main term of |ξ(m)
t (x)− ξ(k)

t (x)| and should be small

as k →∞. We will use the following equality for the square of the sum of indicators.

For integer valued X

(
k∑
i=1

1{X ≥ i}

)2

=
k∑
i=1

(2i− 1)1{X ≥ i}

which follows since for integer valued X and i < j, 1{X ≥ i}1{X ≥ j} = 1{X ≥ j}

and can be proved by induction as follows. The base case with one summand is
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trivial. Suppose it holds for k. Then

(
k+1∑
i=1

1{X ≥ i}

)2

=

(
1{X ≥ k + 1}+

k∑
i=1

1{X ≥ i}

)2

= 1{X ≥ k + 1}+ 21{X ≥ k + 1}
k∑
i=1

1{X ≥ i}+

(
k∑
i=1

1{X ≥ i}

)2

= 1{X ≥ k + 1}+ 2
k∑
i=1

1{X ≥ k + 1}1{X ≥ i}+
k∑
i=1

(2i− 1)1{X ≥ i}

= (2k + 1)1{X ≥ k + 1}+

k∑
i=1

(2i− 1)1{X ≥ i}

=

k+1∑
i=1

(2i− 1)1{X ≥ i}.

Instead of trying to sum the indicators we manipulate I3 so that we can use the

Markov inequality on ξ
(m)
t (x).

I2
3 ≤ 2

∑
y∼x

m∑
i=k+1

(∫ t

0
1{ξ(m)

s− (y) ≥ i}d
(
Ps(i, y, x)− s

2d

))2

+
2t

2d

∑
y∼x

∫ t

0

(
m∑

i=k+1

1{ξ(m)
s (y) ≥ i}

)2

ds+ c.t.

≤ 2
∑
y∼x

m∑
i=k+1

(∫ t

0
1{ξ(m)

s− (y) ≥ i}d
(
Ps(i, y, x)− s

2d

))2

+
4t

2d

∑
y∼x

∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds+ c.t.. (2.18)
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Taking conditional expectation with respect to the initial condition

E
[
I2

3

∣∣∣∣ξ0

]
≤ 2

∑
y∼x

m∑
i=k+1

E

[(∫ t

0
1{ξ(m)

s− (y) ≥ i}d
(
Ps(i, y, x)− s

2d

))2 ∣∣∣∣ξ0

]

+
4t

2d

∑
y∼x

E

[∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds

∣∣∣∣ξ0

]

≤ 2

2d

∑
y∼x

m∑
i=k+1

∫ t

0
1{ξ(m)

s (y) ≥ i}ds

+
4t

2d

∑
y∼x

∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds

≤ 8t

2d

∑
y∼x

∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds.

Multiplying by e−θ|x|, summing over x ∈ BN , taking conditional expectation once

again with respect to the initial condition

E

 ∑
x∈BN

e−θ|x|I2
3

∣∣∣∣ξ0

 ≤ 8t

2d

∑
x∈BN

e−θ|x|
∑
y∼x

E

[∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds

∣∣∣∣ξ0

]

≤ 8t

2d

∑
x

e−θ|x|
∑
y∼x

E

[∫ t

0

m∑
i=k+1

i1{ξ(m)
s (y) ≥ i}ds

∣∣∣∣ξ0

]

≤ 8teθE

[∫ t

0

∑
x

e−θ|x|
m∑

i=k+1

i1{ξ(m)
s (x) ≥ i}ds

∣∣∣∣ξ0

]
. (2.19)

The sum of the indicators can be bounded by as follows
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m∑
i=k+1

i1{ξ(m)
s (x) ≥ i}

≤
m∑

i=k+1

ξ(m)
s (x)1{ξ(m)

s (x) ≥ i}

= ξ(m)
s (x)

m∑
i=1

1{ξ(m)
s (x) ≥ i}1{i ≥ k + 1}

≤ ξ(m)
s (x)1{ξ(m)

s (x) ≥ k + 1}
m∑
i=1

1{ξ(m)
s (x) ≥ i}

≤ ξ(m)
s (x)2

1{ξ(m)
s (x) ≥ k + 1}. (2.20)

Substituting (2.20) into (2.19) gives

E

 ∑
x∈BN

e−θ|x|I2
3

∣∣∣∣ξ0


≤ 8teθE

[∫ t

0

∑
x

e−θ|x|ξ(m)
s (x)2

1{ξ(m)
s (x) ≥ k + 1}ds

∣∣∣∣ξ0

]

≤ 8teθE

∫ t

0

(∑
x

e−θ|x|ξ(m)
s (x)4

) 1
2
(∑

x

e−θ|x|1{ξ(m)
s (x) ≥ k + 1}

) 1
2

ds

∣∣∣∣ξ0


≤ 8teθE

∫ t

0

(∑
x

e−
θ|x|
2 ξ(m)

s (x)2

)(∑
x

e−θ|x|1{ξ(m)
s (x) ≥ k + 1}

) 1
2

ds

∣∣∣∣ξ0

 .

41



Let τR,θ/2 = inf
{
s > 0:

∑
x e
− θ|x|

2 ξ
(m)
s (x)2 > R

}
. Then

E

 ∑
x∈BN

e−θ|x|I2
3 (t ∧ τR,θ/2)

∣∣∣∣ξ0


≤ 8teθE

∫ t∧τR,θ/2

0

(∑
x

e−
θ|x|
2 ξ(m)

s (x)2

)(∑
x

e−θ|x|1{ξ(m)
s (x) ≥ k + 1}

) 1
2

ds

∣∣∣∣ξ0


≤ 8teθRE

∫ t

0

(∑
x

e−θ|x|1{ξ(m)
s (x) ≥ k + 1}

) 1
2

ds

∣∣∣∣ξ0


≤ 8teθR

∫ t

0

(∑
x

e−θ|x|P[ξ(m)
s (x) ≥ k + 1|ξ0]

) 1
2

ds.

The final inequality is the Jensen inequality. The Markov inequality and stability

of conditional expectation gives

E

 ∑
x∈BN

e−θ|x|I2
3 (t ∧ τR,θ/2)

∣∣∣∣ξ0


≤ 8teθR

∫ t

0

(∑
x

e−θ|x|
ξ

(m)
s (x)2

k + 1

) 1
2

ds.

Taking expectation, using the total law of probability and Jensen’s inequality once

more gives

E

 ∑
x∈BN

e−θ|x|I2
3 (t ∧ τR,θ/2)


≤ 8teθR

∫ t

0

(∑
x

e−θ|x|E

[
ξ

(m)
s (x)2

k + 1

]) 1
2

ds. (2.21)

Notice, by bounding k + 1 > 1 we can see that the expression given by (2.21) is

bounded above by a constant only depending on t, θ, R, due to the uniform moment
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conditions satisfied by ξ
(m)
s (x). Hence, the bounded convergence theorem gives that

E

 ∑
x∈BN

e−θ|x|I2
3 (t ∧ τR,θ/2)

→ 0 (2.22)

as k →∞. Finally,

E[I2
2 |ξ0] ≤ 2

2d

∑
y∼x

k∑
i=1

E
[∫ t

0
1{ξ(k)

s− (y) ≥ i, ξ(k)
s− (x) = k}ds

∣∣∣∣ξ0

]

+
2t

2d

∑
y∼x

E

∫ t

0

(
k∑
i=1

1{ξ(k)
s (y) ≥ i, ξ(k)

s (x) = k}

)2

ds

∣∣∣∣ξ0


≤ 2(1 + 2t)

2d

∑
y∼x

E

[∫ t

0

k∑
i=1

i1{ξ(k)
s (y) ≥ i, ξ(k)

s (x) = k}ds
∣∣∣∣ξ0

]
. (2.23)

Bounding the sum of the indicators by ξ
(k)
s (y)2

1{ξ(k)
s (x) = k} and summing over

x ∈ BN gives

E

 ∑
x∈BN

e−θ|x|I2
2

∣∣∣∣ξ0


≤ 2(1 + 2t)

2d
E

∫ t

0

∑
x∈BN

e−θ|x|1{ξ(k)
s (x) = k}

∑
y∼x

ξ(k)
s (y)2ds

∣∣∣∣ξ0


≤ 2(1 + 2t)

2d
E

[∫ t

0

∑
x

e−θ|x|1{ξ(k)
s (x) = k}

∑
y∼x

ξ(k)
s (y)2ds

∣∣∣∣ξ0

]

≤ 2(1 + 2t)

2d
E

∫ t

0

(∑
x

e−θ|x|1{ξ(k)
s (x) = k}

) 1
2

∑
x

e−θ|x|

(∑
y∼x

ξ(k)
s (y)2

)2
 1

2

ds

∣∣∣∣ξ0


≤ 2(1 + 2t)

2d
E

∫ t

0

(∑
x

e−θ|x|1{ξ(k)
s (x) = k}

) 1
2
(

2d
∑
x

e−θ|x|
∑
y∼x

ξ(k)
s (y)4

) 1
2

ds

∣∣∣∣ξ0


≤ 2(1 + 2t)

2d
E

∫ t

0

(∑
x

e−θ|x|1{ξ(k)
s (x) = k}

) 1
2
(

(2d)2eθ
∑
x

e−θ|x|ξ(k)
s (x)4

) 1
2

ds

∣∣∣∣ξ0


≤ 2(1 + 2t)e

θ
2E

∫ t

0

(∑
x

e−θ|x|1{ξ(k)
s (x) = k}

) 1
2
(∑

x

e−
θ|x|
2 ξ(k)

s (x)2

)
ds

∣∣∣∣ξ0

 .
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Reintroducing τR,θ we find

E

 ∑
x∈BN

e−θ|x|I2
2 (t ∧ τR,θ/2)

∣∣∣∣ξ0


≤ 2(1 + 2t)e

θ
2E

∫ t∧τR,θ/2

0

(∑
x

e−θ|x|1{ξ(k)
s (x) = k}

) 1
2
(∑

x

e−
θ|x|
2 ξ(k)

s (x)2

)
ds

∣∣∣∣ξ0


≤ 2(1 + 2t)e

θ
2R

∫ t

0

(∑
x

e−θ|x|P[ξ(k)
s (x) = k|ξ0]

) 1
2

ds.

Again, the final inequality is the Jensen inequality and by the Markov inequality

once again

E

 ∑
x∈BN

e−θ|x|I2
2 (t ∧ τR,θ/2)

∣∣∣∣ξ0


≤ 2(1 + 2t)e

θ
2R

∫ t

0

(∑
x

e−θ|x|
ξ

(k)
s (x)2

k

) 1
2

ds.

Taking expectation and using Jensen’s inequality gives

E

 ∑
x∈BN

e−θ|x|I2
2 (t ∧ τR,θ/2)


≤ 2(1 + 2t)e

θ
2R

∫ t

0

(∑
x

e−θ|x|E

[
ξ

(k)
s (x)2

k

]) 1
2

ds (2.24)

and similarly bounding k ≥ 1 allows us to justify that

E

 ∑
x∈BN

e−θ|x|I2
2 (t ∧ τR,θ/2)

→ 0 (2.25)

as k → ∞. Returning to (2.16) evaluated at t ∧ τR,θ/2, taking expectation, using

the total law of probability and substituting (2.17), (2.21) and (2.24), but collecting

(2.21) and (2.24) into Ek(t, θ, R) a term that almost surely tend to 0 as k → ∞ by
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(2.22) and (2.25), gives

E

[∑
x

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2
]

≤ E

 ∑
|x|>N

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2
+ 3

3∑
i=1

E

 ∑
x∈BN

e−θ|x|I2
i (t ∧ τR,θ/2)


≤ E

 ∑
|x|>N

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2


+ 3Ek(t, θ, R) + 6(1 + t)eθE

[∫ t∧τR,θ/2

0

∑
x

e−θ|x|
∣∣∣ξ(m)
s (x)− ξ(k)

s (x)
∣∣∣2 ds] .

Grönwall’s inequality now implies that for each R > 0

E

[∑
x

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2
]

≤

E

 ∑
|x|>N

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2
+ 3Ek(t, θ, R)

 e6(1+t)eθt.

Since t ∧ τR,θ/2 ≤ t for any R, Lemma 2.2.2 gives bounds on

E

[∑
x

e−θ|x|
(
|ξ(m)
t∧τR,θ/2(x)|2 + |ξ(k)

t∧τR,θ/2(x)|2
)]

uniform in R, k and m. Hence, for any ε > 0 we can choose N independent of R

such that

E

 ∑
|x|>N

e−θ|x||ξ(m)
t∧τR,θ/2(x)− ξ(k)

t∧τR,θ/2(x)|2
 < ε

2e6(1+t)eθt
.

Lemma 2.2.2 also implies that τθ/2,R →∞ as R→∞. Therefore, for any t there is

a ρ such that R > ρ gives τθ/2,R > t so that ξt∧τθ/2,R(x) = ξt(x). In particular, for

R = ρ+ 1

E

[∑
x

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
]
≤
(

ε

2e6(1+t)eθt
+ Ek(t, θ, ρ+ 1)

)
e6(1+t)eθt.

45



Finally, choosing k > max|x|≤N ξ0(x) (such k almost surely exist) large enough

implies

Ek(t, θ, ρ+ 1) <
ε

2e6(1+t)eθt

in turn implying that

E

[∑
x

e−θ|x||ξ(m)
t (x)− ξ(k)

t (x)|2
]
< ε

and so (ξ
(m)
t (x))m is a Cauchy sequence. Let ξt(x) = limm→∞ ξ

(m)
t (x). Then, since

the bound (A.13) (with p = 2) is independent of m, taking limits shows

E

[∑
x

e−θ|x|ξt(x)2

]
≤
∑
x

e−θ|x|E
[
ξ0(x)2

]
e4t. (2.26)

We will now show that this limit is indeed a solution to (2.14). In order to do

this, take n > m and ξ
(m)
t (x) to be the solution to (2.15). Consider the difference of

the corresponding first integrals of (2.14) and (2.15), with the infinite sum truncated

at n

∣∣∣∣ ∫ t

0

∑
y∼x

n∑
i=1

1{ξs−(y) ≥ i}dPs(i, y, x)

−
∫ t

0

∑
y∼x

m∑
i=1

1{ξ(m)
s− (y) ≥ i, ξ(m)

s− (x) < m}dPs(i, y, x)

∣∣∣∣
≤
∫ t

0

∑
y∼x

m∑
i=1

∣∣∣1{ξs−(y) ≥ i} − 1{ξ(m)
s− (y) ≥ i}

∣∣∣ dPs(i, y, x)

+

∫ t

0

∑
y∼x

m∑
i=1

∣∣∣1{ξ(m)
s− (y) ≥ i, ξ(m)

s− (x) = m}
∣∣∣ dPs(i, y, x)

+

∫ t

0

∑
y∼x

n∑
i=m+1

1{ξs−(y) ≥ i}dPs(i, y, x).

By squaring and using Cauchy-Schwarz, we may treat each term individually. The

second term will vanish in expectation in calculations analogous to equations (2.23)
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through (2.24). And the last term will vanish because of the second moment bound

(2.26) and a calculation analogous to (2.18) through (2.21) that is uniform in n. As

for the first term

E

(∫ t

0

∑
y∼x

m∑
i=1

∣∣∣1{ξs−(y) ≥ i} − 1{ξ(m)
s− (y) ≥ i}

∣∣∣ dPs(i, y, x)

)2


≤ 2(1 + t)

2d

∑
y∼x

∫ t

0
E
[∣∣∣ξs(y)− ξ(m)

s (y)
∣∣∣2] ds→ 0

as m→∞. Since the errors are uniform in n and n is arbitrary, this establishes the

almost sure convergence of the integrals

∫ t

0

∑
y∼x

m∑
i=1

1{ξ(m)
s− (y) ≥ i, ξ(m)

s− (x) < m}dPs(i, y, x)

→
∫ t

0

∑
y∼x

∞∑
i=1

1{ξs−(y) ≥ i}dPs(i, y, x).

A similarly, yet easier argument will show the almost sure convergence of the inte-

grals

∫ t

0

∑
y∼x

m∑
i=1

1{ξ(m)
s− (x) ≥ i}dPs(i, x, y)→

∫ t

0

∑
y∼x

∞∑
i=1

1{ξs−(x) ≥ i}dPs(i, x, y).

All that is left to do is demonstrate that the final integral in (2.15) converges to the
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final integral of (2.14). Once again, taking n > m, we have

∣∣∣∣ ∫ t

0

n∑
i,j=1

1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i,j=1

1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

∣∣∣∣ (2.27)

≤
m∑

i,j=1

∫ t

0

∣∣∣1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}

∣∣∣
× dP cs (i, j, x)

+
n∑

i=m+1

m∑
j=1

∫ t

0
1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

+
m∑
i=1

n∑
j=m+1

∫ t

0
1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

+

n∑
i,j=m+1

∫ t

0
1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

≤
m∑

i,j=1

∫ t

0

∣∣∣1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}

∣∣∣
× dP cs (i, j, x)

+ 2
n∑

i=m+1

m∑
j=1

∫ t

0
1{ξs−(x) ≥ i}dP cs (i, j, x)

+ 2
n∑

i=m+2

i∑
j=m+1

∫ t

0
1{ξs−(x) ≥ i}dP cs (i, j, x)

≤
m∑

i,j=1

∫ t

0

∣∣∣1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}

∣∣∣
× dP cs (i, j, x)

+ 4
n∑

i=m+1

i∑
j=1

∫ t

0
1{ξs−(x) ≥ i}dP cs (i, j, x).
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Squaring and using Cauchy-Schwarz gives

∣∣∣∣ ∫ t

0

n∑
i,j=1

1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i,j=1

1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

∣∣∣∣2
≤ 2

( m∑
i,j=1

∫ t

0

∣∣∣1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}

∣∣∣
× dP cs (i, j, x)

)2

+ 32

( n∑
i=m+1

i∑
j=1

∫ t

0
1{ξs−(x) ≥ i}dP cs (i, j, x)

)2

. (2.28)

Ignoring constant factors above, for the first term, taking expectation and summing

over all x we have the upper bound

2λ(1 + λt)E

[∫ t

0

∑
x

e−θ|x||ξs(x) + ξ(m)
s (x)|2|ξs(x)− ξ(m)

s (x)|2
]
ds

≤ 2λ(1 + λt)E

[∫ t

0

∑
x

e−θ|x||ξs(x) + ξ(m)
s (x)|3|ξs(x)− ξ(m)

s (x)|

]
ds

≤ 2λ(1 + λt)E

∫ t

0

(∑
x

e−θ|x|
∣∣∣ξs(x) + ξ(m)

s (x)
∣∣∣6) 1

2
(∑

x

e−θ|x||ξs(x)− ξ(m)
s (x)|2

) 1
2

 ds
≤ 2λ(1 + λt)E

∫ t

0

(∑
x

e−
θ|x|
3

∣∣∣ξs(x) + ξ(m)
s (x)

∣∣∣2) 3
2
(∑

x

e−θ|x||ξs(x)− ξ(m)
s (x)|2

) 1
2

 ds
≤ 2

5
2λ(1 + λt)E

[ ∫ t

0

(∑
x

e−
θ|x|
3

(
ξs(x)2 + ξ(m)

s (x)2
)) 3

2

×

(∑
x

e−θ|x||ξs(x)− ξ(m)
s (x)|2

) 1
2 ]
ds. (2.29)

Evaluating (2.27) at t ∧ τm,∞R,θ/3 and repeating the argument up to equation (2.29)
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bounding t ∧ τR,θ/3 ≤ t where necessary gives

2
5
2λ(1 + λt)E

[ ∫ t∧τR,θ/3

0

(∑
x

e−
θ|x|
3

(
ξs(x)2 + ξ(m)

s (x)2
)) 3

2

×

(∑
x

e−θ|x||ξs(x)− ξ(m)
s (x)|2

) 1
2 ]
ds

≤ 24λ(1 + λt)R
3
2E

∫ t

0

(∑
x

e−θ|x||ξs(x)− ξ(m)
s (x)|2

) 1
2

 ds
≤ 24λ(1 + λt)R

3
2

∫ t

0

(∑
x

e−θ|x|E
[
|ξs(x)− ξ(m)

s (x)|2
]) 1

2

ds→ 0

as m→ 0. For the second term of (2.28)

2
n∑

i=m+1

i∑
j=1

E

[(∫ t

0
1{ξs−(x) ≥ i}d(P cs (i, j, x)− λs)

)2
]

+ 2λ2tE

[∫ t

0

( n∑
i=m+1

i1{ξs(x) ≥ i}
)2

ds

]

≤ 2λE

[∫ t

0

n∑
i=m+1

i1{ξs−(x) ≥ i}ds

]

+ 4λ2tE

[∫ t

0
ξs(x)2

n∑
i=m+1

i1{ξs(x) ≥ i}ds

]

≤ 2λ(1 + 2λt)E

[∫ t

0
ξs(x)3

n∑
i=m+1

1{ξs(x) ≥ i}ds

]

≤ 2λ(1 + 2λt)E
[∫ t

0
ξs(x)4

1{ξs(x) ≥ m+ 1}ds
]
.

Summing over all x gives the upper bound

2λ(1 + 2λt)E

[∫ t

0

∑
x

e−θ|x|ξs(x)4
1{ξs(x) ≥ m+ 1}ds

]

≤ 2λ(1 + 2λt)E

∫ t

0

(∑
x

e−
θ|x|
4 ξs(x)2

)2(∑
x

e−θ|x|1{ξs(x) ≥ m+ 1}

) 1
2

ds

 .
Evaluating (2.27) at t∧τm,∞R,θ/4, repeating the calculations up to this point and noting
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τR,θ/4 ≤ τR,θ/3 almost surely so that t ≤ τR,θ/4 implies

∑
x

e−
θ|x|
3 ξs(x)2 ≤ R,

the calculations for the first term of (2.28) remain valid, while we have the upper

bound for the second term of

2λ(1 + 2λt)R2E

∫ t

0

(∑
x

e−θ|x|1{ξs(x) ≥ m+ 1}

) 1
2

ds


≤ 2λ(1 + 2λt)R2

∫ t

0

(
E

[∑
x

e−θ|x|1{ξs(x) ≥ m+ 1}

]) 1
2

ds

≤ 2λ(1 + 2λt)R2

m+ 1

∫ t

0

(
E

[∑
x

e−θ|x|ξs(x)2

]) 1
2

ds→ 0

as m → ∞. Therefore, at least up until time t ∧ τR,θ/4, all the integrals in (2.15)

converge to their counterparts in (2.14). However, since τR,θ/4 → ∞ almost surely

as R → ∞ we may choose R large enough that t ∧ τR,θ/4 = t and that ξt(x) solves

(2.14) can be seen by taking limits in (2.15).

Uniqueness Suppose we have two solutions to (2.14), ξt and ηt started with

the same inital condition satisfying the moment bounds in the statement. Then

looking at their difference

|ξt(x)− ηt(x)|

≤
∑
y∼x

∞∑
i=1

∫ t

0
|1{ξs−(y) ≥ i} − 1{ηs−(y) ≥ i}| dPs(i, y, x)

+
∑
y∼x

∞∑
i=1

∫ t

0
|1{ξs−(x) ≥ i} − 1{ηs−(x) ≥ i}| dPs(i, x, y)

+
∞∑

i,j=1

∫ t

0
|1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ηs−(x) ≥ i ∨ j, i 6= j}| dP cs (i, j, x) (2.30)
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and squaring

|ξt(x)− ηt(x)|2

≤ 3

(∑
y∼x

∞∑
i=1

∫ t

0
|1{ξs−(y) ≥ i} − 1{ηs−(y) ≥ i}| dPs(i, y, x)

)2

+ 3

(∑
y∼x

∞∑
i=1

∫ t

0
|1{ξs−(x) ≥ i} − 1{ηs−(x) ≥ i}| dPs(i, x, y)

)2

+ 3

 ∞∑
i,j=1

∫ t

0
|1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ηs−(x) ≥ i ∨ j, i 6= j}| dP cs (i, j, x)

2

= 3
3∑
i=1

Ii. (2.31)

We are once again using Ii for the ith term of the finite sum, we will estimate them

individually. Beginning with I1 and taking expectation we find

E [I1] ≤ 6(1 + t)

2d

∑
y∼x

E
[∫ t

0
|ξs(y)− ηs(y)|2 ds

]
.

Summing over all x gives

E

[∑
x

e−θ|x|I1

]
≤ 6(1 + t)eθE

[∫ t

0

∑
x

e−θ|x| |ξs(x)− ηs(x)|2 ds

]
. (2.32)

Similarly,

E

[∑
x

e−θ|x|I2

]
≤ 6(1 + t)E

[∫ t

0

∑
x

e−θ|x| |ξs(x)− ηs(x)|2 ds

]
. (2.33)
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Repeating familiar calculations we arrive at the following expression involving I3

E

[∑
x

e−θ|x|I3

]
(2.34)

≤ 6λ(1 + λt)E

[∫ t

0

∑
x

e−θ|x| |ξs(x) + ηs(x)− 1|2 |ξs(x)− ηs(x)|2 ds

]

≤ 6λ(1 + λt)E

[∫ t

0

∑
x

e−θ|x| |ξs(x) + ηs(x)|2 |ξs(x)− ηs(x)|2 ds

]

≤ 6λ(1 + λt)E

∫ t

0

(∑
x

e−
θ|x|
2 |ξs(x) + ηs(x)| |ξs(x)− ηs(x)|

)2

ds

 .
Fix 0 < ε < θ, and write e−θ|x| = e−(θ−ε)|x|e−ε|x|, then Cauchy-Schwarz gives the

upper bound of

6λ(1 + λt)E

[∫ t

0

(∑
x

e−ε|x| |ξs(x) + ηs(x)|2
)(∑

x

e−(θ−ε)|x| |ξs(x)− ηs(x)|2
)
ds

]
.

Let τR,ε = inf{t > 0:
∑

x e
−ε|x| (|ξt(x)|2 + |ηt(x)|2

)
> R} then evaluating (2.30) at

t ∧ τR,ε bounding t ∧ τR,ε ≤ t wherever necessary will allow us to bound

E

[∑
x

e−θ|x|I3

]
≤ 6λ(1 + λt)RE

[∫ t

0

(∑
x

e−(θ−ε)|x| |ξs(x)− ηs(x)|2
)
ds

]
. (2.35)

Now, multiplying (2.31) though by e−θ|x| and summing over all x gives

E

[∑
x

e−θ|x||ξt∧τR,ε(x)− ηt∧τR,ε(x)|2
]

≤ 3

3∑
i=1

E

[∑
x

e−θ|x|Ii(t ∧ τR,ε)

]
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and substituting (2.32), (2.33) and (2.35) gives

E

[∑
x

e−θ|x||ξt∧τR,ε(x)− ηt∧τR,ε(x)|2
]

≤ 18(1 + t)(1 + eθ)E

[∫ t

0

∑
x

e−θ|x| |ξs(x)− ηs(x)|2 ds

]

+ 18λ(1 + λt)RE

[∫ t

0

(∑
x

e−(θ−ε)|x| |ξs(x)− ηs(x)|2
)
ds

]
.

Since τR,ε →∞ as R→∞, we may choose R large enough that t∧τR,ε = t. Writing

Ct,θ,λ,R = 18 max{(1 + t)(1 + eθ), λ(1 + λt)R} we have

0 ≤
∑
x

e−θ|x|E
[
|ξt(x)− ηt(x)|2

]
≤
∑
x

e−θ|x|
∫ t

0
Ct,θ,λ,R(1 + eε|x|)E

[
|ξs(x)− ηs(x)|2

]
ds.

This implies that

∑
x

e−θ|x|
(
Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E
[
|ξs(x)− ηs(x)|2

]
ds− E

[
|ξt(x)− ηt(x)|2

])
≥ 0.

(2.36)

Since the sum is positive, there exist sites in Zd such that the summand is positive.

Let A be the set of sites for which the summand is positive. Then for x ∈ A

E
[
|ξt(x)− ηt(x)|2

]
≤ Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E
[
|ξs(x)− ηs(x)|2

]
ds

and Grönwall’s Lemma implies that

E
[
|ξs(x)− ηs(x)|2

]
= 0 for all x ∈ A (2.37)

and all s ≤ t. Returning to (2.36) we may bound by ignoring the negative contri-
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butions that come from all x ∈ Ac (which may be empty)

0 ≤
∑
x

e−θ|x|
(
Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E
[
|ξs(x)− ηs(x)|2

]
ds− E

[
|ξt(x)− ηt(x)|2

])

≤
∑
x∈A

e−θ|x|

Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E
[
|ξs(x)− ηs(x)|2

]
︸ ︷︷ ︸

=0

ds− E
[
|ξt(x)− ηt(x)|2

]︸ ︷︷ ︸
=0


= 0.

In particular, this chain of inequalities is in fact a chain of equality which implies

that the sum over x ∈ Ac is 0 and since all the summands in the sum over x ∈ Ac

are less than or equal to 0, we must that for any x ∈ Ac

E
[
|ξt(x)− ηt(x)|2

]
= Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E
[
|ξs(x)− ηs(x)|2

]
ds

and Grönwall’s Lemma once again implies

E
[
|ξt(x)− ηt(x)|2

]
= 0 for all x ∈ Ac

which together with (2.37) implies that ξ ≡ η for each t.

2.3 Properties of Solutions

Let ξ
(∞)
t be the solution to (2.1) and let ξ(λ) be the solution to (2.14) with appro-

priate initial conditions. We will need a lower bound for ξ̂
(λ)
t = E[ξ

(λ)
t (0)] of order

O(log t/t). Such a lower bound is available for ξ̂∞t = E[ξ∞t (0)] due to results about

the dual process of instantly coalescing random walks given in Kelly [13]. We can

exploit the lower bound for the instantaneous process by coupling it with the finite

rate process. The following Lemma is intuitively clear. Start the two processes with

a particle at each site (this is the maximal initial condition for the instantaneous

process). Then since colliding particles instantly coalesce in the former process but

coalesce slowly in the latter process (so that the particles have the chance to walk
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away before they coalesce) there will be more distinct particles at any site in the

latter process. In this way the number of particles at any site in the instantaneous

process is a lower bound for the number of particles at x in the finite rate process

so that the lower bound from [13] is also a lower bound for ξ̂λt .

Lemma 2.3.1. Let ξ
(λ)
t be the solution to (2.14) and ξ

(∞)
t be the solution to (2.1)

both having initial condition ξ0 ≡ 1. The processes ξ
(λ)
t , ξ

(∞)
t can be coupled so that

ξ
(λ)
t (x) ≥ ξ(∞)

t (x) for each x ∈ Zd and for all t > 0 a.s..

Proof. Begin with a collection of independent Poisson processes that drive the

equation (2.14) Pt(i, x, y) and P ct (i, j, x). Use the Pt(1, x, y) to define Pt(x, y) =

Pt(1, x, y) to drive the equation (2.1). Proposition 2.1.1 and Theorem 2.2.3 guaran-

tee the existence and uniqueness of the processes.

Now we demonstrate how this guarantees the inequality is preserved. We

colour every particle white initially. We will paint a white particle red the first time

it jumps to a site already occupied by a white particle. If there is a white particle

present at a site it will occupy the first position (as viewed as a particle in the finite

rate system) and in this way obeys the ring of a Pt(x, y) = Pt(1, x, y) clock so that

with that ring it will move in either system. The instantaneous process will be made

up only of the white particles while the finite rate process will consist of both the

white and red particles.

Suppose at time s there is a white particle and i red particles at x totalling

i+ 1 particles in the finite rate process.

• If there is a white particle at a neighbouring y and if the Pt(y, x) clock rings

after time s before any Pt(x, ·) then the white particle arriving at x from y is

instantly repainted red and joins as the (i+ 2)th particle of the finite process.

• If there is a red particle at a neighbouring y in some position j and the process

Pt(j, y, x) rings first after time s then it simply joins the stack of reds without

a repaint as the (i+ 2)th particle at x in the fintie rate process.

56



• Regardless of the occupation of neighbouring sites if any Pt(x, ·) = Pt(1, x, ·)

rings first after s then the white particle at x leaves to one of its neighbouring

sites leaving behind the i red particles.

• If any P ct (1, j, x) or P ct (j, 1, x) for 2 ≤ j ≤ i + 1 clock rings first then the red

particle in position j will be deleted (or equivalently painted white and will

coalesce with the white particle in position 1).

• If any P ct (j, k, x) rings first for 2 ≤ j, k ≤ i+ 1 then the red particle present at

x in position k will be deleted (or coalesce with the red particle in postion j).

Suppose that there are no white particles at x and i red particles at time s

• If there is a white particle at a neighbour y and Pt(1, y, x) rings first then it’ll

arrive at x and assume the first position.

According to the above rules the white particles will evolve according to an instantly

coalescing system, while the white and red particles together form a slowly coalescing

system.

We will need the corresponding upper bound for the finite rate process and

in proving this we will need two more coupling results. The content of the first is

that the process is subadditive in that the process started from the union of disjoint

sets is bounded above sum of independent copies of the process started from each

of the members of the disjoint union. The second results shows that the particle

numbers satisfy a monotonicity property in that the particle numbers are increasing

in the initial condition.

Lemma 2.3.2. For any subset A ⊂ Zd, let ξ̂λ,At be the solution to (2.14) with initial

condition ξ0 satisfying
∑

x∈A e
−θ|x|ξ0(x) < ∞ and ξ0 ≡ 0 on Zd \ A. Then for

disjoint A,B ⊂ Zd with
∑

x∈A∪B e
−θ|x|ξ0(x) <∞,

ξ̂λ,A∪Bt (x) ≤ ξ̂λ,At (x) + ξ̂λ,Bt (x) for all x ∈ Zd and t > 0 a.s..
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Proof. Theorem 2.2.3 guarantees the existence of each of the processes ξ̂λ,A∪Bt , ξ̂λ,At ,

ξ̂λ,Bt . The following is very close to the argument given in [25] where the author

proves the analogous result for a variant on the instantly coalescing system. Since A

and B are disjoint we can colour all the particles that begin in set A blue and colour

all particles in set B green. Run all processes according to the same collection of

Poisson processes but in such a way that if the blue and green particles start to

appear at coincident sites, say there are i blue particles at x and j green particles at

x at time s, then we order them so that the blue particles occupy the lower valued

positions (1 through i) and the green particles occupy the higher valued positions

(i+1 through i+j). The coalescence of a blue particle with a green particle can only

occur in the system started from A∪B. In the A system, no particle can react with

a green particle. As in [25] we introduce striped particles of blue or green colour to

represent the particles that have not coalesced in the A or B systems respectively

that would otherwise have been lost in the A∪B process. If in addition to the i blue

balls and j green balls there are i′ striped blue balls and j′ striped green balls at x

at time s, the stiped blue balls will sit in positions i+ j + 1 through i+ j + i′ and

the striped green balls will sit in positions i+ j + i′ + 1 through i+ j + i′ + j′. The

process started at A ∪ B will then be represented by the sum of the solid blue and

green balls, while the process started at A (resp. B) will be represented by the sum

of solid and striped blue (resp. green) balls. The colouring of the particles adhere

to the following rules:

• If any of the Pt(k, x, y) ring first for 1 ≤ k ≤ i then the blue particle at x

in position k will leave x and walk to a neighbour reducing the number of

particles in the A system and A ∪ B. Similarly for i + 1 ≤ k ≤ i + j and the

B system.

• If any of the P c(k, l, x) clocks ring first for 1 ≤ k, l ≤ i then the blue particle at

position l is deleted (or coalesces with the particle in position k) and a particle

is lost from A and A ∪B. Similarly for i+ 1 ≤ k, l ≤ i+ j and the B system.

• If any of the P c(k, l, x) ring for 1 ≤ k ≤ i, i + 1 ≤ l ≤ i + j then the blue
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particle in position k will become a striped blue ball while the green particle

in position l will remain unchanged. Similarly if 1 ≤ l ≤ i, i+ 1 ≤ k ≤ i+ j,

the green ball in positon k will become a striped green ball, while the blue ball

in position l remains unchanged.

• If any of the Pt(k, x, y) ring first for i+ j + 1 ≤ k ≤ i+ j + i′ then the striped

blue particle at x in position k will leave x and walk to a neighbour reducing

the number of particles in the A system only. Similarly for i+ j+ i′+ 1 ≤ k ≤

i+ j + i′ + j′ and the striped green particle in the B system.

• If any of the P c(k, l, x) clocks ring first for 1 ≤ k ≤ i and i+j+1 ≤ l ≤ i+j+i′

or for i+ j + 1 ≤ k, l ≤ i+ j + i′ then the striped blue particle at position l is

deleted and a particle is lost from the A process only. Similarly for i+1 ≤ k ≤

i+ j and i+ j+ i′+ 1 ≤ l ≤ i+ j+ i′+ j′ or i+ j+ i′+ 1 ≤ k, l ≤ i+ j+ i′+ j′

and the B system. Also the same will hold with the roles of k, l interchanged

except that in this case the striped ball in position l is deleted (rather than

the solid ball in position k).

• If any of the P c(k, l, x) clocks ring first for 1 ≤ k ≤ i and i + j + i′ + 1 ≤

l ≤ i + j + i′ + j′, or i + 1 ≤ k ≤ i + j and i + j + 1 ≤ l ≤ i + j + i′, or

i+ j+ 1 ≤ k, l ≤ i+ j+ i′+ j′ then there will be no change made to the colour

of condition (solidness vs stripedness) of any of the balls. The same will hold

with k, l interchanged.

• If a particle of any colour, solid or striped, jumps to x no changes occurs to

the colour or condition of the ball that arrives and it just joins the stack of

balls of its colour and condition.

As described, the solid blue and green balls together will represent the evolution of

the process beginning at A∪B, while the solid and striped blue balls will represent

the process starting at A and the solid and striped green balls will represent the

process started at B and under the coupling the inequality will hold.

The next result is perhaps the most obvious. If we start two processes, one
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with an initial condition starting from a subset A and another started from some

restriction of that subset, the particle numbers of the former should always be at

least the particle numbers of the latter since there are possibly extant particles that

have not reacted with particles that began in the restriction.

Lemma 2.3.3. Let A ⊂ B. With initial condition satisfying
∑

x∈B e
−θ|x|ξ0(x)2 <∞

the processes ξ̂λ,At , ξ̂λ,Bt defined in Lemma 2.3.2 satisfy

ξ̂λ,At (x) ≤ ξ̂λ,Bt (x)

for all x ∈ Zd and all t > 0.

Proof. The proof is similar, but easier than, the proof of Lemma 2.3.2. Colour every

initial particle of A blue and every initial particle of B green. Driving the processes

by the same Poisson processes, with the blue particles occupying the lower value

positions at each site and the green particles occupying the higher level positions

at each site, we will have the A process represented solely by the number of blue

particles while the B process will be represented by the sum of the number of blue

and green particles. Suppose there are i blue particles and j green particles at x.

The rules are simple:

• If any of the Pt(l, x, y) or P c(k, l, x) ring first for 1 ≤ k, l ≤ i then the blue

particle at position l is lost from both processes either through random walk

step to a neighbour or through coalescence with another blue particle.

• If any of the Pt(k, x, y) ring first for i + 1 ≤ k ≤ j then the green particle at

postion k leaves x for one of its neighbours and a particle is lost from the B

process at x.

• If any of the P c(k, l, x) ring first for 1 ≤ k ≤ i and i + 1 ≤ l ≤ i + j or

i + 1 ≤ k, l ≤ i + j then the green particle at position l is deleted, any blue

particle is left alone and a particle is lost from the B system. For 1 ≤ l ≤ i

and i + 1 ≤ k ≤ i + j then the green particle at position k is deleted (or
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changes blue and immediately coalesces with the blue particle in postion l)

and a particle is lost in the B system.

• Any particle that walks to x simply joins the stack of the particles of the same

colour. If the particle is blue, it increases the particle number of both A and B

processes, if it is green, it only increases the particle number in the B process.

As described, the worst case is that the B process “catches up” with the lower

particle numbers of the A process, but the B particle numbers can never fall beneath

the particle numbers of the A process.
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Chapter 3

Negative Correlation Results for

Systems of Coalescing Random

Walks

As in the previous chapter, the results here do not depend on the dimension and so

we prove them in their full generality.

3.1 Introduction to Negative Correlation

We study continuous time random walks that coalesce at some finite rate. We

are primarily interested in the decay in the probability that a particular site is

occupied and in the study of this object, natural approximations occur. The task

in understanding the decay transforms into careful estimation of the error terms

produced in each approximation. We find that present in most of the error terms

is the expected value of particular functions of our variables and proving various

notions of negative dependence enable us to control these errors well enough to

understand the decay in the density of particles.

The key tool in proving negative correlation results is the van den Berg-

Kesten-Reimer (BKR) inequality. The nature of this inequality requires a finite,

discrete time structure and so is not immediately applicable to our continuous time
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process that is the solution to the system of equations (4) of Chapter 1. As such, we

will begin by proving various negative dependence results for a sequence of finite,

discrete time systems that approximate our full process and then prove the conver-

gence of this approximating sequence thereby carrying over the results that BKR

provides us for the finite, discrete time structures to our full continuous process that

solves (4) in Chapter 1.

Let V be a finite set and for each i ∈ V , let Si be a finite set. Define

Ω =
∏
i∈V Si. For K ⊂ V and ω ∈ Ω, let [ω]K be a cylinder, by which we mean

all ω′ ∈ Ω that agree with ω on K. We denote by A�B the set of all ω ∈ Ω

for which there exist disjoint K,L ⊂ V with [ω]K ⊆ A and [ω]L ⊆ B. The BKR

inequality states that for a product measure µ on Ω (that is µ = Πi∈V µi), for all

events A,B ∈ Ω

µ(A�B) ≤ µ(A)µ(B).

For systems of instantly coalescing random walks, certain negative correla-

tion porperties are known due to van den Berg and Kesten [27]. They achieve their

results by cutting their process off outside a box and discretising time thereby pro-

ducing a discrete time approximation from their continuous time process. Since the

method we employ to prove correlation inequalities for the finite rate process is sig-

nificantly different, we will first walk through the discrete time characterisation of

the instantly coalescing system to understand how build a structure for which BKR

is applicable before turning to the non-instant regime. We will not prove that the

discrete time process that approximates the instantly coalescing system converges

since the negative correlation results are already known for the full system. The

final section of this chapter be dedicated to the convergence for the non-instantly

coalescing system only.
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3.2 Pairwise Negative Correlation for an Instantly Co-

alescing Particle System

For our instantly coalescing random walks, the only meaningful result regarding

correlation is pairwise negative correlation for disjoint neighbouring sites, this is

really due to the nearest neighbour walks. The significance of the result is that if

there is a particle at a site y, it should reduce the chance of there simultaneously

being a particle at a neighbour x. In order to formulate a problem for which BKR is

applicable, we shall consider a discrete time process on a box of Zd of finite volume,

on which we can define a notion of paths that will describe a discrete time coalescing

random walk.

3.2.1 Description of Paths

Let V = B × T , with B = BL = {−L,−L + 1, ..., 0, ..., L − 1, L}d, for L ∈ N, and

T = Tn = {0, ..., n}, that is attach a discrete time interval at each x ∈ BL. Let

(ei)
d
i=1 be the unit vectors in each of the positive directions, that is

ei = (0, 0 . . . , 1︸︷︷︸
ith place

, . . . , 0).

For each (x, i) ∈ V let the state at (x, i) be an element of the set

S(x,i) = {−e1 ↖︸ ︷︷ ︸
p(x,i,1)

, . . . ,−ed ↖︸ ︷︷ ︸
p(x,i,d)

, ↗e1︸︷︷︸
q(x,i,1)

, . . . , ↗ed︸︷︷︸
q(x,i,d)

, ↑︸︷︷︸
r(x,i)

}

with probabilities given by the underbraces. In particular, these probabilities satisfy

that for all (x, i) ∈ V , r(x,i) +
∑d

j=1(p(x,i,j) +q(x,i,j)) = 1. In addition, if x ∈ B has L

in its jth coordinate then q(x,i,j) = 0 and similarly if x has a −L in its jth coordinate

p(x,i,j) = 0 for all i ∈ {0, 1, . . . , n} so that particles cannot leave the box B. The

arrows indicate the site that the particle at (x, i) will move to. The northwest arrow,

−e1 ↖ for instance, represents a move from (x, i) to (x−e1, i+1), while an up arrow

means the particle remains at the same site, xi+1 = xi.
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Let Ω =
∏

(x,i)∈V S(x,i). Then for ω ∈ Ω we have marginals given by

P[ω(x,i) = α] =


p(x,i,−j) if α = −ej ↖

q(x,i,j) if α =↗ej

r(x,i) if α =↑ .

We give the following definitions.

Definition 3.2.1. A path from (x, 0) to (y, n) in V is a sequence {x = x0, x1, ..., xn =

y} ⊂ B such that

|xj − xj−1| ∈ {0, 1} for all j ∈ {1, ..., n}.

And we will call the sequence, {(xi, i)}ni=0 ⊂ V , a path.

Fix ω ∈ Ω, given the definition of a path in our space-time V we will now

define a path that our particles may take.

Definition 3.2.2. An ω-successful path from (x, 0) to (y, n) is a path {(xi, i)}ni=0

from (x, 0) to (y, n) such that for each i ∈ {0, ..., n− 1}, the direction of the vector

xi+1−xi corresponds to the arrow given by ω(xi,i), the identification of the up arrow

with the 0 vector. More generally, for a subset D ⊆ B there exists an ω-sucessful

path up from (D, 0) to (y, n) if there exists x ∈ D and an ω-successful path up from

(x, 0) to (y, n).

Now we can define our coalescing walks. Let x ∈ B. Define the random

variable ξn(·;x) : Ω→ {0, 1} by

ξn(ω;x) = 1[there exists an ω-successful path from B × {0} to (x, n)]. (3.1)

We will often supress the dependence on ω in events. For example, we will write

{ξn(x) = 1} = {ω : there exists an ω-successful path from B × {0} to (x, n)}.
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3.2.2 A First Example of Negative Correlation

Take x, y ∈ Λ such that x 6= y. Let

A = {ξn(x) = 1} and B = {ξn(y) = 1}. (3.2)

Our aim is now to prove that these events are pairwise negatively correlated in the

sense that

P[A ∩ B] ≤ P[A]P[B] (3.3)

and we do so by applying the BKR inequality.

Theorem 3.2.3. With the events A,B defined in (3.2), A and B are negatively

correlated in the sense of (3.3).

Remark 3.2.4. Trivially, A�B ⊆ A ∩ B.

Proof. It is sufficient to show that A ∩ B ⊆ A�B. For then,

P[A ∩ B] ≤ P[A�B]

and the result follows by BKR.

As such, let ω ∈ A ∩ B. Then there exists u, v ∈ B such that there is an

ω-successful path from (u, 0) to (x, n) and an ω-successful path from (v, 0) to (y, n).

Call these paths {(ui, i)}ni=0 and {(vi, i)}ni=0 respectively.

Let J = {(u0, 0), ..., (un, n)} and K = {(v0, 0), ..., (vn, n)}. We will build our

cylinders from these two sets.

So, the set [ω]J is all the ω′ ∈ Ω that agree with ω on J . Since J is taken to

be the vertices of an ω-successful path from (u, 0) to (x, n), it follows that for each

ω′ ∈ [ω]J there is an ω′-successful path from (u, 0) to (x, n), namely {(ui, i)}ni=0.

Therefore, we have the inclusion [ω]J ⊆ A. Similarly, [ω]K ⊆ B.

To conclude that ω ∈ A�B and complete the proof, we must show that J ∩

K = ∅. So suppose (z, r) ∈ J ∩K. Then (z, r) was a vertex in the ω-successful path

{(ui, i)}ni=0 and a vertex in the ω-successful path {(vi, i)}ni=0, namely the vertices
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(ur, r) and (vr, r) respectively. In particular, ur = vr. Now since (ur, r) is in the

ω-successful path {(ui, i)}ni=0, the direction of the vector ur+1 − ur = ur+1 − z

corresponds to the arrow ω(z,r). Similarly, the direction of the vector vr+1 − vr =

vr+1−z also corresponds to the arrow given by ω(z,r). Hence, ur+1 = vr+1. Call this

point in Λ, z1 and define z0 = z. We can repeat the previous line of argument and

continue in that way to define a sequence {zi}n−ri=0 where for each m ∈ {0, ..., n− r},

zm = ur+m = vr+m. The sequence {(zi, r+ i)}n−ri=0 is an ω-successful path from (z, r)

to (zn−r, n) = (un, n) = (vn, n) and in particular (x, n) = (y, n) which contradicts

the fact that x and y are distinct. Therefore J ∩K must be disjoint.

Remark 3.2.5. Note that the above proof presupposes that the initial condition

is that each site of B × {0} is occupied by a particle. The proof can easily be

adapted to account for any deterministic initial conditions by defining the for D ⊆ B,

ξDn (ω;x) = 1[there exists an ω-successful path from D × {0} to (x, n)].

Viewing ξt(x) as a random variable that takes values in {0, 1}, with the event

{ξt(x) = 1} as interpreted as before and {ξt(x) = 0} interpreted as the collection of ω

for which there is not an ω-successful path, then we can write E[ξt(x)] = P[ξt(x) = 1]

and we have an immediate corollary of Theorem 3.2.3

E[ξt(x)ξt(y)] = P[ξt(x) = 1, ξt(y) = 1] ≤ P[ξt(x) = 1]P[ξt(y) = 1] = E[ξt(x)]E[ξt(y)].

3.2.3 Site Independent Random Initial Conditions

We have dealt, in the previous, with any deterministic initial distribution of particles

along B × {0}. We now turn to an examination of which random initial conditions

can be implemented that negative correlation can be proved for. We can prove the

result for any site independent initial conditions such as Bernoulli initial conditions

where each site is occupied with probability p (possibly depending on the site)

independent of all other sites in B × {0} and unoccupied with probabliity 1− p.

Indeed, let us consider an independent Bernoulli initial condition at each site

inB×{0} as an example. Now let V ′ = B∪V and define Ω = {0, 1}B×
∏

(x,i)∈V S(x,i).
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This is the collection of all possible initial occupancies and all configurations on

arrows, the latter as has been described in the last section. In this way, for ω ∈ Ω,

x ∈ B and (x, i) ∈ V , we will write ωx = 1 if x contains a particle initially and

denote by ω(x,i) the element of S(x,i) present in the configuration ω. This induces a

product measure on Ω with marginals given by

P[ωx = 1] = px

for all x ∈ B and

P[ω(x,i) = α] =


p(x,i) if α =↖(x,i)

q(x,i) if α =↗(x,i)

r(x,i) if α =↑(x,i) .

Now, for a fixed ω ∈ Ω and remembering definition 3.2.1 we give a slightly different

definition of an ω-successful path.

Definition 3.2.6. A path from (x, 0) to (y, n) is ω-successful if ωx = 1 and for each

i ∈ {0, ..., n−1}, the direction of the vector xi+1−xi corresponds to the arrow given

by ω(xi,i).

For distinct, x and y in B, define the events A and B as before. We can

prove A and B are negatively correlated in much the same as before.

Theorem 3.2.7. With independent Bernoulli initial conditions, the events A and

B are negatively correlated.

Proof. As before, we endeavour to show that the inclusion A ∩ B ⊆ A�B. Let

ω ∈ A ∩ B. Then there exists u, v ∈ V such that there is an ω-successful path

from (u, 0) to (x, n) and an ω-successful path from (v, 0) to (y, n). Call these paths

{(ui, i)}ni=0 and {(vi, i)}ni=0 respectively.

Let J = {u0} ∪ {(u0, 0), ..., (un, n))} and K = {v0} ∪ {(v0, 0), ..., (vn, n)} be

our subsets of V ′ on which we will build our cylinders. The rest follows in a similar

way as for the proof of Theorem 3.2.3
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3.3 Coloured Paths and Various Notions of Negative

Dependence

Here, we introduce a different description of paths, that of coloured paths, that

allows for particles to share a site but not necessarily coalesce. In this way we will

be able to define the paths that make up a discrete time system of coalescing walks

that can have multiple particles at a site. Due to the constuction, the particles will

not coalesce instantly unless they have the same colour and occupy the same site.

The rules that determine the paths will ensure that in a continuous time and large

volume limit we recover the dynamics of the slowly coalescing random walks that

solve equation (4) in Chapter 1.

We follow the same structure as in the previous. Build a probability space

and describe the marginals of a suitable product measure that will be used in an

application of the BKR inequality. The first application we will consider is a natural

generalisation of Theorem 3.2.3, while the second application is of a very different

flavour. Usually, our statements regarding negative correlation will be statements

that refer to behaviours at distinct sites. However, the second application of coloured

paths and the BKR inequality refers to occupation of a single site by multiple

particles. This then leads to a bound on the factorial moments of the random

variable that counts the particles at a given site.

3.3.1 Description of Coloured Paths

Begin as before with the grid of spacetime vertices B × T . Introduce m colours,

call the collection of colours C and list the colours in some order c1, . . . , cm. Let

V ′ = B×T ×C. We now build our probability space Ω. Initally, each site in B×{0}

should be painted a colour uniformly at random from C independent of all other

sites and at each spacetime point (x, i) ∈ B × T there should be an instruction for
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a particle of any colour. Accordingly, for each x ∈ B, i ∈ T and c ∈ C let

S(x,i,c) =

−e1,c1 ↖c,
−e2,c1 ↖c, . . . ,

−ed,c1 ↖c, ↑c1c , c ↗e1,c1 , . . . , c ↗ed,c1 ,

−e1,c2 ↖c,
−e2,c2 ↖c, . . . ,

−ed,c2 ↖c, ↑c2c , c ↗e1,c2 , . . . , c ↗ed,c2 ,
...

−e1,cm ↖c,
−e2,cm ↖c, . . . ,

−ed,cm ↖c, ↑cmc , c ↗e1,cm , . . . , c ↗ed,cm


This is the collection of all possible instructions that a particle at (x, i)

of colour c can be given. For example, a particle of colour c at (x, i) given the

instruction ej ,ck ↗c, at time i+ 1 it will arrive at x+ ej and take on the colour ck.

Now let Ω = CB ×
∏

(x,i,c)∈V ′ S(x,i,c). This is the collection of all initial colours and

all configurations of instructions for coloured particles. That is, take ω ∈ Ω and

x ∈ B, then ωx is the colour of the particle that begins in (x, 0). Correspondingly,

for x ∈ B, i ∈ T and c ∈ C, ω(x,i,c) = α ∈ S(x,i,c) is the instuction given to

a particle of colour c at (x, i). This induces our product measure on Ω once we

specify probabilities for our coloured particle instructions. The marginals are given

as follows.

P[ωx = c] =
1

m

and

P[ω(x,i,c) = α] =


px,i,cj ,k if α = −ek,cj ↖c

qx,i,cj ,k if α = c ↗ek,cj

rx,i,cj if α =↑cjc

where the probabilities satisfy

m∑
j=1

(
rx,i,cj +

d∑
k=1

(px,i,cj ,k + qx,i,cj ,k)

)
= 1. (3.4)

In this way, a particle at (x, i) of any colour is guaranteed an instruction. And

similarly as before, if x ∈ B has L in the kth then qx,i,cj ,k = 0 for any i ∈ T, j ∈
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{1, . . . ,m} and if x has −L in the kth coordinate px,i,cj ,k = 0 for any i ∈ T, j ∈

{1, . . . ,m} so that no particle that reaches the boundary of B can leave B.

For a coloured arrow α, write h(α) for the head colour of the arrow. Now we

can define successful paths in the context of coloured paths.

Definition 3.3.1. An ω-coloured path of terminal colour c from (x, 0) to (y, n) is

a path {(xi, i)}ni=0 from (x, 0) to (y, n) and a sequence of colours {ci}ni=0 such that

ωx0=x = c0, cn = c and for all i ∈ {0, . . . , n− 1}, ω(xi,i,ci) = αi ∈ S(xi,i,ci) such that

h(αi) = ci+1 and the direction of the vector xi+1−xi corresponds to the direction of

αi, where again we identify xi+1 − xi = 0 with the direction of the “up” arrow.

Under this definition, if distinct particles have instructions to arrive at a

coincident site (x, i) and to change to the same colour c′, then their paths will

remain together thereafter. This is how coalescence of particles occurs in this system.

With the definition of ω-coloured paths of a specified terminal colour, we can define

random variables of interest. For each j ∈ {1, . . . ,m}, let

ξjn(ω;x)

= 1[there exists an ω-coloured path with terminal colour cj from B × {0} to (x, n)].

and

ξn(ω;x) =

m∑
j=1

ξjn(ω;x).

Now we can make sense of events such as {ξn(x) ≥ k} for k ∈ {1, . . . ,m}.

3.3.2 Pairwise Negative Correlation for a System of Slowly Coa-

lescing Particles

Theorem 3.3.2. Let x 6= y ∈ B. Then

P[ξt(x) ≥ 1, ξt(y) ≥ 1] ≤ P[ξt(x) ≥ 1]P[ξt(y) ≥ 1]

Proof. Let A = {ξn(x) ≥ 1} and B = {ξn(y) ≥ 1}. As before, it is enough to show
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the inclusion A ∩ B ⊆ A�B then by virtue of our finite construction and the BKR

inequality we are done.

Let ω ∈ A∩B so that ξn(x) ≥ 1 and ξn(y) ≥ 1. There must exist k1, k2 ∈ C,

not necessarily distinct, such that ξk1n (x) = 1 and ξk2n (x) = 1. That is, there are

u, v ∈ B and ω-coloured paths of terminal colours k1 respectively k2 from (u, 0) to

(x, n) resp. (v, 0) to (y, n). Name these paths {(ui, i)∪{ci}}ni=0 and {(vi, i)∪{c′i}}ni=0

respectively.

Now let

J = {u0} ∪ {(u0, 0, c0), ..., (un, n, cn)}

and

K = {v0} ∪ {(v0, 0, c
′
0), ..., (vn, n, c

′
n)}

be our subsets of V on which we will build our cylinders. Then, showing the inclusion

of [ω]J ⊆ A and [ω]K ⊆ B is the same as in Theorem 3.2.3 and showing that

J and K are disjoint is similar. The only comment needed is that if u0 = v0

then the initial colour of the paths would also be equal, hence the paths would be

forced to move together thereafter and contradict the paths terminating at distinct

x and y. This follows again from a similar reasoning: suppose u0 = v0, then

c0 = ωu0 = ωv0 = c′0. By the definition of ω-coloured paths, the vector u1 − u0

has the direction of the arrow ω(u0,0,c0) = ω(v0,0,c′0) and so does the vector v1 − v0.

Additionally c1 = h(ω(u0,0,c0)) = h(ω(v0,0,c′0)) = c′1, so that particles that began at

that same site move to the same site and take on the same colour. Clearly this is

true for each of the finitely many steps, n, and therefore the particles cannot reach

distinct sites. Therefore ω ∈ A�B as required.

More generally we can prove the following:

Theorem 3.3.3. Let x 6= y ∈ B and , σ, τ ∈ N. Then

P[ξn(x) ≥ σ, ξn(y) ≥ τ ] ≤ P[ξn(x) ≥ σ]P[ξn(y) ≥ τ ].

Proof. Let Aσ = {ξn(x) ≥ σ} and Bσ be the corresponding event for the site point
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y. We must show Aσ ∩ Bτ ⊆ Aσ�Bτ and appeal to the BKR inequality. Take

ω ∈ Aσ ∩ Bτ . Firstly, ω ∈ Aσ means ξn(x) ≥ σ and so there exist a collection

of distinct colours k1, k2, . . . , kσ ∈ C such that ξkin (x) = 1 for i ∈ {1 . . . , σ}. For

each i ∈ {1, . . . σ} there is a ui ∈ B and an ω-coloured path from (ui, 0) to (x, n)

of terminal colour ki. The collection {ui}σi=1 must also be pairwise distinct, since

the definition of an ω-coloured path of specified terminal colour will not permit two

paths beginning in the same initial site to reach the terminus with differing terminal

colours. This claim follows from the same proof as for the claim in the previous

theorem. Call the path corresponding to terminal colour ki, {(uij , j) ∪ {cij}}nj=0.

Note, cin = ki. Similarly, ω ∈ Bτ gives rise to the existence of distinct colours

l1, . . . , lτ with corresponding {vi}τi=1 ⊂ B and ω-coloured paths from (vi, 0) to (y, n)

of terminal colour li, for each i ∈ {1, . . . , τ}. Again, the {vi}τi=1 are pairwise distinct.

Call the path corresponding to terminal colour li, {(vij , j)∪{γij}}nj=0, so that γin = li.

Now let

J =
σ⋃
i=1

{ui0} ∪ {(ui0, 0, ci0), ..., (uin, n, c
i
n)}

and

K =

τ⋃
i=1

{vi0} ∪ {(vi0, 0, γi0), ..., (vin, n, γ
i
n)}.

The same ideas as before make it clear that [ω]J ⊂ A and [ω]K ⊂ B and J ∩K =

∅.

This leads to a simple corollary which captures the idea that the occupation

of x by particles reduces the chance of particles also occupying a distinct site y.

Corollary 3.3.4. For distinct x, y ∈ B

E[ξn(x)ξn(y)] ≤ E[ξn(x)]E[ξn(y)].
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Proof.

E[ξn(x)ξn(y)] =
∑
i,j∈N

ijP[ξn(x) = i, ξn(y) = j]

=
∑
i,j

i∑
n=1

j∑
m=1

P[ξn(x) = i, ξn(y) = j]

=
∑
n,m

∞∑
i=n

∞∑
j=m

P[ξn(x) = i, ξn(y) = j]

=
∑
n,m

P[ξn(x) ≥ n, ξn(y) ≥ m]

≤
∑
n

∑
m

P[ξn(x) ≥ n]P[ξn(y) ≥ m]

= E[ξn(x)]E[ξn(y)].

In fact, we will need to know about the behaviour of ξn at more that just

two distinct sites. We can do so in the following, the only difficulty being notation.

Theorem 3.3.5. Let {xj}σj=1 ⊂ B be a collection of distinct sites in B and {ij}σj=1

be natural numbers then

P[ξn(x1) ≥ i1, . . . , ξn(xσ) ≥ iσ] ≤
σ∏
j=1

P[ξn(xj) ≥ ij ]

Proof. LetAj = {ξn(xj) ≥ ij} for j ∈ {1, . . . , σ} andA1,...,σ = {ξn(x1) ≥ i1, . . . ξn(xσ) ≥

iσ} = ∩σj=1Aj . If we can show A1,...,σ = A1,...,σ−1 ∩ Aσ ⊂ Aσ−1�Aσ we can apply

BKR to deduce P[Aσ] ≤ P[Aσ−1]P[Aσ]. The same argument can be repeated by

peeling off a factor at a time from each of the remaining σ − 1 the intersections

A1,...,j , j ∈ {1, . . . , σ − 1}.

Things have become very notationally heavy so we describe the construction

of the cylinder bases J and K necessary to prove the inclusion for the application of

BKR without explicitly writing them. Take ω ∈ A1,...,σ. Then for each j ∈ {1, . . . , σ}

there are ij distinct colours and there are ω-coloured paths with all of the ij colours
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represented as terminal colours up to (xj , n). Label each of these paths, for each j,

in the same fashion as we have multiple times before now. From these paths, we

can build elements of V as we also have done before now.

First, for each j ∈ {1, . . . , σ}, take a union over these elements in V . Each of

these unions is now a base for a cylinder on which Aj is bound to occur. Secondly,

take the union of the first σ − 1 of these bases and call this new union J . Now this

is a base for a cylinder that guarantees A1,...,σ−1 occurs, i.e [ω]J ⊂ A1,...,σ−1. Now

let K be the remaining element of V that guarantees the occurance Aσ. The fact

that J and K are disjoint can be seen by no more reasoning than in the previous,

but writing the argument is convoluted.

Corollary 3.3.6. Let {xj}σj=1 ⊂ B be a collection of distinct sites in B then

E[ξn(x1) · · · · · ξn(xσ)] ≤
σ∏
i=1

E[ξn(xi)]

Proof. Same calculation as for Corollary 3.3.4, repeated use of Fubini and of the

fact that ξn(x) is non-negative integer valued to collect the events.

3.3.3 A Negative Dependence Result for the Factorial Moments of

the Occupancy of a Site in a Slowly Coalescing System

In this section, we take on a negative dependence result of a different flavour than

we have studied so far. It states, rather intuitively, that in a system where particles

are allowed to coincide at a site but have the possibility to take on the same colour,

that stacks of particles are somehow unlikely. We first prove a special case of the

main result in this section since the proof of the general case is no more difficult but

more notationally heavy.

Theorem 3.3.7. Our coalescing system ξn is reluctant to stack in the sense that

for any x ∈ B

P[ξn(x) ≥ 2] ≤ P[ξn(x) ≥ 1]2.

Proof. The idea is let A = {ξn(x) ≥ 1} and show the inclusion {ξn(x) ≥ 2} ⊆
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A�A. Let ω ∈ {ξn(x) ≥ 2}, then there exist distinct colours k1, k2 ∈ C such that

there are sites u, v ∈ B and ω-coloured paths of terminal colours k1 respectively

k2 from (u, 0) respectively (v, 0) to (x, n). Call these paths {(ui, i) ∪ {ci}}ni=0 and

{(vi, i) ∪ {c′i}}ni=0. Necessarily u0 6= v0, and this claim follows as it did in Theorem

3.3.3 by the argument given for the claim in Theorem 3.3.2.

Let

J = {u0} ∪ {(u0, 0, c0), ..., (un, n, cn)}

and

K = {v0} ∪ {(v0, 0, c
′
0), ..., (vn, n, c

′
n)}.

Then, for ω′ ∈ [ω]J , {(ui, i) ∪ {ci}}ni=0 is an ω′-coloured path from (u, 0) to (x, n)

of terminal colour k1, hence ω′ ∈ {ξk1n (x) = 1} ⊂ A, and we have the inclusion

[ω]J ⊂ A. We similarly have that for ω′ ∈ [ω]K , {(vi, i) ∪ {c′i}}ni=0 is an ω′-coloured

path from (v, 0) to (x, n) with terminal colour k2 and the inclusion [ω]K ⊂ A also

follows.

Suppose there are indices i, j such that the triples (ui, i, ci) and (vj , j, c
′
j) are

equal, then it is immediately true that i = j. By cutting off the first i steps of

the paths {(ui, i) ∪ {ci}}ti=0 and {(vi, i) ∪ {c′i}}ni=0, we define paths {(ui+j , i + j) ∪

{ci+j}}n−ij=0 and {(vi+j , i + j) ∪ {c′i+j}}
n−i
j=0. These are ω-coloured paths from (ui, i)

to (x, n) of terminal colour k1 respectively from (vi, i) = (ui, i) to (x, n) of terminal

colour k2 beginning with the same initial colour ci = c′i. But then ui cannot equal

vi by the same reasoning as for the claim that u0 6= v0. Therefore, J ∩K = ∅ and

the proof is complete.

Theorem 3.3.8. Our coalescing system ξt is reluctant to stack in the sense that for

any x ∈ Zd

P[ξt(x) ≥ i+ j] ≤ P[ξt(x) ≥ i]P[ξt(x) ≥ j].

Proof. We must show Ai+j ⊆ Ai�Aj . For ω ∈ Ai+j , ξn(x) ≥ i + j, so there

must exist i + j distinct colours k1, . . . , ki, l1, . . . , lj ∈ C such that for each i∗ ∈

{1, . . . , i}, ξki∗n (x) = 1 and each j∗ ∈ {1, . . . , j}, ξlj∗n (x) = 1. That is, there exist
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u1, . . . , ui, v1, . . . , vj ∈ Λ that are pairwise distinct (by the same argument as in

the previous theorem) and for each i∗ ∈ {1, . . . , i} and j∗ ∈ {1, . . . , j} there is an

ω-coloured path from (ui
∗
, 0) respectively (vj

∗
, 0) to (x, t) with terminal colours ki∗

respectively lj∗ . Call these paths {(ui∗s , s) ∪ {ci
∗
s }}ns=0 and {(vj

∗
s , s) ∪ {γj

∗
s }}ns=0 for

i∗ ∈ {1, . . . , i} and j∗ ∈ {1, . . . , j}.

Now let

J =
⋃

i∗∈{1,...,i}

{ui∗0 } ∪ {(ui
∗

0 , 0, c
i∗
0 ), . . . , (ui

∗
n , n, c

i∗
n )}

and

L =
⋃

j∗∈{1,...,j}

{vj
∗

0 } ∪ {(v
j∗

0 , 0, γ
j∗

0 ), . . . , (vj
∗
n , n, γ

j∗
n )}.

It is clear that the same ideas as in the previous theorem, except far more notation-

ally heavy, prove the inclusion and rest follows by BKR.

The following corollaries are immediate.

Corollary 3.3.9. For any x ∈ B

P[ξn(x) ≥ σ] ≤ P[ξn(x) ≥ 1]σ

Proof. For a positive integer σ, write {ξn(x) ≥ σ} = {ξn(x) ≥ (σ − 1) + 1} and

apply Theorem 3.3.8 with i = σ − 1 and j = 1 repeatedly.

Corollary 3.3.10.

P[ξn(x1) ≥ i1, . . . ξn(xσ) ≥ iσ] ≤
σ∏
j=1

P[ξn(xj) ≥ 1]ij

Proof. By Theorem 3.3.5

P[ξt(x1) ≥ i1, . . . ξt(xn) ≥ in] ≤
n∏
j=1

P[ξt(xj) ≥ ij ]

≤
n∏
j=1

P[ξt(xj) ≥ 1]ij
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by the previous corollary.

Remark 3.3.11. This last corollary might seem superfluous and trivial, but it will

be more useful later when we reach our general continuous time coalescing with

translation invariant IC which will also be translation invariant as a consequence

and therefore by an extra line we’ll have an upper bound of E[ξt(0)]i1+···+in.

Remark 3.3.12. Again, the results of this section in its current form only apply

to the deterministic initial condition ξ0 ≡ 1. But again, it is easy to change for

deterministic IC with at most 1 per site but possible to extend to any deterministic

IC and Bernoulli. It is an open question as to how general the initial conditions

can be. Unlike positive correlations, negative correlation properties can be destroyed

by random initial conditions. Examples of this are covered in [15]. Perhaps a good

conjecture is that these properties can be proved for initial conditions with strong

decay of correlations.

Deduction of ‘Negative Dependence‘ for the Falling Factorials

We begin this section with some general results that are useful for random variables

that satisfy the type of negative dependence that we have seen in this section.

Lemma 3.3.13. Let X be a non-negative integer random variable. Then we have

the following expression for the factorial moments of X

E[X(X − 1) . . . (X −m+ 1)] = m!
∞∑

i1,...,im=1

P

X ≥ m∑
j=1

ij


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Proof. Starting with the right hand side without the factor m!, we have

∞∑
i1,...,im=1

P

X ≥ m∑
j=1

ij

 =

∞∑
i1,...,im=1

∞∑
n=

∑m
j=1 ij

P [X = n]

=
∞∑

i1,...,im=1

∞∑
n=im+

∑m−1
j=1 ij

P [X = n]

=
∞∑

i1...,im−1=1

∞∑
n=1+

∑m−1
j=1 ij

n−
∑m−1
j=1 ij∑

im=1

P [X = n] .

In the last equality, an application of Fubini’s Theorem was used to exchange the

order of the two inner most sums. Notice, the summand does not depend on the

index im so the innermost sum can be evaluated to arrive at

∞∑
i1...,im−1=1

∞∑
n=1+

∑m−1
j=1 ij

n− m−1∑
j=1

ij

P [X = n] . (3.5)

We pause briefly to give some notation. Let (n)m denote the falling factorial of n

of length m, i.e. (n)m = n(n − 1) . . . (n − m + 1). Then in particular, (n)1 = n.

Let D+ denote the discrete derivative, for a function f that takes integer values

D+f(n) = f(n+ 1)− f(n). Then D+(n)m = m(n)m−1. Indeed,

D+(n)m = (n+ 1)m − (n)m

= (n+ 1)n(n− 1)(n− 2) . . . (n−m+ 2)− n(n− 1)(n− 2) . . . (n−m+ 1)

=

(
(n+ 1)− (n−m+ 1)

)
n(n− 1)(n− 2) . . . (n−m+ 2)

= mn(n− 1) . . . (n− (m− 1) + 1)

= m(n)m−1.

So we can writen− m−1∑
j=1

ij

 =

n− m−1∑
j=1

ij


1

=
1

2
D+

n− m−1∑
j=1

ij


2

.
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Making that substitution and applying Fubini again to swap the two innermost sums

in (3.5)

1

2

∞∑
i1...,im−2=1

∞∑
n=2+

∑m−2
j=1 ij

n−
∑m−2
j=1 ij∑

im−1=1

D+

n− m−2∑
j=1

ij − im−1


2

P [X = n] . (3.6)

Using the trivial discrete version of the fundamental theorem of calculus

b∑
n=a

D+f(n) = f(b+ 1)− f(a)

we can evaluate the innermost sum in (3.6)

=
1

2

∞∑
i1...,im−2=1

∞∑
n=2+

∑m−2
j=1 ij

n− m−2∑
j=1

ij


2

P [X = n] .

Now, the falling factorial of length 2 in the summand can be written as the discrete

derivative of the falling factorial of length 3 together with a factor of 1/3. Using

Fubini and the discrete fundamental theorem of calculus allows us to evaluate the

sum over the index im−2. Continuing in the same way for all but the last exchange

of sums we arrive at

1

(m− 1)!

∞∑
i1=1

∞∑
n=m+i1−1

(n− i1)m−1 P [X = n]

=
1

m!

∞∑
i1=1

∞∑
n=m+i1−1

D+ (n− i1)m P [X = n]

=︸︷︷︸
Fubini

1

m!

∞∑
n=m

n−m+1∑
i1=1

D+ (n− i1)m P [X = n]

=
1

m!

∞∑
n=m

(n)m P [X = n]

=
1

m!

∞∑
n=m

n(n− 1) . . . (n−m+ 1)P [X = n] .

80



Corollary 3.3.14. Let X be a non-negative integer random variable with finite

expected value that satisfies

P[X ≥ i+ j] ≤ P[X ≥ i]P[X ≥ j].

Then

E[X(X − 1)(X − 2) . . . (X −m+ 1)] ≤ m!E[X]m

Proof. Since X is a non-negative integer random variable, we can apply lemma

3.3.13

E[X(X − 1)(X − 2) . . . (X −m+ 1)] =︸︷︷︸
3.3.13

m!

∞∑
i1,...,im=1

P

X ≥ m∑
j=1

ij


≤︸︷︷︸

assumption

m!

∞∑
i1,...,im=1

m∏
j=1

P[X ≥ ij ]

= m!
m∏
j=1

∞∑
ij=1

P[X ≥ ij ]

= m!
m∏
j=1

E[X] = m!E[X]m

.

In the inequality, the assumption on the probabilities is used repeatedly by peeling

one of the summands off at a time.

Corollary 3.3.15. For each x ∈ B

E[(ξn(x)− 1) . . . (ξn(x)−m+ 1)] ≤ m!E[ξn(x)]m.

Proof. By Theorem 3.3.8, ξn(x) is a non-negative integer random variable that sat-

isfies the assumptions of Corollary 3.3.14.
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3.4 Convergence in Distibution of the Approximating

Discrete Time Models

In this section, we will prove that our general continuous time coalescing random

walks (ξ
(λ)
t (x) : x ∈ Zd) can be obtained by a sequence of suitable limits that will

allow us to carry over the results that have been determined for our discrete time,

finite-space model in the previous section. We are required to make an appropriate

choice for the probabilities defined in our product measures to lead to the correct rate

λ for coalescence. We will then, first keeping the box size |BL| (equivalently L) and

number of colours m fixed, build a sequence of discrete time processes that will have

progressively shorter times between jumps and appropriately scaled probabilities to

obtain a continuous time process. Then, let m,L→∞.

3.4.1 Convergence of the Discrete Time Markov Chain to the Con-

tinuous Time Markov Process

In discrete time, our state space is {0, 1}B×{1,...,m}. That is, the state at any time is a

collection of 1’s and 0’s at each site of B indicating whether or not there is a particle

of each colour of {1, . . . ,m} present. Then (ξmn (i, x) : i ∈ {1, . . . ,m}, x ∈ B)n∈N is

a discrete time Markov chain. Suppose initially each site has one particle and that

particle is painted with one of the colours taken uniformly from {1, . . . ,m}. Suppose

now we are at time n and we know the state of the configuration. This is all the

information we need to predict the state at time n+ 1.

There are a large number of transition probabilities to specify but only very

few of them will be needed in what follows. Since we ultimately want a simple

symmetric walk we will have to choose px,i,cj ,k = qx′,i′,cj′ ,k′ = p/(2dm) for all i, i′ ∈

{0, 1, . . . , n}, cj , cj′ ∈ C, k, k′ ∈ {1, . . . , d} and all x, x′ that do not lie on the

boundary of BL (that is, does not contain an L or −L in any of its coordinates. We

similarly do not want to favour any colour over another. In the limit, coalescence at

a site will happen according to independent Poisson processes between pairs, each

pair coalescing at rate 2λ. In this discrete framework, two particles coalesce at a
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site if, after a jump, they have taken on the same colour. We want the most likely

transition from state to state to be one in which most particles are instructed to

remain at the same site and with the same colour so that the first change in state has

an almost geometric distribution. In the limit from discrete time to continuous time,

these approximate geometric distributions will manifest as independent exponential

random variables that build up the Poisson processes. As such, let rx,c,cj = rc for all

cj 6= c, and let rx,c,c = r for all c ∈ C again for x not on the boundary. For x in the

boundary, we will reweight the probabilities so that they still sum to 1. We can do

this easily. Suppose x is in the boundary of BL, then wherever there appears an L

of −L in its coordinate representaion, the probabilities associated to the arrows that

point in the direction of leaving the box are 0. Sum all the remaining probabilities

in the sense of the left hand side of (3.4) and divide each of the probabilities by this

weight. Summing these weighted probabilities in the sense of the left hand side of

(3.4) will result in a sum of 1 and in such a way as to preserve their pairwise ratios.

Provided the probability r is chosen close to 1, the most likely transistion

will be ξmn+1 = ξmn where all the particles were given the instruction to stay at the

same site with the same colour. However, the probability P[ξmn+1 = ξmn |ξmn ] is not

simply
∏
x∈BL

∏m
i=1 r

ξmn (i,x) since if at any site there is more than one particle, the

same configuration can be achieved if any two of these particles swap colours. Also,

if neighbouring sites are both occupied and a particle at each of the neighbours swap

sites and the arriving particle takes on the colour of the departing particle then the

same state is reached once more. Any combination of these swaps will arrive at

the same state as at the previous time, so the probability P[ξmn+1 = ξmn |ξmn ] has a

large number of terms. However, choosing r close to 1 (and then correspondingly

all other probabilities small due to the restriction (3.4)) ensures that the leading

term is
∏
x∈BL

∏m
i=1 r

ξmn (i,x) = r
∑
x∈BL

ξmn (x)
and so that the main way in which the

configuration remains the same is for there to be no swaps and all the particles obey

the instruction to stay at the same site with the same colour.

Similarly, we can discuss transitions where there is only “one” change in the

system. For example, a coalescing event at one site but no change in the configura-
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tion otherwise, or a departure of a colour at one site and the (possibly) consequential

arrival of a colour at a neighbouring site. The meaning of the emphasis on “one” is

that, as in the previous discussion, the same state can be achieved by various swaps

so the probability of such a transition given the state at the previous time is con-

tributed to by a large number of possibilities. However, the largest contribution will

come from a single genuine change to the configuration with most of the particles

remaining where they are and with the same colour.

We use some classical results of Ethier and Kurtz [9] regarding the conver-

gence of appropriately timescaled discrete Markov chains to continuous time Markov

chains, characterised by the convergence of the transition probabilities to the rate

parameters in some appropriate sense.

Proposition 3.4.1. Let (ξ
(m,L)
t (i, x) : i ∈ {1, . . . ,m}, x ∈ BL, t ≥ 0) be the Markov

process of rate 1 random walks coalescing at rate λ > 0 with initial condition of one

particle at each site whose colour is chosen uniformly at random from {1, . . . ,m},

and let (ξ
(m,L),k
n (i, x))k∈N be the sequence of discrete time Markov chains each with

the same initial condition and whose transition matrices are built from the sequence

of triples of probabilities (r(k), r
(k)
c , p(k))k∈N. Let Y

(k)
t = ξ

(m,L),k
bktc . Then the sequence

of probabilities can be chosen so that Y
(k)
t converges in distribution to ξ

(m,L)
t as

k →∞.

Proof. Without loss of generality λ ∈ (0, 1), since otherwise λ/(1 +λ) is and we can

scale time in continuous time.

We must identify the non-zero transition rates for the continuous time process

(ξmt (i, x) : i ∈ {1, . . . ,m}, x ∈ BL, t ≥ 0) that records the colours of the particles

present at a site and construct a sequence of discrete time processes in the style

of the by theorems 6.5 of Chapter 1 and 2.6 of Chapter 4 of Ethier and Kurtz

[9] whose transition probabilities are chosen so that the off-diagonal terms of the

transition matrix converge to corresponding off-diagonal terms of the rate matrix in

the appropriate sense.

In continuous time only one Poisson clock can ring at any time, so we can

identify the only possible non-zero transitions by considering changes that can occur
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with a single ring of a Poisson clock. Write ξ and ξ′ for two different configurations.

We have the following three cases:

• ξ′(i, x) = 1− ξ(i, x),

ξ′(k, z) = ξ(k, z) for all (k, z) 6= (i, x) at rate ξ(i, x)

(
λ
(∑m

j=1 ξ(j, x) − 1
)

+

1
2dm

∑
y : y∼x

∑m
j=1 ξ(j, y)

)
. This describes the case where the only change in

the configuration is the loss of one colour i at one site x ∈ BL. This can only

occur if there was a particle at x that either changed colour to one of the other

colours present at x or if that particle walked to any of x’s neighbours and

took the colour of any of the particles there.

• ξ′(i, x) = 1− ξ(i, x),

ξ′(i′, x) = 1− ξ(i′, x),

ξ′(k, z) = ξ(k, z) for all (k, z) 6= (i, x), (i′, x) at rate λ
(
ξ(i, x)(1 − ξ(i′, x)) +

ξ(i′, x)(1− ξ(i, x))
)
. This describes the case where there is a loss of a particle

of one colour at x as a result of a gain in a different colour at x while there is

no other change elsewhere.

• ξ′(i, x) = 1− ξ(i, x),

ξ′(i′, y) = 1− ξ′(i′, y) for y ∼ x,

ξ′(k, z) = ξ(k, z) for all (k, z) 6= (i, x), (i′, y) at rate 1
2dm

(
ξ(i, x)(1− ξ(i′, y)) +

ξ(i′, y)(1− ξ(i, x))
)
. This describes the case where there is a loss of a particle

of one colour at site as a result the particle walking to a neighbouring site.

These are the only ways in which the configuration can change as a result of the

ring of one Poisson clock.

Now let (ξmn (i, x) : i ∈ {1, . . . ,M}, x ∈ BL, n ∈ N) be the discrete time

Markov chain discussed at the beginning of this chapter with the with the prob-

abilities rc, r, p/2dm that govern the motion and colours of each particle. Let

(ξ
m,(k)
n (i, x) : i ∈ {1, . . . ,m}, x ∈ BL, n ∈ N)k∈N be a sequence of Markov chains

that evolve in the same way but according to the sequence of probabilities given by

the triple (r
(k)
c , r(k), p(k)/2dm)k∈N. Now let Y

m,(k)
t = ξ

m,(k)
bktc . We want to prove that
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Y
m,(k)
t converges in distribution to ξmt the continuous time process with m colours

as k →∞.

The idea is that by comparing the probabilities of the transitions that corre-

spond to the non-zero rate transtions for the continuous time model, we can choose

the probabilities (r
(k)
c , r(k), p(k)/2dm)k∈N so that the transtion matrix converges in

the right sense and in particular, transitions with non-zero probabilities in discrete

time that correspond to zero rate transition in continuous time should vanish. ξ
m,(k)
n

is the state at time n and assume that it is known.

Let us take a look at the first bullet point, the event that the site x has

lost a particular particle of colour i whilst the configuration is otherwise untouched.

Firstly, consider the case that all of the particles except for the particle of colour i

at x receives the instruction at time n to remain at the same site and remain the

same colour. Then the probability that at time n+ 1 we are in the state that we’ve

lost the particle of colour i at x given ξ
m,(k)
n is

(r(k))
∑
z∈B\{x}

∑m
j=1 ξ

m,(k)
n (j,z)(r(k))

∑m
j=1 ξ

m,(k)
n (j,x)−1

×

r(k)
c ξm,(k)

n (i, x)

 m∑
j=1

ξm,(k)
n (j, x)− 1

+
p(k)

2dm
ξm,(k)
n (i, x)

∑
y∼x

m∑
j=1

ξm,(k)
n (j, y)


= (r(k))

∑
z∈B ξ

m,(k)(z)−1

(
(r(k)
c ξm,(k)

n (i, x)

 m∑
j=1

ξm,(k)
n (j, x)− 1


+
p(k)

2dm
ξm,(k)
n (i, x)

∑
y∼x

m∑
j=1

ξm,(k)
n (j, y)

)
.

All other contributions would either have to contain at least one swap of colours of

two particles at the same site or at least one swap of neighbouring sites of particles

and the arriving particle taking on the colour of the departing particle. Otherwise it

would not respect the configuration outside of the particle of colour i at x. Supposing

there is a swap of colours, then there would have to be at least three copies of r
(k)
c ,

the first that changes the colour of the particle of colour i at x and the following two

to facilitate the swap. Similarly, if there is a swap of sites, there must be at least one

copy of r
(k)
c and two copies of of p(k)/2dm. Returning to our main term, we want
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to compare it to the rate ξ(i, x)

(
λ
(∑m

j=1 ξ(j, x)− 1
)

+ 1
2dm

∑
y : y∼x

∑m
j=1 ξ(j, y)

)
.

A little bit of thought reveals that a sensible choice of probabilities is r
(k)
c = λ/k,

p(k) = 1/k and r(k) = 1− p(k) − (m− 1)r
(k)
c = 1− (1 + (m− 1)λ)/k, where the final

value is forced upon us by the restriction (3.4). Since then

k(r(k))
∑
z∈BL

ξm,(k)(z)−1
r(k)
c = k

(
1− 1 + (m− 1)λ

k

)∑
z∈BL

ξm,(k)(z)−1 λ

k

and for k > m, (1 + λ(m− 1))/k ≤ 1 since we have taken λ ∈ (0, 1), so

λ

(
1− 1 + (m− 1)λ

k

)m|BL|
≤ λ

(
1− 1 + (m− 1)λ

k

)∑
z∈BL

ξm,(k)(z)−1

≤ λ.

Similarly,

1

2dm

(
1− 1 + (m− 1)λ

k

)|BL|
≤ k(r(k))

∑
z∈BL

ξm,(k)(z)−1 p
(k)

2dm
≤ 1

2dm
,

and so the probabilities converge in the correct sense to the correponding rates.

All other contributions then are of order O
(

(r
(k)
c )3 + (r

(k)
c )(p(k)/2dm)2

)
= O(1/k3)

since the number of particles per site is bounded, so that their contribution to the

limit is O(k/k3) = O(1/k2), that is they vanish in the limit.

The next case to consider is that there is a loss of a particle of colour i as a

result of a gain of a colour i′ not present at x at time n with no change otherwise.

Once again the main contribution will come from all other particles receiving the

instruction to remain at the same site with the same colour with probability

(r(k))
∑
z∈BL

ξ
m,(k)
n (z)−1

r(k)
c ξm,(k)

n (i, x)(1− ξm,(k)
n (i′, x))

and

k(r(k))
∑
z∈BL

ξ
m,(k)
n (z)−1

r(k)
c → λ

as k →∞ as before, with all other contributions vanishing since they of order 1/k3.

The final non-zero rate transition is a loss of a particle of colour i at x as a
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result of the arrival of a colour i′ at a neighbour y of x that was not already present

at y at time n. The probability associated to the main contribution is

(r(k))
∑
z∈BL

ξ
m,(k)
n (z)−1 p

(k)

2dm
ξm,(k)
n (i, x)(1− ξm,(k)

n (i′, y))

which satisfies

k(r(k))
∑
z∈BL

ξ
m,(k)
n (z)−1 p

(k)

2dm
→ 1

2dm

as k →∞ as a result of our choice of probabilities. Again contributions arising from

swaps will vanish.

Finally, all that is left to be checked is that the probabilites corresponding

to zero rate transitions vanish in the limit in the sense of Ethier and Kurtz. This is

easy since any such transition in discrete time must contain at least two copies of

r
(k)
c , a copy each of r

(k)
c and p(k)/2dm, or two copies of p(k)/2dm, these are the best

case scenarios where two particles are given non-trivial instructions and all other

particles remain at the same site and with the same colour (i.e., no swaps) but these

probabilities are already of order 1/k2 and hence disappear in the limit.

From the discussion thus far, we can build a rate matrix Q for the continuous

time process (ξmt (i, x)) and transition matrices P (k) for the sequence of Markov

chains (ξ
m,(k)
n (i, x))k such that kP (k) → Q as k → ∞. Hence by theorems 6.5 of

Chapter 1 and 2.6 of Chapter 4 of Ethier and Kurtz [9], the continuous time process

given by (ξ
m,(k)
bktc (i, x)) converges in distribution to (ξmt (i, x)) as k →∞.

3.4.2 Convergence to the Solution of (2.14)

The previous section gives rise to a collection of Poisson processes on the box BL =

[−L,L]d that should describe the continuous time evolution of the presence of a

particular colour at a particular site. Namely, these are the family of processes

given by

(Pt(i, x, y, j), i, j ∈ N, x, y ∈ BL)
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of rate 1/(2dm) controlling the jumps of a particle of colour i at x to y arriving with

a new colour j, and

(P c(i, j, x), i, j ∈ N, x ∈ BL)

which are the familiar rate λ Poisson processes controlling the coalescence of particle

but restricted to the BL. In the context of coloured particles, these processes control

the change of colour i of a particle at x to j.

Equipped with these processes, we can write the equations that govern the

occupation of a site by a particle of a specific colour. Define the random variable

ξ
(m,L)
t (i, x) to be 1 is there is a particle at time t at x with colour i and 0 otherwise.

Then, if ξ0(i, x) is the initial condition corresponding to that for the discrete time

model,

ξ
(m,L)
t (i, x)

= ξ0(i, x) +

∫ t

0

m∑
j=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 0, ξ

(m,L)
s− (j, y) = 1}dPs(j, y, x, i)

−
∫ t

0

m∑
j=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 1}dPs(i, x, y, j)

−
∫ t

0

m∑
j=1

1{ξ(m,L)
s− (i, x) = 1, i 6= j}dP cs (i, j, x)

+

∫ t

0

m∑
j=1

1{ξ(m,L)
s− (j, x) = 1, ξ

(m,L)
s− (i, x) = 0, i 6= j}dP cs (j, i, x) (3.7)

for x ∈ BL. The first two integrals account for a gain or loss of a particle of colour

i as a result of migration while the final two terms account for the gain or loss

as a result of a spontaneous colour change. We will not concern ourselves with

proving the existence and uniqueness of the solution to this equation but we note

that when a solution exists, it belongs to {0, 1} for all times. Instead, define ξ∗t (x) =∑m
i=1 ξ

(m,L)
t (i, x) and ξ0(x) =

∑m
i=1 ξ0(i, x) and also Pt(i, y, x) =

∑m
j=1 Pt(i, y, x, j).
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Then, summing up (3.7) gives

ξ∗t (x)

= ξ0(x) +

∫ t

0

m∑
i=1

m∑
j=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 0, ξm,Ls− (j, y) = 1}dPs(j, y, x, i)

−
∫ t

0

m∑
i=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 1}dPs(i, x, y)

−
∫ t

0

m∑
i=1

m∑
j=1

1{ξ(m,L)
s− (i, x) = 1, i 6= j}dP cs (i, j, x)

+

∫ t

0

m∑
i=1

m∑
j=1

1{ξ(m,L)
s− (j, x) = 1, ξm,Ls− (i, x) = 0, i 6= j}dP cs (j, i, x).

Rewriting the indicators in the first and last integrals by decomposing the events

{ξm,Ls− (j, y) = 1} and {ξ(m,L)
s− (i, x) = 1, i 6= j} appropriately gives

ξ∗t (x) = ξ0(x) +

∫ t

0

m∑
j=1

∑
y∼x,y∈BL

1{ξm,Ls− (j, y) = 1}dPs(j, y, x)

−
∫ t

0

m∑
i=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 1}dPs(i, x, y)

−
∫ t

0

m∑
i=1

m∑
j=1

1{ξ(m,L)
s− (i, x) = 1, ξ

(m,L)
s− (j, x) = 1, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i=1

m∑
j=1

∑
y∼x,y∈BL

1{ξ(m,L)
s− (i, x) = 1, ξm,Ls− (j, y) = 1}dPs(j, y, x, i).

Since all the sums involved here are finite, we may rearrange and relabel at our

leisure so that the indices that give a genuine non-zero contribution to the sums

appear first, more explicitly we have equalities such as

m∑
j=1

1{ξm,Ls− (j, y) = 1}dPs(j, y, x) =

m∑
j=1

1{ξ∗(y) ≥ j}dPs(j, y, x). (3.8)

This is just essentially a repaint of particles according to their position at the site
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x. Exploiting this allows us to write

ξ∗t (x) = ξ0(x) +

∫ t

0

m∑
i=1

∑
y∼x,y∈BL

1{ξ∗s−(y) ≥ i}dPs(i, y, x)

−
∫ t

0

m∑
i=1

∑
y∼x,y∈BL

1{ξ∗s−(x) ≥ i}dPs(i, x, y)

−
∫ t

0

m∑
i=1

m∑
j=1

1{ξ∗s−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i=1

m∑
j=1

∑
y∼x,y∈BL

1{ξ∗s−(x) ≥ j, ξ∗s−(y) ≥ i}dPs(i, y, x, j) (3.9)

for x ∈ BL. We can extend this to a process on the entire d-dimensional lattice

by adding initial conditions for x ∈ Zd \ BL and insisting that ξ∗t (x) ≡ ξ0(x) for

all t. We will prove the existence, uniqueness and finiteness of moments for (3.9)

and following that, the remainder of this section will be to prove that this solution

converges in the correct sense to the unique solution (ξt(x) : x ∈ Zd) of the system

of equations (4) in the chapter on existence.

Proposition 3.4.2. For an initial condition satisfying
∑

x∈Zd e
−θ|x|E[ξ0(x)2] <∞,

where ξ0(x) =
∑m

i=1 ξ0(i, x) for x ∈ BL, there exists a unique solution to (3.9) and

for every p

∑
x∈Zd

e−θ|x|E[ξ∗t (x)p]

is finite if it is finite at time 0 and independent of L and m.

Proof. The first four terms of (3.9) appear in equation (2.15) albeit with a more

simple argument for the indicator in the first integral and also, only summing over

neighbours y that belong to BL. As such it is clear how the usual iteration method

that is used to prove existence and uniqueness for equation (2.15) in Section A of

the Appendix will work once we check that the additional term in (3.9) does not

upset the argument. Since, in establishing existence and uniqueness, we need not
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worry about the dependence on m, a bound such as

|1{ξ∗,ns− (x) ≥ j, ξ∗,ns− (y) ≥ i} − 1{ξ∗,n−1
s− (x) ≥ j, ξ∗,n−1

s− (y) ≥ i}

≤ |ξ∗,ns− (x)− ξ∗,n−1
s− (x)|+ |ξ∗,n−1

s− (y)− ξ∗,n−1
s− (y)|

will suffice where similar bounds were needed elsewhere in Section A of the Ap-

pendix. It is clear that the argument for existence and uniqueness will carry through.

Similarly, with existence established, it is clear that the solution takes natural num-

bers as values for all times. Therefore, we can bound

0 ≤ ξ∗t (x) ≤ ξ0(x) +

∫ t

0

m∑
i=1

∑
y∼x,y∈BL

1{ξ∗s−(y) ≥ i}dPs(i, y, x)

and hence the finite moments follow in exactly the same way as in Section 1.2 of

the Appendix.

Let ξt(x) be the unique solution to (2.14) guaranteed by Theorem 2.2.3. We

now prove that the negative correlation results carry over to this solution by proving

that ξ∗t (x) converges to this solution as m,L→∞.

Proposition 3.4.3. Given ξ̃0 satisfying E[
∑

x e
−θ|x|ξ̃0(x)2] < ∞ let ξ∗t (x) be the

unique solution to (3.9) with initial condition given by

ξ0(x) =


ξ̃0(x) ∧m, x ∈ BL

ξ̃0(x), x /∈ BL

Let ξt(x) be the unique solution (2.14) with initial condition ξ0, driven by the same

Poisson drivers as for (3.9) inside BL and by independent Poisson drivers outside

of BL. Then

ξ∗t (x)→ ξt(x) as L,m→∞, for all x and t > 0 a.s..

Proof. See Appendix Section B.
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Finally, we conclude that the solution to (2.14) with initial condition ξ0 ≡ 1

enjoys all the same negative correlation properties as for the discrete time model.

All convergence results in this chapter have been convergence in distribution or

stronger, hence we only need the following lemma.

Lemma 3.4.4. Let Xn, Yn be positive, jointly distributed, integer valued random

variables for each n such that

P[Xn ≥ i, Yn ≥ j] ≤ P[Xn ≥ i]P[Yn ≥ j]

then if (Xn, Yn)→ (X,Y ) in distribution, then

E[XY ] ≤ E[X]E[Y ].

Proof.

P[X ≥ i, Y ≥ j] = lim
n→∞

P[Xn ≥ i, Yn ≥ j]

≤ lim
n→∞

(P[Xn ≥ i]P[Yn ≥ j]) = P[X ≥ i]P[Y ≥ j]

since Xn, Yn are negatively correlated for all n. So

E[XY ] =
∑
i,j

P[X ≥ i, Y ≥ j]

≤
∑
i

P[X ≥ i]
∑
j

P[Y ≥ j]

= E[X]E[Y ].
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Chapter 4

Rate Equations

4.1 Instantaneously Coalescing Particles in d = 2

4.1.1 The Main Result

Following van den Berg and Kesten [27], our strategy is to build an approximate

ordinary differential equation for the probability of interest, the solution of which

will give the leading order asymptotic. For now we take ξ0 ≡ 1.

By subtracting off the mean of each of the Poisson processes, i.e. writing

dPt = dPt − dt/4 + dt/4 in equation (1) in Chapter 1 we gain a martingale term.

Since ξt(x) only takes values in {0, 1} we have that 1{ξt(x) = 1} = ξt(x). Also, we

can write 1{ξt(y) = 1, ξt(x) = 0} = ξt(y)(1− ξt(x)). Together, all of this gives

dξt(x) = ∆ξt(x)dt− 1

4

∑
y:y∼x

ξt(x)ξt(y)dt+ dm.t. (4.1)

where we have collected the martingale terms in (m.t.). After taking expectation,

translation invariance implies that the martingale terms and the discrete Laplacian

vanish. Letting ξ̂t = E[ξt(x)] gives us the exact differential equation

dξ̂t
dt

= −E[ξt(0)ξt(e)] (4.2)

where e is one of the origin’s 4 nearest neighbours (the choice is not important due
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to rotational invariance). It is now the expectation on the right hand side that we

wish to approximate in order to find the rate of decay of ξ̂t given in the following

theorem.

Theorem 4.1.1. Let ξt be the solution to (1.6) in d = 2 with initial condition

ξ0 ≡ 1. Then we have

ξ̂t =
log t

πt
+O

(
log1/2 t

t

)
.

4.1.2 A Priori Bounds

Before beginning the calculus, we state an a priori estimate for the first moment of

ξt and a result regarding negative correlation.

Lemma 4.1.2. Suppose that ξt is a solution to (1.6) with ξ0 ≡ 1 in d = 2. Then

there exist constants t0 > e and 0 < c1 < c2 <∞, so that

c1
log t

t
< ξ̂t < c2

log t

t
for all t ≥ t0.

Proof. This follows from Bramson and Griffeath [2] where they study the same

process but in all dimensions d ≥ 1. Rather than constructing their process as

the solution to a system of stochastic differential equations as we do, they employ

a graphical construction which is closely related to our construction. Therefore we

require a little explanation. Van den Berg and Kesten proved a corresponding result

for dimensions d ≥ 3 in Lemma 8 of their paper [27] on a slight generalisation of the

instantly coalescing random walks. In their system, particles coalesce on contact

immediately but only with a probability that depends on the number of particles at

the site of contact. They also allow for a more general random walk than nearest

neighbour. The construction of their process is an appropriate variation of the

graphical construction of Bramson and Griffeath which is given in detail in [12].

According to this construction, they are able to show that the expected value of the

number of particles at a site satisfies a differential equation, namely equation (3.9)

of Lemma 9. All of this is independent of dimension and in particular can be carried

out for d = 2. Our instantly coalescing random walks arise as a special case of their
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randomly instantly coalescing walks as soon as we insist that the probability that a

particle coalesces is 1 if there is a single particle already present (this corresponds

in their notation as letting p1 = 1) and as long as we take their jump function to be

q(y−x) = 1/4 if and only if y ∼ x and 0 otherwise. And in this case the differential

equation (3.9) in Lemma 9 of that paper reduces to the very same equation that

we have in equation (4.2). By the uniqueness of the solution given by Proposition

2.1.1 whatever holds for one construction will hold for the other. From this point,

the proof as it is in Bramson and Griffeath applies, as a special case of the proof of

Lemma 8 in [27].

Lemma 4.1.3. Suppose that ξt is a solution to (1.6) with ξ0 ≡ 1 in d = 2. Then,

for all k ∈ N,

E [ξt(x1) · . . . · ξt(xk)] ≤
(
c2

log t

t

)k
for all disjoint x1, . . . , xk and all t > t0

where t0, c2 are the same constants as in Lemma 4.1.2.

Proof. This follows from van den Berg and Kesten [28], where they prove more

general negative correlation results then we did for the instantly coalescing system

in Chapter 3 Section 3.2. As in the proof of Lemma 4.1.2 our instantly coalescing

random walks are a special case of their randomly coalescing random walks as soon

as the coalescing probability p1 is taken to be 1 and the walks are restricted to

nearest neighbour. This allows us to bound the expectation above by k copies of ξ̂t

and the upper bound comes from Lemma 4.1.2.

4.1.3 A Two Point Estimate

Our first step in the approximation of the expectation in (4.2) comes from a two

point estimate. For f, g : Z2 → R we will write 〈f, g〉 =
∑

x f(x)g(x), and similarly

for f, g : Z2 × Z2 → R, 〈f, g〉 =
∑

x,y f(x, y)g(x, y). We will use ∗ to view the

product of functions f, g : Z2 → R as a function f ∗ g : Z2 × Z2 → R. Notice that
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with the test function ϕs = ψt−s, where

ψt(x, y) = P[x+ S1
t = 0, y + S2

t = e, τ > t] (4.3)

and τ = inf{t : x+ S1
t = y + S2

t } that

E[〈ξt ∗ ξt, ϕt〉] = E

[∑
x,y

ξt(x)ξt(y)ϕt(x, y)

]

= E

[∑
x,y

ξt(x)ξt(y)1{x = 0, y = e}

]
= E[ξt(0)ξt(e)]. (4.4)

The right hand side of (4.4) is the expression that appears in the right hand side

of (4.2). With this in mind, we will use some calculus to pull back the left hand

side of (4.4) to time t − s and control the error. This corresponds exactly to the

idea that at the earlier time t − s, there are particles located at some sites x, y

that walk without coalescing to sites 0, e respectively by time t. The error in this

approximation accounts for the possibility that the particles might have coalesced

over the interval [t − s, t]. In order to do the calculus, we find the compensator

for the quadratic variation process and use the integration by parts formula. The

quadratic variation, defined by

[ξ(x), ξ(y)]t =
∑
s≤t

(ξs(x)− ξs−(x))(ξs(y)− ξs−(y)), (4.5)

is constant except at each of the jumps of ξt(x) or ξt(y). If x = y,

[ξ(x), ξ(x)]t =
∑
s≤t

(ξs(x)− ξs−(x))2

and we see that

d[ξ(x), ξ(x)]t =
∑
z:z∼x

(−1)2
1{ξt−(x) = 1}dPt(x, z)

+ (1)2
1{ξt−(z) = 1, ξt−(x) = 0}dPt(z, x)
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since the only change that can occur are the evacuation of a particle if x was occupied

or the occupation of x by a particle if x was empty.

If x ∼ y, we get

d[ξ(x), ξ(y)]t = −1{ξt−(x) = 1, ξt−(y) = 0}dPt(x, y)

− 1{ξt−(x) = 0, ξt−(y) = 1}dPt(y, x)

since the only change that can occur that contributes is a particle occupying x while

y is empty that evacuates x to occupy y or vice versa. There is no change if the

sites are either both occupied or both empty since there are no simultaneous events

for the collection of independent Poisson processes. Similarly, if |x − y| > 1 then

there can be no change that contributes to d[ξ(x), ξ(y)]t, since the walks are simple

and there are no simultaneous events. Compensating the Poisson processes and

bringing together all the cases, the compensator of the quadratic variation process

should satisfy

d〈〈ξ(x), ξ(y)〉〉t =



1
4

∑
z:z∼x

(
ξt(x) + ξt(z)− ξt(x)ξt(z)

)
dt x = y

−1
4

(
ξt(x) + ξt(y)− 2ξt(x)ξt(y)

)
dt x ∼ y

0 otherwise.

(4.6)

The integration by parts formula reads as

d(ξt(x)ξt(y)) = ξt−(x)dξt(y) + ξt−(y)dξt(x) + d[ξ(x), ξ(y)]t. (4.7)

Using the compensated equation (4.1) and the compensator for the quadratic co-
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variance process we arrive at

d

(
ξt(x)ξt(y)

)
= ξt−(x)

[
∆ξt(y)dt− 1

4

∑
z:z∼y

ξt(z)ξt(y)dt

]

+ ξt−(y)

[
∆ξt(x)dt− 1

4

∑
w:w∼x

ξt(x)ξt(w)dt

]
+ d〈〈ξ(x), ξ(y)〉〉t + m.t.

Rearranging

d

(
ξt(x)ξt(y)

)
= ξt(x)∆ξt(y)dt+ ξt(y)∆ξt(x)dt

− 1

4

∑
z:z∼y

ξt(x)ξt(y)ξt(z)dt−
1

4

∑
w:w∼x

ξt(x)ξt(y)ξt(w)dt

+ d〈〈ξ(x), ξ(y)〉〉t + m.t.

= ∆ξt(x)ξt(y)dt− 1

4
ξt(x)ξt(y)

( ∑
w:w∼x

ξt(w) +
∑
z:z∼y

ξt(z)

)
dt

+ d〈〈ξ(x), ξ(y)〉〉t + m.t.

where ∆ in the last equality is the Laplacian acting in two variables with the product

ξt(x)ξt(y) being treated as a single function of two variables. Now multiply by an

arbitrary test function ϕ : Z2 × Z2 → R that satisfies

∑
x,y

|ϕ(x, y)|+ |ϕ̇(x, y)| <∞
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and sum over all x and y,

d〈ξu ∗ ξu, ϕu〉 =
∑
x

∑
y

d

(
ξu(x)ξu(y)

)
ϕu(x, y) + 〈ξu ∗ ξu, ϕ̇u〉du

=
∑
x

∑
y

∆ξu(x)ξu(y)ϕu(x, y)du

− 1

4
ξu(x)ξu(y)

( ∑
w:w∼x

ξu(w) +
∑
z:z∼y

ξu(z)

)
ϕu(x, y)du

+
∑
x

∑
y

d〈〈ξ(x), ξ(y)〉〉uϕu(x, y)

+ 〈ξu ∗ ξu, ϕ̇u〉du+ m.t..

The sum over all x, y converges since if we first truncate (writing 〈ξu ∗ ξu, ϕu〉N to

be the sum truncated at |x|, |y| ≤ N) then

E[〈ξu ∗ ξu, |ϕu|〉N ] =
∑

|x|,|y|≤N

E[ξu(x)ξu(y)]|ϕu(x, y)|

≤
∑
|x|≤N

E[ξu(x)]|ϕu(x, x)|+
∑

|x|,|y|≤N,y 6=x

E[ξu(x)]E[ξu(y)]|ϕu(x, y)|

≤ ξ̂t
∑
|x|≤N

|ϕu(x, x)|+ ξ̂2
t

∑
|x|,|y|≤N,y 6=x

|ϕu(x, y)|

≤ ξ̂t
∑

|x|,|y|≤N

|ϕu(x, y)|

≤ ξ̂t
∑
x,y

|ϕu(x, y)| <∞

So we may take N →∞ and the sum converges almost surely. Discrete integration
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by parts for the Laplacian in one variable is achieved by

∑
x

g(x)∆f(x) =
1

4

∑
x

∑
y:y∼x

g(x)f(y)− 1

4

∑
x

∑
y:y∼x

g(x)f(x)

=
1

4

∑
y

∑
x:x∼y

g(x)f(y)− 1

4

∑
x

∑
y:y∼x

g(x)f(x)

=
1

4

∑
x

∑
y:y∼x

g(y)f(x)− 1

4

∑
x

∑
y:y∼x

g(x)f(x)

=
∑
x

f(x)∆g(x). (4.8)

Define ∆i as the Laplacian in one variable acting on variable i of a multivariable

function, for example

∆1f(x, y) =
1

4

∑
e:e∼x

f(e, y)− f(x, y).

For the Laplacian in two variables we have for f, g : Z2 × Z2 → R

〈∆f, g〉 =
∑
x,y

g(x, y)∆f(x, y)

=
∑
x,y

g(x, y) (∆1f(x, y) + ∆2f(x, y))

=
∑
y

∑
x

g(x, y)∆1f(x, y) +
∑
x

∑
y

g(x, y)∆2f(x, y)

=
∑
y

∑
x

f(x, y)∆1g(x, y) +
∑
x

∑
y

f(x, y)∆2g(x, y)

=
∑
x,y

f(x, y)∆g(x, y)

= 〈f,∆g〉. (4.9)

Using discrete integration by parts on the product of the first summand with ϕ and
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the relation in (4.6) for the compensator of the quadratic covariance process we get

d〈ξu ∗ ξu, ϕu〉 = 〈ξu ∗ ξu, ϕ̇u + ∆ϕu〉

− 1

4

∑
x

∑
y

ξu(x)ξu(y)

( ∑
w:w∼x

ξu(w) +
∑
z:z∼y

ξu(z)

)
ϕu(x, y)du

+
1

4

∑
x

∑
w:w∼x

(
ξu(x) + ξu(w)− ξu(x)ξu(w)

)
ϕu(x, x)du

− 1

4

∑
x

∑
y:y∼x

(
ξu(x) + ξu(y)− 2ξu(x)ξu(y)

)
ϕu(x, y)du

+ m.t.. (4.10)

Now, we make a specific choice of a test function. Let ϕu = ψt−u as in (4.3). Then

since ψt(x, y) ≤ pt(x)pt(y) we have
∑

x,y ψt(x, y) ≤ 1. Now on the diagonal and for

any u ∈ [0, t], ϕu ≡ 0, since if the two sites are coincident the two particles will

coalesce immediately so that τ = 0. The probability is then the indicator of the

event that the site x is simultaneously the origin and its neighbour e. This is an

impossible event so the indicator is identically 0. Therefore, all the terms in (4.10)

on the diagonal vanish leaving

d〈ξu ∗ ξu, ϕu〉 = 〈ξu ∗ ξu, ϕ̇u + ∆ϕu〉du

− 1

4

∑
x

∑
y 6=x

ξu(x)ξu(y)

(∑
w∼x

ξs(w) +
∑
z∼y

ξu(z)

)
ϕu(x, y)du

− 1

4

∑
x

∑
y∼x

(
ξu(x) + ξu(y)− 2ξu(x)ξu(y)

)
ϕu(x, y)du+ m.t. (4.11)

Also, we have that the test function ϕ satisfies

ϕ̇u(x, y) + ∆ϕu(x, y) =


0 if x 6= y

∆ϕu(x, y) if x = y

since the only contribution to the derivative of ϕ when x and y are not coincident

comes from walking and there is no contribution when the sites are coincident since
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the walks have met instantaneously so that

〈ξu ∗ ξu, ϕ̇u + ∆ϕu〉 =
∑
x

∑
y

ξu(x)ξu(y)

(
ϕ̇u(x, y) + ∆ϕu(x, y)

)
=
∑
x

∑
y=x

ξu(x)ξu(y)∆ϕu(x, y)

=
∑
x

ξ2
u(x)∆ϕu(x, x)

=
∑
x

ξu(x)∆ϕu(x, x).

Here the last equality follows since ξu(x) = 0 or 1. Now,

∆ϕu(x, x) = ∆1ϕu(x, x) + ∆2ϕu(x, x)

=
1

4

∑
y∼x

(
ϕu(y, x)− ϕu(x, x)

)
+

1

4

∑
y∼x

(
ϕu(x, y)− ϕu(x, x)

)
=

1

4

∑
y∼x

(
ϕu(y, x) + ϕu(x, y)

)
.

This gives, by substitution and a change of variables

〈ξu ∗ ξu, ϕ̇u + ∆ϕu〉 =
1

4

∑
x

ξu(x)
∑
y∼x

(
ϕu(y, x) + ϕu(x, y)

)
=

1

4

∑
x

∑
y∼x

(
ξu(x) + ξu(y)

)
ϕu(x, y).

This term now cancels with the first two summands of the first factor in the last

sum of (4.11), giving us

d〈ξu ∗ ξu, ϕu〉 =− 1

4

∑
x

∑
y 6=x

ξu(x)ξu(y)

(∑
w∼x

ξu(w) +
∑
z∼y

ξu(z)

)
ϕu(x, y)du

+
1

4

∑
x

∑
y∼x

2ξu(x)ξu(y)ϕu(x, y)du+ m.t..
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Taking expectation gives

dE [〈ξu ∗ ξu, ϕu〉] =− 1

4

∑
x

∑
y 6=x

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)]

+
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)
ϕu(x, y)du

+
1

4

∑
x

∑
y∼x

2E [ξu(x)ξu(y)]ϕu(x, y)du.

Now, since the inner sum of the first term is taken over all y 6= x, there will be

terms appearing in the case that y neighbours x. In this instance, the value of ξu(y)

will of course coincide exactly with the value of ξu at one of x’s 4 neighbours w and

we’ll lose a term in the expectation since in this instance ξu(y)ξu(w) = ξu(y)ξu(y) =

ξu(y)2 = ξu(y). Similarly, the value of ξu(x) will coincide with the value of ξu at one

of y’s 4 neighbours z. We have to be careful in estimating the expectation because

Lemma 4.1.3 only gives a result for disjoint sites. This motivates us to split the sum

over y 6= x into a sum over y such that |y − x| > 1 and a sum over y ∼ x. Here | · |

is the standard Euclidean norm.

dE [〈ξu ∗ ξu, ϕu〉]

= −1

4

∑
x

∑
y : |y−x|>1

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)
ϕu(x, y)du

− 1

4

∑
x

∑
y∼x

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)
ϕu(x, y)du

+
1

4

∑
x

∑
y∼x

2E [ξu(x)ξu(y)]ϕu(x, y)du.
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For the case that y neighbours x, we have

dE [〈ξu ∗ ξu, ϕu〉]

= −1

4

∑
x

∑
y : |y−x|>1

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)

× ϕu(x, y)du

− 1

4

∑
x

∑
y∼x

 ∑
{w:w∼x}\y

E[ξu(x)ξu(y)ξu(w)] +
∑

{z:z∼y}\x

E[ξu(x)ξu(y)ξu(z)]


× ϕu(x, y)du

− 1

4

∑
x

∑
y∼x

E
[
ξu(x)ξu(y)

(
ξu(y) + ξu(x)

)]
ϕu(x, y)du

+
1

4

∑
x

∑
y∼x

2E [ξu(x)ξu(y)]ϕu(x, y)du

=− 1

4

∑
x

∑
y : |y−x|>1

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)

× ϕu(x, y)du

− 1

4

∑
x

∑
y∼x

 ∑
{w:w∼x}\y

E[ξu(x)ξu(y)ξu(w)] +
∑

{z:z∼y}\x

E[ξu(x)ξu(y)ξu(z)]


× ϕu(x, y)du

(4.12)

where in the last equality the last two sums cancelled since ξ2 ≡ ξ. We interupt

the consideration of the two point estimate briefly, just to state a result about non-

interacting random walks in two dimensions which we will need moving on. We will

defer the proof of this result until the end of Section 5.2. Recall that pt(x) is the

probability that a simple, rate 1, continuous time random walk started at the origin

is at x at time t and e is any neighbour of the origin.

Lemma 4.1.4. Let Λt(x, y) = ψt(x, y)− π
log tpt(x)pt(y−e). Then there exists c5 > 0
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and ζ ∈ (0, 1) such that

〈1, |Λt(·, ·)|〉 ≤
c5

log1+ζ t

for large enough t.

This next lemma is a small result but it is important. In many places we need

to estimate the expected value of the occupation of neighbouring sites, E[ξt(0)ξt(e)].

If we used only negative correlation here we would find E[ξt(0)ξt(e)] ≤
(
c3ξ̂t

)2
.

However, we can improve this by a logarithm at the cost of rewinding time a little

bit using the random walk estimate Lemma 4.1.4 and indeed it is necessary to do

so, without this extra logarithm our errors will not be small enough.

Lemma 4.1.5. Suppose that ξ is a solution to (1.6) with ξ0 ≡ 1 in d = 2. Let

s = t/ logα t, for some α > 0, and let r ∈ [t − s, t]. Then there exists c6(α) < ∞

such that

E[ξr(0)ξr(e)] ≤ c6
ξ̂2
t−2s

log t
.

Proof. Note that (4.12) is negative so that the quantity decreases, the same is true

with the test function ϕ′u = ψr−u, for u ≤ r, that is

dE
[
〈ξu ∗ ξu, ϕ′u〉

]
= −1

4

∑
x

∑
y : |y−x|>1

(∑
w∼x

E[ξu(x)ξu(y)ξs(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)
ϕ′u(x, y)du

− 1

4

∑
x

∑
y∼x

 ∑
{w:w∼x}\y

E[ξu(x)ξu(y)ξu(w)] +
∑

{z:z∼y}\x

E[ξu(x)ξu(y)ξu(z)]

ϕ′u(x, y)du
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so, by Lemma 4.1.4

E[ξr(0)ξr(e)]

= E[〈ξr ∗ ξr, ϕ′r〉] ≤ E[〈ξt−2s ∗ ξt−2s, ψr−t+2s〉]

≤ sup
x,y

E[ξt−2s(x)ξt−2s(y)]

(
π

log (r − t+ 2s)

∑
x,y

pr−t+2s(x)pr−t+2s(y − e)

+
C

log1+ζ (r − t+ 2s)

)
≤ C

ξ̂2
t−2s

log (r − t+ 2s)

≤ C
ξ̂2
t−2s

log (s)

≤ c6
ξ̂2
t−2s

log (t)
(4.13)

since s = t/ logα t and r ≥ t− s.

Returning to (4.12), both of the terms in the derivative are small in ex-

pectation. Consider the first term of (4.12). We estimate for u ∈ [t − s, t], with

s = t/ logα t

∑
x

∑
y:|y−x|>1

(∑
w∼x

E[ξu(x)ξu(y)ξu(w)] +
∑
z∼y

E[ξu(x)ξu(y)ξu(z)]

)
ϕu(x, y)

≤
∑
x

∑
y:|y−x|>1

(∑
w∼x

E[ξu(x)ξu(w)]E[ξu(y)] +
∑
z∼y

E[ξu(z)ξu(y)]E[ξu(x)]

)
ϕu(x, y)

≤ CE[ξu(0)ξu(e)]E[ξu(0)]
∑
x

∑
y:|y−x|>1

ϕu(x, y)

≤ c6
ξ̂2
t−2s

log t
· log u

u

∑
x

∑
y:|y−x|>1

ϕu(x, y) by Lemma 4.1.3 and (4.13)

≤ C log2 (t− 2s)

(t− 2s)2 log t
· log (t− s)

t− s
∑
x

∑
y

ϕu(x, y)

≤ C log2 t

t3

∑
x

∑
y

ϕu(x, y)

where the constant is changing line by line. The second term is similar since the
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arguments of the expectation are all disjoint and we can peal off one of the terms

in each of the expectations by negative correlation, leaving a pair of neighbouring

sites in each for which (4.13) can be applied. So (4.12) can be bounded by

log2 t

t3

∑
x

∑
y

ϕu(x, y)

up to some constant.

Lemma 4.1.6. With ϕ as defined in (4.3), there exists c7 < ∞ so that for s =

t/ logα t and t ≥ 2

∣∣∣∣E[ξt(0)ξt(e)]− E[〈ξt−s ∗ ξt−s, ϕt−s〉]
∣∣∣∣ ≤ c7

log1−α t

t2
.

Proof. When r is small ϕr is well approximated as in Lemma 4.1.4

∣∣∣∣E[ξt(0)ξt(e)]− E[〈ξt−s ∗ ξt−s, ϕt−s〉]
∣∣∣∣

=

∣∣∣∣E[〈ξt ∗ ξt, ϕt〉]− E[〈ξt−s ∗ ξt−s, ϕt−s〉]
∣∣∣∣

=

∣∣∣∣ ∫ t

t−s
dE[〈ξr ∗ ξr, ϕr〉]

∣∣∣∣
≤ C log2 t

t3

∫ t

t−s

∑
x

∑
y

ϕr(x, y)ds

≤ C log2 t

t3

(∫ t− s
log s

t−s

∑
x

∑
y

ϕr(x, y)ds+

∫ t

t− s
log s

∑
x

∑
y

ϕr(x, y)ds

)

in the first integral we use Lemma 4.1.4 and in the second we simply bound the

entire double sum by 1.

∣∣∣∣E[ξt(0)ξt(e)]− E[〈ξt−s ∗ ξt−s, ϕt−s〉]
∣∣∣∣

≤ C log2 t

t3

((
s− s

log s

)
C ′

log ( s
log s)

+
s

log s

)
≤ C log2 t

t3
s

log s
≤ C log1−α t

t2

where C ′ is some positive constant and the value of C is changing in each inequality.
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Recall the definition of Λ given in 4.1.4.

Lemma 4.1.7. With ϕ as defined in (4.3), there exists c8 < ∞ such that for

s = t/ logα t and t ≥ 2

∣∣∣∣E[〈ξt−s ∗ ξt−s, ϕt−s〉]−
π

log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps(· − e)〉]

∣∣∣∣ ≤ c8
log(1−ζ)∨α t

t2
.

Proof.

∣∣∣∣E[〈ξt−s ∗ ξt−s, ϕt−s〉]−
π

log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps(· − e)〉]

∣∣∣∣
=

∣∣∣∣E[〈ξt−s ∗ ξt−s, ψs −
π

log s
ps ∗ ps(· − e)〉]

∣∣∣∣
=

∣∣∣∣E[〈ξt−s ∗ ξt−s,Λs〉]
∣∣∣∣

≤
∑
x

∑
y

∣∣∣∣E[ξt−s(x)ξt−s(y)]Λs(x, y)

∣∣∣∣
=
∑
x

∑
y 6=x

∣∣∣∣E[ξt−s(x)ξt−s(y)]Λs(x, y)

∣∣∣∣+
∑
x

∣∣∣∣E[ξt−s(x)]Λs(x, x)

∣∣∣∣.
We have split the sum so that the expectation in the first sum can be estimated by

the moment bounds in Lemma 4.1.3. The bound on the second sum will follow from

the bound on the transition density in Lemma 5.1.1.

∑
x

∑
y 6=x

∣∣∣∣E[ξt−s(x)ξt−s(y)]Λs(x, y)

∣∣∣∣+
∑
x

∣∣∣∣E[ξt−s(x)]Λs(x, x)

∣∣∣∣
≤ C

(
log(t− s)
t− s

)2∑
x

∑
y 6=x

∣∣∣∣Λs(x, y)

∣∣∣∣+
C

log s

(
log(t− s)
t− s

)∑
x

ps(x)ps(x− e)

≤ C
(

log(t− s)
t− s

)2

〈1, |Λs|〉x,y +
C

s log s

(
log(t− s)
t− s

)∑
x

ps(x)

≤ c
(

1

log1+ζ s

(
log t

t

)2

+
1

s log s

(
log t

t

))
by (4.1.4).
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4.1.4 A Variance Estimate

In the last approximation we were left at

π

log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps(· − e)〉]

=
π

log s
E

[∑
x,y

ξt−s(x)ξt−s(y)ps(x)ps(y − e)

]

=
π

log s
E

[∑
x

ξt−s(x)ps(x)
∑
y

ξt−s(y)ps(y − e)

]

=
π

log s
E[〈ξt−s, ps〉〈ξt−s, ps(· − e)〉]

and wanting to estimate this expectation. There will be need for an application of

a variance estimate to decouple the terms in the final equality of the above. This is

easy using negative correlation.

Lemma 4.1.8. Let f : Z2 → R be such that 〈f2, 1〉 <∞. Then there exists c9 <∞

such that for t ≥ e

V ar(〈ξt, f〉) ≤ c〈f2, 1〉 log t

t
.

Proof.

V ar(〈ξt, f〉) = E
[(
〈ξt, f〉 − E[〈ξt, f〉]

)2]
= E

[∑
x

(ξt(x)− ξ̂t)f(x)
∑
y

(ξt(y)− ξ̂t)f(y)

]

=
∑
x

∑
y

E
[
(ξt(x)− ξ̂t)(ξt(y)− ξ̂t)

]
f(x)f(y). (4.14)
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Ignore for now the diagonal terms y = x, then expanding the expectation and using

Lemma 4.1.3 we find

∑
x

∑
y:y 6=x

E
[
(ξt(x)− ξ̂t)(ξt(y)− ξ̂t)

]
f(x)f(y)

=
∑
x

∑
y:y 6=x

E
[
(ξt(x)ξt(y)− ξ̂tξt(y)− ξt(x)ξ̂t + ξ̂2

t )
]
f(x)f(y)

=
∑
x

∑
y:y 6=x

(
E[ξt(x)ξt(y)]− ξ̂2

t

)
f(x)f(y)

≤ C
∑
x

∑
y:y 6=x

(
E[ξt(x)]E[ξt(y)]− ξ̂2

t

)
f(x)f(y)

= C
∑
x

∑
y:y 6=x

(
ξ̂2
t − ξ̂2

t

)
f(x)f(y) = 0.

We can use this to bound (4.14) above by just the sum over the diagonal terms so

that

V ar(〈ξt, f〉) ≤
∑
x

∑
y=x

E
[
(ξt(x)− ξ̂t)(ξt(y)− ξ̂t)

]
f(x)f(y)

=
∑
x

E
[
(ξt(x)− ξ̂t)2

]
f(x)2

=
∑
x

(
E[ξt(x)2]− ξ̂2

t

)
f(x)2

=
∑
x

(
E[ξt(x)]− ξ̂2

t

)
f(x)2

≤ c
(

log t

t

)∑
x

f(x)2 = c

(
log t

t

)
〈f2, 1〉

If we choose f to be either ps or ps(·−e) then since
∑

x p
2
s(x−e) =

∑
x p

2
s(x)

we have 〈f2, 1〉 =
∑

x p
2
s(x) ≤ c

s

∑
x ps(x) = c

s . For s ≤ t/2, using Cauchy-Schwarz

111



we get the estimate

∣∣∣∣E [〈ξt−s, ps〉〈ξt−s, ps(· − e)〉]− E[〈ξt−s, ps〉]E[〈ξt−s, ps(· − e)〉]
∣∣∣∣

= |Cov(〈ξt−s, ps〉, 〈ξt−s, ps(· − e)〉)|

≤
√
V ar(〈ξt−s, ps〉)V ar(〈ξt−s, ps(· − e)〉)

≤ c
(

log(t− s)
t− s

)
〈(ps)2, 1〉

≤ c
(

log t

t

)∑
x

ps(x)2

≤ c

s

(
log t

t

)∑
x

ps(x) =
c

s

(
log t

t

)
(4.15)

where the constant c is changing in the inequalities.

Remark 4.1.9. E[〈ξt−s, ps(· − e)〉] = E [
∑

x ξt−s(x)ps(x− e)] = ξ̂t−s
∑

x ps(x) =

ξ̂t−s = E[〈ξt−s, ps〉] so E[〈ξt−s, ps〉]E[〈ξt−s, ps(· − e)〉] = ξ̂2
t−s.

4.1.5 A One Point Estimate

Our next task is approximating E[〈ξt−s, ps〉] = ξ̂t−s so that we can replace it by the

corresponding value at time t. For the sake of brevity, let

Γξt(x) =
∑
y:y∼x

ξt(x)ξt(y).

Now let ϕt(x) be a suitably smooth and integrable test function, then we calculate

d〈ξt, ϕt〉 = 〈dξt, ϕt〉+ 〈ξt, ϕ̇t〉dt

=

〈
∆ξt −

1

4
Γξt, ϕt

〉
dt+ 〈ξt, ϕ̇t〉dt+ m.t.

= 〈∆ξt, ϕt〉 dt−
1

4
〈Γξt, ϕt〉 dt+ 〈ξt, ϕ̇t〉dt+ m.t..

Discrete integration by parts for the Laplacian in one variable (4.8) gives

d〈ξt, ϕt〉 = 〈ξt, ϕ̇t + ∆ϕt〉 dt−
1

4
〈Γξt, ϕt〉 dt+ m.t.
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For f : Z2 → R such that 〈|f |, 1〉 < ∞, choosing ϕs(x) = Pt−sf(x) :=∑
y pt−sf(x− y) we have for all r ∈ [0, t], ϕ̇r + ∆ϕr = 0. So

d〈ξr, ϕr〉 = −1

4
〈Γξr, ϕr〉 dr + m.t.

and taking expectation gives

dE[〈ξr, ϕr〉] = −1

4
E [〈Γξr, ϕr〉] dr

this leads to the following one point estimate.

Lemma 4.1.10. There exists c10 <∞ so that for s = t/ logα t, t ≥ e and f : Z2 → R

satisfying 〈|f |, 1〉 <∞

∣∣∣∣E[〈ξt, f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣ ≤ c10〈|f |, 1〉

log1−α t

t
.

In particular, |ξ̂2
t − ξ̂2

t−s| ≤ c11
log2−α t

t2
.

Proof.

∣∣∣∣E[〈ξt, f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣ =

∣∣∣∣E [〈ξt, P0f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣

=

∣∣∣∣∫ t

t−s
dE [〈ξr, Pt−rf〉]

∣∣∣∣
=

1

4

∣∣∣∣∫ t

t−s
E [〈Γξr, Pt−rf〉] dr

∣∣∣∣
=

1

4

∣∣∣∣∣
∫ t

t−s
E

[∑
x

∑
y:y∼x

ξr(x)ξr(y)Pt−rf(x)

]
dr

∣∣∣∣∣
=

1

4

∣∣∣∣∣
∫ t

t−s
E

[∑
x

∑
y:y∼x

ξr(x)ξr(y)
∑
z

pt−r(z)f(x− z)

]
dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

t−s
E[ξr(0)ξr(e)]

∑
z

pt−r(z)
∑
x

f(x− z)dr

∣∣∣∣∣
≤
∫ t

t−s

∣∣∣∣∣E[ξr(0)ξr(e)]
∑
z

pt−r(z)
∑
x

f(x− z)

∣∣∣∣∣ dr
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=

∫ t

t−s

∣∣∣∣∣E[ξr(0)ξr(e)]〈f, 1〉
∑
z

pt−r(z)

∣∣∣∣∣ dr
=

∫ t

t−s
|E[ξr(0)ξr(e)]〈f, 1〉| dr

≤ c〈|f |, 1〉 ξ̂t−2s

log t

∫ t

t−s
dr by (4.13)

≤ c〈|f |, 1〉 log1−α t

t
.

Note that the constant c changes from line to line. Choose f = p0. Then, 〈p0, 1〉 =∑
x p0(x) =

∑
x 1{x = 0} = 1 and

|ξ̂t − ξ̂t−s| =
∣∣∣∣E[〈ξt, p0〉]− E [〈ξt−s, ps〉]

∣∣∣∣
=

∣∣∣∣E[〈ξt, p0〉]− E [〈ξt−s, Psp0〉]
∣∣∣∣

≤ c10
log1−α t

t
.

This gives (using Lemma 4.1.2) the estimate,

|ξ̂t
2 − ξ̂2

t−s| = |ξ̂t − ξ̂t−s||ξ̂t + ξ̂t−s| (4.16)

≤ c log1−α t

t

(
log t

t
+

log(t− s)
t− s

)
≤ c11

log2−α t

t2

for s ≤ t/2, where the constant changes again from line to line.
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4.1.6 Proof of the Theorem

Bringing all of the estimates together we have the following rehashing of the heuristic

albeit now all true equalities keeping track of the errors

dξ̂t
dt

= −E[ξt(0)ξt(e)]

= −E[〈ξt−s ∗ ξt−s, ϕt−s〉] + E
(1)
t by Lemma 4.1.6

= − π

log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps(· − e)〉] + E

(2)
t by Lemma 4.1.7

= − π

log s
E [〈ξt−s, ps〉〈ξt−s, ps(· − e)〉] + E

(2)
t

= − π

log s
E[〈ξt−s, ps〉]2 + E

(3)
t by Lemma 4.1.8, (4.15) and the following remark

= − π

log s
ξ̂2
t−s + E

(3)
t again by the remark

= − π

log s
ξ̂2
t + E

(4)
t by (4.16)

we have noted carefully in each step where there was a genuine contribution to the

error by updating the index. The final error satisfies

|E (4)
t | ≤

C

t2

(
log1−α t+ log1−ζ t+ logα t

)
.

Since the a priori estimates tell us to expect the leading order of our approximation

for dξ̂t/dt to be

1

log s

(
log t

t

)2

=
1

log t− α log log t

(
log t

t

)2

(4.17)

the second of the error terms is immediately of small enough order so as not to

contribute to the derivative at large times. The first error is of small enough order

for any α > 0, while the final error term requires us to take α < 1.
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We now solve the approximate differential equation.

dξ̂t
dt

= − π

log s
ξ̂2
t + E

(4)
t

ξ̂−2
t

dξ̂t
dt

= − π

log s
+ ξ̂−2

t E
(4)
t

ξ̂−2
t

dξ̂t
dt

= − π

log t

log t

log t− α log log t
+ ξ̂−2

t E
(4)
t

ξ̂−2
t

dξ̂t
dt

= − π

log t
− πα log log t

(log t)(log t− α log log t)
+ E

(5)
t

where now

|E (5)
t | ≤ C

(
log−(1+α) t+ log−(1+ζ) t+ logα−2 t

)
In Lemma 4.1.4, we can choose ζ = 1 − δ ≥ 1/2, also choosing α = 1/2 gives the

further bound of

|E (5)
t | ≤ C(log t)−3/2.

Returning to our equation and integrating over t larger than a suitable t0

−ξ̂−1
t + ξ̂−1

t0
= −π


∫ t

t0

1

logs
ds︸ ︷︷ ︸

I

+
1

2

∫ t

t0

log log s

(log s)(log s− 1
2 log log s)

ds︸ ︷︷ ︸
II



+O


∫ t

t0

1

(log s)3/2
ds︸ ︷︷ ︸

III


We will apply the following trivial lemma a number of times.

Lemma 4.1.11. Let f be an increasing, continuous function on some interval

[t0,∞] satisfying f(t) ≥ 1. Suppose f(t) = O(log log t). Then, for all β > 1,
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there exists t0 > ee
1/β

such that

∫ t

t0

f(s)

(log s)β
ds = O

(
tf(t)

(log t)β

)
.

Proof. Fix β > 1. Since f is positive and of order log log t, there is a t0 such

that f(t)/(log t)β is decreasing for t > t0. Also (taking t0 larger if necessary), for

all t > t0,
√
t ≥ (log t)β since

√
t eventually grows quicker than any power of a

logarithm. Take such t0, then for t > t20

∫ t

t0

f(s)

(log s)β
ds =

∫ t

√
t

f(s)

(log s)β
ds+

∫ √t
t0

f(s)

(log s)β
ds

≤ (t−
√
t)f(
√
t)

(log
√
t)β

+
(
√
t− t0)f(t0)

(log t0)β
since f(t) = O(log log t)

≤ 2βtf(t)

(log t)β
+

√
tf(t0)

(log t0)β
since f(t) is increasing

≤ C
(

tf(t)

(log t)β
+
√
t

)
= C

(
tf(t)

(log t)β
+

t√
t

)
≤ C

(
tf(t)

(log t)β
+

t

(log t)β

)
≤ 2C

(
tf(t)

(log t)β

)
since f(t) ≥ 1,

that is ∫ t

t0

f(s)

(log s)β
ds = O

(
tf(t)

(log t)β

)
.

Let’s take I,

I =

∫ t

t0

1

log s
ds =

t

log t
− t0

log t0
+

∫ t

t0

1

(log s)2
ds

=
t

log t
− t0

log t0
+O

(
t

(log t)2

)
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where we have used Lemma 4.1.11 and taken f(t) = 1. For II

II =

∫ t

t0

log log s

(log s)(log s− 1
2 log log s)

ds

≤ 2

∫ t

t0

log log s

(log s)2
ds

= O

(
t log log t

(log t)2

)

again by Lemma 4.1.11, with f(t) = log log t. Finally, for III

III =

∫ t

t0

1

(log s)3/2
ds = O

(
t

(log t)3/2

)

similarly with f(t) = 1 once again. Plugging all this into our equation we get

−ξ̂−1
t + ξ̂−1

t0
= − πt

log t
+

πt0
log t0

+O

(
t

(log t)3/2

)
πt

log t
= ξ̂−1

t +O

(
t

(log t)3/2

)
ξ̂t =

log t

πt
+O

(
ξ̂t

log1/2 t

)

ξ̂t =
log t

πt
+O

(
log1/2 t

t

)

and this proves Theorem 4.1.1.

4.2 Non-Instantaneously Coalescing Particles in d = 2

Suppose that we have independent and identically distributed continuous time rate

1 random walks describing the trajectories of particles in Z2, and further that these

particles coalesce at rate λ. Let ξt(x) be the number of particles occupying x at

time t with initial state ξ0 ≡ 1. The equation that governs the occupation number
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of x is

dξt(x) =
∑
y:y∼x

∑
i≥1

(
1{ξt−(y) ≥ i}dPt(i, y, x)− 1{ξt−(x) ≥ i}dPt(i, x, y)

)
(4.18)

−
∑
i,j≥1

1

(
ξt−(x) ≥ i ∨ j, i 6= j

)
dP c(i, j, x).

The existence and uniqueness of a solution to the equation (4.18) is guaranteed by

Theorem 2.2.3. Compensating gives

dξt(x) = ∆ξt(x)dt− λξt(x)(ξt(x)− 1)dt+ m.t. (4.19)

and taking expectation and exploiting translation invariance gives us the following

equality for the derivative of ξ̂t = E[ξt(0)],

dξ̂t
dt

= −λE[ξt(0)(ξt(0)− 1)]. (4.20)

4.2.1 A Priori Bounds

As with the instantaneously coalescing random walks, we need an a priori estimate

for the first moment.

Lemma 4.2.1. Suppose that ξ is a solution to (1.6) in d = 2 with initial condition

ξ0 ≡ 1. Then there exist constants 0 < c1 < c2 <∞ and t0 ≥ e, depending on λ so

that for any x ∈ Z2

c1
log t

t
≤ E[ξt(x)] < c2

log t

t
for all t > t0.

Proof. The lower bound follows immediately from Lemma 2.3.1 and [13]. Fix box

Λ = ΛR of side R. Let V be the unique collection of centres that enable us to tile

Z2 by translates of Λ. That is Z2 =
⋃
v∈V {Λ + v}. Let et(Λ) =

∑
x∈Λ E[ξt(x)]. By
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translation invariance et(Λ) = ξ̂t|Λ|. Also, for s < t,

|Λ| = et(Λ)

ξ̂t
=
es(Λ)

ξ̂s

or equivalently

ξ̂t = ξ̂s

(
1− es(Λ)− et(Λ)

es(Λ)

)
.

Note that (in the notation given in Proposition 2.3.2) ξt = ξZ
2

t so that by the tiling

of Z2 by copies of Λ centred at the sites of V and Proposition 2.3.2 and Markov

property, writing ξs for the state of the entire system at time s and conditioning on

that so as to treat s as the origin of the timeline

et(Λ) =
∑
x∈Λ

E[ξt(x)]

=
∑
x∈Λ

E[ξξst−s(x)]

≤
∑
x∈Λ

∑
v∈V

E[ξ
ξs∩{Λ+v}
t−s (x)]

=
∑
x∈Λ

∑
v∈V

E[ξξs∩Λ
t−s (x− v)]

=
∑
x∈Z2

E[ξξs∩Λ
t−s (x)].

The inequality is due to the coupling result in Lemma 2.3.2 since we have decom-

posed Zd into translates of Λ. Let

∆s,t(Λ) = es(Λ)−
∑
x∈Z2

E[ξξs∩Λ
t−s (x)]

We interupt the proof briefly to provide a result to help us bound ∆s,t.

Lemma 4.2.2. For any Λ ⊂ Z2

∑
x∈Λ

ξ0(x)−
∑
x∈Z2

E[ξΛ
s (x)] ≥ λ

λ+ 1
(|Λ| − 1) min

x,y∈Λ
H2(s−1)(x− y)

where Hs(x) is the probability that the first hitting time of the origin of a random
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walk started at x is before time s.

Proof. We choose to employ a different construction for our process than have used

thus far. We will construct the process inductively by adding in particles one by

one. Firstly, run a random walk that will describe the trajectory of particle that

will be numbered one. This particle will never be lost to the system. Run a second,

independently identically distributed, random walk that will give the trajectory of

particle 2 up until it hits particle one and reacts with it. After it reacts with particle

1, the trajectory that particle 2 would have followed is deleted and we’ll interpret

it that particle 2 has coalesced with particle 1 and follows its path thereafter. Now

run a third IID random walk until the particle on its trajectory meets and reacts

with either of the paths of the first or second particle. And we continue this in-

ductively. We will not prove that this construction is equivalent to the one that is

described by the differential equations but we note that the equivalence is clear for

any configuration starting from finitely many particles. Now,

∑
x∈Λ

ξ0(x)−
∑
x∈Z2

E[ξΛ
s (x)]

= E

 |Λ|∑
i=1

1{particle i is killed by time s}


=

|Λ|∑
i=2

P [particle i is killed by time s]

=

|Λ|∑
i=2

P [particle i reacts with any particle in {1, 2, . . . , i− 1} by time s]

≥
|Λ|∑
i=2

P [particle i reacts with particle 1 by time s] .
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We now decompose this event according to the time that particle i meets particle 1.

∑
x∈Λ

ξ0(x)−
∑
x∈Z2

E[ξΛ
s (x)]

≥
|Λ|∑
i=2

∫ s

0
P [particle i meets particle 1 by time r]P [particles react by time s− r] dr

≥
|Λ|∑
i=2

∫ s−1

0
P [particle i meets particle 1 by time r]P [particles react by time s− r] dr

≥ P [particles react by time 1]

|Λ|∑
i=2

∫ s−1

0
P [particle i meets particle 1 by time r] dr

=
λ

λ+ 1

|Λ|∑
i=2

∫ s−1

0
P [particle i meets particle 1 by time r] dr

≥ λ

λ+ 1

|Λ|∑
i=2

min
x,y∈Λ

H2(s−1)(x− y)

=
λ

λ+ 1
(|Λ| − 1) min

x,y∈Λ
H2(s−1)(x− y).

Conclusion of the proof of Lemma 4.2.1 The rest of the proof of Lemma

4.1.2 follows in exactly the same manner as the proof of Theorem 1 in [2].

4.2.2 A One Point Estimate

We turn first to a one point estimate that allows us to control the error in winding

an instance of ξt(x) back to time t − s. As was the case for the instantaneously

coalescing particles, it will be necessary for us to develop a two point function using

calculus and rely on our random walk estimates from Chapter 5 to introduce an extra

logarithm, without which the estimate is not strong enough. This is an improvement

on the bound that would be achieved by negative correlation alone.

To begin the one point estimates, we must develop using calculus 〈ξr, ϕr〉

for a test function ϕ : [0,∞] × Z2 → R satisfying
∑

x |ϕr(x)| + |ϕ̇r(x)| < ∞. In

particular, this implies
∑

x ∆ϕr(x) < 0. By first truncating the sum 〈ξr, ϕr〉 at
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|x| ≤ N for fixed N , and writing this as 〈ξr, ϕr〉N we have

E [〈ξr, |ϕr|+ |ϕ̇r|〉N ] =
∑
|x|≤N

E[ξr(x)] (|ϕr(x)|+ |ϕ̇r(x)|)

= ξ̂t
∑
|x|≤N

(|ϕr(x)|+ |ϕ̇r(x)|)

≤ ξ̂t
∑
x

(|ϕr(x)|+ |ϕ̇r(x)|) <∞ (4.21)

so we may take N → ∞ and in particular 〈ξr, ϕr〉 converges almost surely. Differ-

entiating this we see that

d〈ξr, ϕr〉 = d
∑
x

ξr(x)ϕr(x) = 〈dξr, ϕr〉+ 〈ξr, ϕ̇r〉

= 〈∆ξrdr − λξr(ξr − 1)dr + dMr, ϕ〉+ 〈ξr, ϕ̇r〉

where Mr are the m.t. from (4.19) that are true martingales due to the moment

conditions for our solution to (2.1). The second sum in the right hand side is well

defined and this follows from (4.21). Using discrete integration by parts (see (4.8))

on the term 〈∆ξr(·)dr, ϕr〉 gives

d〈ξr, ϕr〉 = 〈ξr, ϕ̇r + ∆ϕr〉dr − λ〈ξr(ξr − 1), ϕr〉dr + 〈dMr, ϕr〉.

For f : Z2 → R satisfying
∑

x |f(x)|, choosing ϕs(x) = Pt−sf(x) :=
∑

y pt−s(y)f(x−

y) we have for all r ∈ [0, t] and x ∈ Z2

∑
x

|ϕr(x)| ≤
∑
x

|f(x)| <∞

and, ϕ̇r + ∆ϕr = 0. Furthermore 〈dMr, ϕ〉 is a martingale by the integrability of ϕ

and the moment conditions imposed on ξr, so

d〈ξr, ϕr〉 = −λ 〈ξr(ξr − 1), ϕr〉 dr + 〈dMr, ϕ〉
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and taking expectation gives

dE[〈ξr, ϕr〉] = −λE [〈ξr(ξr − 1), ϕr〉] dr.

The idea is that by estimating the right hand side, we will be able to estimate the

errors in approximations such as

|E[〈ξt, ϕt〉]− E[〈ξt−s, ϕt−s〉]| = λ

∫ t

t−s
E [〈ξr(ξr − 1), ϕr〉] dr. (4.22)

Negative correlation results give us an immediate bound of

λ

∫ t

t−s
ξ̂2
r

∑
x

|f(x)|dr ≤ λ〈|f |, 1〉sξ̂2
t−s,

since by (4.20), ξ̂r is decreasing. This will not be a strong enough bound for our

purposes. In order to strengthen it, we will have to look ahead at a two point

estimate to improve the bound on E [ξr(0)(ξr(0)− 1)] by a logarithmic correction.

Let

ψt(x, y) = P[x+ S1
t = 0, y + S2

t = 0, NC2λ[0, t]] (4.23)

where NCλ[0, t] is the probability that a random walk start at the origin doesn’t

spend more that an exponential time rate λ at the origin on each of its visits there

up until time t. In explanation as for why this is the right test function to study,

notice the event that a particle walks from x to be occupying the origin at time t and

another from y to occupying the origin at time t without two particles coalescing

is the same event as for two particles starting at the origin, one occupying x at

time t while the other occupies y at time t without the particles coalescing. Now,

since each particle coalesces with another at rate λ, each pair of particles coalesce

at rate 2λ. In order not to coalesce, their paths must not coincide at a site for

longer than an exponential time rate 2λ. This is equivalent to the statement that

the difference of their random walk paths (each of rate 1), which is itself a random

walk (of rate 2), must not rest for more than an exponential time rate 2λ at the

origin. Now for s ≤ t/4 and r ∈ [t−s, t] define for u ∈ [0, r] κu = ψr−u and similarly
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let κ̄u(x) = ψr−u(x, x). Observe, formally for now, that

E [ξr(0)(ξr(0)− 1)] = E[〈ξr ∗ ξr, κr〉 − 〈ξr, κ̄r〉] (4.24)

since κr(x, y) = 1{x = y = 0} and κ̄r(x) = 1{x = 0}. We will demonstrate that the

right hand side is decreasing and hence

|E [ξr(0)(ξr(0)− 1)] | ≤ |E[〈ξr−(r−t+2s) ∗ ξr−(r−t+2s), κr−(r−t+2s)〉

− 〈ξr−(r−t+2s), κ̄r−(r−t+2s)〉]|

= |E[〈ξt−2s ∗ ξt−2s, ψr−t+2s〉 − 〈ξt−2s, ψ̄r−t+2s〉]|

=

∣∣∣∣∑
x,y

E[ξt−2s(x)ξt−2s(y)]ψr−t+2s(x, y)

−
∑
x

E[ξt−2s(x)]ψ̄r−t+2s(x)

∣∣∣∣
=
∑
x

∑
y:y 6=x

E[ξt−2s(x)ξt−2s(y)]ψr−t+2s(x, y)

+
∑
x

E[ξt−2s(x)(ξt−2s(x)− 1)]ψ̄r−t+2s(x).

Now we use negative correlation on each of the above expectations to bound this by

ξ̂2
t−2s

∑
x,y

ψr−t+2s(x, y)

We can bound this further by the following lemma which is proved in Section 5.3 of

Chapter 5.

Lemma 4.2.3. Let ψ be given by (4.23). Then there exists C > 0 and ζ > 0

depending on λ such that

∑
x

∑
y

∣∣∣∣ψt(x, y)− π

λ log t
pt(x)pt(y)

∣∣∣∣ ≤ C

log1+ζ t
.
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Now we may bound

|E [ξr(0)(ξr(0)− 1)] | ≤ C
ξ̂2
t−2s

log (r − t+ 2s)
.

Using this bound to estimate the right hand side of (4.22) give the improved bound

of

C〈|f |, 1〉
sξ̂2
t−2s

log s
. (4.25)

Later, we will make this more explicit by choosing an appropriate value for s. The

extra logarithm gained in (4.25) is crucial for the estimation of the errors.

To show that (4.24) is a decreasing quantity, we will have to develop

E [ξt(x)(ξt(x)− 1)]

by calculus. This calculation will be of further use to us later. It will enable us to

bound the error in the first approximation in the heuristic argument given in the

introduction.

The integration by parts formula (4.7) and the substitution of equation (4.19)

gives

d(ξt(x)ξt(y)) = ∆(ξt(x)ξt(y))dt− λξt(x)ξt(y)(ξt(x) + ξt(y)− 2)dt

+ ξt−(x)dMt(y) + ξt−(y)dMt(x) + d[ξ(x), ξ(y)]t (4.26)

where the Laplacian ∆ now acts in both variables. The final term represents the

jumps and is defined in (4.5). There are unique continuous adapted compensators

〈〈ξ(x), ξ(y)〉〉t satisfying

[ξ(x), ξ(y)]t = 〈〈ξ(x), ξ(y)〉〉t + m.t..

We can find these compensators by studying d[ξ(x), ξ(y)]t with some first order

bookkeeping. Firstly, notice that if |x− y| > 1 then there can be no contribution to
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d[ξ(x), ξ(y)]t. Next, consider the case x = y, then [ξ(x), ξ(y)]t reduces to

[ξt(x), ξt(y)] =
∑
s≤t

(ξt(x)− ξt−(x))2.

If any of the partcles at x at time t− coalesces (at rate λ) with any of the other

particles also present, or walks to a neighbour, ξt(x)− ξt−(x) = −1 since there can

be no other change to the system. The only other possibility is that any particle at

y at time t− can walk to x and increase its particle number 1. So, in the case x = y

we have

d[ξt(x), ξt(y)] =
∑
y∼x

∞∑
i=1

(−1)2
1{ξt−(x) ≥ i}dPt(i, x, y)

+
∑
y∼x

∞∑
i=1

1{ξt−(y) ≥ i}dPt(i, y, x)

+
∞∑

i,j=1

(−1)2
1{ξt−(x) ≥ i ∨ j, i 6= j}dP ct (i, j, x).

If y ∼ x, then there will be loss of a particle at x and a gain at y, if any particle at

x at time t− walks to y and an analgous thing can be said for a gain of a particle

at x with a loss of one at y. There can be no other change. This gives, for y ∼ x

d[ξt(x), ξt(y)] =
∑
y∼x

∞∑
i=1

(−1)1{ξt−(x) ≥ i}dPt(i, x, y) + (−1)1{ξt−(y) ≥ i}dPt(i, y, x).

Compensating the Poisson processes we find the compensator of d[ξt(x), ξt(y)] is of

the form

d〈〈ξ(x), ξ(y)〉〉t =


1
4

∑
y:y∼x(ξt(y) + ξt(x))dt+ λξt(x)(ξt(x)− 1) dt if x = y,

−1
4 (ξt(x) + ξt(y)) dt if x ∼ y.

0 otherwise.

(4.27)

Take a test function ϕt(x, y) that satifies
∑

x,y |ϕ(x, y)| + |ϕ̇(x, y)| < ∞ and write

〈ξt ∗ ξt, ϕt〉 for the sum
∑

x

∑
y ξt(x)ξt(y)ϕt(x, y). Truncating the sums at |x|, |y| ≤
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N , and taking expection

E[〈ξt ∗ ξt, |ϕt|〉N ] =
∑

|x|,|y|≤N

E[ξt(x)ξt(y)]|ϕt(x, y)|

=
∑
|x|≤N

∑
|y|≤N,y 6=x

E[ξt(x)ξt(y)]|ϕt(x, y)|

+
∑
|x|≤N

E[ξ2
t (x)]|ϕt(x, x)|

≤
∑
|x|≤N

∑
|y|≤N,y 6=x

E[ξt(x)]E[ξt(y)]|ϕt(x, y)|

+ E[ξt(0)(ξt(0)− 1)]
∑
|x|≤N

|ϕt(x, x)|

+ ξ̂t
∑
|x|≤N

|ϕt(x, x)|

= ξ̂2
t

∑
|x|,|y|≤N

|ϕt(x, y)|

+ ξ̂t
∑
|x|≤N

|ϕt(x, x)|

≤ 2ξ̂t
∑
x,y

|ϕt(x, y)| <∞. (4.28)

So by the bounded convergence theorem, the left shand side converges almost surely.

Differentiating,

d〈ξt ∗ ξt, ϕt〉 = d
∑
x,y

ξr(x)ξr(y)ϕr(x, y)

=
∑
x,y

d (ξr(x)ξr(y))ϕr(x, y) + 〈ξt ∗ ξt, ϕ̇t〉

where the final term is well defined by the regularity and integrability of ϕ which

can be seen by repeating the calculation (4.28) for ϕ̇ in place of ϕ. Substituting
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(4.26), (4.19) and (4.27) gives

d〈ξt ∗ ξt, ϕt〉 = 〈∆ξr ∗ ξr, ϕ〉dt− λ
∑
x,y

ξt(x)ξt(y)(ξt(x) + ξt(y)− 2)ϕt(x, y)dt

+
∑
x

(
1

4

∑
y:y∼x

(ξt(y) + ξt(x)) + λξt(ξt(x)− 1)

)
ϕt(x, x)dt

− 1

4

∑
x

∑
y:y∼x

(ξt(x) + ξt(y))ϕt(x, y)dt

+ 〈ξt ∗ ξt, ϕ̇t〉+ m.t.. (4.29)

Applying (4.9) to the first term of the right hand side of (4.29)

d〈ξt ∗ ξt, ϕt〉 = 〈ξt ∗ ξt, ϕ̇t + ∆ϕt〉dt

− λ
∑
x,y

ξt(x)ξt(y)(ξt(x) + ξt(y)− 2)ϕt(x, y)dt

+
1

4

∑
x

∑
y:y∼x

(ξt(y) + ξt(x))ϕt(x, x) + λ
∑
x

ξt(ξt(x)− 1)ϕt(x, x)dt

− 1

4

∑
x

∑
y:y∼x

(ξt(x) + ξt(y))ϕt(x, y)dt+ m.t.. (4.30)

We split the sum in the second term down the diagonal and collect the sum along

the diagonal with the sum in the fourth term. We also collect the third and fifth

terms as follows.

1

4

∑
x

∑
y∼x

(ξt(x) + ξt(y))(ϕt(x, x)− ϕt(x, y))

=
1

4

∑
x

∑
y∼x

ξt(x)(ϕt(x, x)− ϕt(x, y)) +
1

4

∑
x

∑
y∼x

ξt(y)(ϕt(x, x)− ϕt(x, y)).

For the second term here we will use the earlier trick of exchanging the order of the
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sums which leads us to

∑
x

∑
y∼x

(ξt(x) + ξt(y))(ϕt(x, x)− ϕt(x, y))

=
∑
x

∑
y∼x

ξt(x)(ϕt(x, x) + ϕt(y, y)− ϕt(x, y)− ϕt(y, x))

= 4〈ξt,�ϕt〉

where we define

�ϕt(x) =
1

4

∑
y:y∼x

(ϕt(x, x) + ϕt(y, y)− ϕt(x, y)− ϕt(y, x)) .

Bring all of this together and returning to equation (4.30)

d〈ξt ∗ ξt, ϕt〉 = 〈ξt ∗ ξt, ϕ̇t + ∆ϕt〉dt

− λ
∑
x

∑
y 6=x

ξt(x)ξt(y)(ξt(x) + ξt(y)− 2)ϕt(x, y)dt

− λ
∑
x

(
2ξ3
t (x)− 3ξ2

t (x) + ξt(x)
)
ϕt(x, x)dt

+ 〈ξt,�ϕt〉dt+ m.t.. (4.31)

Recall the definition of ψ given in (4.23). Then ψ satisfies

ψ̇t(x, y) = ∆ψt(x, y)− 2λψt(x, x)

since if at time t− all the subevents that make up the event in the probability of ψ

is satisfied except {x+S1
t− = 0} which fails because {x+S1

t− = e} is true instead for

some neighbour of the origin e, then the event in ψ is realised at time t only if there

is a random walk step from e to the origin. This happens at rate 1. Translating

the walk path S1 by e and summing over the neighbours, introduces terms of the

form ψt(x + e, y). If the even has been realised by time t− but the random walk

path x+ S1
t− jumps to a neighbour, this will introduce a copy of −ψt(x, y) for each

neighbour of x. Similar considerations for the walk path of S2
t . This accounts for
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all of the terms that make up the Laplacian. The only further case not accounted

for is is the event is realised at time t− but that there is a coalescing event by time

t. Since the coalescence is non-instant and independent exponential clocks cannot

ring simultaneously, this can only occur on the event that x = y. Then choosing

ϕs = ψt−s over s ∈ [0, t] we have that

ϕ̇+ ∆ϕ = 2λϕI(x = y), and ϕt(x, y) = I(x = y = 0). (4.32)

Using this test function in (4.31) we find, for s ∈ [0, t],

d〈ξt ∗ ξt, ϕt〉 = λ
∑
x

2ξ2
t (x)ϕt(x, x)dt

− λ
∑
x

∑
y 6=x

ξt(x)ξt(y)(ξt(x) + ξt(y)− 2)ϕt(x, y)dt

− λ
∑
x

(
2ξ3
t (x)− 3ξ2

t (x) + ξt(x)
)
ϕt(x, x)dt

+ 〈ξt,�ϕt〉dt+ l.m.i..

= −λ
∑
x

∑
y:y 6=x

ξs(x)ξs(y)(ξs(x) + ξs(y)− 2)ϕs(x, y)ds

− λ
∑
x

(
2ξ3
s (x)− 5ξ2

s (x) + ξs(x)
)
ϕs(x, x)ds+ 〈ξs,�ϕs〉ds+ m.t.

(4.33)

We now define ϕ̃ : [0, t]× Z2 → R by ϕ̃s(x) = ϕs(x, x). The idea is to get at

E[〈ξt ∗ ξt, ϕt〉 − 〈ξt, ϕ̃t〉] = E[ξt(0)(ξt(0)− 1)].
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The Laplacian of ϕ̃s satisfies

∆ϕ̃s(x) =
1

4

∑
y∼x

ϕs(y, y)− ϕs(x, x)

=
1

4

∑
y∼x

ϕs(y, x) + ϕs(x, y)− 2ϕs(x, x)

+ ϕs(y, y) + ϕs(x, x)− ϕs(y, x)− ϕs(x, y)

= ∆ϕs(x, x) + �ϕs(x).

Then

˙̃ϕ+ ∆ϕ̃ = (ϕ̇+ ∆ϕ)1{x = y}+ �ϕ

= 2λϕ̃+ �ϕ

and using (4.19) we have

d〈ξs, ϕ̃s〉 = 2λ〈ξs, ϕ̃s〉ds− λ〈ξs(ξs − 1), ϕ̃s〉ds+ 〈ξs,�ϕs〉ds+ m.t.. (4.34)

Combining (4.33) and (4.34) we find

d〈ξs ∗ ξs, ϕs〉 − d〈ξs, ϕ̃s〉 = −λ
∑
x

∑
y:y 6=x

ξs(x)ξs(y)(ξs(x) + ξs(y)− 2)ϕs(x, y)ds

−2λ〈ξs(ξs − 1)(ξs − 2), ϕ̃s〉ds+ m.t.. (4.35)

Since ξt(x) is almost surely integer valued for all x, the factor ξs(x) + ξs(y) − 2

is strictly positive unless both ξt(x), ξt(y) are equal to 1, or either is 1 while the

other is 0, but in either case the entire first term of (4.35) vanishes by virtue of

the additional factors of ξt(x), ξt(y) in the sum. So (4.35) is negative in expectation

as required. This leads us to an estimate of the error in approximating ξ̂t by ξ̂t−s,

which accounts of the possibility of the coalescence of particles over the interval

[t− s, t].

Lemma 4.2.4. With s = t/ logα t there exists c = c(λ, α) < ∞ so that for t ≥ e
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and f : Z2 → R satisfying 〈|f |, 1〉 <∞

∣∣∣∣E[〈ξt, f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣ ≤ c〈|f |, 1〉 log1−α t

t
.

In particular, |ξ̂t − ξ̂t−s| ≤ c log1−α t
t .

Proof.

∣∣∣∣E[〈ξt, f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣ =

∣∣∣∣E [〈ξt, P0f〉]− E [〈ξt−s, Psf〉]
∣∣∣∣

=

∣∣∣∣∫ t

t−s
dE [〈ξr, Pt−rf〉]

∣∣∣∣
= λ

∣∣∣∣∫ t

t−s
E [〈ξr(ξr − 1), ϕr〉] dr

∣∣∣∣
= λ

∣∣∣∣∣
∫ t

t−s
E[ξr(0)(ξr(0)− 1)]

∑
x

ϕr(x)dr

∣∣∣∣∣
= λ

∣∣∣∣∣
∫ t

t−s
E[ξr(0)(ξr(0)− 1)]

∑
x

∑
y

pt−r(y)f(x− y)dr

∣∣∣∣∣
≤ λ〈|f |, 1〉

∫ t

t−s
|E[ξr(0)(ξr(0)− 1)]| dr

≤ C〈|f |, 1〉
(

log t

t

)2 ∫ t

t−s

1

log (r − t+ 2s)
dr

≤ C〈|f |, 1〉
(

log t

t

)2 s

log s

≤ c〈|f |, 1〉 log1−α t

t
.

Choose f = p0. Then, 〈p0, 1〉 =
∑

x p0(x) =
∑

x 1{x = 0} = 1 and

|ξ̂t − ξ̂t−s| =
∣∣∣∣E[〈ξt, p0〉]− E [〈ξt−s, ps〉]

∣∣∣∣
=

∣∣∣∣E[〈ξt, p0〉]− E [〈ξt−s, Psp0〉]
∣∣∣∣

≤ c3
log1−α t

t
.
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Notice this gives for free (using Lemma 4.1.2) the estimate,

|ξ̂t
2 − ξ̂2

t−s| = |ξ̂t − ξ̂t−s||ξ̂t + ξ̂t−s| (4.36)

≤ c log1−α t

t

(
log t

t
+

log(t− s)
t− s

)
≤ c log2−α t

t2

for s ≤ t/4, where the constant changes from line to line.

4.2.3 A Two Point Estimate

A two point estimate gives us control of the first approximation step.

Lemma 4.2.5. With ψ as defined in (4.23) and s as in Lemma 4.2.4, there exists

c = c(λ, α) <∞ so that for large t

∣∣∣∣E[ξt(0)(ξt(0)− 1)]− E[〈ξt−s ∗ ξt−s, ψs〉]
∣∣∣∣ ≤ c log(1−α)∨α t

t2
.

Proof.

∣∣∣∣E[ξt(0)(ξt(0)− 1)]− E[〈ξt−s ∗ ξt−s, ψs〉]
∣∣∣∣

≤
∣∣∣∣E[〈ξt ∗ ξt, ψ0〉 − 〈ξt, ψ̄0〉]− E

[
〈ξt−s ∗ ξt−s, ψs〉 − 〈ξt−s, ψ̄s〉

] ∣∣∣∣
+

∣∣∣∣E[〈ξt−s, ψ̄s〉]
∣∣∣∣

=

∣∣∣∣ ∫ t

t−s
dE
[
〈ξr ∗ ξr, ψt−r〉 − 〈ξr, ψ̄t−r〉

] ∣∣∣∣+

∣∣∣∣E[〈ξt−s, ψ̄s〉]
∣∣∣∣
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The test function ϕs = ψt−s as before together with equation (4.35) gives

∣∣∣∣ ∫ t

t−s
dE
[
〈ξr ∗ ξr, ψt−r〉 − 〈ξr, ψ̄t−r〉

] ∣∣∣∣+

∣∣∣∣E[〈ξt−s, ψ̄s〉]
∣∣∣∣

≤ λ

∣∣∣∣∣∣
∫ t

t−s

∑
x

∑
y 6=x

E
[
ξr(x)ξr(y)

(
ξr(x)− 1

)]
ψt−r(x, y)dr

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∫ t

t−s

∑
x

∑
y 6=x

E
[
ξr(x)ξr(y)

(
ξr(y)− 1

)]
ψt−r(x, y)dr

∣∣∣∣∣∣
+ 2λ

∣∣∣∣∣
∫ t

t−s

∑
x

E[ξr(x)(ξr(x)− 1)(ξr(x)− 2)]ψ̄t−r(x)dr

∣∣∣∣∣
+

∣∣∣∣E[〈ξt−s, ψ̄s〉]
∣∣∣∣

≤ λ

∣∣∣∣∣∣
∫ t

t−s

∑
x

∑
y 6=x

E[ξr(y)]E
[
ξr(x)

(
ξr(x)− 1

)]
ψt−r(x, y)dr

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∫ t

t−s

∑
x

∑
y 6=x

E[ξr(x)]E
[
ξr(y)

(
ξr(y)− 1

)]
ψt−r(x, y)dr

∣∣∣∣∣∣
+ 2λ

∣∣∣∣∣
∫ t

t−s

∑
x

E[ξr(x)]E[ξr(x)(ξr(x)− 1)]ψ̄t−r(x)dr

∣∣∣∣∣
+

∣∣∣∣E[〈ξt−s, ψ̄s〉]
∣∣∣∣

where in each of the first three terms a single use of negative correlation was used

to peel off an expectation. Now the first two terms are immediately comparable,

call the first term I. Label the third term II and the final term III. Then I can
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be approximated as follows.∣∣∣∣∣∣
∫ t

t−s

∑
x

∑
y 6=x

E[ξr(y)]E
[
ξr(x)

(
ξr(x)− 1

)]
ψt−r(x, y)dr

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
∫ t

t−s

log r

r
E
[
ξr(0)

(
ξr(0)− 1

)]∑
x

∑
y 6=x

ψt−r(x, y)dr

∣∣∣∣∣∣
≤ C

(
log t

t

)2 ∫ t

t−s

log r

r

1

log (r − t+ 2s)

∑
x

∑
y 6=x

ψt−r(x, y)dr by (4.25).

Providing that t− r is large, Lemma 4.1.4 provides a good approximation for ψt−r,

therefore we split the integral at t−s/ log s and over the short interval [t−s/ log s, t]

we bound the test function by 1 and over the long interval [t− s, t− s/ log s] we use

Lemma 4.1.4 to recover a logarithm giving

I ≤C
(

log t

t

)2(∫ t

t− s
log s

log r

r

1

log (r − t+ 2s)
dr

+

∫ t− s
log s

t−s

log r

r

1

log (r − t+ 2s)

1

log (t− r)
dr.

)
≤ C

(
log t

t

)2
(

s

(log s) log (2s− s
log s)

log(t− s
log s)

t− s
log s

+
s− s

log s

(log s) log s
log s

log (t− s)
t− s

)

≤ C
(

log t

t

)3( s

log2 s

)
≤ C log1−α t

t2
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with the constant changing as usual. An analogous calculation shows without trou-

ble that II satisfies the same upper bound. Turning our attention to III we have

E[〈ξt−s, ψ̄s〉] =
∑
x

E[ξt−s(x)]ψ̄s(x)

≤ C log (t− s)
t− s

∑
x

ψ̄s(x)

≤ C log (t)

t

1

log s

∑
x

p2
s(x)

≤ C 1

s log s

log t

t

≤ C logα t

t2
.

which completes the proof.

4.2.4 A Variance Estimate

We need an analogous variance estimate to Lemma 4.1.8 to control the error in the

approximation step that asserts that there is approximate independence of the pairs

of paths of the walks that result with the particles occupying the origin.

Lemma 4.2.6. There exists c <∞ depending on λ such that for t ≥ e

V ar(〈ξt, f〉) ≤ c〈f2, 1〉 log t

t
.

Proof. As in the proof of Lemma 4.1.8 we can use negative correlation to in order
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to ignore off-diagonal terms.

V ar(〈ξt, f〉) ≤
∑
x

∑
y=x

E
[
(ξt(x)− ξ̂t)(ξt(y)− ξ̂t)

]
f(x)f(y)

=
∑
x

E
[
(ξt(x)− ξ̂t)2

]
f(x)2

=
∑
x

(
E[ξt(x)2]− ξ̂2

t

)
f(x)2

≤
(
E[ξt(0)(ξt(0)− 1)] + E[ξt(0)]

)∑
x

f(x)2

≤ c
(

log t

t

)∑
x

f(x)2 = c

(
log t

t

)
〈f2, 1〉.

Choosing f = ps, for s ≤ t/2 we get the estimate

∣∣∣∣E [〈ξt−s, ps〉2]− E[〈ξt−s, ps〉]2
∣∣∣∣ = V ar(〈ξt−s, ps〉)

≤ c
(

log(t− s)
t− s

)
〈(ps)2, 1〉

≤ c
(

log t

t

)∑
x

ps(x)2

≤ c

s

(
log t

t

)∑
x

ps(x) =
c

s

(
log t

t

)
(4.37)

where the constant c is changing in the inequalities.

4.2.5 Proof of Theorem

We begin at the equality from (4.20)

dξ̂t
dt

= −λE[ξt(0)(ξt(0)− 1)]

= −λE[〈ξt−s ∗ ξt−s, ψs〉] + E
(1)
s,t by Lemma 4.2.5
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with E
(1)
s,t = O

(
log(1−α)∨α t

t2

)
. Now we seek to estimate this expectation by use of

Lemma 4.1.4.

Lemma 4.2.7. For ψ and s previously defined, for large t we have

∣∣∣∣E[〈ξt−s ∗ ξt−s, ψs〉]−
π

λ log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps〉]

∣∣∣∣
≤ C

(
log1−ζ t

t2
+

logα−ζ t

t2

)

Proof.

∣∣∣∣E[〈ξt−s ∗ ξt−s, ψs〉]−
π

λ log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps〉]

∣∣∣∣
=

∣∣∣∣∣∑
x,y

E[ξt−s(x)ξt−s(y)]

[
ψs(x, y)− π

λ log s
ps(x)ps(y)

]∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
x

∑
y:y 6=x

E[ξt−s(x)ξt−s(y)]

[
ψs(x, y)− π

λ log s
ps(x)ps(y)

]∣∣∣∣∣∣
+

∣∣∣∣∣∑
x

E[ξ2
t−s(x)]

[
ψ̄s(x)− π

λ log s
p2
s(x)

]∣∣∣∣∣
≤ C

log1+ζ s

(
log (t− s)
t− s

)2

+
C

s log1+ζ s

log (t− s)
t− s

≤ C log1−ζ t

t2
+ C

logα−ζ t

t2
.

This lemma married with a result of Chapter 5 is seemingly where all the

work is done for universality, in that in this step the dependence on λ is canceled

out. We can continue estimating the derivative of ξ̂ keeping careful track of the
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error in each approximation with reference to the relevant results.

dξ̂t
dt

= −λ π

λ log s
E[〈ξt−s ∗ ξt−s, ps ∗ ps〉] + E

(2)
s,t by Lemma 4.2.7

= − π

log s
E
[
〈ξt−s, ps〉2

]
+ E

(2)
s,t

= − π

log s
E[〈ξt−s, ps〉]2 + E

(3)
s,t by Lemma 4.2.6 and (4.37)

= − π

log s
ξ̂2
t−s + E

(3)
s,t

= − π

log s
ξ̂2
t + E

(4)
s,t by the Lemma 4.2.4 and (4.36)

where the size of the error can be estimated by

|E (4)
s,t | ≤ C

log(1−ζ)∨(1−α)∨α t

t2
.

As before, we can choose α = 1/2 and ζ ≥ 1/2.

We now solve the approximate differential equation.

dξ̂t
dt

= − π

log s
ξ̂2
t + E

(4)
s,t

ξ̂−2
t

dξ̂t
dt

= − π

log s
+ ξ̂−2

t E
(4)
s,t

ξ̂−2
t

dξ̂t
dt

= − π

log t

log t

log t− α log log t
+ ξ̂−2

t E
(4)
s,t

ξ̂−2
t

dξ̂t
dt

= − π

log t
− πα log log t

(log t)(log t− α log log t)
+ E

(5)
s,t .

In dividing through by ξ̂2
t we have used the lower bound in Lemma 4.2.1 which

bounds ξ̂t away from 0 and we can bound

|E (5)
t | ≤ C(log t)−3/2.
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Returning to our equation and integrating over t larger than suitable t0

−ξ̂−1
t + ξ̂−1

t0
= −π

(∫ t

t0

1

log s
ds+

1

2

∫ t

t0

log log s

(log s)(log s− 1
2 log log s)

ds

)

+O

(∫ t

t0

1

(log s)
3
2

ds

)

From this point, the proof can be concluded as in the previous section with the same

applications of Lemma 4.1.11.
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Chapter 5

Random Walk Estimates

In this chapter we compile all the random walk estimates that are necessary through-

out our approximations.

5.1 General Estimates for Continuous Time Random

Walks

We will make frequent use of an estimate on the transition probabilities for contin-

uous time random walks.

Lemma 5.1.1. Let St be a continuous time rate 1 random walk on the integer lattice

Z2 and pt(x) = P[St = x|S0 = 0]. Then there exists c3 <∞, such that for all t > 0

and x ∈ Z2

pt(x) =
2

πt
exp

{
−|x|

2

t

}
+O

(
1

t3/2

)
.

Proof. Let S̃n be a discrete time random walk and p̃n be its corresponding transition

probability. Then Theorem 2.3.5 of Lawler [14] says there exists C <∞ such that

p̃n(x) =
2

πn
exp

{
−|x|

2

n

}
+O

(
1

n3/2

)
for all x ∈ Z2, for all n.
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This can be Poissonised, by which we mean writing

pt(x) = e−t
∞∑
n=0

tn

n!
p̃n(x)

by a calculation similar to that carried out in the proof of Theorem 2.5.6 of [14].

This, together with the estimate

∣∣∣∣exp

{
−|x|

2

2t

}
− exp

{
−|x+ y|2

2t

}∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ |x+y|/

√
(2t)

|x|/
√

(2t)
ue−u

2
du

∣∣∣∣∣
≤ 2

∣∣∣∣∣
∫ |x+y|/

√
(2t)

|x|/
√

(2t)
du

∣∣∣∣∣
≤ C√

t
||x+ y| − |x||

≤ C|y|√
t

gives the following estimate on the spatial difference of the transition density

|pt(x)− pt(x+ y)| ≤ C

t
1
2

+
C|y|
t3/2

. (5.1)

5.2 A Random Walk Estimate in d = 2

A crucial random walk estimate that we make use of for the rate equation for the in-

stantaneously coalescing random walk model allowed us approximate the trajectory

of two indendent random walks that are not allowed to react with each other by the

trajectories of two non-interacting independent random walks with a multiplicative

correction that accounts for the interaction. Van den Berg and Kesten give an esti-

mate in d ≥ 3 for ψt(x, y) = P
[
x+S1

t = 0, y+S2
t = e, x+S1

s 6= y+S2
s for all s ∈ [0, t]

]
where S1, S2 are independent copies of identically distributed random walks that

start at the origin. They are able to show that it is well approximated by the prod-

uct of the free transition probabilities of a walk starting at the origin to the site x

and y − e and γd, the probability that a random walk never returns to its starting

point after leaving. The estimate is not valid for d = 2. Of course, the recurrent
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nature of a two dimensional random walk ensures it will almost surely return to its

starting point infinitely often, and so γ2 = 0. However, an we prove an analogous

approximation replacing γd with a function that decays in time.

Let NC(0, t] be the event that up until time t, the continuous time rate 1

random walk started at e does not hit the origin. That is

NC[0, t] = {e+ Ss 6= 0, for all s ∈ [0, t]}.

To see that this is the correct object to study, look at the definition of ψ

given above or equivalently in equation (4.3). Asking that two independent random

walks travel from a site x to the origin and a site y to a neighbour without the

trajectories meeting up till time t is the same as requiring two independent random

walks to travel from the origin to a site x and from a neighbour to a site y without

their trajectories meeting up till time t by translation invariance. This, in turn is

the same as asking that a random walk starting at e does not hit the origin before

time t and reach y−x since the difference of two independent random walks is again

a random walk with twice the rate.

Remark 5.2.1. Notice, if we have S1, S2 two independent copies of the same ran-

dom walk both starting at the origin, then the difference between S1 and e + S2 is

a random walk starting at e run twice as fast. However, the following calculation

shows that the asymptotic is unchanged.

π

log 2t
=

π

log t

(
log t

log 2 + log t

)
=

π

log t

(
1− log 2

log 2 + log t

)
=

π

log t

(
1 +O

(
1

log t

))
.

If this difference reaches the origin then the two walks have met (and hence coalesced

in the instant regime), by the following lemma and the above calculation the proba-

bility of this not occuring is π/ log t for large t which is the reason for the notation

NC (no coalescence).
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Lemma 5.2.2. The asymptotic behaviour of NC[0, t] as defined above is

P[NC[0, t]] =
π

log t
+O

(
1

log2 t

)
as t→∞.

Proof. Dvoretzky and Erdős proved in their paper [7] that the probability that a

discrete time simple random walk starting at the origin avoids the origin by time n

is of order
1

log (n)

and Erdős and Taylor improved this in [8] to give the leading order explicitly and

quantify the error the asymptotic

π

log (n)
+O

(
1

log2 (n)

)
.

Let (S̃n)n be discrete time random walk on the planar lattice started at the origin.

Fix x ∈ Z2 and let γ(x, n) = #{number of visits of S̃ to x up to time n} so that

the above asymptotic is for the probability of the event {γ(0, n) = 0}. Then Révész

[23] gives the asymptotic probability of there being no visits to x by time n, that is,

γ(x, n) = 0 as

P[γ(x, n) = 0] =
π

log n
+O||x||2

(
1

log2 n

)
as n→∞ (5.2)

where the subscript on the O is meant to make clear the error is not uniform in

x. Let ÑC(0, n] be the discrete analogy of NC(0, t], then we have equality of

the probabilities P
[
ÑC(0, n]

]
= P[γ(e, n) = 0], since event that a random walk

beginning at e avoids the origin by time n is the same as the event that a random

walk started at the origin makes no visits to e by time n by translation invariance

of the random walk S̃. We only need to prove that this estimate is still valid in

continuous time.

Let Nt be a rate 1 Poisson process so that P[Nt = n] = e−t t
n

n! . Then St =

e+
∑Nt

i=1Xi is a rate 1 continuous time random walk starting from e. We decompose

the event NC(0, t] according to the number of steps in the walk by time t. We expect
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t events of Nt by time t hence we write

{NC(0, t]} =

{
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)}
∪
{
NC(0, t], Nt /∈

(
b(1− ε)tc , d(1 + ε)te

)}

for some ε > 0 so that

P[NC(0, t]] = P
[
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)]
+P
[
NC(0, t], Nt /∈

(
b(1− ε)tc , d(1 + ε)te

)]
.

Consider the second term. This can be bounded above by

P
[
Nt /∈

(
b(1− ε)tc , d(1 + ε)te

)]
= P[Nt < (1− ε)t] + P[Nt > (1 + ε)t] ≤ 2e−tε

2/2

which is exponentially small by the usual Chernoff bound. Now treating the main

term

P
[
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)]
.

On this event, by time t the walk has made no fewer than b(1 − ε)tc steps of its

walk, and not reaching the origin by time t guarantees the walk has not reached the

origin in its first b(1− ε)tc steps hence we have

{
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)}
⊂
{
ÑC(0, b(1− ε)tc], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)}
⊂ {ÑC(0, b(1− ε)tc]}

and so

P
[
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)]
≤ P[ÑC(0, b(1− ε)tc]. (5.3)
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Using (5.2) we can continue estimating with

=
π

log b(1− ε)tc
+O

(
1

log2 b(1− ε)tc

)
≤ π

log t

log t

log (1−ε)
2 + log t

+O

(
1

log2 t

)
=

π

log t

(
1− log (1− ε)/2

log (1− ε)/2 + log t

)
+O

(
1

log2 t

)
=

π

log t
+O

(
1

log2 t

)

for significantly large t. Similarly,

P
[
NC(0, t], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)]
≥ P

[
ÑC(0, d(1 + ε)te], Nt ∈

(
b(1− ε)tc , d(1 + ε)te

)]
= P[NC(0, d(1 + ε)te]]

− P
[
NC(0, d(1 + ε)te], Nt /∈

(
b(1− ε)tc , d(1 + ε)te

)]
≥ P[NC(0, d(1 + ε)te]]

− P
[
Nt /∈

(
b(1− ε)Dtc , d(1 + ε)Dte

)]
≥ P[NC(0, d(1 + ε)Dte]− 2e−tε

2/2

=
π

log d(1 + ε)te
+O

(
1

log2 d(1 + ε)te

)
≥ π

log t

log t

log
(
2(1 + ε)

)
+ log t

+O

(
1

log2 t

)
=

π

log t

(
1− log 2(1 + ε)

log 2(1 + ε) + log t

)
+O

(
1

log2 t

)
=

π

log t
+O

(
1

log2 t

)
.

We now prove an approximation for the test function ψt(x, y) = P[S1
t =

x, e + S2
t = y,NC[(0, t]]]. By the remark 5.2.1 we interpret NC not as a failure to

return to the origin as in Lemma 5.2.2 but as the event that the two walks do not
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meet by time t so that ψ agrees with the expression we gave at the start of this

section when discussing d ≥ 3. The argument follows very strongly the method of

van den Berg and Kesten Lemma 12 from [27] and only differs in the places they

require d ≥ 3. For f : Z2 → R and g : Z2×Z2 → R we define 〈1, f(·)〉 =
∑

x∈Z2 f(x)

and 〈1, g(·, ·)〉 =
∑

x,y∈Z2 g(x, y).

Proof of Lemma 4.1.4 We first use Lemma 5.2.2 to replace π/ log t by

P[NC[(0, t]]] since the lemma gives that the leading order is independent of the

walk rate. By the triangle inequality, We make the following approximations and

let s = s(t) = t/ logα t for some α > 0,

∑
x,y

∣∣∣∣P[S1
t = x, e+ S2

t = y,NC(0, t]]− π

log t
pt(x)pt(y − e)

∣∣∣∣
=
∑
x,y

∣∣∣∣P[S1
t = x, e+ S2

t = y,NC(0, s]]− π

log s
pt(x)pt(y − e)

∣∣∣∣+ E1(t)

=
∑
x,y

∣∣∣∣∑
u,v

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

− π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v)

∣∣∣∣+ E1(t)

=
∑
x,y

∣∣∣∣∑
u,v

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

− π

log s
ps(u)ps(v − e)

)
pt−s(x)pt−s(y)

∣∣∣∣+ E2(t)

=
∑
x,y

pt−s(x)pt−s(y − e)
∣∣∣∣∑
u,v

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

− π

log s
ps(u)ps(v − e)

)∣∣∣∣+ E2(t)

=

∣∣∣∣∣∑
u,v

P[S1
s = u, e+ S2

s = v,NC(0, s]]− π

log s

∑
u,v

ps(u)ps(v − e)

∣∣∣∣∣+ E2(t)

=

∣∣∣∣P[NC(0, s]]− π

log s

∣∣∣∣+ E2(t)

= O

(
1

log2 t

)
+ E2(t).

What remains to be shown is that E2(t) is of order O
(

log log t
log2 t

)
. Now, if particles

haven’t met by time t than they certainly haven’t met by time s, we have the
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inclusion NC(0, t] ⊂ NC(0, s]. So we can bound the first error term by

E1(t) ≤
∑
x,y

P[S1
t = x, e+ S2

t = y,NC[(0, s]]

− P[S1
t = x, e+ S2

t = y,NC(0, t]]

+

(
π

log s
− π

log t

)∑
x,y

pt(x)pt(y − e)

≤ P[NC(0, s]]− P[NC(0, t]] +

(
π

log s
− π

log t

)
.

Lemma 5.2.2 then gives

E1(t) ≤ π (log t− log s)

log t log s
+O

(
1

log2 t

)
= O

(
log log t

log2 t

)

where the last equalilty follows from the choice of s. The difference E2(t) − E1(t)

equal to

∑
x,y

∣∣∣∣∑
u,v

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]− π

log s
ps(u)ps(v − e)

)
× (pt−s(x− u)pt−s(y − v)− pt(x)pt(y − e))

∣∣∣∣.
Let σ(t) = t1/2 logδ t for some δ > 0. Consider for now, only the terms contributed

to the sum by u, v with at least one of |u|, |v − e| exceeding σ(s). By the triangle
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inequality,

∑
x,y

∣∣∣∣ ∑
|u| or |v−e|>σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]− π

log s
ps(u)ps(v − e)

)

× (pt−s(x− u)pt−s(y − v)− pt−s(x)pt−s(y − e))
∣∣∣∣

≤
∑

|u| or |v−e|>σ(s)

P[S1
s = u, e+ S2

s = v,NC(0, s]] +
π

log s
ps(u)ps(v − e)

≤ 4P[|S1
s | > σ(s)]

= 4P[|S1
s |2+ε > σ(s)2+ε] ≤ C s1+ ε

2

σ(s)2+ε
≤ C

log(2+ε)δ s

for some ε > 0. For the remaining contribution

∑
x,y

∣∣∣∣ ∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]− π

log s
ps(u)ps(v − e)

)

× (pt−s(x− u)pt−s(y − v)− pt−s(x)pt−s(y − e))
∣∣∣∣

we split the outside sum similarly and deal first with the case that at least one of
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|x|, |y − e| exceeds σ(t− s).

∑
|x| or |y−e|>σ(t−s)

∣∣∣∣ ∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

− π

log s
ps(u)ps(v − e)

)
(pt−s(x− u)pt−s(y − v)− pt−s(x)pt−s(y − e))

∣∣∣∣
≤

∑
|x| or |y−e|>σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
(pt−s(x− u)pt−s(y − v) + pt−s(x)pt−s(y − e))

≤
∑

|x| or |y−e|>σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v)

+
C

log s

∑
|x| or |y−e|>σ(t−s)

pt−s(x)pt−s(y − e)

≤
∑

|x| or |y−e|>σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v)

+
2C

log s
P[|S1

t−s| > σ(t− s)]

where in the second inequality we have summed over all u, v in the final term which

only introduces positive terms. On the final term, Markov’s inequality gives

2C

log s
P[|S1

t−s| > σ(t− s)] ≤ 2C

log s

(t− s)1+ε/2

σ(t− s)2+ε
≤ 4C

log1+δ(2+ε) t
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and then for this contribution we are left with

∑
|x| or |y−e|>σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v)

=
∑
x

∑
|y−e|>σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v)

+
∑

|x|>σ(t−s)

∑
y

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

+
π

log s
ps(u)ps(v − e)

)
pt−s(x− u)pt−s(y − v).

In the region of summation, for large enough t,

|x− u| ≥ |x| − |u| > σ(t− s)− σ(s) >
σ(t)

2
,

by the reverse triangle inequality and similarly for |y− v| = |y− e− (v− e)|. So by

bounding some instances of ps(u), ps(v− e) by 1 and throwing away some instances

the events {S1
s = u}, {e+ S2

s = v} we can bound

∑
|y−e|>σ(t−s)

∑
u

∑
|v−e|≤σ(s)

(
P[S1

s = u,NC[(0, s]] +
π

log s
ps(u)

)
pt−s(y − v)

+
∑

|x|>σ(t−s)

∑
|u|≤σ(s)

∑
v

(
P[e+ S2

s = v,NC[(0, s]] +
π

log s
ps(v − e)

)
pt−s(x− u)

=
C

log t

∑
|y−e|>σ(t−s)

∑
|v−e|≤σ(s)

pt−s(y − v)

+
C

log t

∑
|x|>σ(t−s)

∑
|u|≤σ(s)

pt−s(x− u)

≤ 2C

log t
P
[
|S1
t−s| >

σ(t)

2

]
≤ C

log1+δ(2+ε) t
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constant changing in the last line. All that is left to estimate is

∑
|x|,|y−e|≤σ(t−s)

∣∣∣∣ ∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

− π

log s
ps(u)ps(v − e)

)
(pt−s(x− u)pt−s(y − v)− pt−s(x)pt−s(y − e))

∣∣∣∣.
The difference

pt−s(x− u)pt−s(y − v)− pt−s(x)pt−s(y − e)

is equal to

pt−s(x− u)

(
pt−s(y − v)− pt−s(y − e)

)
+

(
pt−s(x− u)− pt−s(x)

)
pt−s(y − e)

which can be bounded by the local central limit theorem and corollaries thereof (see

(5.1)) by

c

t

(
|v − e|+ |u|

t3/2
+O

(
1

t1+ ε
2

))
.

This bound gives

c

t

(
2 maxw : |w|≤σ(s) |w|

t3/2
+O

(
1

t1+ ε
2

))
×

∑
|x|,|y−e|≤σ(t−s)

∑
|u|,|v−e|≤σ(s)

(
P[S1

s = u, e+ S2
s = v,NC(0, s]]

π

log s
ps(u)ps(v − e)

)

≤

(
Cs1/2 logδ s

t5/2
+O

(
1

t2+ ε
2

))

×
∑

|x|,|y−e|≤σ(t−s)

∑
u,v

(
P[S1

s = u, e+ S2
s = v,NC(0, s]] +

π

log s
ps(u)ps(v − e)

)

≤ C

log s

(
Cs1/2 logδ s

t5/2
+O

(
1

t2+ ε
2

))
Cσ(t− s)4

≤ C

log t

(
C

log
α
2
−5δ t

+O

(
log4δ t

t
ε
2

))
.
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Collecting all the errors that contribute to E2(t)− E1(t), we see that it is of order

O

(
1

log(2+ε)δ t
+

1

log1+α
2
−5δ t

)

which can be made of order

O

(
1

log2 t

)
by choosing δ = 1 and any α ≥ 12, which completes the proof of Lemma 4.1.4.

5.3 λ Reluctant Random Walk

Let St be a rate 1 simple random walk on Z2 starting at the origin and let NCλ(0, t]

be the event that on each of the visits of St to the origin it rests no longer than an

exponential time with mean λ−1. If S1, S2 are two independent copies of a contin-

uous time random walk starting at the origin, then their difference is a continuous

time random walk starting at the origin and run at twice speed, we will be interested

in quantifying the probability of NC2λ(0, t] for this difference and that will describe

the probability that two independent random walks have not coalesced by time t (2λ

since if we have two particles resting at the same site, the first is trying to coalesce

onto the second at rate λ as is the second onto the first so that the total rate is 2λ

so that we want the difference in the random walks to remain at the origin for no

more than exp(2λ) amount of time.)

Lemma 5.3.1.

P[NCλ(0, t]] =
π

λ log t
+O

(
log log t

log2 t

)
.

Proof. First, it will be convenient to give some notation to aid the manipulations.

Let

p(∞)
e (t) = P[NC(0, t]],

the probability that a random walk starting at a neighbour, e of the origin does not

reach the origin by time t (the infinity meant to signifiy that the walk is infinitely

reluctant to remain at the origin and hence not even visit it at all). This we already
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know has asymptotics given by Lemma 5.2.2. Let

p
(λ)
0 (t) = P[NCλ(0, t]],

which is the object of study and let p
(λ)
e (t) be the probability that starting from e

the random walk spends no more than exponential rate λ time at the origin.

We first sketch the argument. The walk alarm must go off before the λ alarm

since the walk starts at the origin. Therefore there must be a jump from the origin

to one of its four neighbours. Decomposing the event according to what happens

after the first jump we see that either the particle can wander away and not return

to the origin by time t or it can return but then again mustn’t remain for more than

rate λ. Ignoring the fact that we have used up time to make jumps, this gives the

approximate relation

p
(λ)
0 (t) ≈ 1

1 + λ
p(∞)
e (t) +

1

1 + λ
(1− p(∞)

e (t))p
(λ)
0 (t).

Rearranging this expression for p
(λ)
0 (t) and substituting for p

(∞)
e (t) gives

p
(λ)
0 (t) ≈ π

λ log t
+O

(
1

log2 t

)
.

We now make this argument rigorous.

We do this in two steps. The first of which (although we will prove this later)

is that

pλe (t) =
1 + λ

λ

π

log t
+O

(
log log t

log2 t

)
(5.4)

using what we know about p
(∞)
e (t). We will delay the proof of this until after we have

shown how the above equality produces the result. Clearly p
(λ)
0 (t) and pλe (t) have the

following relationship, a particle at the origin must make a jump to a neighbouring

site before spending rate λ time there, and now at this neighbour it must not visit

the origin for more than rate λ time which is given by p
(λ)
e evaluated at time t less
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the amount of time it took to jump. Firstly, we use the fact that p
(λ)
e is decreasing

in t to get the lower bound.

p
(λ)
0 (t) =

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)sp(λ)

e (t− s)ds

≥ 1

1 + λ
p(λ)
e (t)(1− e−(1+λ)t)

=
1

1 + λ
p(λ)
e (t)− 1

1 + λ
p(λ)
e (t)e−(1+λ)t

=
1

1 + λ

1 + λ

λ

π

log (t)
+O

(
log log t

log2 (t)

)
=

π

λ log (t)
+O

(
log log t

log2 (t)

)
.

This is necessary lower bound for p
(λ)
0 (t). And for the upper bound

p
(λ)
0 (t) =

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)sp(λ)

e (t− s)ds

=
1

1 + λ

(∫ t/2

0
(1 + λ)e−(1+λ)sp(λ)

e (t− s)ds

+

∫ t

t/2
(1 + λ)e−(1+λ)sp(λ)

e (t− s)ds
)

≤ 1

1 + λ

(
p(λ)
e (t/2)

∫ t/2

0
(1 + λ)e−(1+λ)sds

+

∫ t

t/2
(1 + λ)e−(1+λ)sds

)
≤ 1

1 + λ

(
p(λ)
e (t/2)

∫ ∞
0

(1 + λ)e−(1+λ)sds

+

∫ ∞
t/2

(1 + λ)e−(1+λ)sds

)
=

1

1 + λ
p(λ)
e (t/2) +O(e−(1+λ)t/2)

=
1

1 + λ

1 + λ

λ

π

log (t/2)
+O

(
log log t

log2 (t)

)
=

π

λ log t

log t

log t− log 2
+O

(
log log t

log2 (t)

)
=

π

λ log t
+O

(
log log t

log2 (t)

)
.

Now to prove (5.4), we decompose p
(λ)
e (t) according to whether the random
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walk hits the origin before time t. That is

p(λ)
e (t) = p(∞)

e (t) +

∫ t

0

Ψ(s)

1 + λ

∫ t−s

0
(1 + λ)e−(1+λ)rp(λ)

e (t− s− r)drds.

For a lower bound, since p
(λ)
e (t) is decreasing in t (the event that the random walk

hasn’t spent the appropriate amount of time at the origin by time t is contained in

the correponding event by time s < t) we can bound the copy in the inner integral

by its value at 0 and the same again for the outer integral giving

p(λ)
e (t) ≥ p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

∫ t

0
Ψ(s)

∫ t−s

0
(1 + λ)e−(1+λ)rdrds.

Now evaluating the inner integral and rearranging gives

p(λ)
e (t) ≥ p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

∫ t

0
Ψ(s)

(
1− e−(1+λ)(t−s)

)
ds

= p(∞)
e (t) +

p
(λ)
e (t)

1 + λ

(∫ t

0
Ψ(s)ds−

∫ t

0
Ψ(s)e−(1+λ)(t−s)ds

)
= p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

(
1− p(∞)

e (t)−
∫ t

0
Ψ(s)e−(1+λ)(t−s)ds

)
= p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

(
1− p(∞)

e (t)−
∫ t/2

0
Ψ(s)e−(1+λ)(t−s)ds

−
∫ t

t/2
Ψ(s)e−(1+λ)(t−s)ds

)
≥ p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

(
1− p(∞)

e (t)− e−(1+λ)t/2

∫ t/2

0
Ψ(s)ds−

∫ t

t/2
Ψ(s)ds

)

≥ p(∞)
e (t) +

p
(λ)
e (t)

1 + λ

(
1− p(∞)

e (t)− e−(1+λ)t/2
(

1− p(∞)
e (t/2)

)
− p(∞)

e (t/2)

)
.

Now, we know the asymptotic behaviour of p
(∞)
e (t), and by the properties of the

logarithm, p
(∞)
e (t/2) has the same limiting behaviour (as is done explicitly in the

upper bound for p
(λ)
0 (t) above.)

p(λ)
e (t) ≥ p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

(
1− 2p(∞)

e (t) +O

(
1

log2 (t)

))
.
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Notice, we can throw away the second term on the right hand side since it is positive

for large t and achieve a trivial lower bound p
(λ)
e (t) ≥ p

(∞)
e (t) which allows us to

rewrite

p(λ)
e (t) ≥ p(∞)

e (t) +
p

(λ)
e (t)

1 + λ

(
1− 2p(∞)

e (t)

)
+O

(
1

log3 (t)

)

and now we can rearrange as in the sketch.

p(λ)
e (t) ≥ (1 + λ)p

(∞)
e (t)

λ+ 2p
(∞)
e (t)

+O

(
1

log2 (t)

)
=

1 + λ

λ

π

log (t)
+O

(
1

log2 (t)

)
.

To complete the proof of this step we need the corresponding upper bound. Let

ε ∈ (0, 1). Beginning with Fubini and then splitting the inner integral,

p(λ)
e (t) = p(∞)

e (t) +

∫ t

0

Ψ(s)

1 + λ

∫ t−s

0
(1 + λ)e−(1+λ)rp(λ)

e (t− s− r)drds

= p(∞)
e (t) +

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)r

∫ t−r

0
Ψ(s)p(λ)

e (t− s− r)dsdr (5.5)

=
π

log t
+

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)r

(∫ ε(t−r)

0
Ψ(s)p(λ)

e (t− s− r)ds

+

∫ t−r

ε(t−r)
Ψ(s)p(λ)

e (t− s− r)ds
)
dr +O

(
1

log2 t

)
.

Now over the interval [0, ε(t − r)] we can bound the copy of p
(λ)
e by its value at

the earlier time ε(t − r) and over the interval [ε(t − r), t − r] we simply bound the

probability by 1 to give

p(λ)
e (t) ≤ π

log t
+O

(
1

log2 t

)
+

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r))
∫ ε(t−r)

0
Ψ(s)dsdr

+
1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)r

∫ t−r

ε(t−r)
Ψ(s)dsdr.

The inner integral of the second term is the tail of the distribution of the visit to
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the origin. That is, 1 − p(∞)
e (ε(t − r)) ≤ 1. Noting that, p

(∞)
e (t − r) ≥ p

(∞)
e (t) we

evaluate the inner integral of the third term and so bound

p(λ)
e (t) ≤ π

log t
+O

(
1

log2 t

)
+

1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r)) dr

+
1

1 + λ

∫ t

0
(1 + λ)e−(1+λ)r(p(∞)

e (ε(t− r)− p(∞)
e (t))dr.

We split the first integral at εt and the second integral at t/2 since we do not have

to be as careful.

p(λ)
e (t) ≤ π

log t
+O

(
1

log2 t

)
+

1

1 + λ

∫ εt

0
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r)) dr

+
1

1 + λ

∫ t

εt
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r)) dr

+
1

1 + λ

∫ t/2

0
(1 + λ)e−(1+λ)r(p(∞)

e (ε(t− r)− p(∞)
e (t))dr

+
1

1 + λ

∫ t

t/2
(1 + λ)e−(1+λ)r(p(∞)

e (ε(t− r)− p(∞)
e (t))dr

: =
π

log t
+O

(
1

log2 t

)
+

1

1 + λ
(I + II + III + IV ).

II and IV are easy to deal with,

II =

∫ t

εt
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r)) dr

≤
∫ t

εt
(1 + λ)e−(1+λ)rdr

≤
∫ ∞
εt

(1 + λ)e−(1+λ)rdr

= e−ε(1+λ)t,
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IV =

∫ t

t/2
(1 + λ)e−(1+λ)r(p(∞)

e (ε(t− r)− p(∞)
e (t))dr

≤
∫ t

t/2
(1 + λ)e−(1+λ)rdr

≤
∫ ∞
t/2

(1 + λ)e−(1+λ)rdr

= e−(1+λ)t/2

which are both tiny. Now for I which constitutes our main term. Bounding by

values taken at later times

I =

∫ εt

0
(1 + λ)e−(1+λ)rp(λ)

e ((1− ε)(t− r)) dr

≤ p(λ)
e

(
(1− ε)2t

) ∫ εt

0
(1 + λ)e−(1+λ)rdr

≤ p(λ)
e

(
(1− ε)2t

) ∫ ∞
0

(1 + λ)e−(1+λ)rdr

= p(λ)
e

(
(1− ε)2t

)
.

III is the trickiest to handle. Once again, bounding by values at later times

III =

∫ t/2

0
(1 + λ)e−(1+λ)r(p(∞)

e (ε(t− r)− p(∞)
e (t)))dr

≤ (p(∞)
e (εt/2)− p(∞)

e (t))

∫ t/2

0
(1 + λ)e−(1+λ)rdr

≤ (p(∞)
e (εt/2)− p(∞)

e (t))

∫ ∞
0

(1 + λ)e−(1+λ)rdr

≤ (p(∞)
e (εt/2)− p(∞)

e (t))

= π

(
log t− log (εt/2)

log (t) log (εt/2)

)
+O

(
1

log2 t

)
≤ O

(
1

log2 t

)
.

Combining everything we have

p(λ)
e (t) ≤ π

log t
+

1

1 + λ
p(λ)
e

(
(1− ε)2t

)
+O

(
1

log2 t

)
.
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Using (5.5) evaluated (1− ε)2t and substituting

p(λ)
e (t) ≤ π

log t
+O

(
1

log2 t

)
+

1

1 + λ
p(∞)
e ((1− ε)2t)

+

(
1

1 + λ

)2 ∫ t

0
(1 + λ)e−(1+λ)r

×
∫ (1−ε)2t−r

0
Ψ(s)p(λ)

e ((1− ε)2t− s− r)dsdr.

The integrals can be evaluated in exactly the same way as before by splitting the

intervals at the appropriate time and this will lead to

p(λ)
e (t) ≤ π

log t
+

1

1 + λ

π

log t
+

(
1

1 + λ

)2

p(λ)
e

(
(1− ε)4t

)
+ 2O

(
1

log2 t

)

and by induction, collecting a copy of O(log−2 t) on each go

p(λ)
e (t) ≤ π

log t

n∑
k=0

(
1

1 + λ

)k
+ (n+ 1)O

(
1

log2 t

)

+

(
1

1 + λ

)n+1

p(λ)
e

(
(1− ε)2(n+1)t

)

=
π

log t

1−
(

1
1+λ

)n+1

1− 1
1+λ

+ (n+ 1)O

(
1

log2 t

)

+

(
1

1 + λ

)n+1

p(λ)
e

(
(1− ε)2(n+1)t

)
≤ (1 + λ)π

λ log t
+

(
1

1 + λ

)n+1 ∣∣∣∣p(λ)
e

(
(1− ε)2(n+1)t

)
− (1 + λ)π

λ log t

∣∣∣∣
+ (n+ 1)O

(
1

log2 t

)
≤ (1 + λ)π

λ log t
+ 2

(
1

1 + λ

)n+1

+ (n+ 1)O

(
1

log2 t

)
(5.6)

for large enough t. We need to chose the number of iterations n so that (1/(1 +
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λ))n+1 ≤ log−2 t. Let ρ = log ((1 + λ)/λ), then letting n =
⌈

2 log log t
ρ

⌉
− 1 gives

(
1

1 + λ

)n+1

= e−(n+1)ρ

= e
−
⌈
2 log log t

ρ

⌉
ρ

≤ e−
2 log log t

ρ
ρ

=
1

log2 t
.

With this choice of n, (5.6) becomes

p(λ)
e (t) ≤ (1 + λ)π

λ log t
+O

(
log log t

log2 t

)

which completes the proof.

This allows us to prove the analogy to (4.3) for the non-instantly coalescing

random walks. Recall the definition of ψ given in (4.23)

Proof of Lemma 4.2.3

The proof is the same as for Lemma 4.1.4 but with NCλ playing the role of

NC.
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Appendix A

Proofs from Chapter 2

A.1 Proof of Proposition 2.2.1

To prove existence we follow the usual iteration procedure. Let ξ
(m,0)
t ≡ ξ0 and

define

ξ
(m,n)
t (x) = ξ0(x) +

∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m,n−1)

s− (y) ≥ i, ξ(m,n−1)
s− (x) < m}dPs(i, y, x)

− 1{ξ(m,n−1)
s− (x) ≥ i}dPs(i, x, y)

)
−
∫ t

0

m∑
i,j=1

1

(
ξ

(m,n−1)
s− (x) ≥ i ∨ j, i 6= j

)
dP cs (i, j, x). (A.1)

As for for the proof of 2.1.1, we follow [10] and split the proof into steps.

Step 1 Firstly, we will show that for each n ∈ N and any θ > 0

sup
t∈[0,T ]

∑
x

e−θ|x|E[ξ
(m,n)
t (x)2] <∞.

Suppose, for an induction argument, that

sup
t∈[0,T ]

∑
x

e−θ|x|E[ξ
(m,n−1)
t (x)2] <∞

and note that the base case is satisfied by the assumptions on the initial condition.
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Then, by Holder’s inequality, we have the simple inequality(
n∑
i=1

|xi|

)p
≤ np−1

n∑
i=1

|xi|p

which gives

E[ξ
(m,n)
t (x)2] = E

[(
ξ0(x) +

∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m,n−1)

s− (y) ≥ i}dPs(i, y, x)

− 1{ξ(m,n−1)
s− (x) ≥ i}dPs(i, x, y)

)
−
∫ t

0

m∑
i,j=1

1{ξ(m,n−1)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

)2]

≤ 4E[ξ0(x)2] + 4E

(∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m,n−1)

s− (y) ≥ i, ξ(m,n−1)
s− (x) < m}dPs(i, y, x)

)2


+ 4E

(∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m,n−1)

s− (x) ≥ i}dPs(i, x, y)

)2


+ 4E

∫ t

0

m∑
i,j=1

1{ξ(m,n−1)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x))

2
= 4

4∑
i=1

Ii. (A.2)

We first consider the second term. Compensating the Poisson processes and using

Cauchy-Schwarz we have

I2 = E

(∫ t

0

∑
y:y∼x

m∑
i=1

(
1{ξ(m,n−1)

s− (x) ≥ i}dPs(i, x, y)

)2


≤ 2E

(∑
y:y∼x

m∑
i=1

∫ t

0
1{ξ(m,n−1)

s− (y) ≥ i, ξ(m,n−1)
s (x) < m}d

(
Ps(i, y, x)− s

2d

))2


+
2

(2d)2
E

(∫ t

0

∑
y:y∼x

m∑
i=1

1{ξ(m,n−1)
s (y) ≥ i, ξ(m,n−1)

s (x) < m}ds

)2
 .

Since the covariation between independent compensated Poisson processes is 0, the

165



cross terms in each of the stochastic integrals vanish so that the sums can be removed

from the expectations.

I2 ≤ 2
∑
y:y∼x

m∑
i=1

E

[(∫ t

0
1{ξ(m,n−1)

s− (y) ≥ i, ξ(m,n−1)
s (x) < m}d

(
Ps(i, y, x)− s

2d

))2
]

+
2

(2d)2
E

(∫ t

0

∑
y:y∼x

m∑
i=1

1{ξ(m,n−1)
s (y) ≥ i, ξ(m,n−1)

s (x) < m}ds

)2
 .

Now applying the Itô isometry the stochastic integral and Cauchy-Schwarz to the

Lebesgue integral

I2 ≤
2

2d

∑
y:y∼x

m∑
i=1

E
[∫ t

0
1{ξ(m,n−1)

s− (y) ≥ i, ξ(m,n−1)
s (x) < m}ds

]

+
2

(2d)2
E

∫ t

0

(∑
y:y∼x

m∑
i=1

1{ξ(m,n−1)
s (y) ≥ i, ξ(m,n−1)

s (x) < m}

)2

ds

 .
By bounding the indicators above by 1{ξ(m,n−1)

s (y) ≥ i} we can sum over i and find

m∑
i=1

1{ξ(m,n−1)
s (y) ≥ i} = |ξ(m,n−1)

s (y)| ∧m ≤ |ξ(m,n−1)
s (y)|.

We use this in each term and also use Cauchy-Schwarz to remove the sum over the

neighbours of x from the square in the second term. Since ξ
(m,n)
t (x) is integer valued

for all values of m,n, t, we have that ξ
(m,n)
t (x) ≤ ξ(m,n)

t (x)2 we find

I2 ≤
2(1 + t)

2d

∑
y:y∼x

∫ t

0
E[ξ(m,n−1)

s (y)2]ds. (A.3)

It is similar, but easier, to show

I3 ≤ 2 (1 + t)

∫ t

0
E[ξ(m,n−1)

s (x)2]ds. (A.4)

166



In a similar fashion, we have

I4 ≤2
m∑

i,j=1

E

[(∫ t

0
1{ξ(m,n−1)

s− (x) ≥ i ∨ j, i 6= j}d(P cs (i, j, x)− λs)
)2
]

+ 2λ2E

∫ t

0

m∑
i,j=1

1

{
ξ(m,n−1)
s (x) ≥ i ∨ j, i 6= j

}
ds

2
≤2λ

m∑
i,j=1

E
[∫ t

0
1{ξ(m,n−1)

s− (x) ≥ i ∨ j, i 6= j}ds
]

+ 2λ2tE

∫ t

0

 m∑
i,j=1

1

{
ξ(m,n−1)
s (x) ≥ i ∨ j, i 6= j

}2

ds

 .
In order to use our inductive hypothesis, we need to only have squares of ξ ap-

pearing. We must therefore remove the sum from the square in the second term

before summing at the expense of some powers of m, since this would otherwise

produce a quartic expression for ξ. Doing so, and then summing up the indicators

and bounding the integer valued integrands we arrive at

I4 ≤ 2λ

m∑
i,j=1

E
[∫ t

0
1{ξ(m,n−1)

s− (x) ≥ i ∨ j, i 6= j}ds
]

+ 2(λm)2tE

∫ t

0

m∑
i,j=1

1

{
ξ(m,n−1)
s (x) ≥ i ∨ j, i 6= j

}
ds


≤ 2(λ+ (λm)2t)E

[∫ t

0
|ξ(m,n−1)
s (x)|(|ξ(m,n−1)

s (x)| − 1)ds

]
≤ 2(λ+ (λm)2t)E

[∫ t

0
ξ(m,n−1)
s (x)2ds

]
. (A.5)

Substituting (A.3), (A.4) and (A.5) into (A.2) gives

E[ξ
(m,n)
t (x)2] ≤ 4E[ξ2

0(x)] +
8(1 + t)

2d

∑
y:y∼x

∫ t

0
E[ξ(m,n−1)

s (y)2]ds

+ 8
(
1 + λ+ t+ (λm)2t

) ∫ t

0
E[ξ(m,n−1)

s (x)2]ds.
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Then, for any θ > 0

sup
t≤T

∑
x

e−θ|x|E[ξ
(m,n)
t (x)2]

≤ 4E

[∑
x

e−θ|x|ξ0(x)2

]

+
8(1 + t)

2d

∑
x

e−θ|x|
∑
y:y∼x

∫ T

0
E[ξ(m,n−1)

s (y)2]ds

+ 8
(
1 + λ+ T + (λm)2T

) ∫ T

0

∑
x

e−θ|x|E[ξ(m,n−1)
s (x)2]ds.

The inequality given in (2.4) gives

sup
t≤T

∑
x

e−θ|x|E[ξ
(m,n)
t (x)2]

≤ 4E

[∑
x

e−θ|x|ξ0(x)2

]

+ 8
(
2eθ(1 + T ) + λ+ (λm)2T

) ∫ T

0

∑
x

e−θ|x|E[ξ(m,n−1)
s (x)2]ds

which is finite by the induction hypothesis.

Step 2 With the second moments established to be finite, it makes sense to

compare successive iterates in mean squared since we now know that

E[|ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|2] ≤ 2E[ξ
(m,n+1)
t (x)2 + ξ

(m,n)
t (x)2] <∞

by Cauchy-Schwarz. The aim of this step is to show that for t ∈ [0, T ] there exists

C,L such that

E

[∑
x

e−θ|x|
∣∣∣ξ(m,n+1)
t (x)− ξ(m,n)

t (x)
∣∣∣2] ≤ C(Lt)n

n!
.

Firstly, we use Cauchy-Schwarz to distribute the square. As before, we we will label
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each of the terms and estimate them individually.

E[|ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|2]

≤ 3E
[(∫ t

0

∑
y∼x

m∑
i=1

∣∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}

− 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣∣dPs(i, y, x)

)2]
+ 3E

[(∫ t

0

∑
y∼x

m∑
i=1

∣∣∣1{ξ(m,n)
s− (x) ≥ i} − 1{ξ(m,n−1)

s− (x) ≥ i}
∣∣∣ dPs(i, x, y)

)2]

+ 3E
[(∫ t

0

m∑
i,j=1

∣∣∣∣1{ξ(m,n)
s− (x) ≥ i ∨ j, i 6= j}

− 1{ξ(m,n−1)
s− (x) ≥ i ∨ j, i 6= j}

∣∣∣∣dP cs (i, j, x)

)2]
= 3

3∑
i=1

Ii. (A.6)

Compensating the Poisson processes in I1 and expanding the squares in the integral

with respect to the compensated Poisson processes gives

I1 ≤ 2
∑
y∼x

m∑
i=1

E
[(∫ t

0

∣∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}

− 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣∣d(Ps(i, y, x)− 2

2d

))2]
+

2

(2d)2
E
[(∫ t

0

∑
y∼x

m∑
i=1

∣∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}

− 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣∣ds)2]

.
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The Itô isometry and Cauchy-Schwarz lead us to

I1 ≤
2

2d

∑
y∼x

m∑
i=1

E
[ ∫ t

0

∣∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}

− 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣∣ds]

+
2t

2d

∑
y∼x

E
[ ∫ t

0

( m∑
i=1

∣∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}

− 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣∣)2

ds

]
.

The difference of the indicators

∣∣∣1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m} − 1{ξ(m,n−1)
s− (y) ≥ i, ξ(m,n−1)

s− (x) < m}
∣∣∣

is at most 1 and achieves the value 1 if the arguments of one of the indicators are

realised while one or both of the arguments of the other indicator fails to be realised.

In any case, we can bound the difference in the indicators by

|ξ(m,n)
s− (y)− ξ(m,n−1)

s− (y)|+ |ξ(m,n)
s− (x)− ξ(m,n−1)

s− (x)|

which is at least 1 whenever the difference in the indicators is 1. Bounding the

difference in the indicators and then summing over i gives

I1 ≤
2m

2d

∑
y∼x

E
[ ∫ t

0
|ξ(m,n)
s (y)− ξ(m,n−1)

s (y)|+ |ξ(m,n)
s (x)− ξ(m,n−1)

s (x)|ds
]

+
2tm2

2d

∑
y∼x

E
[ ∫ t

0

(∣∣∣ξ(m,n)
s (y)− ξ(m,n−1)

s (y)|+ |ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣∣)2

ds

]
.

We now raise the integer valued integrand of the first integral to the square, sum

the integrals and use Cauchy-Schwarz to distribute the square on the integrand

I1 ≤
4m2(1 + t)

2d

∑
y∼x

E
[ ∫ t

0

∣∣∣ξ(m,n)
s (y)− ξ(m,n−1)

s (y)
∣∣∣2 +

∣∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣∣2 ds].
(A.7)
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Similarly, we can show

I2 ≤ 2(1 + t)E
[ ∫ t

0

∣∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣∣2 ds]. (A.8)

We begin the estimation of I3 in the same way

I3 ≤ 2λ

m∑
i,j=1

E
[ ∫ t

0

∣∣1{ξ(m,n)
s− (x) ≥ i ∨ j, i 6= j}

− 1{ξ(m,n−1)
s− (x) ≥ i ∨ j, i 6= j}

∣∣ds]
+ 2λ2tE

[ ∫ t

0

( m∑
i,j=1

|1{ξ(m,n)
s (x) ≥ i ∨ j, i 6= j}

− 1{ξ(m,n−1)
s (x) ≥ i ∨ j, i 6= j}

∣∣)2

ds

]
.

Summing the indicators over i and j by considering the possible values ξ
(m,·)
s (x) can

take in relation to m we see that

m∑
i,j=1

∣∣1{ξ(m,n)
s (x) ≥ i ∨ j, i 6= j} − 1{ξ(m,n−1)

s (x) ≥ i ∨ j, i 6= j}
∣∣

= 2
m∑
i=2

i−1∑
j=1

∣∣1{ξ(m,n)
s (x) ≥ i} − 1{ξ(m,n−1)

s (x) ≥ i}
∣∣

≤
∣∣∣∣(|ξ(m,n)

s (x)| ∧m)((|ξ(m,n)
s (x)| ∧m)− 1)

− (|ξ(m,n−1)
s (x)| ∧m)((|ξ(m,n−1)

s (x)| ∧m)− 1)

∣∣∣∣
Using the following identity

X(X − 1)− Y (Y − 1) = (X − Y )(X + Y )− (X − Y ) = (X + Y − 1)(X − Y )
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we can bound

m∑
i,j=1

∣∣1{ξ(m,n)
s (x) ≥ i ∨ j, i 6= j} − 1{ξ(m,n−1)

s (x) ≥ i ∨ j, i 6= j}
∣∣

≤ (2m− 1)
∣∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣∣

So

I3 ≤ 2λ(2m− 1)E
[ ∫ t

0

∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣ds]

+ 2(λ(2m− 1))2tE
[ ∫ t

0

∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣2ds]

≤ 2λ(2m− 1)2(1 ∨ λt)E
[ ∫ t

0

∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣2ds]. (A.9)

Substituting (A.7), (A.8) and (A.9) into (A.6), multiplying by e−θ|x| and summing

over all x gives

E

[∑
x

e−θ|x|
∣∣∣∣ξ(m,n+1)
t (x)− ξ(m,n)

t (x)

∣∣∣∣2
]

≤ 6((1 + 2m2(1 + eθ)(1 + t)) + λ(2m− 1)2(1 ∨ λt))

×
∫ t

0
E
[∑

x

e−θ|x|
∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣2]ds

Writing

L = L(m,T ) = 6(1 + 4m2(eθ(1 + T ) + λ(1 ∨ λT ))) (A.10)

gives

E

[∑
x

e−θ|x||ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|2
]

≤ L
∫ t

0
E
[∑

x

e−θ|x|
∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣2]ds.
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Let

C = sup
t∈[0,T ]

E

[∑
x

e−θ|x|
∣∣ξ(m,1)
t (x)− ξ(m,0)

t (x)
∣∣2]

≤ 2 sup
t∈[0,T ]

E

[∑
x

e−θ|x|(ξ
(m,1)
t (x)2 + ξ

(m,0)
t (x)2)

]
<∞,

we can apply the above bound iteratively to give

E

[∑
x

e−θ|x||ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|2
]
≤ C(Lt)n

n!
. (A.11)

Step 3 Now, for a uniform bound in t ∈ [0, T ] let

M (m)
n = sup

t≤T

∑
x

e−θ|x|
∣∣ξ(m,n+1)
t (x)− ξ(m,n)

t (x)
∣∣.

Firstly, by the triangle inequality

sup
t∈[0,T ]

|ξ(m,n+1)
t (x)− ξ(m,n)

t (x)
∣∣ ≤ ∫ T

0

∑
y∼x

m∑
i=1

∣∣∣∣1{ξ(m,n)
s (y) ≥ i, ξ(m,n)

s (x) < m}

− 1{ξ(m,n−1)
s (y) ≥ i, ξ(m,n−1)

s (x) < m}
∣∣∣∣dPs(i, y, x)

+

∫ T

0

∑
y∼x

m∑
i=1

|1{ξ(m,n)
s (x) ≥ i} − 1{ξ(m,n−1)

s (x) ≥ i}|dPs(i, x, y)

+

∫ T

0

m∑
i,j=1

|1{ξ(m,n)
s (x) ≥ i ∨ j, i 6= j}

− 1{ξ(m,n−1)
s (x) ≥ i ∨ j, i 6= j}|dP cs (i, j, x)

Secondly, by writing e−θ|x| = e−θ|x|/2e−θ|x|/2 and using Cauchy-Schwarz

E
[
(M (m)

n )2
]
≤

(∑
x

e−θ|x|

)
E

∑
x

e−θ|x|

(
sup
t∈[0,T ]

|ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|

)2


= CθE

∑
x

e−θ|x|

(
sup
t∈[0,T ]

|ξ(m,n+1)
t (x)− ξ(m,n)

t (x)|

)2
 .
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Finally, by performing completely analogous calculations that have already been

made gives

E[(M (m)
n )2] ≤ CθLE

[∫ T

0

∑
x

e−θ|x|
∣∣∣ξ(m,n)
s (x)− ξ(m,n−1)

s (x)
∣∣∣2 ds]

where L is the same as given in (A.10) and so by (A.11)

E[(M (m)
n )2] ≤ CθL

∫ T

0

C(Ls)n−1

(n− 1)!
ds

=
CCθ(LT )n

n!
.

Step 4 So by Chebyshev’s inequality

P

[
sup
t∈[0,T ]

∑
x

e−θ|x|
∣∣∣ξ(m,n+1)
t (x)− ξ(m,n)

t (x)
∣∣∣ > 1

(n+ 1)2

]
≤ (n+ 1)4E[(M (m)

n )2]

≤ CCθ(n+ 1)4(LT )n

n!

which is summable. The Borel-Cantelli lemma tells us that

∞∑
n=0

P
[
M (m)
n >

1

(n+ 1)2

]
<∞

which implies that

P
[
ω : ∃N(ω) such that∀n > N,

sup
t∈[0,T ]

∑
x

e−θ|x||ξ(m,n+1)
t (x)− ξ(m,n)

t (x)| ≤ 1

(n+ 1)2

]
= 1
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and so

∑
x

e−θ|x|ξ
(m,n+1)
t (x) =

∑
x

e−θ|x|

(
ξ(m,0)(x) +

n∑
i=0

[ξ
(m,i+1)
t (x)− ξ(m,i)

t (x)]

)

=
∑
x

e−θ|x|ξ(m,0)(x)

+
∑
x

e−θ|x|
n∑
i=0

[ξ
(m,i+1)
t (x)− ξ(m,i)

t (x)]

= Cθ,ξ0 +
n∑
i=0

∑
x

e−θ|x|[ξ
(m,i+1)
t (x)− ξ(m,i)

t (x)]

converges uniformly in t with probability 1. In particular, for each x, ξ
(m,n)
t (x)

converges uniformly in t almost surely.

Step 5 The process ξmt (x) = limn→∞ ξ
(m,n)
t (x) is adapted with càdlàg paths

since it is the uniform limit of terms with the same properties and satisfies the SDE

(2.15). Indeed, for any x and neighbour y ∼ x,

∣∣∣∣ ∫ t

0

m∑
i=1

1{ξ(m,n)
s− (y) ≥ i, ξ(m,n)

s− (x) < m}dPs(i, x, y)

−
∫ t

0

m∑
i=1

1{ξ(m)
s− (y) ≥ i, ξ(m)

s− (x) < m}dPs(i, x, y)

∣∣∣∣
≤

m∑
i=1

∫ t

0
|1{ξ(m,n)

s− (y) ≥ i, ξ(m,n)
s− (x) < m} − 1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (x) < m}|dPs(i, x, y)

≤
m∑
i=1

∫ t

0
|ξ(m,n)
s− (y)− ξ(m)

s− (y)|+ |ξ(m,n)
s− (x)− ξ(m)

s− (x)|dPs(i, x, y)→ 0

as n→∞. A similar analysis can be carried out to show

∣∣∣∣ ∫ t

0

m∑
i,j=1

1{ξ(m,n)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i,j=1

1{ξ(m)
s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

∣∣∣∣→ 0

as n→∞. Then, that the limit ξ
(m)
t (x) = limn→∞ ξ

(m,n)
t (x) satisfies (2.15), follows
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from taking limits in (A.1).

Step 6 Define the norm ||f ||2,θ = supt∈[0,T ](E[
∑

x e
−θ|x||f(x, t)|2])1/2, then

||ξ(m,n+1)
. (·)− ξ(m,n)

. (·)||2,θ ≤
(
C(LT )n

n!

)1/2

and so for n > k, Minkowski’s inequality gives

||ξ(m,n+1)
. (·)− ξ(m,k)

. (·)||2,θ

≤
n∑
i=k

||ξ(m,i+1)
. (·)− ξ(m,i)

. (·)||2,θ

≤
n∑
i=k

(
C(LT )i

i!

)1/2

≤
∞∑
i=k

(
C(LT )i

i!

)1/2

.

The right hand side converges, hence for all ε > 0 there exists K such that for

n > k ≥ K,

||ξ(m,n+1)
. (·)− ξ(m,k)

. (·)|| ≤
∞∑
i=k

(
C(LT )i

i!

)1/2

< ε.

Hence, for each t ∈ [0, T ], (ξ
(n)
t (x))n converges in a weighted L2. Since it converges

almost surely to ξ
(m)
t (x), this is also the limit in weighted space. That the sequence

converges in the weighted L2 norm establishes that

||ξ(m)
. (·)||2,θ = sup

t≤T
E

[∑
x

e−θ|x|ξ
(m)
t (x)2

]

is finite.

Step 7 We shall now prove that any other solution η(m) of (2.15) with finite

weighted L2 norm must satisfy η(m) ≡ ξ(m). It is easy to check that the preceeding

calculations suffice to show that

E

[∑
x

e−θ|x||ξ(m)
t (x)− η(m)

t (x)|2
]
≤ L(m, t)

∫ t

0
E

[∑
x

e−θ|x||ξ(m)
s (x)− η(m)

s (x)|2
]
ds
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for the same L given in (A.10). Grönwall’s Lemma can then be used to conclude.

A.2 Proof of Lemma 2.2.2

We will first treat the case p = 1. Since the solution to (2.15) is non-negative,

integer valued, we can bound

ξ
(m)
t (x) ≤ ξ0(x) +

∫ t

0

∑
y∼x

m∑
i=1

1{ξ(m)
s− (y) ≥ i}dPs(i, y, x).

Compensating and taking expectation gives

E
[
ξ

(m)
t (x)

]
≤ E [ξ0(x)] +

1

2d
E

[∫ t

0

∑
y∼x

ξ(m)
s (y)ds

]
.

Summing over all x gives

E

[∑
x

e−θ|x|ξ
(m)
t (x)

]
≤ E

[∑
x

e−θ|x|ξ0(x)

]
+

∫ t

0
E

[∑
x

e−θ|x|ξ(m)
s (x)

]
ds.

From which, the Grönwall inequality implies

E

[∑
x

e−θ|x|ξ
(m)
t (x)

]
≤ E

[∑
x

e−θ|x|ξ0(x)

]
et
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which is finite and independent of m. By the Itô formula for jump processes, we

find that

ξ
(m)
t (x)p

= ξ0(x)p +

∫ t

0

∑
y∼x

m∑
i=1

(
(ξ

(m)
s− (x) + 1)p − ξ(m)

s− (x)p
)
1{ξ(m)

s− (y) ≥ i, ξ(m)
s− (x) < m}

× dPs(i, y, x)

+

∫ t

0

∑
y∼x

m∑
i=1

(
(ξ

(m)
s− (x)− 1)p − ξ(m)

s− (x)p
)
1{ξ(m)

s− (x) ≥ i}dPs(i, x, y)

+

∫ t

0

m∑
i,j=1

(
(ξ

(m)
s− (x)− 1)p − ξ(m)

s− (x)p
)
1{ξ(m)

s− (x) ≥ i ∨ j, i 6= j}dP cs (i, j, x).

Since ξ
(m)
t (x) is integer valued for all x ∈ Zd, t ≥ 0, ξ

(m)
t (x)p is non-negative for any

p while the integrands of the final two integrals are necessarily negative. Hence we

can bound

ξ
(m)
t (x)p ≤ ξ0(x)p +

∫ t

0

∑
y∼x

m∑
i=1

(
(ξ

(m)
s− (x) + 1)p − ξ(m)

s− (x)p
)
1{ξ(m)

s− (y) ≥ i}dPs(i, y, x).

Using the simple inequality

(n+ 1)p − np ≤ p(2n)p−1

which holds for all p > 1 and all n ∈ N before compensating gives

ξ
(m)
t (x)p ≤ ξ0(x)p + p2p−1

∫ t

0

∑
y∼x

m∑
i=1

ξ
(m)
s− (x)p−1

1{ξ(m)
s− (y) ≥ i}dPs(i, y, x) (A.12)

≤ ξ0(x)p +
p2p−1

2d

∫ t

0

∑
y∼x

ξ(m)
s (x)p−1ξ(m)

s (y)ds+m.t..

Taking expectation leads us to

E
[
ξ

(m)
t (x)p

]
≤ E [ξ0(x)p] +

p2p−1

2d

∫ t

0

∑
y∼x

E
[
ξ(m)
s (x)p−1ξ(m)

s (y)
]
ds
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whereupon Young’s inequality gives

E
[
ξ

(m)
t (x)p

]
≤ E [ξ0(x)p] +

p2p−1

2d

∫ t

0

∑
y∼x

E

[
(p− 1)ξ

(m)
s (x)p

p
+
ξ

(m)
s (y)p

p

]
ds

= E [ξ0(x)p] +
2p−1

2d

∫ t

0
2d(p− 1)E[ξ(m)

s (x)p] +
∑
y∼x

E[ξ(m)
s (y)p]ds.

For any θ > 0, multiply through by e−θ|x| and sum over all x gives

E

[∑
x

e−θ|x|ξ
(m)
t (x)p

]
≤
∑
x

e−θ|x|E [ξ0(x)p] + p2p−1

∫ t

0
E

[∑
x

e−θ|x|ξ(m)
s (x)p

]
ds

≤
∑
x

e−θ|x|E [ξ0(x)p] ep2
p−1t (A.13)

where we have used the Grönwall Lemma in the final inequality. Taking the supre-

mum over t ∈ [0, T ] in (A.12) gives

sup
t∈[0,T ]

ξ
(m)
t (x)p ≤ ξ0(x)p + p2p−1

∫ T

0

∑
y∼x

m∑
i=1

ξ
(m)
s− (x)p−1

1{ξ(m)
s− (y) ≥ i}dPs(i, y, x)

and so

E

[(
sup
t∈[0,T ]

∑
x

e−θ|x||ξ(m)
t (x)|

)p]

≤ E

[(∑
x

e
− (p−1)θ|x|

p e
− θ|x|

p sup
t∈[0,T ]

|ξ(m)
t (x)|

)p]

≤

(∑
x

e−(p−1)θ|x|

)
E

[∑
x

e−θ|x|

(
sup
t∈[0,T ]

|ξ(m)
t (x)|

)p]

≤ Cθ,p

(∑
x

e−θ|x|E [ξ0(x)p] + p2p−1

∫ T

0
E

[∑
x

e−θ|x|ξ(m)
s (x)p

]
ds

)

≤ Cθ,p
∑
x

e−θ|x|E [ξ0(x)p]

(
1 + p2p−1

∫ T

0
ep2

p−1sds

)
by (A.13)

≤ Cθ,p
∑
x

e−θ|x|E [ξ0(x)p]
(

1 + ep2
p−1T

)
and the right hand side is finite for all T and independent of m.
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Appendix B

Proof of Proposition 3.4.3

We aim to show here that ξ∗t (x) → ξt(x) as m,L → ∞. By our choice of initial

condition ξ0(x) = ξ̃0(x)∧m for x ∈ BL, there are no more than m particles initially

at any site of BL. Therefore we can assign colours to positions at a site in the sense

of (3.8) and make sense of the evolution of the finil term of (3.9)

E

∑
x∈Zd

e−θ|x||ξt(x)− ξ∗t (x)|2
 ≤ E

∑
x∈BL

e−θ|x||ξt(x)− ξ∗t (x)|2


+ 2E

∑
x/∈BL

e−θ|x|(ξt(x)2 + ξ̃0(x)2)

 (B.1)

where the left hand side converges and the second term of the right hand side tends

to 0 as L → ∞ in a way that is independent of m. Both of these facts are due to

the moment conditions satisfied. Therefore, we only need to treat

E

∑
x∈BL

e−θ|x||ξt(x)− ξ∗t (x)|2
 .

Now for x ∈ BL, consider the difference |ξt(x)−ξ∗t (x)|. We will expand this difference

collecting like terms and also collecting terms that are vanishingly small with large
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m,L.

|ξt(x)− ξ∗t (x)| =
∣∣∣∣ ∫ t

0

∞∑
i=1

∑
y∼x

1{ξs−(y) ≥ i}dPs(i, y, x)

−
∫ t

0

∞∑
i=1

∑
y∼x

1{ξs−(x) ≥ i}dPs(i, x, y)

−
∫ t

0

∞∑
i,j=1

1{ξs−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
(∫ t

0

m∑
i=1

∑
y∈BL,y∼x

1{ξ∗s−(y) ≥ i}dPs(i, y, x)

−
∫ t

0

m∑
i=1

∑
y∈BL,y∼x

1{ξ∗s−(x) ≥ i}dPs(i, x, y)

−
∫ t

0

m∑
i,j=1

1{ξ∗s−(x) ≥ i ∨ j, i 6= j}dP cs (i, j, x)

−
∫ t

0

m∑
i,j=1

∑
y∈BL,y∼x

1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}dPs(i, y, x, j)
)∣∣∣∣.

We split the infinite sums at i, j = m. Since the Poisson sums in equation (2.14)

converge, the tail sums all vanish as m→∞. For example,

E

∑
x∈BL

e−θ|x|

(∫ t

0

∞∑
i=m+1

∑
y∼x

1{ξs−(y) ≥ i}dPs(i, y, x)

)2
→ 0 as m→∞.
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So we write

|ξt(x)− ξ∗t (x)|

≤
∫ t

0

m∑
i=1

∑
y∈BL,y∼x

|1{ξs−(y) ≥ i} − 1{ξ∗s−(y) ≥ i}|dPs(i, y, x)

+

∫ t

0

m∑
i=1

∑
y∈BL,y∼x

|1{ξs−(x) ≥ i} − 1{ξ∗s−(x) ≥ i}|dPs(i, x, y)

+

∫ t

0

m∑
i,j=1

|1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ∗s−(x) ≥ i ∨ j, i 6= j}|dP cs (i, j, x)

+

∫ t

0

m∑
i=1

∑
y/∈BL,y∼x

1{ξs−(y) ≥ i}dPs(i, y, x) (B.2)

+

∫ t

0

m∑
i=1

∑
y/∈BL,y∼x

1{ξs−(x) ≥ i}dPs(i, x, y) (B.3)

+

∫ t

0

m∑
i,j=1

∑
y∈BL,y∼x

1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}dPs(i, y, x, j)

+ negligible terms.

Similar arguments that we have seen numerous times before show that

E

∑
x∈BL

e−θ|x|

∫ t

0

m∑
i=1

∑
y/∈BL,y∼x

1{ξs−(y) ≥ i}dPs(i, y, x)

2
≤ 2(1 + t)

2d

∑
|x|=L

e−θ|x|
∑

y∼x,|y|=L+1

∫ t

0
E[ξs(y)2]ds

≤ 2(1 + t)eθ
∫ t

0
E

 ∑
|y|=L+1

e−θ|y|ξs(y)2

 ds
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which tends to 0 as L→∞. Therefore, we absorb (B.2) and (B.3) into the negligible

terms.

|ξt(x)− ξ∗t (x)| ≤
∫ t

0

m∑
i=1

∑
y∈BL,y∼x

|1{ξs−(y) ≥ i} − 1{ξ∗s−(y) ≥ i}|dPs(i, y, x)

+

∫ t

0

m∑
i=1

∑
y∈BL,y∼x

|1{ξs−(x) ≥ i} − 1{ξ∗s−(x) ≥ i}|dPs(i, x, y)

+

∫ t

0

m∑
i,j=1

|1{ξs−(x) ≥ i ∨ j, i 6= j} − 1{ξ∗s−(x) ≥ i ∨ j, i 6= j}|

× dP cs (i, j, x)

+

∫ t

0

m∑
i,j=1

∑
y∈BL,y∼x

1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}dPs(i, y, x, j)

+ negligible terms.

= I + II + III + IV + negligible terms. (B.4)

The term labelled IV will form part of the negligible terms. Indeed, consider

E

∫ t

0

m∑
i,j=1

∑
y∈BL,y∼x

1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}dPs(i, y, x, j)

2
≤ 2

m∑
i,j=1

∑
y∈BL,y∼x

E

[(∫ t

0
1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}d(Ps(i, y, x, j)−

s

2dm
)

)2
]

+
2t

2dm2

∑
y∈BL,y∼x

E
[∫ t

0
(ξ∗s (y)ξ∗s (x))2 ds

]

≤ 2

2dm

m∑
i,j=1

∑
y∈BL,y∼x

E
[∫ t

0
1{ξ∗s−(y) ≥ i, ξ∗s−(x) ≥ j}ds

]

+
2t

2dm2

∑
y∈BL,y∼x

E
[∫ t

0
(ξ∗s (y)ξ∗s (x))2 ds

]

≤ 2

2dm

∑
y∈BL,y∼x

E
[∫ t

0
ξ∗s (y)ξ∗s (x)ds

]

+
2t

2dm2

∑
y∈BL,y∼x

E
[∫ t

0
(ξ∗s (y)ξ∗s (x))2 ds

]
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which gives a bound of

4(1 ∨ t)
2dm

∑
y∈BL,y∼x

E
[∫ t

0
(ξ∗s (y)ξ∗s (x))2 ds

]
.

By Young’s inequality we can bound this by

2(1 ∨ t)
2dm

∑
y∈BL,y∼x

E
[∫ t

0

(
ξ∗s (y)4 + ξ∗s (x)4

)
ds

]
.

Evaluating at τR,θ/2 = inf
{
t > 0:

∑
x e
− θ|x|

2 ξ∗s (x)2 > R
}

and summing over all x ∈

BL

2(1 ∨ t)(1 + eθ)

m
E

∫ t∧τR,θ/2

0

∑
x∈BL

e−θ|x|ξ∗s (x)4ds


≤ 2(1 ∨ t)(1 + eθ)

m
E

∫ t∧τR,θ/2

0

∑
x∈BL

e−θ|x|/2ξ∗s (x)2

2

ds


≤ 2(1 ∨ t)(1 + eθ)tR2

m
→ 0 as m→∞.

The first two terms in (B.4) will easily give us a bound suitable for a Grönwall type

argument. That is, we have that there exists some constant depending only t, θ,

independent of m,L such that

E

∑
x∈BL

eθ|x|(I2 + II2)

 ≤ C ∫ t

0
E

∑
x∈BL

eθ|x||ξs(x)− ξ∗s (x)|2
 ds.

Like in the proof of uniqueness for equation (2.14), the quadratic terms that arise

from the coalescence cannot be dealt with so straightforwardly. However, we may

repeated the calculations that follow after (2.34) with ξ∗ in place of η, by introducing

an ε ∈ (0, θ) and a stopping time τ̃R,ε = inf{t > 0:
∑

x e
−ε|x| (|ξt(x)|2 + |ξ∗t (x)|2

)
>
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R} and we will find a bound of

E

∑
x∈BL

eθ|x|(III(t ∧ τ̃R,ε)2)

 ≤ CE[∫ t

0

(∑
x

e−(θ−ε)|x| |ξs(x)− ξ∗s (x)|2
)
ds

]

for some C depending only on t, λ,R. Returning to (B.1), evaluating at t∧τR,θ/2∧τ̃R,ε

and collecting into εm,L all the contributions we have show to be vanishing, we have

E

∑
x∈Zd

e−θ|x||ξt∧τR,θ/2∧τ̃R,ε(x)− ξ∗t∧τR,θ/2∧τ̃R,ε(x)|2


≤ εm,L + Ct,θ,λ,RE

∫ t∧τR,θ/2∧τ̃R,ε

0

∑
x∈BL

e−θ|x|(1 + eε|x|)|ξs(x)− ξ∗s (x)|2ds


Choosing R large enough guarantees t ∧ τR,θ/2 ∧ τ̃R,ε = t almost surely due to the

moment conditions satisfied by ξ and ξ∗ which allows the exchange of espectation

and integral. Then adding the positive quantity

Ct,θ,λ,R

∫ t

0
E

∑
x/∈BL

e−θ|x|(1 + eε|x|)|ξs(x)− ξ∗s (x)|2
 ds

to the right hand side gives

E

∑
x∈Zd

e−θ|x||ξt(x)− ξ∗t (x)|2


≤ εm,L + Ct,θ,λ,R

∫ t

0
E

∑
x∈Zd

e−θ|x|(1 + eε|x|)|ξs(x)− ξ∗s (x)|2
 ds.

The right hand side is finite since

E

[∑
x

e−α|x|ξ0(x)2

]
<∞
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for all α > 0, and ε is such that 0 < ε < θ. Rearranging the finite sums we have

εm,L +
∑
x∈Zd

e−θ|x|E
[
Ct,θ,λ,R(1 + eε|x|)

∫ t

0
|ξs(x)− ξ∗s (x)|2ds− |ξt(x)− ξ∗t (x)|2

]
≥ 0.

(B.5)

Now, for fixed m and L, the sum in the left hand side is either weakly positive or

strictly negative. If it is that case for this choice of m and L that the sum is positive,

then there is a non-empty set A ⊆ Zd such that the summands corresponding to

x ∈ A are positive. Equivalently, for x ∈ A we have

E[|ξt(x)− ξ∗t (x)|2] ≤ Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E[|ξs(x)− ξ∗s (x)|2]ds

and Grönwall’s inequality implies for all x ∈ A that

E[|ξt(x)− ξ∗t (x)|2] = 0.

Since (B.5) was assumed to be weakly positive and the all contributions from A are

0, then it must also be true that the negative contributions are 0 and so the entire

sum must be 0. If the sum in (B.5) is strictly negative for the fixed choice of m,L

then we have

0 <−
∑
x∈Zd

e−θ|x|E
[
Ct,θ,λ,R(1 + eε|x|)

∫ t

0
|ξs(x)− ξ∗s (x)|2ds− |ξt(x)− ξ∗t (x)|2

]
≤ εm,L.

However, as m and L vary, the sign of the sum in (B.5) may change. Or rather, it

may jump from taking the value 0 to take a genuinely negative value but in either

case, it necessarily holds that

0 ≤ −
∑
x∈Zd

e−θ|x|E
[
Ct,θ,λ,R(1 + eε|x|)

∫ t

0
|ξs(x)− ξ∗s (x)|2ds− |ξt(x)− ξ∗t (x)|2

]
≤ εm,L.
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Then, taking the limit m,L→∞ shows that

0 ≤ E[|ξt(x)− ξ∗t (x)|2]− Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E[|ξs(x)− ξ∗s (x)|2]ds→ 0

or equivalently

lim
m,L→∞

E[|ξt(x)− ξ∗t (x)|2] = lim
m,L→∞

Ct,θ,λ,R(1 + eε|x|)

∫ t

0
E[|ξs(x)− ξ∗s (x)|2]ds.

Letting ξ̄t(x) = limm,L→∞ E[|ξt(x)− ξ∗t (x)|2] gives

ξ̄t(x) = Ct,θ,λ,R(1 + eε|x|)

∫ t

0
ξ̄s(x)ds

whereupon Grönwall’s inequality allows us to conclude that ξ̄t(x) = 0 and hence

ξ∗t (x)→ ξt(x) almost surely as m,L→∞.
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