
A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: 
http://wrap.warwick.ac.uk/152664 

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. 
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications



Modelling and Characterisation of Distributed

Hardware Acceleration

by

Ryan A. Cooke

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

School of Engineering

July 2020



Contents

List of Tables vi

List of Figures vii

Acknowledgments ix

Declarations x

Abstract xi

Abbreviations xii

Chapter 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background and Literature Review 8
2.1 Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Central Processing Units . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . 11
2.1.3 FPGA Accelerator Design . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Graphics Processing Units . . . . . . . . . . . . . . . . . . . . 21
2.1.5 Application Specific Integrated Circuits (ASICs) . . . . . . . 23
2.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Accelerator Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Network interface . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



2.2.3 Tightly coupled SoC . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Interface overheads . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Networked computing systems . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Edge Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Datacentre Networks . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 In-network computing . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Network elements . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 FPGAs for network applications . . . . . . . . . . . . . . . . 34
2.4.6 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.7 FPGAs in the cloud . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Sensor network modelling . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Distributed Stream Processing Models . . . . . . . . . . . . . 42
2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3 Modelling distributed computing with heterogeneous hard-
ware 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Edge/Fog Computing . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Hardware acceleration . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Scenario and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 Financial Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.4 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.5 Sources and Data . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.6 Allocation Variables . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.7 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ii



3.6.1 End-to-End Latency . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.3 Data-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.4 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.5 Financial Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.6 Combined Evaluation Metrics . . . . . . . . . . . . . . . . . . 64

3.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.4 Centralised Software . . . . . . . . . . . . . . . . . . . . . . . 68
3.7.5 In-network software . . . . . . . . . . . . . . . . . . . . . . . 69
3.7.6 Centralised Hardware . . . . . . . . . . . . . . . . . . . . . . 69
3.7.7 In-network hardware . . . . . . . . . . . . . . . . . . . . . . . 69
3.7.8 Optimal Placement . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7.10 Event Driven Simulation . . . . . . . . . . . . . . . . . . . . . 71

3.8 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.8.1 Relative Computing Capability . . . . . . . . . . . . . . . . . 74
3.8.2 Task Data Reduction . . . . . . . . . . . . . . . . . . . . . . 77
3.8.3 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . 78
3.8.4 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Generating In-Network Task and Hardware Placement with Hetero-
geneous Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9.1 Objective function formulation . . . . . . . . . . . . . . . . . 80
3.9.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9.3 Evaluation with Synthetic Networks . . . . . . . . . . . . . . 84
3.9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 4 Quantifying the Latency Overheads of FPGA Accelerators 92
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



4.4.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Median Latency . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.2 FPGA Latency Breakdown . . . . . . . . . . . . . . . . . . . 100
4.5.3 Latency Distributions . . . . . . . . . . . . . . . . . . . . . . 101
4.5.4 Tail Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5.5 Packet Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.6 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6.1 PCIe Accelerators . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6.2 Network-attached Accelerators . . . . . . . . . . . . . . . . . 105

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 5 Near-Edge FPGA Acceleration for the Internet of Things107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Design and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.3 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.1 Isolated Edge Node Measurements . . . . . . . . . . . . . . . 118
5.5.2 Impact of Multiple Edge Devices . . . . . . . . . . . . . . . . 121
5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Accelerator Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 6 Conclusions and Future Work 132
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 Mathematical representation of in-network and near edge com-
puting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.2 Optimising hardware and task placement . . . . . . . . . . . 133
6.1.3 Quantifying costs associated with FPGA accelerators . . . . 133
6.1.4 Demonstration of in-network FPGA acceleration . . . . . . . 133

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

iv



6.2.1 Practically validating the model . . . . . . . . . . . . . . . . 134
6.2.2 Improving optimisation runtime . . . . . . . . . . . . . . . . 134
6.2.3 Developing generalised in-network FPGA infrastructure . . . 134
6.2.4 Combination of model and FPGA infrastructure . . . . . . . 135
6.2.5 Defining accelerator communication protocols . . . . . . . . . 135

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

v



List of Tables

3.1 Summary of symbols used in formulation. . . . . . . . . . . . . . . . 57
3.2 Case study task values . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Case study platform values . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Case study SW results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Case study HW results . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Performance metrics for MILP optimisation of model . . . . . . . . . 71
3.7 Different placement policies used in simulations . . . . . . . . . . . . 75
3.8 Summary of task parameter values. . . . . . . . . . . . . . . . . . . . 82
3.9 Summary of available platforms. . . . . . . . . . . . . . . . . . . . . 83

4.1 Latency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Network-attached FPGA delays . . . . . . . . . . . . . . . . . . . . . 100

5.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Network traversal times . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



List of Figures

2.1 Representative modern FPGA architecture . . . . . . . . . . . . . . 11
2.2 Xilinx 7 Series CLB arrangement . . . . . . . . . . . . . . . . . . . . 12
2.3 Xilinx DSP48E1 architecture . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Partial reconfiguration example . . . . . . . . . . . . . . . . . . . . . 16
2.5 Example network infrastructure . . . . . . . . . . . . . . . . . . . . . 29
2.6 Example datacentre network . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Example networked system . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Network node abstraction . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Difference between software and hardware nodes . . . . . . . . . . . 60
3.4 Case study network structure . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Model vs simulation results . . . . . . . . . . . . . . . . . . . . . . . 72
3.6 Compute capability results . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Reduction factor results . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 Network fanout results . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.9 Naive vs. model placement . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Configurations generated by optimization . . . . . . . . . . . . . . . 85
3.11 Optimal cost with latency constraint . . . . . . . . . . . . . . . . . . 86
3.12 Sythnthetic networks optimised for cost with latency constraint . . . 86
3.13 Synthetic networks optimised for energy and latency with cost con-

straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.14 Optimal vs pushed for varying task centralisation . . . . . . . . . . . 89
3.15 Optimal latency and energy vs pushed down . . . . . . . . . . . . . . 90
3.16 Bandwidth consumtion for varying centralisation of tasks . . . . . . 90

4.1 Outline of the experimental setup . . . . . . . . . . . . . . . . . . . . 95
4.2 Accelerator configurations . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3 Tail latency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 CDF of latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



4.5 Packet size differences . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Throughput results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Packet rate results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Experimental testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Zynq accelerated edge node . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 FPGA network switch accelerator . . . . . . . . . . . . . . . . . . . . 116
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Multiple edge nodes offloading to cloudlet . . . . . . . . . . . . . . . 122
5.6 Multiple edge nodes offloading to networked FPGA . . . . . . . . . . 122
5.7 Analysed network structure . . . . . . . . . . . . . . . . . . . . . . . 124
5.8 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.9 Network-attacehd latency redcution . . . . . . . . . . . . . . . . . . 128
5.10 Effects of 200ms base computation time . . . . . . . . . . . . . . . . 129
5.11 Effect of 100ms base computation time . . . . . . . . . . . . . . . . . 130

viii



Acknowledgments

I would like to thank my supervisor Suhaib Fahmy for giving me this opportunity.

His guidance has been invaluable, and I am extremely grateful for all of the time he

spent helping me.

I would also like to thank my friends Lenos and Alex, also part of the Con-

nected Systems group, who at this point are still completing their PhDs. Their

advice and company is much appreciated, and helped get through the day to day in

the lab.

Lastly, I thank my partner Eleanor, whom I met for the first time shortly

after beginning the PhD. Her patience, love, and kindness have kept me motivated

and I wouldn’t have been able to complete this thesis without her.

ix



Declarations

This thesis is submitted to the University of Warwick for the degree of Doctor of

Philosophy. The work contained in this thesis comprises my own work. This thesis

has not previously been submitted for a degree at another university.

Parts of this thesis have been published by the author:

1. Ryan A. Cooke, Suhaib A. Fahmy, In-network online data analytics with FP-

GAs, in Proceedings of the International Conference on Field Programmable

Logic and Applications (FPL), 2017 [1].

2. Ryan A. Cooke, Suhaib A. Fahmy, A model for distributed in-network and near-

edge computing with heterogeneous hardware, in Future Generation Computer

Systems (FGCS), vol. 105, 2020 [2].

3. Ryan A. Cooke, Suhaib A. Fahmy, Quantifying the latency benefits of near-

edge and in-network FPGA acceleration, in Proceedings of the International

Workshop on Edge Systems, Analytics and Networking (EdgeSys), 2020 [3].

4. Ryan A. Cooke, Suhaib A. Fahmy, Characterizing latency overheads in the

deployment of FPGA accelerators, in Proceedings of the International Confer-

ence on Field Programmable Logic and Applications (FPL), 2020 [4].

5. Ryan A. Cooke, Suhaib A. Fahmy, Exploring Hardware Accelerator Offload for

the Internet of Things, submitted to: it - Information Technology

x



Abstract

Hardware acceleration has become more commonly utilised in networked comput-

ing systems. The growing complexity of applications mean that traditional CPU

architectures can no longer meet stringent latency constraints. Alternative com-

puting architectures such as GPUs and FPGAs are increasingly available, along

with simpler, more software-like development flows. The work presented in this

thesis characterises the overheads associated with these accelerator architectures. A

holistic view encompassing both computation and communication latency must be

considered. Experimental results obtained through this work show that network-

attached accelerators scale better than server-hosted deployments, and that host

ingestion overheads are comparable to network traversal times in some cases. Along

with the choice of processing platforms, it is becoming more important to consider

how workloads are partitioned and where in the network tasks are being performed.

Manual allocation and evaluation of tasks to network nodes does not scale with

network and workload complexity. A mathematical formulation of this problem is

presented within this thesis that takes into account all relevant performance metrics.

Unlike other works, this model takes into account growing hardware heterogeneity

and workload complexity, and is generalisable to a range of scenarios. This model

can be used in an optimisation that generates lower cost results with latency per-

formance close to theoretical maximums compared to naive placement approaches.

With the mathematical formulation and experimental results that characterise hard-

ware accelerator overheads, the work presented in this thesis can be used to make

informed design decisions about both where to allocate tasks and deploy accelerators

in the network, and the associated costs.

xi



Abbreviations

API Application Programming Interface

AR Augmented Reality

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CLB Configurable Logic Block

CNN Convolutional Neural Network

CPU Central Processing Unit

DMA Direct Memory

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

DNN Deep Neural Network

FIFO First In First Out

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

xii



HDL Hardware Description Language

HLS High Level Synthesis

IC Integrated Circuit

IoT Internet of Things

ISP Internet Service Provider

IP Internet Protocol

KNN K-Nearest Neighbour

LAN Local Area Network

LTE Long Term Evolution

LUT Look Up Table

MAC Media Access Control

MILP Mixed Integer Linear Programming

NFV Network Function Virtualisation

NIC Network Interface Card

NN Neural Network

NoC Network on a Chip

NPU Network Processing Unit

OFDM Orthogonal Frequency Division Multiplexing

PCIe Peripheral Component Interconnect Express

PL Programmable Logic

PLL Phase Locked Loop

xiii



PR Partial Reconfiguration

PS Processing System

RAM Random Access Memory

SDN Software Defined Networking

SoC System on a Chip

SRAM Static Random Access Memory

SVM Support Vector Machine

TCP Transmission Control Protocol

ToR Top of Rack

TPU Tensor Processing Unit

UDP User Datagram Protocol

VM Virtual Machine

WAN Wide Area Network

xiv



Chapter 1

Introduction

Computational offloading is a term used to describe a scenario where one computing
system transmits data to another, where computation is carried out, and the result
transmitted back. The total computation latency of a task, the power consumed
by the hardware, and the processing throughput can all be improved using this
approach, when the target platform is more capable.

It can be used to describe a range of scenarios. Early implementations of
this technique involved central processing units (CPUs) offloading to a co-processor
such as separate floating point units, which were optimised for floating point arith-
metic [5]. Computation latency could be drastically reduced, and in some cases the
main processor would be free to carry out other tasks while waiting for the result.
As processing tasks became more complex with the growth of applications such as
graphics rendering, co-processors could begin to take the form of separate chips
on the same board, or as chips hosted on a separate expansion board, connected
through external interfaces such as peripheral component interconnect (PCI) [6].
Modern system-on-chip (SoC) architectures comprise multiple different hardware
cores to accelerate particular tasks such as encryption, digital signal processing, or
graphics rendering [7].

The growth of the Internet and networking technologies presented opportu-
nities for computational offload to distinct machines over a network [8; 9; 10; 11;
12; 13]. As network bandwidth improved, it became more viable to transmit sig-
nificant amounts of data to a remote computing resource. The platform carrying
out the computation no longer had to be restricted to the same location as the data
source. The arrival of data centre cloud computing allowed for computing resources
to be centralised and shared across many clients [14]. There are numerous benefits
to this approach. Computing resources can be scaled with much less friction and

1



hardware can be modified to enhance processing capability without disturbing the
data source. This is particularly valuable in applications where the data source is
in a hard-to-reach location.

Transmitting data to another processing platform has an associated commu-
nication cost, however [15]. The improvement to performance, whatever the metric
may be, offsets this cost. Recently, there has been a surge of interest in low-latency,
‘real-time’ applications, driven by factors such as the internet of things (IoT) and
a growing demand for responsive, complex web applications [15; 16; 17]. Industrial
IoT systems rely on networked sensors and data acquisition systems, and have strict
latency requirements on closed-loop control. Mobile applications requiring complex
image processing such as augmented reality (AR) have to meet latency targets to
provide an acceptable user experience [16]. Smart vehicles must process data and
communicate with other vehicles in real-time to satisfy safety constraints [18].

This presents a problem – processing may be too complex to perform at the
data source in the required time interval, so must be offloaded. While transmitting
data to the cloud can reduce the computation latency, the communication penalty
may be too great, and thus the total latency would still violate the required con-
straints. This has led to the paradigm of ‘edge computing’, where computation is
offloaded to resources closer to the data source. This could mean improved hardware
at the data source itself - but this results in difficult management of hardware and
increased cost. Alternatively, smaller data centres or servers could be placed on local
networks with the data source, removing the need for data to be transmitted over
the Internet. Processing could even be moved into the networking elements that fa-
cilitate the transfer of data between machines, resulting in even less communication
time. This is known as ‘in-network’ computing [19]. The resultant scenario is one
where there are a range of processing elements in different locations, with different
capabilities and constraints, that all offer a target for computational offload. There
is now an opportunity for improved processing times, with lower communication
costs than when using computation entirely at the data source, or entirely in the
cloud. A new set of key challenges must now be addressed to best make use of these
systems.

One of these challenges is where in the network to offload tasks. An applica-
tion may comprise many tasks, each with different requirements and dependencies
on other tasks, and must be allocated across a set of heterogeneous offload platforms
with varying computational properties. This is a complex decision, where the pro-
file of the application and the available resources must be accounted for. As these
networked systems increase in scale, this becomes even more challenging. Systems

2



can become large enough that manual evaluation of task placement can become im-
possible. Design decisions must be made to balance opposing performance metrics,
and to make the best use of finite resources.

Another challenge is ensuring that the in-network or edge computing re-
sources can provide adequate computational performance. Despite being closer to
the data sources, this hardware must still reduce computation latency enough to
justify offloading to them. Hardware must be able to be shared across multiple
client devices, and be able to perform complex processing quickly. In the case of in-
network computing, networking elements are being extended to perform additional
processing, so hardware that causes minimal disruption of the usual networking
functions must therefore be used. The integration between the network flow and
the computations datapaths can also influence latency significantly.

Hardware acceleration is necessary in order to fulfil these requirements. De-
vices called field programmable gate arrays (FPGAs) are particularly well suited to
this. They comprise of an array of simple logic blocks and other computational re-
sources, linked through a configurable interconnect, which can be used to implement
accelerator architectures optimised to perform a particular task, providing a com-
putational benefit compared to standard CPU architectures. Being reconfigurable
means they can support a range of applications and be dynamically configurable at
runtime. They are particularly useful for in-network computing as some network el-
ements such as switches, base stations, and routers already utilise them to carry out
networking tasks, and are good at packet processing. FPGAs offer a greater range
of deployment and integration capabilities compared to other hardware accelerators
such as GPUs [20], and are a key enabler in meeting performance requirements
at the network edge as applications scale. In Chapter 2, the differences between
accelerator platforms are discussed in more detail.

1.1 Motivations

Computing is becoming increasingly connected. Networked computing systems are
becoming more complex, larger in scale, and operate under greater performance con-
straints. Various factors, such as the growth of the IoT, commercial cloud computing
and developments in hardware have been significant drivers of this.

A key challenge in effective use of networked systems for computational of-
fload of tasks is the partitioning and placement of sub-tasks amongst computational
nodes. Where computation is carried out is becoming more important. Ad-hoc
placement of tasks may have been viable for smaller systems, but as the number

3



of variables grows, finding solutions that meet required constraints is not viable.
Not only are there systems with more connected devices, the devices within the
system are becoming more capable. Network elements that were historically passive
and simply passed data between nodes, can now be tightly coupled with compute,
increasing the number of possible placement solutions. Additionally, edge nodes
such as sensors and other data sources which typically just produced data, are also
becoming more capable due to the greater availability of cheap microcontrollers and
single board computers, such as the Raspberry Pi family of devices [21]. These
platforms can handle data acquisition, networking, and computation, and have a
small enough form factor that they can be deployed in a range of scenarios. In-
creased hardware heterogeneity, and the growing market for hardware accelerators
such as FPGAs add even more variables to networked system deployment. Taking
this into consideration, it becomes clear that a holistic view accounting for modern
trends and advancements, must be used when making decisions regarding hardware
deployment and task placement. There are such an abundance of options and im-
plications that any ad-hoc or naive decision making is likely to lead to sub-optimal
performance.

As more heterogeneous computing platforms become available for lower costs,
and existing platforms improve their capabilities, the decision on what combina-
tions of hardware to use becomes more important. FPGA acceleration provides an
opportunity to increase processing capability at selected nodes, and unlike other
accelerator platforms, allow for a greater flexibility in how they are integrated into
the network. Unlike alternative accelerator platforms such as GPUs, FPGAs need
no CPU host, and can be connected directly to the network [22].

A greater understanding of the implications of using this approach is needed.
The costs and benefits of utilising these accelerators must be quantified, and gener-
alisations for types of applications made. Understanding of the trade-offs between
computation and communication is vital to making informed decisions regarding
accelerator deployment.

1.2 Objectives

The objectives of this research are as follows:

1. To develop a methodology for exploring and evaluating heterogeneous net-
worked systems used to offload complex applications, and to quantify key
performance metrics.

4



2. To quantify the costs associated with the deployment of reconfigurable accel-
erators in alternative offload configurations.

3. To characterize the performance of emerging application types with different
compute placement strategies, taking into account the variation in computing
capability and connectivity of heterogeneous platforms.

1.3 Contributions

The main contributions of this work are a set of tools, measurements, and investiga-
tions that can be used to evaluate the placement of offloaded tasks across a network
of heterogeneous computing and networking elements. These can be summarised as
follows:

1. A mathematical formulation of this scenario, which allows for the detailed
description of a heterogeneous network, tasks, and accelerator hardware. The
model, unlike other related works, is generalised to account for heterogeneous
hardware accelerators, complex task structures, and is easily extensible to
model a range of scenarios, capturing all the important metrics of interest.

2. Derived from this model, generalised insights into how computation should
be offloaded across networked devices depending on various application and
network characteristics.

3. This model can be used within a mixed integer linear programming optimisa-
tion to generate hardware and task allocations to meet various performance
objectives typically used when considering computational offload.

4. Experiments used to determine inherent latency limits in the use of FPGA
hardware accelerators in various deployment scenarios in a networked context.

5. The use of an FPGA network switch extended to perform additional compu-
tation in an edge computing case study, and show the resulting performance
benefits against other competing strategies.

1.4 Thesis Roadmap

Chapter 2 is a comprehensive background and literature review. It contains back-
ground and comparisons of different computing architectures, how they are inte-
grated into networked systems, and where they can be deployed. How this deploy-
ment has been modelled in other works is also discussed.

5



Chapter 3 details a mathematical model that can be used to describe and
evaluate the deployment of hardware acceleration and the offload of computing tasks
within a network of connected devices. It also demonstrates the usage of this model
to generate optimal task and hardware placement for a given scenario and set of
constraints. The optimisation is evaluated against naive placement strategies using
a representative case study as well as synthetically derived scenarios.

Chapter 4 focuses on experiments designed and carried out to determine
latency characteristics in the deployment of FPGA accelerators. Both hosted PCIe
and server-less in-network deployments are characterised.

Chapter 5 is a case study comparing in-network FPGA acceleration with
other offload strategies for a complex image processing application. The in-network
approach uses an augmented FPGA network switch, and is compared to edge node
and cloudlet offloaded computation. This chapter details the design of the experi-
mental testbed, results, and general insights that can be derived from the experi-
ments. Results show that the host ingestion latency is comparable to the network
traversal time.

Chapter 6 discusses further work and conclusions drawn from the work pre-
sented in this thesis.

1.5 Publications

Work presented in this thesis has featured in the following publications.

1. Ryan A. Cooke, Suhaib A. Fahmy, In-network online data analytics with FP-
GAs, in Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2017 [1].

2. Ryan A. Cooke, Suhaib A. Fahmy, A model for distributed in-network and near-
edge computing with heterogeneous hardware, in Future Generation Computer
Systems (FGCS), vol. 105, 2020 [2].

3. Ryan A. Cooke, Suhaib A. Fahmy, Quantifying the latency benefits of near-
edge and in-network FPGA acceleration, in Proceedings of the International
Workshop on Edge Systems, Analytics and Networking (EdgeSys), 2020 [3].

4. Ryan A. Cooke, Suhaib A. Fahmy, Characterizing latency overheads in the
deployment of FPGA accelerators, in Proceedings of the International Confer-
ence on Field Programmable Logic and Applications (FPL), 2020 [4].

6



5. Ryan A. Cooke, Suhaib A. Fahmy, Exploring Hardware Accelerator Offload for
the Internet of Things, submitted to: it - Information Technology.

7



Chapter 2

Background and Literature
Review

When considering modern networked computing systems, there are two primary
considerations: the computing resource used to complete the processing, and where
they are located in the network. As discussed in Chapter 1, these systems are
increasingly heterogeneous, utilizing a variety of hardware architectures to perform
the required computation. Each of these platforms have varying capabilities and
trade-offs. Additionally, there are a growing number of network nodes capable of
hosting these hardware platforms, increasing the deployment possibilities.

This means that there are a greater variety of deployment options when
considering distributed hardware acceleration. It becomes more difficult to evalu-
ate task placement, and to manually design these systems. Existing mathematical
models don’t take these recent trends into account, or are designed for runtime task
allocation in an environment with heterogeneous hardware architectures.

How these architectures are integrated to distributed, networked processing
systems is also a significant challenge, with implications on performance. There are
now a greater variety of integration techniques, with little experimental evaluation.

This chapter first examines the variety of processing architectures available
in modern systems. It then examines the various integration possibilities, and re-
lationship with the supporting network infrastructure, highlighting the need for
experimental comparisons between approaches. Finally, it contains a study of other
modelling efforts, and how they aren’t sufficient for modelling heterogeneous, dis-
tributed systems given modern advances.

8



2.1 Computing Platforms

In this thesis, the term computing platform is used to define a hardware architecture
capable of carrying out a computation. Historically, this processing would be carried
out on a general-purpose processor, but as workloads have increased in scale and
complexity, alternative accelerator platforms have seen a surge of interest.

2.1.1 Central Processing Units

General-purpose central processing units (CPUs) are fundamental components of
computing systems. While there is a significant variety of specifications and im-
plementations, the general execution model is the same across most devices. The
task to be carried out is expressed through a program, a set of instructions com-
posed from the processor’s instruction set – the set of fundamental operations that a
CPU can perform. The program is stored in memory, and instructions are executed
sequentially.

Processing Model

At the start of each cycle, the next instruction to be executed is fetched from
program memory, pointed to by a special purpose register called the program counter
(PC). The instruction typically comprises an opcode denoting the operation to be
performed, and register and memory location references to the operands. After
being fetched, it is decoded into signals that control the execution unit. The decoded
instruction triggers a series of actions that execute the operation. These actions will
vary depending on the operation required, but usually involve loading operands into
registers, fast memory local to the processor. Arithmetic and logical operations are
carried out between these registers.

Application Development

CPUs are designed for flexibility, and must be able to implement a wide range of
applications. Users can define their programs at different levels of abstraction. At
the lowest level, programs can be written in the assembly language for the target
processor instruction set. Programs are written directly in terms of CPU instructions
by the user. For most applications, this approach is impractical and tedious, and is
not realistic to write anything more than simple code at this level. The resultant
program is also only able to be executed by an architecture that uses the same
instruction set. Most programs are expressed in higher level languages that allow

9



for architecture independent, complex functions to be expressed more succinctly
than at the instruction level. For some languages, such as C or C++, the program
is compiled from this higher level expression down to machine instructions that are
directly executed by the processor. Other languages are compiled down to hardware
independent bytecode, which runs on an intermediate virtual machine, which has
hardware-specific implementations. This way the same executable can be executed
on any hardware, given that it has a virtual machine implementation that can
translate the bytecode to native processor instructions.

Types of CPU

Due to the general-purpose nature of CPU-based computation, there are many vari-
ants of the basic architecture that are used for difference application domains.

Server class processors such as the Intel Xeon family are designed to handle
larger, more complex workloads, and many tasks at the same time. In comparison to
other processors, they usually have many cores on the same silicon die. Each core
is capable of independent concurrent operation, and is often also multi-threaded,
which allows for the core to be rapidly switched between contexts. This effectively
allows multiple software processes to be run concurrently on the same, time-shared
physical core. These devices are expensive, and compared to processors used in
other contexts, have high power consumption and heat dissipation.

The next class of processors are for use in general-purpose, desktop machines,
such as the Intel Core series. Compared to server-class processors, these devices have
fewer cores and are cheaper.

Processors not designed for use in a desktop or server environment can be
classed as embedded CPUs. They are used in application specific deployments,
often controlling or interfacing with external actuators or sensors. In comparison to
the other classes, they are lower-power and cheaper. Single-board computers such
as the Raspberry Pi are often used to control embedded applications, and utilise
32-bit multi-core embedded processors capable of running Linux. Micro-controllers
integrate a processor, memory, and other peripherals onto the same die and are
generally even more low power and low capability. Small 8-bit or 16-bit processors
may be used in devices with severe power constraints such as remote sensor nodes.

In all cases, when offloading to or from processors, data must traverse a
network interface and standard bus into processor memory space.

10



2.1.2 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are silicon integrated circuits compris-
ing an array of configurable logic resources. There are several primary vendors of
these devices, the most notable being Xilinx and Intel. While these vendors hold
a majority of the market, other vendors exist, such as Lattice, who specialise in
small low-power solutions, and Microsemi, who offer specialized products such as
radiation-hardened devices.

Architecture

Figure 2.1: Representative modern FPGA architecture [23]

Modern FPGA architectures, regardless of vendor, are based around a generic
design. Figure 2.1 shows a high-level overview of a Xilinx FPGA architecture. Users
can express a digital circuit in a high-level abstraction, which goes through a flow
of vendor tools to convert the circuit to be implemented using these logic resources
on the FPGA fabric.

User logic is implemented via an array of configurable logic blocks (CLBs) [24],
which are connected to other CLBs through a switching matrix. Each CLB com-
prises several slices, where each slice typically contains a look-up table (LUT) and

11



Figure 2.2: Xilinx 7 Series CLB arrangement [24]

Figure 2.3: Xilinx DSP48E1 architecture [25]

storage elements like flip-flops or small amounts of RAM. For example Xilinx 7 se-
ries FPGAs use CLBs with 2 slices, as in Figure 2.2, with each slice having four
6-input LUTs, 16 flip flops and 256-bits of distributed RAM. The CLB LUTs can
be configured to implement a large variety of logic functions, and chained together
to implement even more complex operations. In addition to CLBs, most modern
devices also have hardened blocks of logic optimised for digital signal processing,
such as the DSP48 [25] blocks built into Xilinx FPGAs (Figure 2.3). DSP slices can
be used to implement complex arithmetic functions with fewer resources.

12



Hardened Block RAM (BRAM) is also usually present in modern FPGA
architectures. This provides storage within the fabric, reducing the need for costly
off-chip memory transfers. IO-blocks (IOB) are configurable blocks that contain the
appropriate signal conditioning to allow for signals to be brought into or out of the
FPGA. Any signal on any pin must go through an IOB. IOBs are arranged into
banks - for example, Xilinx 7 series banks contain 50 IOBs. high-speed transceivers
are also commonly implemented, to allow the FPGA to interface with high-speed
signals such as those used in PCIe and Ethernet. Implementing this functionality
using CLBs would consume significant resources, or not meet required performance
standards.

All resources are connected through a routing network that routes signals
throughout the FPGA. Dedicated interconnect is used to route clock signals. Clocks
can be introduced to the FPGA through IO pins. Global clock lines can be used
to route the clock to multiple elements throughout the device. These lines ensure
minimal skew in comparison to the general-purpose routing resources. Many FPGAs
include built-in PLLs or DLLs to synthesise signals of a configurable frequency.

Application Development

The user can express their design at different levels of abstraction. As designs
and FPGA devices are complex, it would not be viable to specify the design at
the individual gate and wire level. The lowest level of abstraction typically used
by designers is the register transfer level (RTL). This is a paradigm where digi-
tal circuits are modelled as combinational transformations on data as they move
between registers. Designers write this RTL description in a hardware description
language (HDL), the most popular being ‘Verilog’ and ‘Very high-speed Integrated
Circuit Description Language’ (VHDL). All mainstream vendor tools accept these
languages. Once a design has been described with a HDL at the RTL level, it is
converted to a low-level description by vendor tools in a process called synthesis.
The synthesised circuit is then mapped to the target FPGA resources by the vendor
place-and-route tool, creating a device specific configuration that implements the
desired circuit. This configuration is then encoded into a bitstream that can be
loaded into the FPGA configuration memory.

Designing at the RTL level requires knowledge of HDL, digital logic design,
and some knowledge of the target FPGA architecture. These present one of the
main barriers to entry for developing for FPGAs, leading to the development of
language and design flows that let users work at an even higher levels of abstraction,
an approach commonly referred to as high-level Synthesis (HLS). Here, designers

13



describe the design at an algorithmic level using languages such as C++. Both
Xilinx and Intel offer HLS tools for their platforms.

Vivado HLS is the commercial Xilinx HLS tool, where users express acceler-
ator designs using C or C++ [26]. The user writes functions in these languages that
are compiled into HDL descriptions. Features such as loop unrolling are available
which allow for the user to control to what extent loop constructs are implemented
spatially in parallel in the resulting FPGA design. This can increase the perfor-
mance of the design with the penalty of it using more resources. Python-based HLS
has also been demonstrated with the open source Migen framework [27]. The frame-
work also includes a set of free IP cores written in python that can be instantiated
into user designs. Testbenches can also be written in python.

The open computing language (OpenCL) framework is also utilised for FPGA
HLS. This framework allows for cross-platform code to be written in general-purpose
languages such as C++, which can then be targeted to heterogenous platforms
such as GPUs and FPGAs. Intel offer this as part of their FPGA SDK [28], and
Xilinx as part of their SDAccell platform[29]. The benefit of this approach is that
it allows for side-by-side development of the base software application that will run
on the host, tightly coupled, or soft-core processor and the hardware accelerator.
These tools hide details regarding the software and hardware interfacing from the
user. They represent a growing trend of heterogeneous computing system designs.
Various academic works look to extend OpenCL FPGA integration for use with
other languages. The work in [30] enables the coupling of Java programs with FPGA
accelerators within th OpenCL ecosystem. This is useful for large-scale analytics
applications as many of the frameworks used for this, such as Hadoop, utilise Java
frontends. Another work [31] presents a similar strategy for accelerating python
code with FPGAs using OpenCL.

In addition to using general-purpose languages for HLS, many works have
examined using domain specific languages (DSL) to generate FPGA designs. These
are languages designed to either simplify or enhance the development of applications
for a specific domain. An early work in this area [32] mapped a network processing
DSL called CLICK to an FPGA. The DSL was compiled to a HDL module that
could then be synthesised with vendor tools. Network processing languages such as
P4 have also had HLS integrations [33; 34]. Hipacc [35] is a DSL than can be used
to create FPGA accelerators for image processing. It utilises OpenCL, and can also
be used to target other platforms such as GPUs. The framework also allows for
more image processing kernels to be added to the database of supported operations.
Another image processing DSL, Halide, is adapted to generate FPGA accelerators

14



in [36]. An end-to-end flow is presented, and an evaluation the generated accelerators
performed around 4× faster than CPU implementations. The framework presented
in [37] allows for SQL queries to be compiled to FPGA accelerator blocks to be
loaded into PR regions at runtime. SQL is a DSL used to interact with relational
databases. A generic backend named FROST, capable of automatically adapting
multiple different DSLs to HLS is demonstrated in [38]. It can extract an abstract
representation of the functionality described by the DSL and then generate a C++
equivalent which can then be used with Xilinx HLS and SDAccel tools. The tool
also exposes the same optimisations offered by Vivado HLS such as loop unrolling
to the user.

One of the key barriers to the utilisation of FPGAs within networked comput-
ing systems is the considerable design effort required. This includes both datapath
and system-level design. Advances to high-level development flows such as HLS
simplifies accelerator designs that use standard interfaces, greatly reducing friction
when deploying FPGAs as accelerators in networked systems.

Types of FPGA

FPGAs can vary in terms of the amount of available resources, hardened blocks, and
IO. In general, more expensive devices will have a greater number of CLBs, DSP
slices, and more available BRAM, as well as higher bandwidth I/O. Devices such
as the Xilinx 7 or Ultrascale series are designed for high-speed networking or accel-
erating datacentre workloads, so have high-speed transceivers and large amounts of
on-chip memory available.

FPGAs designed for smaller scale and even embedded applications also exist.
The lattice ECP5 is a cheaper, mid-range device that’s designed for automotive or
embedded applications. The Lattice ICE40 is a very low density FPGA with few
resources used for ultra-low-power embedded applications running on limited power
supplies.

Many modern FPGAs can utilize partial-reconfiguration (PR). This feature
allows for reconfiguration of selected regions of the FPGA at runtime, without having
to reconfigure the whole device [39]. Hardware modules must be partitioned into
partially reconfigurable regions, and then these regions mapped to the FPGA fabric
through floorplanning. The vendor tool generates partial bitstreams that implement
these modules with resources in the reconfigurable regions. These partial bitstreams
can then be loaded at runtime to reconfigure these regions without affecting the
rest of the design (Figure 2.4). PR has several benefits over full reconfiguration:
resources can be time-shared, reducing the overall resources required, designs are

15



Figure 2.4: Partial reconfiguration allows for selected regions of the FPGA to be
reconfigured using partial bitstreams [39]

more flexible and can be modified at runtime, and the same FPGA can be used to
independently serve multiple applications in isolation.

2.1.3 FPGA Accelerator Design

FPGAs can provide improvements to application performance through the deploy-
ment of computing logic optimised for a given task. This is in contrast to CPUs,
which execute software on a general-purpose architecture. The task, algorithm or
process is implemented using logical resources on the FPGA. This may be the entire
algorithm, or only computationally intensive functions that act as a bottleneck when
performed in software. Custom FPGA implementations achieve improvements over
software through several avenues that will be discussed in this section.

Static Accelerators

Static accelerators are architectures that are designed to implement a single function.
While these application specific architectures may be reconfigured through changing
register values, there is no dynamic, device level reconfiguration. To change the core
functionality of the accelerator, the entire FPGA must be reconfigured.

One of the key benefits of FPGA accelerators is the ability to implement
architectures that exploit temporal parallelism. A sequence of operations can be
‘pipelined’,where each stage of the pipeline can operate concurrently – resulting in
an improvement to throughput. Another of the key features of FPGA acceleration
architectures is the exploitation of spatial parallelism. A function that may take
many iterations of a loop in software can be ‘unrolled’, and multiple iterations of that
loop can be implemented with independent FPGA logic, allowing them to execute
in parallel. This property is exploited in many data mining and machine learning

16



algorithms, which often involve performing large quantities of the same operations
on a large data set. Utilising a tiled design, of the same operations repeated spatially
across the FPGA fabric, is commonplace. The SVM accelerator in [40] demonstrates
an example of this approach. This design uses a set of tiles that operate on different
parts of the dataset in parallel. Within each of these tiles is another tile structure.
The outputs of these tiles are aggregated by additional logic that is in sequence
with the tiles. This architecture outperformed a software implementation of the
same algorithm by 2–3 orders of magnitude as a result. Decision tree algorithms
also commonly use FPGA accelerators, and benefit from spatial parallelism. The
architecture in [41] again uses a tiled design, where each comparison in the tree
is implemented in parallel. An implementation of a random forest classifier takes
this further in [42], implementing multiple trees operating on the same data, in
parallel. The design had a greater performance per watt compared to CPUs and
GPUs. The paper additionally highlights an issue with spatially parallel designs -
the finite resources in the fabric can limit performance gains, and the size of the
algorithm that can be implemented. To extend the forest classifier beyond a given
size for the available hardware, the authors had to use multiple FPGAs, while still
needing only one unit for the GPU implementation.

These decision tree works use static tiles and tree structures. This means
that to implement a different tree, the FPGA must be reconfigured. The work
in [43] proposes a structure that uses generic, dynamically configurable tiles that
use configuration data stored in on-chip RAM. The tree is converted into a rules table
and written to RAM to reconfigure the accelerator without having to reconfigure the
entire device. Utilisation of an array of flexible tiles is a technique often employed
with convolutional neural network (CNN) accelerators. CNN inference requires
many 3D convolutions, which include large sets of multiplications. The number
of operations required means that unrolling the application in its entirety would
be impossible due to resource limitations, therefore a set of processing elements
that can be reconfigured dynamically is typically used, operating on chunks of data
sequentially. The CNN accelerator in [44] uses an array of processing elements that
are configured by a soft-core processor on the FPGA. Weights and data are fetched
from off-chip memory. This accelerator improved processing time by 7× compared to
a CPU implementation, and had a 24× reduced power consumption. Data transfer
from off-chip memory is a bottleneck for these systems, so on-chip BRAM is used for
temporary buffering. This reduces the number of costly off-chip memory transfers,
and allows for processing to be offset from data transfers temporally. Another CNN
accelerator demonstrated in [45] attempts to optimise these on-chip buffers to take

17



data re-use into account, greatly reducing the number of required off-chip transfers.
They also develop a 3 dimensional array of processing elements as opposed to a
traditional 2 dimensional one, allowing for greater re-use of processing resources.

In all, FPGAs can be used to accelerate a large variety of intensive tasks,
reducing the computation latency in comparison to CPU architectures.

Dynamic Partial reconfiguration

Dynamically reconfigurable accelerators are desirable in a number of cases and can
be achieved through partial reconfiguration (PR), a feature available on most mod-
ern FPGAs that allows for reconfiguration of only selected regions of the FPGA
fabric.

Most PR accelerator designs use an architecture comprising a static shell that
contains communication and control logic, and reconfigurable regions that can be
loaded with different accelerator logic at runtime using PR. This allows the device
to continue running and operating within a larger system while the accelerator is
being modified.

One scenario where this technique is useful is when designing an accelerator
for adaptive systems. These systems must alter accelerator properties at runtime to
respond to external stimulus. In [46], an FPGA accelerator is deployed as part of
a wireless sensor network application that can track points of interest. The appli-
cation is too computationally intensive to use microcontrollers, and a static FPGA
design would be unsuitable as full device reconfiguration would take too long, as
well as sacrifice communication with the network. Different filters are swapped in
to the reconfigurable region at runtime depending on the targets characteristics such
as velocity, noise and priority. Deploying all filter datapaths on the device at once
would not be possible due to limited resources. A PR-based accelerator is similarly
deployed in [37], for database query processing. Acceleration of these queries is
essential for large databases to ensure throughput targets are met. Implementing
all possible query pipelines on the FPGA at once was not possible as it would have
consumed too many resources. Reconfiguring the entire accelerator for each query
would be too slow. This design therefore loads the appropriate query processing
pipeline as they arrive using PR. Compared to a software solution, the FPGA ac-
celerator achieved between 1.4× and 6.15× speedup depending on the query, with
greater relative performance gains for more arithmetically complex queries.

An adaptive K-nearest neighbour (KNN) accelerator is developed in [47],
where PR is used to modify the design based on user parameters. This allows for
faster reconfiguration times for latency-sensitive workloads, and again allows the

18



accelerator to be integrated into a communication infrastructure mpre easily. The
design provided a 68× speedup over a CPU implementation, and using PR instead
of full-device reconfiguration resulted in around 5x faster reconfiguration. The user
parameters for KNN applications are frequently changed, with users often exper-
imenting and comparing results for different parameter values, making this faster
reconfiguration time beneficial for this application. PR has been used in cognitive
radio applications [48] to swap in different functions depending on the conditions
such as the signal-to-noise ratio of the transmission channel, or available power.
For example, a function performing the same function but with a lower power con-
sumption can be loaded on to the FPGA if a more efficient implementation can be
used. An OFDM cognitive radio is implemented in [49] to support different OFDM
standards. This design uses PR only for modules that require significant changes
to support a different standard, and parametrised modules for those requiring less
change, and the additional resource overhead caused by the parametrisation is below
a threshold. This was shown to give performance benefits compared to the tradi-
tional approach of making using PR modules for the entire pipeline, or a monolithic
module containing the entire design.

PR-based accelerators are also used to time-multiplex FPGA resources, over-
coming spatial constraints. The entire application may not fit within the FPGA at
once, so PR is used to swap in different tasks at runtime. An example of such an
accelerator can be found in [50]. The bio-informatics application examined ben-
efits from comparing the outputs of different classifier algorithms. Using partial
reconfiguration, classifiers can be loaded sequentially, saving FPGA resources, and
can be loaded 8× faster than complete device reconfiguration. Similarly, this time-
multiplexing technique can be seen in [51], for a KNN application. The accuracy of
the algorithm can be improved by comparing the results of an ensemble of classifier
configurations. Resources can be saved by loading classifiers with different parame-
ters sequentially. This method has the benefit of making the design more scalable,
and compatible with a greater number of devices with different resources available.
For large FPGAs with an abundance of resources, more classifiers can be instanti-
ated in parallel, while for smaller devices, more time-multiplexing can be utilised.
Time-multiplexing using PR is exploited for a NN inference application in [52]. The
results of each layer are dependent on the results of the layer before, so each layer is
loaded sequentially using PR, saving resource consumption. This makes the design
more compatible with smaller devices. Similarly, the video broadcasting decoder ac-
celerator is demonstrated in [53], which again takes advantage of time-multiplexing
using PR to save resources. Again, this is a highly sequential algorithm where the

19



results of a given part are highly dependent on the previous parts.
Dynamically reconfigurable accelerator devices are beneficial for applications

that must be flexible at runtime. Additionally, dynamic reconfiguration allows for
time-sharing of resources and isolation of tasks, which are key enablers of device vir-
tualisation. These properties are particularly advantageous in networked computing
systems where resources are shared across multiple tasks, and process constantly
changing workloads.

Overlays

Related to this design paradigm is the concept of overlays. This technique involves
implementing an intermediate, coarse-grained architecture on an FPGA, quite of-
ten an array of generic processing elements, which can then be programmed without
reconfiguring the FPGA. Designers express their requirements using a higher level
of abstraction, and a custom compiler transforms and maps this design to an archi-
tecture pre-loaded onto the FPGA. This gives added flexibility in some scenarios,
especially when fast reconfiguration is needed. It also has the added benefits of
reducing the difficulty in designing an accelerator, and reduces the time taken to
generate a design as no synthesis or place and route is needed.

An example of an overlay architecture can be found in [54]. This design
resulted in a 140× speedup and an improved area-time product compared to a soft-
core running on an FPGA. One issue with overlays is that they consume more area
and can limit throughput and operating frequency compared to fine-grained designs
optimised for a specific application. Some overlay architectures have attempted to
solve this by designing overlays more closely around the underlying FPGA archi-
tecture [55; 56]. These works utilise functional units built around the DSP48E1
primitives found on modern Xilinx devices. As a result, there were large improve-
ments to resource consumption, and improved throughput and reconfiguration time.

Overlay architectures can be targeted to specific domains in order to allevi-
ate their performance penalty compared to hard logic implementations. Optimising
the overlay for specific domains sacrifices flexibility for increased performance. The
‘DLA’ architecture presented in [57] is targeted at neural network inference acceler-
ation. Using this overlay, the authors were able to achieve a throughput of 900fps
for GoogleNet. One of the factors enabling this high throughput was the fast re-
configuration times offered by overlay architectures – layers’ filters could be quickly
loaded in ahead before they were needed. The overlay in [58] was similarly targeted
specifically at NN inference, but expanded the overlay and supporting instruction
set to be able to support a greater range of NN architectures, and allow for a more

20



fine-grained control of operator deployment - resulting in more efficient utilisation of
overlay resources. Their platform showed significant improvements in performance
per watt compared to both GPUs and FPGA implementations demonstrated in
other NN inference works. They also demonstrated improvements over a GPU for
a license plate detection applications, achieving 3× greater throughput. An over-
lay for accelerating DSP workloads is demonstrated in [59]. Fast reconfiguration
is beneficial for workloads with variable parameters, or for devices that don’t have
the resources to allow for the entire application to be mapped onto the FPGA at
once. It was evaluated using a 255 tap FIR filter implementation, where the accel-
erator implemented with the overlay resulted in 10× speedup compared to a CPU,
compared to 16× speedup for a full custom design. However for larger data sizes,
when reconfiguration time is taken into account, the overlay architecture begins to
outperform the hard logic implementation.

While overlays can be used to implement dynamically reconfigurable ac-
celerators, performance limitations exist as the architecture cannot be completely
optimised for a given application, and the overlay architecture can limit what logic
can be implemented, making it unsuitable for some applications. However they can
simplify application development, enable fast reconfiguration, and abstracts away
system design details.

2.1.4 Graphics Processing Units

Graphics processing units (GPUs) are another reprogrammable hardware accelerator
platform, historically used to accelerate graphics rendering. Compared to a CPU,
a GPU comprises large numbers of simpler compute units operating in parallel.
Complex functions are decomposed and distributed amongst these cores, leading to
reductions in processing time. This processing architecture can be used to accelerate
non-graphics rendering applications. In [60] a GPU was used to accelerate quantum
chemistry calculations, and resulted in a speedup of 3.8× compared to a CPU. GPUs
have also been demonstrated to improve performance in neural network applications
such as in [61] where a 2-11× speedup was achieved for a recurrent neural network.

Processing model

GPUs comprise of a vast array of processing elements or cores. Each core has limited
functionality compared to a CPU core, but is comparatively highly optimised to
perform floating point arithmetic operations. Extraneous logic isn’t implemented,
which means a much higher density of processing cores can be implemented on the

21



same die. Instead of computation being carried out sequentially, it is decomposed
and distributed to a larger number of cores in parallel, increasing throughput and
reducing computation time for tasks with large data sets. Cores are also often
gathered into processing groups, that all only execute the same instruction. This
removes the need for the CPU fetch, decode, execute cycle.

Application Development

Applications are usually written for GPUs using standard software-based program-
ming languages such as Python or C++, with an explicitly parallel GPU framework
that abstracts low-level detail away from the user. CUDA is a framework developed
by Nvidia for use with its GPU architectures. As previously mentioned, OpenCL is
another framework that can be used. OpenCL allows for users to express applica-
tions independently of the target architecture.

Types of GPU

GPUs are often connected to a host processor through the PCIe bus. Datacentre
class GPUs have high densities of processing elements, and are hosted on boards
with large amounts of GDDR5 memory.

Embedded GPUs are lower density and lower power solutions, often inte-
grated onto SoCs used in mobile phones or single board computers.

Comparison to FPGAs

There are several works comparing GPU to FPGA acceleration. Both were tested
with a random forest classifier application in [42]. This study determined that for
this application, the FPGA achieved a higher performance per watt, however the
GPU produced the best performance per dollar. While the FPGAs were more power
efficient, it was also noted that the FPGAs ran into resource comsumption issues
for larger forest sizes, resulting in the need for additional FPGA boards. The GPU
did not, however had a degrade in performance instead. A RNN application was
evaluated with a Zynq SoC and Nvidia Tegra GPU development board in [62], plat-
forms marketed towards embedded applications. The Zynq outperformed the GPU
significantly in terms of performance per watt. This observation was mirrored in a
K-means clustering application [63], where the FPGA accelerator was significantly
more power efficient and energy efficient than the GPU.

An extensive review of FPGA and GPU comparison studies was carried out
in [20], which looked at the relative performance of GPUs, FPGAs and CPUs for

22



a variety of applications such as matrix multiplication, FFTs, and encryption/de-
cryption. It was found that for algebraic operations and complex simulations that
involved complex mathematics with floating point numbers, GPUs generally pro-
vided greater speedup. FPGAs were better at combinational logic applications like
encryption, and for fixed-point or integer signal processing. FPGAs had a lower
power consumption in most surveyed applications.

As both platforms excel at different tasks, some efforts have been made to
produce heterogeneous systems utilising both. This technique has been used for a
medical application requiring very high frame rate image processing [64]. An FPGA
acting alone did not have the resources available for very large parallel operations
and large buffers required for the application, and a lone GPU ran into issues with
data flow bottlenecks. A combined solution led to double the frame-rate of a lone
GPU and reduced latency. A hybrid GPU-FPGA architecture was used for a SVM
image classifier application in [65], where the FPGA performs feature extraction
and the GPU the classification. The FPGA provided low latency processing of the
image feed as it could interface with the camera easier. The GPU allowed for highly
parallel computation that made up the classification phase.

Overall, FPGAs have been demonstrated to have greater power efficiency
than GPUs. Another main difference is that FPGAs allow for more integration
possibilities. GPUs rely on a PCIe connection to a CPU host, while FPGAs can be
connected directly to the network as standalone devices.

2.1.5 Application Specific Integrated Circuits (ASICs)

Application specific integrated circuits are devices designed and fabricated to carry
out a specific group of tasks. Unlike FPGAs, the architecture is fixed at manufacture,
and unlike CPUs or GPUs, they offer limited programmability. The benefit of this
rigid architecture is it can be completely optimised to perform these tasks. While
FPGAs require flexible interconnect which limits the achievable clock rate, ASICs
do not. There is also no redundant logic or unused resources.

The work in [66] compared a recurrant neural network application imple-
mented on an FPGA and a 14nm ASIC. They estimate that for this purpose, the
FPGA was only 7× less efficient than the ASIC. Furthermore, they identified that
the number of available DSP blocks was a limiting factor in the FPGAs performance
compared to the ASIC, and that this gap will close as new devices offer these re-
sources in greater densities. In another work, the authors make a similar comparison
with binarized neural networks [67], and reach the same conclusion, with the FPGA
performing around 8× less efficient than the ASIC implementation.

23



There have been a number of commercial ASICs developed to accelerate
machine learning applications. Google have recently released a programmable ASIC
for neural network inference called a Tensor processing Unit (TPU), which allows
fast execution of tensor models [68]. This architecture was shown to achieve up
to 30× speedup and 80× energy efficiency for DNN inference compared to CPU
and GPU architectures tested [69]. Intel’s Myriad X vision processing unit (VPU)
is an ASIC optimised for computer vision applications, and contains a dedicated
neural network processor [70]. There are also versions of these devices designed for
operation at the network edge. These platforms are relatively new, and there are
very few works comparing their performance to FPGAs.

2.1.6 Summary

In recent years there has been a significant increase in the number of available pro-
cessing platforms and architectures. These architectures have vastly different com-
putational abilities and execution models. When modelling distributed hardware
acceleration, the heterogeneity of modern platforms must be considered.

The variety of processing platforms available introduces further variables
to consider when deciding how to distribute processing. Unlike other works, the
modelling work presented within this thesis takes this into account. There is also
little work comparing the performance of these platforms at a systems level, taking
into account both the computation on the platform, and communication to it. Both
of these overheads must be considered when evaluating distributed systems.

2.2 Accelerator Integration

Data transfer to and from the device is often a system bottleneck, and provides
complex challenges, hence requiring significant engineering effort.

2.2.1 PCIe

FPGA accelerators have often acted as slave devices to host processors through
PCIe, similarly to other peripherals such as NICs or GPUs. Utilising PCIe means
minimal disruption to the rest of the infrastructure, and provided a scalable high
throughput interface already commonly used in datacentre and workstation envi-
ronments. The host CPU would control the flow of data to the accelerator, which
had no direct connection to the rest of the network.

Implementing a PCIe connection between the accelerator and host requires

24



the user to design logic around a PCIe controller IP on the FPGA, as well as
write the software drivers that allow the host to control and communicate with
the accelerator, requiring knowledge of PCIe and driver development. Commercial
integration frameworks such as Xilinx Xillybus [71] and IBMs CAPI [72] are built
on top of PCIe, and abstract this detail from the user. However these solutions had
several limitations, mainly being restricted to particular hardware. This led to the
development of many open source frameworks. One of the first open frameworks that
provided a generalised hardware interface based on the Xilinx PCIe endpoint IP and
associated software API was Riffa [73]. Building upon this, other frameworks such as
EPEE increased device throughput and allowed for additional features such as user
defined interrupts [74]. Dyract [75] was a framework based on the open source Riffa
framework that additionally provided the capability for partial reconfiguration over
PCIe. Revisions to Riffa [76] introduced support for PCIe Gen3 and more FPGA
platforms, and Jetstream [77] provided partial reconfiguration over Gen3 PCIe and
multi-FPGA support.

The high throughput of PCIe lends itself towards batch processing applica-
tions with large volumes of historical data and large transfer sizes. FPGA accelera-
tors using PCIe have been demonstrated to increase performance relative to CPUs
in numerous works. A Virtex-5 based PCIe accelerator was used to accelerate neu-
ral network image classification for the Baidu search engine [78]. The accelerator
provided a speedup of around 13× compared to a software implementation on their
test data sets. These results are when using PCIe Gen2×4, so if upgraded to more
the higher bandwidth PCIe Gen3, an even larger improvement would likely be seen.
A KNN accelerator was demonstrated in [79], using PCIe Gen2×4 to connect to a
CPU host. The accelerator provided a 148× speedup compared to a software imple-
mentation. A GPU outperformed the FPGA in terms of application speedup, but
provided a 3× smaller performance per joule compared to the FPGA. Additionally,
the FPGA was only using PCIe Gen2×4, while the GPU was using Gen3×16, which
would account for some of the additional speedup of the GPU. PCIe-based FPGA
accelerators have also been used to accelerate relational database queries [80]. The
FPGA delivered a 10.7× and 6.7× speedup compared to the host CPU, for com-
pressed data. When data was uncompressed, there was a smaller relative speedup
due to the reduced effective bandwidth of data to the FPGA.

PCIe-based accelerators have an associated communication cost. The work
in this thesis quantifies these overheads in Chapter 4.

25



2.2.2 Network interface

Alternatively, FPGAs can communicate with servers via a network interface, typi-
cally Ethernet. This allows FPGAs to connect directly to the network without the
need for a CPU host. The FPGA can receive and process data without the latency
and complexity of a software network stack and non-deterministic CPU behaviour.
These characteristics lend themselves well to stream processing applications, where
data must be processed immediately as it arrives, and latency is of greater impor-
tance than throughput.

One method of networked FPGA accelerator deployment is commonly re-
ferred to as a ‘bump-in-the-wire’, where an FPGA is placed between a servers NIC
and the network, so that data goes through the FPGA before reaching the server.
One example of this approach is demonstrated in [81]. FPGAs can be used as local
compute accelerators, used for on the wire processing of packets from the network,
or as a set of shared pooled resources between servers. Networking applications such
as line-rate encryption/decryption were accelerated, providing performance benefits
over software implementations. Acceleration of the Bing search engine was also
implemented, which involved multiple remote FPGAs working together across the
network.

FPGAs have alternatively been integrated directly into the NIC, with a PCIe
connection to the host server and Ethernet connection to the wider network. Again,
this allows the accelerator to operate on data from the network independently of the
host, and removes the need for sperate NIC and FPGA accelerator boards. Microsoft
have adopted this approach to integrate FPGA acceleration into their Azure cloud
platform [82]. FPGA accelerator NICs have also been demonstrated to improve
performance per watt in applications such as key-value stores, such as in LaKe [83].
Here, memory caches are implemented on the FPGA BRAM and external DRAM
connected directly to the FPGA, which doubles as a NIC for all non-application
traffic. Upon reception of a query, the packet is only forwarded to the host server
if the requested data is in neither cache. This allows for drastic improvements to
latency and power consumption compared to software implementations. Outlier
filtering for data mining applications was implemented on a 10GbE FPGA-based
NIC in [84]. The FPGA NIC filters incoming data and only forwards packets of
interest to the host, drastically increasing the effective throughput. The system was
capable of filtering the incoming data stream at 95.8% of 10GbE line-rate.

Utilising high-speed network interfaces with FPGA accelerators also allows
for multi-FPGA clusters to be implemented. This technique is used to implement
a mapreduce accelerator in [85]. Each FPGA is connected to a host server through

26



PCIe, but connected to other FPGAs in the system through Gigabit Ethernet.
The host mainly controls and configures the FPGA, and to retrieve input data
from the host memory. Key-value pairs are passed between FPGAs through the
network interface. The FPGA-acclerated system was 15× to 20× faster than the
software implementation depending on application parameters. The main bottleneck
was identified as the communication from host to FPGA through PCIe. Similarly,
a multi-FPGA accelerator for deep learning mapreduce applications is presented
in [86]. Instead of using a cluster of host-FPGA pairs, it uses the Xilinx Zynq boards,
where the FPGA and CPU are tightly coupled, removing the PCIe bottleneck. They
reported 8× to 12.6× speedup for a CNN application with this system compared to
a cluster of CPU nodes, as well as significant power consumption reduction.

2.2.3 Tightly coupled SoC

More recently, platforms that feature an FPGA tightly coupled to a CPU in the
same package have emerged. Examples include the Zynq family from Xilinx, which
couples an FPGA with an ARM core, and some of the Xeon family from Intel. The
FPGA can communicate with a processor through high-speed on-chip interconnect,
instead of external interfaces like PCIe or Ethernet. Typically these devices use the
processor for control and configuration, and the programmable logic for compute
intensive processing. While a traditional FPGA may utilise a soft-core processor
implemented within the FPGA fabric, this is resource inefficient in comparison.
The integrated processor has often led to the reprogrammable SoC devices being
targeted towards embedded and edge of network applications.

The tightly coupled processor simplifies software controlled partial reconfigu-
ration of the programmable logic part of the device. This allows for reconfiguration
of only specified regions of the fabric, as opposed complete device reconfiguration,
enabling time multiplexing of the programmable logic, increased flexibility to mod-
ify logic at runtime, and sharing resources across multiple applications. There is
an area of research focused on accelerator management with tightly coupled SoCs.
ZyCap [87] is a framework that utilises a custom reconfiguration controller and soft-
ware interface developed to allow for more efficient partial reconfiguration on the
Zynq platform. When evaluated it had 3× higher throughput than the Xilinx ICAP
alternative. The MiCap framework [88], uses a controller that is designed for smaller
bitstreams, and allows for the configuration to be read back. It is targeted at dy-
namic circuit specialisation applications, where circuit parameters are implemented
into the design as constants rather than regular inputs, allowing the design to be
specialised around those constants. The work on MiCap is extended in [89].

27



These tightly coupled architectures are suitable for software applications with
a few complex tasks. A PR-based cognitive radio is presented in [90], where the
control and configuration is in software in the PS, while the more computationally
intensive baseband processing is implemented within the PL. Additionally, the tight
coupling with a CPU without the need for an external host makes them effective for
embedded applications. In [91], a Zynq is used to implement a NN application to
monitor gas sensors to determine the composition of the gas being monitored. The
accelerator achieved comparable performance to hosted FPGA accelerators for the
same application. A Zynq-based accelerator for a road sign detection application is
demonstrated in [92], where the PL is used to interface with the sensor and filter
data before it is classified in software in the PS.

2.2.4 Interface overheads

Factors such as I/O, network, and CPU stress have been demonstrated to have
significant impact on the magnitude and variability of packet delays [93; 94; 95]. The
various contributors of packet latencies in datacentre environments were examined in
detail in [96]. The PCIe interface has also been shown to be a significant contributor
to latency [97]. It was demonstrated in [93] that virtualisation using Linux Vserver
typically added a small delay to packet round trip times, while Xen virtualisation
added 3 to 4 times greater latency.

There has been little to no work on the interface overheads for FPGA ac-
celerators in particular. As these overheads can be significant, the lack of this
information can make it difficult to evaluate the value of accelerator platforms at a
system level.

2.3 Summary

FPGAs have can be integrated into distributed computing systems through various
interfaces. Despite this, there has been little work investigating the overheads of
these interfaces, especially the emerging network-attached method.

While individual works have presented performance studies focussing on the
designs they present, there have been no generalised examinations that can be used
to aid in modelling or design decisions. Chapters 4 and 5 of this thesis detail exper-
imental studies on these overheads, and demonstrate their effect on an application
at the systems level.

28



Figure 2.5: Example of network infrastructure supporting computational offload to
remote resources.

2.4 Networked computing systems

In networked computing systems, processing is moved from a data source to another
more capable network node for processing, to reduce computation time, power con-
sumption, or increase throughput, and the result is sent back. An additional benefit
is that the original platform is free to perform other tasks while it waits for the
result. The benefits gained must make up for the communication penalty incurred
through offloading the data. Depending on the nature of the application, this net-
work structure will vary. An example of such as network structure can be seen in
Figure 2.5.

2.4.1 Edge Networks

Endpoint nodes sit at the very edge of the network, and typically act as data sources.
Examples of such nodes are IoT sensors, mobile phones, networked cameras, or
autonomous vehicles. They offer some limited processing capability, but need to
offload data to more capable hardware to meet power or response-time constraints.
Typically processing is offloaded to the cloud or a remote datacentre, requiring
devices to transmit data across the Internet to reach the target platform. Endpoint
nodes could utilise various communication Interfaces. Nodes in remote, hard-to-
access locations, or mobile phones, utilise cellular communication such as long-term
evolution (LTE) to gain access to a larger scale network. Data is transmitted through
the device antenna to the nearest eNodeB or base station [98]. This node facilitates
the transmission through the core network to the service provider’s datacentre, and
then over the Internet. Other endpoint devices may utilise Wifi, in which case data

29



is transmitted to a local access point, which is then connected to the wired local area
network. Data will traverse a series of Ethernet switches and aggregation nodes, and
gain Internet access through a router. Applications that require high communication
reliability, or are not in difficult to access, static locations may utilise wired Ethernet
for the first hop, then follow the same path.

2.4.2 Datacentre Networks

Inside the datacentre itself is another complex network, an example structure can
be seen in Figure 2.6. A datacentre is a location with a large collection of large-scale
networked servers and other machines [99]. These servers are made up of racks of
commodity machines, network resources, storage, power distribution, and cooling.
A standard rack is 42U high, which means that 42 1U rack mount servers or other
devices can be housed. Blade mounts allow for multiple servers to be hosted within
the same 1U enclosure. As a result, server racks may contain a high density of ma-
chines, which all need to communicate with other machines in the datacentre. Each
rack has a top-of-rack (ToR) switch which facilitates communication between servers
in the same rack, and between the rack and the wider datacentre network [100]. Ex-
ternal switches allow for racks within the same cluster to communicate with each
other, and aggregation switches connect clusters to routers that allow for inter-
cluster communication. In the particular topology shown in Figure 2.6, data must
go through at least one switch to go from one server to another in the same rack,
and at least 3 switches to reach a server in another rack. Quality-of-service policies
are implemented on switches and host NICs to prioritise traffic flows under high
network load.

While datacentres are typically large centralised environments, smaller scale
datacentres are increasingly being deployed to the network edge, closer to the clients
they serve. Being closer geographically reduces the latency. These edge datacentres
are similar in structure to their larger counterparts, just at a smaller scale. For
example, telco central offices traditionally used for telephone switching are being
re-purposed as datacentres [101], that are in geographical locations close end users.
Micro-datacentres have also been proposed – these are even smaller scale, com-
prising only 10s of servers in few racks, placed in extreme proximity to premises.
This means that platforms requiring offload could potentially have a lower latency
option. This approach can be seen in mobile edge computing, where processing
data on a mobile device would consume too much power, and doing so in the cloud
would lead to high latency [8; 9; 10]. Edge datacentres have been demonstrated in
video processing and augmented reality applications [11; 12; 13] where latency is an

30



Figure 2.6: Example of datacentre network topology [100]

important consideration. Applications such as face recognition [11; 12] and video
surviellance [17] have also been demonstrated on these platforms with significant
latency improvements over traditional cloud offloading.

31



2.4.3 In-network computing

Another emerging method of computing offload is utilising elements traditionally
used for moving data, such as switches, gateways, routers, or NICs to perform ex-
tra computing on top of their standard networking functions. These elements are
discussed in Section 2.4.4. This technique is often termed ‘in-network’ computing.
Cisco utilise this approach in an edge processing context in what they call ‘fog com-
puting’, where endpoints at the network edge utilise local network elements to assist
with computation [102]. In-network computing can also be utilised within datacen-
tre networks, implemented within the dense switching network. There are several
benefits to this approach. Firstly, for edge processing applications it provides a
computing resource extremely close to the endpoint. The trip from an endpoint to
a centralised datacentre over the Internet, or even to a geographically closer edge
datacentre or cloudlet is much larger in comparison. For applications with very tight
latency constraints, such as closed-loop control of industrial equipment, this is vital.
The same holds true for datacentre applications — processing can be carried out
within a few hops, and potentially avoid having to be processed on another server,
circumventing the latency and jitter of the server’s network stack. Keeping pro-
cessing local using in-network processing can also make applications more resilient
to the variable latency caused by dense bursty traffic generated elsewhere in the
datacentre. Another benefit of in-network processing is that it can reduce the load
on the network, as data is terminated or reduced once processing is complete.

Devices such as network switches and gateways are extended to perform
additional data processing as well as their network functions. This technique has
been demonstrated to result in a reduction in data and execution latency in map
reduce applications [103]. A key-value store implemented on an FPGA based NIC
and network switch outperformed a server based implementation [22]. In-network
computation using programmable network switches for a consensus protocol was
demonstrated in [104].

The result of the computation is typically smaller than the data used in it - for
example a neural network may return a class label, or a filtering application removes
extraneous data. This can reduce the network load, and the resulting impact on
other applications. Additionally, it makes use of elements already utilised within
the network, reducing the need for adding extra servers or components, which can
reduce space overheads, costs and idle power consumption. In-network computing
is an emerging area, but is becoming more readily available due to advancements in
programmable switches, smartNICs and the utilisation of FPGAs within networking
contexts.

32



2.4.4 Network elements

Data is moved from machine to machine through a network, passing between other
machines and dedicated network elements. Most modern systems primarily utilise
the Ethernet networks [105]. In these networks, data is transmitted in bitstreams
across either twisted pair or fiber-optic cables between switches. Ethernet networks
are switch-based, where machines only communicate directly with the closest switch,
and not with other machines. Each device in the Ethernet network has a MAC
address, which is used to direct data to the appropriate machine.

Data enters and leaves a device through a network interface, controlled
through software running on the device. Embedded devices usually have a net-
work controller integrated circuit (IC) on board to allow for the physical connection
to the network through cable or WiFi, and handling of the physical layer protocol.
Servers usually use a network interface card (NIC), which are peripheral component
interconnect express (PCIe) expansion cards that contain the network controller
IC and supporting circuitry and buffers. Upon reception of a packet at the net-
work interface, it is written to a ring buffer in the host via direct memory access
(DMA) transfers, and an interrupt is triggered. The operating system then moves
the packet into an input queue, and then processed in software by the CPU. This
processing involves examining and extracting data from the various headers for each
protocol layer in sequence. Once processed the packet is accessible by applications
through the sockets interface. A server may host several NICs with varying numbers
of ports. Modern NICs may also integrate internet protocol (IP) and transmission
control protocol (TCP) stacks on the card before it reaches the host machine. Of-
floading this processing away from the host and onto the NIC can have significant
throughput and latency benefits.

Switches are fundamental network elements that facilitate many-to-many
communication between machines. They forward frames from input ports towards
the appropriate output port to reach the target machine on the local network. A
switch will have input and output arbitration and buffering logic either side of the
main switch fabric. Most switch fabrics are implemented using a crossbar design,
where each input has a potential connection to each output, but only one input
or output can be connected to another at one time [106]. The links through the
crossbar matrix are bufferless, and buffers are placed either at the input or out-
put. Unmanaged switches offer mostly simple movement of frames between ports,
although can sometimes offer additional features such as basic prioritisation of se-
lected traffic and diagnostic abilities. They offer limited reconfigurability, and are
designed to just be deployed out of the box. Managed switches on the other hand

33



can be reconfigured during deployment, and offer a more comprehensive feature set.
These can include additional security, traffic control and quality-of-service capabili-
ties. Smaller, unmanaged switches are more likely to be found closer to the network
edge, while more capable managed switches are more likely to be used to aggregate
larger groups of links from smaller switches. Routers perform a similar function,
but usually work with the layer 3 protocol (for example IP), and are used to connect
multiple networks, to each other.

2.4.5 FPGAs for network applications

FPGAs have seen extensive use in networking applications. The growth of software-
defined networking, and the need for flexibility in modern networking devices mean
that traditional ASIC implementations are no longer viable. On the other hand,
software implementations of these functions running on CPU-based hardware can-
not meet the strict throughput and latency requirements, especially considering the
growth of 40Gb and 100Gb Ethernet in datacentre environments. Specialised net-
work processing units (NPU) are available as a compromise between these options,
but still pose a restriction on what functionality can be implemented. FPGAs can
provide the both high performance and sufficient flexibility that are needed in mod-
ern networking contexts, in a range of applications.

NetFPGA is a platform designed for networking related FPGA research [107].
It is a development board hosting a Xilinx FPGA, memory, PCIe, and 1Gb Eth-
ernet interface. Further revisions of this board host bigger FPGAs, more memory
and more Ethernet interfaces [108]. The NetFPGA SUME [109] board is a further
revision which has four 10Gb Ethernet interfaces and a Virtex 7 FPGA. The boards
come with a library of IP cores to ease development of networking applications.

Packet parsing and classification

A fundamental component of modern networking appliances is packet parsing and
classification. This involves identifying and extracting information from fields within
packet headers, often nested within headers of other protocols, and classifying pack-
ets into flows based on this information. This can help with enforcing security,
routing flows to the appropriate network application and meeting quality-of-service
constraints. FPGAs are an attractive platform for this function due to the ability
to ingest and process packets at high data rates, while retaining the flexibility to
be reconfigured to support new protocols or classification policies. Packet parsing
at 400Gb/s is demonstrated in [110]. The design implements a pipeline of generic

34



parsing elements that are configured through microcode by the stages previous to it.
A high-level language is also provided to be able to express header formats, which
then automatically configure the FPGA parsing logic. The parser presented in [111]
aims to reduce the area consumption and latency for high throughput parsers. Em-
bedded applications may have less resources available and require a smaller footprint
parser, and applications like high frequency trading require extremely low latency.
This architecture allows the user to control the number of pipeline stages to suit
their application, and allows for packets to share data words, making better use of
the wide bus widths that must be used to achieve high throughput. One of the chal-
lenges faced by packet processors implemented on FPGAs is that the clock rate is
slow relative to the data rates required, so large bus widths are required, consuming
large amounts of resources. The design in [112] utilizes an FPGA with a hardened
‘network on a chip’ interconnect, that provides a high-speed interface across the
FPGA. This allows for lower bus widths and area consumption. Packet classifi-
cation typically sorts packets into ‘flows’ based on the contents extracted from the
packet headers. Typically this is done through table lookups that match header con-
tent to class labels. The memory footprint of the classification ruleset is identified
as a key bottleneck in [113], where the authors develop an algorithm that reduces
the required memory by breaking down the ruleset into smaller rulesets that can be
cross referenced. The properties of the ruleset are exploited to reduce the memory
footprint in [114]. An architecture that allows for classification at 40Gb/s data rate
is presented in [115]. Memory efficiency is sacrificed in this design in exchange for
throughput. This has the added benefit of not relying on the format of the ruleset,
making it more applicable to a range of applications.

Network Function Virtualisation

Network function virtualisation involves the replacement of traditionally specialised
hardware middleboxes that performed network functions with commodity, general-
purpose platforms. Functions can be dynamically allocated to these platforms in
order to respond to changing requirements, without having to replace or alter hard-
ware. FPGAs have been highlighted as attractive platforms for NFV as software
implementations of these functions have performance limitations, while ASICs do
not have the required flexibility. Intrusion detection systems have been implemented
on FPGAs in [116] and [117], demonstrating improvements in throughput compared
to software implementations. Firewalls have been shown in [118] and [119], using the
packet classification techniques discussed above. Deep packet inspection has seen
a recent surge in interest, with FPGA implementations being developed in several

35



works such as [120] and [121]. There has also been work into developing general
platforms for FPGA-based NFV, and integration into NFV infrastructure. The ar-
chitecture in [122] implements a static region consisting of protocol independent
switching units, and a partially reconfigurable region that can be loaded with cus-
tom network functions. The work in [123] details a framework for the deployment of
FPGA networking functions alongside software VNFs within a heterogenous system.

Switching

Recently FPGAs have seen increased interest as platforms for network switching.
Devices are being manufactured with more transceivers, memory, and logic re-
sources, and the ability to reconfigure the design to account for new functionality
is becoming more favourable. This is decreasing the gap between FPGA and ASIC
switching solutions. The feasibility of high-speed network switching using FPGAs is
investigated in [124], for up to 50Gb/s per port. A 16×16 156Gb/s aggregate switch
is implemented on a Virtex-6 in [125], making use of the hard RAM blocks avail-
able on the FPGA. These hardened memory resources can be run a higher clock rate
than the general-purpose fabric, and in this design are used to perform a majority of
the switching. The authors evaluate the design to have comparable performance to
ASIC switches of similar scale. The architecture in [126] utilises a hardened network
on a chip to achieve a 16×16 switch with over 900Gb/s aggregate throughput. They
use a 64×64 mesh NoC which provides high-speed links across the FPGA, allowing
for faster transport than the general-purpose fabric. This technique consumes less
area, power and memory resources than the SRAM design. A similar NoC based
design is demonstrated in [127]. A 16×16 900Gb/s aggregate throughput is achieved
in [128] without the use of a NoC, and is demonstrated to be more resilient to diffi-
cult traffic patterns. It does this by removing the crossbar switch structure used
in the other FPGA switches discussed, and instead uses a pipelined algorithm to
process incoming packets and efficiently organise them at output queues.

Software-defined Networking

While these works focus on the implementation of the switching fabric, other works
related to FPGA switches focus on their integration into SDN infrastructure. SDN
allows for the control plane of switches to be decoupled from the data plane. The
data plane of ASIC devices only allows for configuration between a set of parameters
and functions defined at manufacture, while FPGAs allow for a reconfigurable data
plane, allowing even more flexibility. An SDN switch compatible with Openflow, an

36



open SDN standard, is demonstrated in [129].
SDN data planes are often configured using high-level, platform and protocol

independent languages. Thus there is a broad set of work focused on allowing these
languages to target FPGA platforms. P4 in particular has seen significant interest.
P4FPGA [33] extends the standard P4 compiler to generate verilog code that can
the be used to generate FPGA logic. To evaluate the compiler, L2/L3 forwarding,
Paxos, and a financial trading protocol were implemented. An implementation that
reduces the resource overhead on the FPGA is demonstrated in [34]. A full workflow,
from the compilation from the P4 program to the bitstream generation, to testing
on the hardware is presented in [130]. A P4 to FPGA workflow is used to implement
the Paxos consensus protocol in [131]. This is an application typically deployed on
standard Servers, but here it is implemented in a programmable data plane within
network elements, reducing the number of network transfers and reducing latency
significantly.

All of this work demonstrates that FPGAs are well-suited to packet process-
ing, independent of a CPU host, and are present within networking infrastructure.
These platforms can be extended to perform additional computation. This pro-
vides new opportunities to distribute processing into the network, but increases the
complexity of decided where to place tasks.

2.4.6 Cloud Computing

Cloud computing is usually used to describe the flexible, ‘on-demand’ provisioning
of computing and storage resources from a datacentre to clients over the internet.
This can be a private cloud, where the datacentre is owned by and serves clients
only from the same business or enterprise, or a public cloud, where the datacentre
resources are not owned by the same party as the client. Public clouds operate under
a service-oriented payment model, where customers pay as they use resources. The
most common service model is ‘infrastructure-as-a-service’ (IaaS). Physical hardware
is virtualised, which means that multiple guest operating systems can run on the
same host. A hypervisor is a software layer running on the host that enables this.
A guest OS is often run as a virtual machine (VM), and all VMs on a host share
the same processor, memory and I/O. The Cloud service provider allows users to
elastically create VMs in the remote datacentre.

The cloud model provides numerous benefits for users. It gives users access
to a range of compute resources without them having to purchase or manage any of
the physical hardware. Deployments can be also be scaled up or down dynamically
depending on requirements. For applications where data is generated at resource

37



constrained nodes such as IoT sensors or mobile phones, the cloud provides more
capable resources that could be used to offload processing.

There are several primary public cloud providers. Amazon provide a cloud
platform called Amazon Web Services (AWS). AWS has a large range of services
available for many use cases. The main compute service offered is their elastic
compute cloud (EC2), which allows users to generate VMs that can be accessed
remotely [132]. Capability can be scaled dynamically, with resources such as CPU
and memory being flexible. AWS offers a storage service called S3, which allows
for persistent storage in the cloud. Their F1 service provisions VMs with up to 8
attached FPGAs, connected over PCIe [133]. Microsoft have a competing platform
called Azure [134], with similar functions to AWS. Google also have a cloud platform
called Google Cloud, again providing many of the same basic features [135].

2.4.7 FPGAs in the cloud

In recent years, there has been a surge of interest in deploying FPGAs in the cloud,
as a provision-able, shareable resource. The goal is to allow users to remotely access
FPGA resources on demand to accelerate compute intensive applications. This
growth has been driven by better PCIe-based hosting and the availability of more
accessible, software-like development flows.

Commercial cloud FPGA platforms

At present, FPGAs have been integrated into several public commercial cloud plat-
forms. Amazon’s AWS platform allows users to directly access an FPGA and im-
plement their own logic, as an extension of their EC2 elastic compute service [133].
EC2 allows users to rent virtualised compute and memory resources. Users can rent
an F1 variant of one of these instances, which attaches up to 8 FPGAs. The FPGAs
are attached via PCIe to host servers, and are attached to each other in a ring topol-
ogy using dedicated interconnect, for high-speed inter-FPGA transfer. Developers
can design accelerators using the traditional workflow or higher level languages.
Amazon provide an interface IP core that user logic must integrate with, and the
resulting design is submitted to the AWS servers as an Amazon FPGA image (AFI).
This design goes through several stages of checks and can then be deployed to the
FPGA instance. The F1 service only allows for the provisioning of entire FPGAs,
and these are required to be attached to a CPU instance. There is no virtualisation
of the FPGA resources. FPGAs are treated as slave accelerator devices rather than
standalone devices, and have no direct connection to the network.

38



Baidu smart cloud has FPGAs computing instances available in public beta [136].
Each instance has exclusive access to a monolithic FPGA. As part of the service
they offer a range of IP cores and software components to simplify development.
Similarly to Amazon F1, Baidu provide a static shell and software APIs to handle
interfacing between the host and the FPGA, meaning the user only has to develop
the computing logic for their application. Huawei cloud has an FPGA cloud server
platform [137] which also has up to 8 FPGAs attached to a compute instance over
PCIe, with a high-speed network connection between FPGAs.

Microsoft’s competing cloud platform Azure also offers FPGA-acclerated in-
stances. In contrast to AWS, which provisions the user an entire FPGA to imple-
ment their own designs, Azure offers no direct access to FPGA resources. Based
on the work presented in project brainwave [138], Azure gives users the option to
deploy pre-trained DNNs to FPGA accelerators, for a specified set of supported
model architectures. Users only provide the DNN model parameters rather than
any hardware design, and load it onto Microsoft’s fabric of FPGA resources within
their datacentre using a high-level software API. Another FPGA related cloud ser-
vice provided by Microsoft is Azure Accelerated Networking. This gives users the
option of offloading the network stack to an FPGA smart NIC on the host, allowing
the VM direct access to the network interface and bypassing the hypervisor virtual
switch implemented in software on the host. This results in greatly reduced latency
and jitter [139].

Google cloud offers tensor processing unit (TPU) instances to accelerate
DNN inference, but no FPGA platforms. IBM have a cloud platform called Su-
pervessel [140] designed for development and educational use, which utilises FPGA
accelerators connected through PCIe to the hosts. Biadu utilise FPGA accelerators
to speed up web search [78].

Academic works

The current commercial cloud offerings are ultimately limited, and FPGAs are of-
fered either as a monolithic resource, are not directly available to users, or are
restricted to specific sets of applications. Academic research has been focused on
overcoming these limitations, and making FPGAs an accessible, virtualised resource
in the cloud. Research addresses several key challenges in this area, mainly efficient
sharing of resources, and integration of FPGAs into existing cloud management
infrastructure.

39



Resource sharing

Allowing FPGAs to be shared across multiple applications and users in isolation is
one of the main objectives of research surrounding FPGAs in the cloud. Offering
FPGAs as monolithic resources in the cloud is ultimately not resource efficient, and
if a user design takes up less than the total resources available, the extra space is
essentially wasted.

Most commonly implemented is an architecture comprising a static ‘shell’
made up of control and interface logic, with application logic being implemented in
reconfigurable regions at runtime. An example can be seen in [141], which partitions
the reconfigurable region into virtual FPGAs (vFPGAs) that can host accelerators.
The shell implements PCIe connectivity, and manages the arbitration of access to
communication and memory resources between the vFPGAs. The hypervisor run-
ning on the host manages scheduling and controls the loading of accelerators into the
vFPGAs. This design was primarily developed with streaming applications in mind
that make limited use of on board memory. Another shell for virtualised PCIe-based
accelerators is presented as part of an end to end FPGA cloud platform in [142].
Again, the shared PCIe logic and reconfiguration controller is implemented within
the shell, with partially reconfigurable regions used for application logic. This archi-
tecture also implements scheduling logic within the shell, which implements policies
described in software from the host. Security and error detection logic is also imple-
mented in the shell. A similar architecture can be seen in [143]. This design adds a
local soft-core processor to allow low latency management of FPGA resources, and
faster access to memory shared with the accelerators. Additionally, this architecture
includes on board memory virtualisation, and allows for logic and memory resources
to be dynamically allocated to applications depending on the characteristics of the
workload. The paper evaluated the design with multiple applications commonly
found in the datacentre and demonstrated that sharing the FPGA across multiple
applications provided performance benefits compared to monolithically hosting each
application in series, due to reduced reconfiguration time.

These approaches treat the FPGA as a coprocessor to a CPU. This presents
several issues with cloud deployments. For one, the number of FPGAs available is
dependent on the number of hosts and the amount of PCIe interconnect presented.
Furthermore, any host failures render all attached FPGAs unusable. Finally, data
must travel through the host to reach the accelerator, leading to latency penalties.
This has lead to several works arguing in favour of deploying FPGAs as indepen-
dent resources, connected directly to the the datacentre network. The shells for
these accelerators implements a high-speed network interface instead of PCIe. The

40



network attached accelerator in [144] has resource management logic in the shell
that receives commands over the network from centralised management software.
This work is extended in [145] in the context of multi-FPGA fabrics. In this case, a
master server can co-ordinate the distribution of tasks to multiple network attached
accelerators. Feniks [146] again allows for multiple slots of user logic, but allows for
management over the network or via a PCIe host connection.

This thesis attempts to quantify the overheads of these approaches.

Integration with cloud management

Along with allowing FPGAs to be shared by multiple users at the FPGA level, the
other key challenge is integrating them within existing cloud management infras-
tructure. This means allowing VM instances to interact with the accelerators, or
allowing FPGAs to be managed as traditional software resources are. One example
of this is demonstrated in [147], where an FPGA accelerator is integrated with the
popular Xen hypervisor. The accelerator is connected to a host with PCIe, and the
extra virtualisation layer adds minimal access overhead. The platform presented
in [142] is integrated with the Openstack cloud management framework. Open-
stack is in fact a common target for FPGA cloud integration. Several works have
presented standalone, network attached accelerators that can be managed through
Openstack. One of the first was [148], where standard Openstack commands can be
used to set up or tear down accelerators. Similar approaches are detailed in [144]
and [145]. The frameworks present FPGAs as generic cloud resources, and allow for
the control of multiple independent devices. Galapagos is a full stack framework for
integrating FPGAs in the cloud [149], which automates and simplifies the deploy-
ment of multi-FPGA clusters. Under this framework, FPGAs are directly connected
ot the datacentre network as standalone devices. The framework manages the phys-
ical setup of device and provisioning from a pool of shared resources.

Summary

FPGAs are utilised within the network infrastructure for various networking func-
tions. These platforms could be extended to perform additional computation, in
addition to these base tasks. This increases the number of locations within a net-
work that tasks can be allocated to, making manual placement significantly more
complex.

FPGAs are also present within the cloud ecosystem. The technologies de-
veloped to facilitate this allow for the sharing of FPGA resources and integration

41



within a networked environment. There has been no work examining the overheads
of the virtualisation methods used to achieve this. These overheads are examined
in part in chapter 4 of this thesis.

2.5 Mathematical Modelling

In the previous sections it is noted that the increased availability and heterogeneity
of hardware accelerators, and the growing number of ways they can be distributed
throughout a network make manual evaluation and determination of performant
deployments of tasks and hardware impractical. Mathematical representation of
this scenario is therefore important.

Fundamentally, this is a graph embedding problem - a set of connected tasks
must be allocated to a graph of networked nodes. This sections details existing
modelling solutions, and why a new method is required.

2.5.1 Sensor network modelling

Models that deal with in-network processing go back to early research on data
aggregation in wireless sensor networks. These networks were often meshes of sen-
sor nodes with very limited computational resources, for example simple micro-
controller based systems such as Mica motes [150]. Computations were simple,
mostly consisting of basic aggregation functions such as averages and maximums.
The models’ goals were to allocate these functions to sensor nodes to minimise energy
consumption, thus maximising the lifetime of the sensor nodes with limited power
supplies and in difficult to access locations. Due to the low power-consumption
hardware and simple compute functions, along with energy hungry wireless com-
munication between nodes, computation was generally assumed to be cheaper in
terms of energy than communication. This meant that these models for the most
part push computation towards the leaves to a substantial degree in order to reduce
communication costs as much as possible. These models include TAG [151], directed
diffusion [152], EADAT [153], and MERIG [154]. These either assume uniform sen-
sor nodes or do not account for the computation time at each node, rather focusing
on reducing network load and minimising energy consumption.

2.5.2 Distributed Stream Processing Models

The allocation of streaming tasks to networked processing nodes has been explored
in a variety of existing work. Applications are represented as a graph of tasks

42



with edges representing dependencies, while networks are represented as a graph of
compute nodes with edges representing links.

Earlier models such as Aurora/Medusa [155] focused on load balancing in
task placement, primarily for the allocation of tasks to multiple servers in a dat-
acentre environment. However, network costs are not modelled, making them un-
suitable for scenarios that consider larger scale networks where communication and
network costs are more significant. Work on more network-aware placement [156;
157; 158; 159; 160] was tailored towards networks of machines that are more widely
distributed, and include network utilization and latency in their formulation. These
models are all focused on placing operators to optimise specific objectives, for ex-
ample bandwidth utilisation, meaning that they aren’t generalisable when wanting
to model a range of different performance metrics. Since these online optimisations
are run dynamically, the models are significantly simplified to minimise their impact
on the application. These models consider homogeneous processor platforms and
do not support alternative hardware platforms with different computational models
and metrics.

Recently, more generalised placement models have emerged [161; 162; 163].
These focus on creating a general representation of the operator placement prob-
lem, developing formulations based on integer linear programming instead of focused
heuristics. They are still limited as they assume a fully connected cluster of ma-
chines, and their models of computing resources and tasks are coarse grained. The
work in this thesis is concerned with a scenario where hardware acceleration may be
utilised at certain computing nodes, using a different computational model to that
of a processor, which is considered solely in these models.

2.5.3 Summary

Most of the existing work regarding task placement within a network of connected
compute resources are focused on dynamic runtime allocation. The time taken to
generate a solution is therefore a major constraint. A static allocation model does
not have runtime execution constraints, so can be designed with more complexity,
including more variables and taking into account more detail. Existing works also
assume fixed hardware at each node.

As demonstrated in this chapter, hardware acceleration is more common-
place, and can be deployed at many locations within the network. A different mod-
elling approach is needed that not only allows for the allocation of tasks, but the
allocation of additional accelerator hardware at existing network nodes to facilitate
this. This model could be used statically, pre-deployment as part of a design phase,

43



and allow for more detailed modelling of both tasks and hardware.

44



Chapter 3

Modelling distributed
computing with heterogeneous
hardware

3.1 Introduction

Distributed data processing applications involve the processing and combination
of data from distributed sources to extract value, and are increasing in impor-
tance. Emerging applications such as connected autonomous vehicles rely on com-
plex machine learning models being applied to data captured at the edge, while
also involving collaboration with other vehicles. Further example applications in-
clude factory automation [164], smart grid monitoring [165], and video surveillance
and tracking [166]. Such applications present a challenge to existing computa-
tional approaches that consider only the cloud and the very edge of the network.
Computationally-intensive algorithms must now be applied to streams of data, and
latency must be minimised. In these applications, data sources transmit streams
of data through a network to be processed remotely, with a focus on continuous
processing, and potentially involvement in a feedback loop, as opposed to other ap-
plications that involve large-scale storage and delayed processing. Latency, the time
taken to extract relevant information from the data streams, and throughput, the
rate at which these streams can be processed, are key performance metrics for such
applications.

Centralised cloud computing is often utilised in these scenarios, since the
data sources do not typically have adequate computing resources to perform complex
computations. Applications also rely on the fusion of data from multiple sources,

45



Source Source Source Source

Datacenter
Cloud
(Servers,
Servers+accelerators)

In-Network
(Cloudlets,
Smart switches,
FPGA accelerators)

Edge
(Microcontrollers,
Accelerators)

Figure 3.1: An example of the type of networked system that the proposed model
targets. Shaded nodes can perform computation.

so centralised processing is useful. The cloud also offers benefits in scalability and
cost, and has been shown to provide benefits in applications such as smart grid
processing [165; 167] and urban traffic management [168].

However, many emerging streaming applications have strict latency con-
straints, and moving data to the cloud incurs substantial delay. Furthermore, while
the data generated by sources can be small, a high number of sources means that, in
aggregate, the volume of data to be transmitted is high. For example, in 2011, the
Los Angeles smart grid required 2TB of streamed data from 1.4 million consumers
to be processed per day [165]. Some applications, such as those dealing with video
data, must also contend with high-bandwidth data requirements.

These limitations have led to an increased interest in ‘edge’ or ‘fog’ com-
puting, a loosely-defined paradigm where processing is done either at or close to
the data sources. This could mean at the source, such as on a sensor node with
additional processing resources [169]. It can also encompass performing processing
within the network infrastructure, such as in smart gateways [170], or in network
switches or routers. Cisco offer a framework that allows application code to be run
on spare computing resources in some network elements, and Ethernet switches from
Juniper allow application compute to be closely coupled with the switching fabric.

Edge computing can also include the concept of ‘cloudlets’, which are ded-
icated computing server resources placed a few hops away from the data sources.
These can vary in scale, from a single box placed on a factory floor to a small
scale datacenter comprising multiple networked machines. While the data sources

46



themselves may not have the required computing capabilities, these resources can
support complex applications and are accessible at shorter latencies than a remote
cloud [171].

In complex applications, it is likely that some processing, such as filtering
and pre-processing can be performed at the edge, greatly reducing the volume of
transmitted data, and additional processing and fusion of data can be carried out
in the cloud. The benefits of this approach are that latency sensitive parts of the
application can be done locally, while more computationally-intensive operations
that may require more processing power or additional data can be done centrally.
Stream processing applications are well suited to being partitioned and distributed
across multiple machines, as is common in stream processing frameworks such as
Apache Storm and IBM Infosphere Streams. Additionally, cloud service providers
such as Microsoft Azure have edge analytics platforms that allow processing to be
split between the cloud and the edge.

Edge and in-network computing is an emerging area. Cloudlets have been
utilised for image processing applications [11; 12] and augmented reality [13]. Plat-
forms such as Google’s Edge Tensor Processing Unit demonstrate that there is a
trend towards moving complex computation closer to the data source. In-network
computing has seen application for network functions, machine learning [103], and
high data rate processing [22].

In order to explore the implications of distributing application computation
across a network of heterogeneous compute platforms, a suitable model is needed.
This would allow for the evaluation of different deployment strategies using metrics
such as throughput and end-to-end latency. Existing models that deal with place-
ment of processing on distributed nodes do not consider hardware resources, varied
connectivity, and application features together.

To this end, this chapter will propose a generalised formulation that can
represent applications and target networks with heterogeneous computing resources.
It supports reasoning about in-network and near-edge processing scenarios that are
emerging including both general processor-based machines and hardware accelerator
systems.

Figure 3.1 summarises the application scenario of interest, giving an exam-
ple of the type of networked system that the proposed model targets. Edge nodes
such as sensors and microcontrollers transmit data through a network towards cen-
tralised computing resources. In a traditional cloud computing setup, only the cen-
tral resources perform computation (shaded). In edge computing, the edge nodes
are capable of performing some computation (shaded). In-network computing al-

47



lows some tasks to be performed in the network as data traverses it, using smart
switches (shaded).

3.2 Contributions

The key contributions of this chapter are:

• A model for evaluating different in-network computing approaches is devel-
oped, encompassing:

– Multiple levels of network structure, unlike existing models that focus on
clusters of machines.

– Hardware heterogeneity including accelerator platforms, and the resulting
differences in computing and networking.

– Realistic representation of performance metrics, alongside energy and
financial cost.

• The model is used to examine a case-study scenario and draw general lessons
about in-network computing on different platforms using a set of synthetic
applications.

3.3 Related Work

The allocation of streaming tasks to networked processing nodes has been explored
in a variety of existing work. Applications are represented as a graph of tasks
with edges representing dependencies, while networks are represented as a graph of
compute nodes with edges representing links. Those works are discussed in Chapter
2.5.

In contrast to these works, the model proposed in this thesis is not focused on
finding an optimal allocation of tasks to a given set of resources at runtime. Instead,
it is to be used to investigate the implications of placing computing resources at
different locations in a network and to understand the benefits and costs of doing so.
Since the model is not concerned with dynamic optimisation of operator placement
within a time constraint, the model can include more fine grained detail for tasks and
hardware, accounting for hardware acceleration, heterogeneous resources required
by tasks, the financial cost of adding additional compute capability to network
nodes, and energy consumption. The model also considers the networked system as
a whole, from the sensor nodes to the datacenter, instead of focusing on a cluster

48



of computational servers. The focus of this work is not limited to optimisation, but
rather an analysis of different distributed computing paradigms in the context of
streaming applications. The model can still be used for an optimisation however.

3.3.1 Edge/Fog Computing

In response to increasing demand for low latency in distributed streaming applica-
tions, efforts have been made to move computation closer to the data source, or the
‘edge’ of the network. Where processing occurs varies, and it is rare that the appli-
cation is entirely pushed to the edge. Typically operations such pre-processing and
filtering take place at the edge, with aggregation and decision making centralised.
This approach has been applied to domains such as smart grid, radio access net-
works, and urban traffic processing [172; 173; 174]. The model developed in this
chapter is capable of representing this scenario.

In-network computing is another emerging paradigm in which traditionally
centralised computation is distributed throughout the networking infrastructure.
As the capability of this hardware improves, this method in which networking ele-
ments are used for both moving data as well computing, is becoming more viable.
Extending such capabilities to broader applications requires the ability to analyse
applications composed of multiple dependent tasks and determining how to allocate
these to capable nodes. The proposed model allows this to be explored in a manner
not possible using existing distributed computing models.

3.3.2 Hardware acceleration

A primary motivation for this work is the increasing complexity of applications,
growing volumes of data, and more widespread availability of alternative hardware
such as GPUs and FPGAs that can boost the performance of these applications. As
discussed in Chapter 2, recent work has demonstrated the use of hardware acceler-
ation for a variety of algorithms relevant to networked systems. To reflect the trend
towards heterogeneity, the model proposed in this thesis encompasses the idea of dis-
tinct hardware platforms with different computational characteristics. This further
differentiates this work from others that consider only traditional processor based
compute architectures.

49



3.4 Scenario and Metrics

The scenario of interest comprises a set of distributed data sources producing con-
tinuous streams of data, connected through a network comprised of intermediate
nodes (for example gateways, routers, or cluster heads) to a central data sink, such
as a datacenter. These data sources could be cameras, streams of documents, envi-
ronmental/industrial sensors, or similar. An application consisting of a set of tasks
and their dependencies processes these streams to make a decision or extract value.
These tasks operate on the different streams of data, and some combine informa-
tion from multiple (possibly processed) streams. Individual tasks affect the data
volume through a reduction factor that determines the ratio of input data to output
data, which reflects the properties of many stream processing tasks. An example
of such an application is a smart surveillance system that monitors video streams
from many cameras to detect specific events. Video streams can come from a mix
of fixed cameras and mobile platforms, with different resolutions, frame-rates, and
interfaces, requiring different amounts of processing. The application uses processed
information to adapt how the cameras are deployed and positioned.

In order to evaluate alternative allocations of resources and tasks, follow-
ing key metrics of interest are considered, with some explanation of how they are
impacted below. The comprehensive formulation of these metrics is provided in
Section 3.6.

3.4.1 Latency

Latency is important when data is time-sensitive. Fast detection of an event may
have safety or security implications, or in some applications, there could be real-
time constraints. In this case-study, transmitting all video streams to the cloud
introduces large communication delays and competition for resources in the cloud
can add further latency. Performing computation closer to the cameras, whether
at the cameras or in network switches can reduce these communication delays, and
distributing the tasks to different network nodes reduces the delays from sharing
centralised resources. Even with less powerful hardware, latency can improve as a
result of this stream processing parallelisation.

3.4.2 Bandwidth

Processing sensor data often reduces the size of data, outputting filtered or aggre-
gated data, or simple class labels. Hence, if this processing is performed nearer to
the data source, bandwidth consumption further up the network can be reduced sig-

50



nificantly. There may also be scenarios where early processing can determine that a
particular stream of data is useless, and hence further transmission can be avoided.
In this example, some cameras may use low resolutions or frame rates, and hence
be less costly in terms of bandwidth, while others might require significantly higher
bandwidth, which would be more efficiently processed nearer to the cameras. It is
clear once again that this decision depends on the specific application and tasks.

3.4.3 Energy

Energy remains a key concern as cloud computing continues to grow; the power con-
sumption of datacenter servers and the network infrastructure required to support
them is significant. One approach vendors have taken to try and address this is to
introduce heterogeneous computing resources, such as FPGAs, to help accelerate
more complex applications while consuming less energy. However, these resources
add some energy cost to the datacenter, in the hope that this will be offset by
significantly increased computational capacity. There is similarly an energy cost
for adding accelerators in the network infrastructure but this is likely less than the
cost of full server nodes, and leads to a reduced load on the datacenters as they
then only deal with processed data. However, it is clear that energy consumption
is heavily dependent on where such resources are placed. It is also possible that
energy constraints at source nodes can impact what can be done there. In this
example, battery-powered drones carrying cameras may have constrained power, so
performing more computing there may not be viable.

3.4.4 Financial Cost

Adding computing capabilities to all data sources is expensive, especially where the
tasks to be performed are computationally expensive, possibly requiring dedicated
hardware. In this example, the cameras would have to be smart cameras with ded-
icated processing resources attached, and this is likely to increase cost significantly.
While centralising all computation is likely to be the cheapest solution in terms of
hardware, placing some computation in the network can come close to that cost,
while offering significant benefits in the other metrics.

3.5 Proposed Model

The proposed model defines a network topology, task/operator graph, and hardware
platforms. Tasks and hardware platforms can be allocated to network nodes, and

51



.

.

.

Figure 3.2: Nodes in the network graph can represent a single device or a cluster of
networked devices.

values for the previously mentioned performance metrics can be calculated. The
network communication topology is assumed to be pre-determined, though not the
hardware at the nodes or the task allocation. The model is flexible enough to be
used in a range of situations.

The logical topology of the network is represented as a graph, GN = (N,EN ),
where N is the set of network nodes, with bidirectional communication across the
set of edges between them, EN . Application data travels through these nodes and
edges towards a central sink. A node can represent either a single machine in the
network, such as a gateway, switch or, server, or a ‘tier’ or ‘level’ of the network
infrastructure. In this case a node represents multiple machines but the connectivity
between them is not modelled at the higher level in the graph (see Figure 3.2). Using
this representation allows the network topology to be represented in a tree structure
as suits the application models considered.

To represent the application, a directed acyclic graph (DAG) is used to define
the relationships between tasks, GT = (T,ET ), where T is the set of tasks and ET

defines the dependencies between them. GT is a tree structure with a global task
at the root, with other nodes representing sub-tasks, such as aggregations and pre-
processing. This task model is based on the stream processing model, where data
is processed per sample as it arrives. DAGs are commonly used to model stream
processing flows in other works, which are acyclic in nature as data is processed as
it arrives with minimal storage.

Each task t ∈ T can be assigned to a node through an implementation. Im-
plementations are pieces of software or hardware logic that can perform the required
task. This allows for selection between software implementations and hardware ar-

52



chitectures that may have different benefits and drawbacks. This is in contrast to
previous work which typically do not allow for the possibility of alternative imple-
mentations of a task. Implementations and tasks are treated as black boxes that
take inputs and produce outputs, and have already been benchmarked to determine
an estimate of processing time and energy consumption on a reference platform
with no other tasks running. A set of platforms that can be assigned to nodes, P , to
execute the tasks can have varying computational models and available resources.

3.5.1 Tasks

T = {t1, t2, t3...tT } is the set of application tasks to be allocated to nodes in the
network. Individual tasks represent functions to be carried out on a data stream.
Together tasks represent the operations performed on each data stream, and specify
how they are combined and manipulated to extract value. In this model, data is
consumed by a task and transformed, with the result passed to the parent task.
Task dependency is captured in the DAG, with each task unable to begin until
all of its child tasks have been completed on a given instance of data—tasks with
multiple children are typically aggregation operations. Each task t ∈ T is defined
by t = (ft,Mt, Ct, at).

• The set Ct ⊂ T contains the prerequisite tasks for t that must be completed
before task t can begin—its child tasks;

• at ∈ T is the parent task of t, which cannot begin until t has finished.

• ft is the reduction factor, where 0 < ft ≤ 1. This parameter represents the
amount that a task will reduce the volume of data it operates on;

• Mt ⊂ M is the set of implementations that can implement the functionality
of t;

• The data into (operated on by) a task t, denoted δt, is the sum of the data
out from all sub tasks, δt = (

∑|Ct|
i=0 di);

• The data output from a task, dt, to be processed by the task’s parent task, is
given by dt = ftδt.

This representation of tasks supports different types of operations, for example, a
filtering tasks that reduces a data stream, or aggregation tasks that merge multiple
streams. Traditionally, aggregation tasks that process several data streams would
have to be centralised but in this model they can be placed at intermediate nodes
that has access to the requisite streams.

53



3.5.2 Implementations

M = {m1,m2,m3...mM} is the set of all implementations, which are the pieces of
software or hardware that implement the functionality of a task. Implementations
can represent different software algorithms or hardware accelerator architectures
that give the same functionality but have different computational delays or hardware
requirements. Each task t ∈ T has a set of implementations Mt, and each m ∈ M

is defined by m = (tm, τm, Rm, hm)

• tm ∈ T is the task that is implemented by m;

• the set Rm = {rm1, rm2, rm3...rRm} contains the amount of each resource
needed to be able to host the implementation, such as memory, FPGA ac-
celerator slots, etc; These are integer values representing the quantity of each
resource available.

• τm is the time taken for this implementation to complete the task it implements
per unit of data, compared to a reference processor;

• hm = {0, 1} signals whether the implementation is software or hardware. A
value of 0 is software, 1 is hardware.

3.5.3 Platforms

Platforms represent the systems in a network node that can carry out tasks. It can
be defined that P = {p1, p2, p3...pP } are the set of platforms that could be assigned
to node n ∈ N . Each platform p ∈ P is defined by p = (ep, cp, wp, Rp, hp), where:

• ep is the execution speed of the platform relative to a reference processor—this
represents different processors having different computing capabilities;

• cp is the monetary cost of the platform;

• wp is the power consumption of the platform;

• Rp = {rp1, rp2, rp3...rpR} is the set of resources available on the platform, such
as memory, FPGA accelerator slots, etc. Resources are required by implemen-
tations;

• hp = {0, 1} indicates whether the platform runs software or hardware versions
of tasks. A value of 0 means the platform is a processor that executes software,
and a value of 1 means the platform is a hardware accelerator that executes
application-specific logic. This is used to ensure correct allocation of software
and hardware implementations.

54



Unlike existing work, this model makes the distinction between platforms that ex-
ecute software code and hardware acceleration platforms such as FPGAs as they
have different computational delay models, discussed in Section 3.6.1. Hardware ac-
celeration platforms incur no latency penalty when multiple tasks are present on the
same node, whereas software platforms do, as a result of contention for computing
resources.

3.5.4 Network

N = {n1, n2, n3...nN} is a set of the network nodes, for example sensors, gateways,
and routers, or servers. Each n ∈ N is defined by n = (an, Cn, Pn, bn), where:

• an ∈ N is the parent node of n linking it to towards the central data sink;

• Cn ∈ N is a set of child nodes of n linking it to towards the source(s);

• Pn ⊂ P is the set of platforms that can be assigned to node n. For example,
a large datacenter class processor that must be housed in a server rack cannot
be placed on a drone;

• bn is the outgoing interface between the node n and its parent node, and
represents the data-rate in terms of data per unit time.

3.5.5 Sources and Data

S = {s1, s2, s3...sS} is the set of data sources. Data is modelled as continuous
streams, as this work is interested in applications that process and merge continuous
streams of data. A data source could represent a sensor, database, video, or other
source that injects a stream of data into the network. Each s ∈ S is defined by
s = (ns, ts, ds, es).

• ns ∈ N is the parent node of the source, the node where the data stream
enters the network;

• ts ∈ T is the task to be performed on data being produced by the source;

• ds is the amount of data in one instance from this source per period es;

• es is the period between subsequent units of data of size ds entering the net-
work.

The model assumes a constant periodic stream of data from the source, such as a
periodic sensor reading, frame of a video, or set of captured tweets for example.

55



There are some systems that do not fit this model – for example where sensors
may only send out data if there is some change detected. This case can still be
represented in the proposed model, as the sensor is still continually capturing data
as a source and the detection component can be modelled as a filtering task that
reduces it.

3.5.6 Allocation Variables

Boolean variables represent the allocations of tasks and hardware to network nodes.
xnm = {0, 1} represents the allocation of an implementation m ∈ M to node n ∈ N .
Similarly, ynp = {0, 1} represents the allocation of platform p ∈ P to node n ∈ N .
znmp = {0, 1} represents the allocation of platform p ∈ P , and task m ∈ M to a
node n ∈ N , using a set of constraints.

A summary of the symbols used in the model is presented in Table 3.1.

3.5.7 Constraints

Constraints are used to ensure correct allocation of tasks, platforms, and nodes.

Allocate tasks only once

∀t ∈ T,

|N |∑
i=0

|Mt|∑
j=0

(xij) == 1 (3.1)

One platform per node

∀n ∈ N,

|P |∑
i=0

(yni) == 1 (3.2)

Resource availability

Allocations cannot exceed the available resources for the platform assigned to a
node:

∀n ∈ N, ∀e ∈ R,

|T |∑
i=0

|Mi|∑
j=0

(xnjrje) ≤
|P |∑
k=0

(ynkrke) (3.3)

Additional constraints

The model allows for additional constraints to be added in order to better model
a specific system or set of requirements. Constraints can be added to give certain

56



Symbol Meaning

xnm allocation of implementation m to node n

ynp allocation of platform p to node n

znmp allocation of m and p to n

unm1m2p allocation of m1, m2, and p to n

τmax maximum path delay
g throughput

Kt ⊂ T set of tasks lower than t in task sub-tree with t at the root
Kn ⊂ N set of nodes lower than n in network sub-tree with n at the root
Ds ⊂ N set of nodes on path from s to root node
vnp 1 if p ∈ Pn, 0 otherwise
Ph ⊂ P set of all platforms that run hardware implementations
Ps ⊂ P set of all platforms that run software implementations
H set of all paths from leaves to root in task graph
Ht ⊂ H set of tasks on path from leaf task t to root
OHt Set of all other tasks not on path Ht

I ⊂ M Set of all software implementations
φmpt Time to complete task implementation on node
q Data-rate of streams / tasks
L ⊂ T Set of tasks with no child tasks
SKn Set of all sources that lie beneath node n

Table 3.1: Summary of symbols used in formulation.

tasks deadlines, constrain bandwidths, restrict specific nodes to certain platforms,
and more.

3.6 Performance Metrics

As previously mentioned, there are five main metrics of interest in this analysis.
Latency, throughput, data rates and energy consumption, and financial cost. This
section presents the formulation of these metrics, and discuss how the formulation
allows each to be evaluated.

57



3.6.1 End-to-End Latency

The end-to-end latency is the total time between an instance of data entering the
network and its root task being completed. For example, this could be the time be-
tween a sensor reading or image being taken and a fault or anomaly being detected.
This value is of interest in time-sensitive applications such as those concerned with
safety or closed-loop control, such as for industrial equipment, or coordinated con-
trol. The model incorporates several assumptions and behaviours that are relevant
for this metric:

• Sources s ∈ S produce continuous streams of data of an amount ds, every
period of time es. For the purpose of the formulation, the model considers a
‘snapshot’ of the network at any instance of time, and say that data is entering
the system at this instant from all sources, of an amount ds. The equation
formed gives the latency of the data instances entered at the beginning of this
‘snapshot’;

• Only one software implementation can run at a time on a node. Software runs
as soon as possible;

• Hardware implementations of tasks operate independently from one another
so can operate in parallel;

• A task cannot begin until all of its child tasks have been completed;

• Tasks start as soon as all of the data required is available, as soon as possible,
and once completed send the result to the next task as soon as possible;

• Communication and computation happen independently and can be parallel
to each other;

• There is no communication time between tasks on the same node.

As tasks can only begin once their child tasks are complete, the root task of
the graph G(T,ET ) can only start once all paths to it are complete. The end-to-end
latency is therefore equal to the longest path delay of the task graph, including
network and computation delay.

Computation Delay

The time to complete one task on the node it is allocated to can be represented:

φmpt = τmepδt (3.4)

58



For a task t, implemented with m on platform p. The time to complete the task
is the product of the time taken to complete the task per unit of data for that
implementation, the amount of data, and the processing speed of the hardware
platform. To find the end-to-end latency, the values of φmpt for each path in the
task tree are summed, and the maximum value determined. This is because the
total time taken to complete the tree is dependant on the slowest path.

In the case of software implementations, nodes are assumed to carry out one
task at a time. So in the cases of multiple tasks being assigned to the same node,
in the worst case scenario, a data instance must wait for all other tasks not in the
path to finish before beginning the next task. Note that this applies even if a node
supports concurrent software tasks, since it is assumed that multiple software tasks
suffer degraded performance in proportion to the parallelism applied. Unlike some
other works, which are only concerned with preventing the allocated tasks exceeding
a measure of available resources on a platform, running multiple software tasks at
once on the same node in the model presented in this thesis affects computational
delay. For hardware implementations, no such assumption is made, as they can
operate in parallel as separate streams since they are spatially partitioned, and so
it is sufficient to only sum the path of interest, though available hardware resources
are factored in, as discussed later. This distinction between software and hardware
implementations of tasks better represents the growing trend of using alternative
computing platforms to accelerate computation, compared with previous work that
only accounts for software running on processors. Figure 3.3 shows this difference
in scheduling for software and hardware nodes. On software nodes, tasks are per-
formed in series in the worst case, and on hardware nodes, tasks can be performed
concurrently. In this example, this means that tasks C and D can be performed
in parallel to tasks A and B. Task E is dependent on tasks B, C and D, so must
happen once they are completed. The added concurrency of hardware accelerator
nodes helps reduce task execution latency when multiple tasks are assigned to a
node.

In order to represent this behaviour, a set of new allocation variables is
introduced: u. Each one of these unm1m2p = {0, 1} represents the allocation of two
implementations m1 and m2 to node n, assigned platform p.

The set of tasks on the path from a leaf node on the task graph t to the root of
the task graph is Ht ⊂ T . Let the set H contain all of the task path sets (Ht ∈ H).
The set OHt is declared, containing all other tasks not on the path Ht. The set
I ⊂ M is defined as the set of all software implementations. The computation time
for a path Ht, τHtc in the task tree is given by:

59



E

B C D

A

A B C D E

A B

C

E

D

Software node

Hardware node

time

Figure 3.3: The difference in how a set of tasks allocated to a single node are
scheduled on software and hardware accelerator nodes.

τHtc =

|N |∑
i=0

|Ht|∑
j=0

|Mj |∑
k=0

|P |∑
l=0

(ziklφklj +

|Oi|∑
m=0

(

|Im|∑
q=0

(uikqlφqlm)

−
|Iaj |∑
r=0

(uikrlφqlm))

(3.5)

The znmp term in this equation is the sum of delays on all paths of the task
tree. The unm1m2p terms represent the extra delays on the path caused by having
multiple tasks not on the same path allocated to the same node in software. The
computation times of any other tasks allocated to the same node as any task in the
path are added. The subtraction is present to ensure that this computation time is
only added once for each set of tasks in a path allocated to the same node.

Communication Delay

A simple communication model is used where tasks send data to the parent task as
soon as it is ready. There is no communication cost between tasks, only between
nodes. Communication and computation can occur simultaneously and indepen-
dently. If a node receives data for a task not assigned to it, it forwards this data
immediately to the next node.

Data is transferred from one node to another when a task’s parent task is al-
located to another node. Similarly to the computational delay, total communication
delay τHtm between tasks in each path in the task tree Ht ∈ H can be expressed:

τHtm =

|Ht|∑
i=0

|N |∑
j=0

(

|Kj |∑
k=0

(

|Mi|∑
l=0

(
xkldi
bk

)−
|Mai |∑
m=0

(
xkmdi
bk

)) (3.6)

60



If an implementation is allocated to a node, the communication time to the next
task is added. If the parent task is allocated to the same node, this time is then
subtracted.

The delay from the data source s on path Ht to the node that performs the
first task on it, τHts, is given by:

τHts =

|Ds|∑
i=0

(
ds
bi
)−

|Ki|∑
j=0

|Mtl
|∑

k=0

(
xitldsl
bi

) (3.7)

Where tl is the leaf in the task path.
The total communication delay in a path τHtk is thus:

τHtk = τHts + τHtm (3.8)

The proposed model can be extended to incorporate different communication
delays for software and hardware tasks as would be the case for network-attached
hardware accelerators that can process packets with lower latency. The computation
and communication latencies are likely to vary in reality. This model considers the
worst case latency where a node processes all other tasks first and transmits the
results last.

Total Delay

The total latency for a path, τHt , is equal to:

τHt = τHtk + τHtc (3.9)

The largest of these values is the total latency, τmax.
Although this section has discussed a scenario where only a single task graph

is present, the model allows the possibility of multiple independent task graphs
representing separate applications. Using the same method and equations, a τmax

can be formulated for other task graphs.

3.6.2 Throughput

The throughput of the system is the rate at which results are output, and dependent
on the node with the longest processing time in the network. A continuous variable
g can be introduced to represent the maximum delay processing stage. For software
implementations, where only one task can run on a node at any time, this can be

61



expressed:

∀n ∈ N, g ≥
|T |∑
i=0

|Ps|∑
j=0

|Mi|∑
k=0

(znkjφkji) (3.10)

Where Ps is the set of all platforms that run software implementations. This equa-
tion assigns the value of the largest total computation times for all tasks on a node
to the value of g. For platforms that run hardware implementations, Ph:

∀t ∈ T, g ≥
|Ph|∑
i=0

|Mt|∑
j=0

(znjiφkji) (3.11)

Here, only the value of the longest computation time task is assigned, as processing
is carried out in parallel.

The throughput, v, can then be expressed:

v = 1/max(g) (3.12)

3.6.3 Data-rate

Data-rate can be very significant in scenarios involving information sources with
dense data and for large networks and applications. Poor utilization can also lead
to additional communication delays.

The data-rate of a data stream at a source s, qs is given by:

qs =
ds
es

(3.13)

The data-rate of a task t, denoted qt, is given by:

qt = ft

|Ct|∑
i=0

(qi) (3.14)

Where the output data-rate is the sum of the output data-rates of all child tasks,
reduced by the reduction factor of the task ft.

For leaf tasks tl where |Ct| = 0, it is given by:

qtl = ftqs (3.15)

The total data-rate at the output of a network node is the sum of the data-

62



rates of all streams passing through it.

qnc =

|Kn|∑
i=0

(

|T |∑
j=0

(

|Mj |∑
k=0

(xikqj)−
|Cj |∑
l=0

|Ml|∑
m=0

(ximqj)) (3.16)

If a task is allocated to any node beneath that node in the network tree, the data-
rate consumption is added, and if the parent task is allocated to any of these nodes,
it is then subtracted.

The data not yet processed by any tasks must also be taken into account.
If SKn ⊂ Kn is the set of all sources that lie beneath n in the network graph, and
L ⊂ T is the set of all tasks where |Ct| = 0:

qnl
=

|Kn|∑
i=0

(

|L|∑
j=0

(

|SKn |∑
k=0

qk − (

|Mj |∑
l=0

(xilqsj )) (3.17)

Where qst is the data-rate of the source that leaf task t operates on.
The total data-rate at a node n ∈ N is given by:

qn = qnc + qnl
(3.18)

This is the sum of the data-rate of all streams passing through a node, and the
data-rate of the stream from the data source to that node, if applicable. This gives
the data-rate at each link between nodes.

3.6.4 Energy Consumption

The energy consumption of the network can be relevant for a variety of applications.
In an application that deploys remote nodes with limited power sources for example,
such as a wireless sensor network, energy usage can be a significant constraint. Most
related works do not consider computational energy costs. The energy used at a
node n ∈ N depends on the power consumption wp of the platform p ∈ P at that
node, and the times taken τm to complete the implementations mt ∈ M of tasks
t ∈ T allocated to the node. Just as when formulating an equation for the end-to-
end latency, taking a ‘snapshot’ of the network, the energy consumed by the network
per data instance is given by:

|N |∑
i=0

|T |∑
j=0

|Mj |∑
k=0

|P |∑
l=0

(ziklφkljwl) (3.19)

63



This equation adds the product of the computation time and the power consumption
of the platform, if a combination of platform of task is allocated to a node.

3.6.5 Financial Cost

The simplest metric is the financial cost of the solution. An equation can be formed
that represents the total cost of the system, based on the platforms selected at all
of the nodes. The total cost of the solution is given by:

cmax =

|N |∑
i=0

|P |∑
j=0

(yijcj) (3.20)

This is a simple equation where the cost of a platform is added to the total cost, if
a platform is allocated to a node.

Financial cost is a concern as it is ultimately one of the key drivers in the
decision of where to place computing capability, and will always be one of the largest
barriers to achieving the best possible placement. The model considers the added
cost of the computing platforms required to implement the in-network computation.

3.6.6 Combined Evaluation Metrics

This section has presented formulations for the 5 important performance metrics
relevant for evaluating heterogeneous distributed systems. The goal was to keep
these distinct as the proposed model is designed to be flexible enough to use for
different scenarios and purposes, where the relative importance of these five metrics
will vary depending on the application. Users of the model are able to build more
complex metrics based on the requirements of their analysis, combining whichever
of these five is relevant to their evaluation, and suitably weighting the different
components.

This model to be used in the design and evaluation of alternative structures
for deploying heterogeneous applications. In such scenarios, a constraint-driven
approach is more sensible than a combined metric, and the model supports such
evaluations. For example, a required financial budget or latency target can be set
and other metrics evaluated for different designs. If used to compare designs, the
primary metric of importance can be evaluated, with constraints placed on the other
metrics, such as the best latency for a fixed financial cost and energy budget.

The flexibility in this model in determining general lessons around the place-
ment of tasks and hardware resources is demonstrated in the evaluation in Sec-
tion 3.8.

64



3.7 Case Study

This section investigates the implications of different placement strategies in a dis-
tributed object detection and tracking system. While the formulation presented in
Section 3.5 can be used to create an optimal placement of computing resources and
tasks for a given application and network, it might be argued that such a bespoke
design would not be highly practical, since a more uniform approach to deploying
computing resources is generally required, and the variability of applications might
make a static allocation less ideal. Hence, this section evaluates strategies for a rep-
resentative application to learn general lessons about the placement of computing
resources in such networks. This study considers a network of cameras, some fixed
and some mobile, such as drones, tasked with surveying an area to detect human
presence. The images collected by each camera are processed through a sequence
of tasks including the histogram of oriented gradients (HOG) and an SVM classifier
to detect objects of interest, and a tracking algorithm is applied that relies on the
fusion of data from multiple cameras.

3.7.1 Network

A network structure was chosen that is generally representative of that seen in
an application such as this. The outermost layer represents the very edge of the
network, comprising the cameras themselves (layer A). The next layer represents
an access or gateway layer, that connects the cameras to the larger network (layer
B). Each gateway and the connected sensors represent different areas that are to be
monitored – for example rooms or neighbourhoods. Cameras connect to this layer
through interfaces such as 100 Mb Ethernet or 802.11 wireless LAN. A transfer time
of 10 ns per bit of data was selected for this layer. The next layer is a routing
layer that connects the local network to the wider network, with higher speed and
bandwidth interfaces such as 10G Ethernet (layer C). Here a latency of 0.1 ns per
bit of data is modelled. Finally, there is the cloud layer, which houses the remote
computing resources. To reach this layer data must travel through the internet, for
which a communication time of 1 ns per bit is assumed, based on round trip times to
AWS EC2 instances measured in [175]. These communication times are estimates
and ignore frame/packet overheads, and many other delays, but are there to model
variation in transfer time between different layers.

The topology used in this case study is shown in Figure 3.4. It includes a
mix of nodes with high and low fanout, and nodes at all of the layers discussed
above. Links appear unidirectional as it is assumed data must flow through these

65



layers in order to reach the cloud/datacenter. It is important to note that the
layer B/layer C nodes do not represent individual machines, but rather layers of
the network hierarchy, comprising multiple machines. Communication within these
nodes is neglected in this case study.

Cloud
Datacenter

Layer C: Router
Layer B: Gateway/Switch
Layer A: Sensor

Figure 3.4: Network structure used in this case study.

3.7.2 Tasks

The HOG algorithm used in this case study has been previously implemented on
a variety of computing platforms [176; 177; 178]. For the sake of this case study
the algorithm is broken down into 3 tasks: gradient computation, normalisation,
and classification. While there are more tasks that form this algorithm, these 3
take a majority of the computation time and have a significant effect on data size.
Estimates are obtained from [176] for the reduction factor of each task. The tracking
algorithm uses these HOG features and a KLT tracker [179], relying on fusion of
data from multiple cameras. Therefore this task must be placed elsewhere in the
network, at a location that can access all necessary cameras.

In this case study, each camera has a set of tasks, gradient comp → histogram
→ classification, associated with them, and then each area of cameras has a tracking
task that processes the result from multiple camera chains.

3.7.3 Platforms

Computation time for each task on each platform can be estimated based on previous
work. Though these are estimates, and different implementations may have varying
optimisations, the relative computation times are the important factor for this case

66



Platform Grad,Hist Normalisaton Classification Tracking

Cortex A9 2,000 3,200 1,900 2,000
Intel i7 40 60 35 40
Intel Xeon 2.6 4.0 2.3 2.6
Xilinx Zynq 260 400 240 260
Xilinx Virtex 6 1.3 2.1 1.2 1.3

Reduction factor 0.77 0.004 0.16 0.16

Table 3.2: Computation times in milliseconds for each task on different platforms,
from work referenced above.

study. If computation is placed at a camera node, an embedded platform is assumed.
An embedded Arm Cortex A9 is used in [176] to implement the HOG algorithm, so
this case study uses the computation times presented there.

If computing is placed at the access or routing layers, it can be assumed a
more powerful CPU is available. The work in [178] implements the algorithm on an
Intel Core i7 processor. Finally, the cloud layer would use server-class processors,
such as the Intel Xeon platform used to implement the algorithm in [177]. The
work in [176] presents an FPGA design that gives a speed-up of around 7× on a
Xilinx Zynq platform that could be embedded at the camera. An FPGA accelerator
implemented on a larger Xilinx Virtex-6 FPGA was reported in [177], and the case
study assumes this is the FPGA platform available at other layers. The relative
performance on these platforms is used to estimate the computation time of the
tracker task. Table 3.2 summarises time taken for each task on each platform per
frame.

The costs of each platform are also relevant. This case study considers the
extra costs associated with adding computing resources to different layers of the
network. A Cloud/datacenter node is present regardless of other node placements.
Table 3.3 summarises approximate costs and power consumption for each of the
platforms in arbitrary currency and energy units based on costs determined from
OEM suppliers, and manufacturer power estimation utilities.

The FPGA resource utilization estimates in the previously cited works at
the top of Section 3.7.3 suggest that both FPGA platforms can implement 3 full
pipelines of the algorithm pipeline each, so 12 tasks. It is assumed CPU-based
platforms have no limit to the number of tasks that can be running, though, as
discussed in the formulation, there is a latency penalty for sharing resources. The
case study focuses on latency, throughput, energy consumption, and financial cost

67



Platform Cost Power Consumption

Arm Cortex A9 10 1
Intel Core i7 300 5
Intel Xeon 2000 100
Xilinx Zynq 250 5
Xilinx Virtex-6 1000 10

Table 3.3: Financial cost and power estimates for each platform.

Placement Latency Throughput Cost Energy

Centralised 1.95s 3.43 frames/s 2000 30.03
Layer C 1.97s 0.88 frames/s 3200 23.00
Layer B 1.93s 0.94 frames/s 4100 23.00
Layer A 7.16s 0.14 frames/s 2300 241.2

Table 3.4: Performance metrics for different placement strategies using software
platforms.

as the metrics of interest.
The model is used to build the above scenario and evaluate different compu-

tation placement strategies. Results are presented in Table 3.4 for software platforms
and Table 3.5 for hardware platforms. The output is the latency, throughput, fi-
nancial cost, and total energy consumption of the entire system. Bandwidth results
are not shown in this table as they are calculated per node in this model.

3.7.4 Centralised Software

A typical approach to such an application would be to centralise all tasks, performing
them in software, transmitting all data to the cloud or datacenter. In this case
study, this gives a latency of around 1.95 s, and a throughput of 3.4 frames per
second for each camera. Note that this is in the worst case, where all camera
streams compete for CPU resources. The large communication latency coupled
with the large amount of data being transmitted undermines the extra computing
power provided by the cloud. Energy consumption was also joint highest with this
approach, as the Centralised hardware has the highest power consumption.

68



3.7.5 In-network software

An alternative approach is to push processing tasks down into the network. One pos-
sibility is placing the gradient computation, normalisation, and classification tasks
on the camera nodes (layer A), and placing the tracking tasks at the appropriate
layer B nodes as they require information from a set of cameras. This results in a
latency of around 7.16 s and a poor throughput of 0.14 frames per second, unsuitable
for real time applications. The energy consumption seems high, but this value is the
energy consumption of the entire system - the consumption at each individual node
is much lower. While there is communication latency, and fewer tasks competing
for the same resources, the computing capability of these edge nodes is so low that
the latency and throughput are much worse than the centralised placements.

Distributing tasks within the intermediate network infrastructure offers im-
proved latency relative to placing tasks in layer A, but has minimal impact when
compared to centralised placement. In this scenario, the reduced communication
latency is offset by the increased computation latency. Layer B and layer C ap-
proaches introduce additional costs of 2100 and 1200 currency units respectively.
The centralised solution also has 3.65× higher throughput than these approaches.
This is because of its increased computing capability relative to these other nodes,
meaning that there is less computation latency. Energy consumption is less than
centralised software, due to the lower power consumption of the hardware. This
energy consumption is also spread across a greater number of nodes, meaning each
node consumes less energy.

3.7.6 Centralised Hardware

Utilising FPGA acceleration at the server node reduces the latency to 1.68 s, and
increases throughput to 133 frames per second, as a result of reductions in compu-
tation latency. While the FPGA should in theory provide a greater performance
boost than this, the time taken for data to travel to the cloud limits the improve-
ment that can be achieved for the application. The energy cost of running these
tasks in hardware is also much lower than in software. The FPGA accelerator has
a lower power consumption, as well as lower computation time.

3.7.7 In-network hardware

Adding FPGA accelerators to layer C reduces latency to 0.84 s, and increases through-
put to 133 frames per second due to the performance of the FPGA accelerators
dramatically reducing computation latency. Placing FPGAs in layer B further im-

69



Placement Latency Throughput Cost Energy

Centralised 1.68s 133 frames/s 13000 1.56
Layer C 0.844s 133 frames/s 14000 1.56
Layer B 0.8s 133 frames/s 16000 1.56
Layer A 0.94s 1.10 frames/s 11600 30.6

Table 3.5: Performance metrics for different placement strategies using hardware
platforms.

proves latency to 0.83 s. These placements give improvements over the centralised
FPGA approach due to the reduction in communication latency. There is little
difference in latency between placing tasks predominately in layers B or C, as the
fast link between these layers means that there is minimal communication delay.
The disadvantage of the in-network FPGA approach is the additional cost, with
the layer B and C methods costing 16000 and 14000 currency units respectively.
Moving all tasks in hardware to the layer A camera nodes offers improvements over
the software equivalent due to the increased computing capability. It also improves
over centralised approaches due to the reduced communication latency. However the
higher computation latency relative to layers B and C means that there is a higher
overall latency, and worse throughput. While the total energy consumption for the
layer A approach looks high, it is spread across a greater number of nodes. Each
layer A node actually has a power consumption of approximately 0.956. The same
processing hardware is implemented on the FPGAs in layers B and C, as well as
when centralised. This results in the throughput being equal in all circumstances,
despite the higher communication latency.

3.7.8 Optimal Placement

The model outlined in this thesis can be used with a Mixed Integer Linear Pro-
gram (MILP) solver to generate a specific task and hardware placement strategy
to optimise any of the performance metrics detailed in Section 3.6. To do this, the
Python PULP front end was used to interface to the CBC solver. In this case,
the system is optimised for latency, as in this example, energy and throughput are
directly related to latency. First generated is the optimal latency placement, then
ran the optimisation again with a latency constraint 5% higher than this value, but
optimising for cost. This forces the solver to generate the cheapest placement that
achieves a latency within 5% of the optimal value. As a result, the model generated
a placement with the metrics shown in Table 3.6. This is presented for completeness;

70



it may be argued that customising a network for a specific application is unlikely to
be a common requirement. Hence, this section has focused primarily on the general
lessons learnt in terms of placement strategies for hardware in the network.

Placement Latency Throughput Cost Energy

Optimised 0.87s 133 frames/s 9000 1.56

Table 3.6: Performance metrics for MILP optimisation of model

3.7.9 Summary

Improvements can be made to streaming application latency by pushing tasks into
the network in either software or hardware. This also offers improvement in energy
consumption at each individual node, important when there may be a limited power
budget. There is a balance between the communication latency to reach higher
capability nodes, and the benefits to computation latency that they provide. Placing
tasks at the very edge of the network minimises communication latency but is limited
by poor computational capability. The cloud offers the highest computing capability
but there is a communication latency bottleneck. The downside of using in-network
task placement is the additional financial cost of the extra hardware. However, with
the price/performance ratio for embedded devices scaling significantly faster than
for server class CPUs, this should improve over time.

3.7.10 Event Driven Simulation

As part of this thesis, a discrete event simulator was written in Python using the
SimPy library, to test the validity of results produced by the model. Data sources
emit periodic packets of data into the network with the same topology and task
structure. The tasks are allocated to the relevant nodes, and are executed at the
nodes in a first-in first-out fashion, with priority given to the oldest data packets.

Differences should be expected in the reported latencies from the model and
simulator primarily due to the more detailed task and communication scheduling
in the simulator. The simulation processes individual packets as opposed to the
considering abstract streams in the model. The data sources in the simulator emit
packets with fixed periods, sources are unsynchronised, whereas the model implicitly
assumes synchronisation. The simulation also takes into account a small switch-
ing delay at nodes, representing the transfer of data form received packets to the

71



Cent. Layer C Layer B Layer A
0

2

4

6

8

Configuration

La
te

nc
y(

s)

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

model
simulation

(ii) Hardware platforms
(a) Latency

Cent. Layer C Layer B Layer A
0

50

100

150

200

250

Configuration

To
ta

lE
ne

rg
y

co
ns

um
pt

io
n

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

model
simulation

(ii) Hardware platforms
(b) Total Energy Consumption

Cent. Layer C Layer B Layer A
0

20

40

60

80

100

120

Configuration

T
hr

ou
gh

pu
t

(r
es

ul
t/

s)

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

(ii) Hardware platforms
(c) Throughput - A higher value indicates superior performance

Figure 3.5: Difference between values calculated through the formulated model and
a discrete event simulator for the same configurations and parameter values.

72



computing platform. Various network related parameters are not included in the
simulation, as these are not influenced by the allocation of tasks and platforms.

Simulations of the above scenario were run for 20,000 packets entering the
network from each source. The sources were fixed to the same period, but set out-of-
sync with each other, to a degree determined from a uniformly distributed random
variable. Figure 3.5 shows the deviation between the metrics predicted by the model
and those measured in the simulation. Financial cost is not shown, as there will be
no difference between the simulation and model, and data-rate is not shown as it is
calculated for each individual node, not the system as a whole.

It can be seen that if considering only software platforms, the difference be-
tween the model and simulator is close to 6%, and in hardware 7%. These differences
stem from the data sources being out of sync, and the switching delays introduced
at each node, not represented in the model. The ratio between computation time
and network switching delay impacts this error, and hence in the case of hardware,
where computation time is reduced, the overhead is more significant. However, these
deviations are still well within tolerable levels.

Additional Model Validation

The discrete event simulation detailed above provides only limited validation of the
model. While it models the flow of individual packets as opposed to the abstracted
streams used in the model, the results cannot be cited as external validation of results
generated by the model. This presents a limitation of the model presented in this
chapter. The model can be used to evaluate the performance of various placement
strategies relative to each other, verified by the simulator. This is still useful within
the context of a design space exploration, eliminating the clearly sub-performant
solutions.

Further work must be carried out to verify that the model generates perfor-
mance metrics that match real-world implementations. To carry out this work, a
substantial test-bed would be required, as well as the increased maturity of various
technologies such as network attached computation. This makes practical validation
at scale difficult. In addition, existing modelling tools, as outlined in the literature
review, aren’t designed to model the same scenario, making validation using other
models challenging.

As a result, it is suggested that this validation forms an important piece of
further work.

73



3.8 Further Analysis

While determining a fixed optimal solution for a given application and network
topology is possible by using an MILP solver as discussed, this sections considers
synthetic scenarios in an attempt to draw general lessons about distributed, accel-
erated in-network computing. It explores how application and network properties
influence the decision on where to place computing resources for this range of sce-
narios. Since latency is the primary metric of interest, it is the focus of this section.

For this analysis, a Python script is used to pseudo-randomly generate appli-
cation task graphs. These are in a tree structure with a maximum depth of 4 tasks,
reflect a realistic partitioning granularity rather than a very fine-grained structure
that would skew further towards in-network computing. The analysis uses a fixed
network structure, with a similar layer A/B/C hierarchy and interface specification
as used in the case study in Section 3.7, however with 8 layer C nodes, each serving
2 layer B nodes, each of which serves 5 layer A nodes.

Several constraints are placed on the task generation. The tree is built up
leaf tasks, with a random variable determining whether each task is connected to a
new task or joins one already existing in the tree. Tasks can only join other tasks
whose leaf tasks originate from nodes that share the same layer B parent. The script
generates 100 random task trees in this manner, and the same 100 trees are used to
evaluate each placement strategy, summarised in Table 3.7. For the purposes of this
analysis, it is assumed that there are no restrictions on the number of tasks that can
be allocated to a node, and all tasks are to be executed in ’software’ - meaning that
in this model there is a latency penalty dependant on the number of tasks allocated
to the same node.

This section is focused on the latency metric, as latency reduction is one of
the main motivations behind in-network and edge computing. The case study in
Section 3.7 showed that latency and throughput are closely related for these types
of streaming applications.

3.8.1 Relative Computing Capability

A key factor that determines where to place tasks is the relative computing capability
that can be accessed at different layers of the network. In general, the closer to the
centre a node is, the greater the computing capability, since the cost is amortised
across more streams. The resources at the edge of the network are more likely to
be limited due to space, energy, or cost constraints, while nodes further up in the
hierarchy will have access to better hardware. However using better resources further

74



Strategy Explanation

Centralised All tasks allocated to root node

Pushed All tasks pushed down toward the leaf nodes as much as
possible

Intermediate All tasks pushed down as far as possible, but not to leaf
nodes

Edge/Central Leaf tasks placed at leaf nodes, others placed centrally

Edge/Network Leaf tasks placed at leaf nodes, others pushed down as far
as possible but not to leaf nodes

Table 3.7: Different placement policies used in the simulations presented in this
section.

up the network entails a communication latency penalty, which must be overcome
by improved computation latency. For this comparison, tasks are set to have a
reduction factor of 50% and equal latency on the same platform. Figure 3.6 shows
how different placement strategies impact latency, for different relative computing
capabilities.

In the unlikely case where computing capability is equal across all layers
(i.e. a Centralised:B/C:A computing capability ratio of 1:1:1), pushing all tasks as
close to the data sources as possible yields the lowest latency as there is minimal
communication delay, and no benefit to placing tasks higher up. This may be the
case if the network is a commodity cluster of homogenous machines. Computation
time is also improved since the tasks are distributed across many nodes resulting in
less contention than for a centralised placement.

If the compute capability at the data sources is significantly smaller (50× in
this case), while the rest of the network offers equivalent computing capability (a
ratio of 1:50:50), pushing tasks down to intermediate nodes offers the best latency.
In this case, the slight reduction in communication latency gained through placing
tasks at the data sources is outweighed by the computation latency penalty. Placing
them any closer to the central node adds further communication latency with no
additional benefit, and causes contention due to more tasks being allocated to fewer
nodes.

The more likely case is that resources at the central node are more capable
than intermediate nodes, which offer greater capability than the edge. In the case of
the central node being 5× more capable than the intermediate nodes (a computing
capability ratio of 1:50:250), pushing tasks as low as possible into the intermedi-

75



0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task tree

L
at

en
cy

re
la

tiv
e

to
C

en
tr

al
is

ed
pl

ac
em

en
t

Centralised Pushed Intermediate Edge/Central Edge/Network

(a) 1:1:1 compute capability ratio.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task tree

(b) 1:50:50 compute capability ratio.

0

1.5

3

4.5

6

7.5

Task tree

L
at

en
cy

re
la

tiv
e

to
C

en
tr

al
Pl

ac
em

en
t

(c) 1:50:250 compute capability ratio.

0

2.5

5

7.5

10

12.5

15

Task tree

(d) 1:50:500 compute capability ratio.

Figure 3.6: Latency comparison for different Layer A:B:C computing capability
ratios.

ate nodes still outperforms the centralised solution, as tasks are distributed to a
larger number of nodes, reducing computation latency. Increasing the difference in

76



0

0.5

1

1.5

2

Task tree

L
at

en
cy

re
la

tiv
e

to
C

en
tr

al
is

ed
pl

ac
em

en
t

Centralised Pushed Intermediate Edge/Central Edge/Network

(a) Significant reduction
at edge tasks.

0

0.5

1

1.5

2

Task tree

(b) Moderate reduction
at edge tasks.

0

0.5

1

1.5

2

2.5

Task tree

(c) No reduction at edge
tasks.

Figure 3.7: Latency comparison for different edge task data reduction factors.

computing power to 10× (1:50:500) causes the central solution to become dominant.
Hence, it can be seen that a key requirement for in-network computing to be

feasible is that suitably capable computing resources be employed for executing tasks
in the network. The more capable the edge nodes are in comparison to the root node,
the greater the benefits of placing tasks further towards the edge.

3.8.2 Task Data Reduction

The time taken to transmit data further up the network is tied to the amount of
data being transmitted. Tasks can reduce data by varying degrees, and this impacts
the balance between computation and communication latency. For this experiment,
reduction factors of tasks are modified to observe the impact on latency. It uses
the same network topology as in the previous experiment, and the same method
of generating task trees. A 1:50:500 relative computing capability configuration
is used, as discussed in Section 3.8.1. This is to model the difference in compute
resources at the different levels of the network.

Figure 3.7 shows how different placement strategies impact latency, for dif-
ferent task reduction factors. If data is dramatically reduced by tasks close to the
edge of the task tree, placing tasks as close as possible to the data source is more

77



likely to provide a latency improvement as the communication cost for every other
transfer between nodes is reduced. It can be seen that intermediate placement re-
duces latency by 5× compared to a centralised allocation in such a scenario. Placing
all tasks at the edge results in 30% worse latency, despite the reduced communica-
tion latency, due to the low computing capability of these nodes. Placing only the
leaf task at the edge and the rest either in the network or at the central node also
provides a significant reduction in latency in this scenario.

If data is not significantly reduced in the task tree, or only at tasks higher
up in the tree, placing tasks towards the central sink is preferred, especially if those
resources are more capable. A centralised placement provides the best latency in
a majority of cases, although only by a slight margin. For some task trees, the
in-network approach is superior. This result is impacted by the relative computing
capability of layers. For scenarios where the central node is much more capable
than the rest of the network, the instinct is to place tasks there. However, if data is
reduced significantly at the leaf tasks then placing tasks in the network can reduce
communication latency significantly.

It can be seen that, generally, the closer to the edge tasks that data is reduced,
the greater the benefits of placing tasks closer to the edge of the network.

3.8.3 Network Structure

The structure of the network determines to what extent tasks can be distributed and
parallelised and how much they must compete for resources. Related to this is the
structure of the application task graph; having tasks that require data from multiple
sources closer to the root of the tree means that tasks cannot be pushed down into
the network to a layer with more computing nodes. To investigate this factor, this
section considers different network structures and their impact on latency, as shown
in Figure 3.8. The tasks were generated with the same method as before, and
network nodes had the same computing capability as in Section 3.8.2. All tasks
were set to a fixed reduction factor of 0.5.

Firstly, consider a network with low fanout, where layer B nodes each have
2 layer A nodes attached. While this means that there was more available resources
towards the edge of the network, in many cases pushing tasks into the network
results in almost 2× the latency of a centralised solution. Tasks that require data
from more than one source must be pushed further up the network, adding additional
communication latency. Additionally, as there are few layer C nodes, these nodes are
over-utilised. Increasing the number of layer C nodes, or the computing capability
of these nodes would offer performance benefits in this scenario.

78



0

1

2

3

4

5

6

Task tree

L
at

en
cy

re
la

tiv
e

to
C

en
tr

al
is

ed
pl

ac
em

en
t

Centralised Pushed Intermediate Edge/Central Edge/Network

(a) Layer A fanout of 2.

0

0.5

1

1.5

2

Task tree

(b) Layer A fanout of 5.

0

0.5

1

1.5

2

Task tree

(c) Layer A fanout of 20.

Figure 3.8: Latency comparison for different network fanout factors.

Raising the fanout of the layer B nodes to 5 instead of 2 increases the benefits
of pushing tasks into the network. As more sources share the same paths towards
the central node, there is a higher chance that a task that works with data from
multiple sources can be placed closer to the edge. Increasing the number of nodes
at layer C in this case again slightly decreases latency, as tasks that do have to be
placed there have access to more resources.

Further increasing the fanout of the layer B nodes to 20 starts to increase
latency again, up to around 0.45× the centralised placement. Increasing it to 40
increases the latency to around 0.7× the central placement.

A larger fanout at layer A (the edge layer), up to a point means that there is
a greater benefit of pushing tasks down towards the network edge, as there are more
opportunities to place tasks that require data from multiple child tasks closer to the
edge. However if the fanout is too great, resource competition starts to reduce the
benefits of this approach.

It can be seen that there exists a trade-off between having multiple sources
connected to the same path of nodes, and creating too much resource contention by
having too many tasks assigned to the same intermediate nodes.

79



3.8.4 Hardware Acceleration

There are several key points that can be taken away from this investigation. In-
network computing is more effective in situations where the edge and intermediate
nodes are comparable in capability to the central node. While this is unlikely with
traditional software processing platforms, it makes the case for trying to integrate
hardware accelerators such as FPGAs into the network, as they can provide process-
ing times closer to the more powerful processors found in a datacenter environment.
It can also be seen that in-network computing provides more benefits in applications
where data is more greatly reduced in tasks closer to the edge of the task tree. These
tasks can often be large filtering or pre-processing tasks, and in order to place them
close the the edge of the network, more capable hardware is required. This again
makes the case for hardware acceleration. Finally, high-fanout network topologies
benefit more from in-network computing as there are more opportunities for data
fusion between tasks. The ability of hardware acceleration architectures to process
streams of data in parallel is well suited to these scenarios, suffering less of a latency
penalty due to resource contention.

3.9 Generating In-Network Task and Hardware Place-
ment with Heterogeneous Hardware

As systems scale, manual placement of tasks and the selection of appropriate hard-
ware becomes more cumbersome and potentially impractical. Additionally, naive
placement strategies may result in sub-optimal performance. This means that a
model able to determine optimal placement has significant value. An optimisation
is also useful during the infrastructure planning phase when decisions need to be
made about which systems to deploy.

This section outlines how the model can be used to generate task and hard-
ware placement, for different objectives. It compares the placements generated by
the model with various naive placement strategies for an example scenario, and then
evaluate the generated placements with synthetically generated network topologies.

3.9.1 Objective function formulation

Section 3.6, outlines equations to calculate the bandwidth, energy consumption,
end-to-end latency, financial cost, and throughput for a given network.

Each of these equations could be used as a singular objective function to
be used with a mixed integer linear programming (MILP) solver. The solver will

80



attempt to minimise the value of the function, given the constraints outlined in
Section 3.5. The experiments in this section use PULP, a Python front-end for the
CBC MILP solver.

There is the possibility of multiple optimal solutions existing for any one
objective function. The Python implementation of the model allows for the definition
of an order of preference among the metrics. For example, the order (Latency, Cost)
would provide the cheapest version of the lowest-latency solution. This is achieved
by running the solver with the latency objective function, then adding a constraint
to the linear program to force the latency to be lower than or equal to the newly
found optimal value within 5%, and running the solver again with the cost objective
function. This forces the solver to generate the cheapest placement that achieves
a latency within 5% of the optimal value. For these experiments the value of 5%
is used, but any threshold could be used depending on the requirements of the
application. An issue with this approach is that it is inefficient, as the solver must
be run multiple times. It also doesn’t allow for mixtures of these performance metrics
to be targeted. Further work could be done to construct more complex objective
functions that combine multiple metrics.

Users could alternatively select one of the five available objective functions,
and add constraints on the other metrics. This technique may be enough for a
‘design’ phase scenario as users will probably have a set budget and performance
constraints that have to be met. For example, the cheapest solution that satisfies a
given latency and energy constraint can be generated, or the lowest-latency solution
for a given energy and financial budget could be found.

3.9.2 Case Study

To demonstrate optimisation of placement strategies with the model, it is applied
to an example scenario. The goals are:

1. Demonstrating that computation in the network is feasible and offers advan-
tages over centralised cloud, and fully-distributed edge computation.

2. Quantifying the improvements provided by the optimisation compared to the
more naive approaches.

For this case study, complete formulation and optimisation took an average
of 5 minutes. While compute time does increase with the scale of the network and
task graphs, the initial use of this model is offline when planning the deployment of
accelerators, and so this is an acceptable delay in light of the model’s flexibility.

81



In most scenarios, it is likely that a more constrained search is sufficient due
to existing hardware placement and other constraints. The model is also useful in
scenarios where after planning hardware placement, new tasks are to be allocated
to those existing resources. These additional constraints will cause the problem to
be further reduced in the pre-solve stage and to a decrease in the total time to solve.

Example Scenario

The scenario examined is based on the smart surveillance application detailed in the
Section 3.7, using the same HOG algorithm and task structure. Using the values for
task execution time for the various platforms detailed, more generalised estimates
can be extracted. Consider a network of cameras, some fixed and some on mobile
platforms such as drones, tasked with surveying an area to detect human presence.
Each camera source is capable of hosting a computing platform and can send data
to a central data sink hosting a more powerful computing platform. This study uses
an arbitrary network topology that includes several possible structures—nodes with
high fanout, long and short paths, data sources at different depths—as depicted in
Figure 3.10.

Parameter values for each task are shown in Table 3.8. It is assumed there is
one software implementation of each task, and one hardware implementation. Each
hardware implementation of a task consumes one ‘slot’ on a hardware platform. The
experiments also assume infinite tasks can be allocated to software platforms.

Task τsw τhw ft

Gradient Computation 0.16 0.0496 0.770
Normalisation 6.33 1.9500 0.004
Real AdaBoost 650.00 201.5000 0.160

Table 3.8: Summary of task parameter values.

Available platforms are detailed in Table 3.9, with their relative performance
to each other. The ‘Processor’ platform represents a server-class processor and can
only be hosted at the root node. The FPGA platforms have no speed as the same
logic deployed on different FPGAs is likely to have roughly equal compute times, if
the logic is the same, and implementation the same. The same holds true for power
consumption - given the same logic implemented on the different sizes of FPGAs,
the differential power consumption for that task should be similar. The values in
the table, derived from [176] are designed to be representative, and can be replaced

82



with real measured values for specific applications.

Platform Cost Speed Power Slots

Microcontroller 30 1 0.1 –
Processor 500 8 1 –
Very small FPGA (fpgaVS) 35 – 0.4 1
Small FPGA (fpgaS) 70 – 0.4 3
Medium FPGA (fpgaM) 85 – 0.4 6
Large FPGA (fpgaL) 100 – 0.4 9

Table 3.9: Summary of available platforms.

Performance Compared to Naive Placement

The generality of the proposed model means direct comparison against other pub-
lished work is difficult. Hence, this section analyses how it performs against the
more traditional centralised cloud and distributed edge approaches.

The naive placement options considered are:

• Allocation of all tasks to a central server node, housing the ‘Processor’ plat-
form, similar to a cloud deployment (Cent);

• All tasks ‘pushed down’ as far as possible towards the data sources—what is
often referred to as the ‘edge’, performed on microcontrollers (PushM);

• All tasks ‘pushed down’ as far as possible towards the data sources, performed
on FPGAs (PushF);

The solutions generated by the model to minimise latency using only micro-
controllers (OptM), solutions generated by the model to minimise latency using any
available platforms (OptF), and solutions generated by the model to minimise the
time between results using only microcontrollers (OptT), can be compared;

Figure 3.9 shows the results for each of the metrics under these conditions,
normalised against the centralised approach. Energy, and latency are improved,
as is ‘throughput’ (throughput is plotted as the time between results, so lower is
better).

The model finds solutions that improve upon the fully-distributed ‘edge’
(PushM and PushF) approach significantly in terms of cost, while also offering
improvements in the other metrics, with the ability to optimise for a preferred
metric. Figure 3.10 shows two of the generated configurations.

83



Cent PushM OptM OptTPushF OptF
0

0.5

1

1.5

2

2.5

R
el

at
iv

e
Pe

rf
or

m
an

ce

Cost
Throughput

Latency
Energy

Figure 3.9: Naive vs. model placement. A lower value is better for all metrics.

A realistic application of the model could be to find the cheapest resource
and task allocation possible that still meets an end-to-end latency constraint. In
the case of the surveillance camera system used as a case study, the latency be-
tween image capture and a final decision may be a critical factor. Figure 3.11 shows
the cost of the solution generated by the optimization to achieve different latency
constraints, compared to the cost of pushing all tasks to the leaf nodes. The opti-
misation approach offers a set of solutions for each latency constraint that improves
on either of the distributed approaches in terms of cost, with savings of up to 33.8%
in this particular case, depending on the performance required. Centralised com-
putation in this case would not meet the latency constraint for all plotted values.
Finally fully-distributed execution on microcontrollers does not meet the tighter la-
tency constraints, demonstrating the importance of this model including hardware
heterogeneity.

3.9.3 Evaluation with Synthetic Networks

For a more thorough evaluation, the model can be applied to a number of pseudo-
randomly generated network topologies. For this study, the number of network
nodes is limited to between 20 and 40, with each node potentially having a data
source input as well as connections to other nodes. Generation parameters control
the breadth and depth of the network topologies in order to ensure generation of a

84



7 8 9 106530
7 8 9 106530

8 9 107650

grad
Tasks:

norm

ada

Platforms:
micro fpgaS

fpgaL proc

765 8

4
4

4

4
1
33

2
2

2

2 1
1

0 1

9

10
(a) Generated configuration using microcontrollers only

765
765

765

6
6

6

7
6

5 8

4
4

4

4

3
3

3
3

012
012

012

2

0 1

9
9

9

9

10
10

10

10
(b) Generated configuration including FPGA options

Figure 3.10: Configurations generated by the optimization85



0 2 4 6 8

·104

600

800

1,000

1,200

Maximum latency constraint

To
ta

lF
in

an
ci

al
C

os
t

OptF
PushF
PushM

Figure 3.11: Cost of solutions to meet a latency constraint set by the user.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0.2

0.4

0.6

0.8

1

Maximum latency constraint

R
el

at
iv

e
co

st

Figure 3.12: Relative cost of solutions to meet a latency constraint set for pseudo
randomly generated network topologies. Cost is relative to pushing down all process-
ing for that network topology. Each line represents a different generated network.

variety of structures. Data sources can be connected to any node, meaning data can
be entered into the network at any level. The task structure and application is kept
the same as the previous experiments, so each data source has an associated set of
tasks. The platform options also remain the same. For each topology the model
is applied to optimise the cost of the solution while meeting a maximum allowable
latency constraint, as in the previous case study.

Results of the generation are presented in Figure 3.12. The minimum possible

86



400 600 800 1,000 1,200 1,400 1,600

0

20

40

60

Maximum cost constraint

R
el

at
iv

e
La

te
nc

y

(a)

400 600 800 1,000 1,200 1,400 1,600

0.4

0.6

0.8

1

1.2

1.4

·105

Maximum cost constraint

En
er

gy

(b)

Figure 3.13: Relative latency and energy consumption of solutions generated under
a maximum cost constraint. Latency is relative to pushing down all processing for
that network topology. Each line represents a different generated network.

latency is achieved by placing an FPGA at each node that a data source connects to.
This is, however, expensive. Fully-centralised processing cannot typically meet tight
latency constraints due to large communication latencies and sequential processing.
Figure 3.12 shows how as the latency constraint is relaxed, the model finds solutions
that offer significant cost reductions, of almost 40% on average. It is also clear, that
there are often results that offer the same cost, but differing latency characteristics.

87



In complex networks, manually finding the cheapest solution to achieve a given
end-to-end latency would not be feasible.

Another common situation is one where a given financial budget is available,
and the best performing solution is sought. Again, for complex network topologies
and applications, manually deciding where to place appropriate hardware and tasks
to achieve this would not be possible. Further experiments with these synthetic
networks were carried out where financial costs were constrained and the model was
directed to find the lowest latency and energy placements.

Figure 3.13 shows how as the cost constraints are relaxed, even slightly,
significant improvements in latency and energy can be obtained. This is only possible
as this work is concerned with allowing the computation to happen at different
places in the network rather than the traditional approach of full centralisation or
de-centralisation. The results also show that significant relaxation of cost constraints
yields diminishing returns in terms of latency and energy. This makes sense when
compared to the earlier case-study where similarly performant configurations could
be found at much lower cost, given the ability to place compute in the network.

Figure 3.14 shows the relative energy, latency, and cost results (compared to
a fully pushed down on FPGAs allocation) for the different solutions offered by the
model for six different network topologies. This is plotted against a centralisation
metric that is computed by considering how many tasks are allocated to each ‘level’
of the network tree, computed as:

Decentralisationi =

∑N
i=0 tii

Decentralisationpushed
(3.21)

Where N is the number of levels on the network tree and ti is the number of tasks
at level i, where the level is the number of hops from the root node.

The decentralisation value is relative to the value computed when all tasks
are allocated as close to the edge as possible. For example, a value of 1 would mean
all tasks are allocated as close to the edge as possible, and 0 would mean all tasks
are allocated to the root node.

It can be seen that there exists solutions in all cases that achieve similar
latency and energy to the fully decentralised approach, while offering significantly
improved cost. In all cases, these cannot be determined by inspection.

Figure 3.15 shows the relative energy and latency (compared to fully push-
ing all tasks to the leaves) with the area of each point being proportional to the
solution’s financial cost. It can be seen that the lower latency solutions cost more
since more hardware is placed near the edges of the network. Energy consumption

88



0

1

2
R

el
.

C
os

t/
En

er
gy Latency

Cost
Energy

−20

0

20

40

60

R
el

.
La

te
nc

y

0

1

2

R
el

.
C

os
t/

En
er

gy

−20

0

20

40

60

R
el

.
La

te
nc

y

0 0.2 0.4 0.6 0.8 1
0

1

2

Decentralisation

R
el

.
C

os
t/

En
er

gy

0 0.2 0.4 0.6 0.8 1

Decentralisation

−20

0

20

40

60

R
el

.
La

te
nc

y

Figure 3.14: Cost, energy and latency relative to a fully-pushed-down-solution for
varying Centralisation of tasks. Each graph is for a different generated network.

tracks latency primarily due to its dependence on task computation time. It is also
apparent that numerous points with similar energy and latency results vary wildly
in terms of cost, further justifying the need for a model that can incorporate all
these metrics.

Figure 3.16 shows the bandwidth requirements relative to a centralised so-
lution for each level in the network tree for one of these networks. Level 1 is one
hop from the root node and shows the most significant decrease as tasks are moved
towards the leaves, there is significant data aggregation at this level. Tasks being
carried out at or before these nodes provide a significant bandwidth benefit. The leaf
nodes see a less marked reduction in bandwidth requirements as the model places
more tasks in intermediate layers of the network, due to the cost requirements. The
model also allows bandwidth constraints to be placed on any individual link in the
network, allowing modelling of network links with restricted bandwidth.

This case study has demonstrated a small fraction of the capabilities of the

89



0 10 20 30 40 50 60

1

1.2

1.4

1.6

Relative Latency

R
el

at
iv

e
En

er
gy

Figure 3.15: Latency and Energy relative to a fully pushed down solution for several
network topologies. The area of the points is proportional to the cost of the solution,
and each colour represents a different network topology.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decentralisation

R
el

at
iv

e
B

an
dw

id
th

Level 1
Level 2
Level 3

Figure 3.16: Total bandwidth consumed at each level of network graph for vary-
ing decentralisation of tasks for one network topology. Bandwidth is relative to a
centralised solution.

formulation. The model allows for more fine-grained constraints to be tailored for
a given application. For example, energy constraints can be placed on individual
nodes, useful if they have a limited power supply such as those found in sensor
networks. Latency constraints can be placed on individual tasks, useful in a situation
where a task is safety or time-critical. Bandwidth constraints can also be put on
any node or groups of nodes. Constraints can be placed that force certain tasks

90



or platforms to particular nodes, useful when extending an existing solution. The
result is a flexible model capable of representing a wide range of applications and
requirements.

3.9.4 Summary

This section demonstrates how the mathematical formulation of task and hardware
placement presented in this chapter can be used to determine optimal configurations
based on a set of constraints. The model allocates tasks and platforms to nodes
while minimising latency, cost, energy, throughput or bandwidth. The optimisation
generates solutions with equivalent latency performance to theoretical maximums for
lower cost. It outperforms naive placement methods where computation is pushed
down towards the edge as much as possible. This model is used to demonstrate that
computing in the network offers significant advantages over fully centralised and full
decentralised approaches.

3.10 Summary

The placement of computing resources and allocation of tasks in distributed stream-
ing applications has a significant impact on application metrics. This chapter
presents a model that can be used to reason about such applications. It models
data sources that inject data into this network, applications composed of depen-
dent tasks, and hardware platforms that can be allocated to nodes in the network.
The model can be used to evaluate alternative strategies for allocating computing
resources and task execution, offering information on latency, throughput, band-
width, energy, and cost. This model has been used to demonstrate that computing
in the network offers significant advantages over fully centralised and fully decen-
tralised approaches, using an example case-study of an object detection and tracking
system. Synthetically generated applications have also been used to explore the key
application factors that impact the effectiveness of the in-network computing ap-
proach.

91



Chapter 4

Quantifying the Latency
Overheads of FPGA
Accelerators

4.1 Introduction

FPGAs have seen increased deployment within the datacenter to accelerate compute-
intensive workloads. The growing complexity and scale of applications and the
associated data, alongside the stalled performance scaling of CPU architectures,
has resulted in heterogeneity being explored as a way of addressing performance,
throughput, and power consumption challenges[180]. FPGA acceleration has been
demonstrated to provide considerable benefits in computation latency for a variety
of applications [40; 181; 182; 183], and improved performance per Watt compared
to GPUs [42]. Virtualisation of FPGA resources is also emerging [184; 185; 141],
allowing a single FPGA to be shared by multiple users and applications. These de-
signs comprise a static shell that manages communication and control for multiple
partitioned reconfigurable regions. Accelerators are swapped into these regions as
needed, hence requiring accelerator allocation middleware to manage data stream
sharing at runtime.

Latency reduction is a key challenge within the datacenter, in particular
for streaming applications, where data is processed itemwise, and is often time-
sensitive. Low latency can be a critical requirement in some applications such as
high-frequency trading, or customer-facing web applications. The performance of
distributed applications such as Memcached has been shown to be degraded by
fundamental datacenter latency factors [186]. While individual packet latencies are

92



small, they can accumulate in applications where data is spread across multiple
packets that travel through multiple switches or servers. Latency variability is also
an important consideration. Processing is often distributed across many machines
in parallel, and overall completion time is dependent on the slowest response [187].
Some applications rely on large fan-out requests for data across distributed sources,
and though average latencies may be low, the effect of small variations can be
amplified to cause significant degradation in performance.

While hardware accelerators improve computational latency, they can also
introduce additional communication latency. Accelerators are typically attached
to a host server through PCI Express (PCIe), which can achieve high throughput
communication. Streaming data from the network must then traverse the host
NIC and software network stack, subsystems that have been identified to contribute
significantly to both average and tail latencies [96]. Inter-accelerator interconnect
is also gaining importance for larger applications[188]. More recently, driven by
the demand for low latency, there has been a growing interest in network-attached
accelerators, where an FPGA is connected directly to the network [189; 190; 191],
processing data in-line. While these deployments do reduce communication latency,
their impact on overall system latency has not been studied in detail. Finally, the
virtualisation required to allow FPGA resources to be shared can contribute further
overhead.

Past work has characterised the components that contribute to datacenter
latency including the different software components of host machines, the network
interconnect, the NIC, PCIe, and switch latencies [96]. An in-depth study of PCIe
communication latency and bandwidth as relevant to NICs was presented in [97].
The latency implications of software virtualisation were investigated in [93].

There has thus far been no such study into the communication overheads
for FPGA accelerators in the datacenter. This chapter presents experiments that
characterise these important overheads, in particular in the context of streaming
applications, where latency is a key performance metric. They characterise the la-
tency characteristics for PCIe-hosted and network-attached FPGA accelerators and
isolate the additional delays introduced through virtualisation. These are compared
to latency measurements for a typical host server, allowing us to isolate the latency
contributions of host networking and management and data transfer to the PCIe
accelerators.

Some work has compared the performance of PCIe and network-attached
FPGA accelerators for specific applications[190] and minimising streaming data la-
tency for embedded accelerators [192]. The work presented within this chapter

93



characterises the fundamental delays more generally, to gain insights into the costs
of accelerator deployments and inform design decisions for a wide range of scenarios.

4.2 Contributions

The contributions of this chapter are as follows:

• It quantifies the communication latency and throughput for different arrange-
ments of accelerator hardware, with a particular focus on FPGA accelerators;

• It explores the implications of these latencies on various aspects of application
performance;

• It investigates the effects of these latencies on a consensus application as part
of a case study.

4.3 Related Work

FPGA accelerators connected to a host via PCIe have been commonly deployed
in the datacenter for various applications, such as machine learning [78; 79] and
database processing [80]. PCIe offers a high throughput interface, existing support-
ing infrastructure, and a way for the host to control and configure the accelerator.
The focus of such integration is high throughput, moving larger batches of data
to minimise the impact PCIe transfer overheads. Distributed workloads, however,
often comprise streams of data arriving over a network, which must be received
over the host’s network interface, written to memory via DMA transfers, with file
descriptors pointing to packets stored in the driver ring buffer. Packets are then
processed by the kernel’s network stack before being added to the socket receive
queue, which can then be accessed by an application running in user space. In order
to transfer data to an accelerator, the user space application typically uses API calls
to write data to a memory buffer and issues a command to the FPGA to initiate the
transfer. The FPGA then reads the data to be transferred from this buffer. These
processes all add to overall data latency when receiving data from the network for
processing in an FPGA accelerator.

A solution to the latency problem for high data-rate streaming applications
is for the FPGA accelerator to interface directly with the network, bypassing a
host networking stack. This is possible due to the high I/O performance flexibility
afforded in modern FPGA architectures and is a model that cannot be considered for
accelerators like GPUs that rely on a host CPU for management. This approach has

94



Figure 4.1: Outline of the experimental setup

seen use in a variety of scenarios [82; 83; 84], and has been demonstrated to lead to
reductions in latency for specific applications compared to PCIe or purely software
solutions. There has not been a characterisation of the detailed latency components
introduced by this approach however, and there has not been an investigation into
the effects of virtualising these devices. This model of accelerator integration poses
additional challenges. Without a CPU-based host, control of the accelerator and
virtualisation logic is more complex. Additionally, in some cases it can be more
difficult to operate on large datasets, due to limited available storage.

4.4 Experiments

This section details the experimental testbed and the experiments carried out to
characterise the communication latencies and throughputs of PCIe and network-
attached FPGA accelerators.

4.4.1 Latency

An external device is used to measure round-trip times in order to achieve accu-
rate measurements and ensure fairness between different scenarios. This is a Xilinx
KC705 evaluation board programmed with specialised hardware to transmit, re-
ceive, and timestamp packets. Packets are sent over 10 Gb/s Ethernet using SFP+
transceivers and an optical cable.

The measurement procedure is shown in Figure 4.1. The measurement device
sends packets to the platform under test, recording a timestamp as it leaves. The
platform under test receives each packet up to the point where the application
accelerator would process the data, then returns it to the measurement device,

95



where a second timestamp is recorded on reception. The round-trip time is the
difference between these two timestamp values. Time values are captured using a
free-running 64-bit counter implemented in the FPGA measurement device fabric,
driven by the 156.25MHz physical board clock, giving a measurement precision
of 6.4 ns. Measurements were taken over 20,000 back-to-back transmissions using
a closed-loop model where the latency of one packet is recorded before the next
experiment starts. The time taken for the packet to travel out of the measurement
FPGA and to the platform under test over an optical fibre from all results (96ns)
is subtracted. A 1 m optical cable was used to connect the measurement device to
the platform under test in each experiment.

4.4.2 Throughput

To measure throughput, and FPGA measurement device generated traffic over the
10 Gb/s Ethernet link to the platform under test at as high a packet rate as possible,
with the minimal 12 frame inter packet gap and fully saturating the AXI4-Stream
interface to the Ethernet core IP. All packets received at the platform under test
are looped back to the traffic generation board.

The measurement device generates traffic for a 5 second interval, and counts
the number of packets it sends and receives back from the platform under test in
this interval. Each packet sent in the interval is of the same size, and the tests
were repeated for multiple packet sizes. Using the packets received per second, an
average throughput is calculated.

4.4.3 Platforms

In these experiments 5 deployments were examined.

Host Server

Server platforms typically found in a datacenter are represented in these experiments
using a Linux server running CentOS 6.7 on a 12-core 2.20 GHz Intel Xeon E5-2650
v4 CPU with 64GB of RAM. The network card is a 10 Gb/s Mellanox MT26448, us-
ing SFP+ transceivers. The latency characteristics for CPU-based server platforms
have been studied in detail in other work [96]—the measurements detailed in this
chapter are used to provide a baseline for fair comparison only.

Data is sent over the network to this machine to be processed by a C++
application running in user space. The application is pinned to a processor core to
improve performance.

96



For the throughput experiments, to maximise the number of packets receiv-
able per second, the NIC ring buffer was configured to be as large as possible for
the device used in these experiments.

(a) Server setup, with and without either a virtualised or
non-virtualised FPGA accelerator

(b) Network attached FPGA accelerator, with and without
virtualisation.

Figure 4.2: Configurations used to measure server based and network attached
accelerators. Virtualised accelerators have arbitration logic and utilise PR regions
for application logic.

PCIe Attached FPGA

These experiments used a Xilinx VC709 FPGA evaluation board hosting a Virtex 7
XC7V690T FPGA as the accelerator platform. Tests were carried out tests for both
virtualised and non-virtualised FPGA accelerators. For both accelerator configura-

97



tions used PCIe Gen3×8 was used. For non-virtualised accelerators the design was
based on the open-source RIFFA framework [193]. It compiles the PCIe communi-
cation interface with a fixed accelerator and provides a simple API that abstracts
low-level transfer mechanics. This static accelerator cannot be replaced without sig-
nificant interruption to the whole system. The architecture, shown in Figure 4.2a, is
typical of a fixed-function accelerator found in the datacentre, comprising a generic
shell of communication logic that simplifies the deployment of applications.

For this scenario, the C++ application running on the host receives the pack-
ets from the tester FPGA, writes them to the FPGA accelerator using the RIFFA
API, reads them back, then sends them to the measurement FPGA through the
network interface. The write to the FPGA is non-blocking. During the throughput
experiments packets were transferred to the accelerator packet-by-packet, and not
batched.

To test a virtualised FPGA, a version of the DyRACT [75] framework was
used, allowing for the application logic to be modified at runtime without having
to reconfigure the entire FPGA. This allows for multiple accelerators to run inde-
pendently on the same device, with dynamic swapping of accelerators using par-
tial reconfiguration triggered through the same PCIe interface used for data. This
framework thus includes extra logic that contributes to additional communication
delays as well as additional software components within the driver. The experiments
used the same C++ application as with the non-virtualised FPGA but using the
DyRACT API.

Network Attached FPGA

Finally, the proposed direct attachment of accelerators to the network is considered,
as might be employed in standalone compute units, smart switches/routers, or smart
NICs. The Xilinx VC709 evaluation board was used to test this. The board sends
and receives 10Gb/s Ethernet through SFP+ transceiver modules attached to the
FPGA fabric instead via PCIe. This data travels through the physical interface and
Xilinx 10G Ethernet subsystem IP, which includes the PHY, PCS/PMA and MAC
layers, interfacing inside the FPGA over an AXI4-Stream interface. A pipeline of 3
state machines is used to remove the Ethernet, IP, and UDP headers, with the UDP
payload passed to the accelerator. In these experiments the payload is looped-back
out of the application logic, through the network stack and back out of the device,
using the same method in reverse. Figure 4.2b shows this architecture.

For these experiments the design was also modified to make it more repre-
sentative of a virtualised platform, by adding an additional stage that checks the

98



destination address and directs the data to the correct accelerator among multiple.
An additional FIFO buffer is also placed between this stage and the application
logic. An arbiter FIFO is implemented before the transmit side of the network
stack. This logic uses round-robin arbitration to allow the multiple accelerator slots
to share external bandwidth.

4.5 Results

Experiments were conducted using 20,000 back-to-back 80B UDP packet transfers,
generating the results shown in Table 4.1, and Figure 4.3. All results are in microsec-
onds. A small packet size, close to the minimum frame size is chosen to give a better
indication of the minimum unavoidable latencies in the scenario of interest. Packets
were sent using a closed model, where the latency measurement of one packet was
taken before the next packet was generated. This was done as uncontrolled trans-
mission from the measurement FPGA to the server based platforms would result in
queuing, buffer overflows, and dropped packets.

Scenario Median 90th perc. 99th perc. 99.9th perc.

Server 6.961 11.300 13.170 21.770
Server+FPGA 13.100 14.910 22.910 29.130
Server+VFPGA 23.290 33.590 41.960 71.350
Net FPGA 0.667 0.673 0.673 0.673
Net VFPGA 0.726 0.737 0.737 0.737

Table 4.1: Latency results for 20000 back-to-back UDP packets in microseconds.

4.5.1 Median Latency

It is clear that adding an FPGA accelerator to a server approximately doubles the
packet return latency. This is due to the additional movement of the data over PCIe
to reach the accelerator and back. Enabling virtualisation on the PCIe-attached
FPGA adds a median delay of around 10µs. Part of this is the additional logic
added to the FPGA design, but the change in software running on the host server
also significantly contributes to this extra delay. Utilising more of the available
virtualised slots on the FPGA could also potentially increase latency further if there
is significant saturation of the PCIe interface due to contention. Hence an FPGA
accelerator must accelerate an application by a sufficient amount to overcome these

99



Med 90th 99th 99.9th
0

10

20
L

at
en

cy
(µ

s)

(a) Server (1)

Med 90th 99th 99.9th
0

20

40

60

80

(b) Server/w FPGA (2/3)

Med 90th 99th 99.9th
0

0.2

0.4

0.6

0.8

(c) Networked FPGA (4/5)

Figure 4.3: Tail latency results of 20000 back-to-back UDP packets for each scenario.
Latencies are shown for the Median, 90th, 99th, and 99.9th percentiles.

additional latencies.
The network-attached FPGA has latency an order of magnitude smaller, as

packets bypass the PCIe interface of the network card, the server network stack,
and the PCIe link to the FPGA. While these delays therefore seem insignificant,
network-attached accelerators are often deployed for low latency, or high data rate
applications, where even the sub-microsecond delay introduced could be relevant.

4.5.2 FPGA Latency Breakdown

Hardware counters in the FPGA are used to isolate sources of the delays in the
device; results are shown in Table 4.2.

Delay Source Median Delay(µs)

Packet-processing logic 0.135
PHY+MAC 0.532
User logic (simple loop-back) 0.013
Virtualisation logic (for V.FPGA) 0.059

Table 4.2: Breakdown of delays measured from round trip times of a packet travelling
through a networked FPGA accelerator design, for 80B UDP packets.

The packet-processing layer, which strips the layer 2/3/4 headers and passes
data to the accelerator and user logic in these experiments contributes to the to-
tal delay less than the PHY and MAC cores. In more complex designs that may
implement more complete layer 3 and 4 functionality, packet-processing delay will
be higher but a comparable order of magnitude. Additionally, virtualisation logic
adds further delay when there are multiple active accelerators present, as network

100



10−6 10−5 10−4

Latency(s)

C
um

ul
at

iv
e

D
ist

rib
ut

io
n

Server PCIe FPGA
PCIe VFPGA Net FPGA
Net VFPGA

Figure 4.4: Cumulative distribution function (CDF) of latencies for each scenario.

access to different accelerators must be arbitrated. In this design, the accelerator
logic loops data back using a FIFO, so adds minimal latency of a few clock cycles.
For a real processing task, this latency would depend on accelerator datapath.

4.5.3 Latency Distributions

The CDFs in Figure 4.4 show the latency distributions for each scenario, demon-
strating the relative magnitudes and variations for the alternative platforms (note
the logarithmic x-axis).

4.5.4 Tail Latencies

The tail of these latency distributions is also important, shown in Figure 4.3. While
the median latency is a useful measure, large spikes, even if infrequent, can signifi-
cantly impact latency-sensitive applications and undermine a system that functions
well most of the time [187]. Latencies at the distribution tail have also been acknowl-
edged to have a negative impact on applications where processing is distributed
across many machines in parallel, and overall completion time is dependent on the
slowest response [187]. To examine these latencies, the 90th, 99th and 99.9th per-
centile latencies were measured in each scenario, with results shown in Table 4.2.

The server running software has around a 6µs difference between the median
and 99th percentile, almost double the delay, while the 99.9th percentile latency is

101



0 200 400 600 800 1,000 1,200
0

20

40

60

Packet Size (bytes)

M
ed

ia
n

La
te

nc
y

(µ
s)

Server PCIe FPGA
PCIe VFPGA Net FPGA
Net VFPGA

Figure 4.5: Median latency for differing packet sizes.

around 3× the median, meaning that 1 in every 1000 packets may have a latency
this high.

The PCIe FPGA accelerators show less of a latency spread relative to the
median. There is around a 2µs difference (14%) between the median and 90th
percentile for the non-virtualised FPGA, and a 10µs difference (75%) between the
median and 99th percentile, suggesting that this variability is primarily due to the
host. There is minimal latency variation for the network-attached FPGAs, due to all
packet-processing being done in dedicated hardware. As soon as software network
stacks are introduced, latencies become significantly less deterministic.

4.5.5 Packet Size

Experiments were repeated with different packet sizes, with results shown in Fig-
ure 4.5. Each run of the experiment used 20,000 UDP packets of the same size. All
platforms show an increase in median latency as packet size increases. The Server
and PCIe platforms show greater sensitivity to packet size, with the virtualisation
causing further increases. The PCIe accelerators add a relatively static overhead on
top of the host latency, regardless of packet size. Both network-attached FPGAs
show smaller increases in latency. The initial increase in latency for packet sizes up
to around 200 bytes is significant, but reduces as packets grow further.

102



4.5.6 Throughput

Results are shown in Figure 4.6, for varying packet sizes. These are values measured
with no actual processing and therefore represent the upper limits enforced by the
communication infrastructure. These measurements include the reception of the
packets at the network interface, and transfer to the accelerator.

Predictably, the network-attached FPGA platforms approach line rate for
10Gb Ethernet, as there is no software involvement or additional interfacing. Adding
the extra virtualisation logic has minimal effect on the throughput, as the virtualisa-
tion is all hardware-based. What is likely to cause reductions in effective throughput
for a particular accelerator is when there are multiple accelerators deployed across
the other virtualised slots, and this bandwidth must be shared.

The server-based platforms suffer considerable throughput penalties in com-
parison. The host running software was limited to a bandwidth of 153MB/s. While
the NIC hardware was capable of receiving data at line rate, the application was not
able to fetch the packets from the buffer fast enough, causing overflows and thus lost
packets. This was despite pinning the application to a CPU core, and maximising
the size of the ring buffer allocated to the NIC. Adding the non-virtualised PCIe
accelerator into the path resulted in the throughput being reduced to 133MB/s on
average, a 13% reduction. The virtualised FPGA accelerator caused an even greater
reduction in the total throughput, to around 90MB/s, a 41% decrease. The extra
software driver components associated with the virtualisation are likely to be the
main cause of this.

The achievable packets that can be received and then transmitted back out
for each platform, per-second, are shown in Figure 4.7. This metric can be im-
portant for some streaming applications that rely on packet-by-packet processing.
The network-attached FPGA platforms again show the ability to process packets at
line rate. The decrease in packet-processing rate as packet size increases is due to
the maximum number of packets that can be transmitted on a 10Gb Ethernet link
decreasing as packet size increases.

The server and non-virtualised PCIe accelerator show a slight decrease in
packet rate as packet size increases, likely due to the ring buffer allocated to the
NIC and the socket buffer using pointers instead of the packet data itself. This
means the buffers can hold the same number of packets regardless of the packet
size. The slight decrease in the packet rate can then be attributed to the handling
of packet data in the user-space application.

103



64 512 1,024 1,500

101

102

103

104

Payload Size (Bytes)

T
hr

ou
gh

pu
t

(M
B

/s
)

Server PCIe FPGA
PCIe VFPGA Net FPGA
Net VFPGA

Figure 4.6: Average measured throughput in MB/s for varying frame sizes.

4.6 Discussion

4.6.1 PCIe Accelerators

Utilising PCIe FPGA accelerators results in a significant additional latency for dis-
tributed streaming applications. For latency-dependent applications, these mea-
surements can be used to weigh the communication costs against the computational
benefits of offloading to the accelerator. For larger accelerators with greater compu-
tation times, this communication latency can form a smaller percentage of the total
delay associated with the accelerator. Virtualising the PCIe accelerator increases
latency, mostly due to the extra software that manages virtualisation. Driver opti-
misations and improved software control of the virtualised accelerator could signifi-
cantly improve latency.

While offload to PCIe accelerators has traditionally focused on maximis-
ing throughput, especially for large machine learning applications, distributed data
across a network introduces a significant throughput bottleneck. In these exper-
iments, the FPGA is hosted on a PCIe Gen3×8 slot which is capable of much
higher throughput than measured. The connection to the network via the host pre-
vents this interface being utilised fully. Batching can mininmise PCIe overhead and
enhance throughput, but this introduces extra latency, undesirable for streaming
applications. Even with large batches, total throughput is limited by the host and
its networking stack.

104



64 512 1,024 1,500

105

106

107

Payload Size (Bytes)

T
hr

ou
gh

pu
t

(p
ac

ke
ts

/s
)

Server PCIe FPGA
PCIe VFPGA Net FPGA
Net VFPGA

Figure 4.7: Average measured packets-per-second for varying frame sizes.

4.6.2 Network-attached Accelerators

The communication latency associated with the network-attached accelerators is
predictably much lower than PCIe hosted accelerators. Communication latencies
below a microsecond mean that the application logic is likely to dominate the total
latency. Virtualisation logic added minimal additional latency - however when there
is competition for the shared communication resources from accelerators in different
virtualised slots, this is likely to change. The biggest contributor to latency is the
physical and MAC layers, implemented in the Xilinx Ethernet core. Virtualisation
of the network-attached FPGA had less of an impact than with the PCIe-attached
FPGA, as the virtualisation was entirely hardware based. The network-attached
FPGAs had very consistent latency performance, with minimal variation, making
them well suited to applications such as consensus, where overall response time
is limited by the highest-latency node. Tail latency is a limiting factor in large
distributed applications [187], so adding accelerators at high fan-in stages yields the
greatest benefit. At these stages, the overall response time is limited by the slowest
responding node, and small infrequent spikes can have a greater effect on the overall
latency. As such, using platforms with more deterministic latency is beneficial. In
terms of throughput the network-attached accelerators can process incoming packets
at line rate.

With the datacenter moving towards 40Gb/s and 100Gb/s, the need for di-
rect offload from the network interface to the accelerator is increasing, via smart

105



NICs or other networking elements that enable FPGA offload. Network-attached
FPGA accelerators however pose additional challenges, mainly focused around vir-
tualisation, and managing resources across multiple applications with minimal soft-
ware involvement.

4.7 Summary

This chapter presents detailed experiments to measure the communication latency
characteristics of FPGA accelerators in a datacenter context. It showed the latency
overheads inherent in traditional deployments of accelerators hosted on a server
through PCIe, and the emerging approach of network attached accelerators. This
includes how latency is affected by packet size, and the latency distributions and tail
latencies. It additionally detailed the throughput limitations of these deployments
in the context of distributed applications where data is received over the network.

These measurements can be used to aid in design decisions in the deployment
of FPGA accelerators. For PCIe deployments, latency and throughput measure-
ments can be used to calculate optimal batch and buffer sizes for different appli-
cations. For network attached accelerators, the measured latencies were compara-
tively small, but these devices are often used for applications that require ultra-low
latency, where even sub-microsecond communication delays measured are relevant.
These small delays will be even more relevant with emerging 40Gb/s and 100Gb/s
networking.

106



Chapter 5

Near-Edge FPGA Acceleration
for the Internet of Things

5.1 Introduction

With the Internet of Things driving an explosive growth in the connectivity of re-
source constrained computing platforms, the latency implications of cloud-based
computation offload become an important consideration in deciding how to deploy
distributed applications. Edge computing represents the broad paradigm of moving
processing away from high performance centralised datacenters towards data sources
at the periphery of the network. Computing resources are typically less capable at
edge nodes but communication is minimised since data need not be moved up the
network to be computed on. Communication latency to the cloud can be signifi-
cant, but for complex applications where the capabilities of datacenter servers offer
a significant improvement in computation latency, overall application latency can
be improved. This interplay between communication and computation latencies is
heavily influenced not just by the network distance but also the choice of processing
platform and the complexity of moving packets from a network interface to the pro-
cessing hardware. As application latency has become more important and hardware
at the network edge has improved, the benefits of offloading to centralised computing
resources is now heavily impacted by these inherent communication delays.

In [194], the authors demonstrated the significant impact of cloud offload
latency on the performance on neural network applications considering different
locations of network “edge” processing. The content within this chapter expands
upon that work by considering how the choice of computing platform impacts both
communication and computation latency.

107



There has been an increasing trend of adopting heterogeneous specialised
hardware in the datacenter to improve computation performance and efficiency.
FPGAs in particular have seen increased use in the datacenter due to their flexibility
and increased performance per watt compared to CPUs and GPUs in a variety of
applications [181; 141; 195; 182].

Cloudlets, also referred to as edge servers, are small-scale datacenters or
servers deployed close to data sources in an attempt to provide cloud-like services
a few hops away in the network [12; 13]. Data traverses fewer switches over a LAN
instead of the Internet, reducing communication delay and improving predictability.
Cloudlets may utilise capable hardware comparable to that found in larger cloud
datacenters, including hardware accelerators.

Enhanced computation capability at source nodes is an additional emerging
trend, where simple microcontrollers are giving way to more capable single board
computers like the Raspberry Pi, allowing more complex computation to take place
at the data sources. FPGA acceleration is also possible at these nodes, through the
use of FPGA SoC platforms such as the Xilinx Zynq, which tightly-couples an FPGA
fabric with an Arm Cortex A9 processor. These have the advantage of running
commodity software for programmability, tightly-coupled with custom hardware
accelerators for offloaded computation, with the potential for reconfiguration to
support dynamic workloads. Application-specific accelerators such as the Google
Edge TPU allow for computationally-intensive machine learning applications to run
on specialised hardware at the network edge. These more capable embedded devices
can also be used as cluster heads for sensor nodes, or gateways between a collection
of data sources and the rest of the network.

The emerging paradigm of in-network computing [189] sees the high-performance
network switches used to route packets extended with the capability of computing
on that data in-flight [196]. Application tasks can be deployed to heterogeneous
networks comprising both dedicated computing resources in the network and ex-
tended network elements [2]. FPGAs are a key candidate architecture for such a
paradigm, as they are well-suited to packet-processing [183], support tight coupling
of custom hardware accelerators, resulting in lower latency computation with min-
imal additional offload latency, and support the dynamic reconfigurability required
to support sharing among multiple applications [197].

This chapter uses a case-study of neural network-based image classifica-
tion application to explore the latency implications of different computation of-
fload strategies, assuming a network of edge nodes interacting with a cloudlet server
through an FPGA-based layer 2 switch. Using this, it explores how edge, in-network,

108



and cloudlet deployments with heterogeneous hardware impact overall performance
for a complex application that would traditionally be offloaded to the cloud. The
experiments consider how both the communication and computation latencies of dif-
ferent deployment approaches impact overall application performance, including for
shared resources. While network round-trip delay contributes significantly to com-
munication latency, this work also considers the packet ingestion latency required
to process streaming network data, which becomes a more significant component as
processing is moved nearer to the data sources, and is heavily-impacted by platform
choice.

5.2 Contributions

The contributions in this chapter are as follows:

• Demonstrating the offloading of computation from edge nodes to more capable
networked resources, including hardware accelerators, in an image classifica-
tion application;

• Detailed latency breakdowns for a range of different types of compute resources
used in near edge computing, differentiating between computation and com-
munication delay;

• Demonstrating a method upon which compute can be integrated into an FPGA
based network switch;

• Demonstrating how the latency of the application scales with the number of
devices;

• Using these results, discussion of how FPGAs integrated into the network
infrastructure are well suited to near-edge computing, and scale well with
more data streams.

5.3 Related Work

For data to move to a large cloud platform such as Amazon EC2 it must travel
through a WAN such as the internet, resulting in large and non-deterministic delays,
in the range of 10-100s of milliseconds depending on datacenter location [175]. In
Chapter 2, a range of work is discussed that examines the contribution of PCIe
and network interface cards to system latency. Edge and cloudlet computing is also

109



Figure 5.1: Outline of the experimental set up - images are sent from the edge node
through the network switch to the Server. In these experiments, latency is measured
as the total latency to complete the computation on each platform, returning the
result to the source node, including communication time.

discussed, and various works cited demonstrate the benefits in moving processing
closer to the edge of the network.

5.4 Design and Experiments

The experiments in this chapter consider a distributed application where data is
captured at edge nodes, transmitted through network switches via Ethernet, to a
server that acts as a cloudlet platform, a common architecture for IoT applications.
An image classification application applied to images generated at the edge of the
network is used. The network architecture comprises 3 layers, an edge layer, a
switching layer and a cloudlet layer. Edge nodes produce images, and can transmit
them via 100Mb Ethernet through layer 2 network switches, which can forward
data to a cloudlet server. All layers in the topology can potentially perform the
image classification tasks. The edge node has lower compute capability, but has no
communication cost, the server has high compute capability but data must travel
there and is subject to communication delay. The general structure of the system
can be seen in Figure 5.1.

5.4.1 Application

The experiments use a neural network based image classification application that
processes images streamed from the edge of the network. The evaluation is not
focused on the application itself, but rather the relationship between communica-

110



tion and computation latency for such distributed deployments. This example has
been selected as it involves the transfer of considerable amounts of data, as well as
high enough computational complexity, while also demonstrating a good range of
computational scaling on these different architectures. This investigation focuses
on latency – the time taken to receive a result – rather than throughput. This is
important in a variety of safety-critical applications or where data is time sensitive.

The image classification application uses a Deep Neural Network (DNN)
called SqueezeNet [198], that has a small memory footprint, designed for resource
constrained platforms. In recent years there has been significant research into opti-
mising DNN architectures for inference at the edge on hardware with less capable
resources, trading off accuracy, runtime, and energy consumption [199; 200]. These
models aim to reduce complexity and memory footprint while maintaining accu-
racy. In [194], the authors demonstrated how the performance of such compact
DNNs scales on traditional CPU-based edge nodes, while also evaluating network
delay based on the location of the edge device. SqueezeNet was selected as it is a
compact model with a lower number of operations, leading to comparatively lower
inference time, feasible for deployment on constrained platforms, compared to other
models [201]. This better allows us to focus on the communication latency consid-
erations, rather than applications where computing latency significantly dominates.
It also means the lessons learnt are not tied as tightly to the capabilities of the
specific architectures used. SqueezeNet is also representative of the type of DNN
designed for use on edge devices such as the Raspberry Pi.

Input images are 224×224 pixels with 32-bit combined channel depth. The
neural network has 10 layers, and uses 32-bit floating point weights, totalling 4.7MB.
It can be compressed to 0.5MB while retaining the same accuracy [198]. The model
is pre-trained and weights pre-loaded on all platforms. Images stream from the
edge nodes, mimicking connected camera sources. To avoid saturating the network
images are sent one at a time, and the time taken to receive a result measured before
the next image is sent. Images are processed to determine the probability that each
image belongs to one of the 1000 classes classified by the model.

5.4.2 Measurements

The total time taken to carry out the classification task on each platform is mea-
sured, focusing on latency, rather than throughput. This includes the computation
latency, as well as the communication time to transfer images from the edge node
to the target computing platform, and to receive the result.

All measurements are taken utilising specialised timing hardware imple-

111



mented in the FPGA network switch, allowing for consistent measurements across
the different platforms and independence from other tasks running on the vari-
ous platforms. The edge nodes start transmitting an image upon receiving a start
command from the FPGA which records the start time for the experiment as this
command is sent. The finish time is recorded when the edge node receives the result.
A free running counter running at 200MHz gives a resolution of 6.4ns.

5.4.3 Platforms

Edge Node (1)

Edge nodes may act as a gateway or cluster head, or the data source itself. An
example of such a node is implemented in these experiments using a Raspberry
Pi Model 3B running Raspbian OS. Up to 4 edge nodes can be connected to the
switch in these experiments. It can carry out the full computation using a Keras
implementation of SqueezeNet, or transmit the image through the Linux sockets API
over 100Mb Ethernet through the network switch to another platform. Image data
is sent using raw Ethernet frames, with no layer 3 or 4 headers. 100Mb Ethernet
represents a realistic channel for a lightweight edge node, where LPWAN would
be too slow or cellular too costly for video streaming. While network bandwidth
continues to scale, the ingestion latency required to process received data at a node
does not scale proportionally.

To measure the computation latency on a Raspberry Pi, the Python ap-
plication opens a raw Ethernet socket and waits for the start message from the
FPGA network switch. Upon receipt of this frame, the Python script triggers the
Squeezenet application. Once computation is complete, it sends an Ethernet frame
containing an ‘end’ message back to the FPGA, triggering the capturing of another
timestamp.

The difference between these two timestamps is taken to be the computation
time on the Raspberry Pi. In order to take into account the time to send and receive
the start/end frames, the same process was performed, with no computation on the
Pi, just sending the start and end of test frames, and subtracted this time from the
original result.

FPGA-Accelerated Edge Node (2)

Edge nodes may be enhanced with hardware accelerators or co-processors. For these
experiments, an FPGA-accelerated edge node was built using the Xilinx Zynq based
Arty Z7 small form factor development board suited for edge applications. The Zynq

112



Figure 5.2: High level diagram of the Zynq FPGA accelerated edge node. Software
running on the processor subsystem controls the accelerator on the tightly coupled
FPGA.

consists of a processor subsystem (PS) and programmable logic (PL) and functions
similar to the Raspberry Pi but with compute-intensive functions offloaded to a
hardware accelerator in the PL.

For these experiments, the SqueezeNet accelerator logic was generated using
Vivado HLS, and is implemented in the PL using a heavily-modified version of
the implementation in [202]. HLS allows for the expression of accelerator logic in
annotated C rather than a hardware description language like Verilog. Accelerator
parameters such as the memory offsets and sizes of layers are configured through
an AXI-Lite register interface, through software running on the PS. For each layer
of the DNN, the software sets the appropriate parameters in the accelerator before
starting it. Weights and image data are stored in on-board DRAM and data can
also be temporarily stored in PL memory while being used. In order to measure the
latency of the computation, the same method used with the Pi was utilised. The
approach is shown in Figure 5.2.

TPU-Accelerated Edge Node (3)

An alternative approach is to attach an application specific accelerator to an edge
node such as the Google Coral board hosting an ARM processor and tightly coupled
Edge Tensor Processing Unit (TPU) coprocessor. The execution of Tensorflow mod-

113



els can be offloaded from the host processor to the TPU for significant improvements
to latency and throughput.

In order to run the Squeezenet model on the TPU, some optimisation of
the neural network parameters to abide by the limitations of the architecture are
required, and these can be done using the Tensorflow Lite software. The model was
simplified using quantization aware training, and then converted to Tensorflow Lite
and compiled using the Tensorflow Edge TPU compiler.

Platforms such as the Edge TPU may be used as shared computing resources
available over a network. This scenario is modelled by connecting a Raspberry Pi
edge node to the TPU board through the network switch over 100Mb Ethernet.
The FPGA network switch generates a start message, triggering the Raspberry Pi
to transmit its data through both network switches to the TPU, where the software
running on it receives the data through a raw socket. Upon reception, the model is
executed on the TPU hardware accelerator, and upon completion, a message is sent
back to the FPGA where the time taken for this process is recorded.

Cloudlet Server (4)

The server in these experiments represents a cloudlet, a small form-factor server that
can provide compute resources close to the data source. Data would only have to
travel through a LAN to reach the cloudlet, as opposed to a WAN to reach a cloud or
datacenter. In these experiments, a Linux server running Ubuntu 18.04 on a 12-core
2.2GHz Intel Xeon E5-2650 v4 CPU, with 64GB of RAM is used. This machine has
a 10Gb/s Mellanox Technologies MT26448 network card with SFP+ transceivers.
The application runs via Python, with frames sent and received through the sockets
API and the SqueezeNet model executed using Keras.

To measure the application latency, the server sends a start command to
all edge devices, through the switches. Once the FPGA switch has forwarded that
frame, it captures the first timestamp. The edge devices then send the images
through the switches to the Server. On the server, a Python application runs that
listens to a raw network socket for frames received from the edge nodes. Buffers are
instantiated to hold image data from each edge node being used in the experiment.
The source address field of the received frames are used to direct the data into the
appropriate buffer. When a buffer has the required image data, the same Squeezenet
model is run using the Keras front-end. Upon completion of the computation, a
frame is sent to the corresponding edge node through the FPGA network switch,
where the second timestamp is recorded. The two timestamps are then used to
calculate the total latency. The Python application uses the multiprocessing library

114



to generate a separate process for the computation, the sending, and the receiving
of data. This technique allows for the opening of multiple concurrent processes, and
data can still be sent and received while the model is executing.

In order to separate the computation and communication latency, a variant
of the experiment was run without computation - the Python script on the server
simply sends a response to the Pi immediately after receiving the full image.

FPGA-Accelerated Cloudlet Server (5)

Computation can also take place on an FPGA accelerator attached to the Linux
server via PCIe. In these experiments this is implemented using a Xilinx VC709
evaluation board that has a PCIe Gen 3×8 interface. On the FPGA fabric the
DyRACT framework [75] is used to manage communication between accelerator
and host. The software application on the host opens a network socket and waits
to receive an image from the edge node, triggering the the accelerator when the
image is received. Image data is sent to the device using a C API provided by
the framework, and logic on the FPGA tracks the amount of image data received.
Once the full image is received, it triggers the start of the accelerator, and once
computation is complete initiates the transfer of the result back to the host server.

To measure the latency of this platform, the same method is used as for the
regular Server. Additionally, to isolate the computation and communication time,
additional timers on the PCIe attached FPGA to measure the time taken for the
accelerator to complete its computation once the full image had been received.

In-Network Processing (6)

Systems with many networked devices will deploy network switches to facilitate
the routing of traffic from the data sources and edge nodes to a cloudlet server or
wider network. The testbed uses an unmanaged layer 2 switch and a Xilinx KC705
evaluation board, which hosts a Kintex-7 FPGA to connect edge devices. The
standalone layer 2 switch allows 4 edge devices to be connected to the single 100Mb
port on the FPGA board. The FPGA switch bridges the RJ45 100M Ethernet
interface of the edge nodes and the 10Gb Ethernet SFP+ interface of the cloudlet
server, and can also host a hardware accelerator. When a packet is received through
the 100Mb interface from an edge node, the destination field in the frame header
determines where it is sent as part of the switch logic.

If the field contains a specified address, the payload is transferred to the
board DRAM, to be used with the accelerator, otherwise it is forwarded to the 10Gb

115



Figure 5.3: Outline of the FPGA based network switch structure. Packets are
typically routed from input to output interface, but if they have a specific destination
address, are sent to memory for use in computation.

output port. Sending the frames through to the 10G port involves buffering the data
in dual clock FIFOs and moving it across clock domains, and then moving it to the
10G Ethernet MAC. As up to 4 edge devices may be transmitting to the FPGA,
the source address field of the inbound frames is used to differentiate between data
sent by each device. Image data from each device is written to a different memory
address offset in DRAM based on the source address. Once determined to be image
data bound for the accelerator logic, the payload from the received frame must be
buffered and moved to the memory interface clock domain using dual clock FIFOs.
Data is then transferred to the DRAM memory interface using AXI4. A custom
AXI-4 controller was designed to facilitate the transfers for these experiments. The
payload of each frame is 1024 bytes, and a transfer width of 64 bytes with a burst
length of 16 are used to minimise the AXI overhead. Counters are implemented to
keep track of how much image data has been received from each connected edge
device, and are incremented for every frame written to memory. Upon reception of
a full image from any edge device, a request is generated to start the accelerator for
that device. This approach is summarised in Figure 5.3.

The SqueezeNet accelerator logic was generated using Vivado HLS as for
the accelerated edge node, but the expanded resources of the Kintex FPGA on the
KC705 allow for greater unrolling of loops and increased parallelisation of the de-

116



sign. It interfaces to DRAM using an AXI-4 interface, and parameters are configured
through a separate AXI-Lite register interface. Custom AXI-Lite logic to monitor
and control the accelerator. Before a full image has been received, the controller
awaits a request to start the accelerator. Once it receives a request,the controller
writes the appropriate parameters for the first layer of the DNN and then starts
the accelerator. It provides different memory offsets based on what edge device the
computation is for. The accelerator fetches the required weights and image data
from DRAM, via an AXI-4 interface. Data is temporarily stored in BRAM within
the accelerator logic while in use, to reduce the number of costly DRAM transfers
required. This process is repeated for each of the 10 layers of the DNN. Upon com-
pletion of the computation, the accelerator writes the set of results to DRAM. The
controller then facilitates the transmission of these results through the 100M Ether-
net interface, back to the Raspberry Pi edge node. The DRAM interface for Xilinx
7 series FPGAs only allows for a single port, therefore an arbitration mechanism
is required to allow the accelerator and network logic to share a single interface.
This arbiter has 2 AXI-4 slave ports connected to the network and accelerator and
a master port connected to the memory interface. Priority is given to the network
interface to avoid buffer overflows and the loss of data. The board DRAM also
contains the full set of weights for the accelerator, and weights are loaded prior to
the start of the experiment, so there is less accelerator management overhead.

To measure the latency when using the FPGA network switch for computing,
as mentioned previously, the FPGA sends a start command to all connected edge
devices, and records a timestamp using the free running counter and 200MHz system
clock marking the start of the test. The edge nodes run C code that opens a network
socket and listens for the start command. Once received, edge nodes send the
image data to the FPGA switch via raw Ethernet frames. Once the accelerator has
finished its classification for a given edge device, a second timestamp is recorded.
The recording of timestamps is independent for each edge device. The difference
between the first and second timestamp recorded on the FPGA is taken as the total
time.

Additional, secondary timers were implemented on the device, to isolate the
time taken for the accelerator to complete its computation only. The timer starts
once the full image is received, and stops once the accelerator raises the complete
flag.

117



5.5 Results

As part of these experiments, the total application latency for a distributed image
classification application where data is captured at an edge node, and can be trans-
mitted through a network switch to a server with access to an FPGA accelerator,
was measured. Measurements were taken when computation was carried out on
each of the platforms described in Section 5.4.

1. Computation is carried out on the edge node, a Raspberry Pi 3, in software;

2. Computation is carried out on a more capable edge node, a Xilinx ArtyZ7
FPGA SoC board, with hardware acceleration;

3. Computation is carried out on a specialised Google Coral Edge TPU board,
connected via the network;

4. Computation is carried out on a server in software, connected via the network;

5. Computation is carried out on an FPGA accelerator integrated into the server
via PCIe, connected via the network;

6. Computation is carried out on the network switch, on the same FPGA fabric
that contains the switch fabric;

The experiments measured total application latency, including the time to
send the image from the edge node to the platform carrying out the computation,
ingestion of the data and computation, and returning of the result back to the edge
node. The communication and computation time for each scenario were isolated.

5.5.1 Isolated Edge Node Measurements

Firstly the measurements for a single active edge device were considered. The com-
putation latencies measured differ from raw execution benchmarks, such as in [203],
primarily because the latency measurements include the time to ingest input data
packets, rather than raw inference time for data already in memory. This distinction
is important in the context of offloading computation where data must be received
over the network.

It should be clarified that the experiments do not consider the network com-
munication latency to the location of the edge device beyond the single hop, but
rather the network ingestion and computation latencies, as these are platform de-
pendent. The experiments in [194] offer an insight into how locating these platforms

118



may further impact overall latency, but the in-network approach has fundamentally
lower latency.

The impact of multiple edge devices competing for shared network and com-
puting resources is discussed in Section 5.5.2.

Computing Comp. Comm. Total
Location Latency Latency Latency

1) Edge (Pi) 2380 0 2380
2) Edge (Zynq) 1660 0 1660
3) TPU 210 80 290
4) Server 340 50 390
5) Server + FPGA 60 60 120
6) Network Switch FPGA 60 1 61

Table 5.1: Computation and communication latency for offload from a single edge
node in milliseconds.

0

500

1,000

1,500

2,000

2,500
Computation

Pi Zynq TPU Server PCIe Network
0

20

40

60

80

Computing Location

La
te

nc
y

(m
s)

Communication

Figure 5.4: Breakdown of latencies per image for different offload scenarios.

It can be seen in Figure 5.4 that performing all computation on the edge node
with no acceleration has high computation latency, and despite having no commu-
nication latency, this scenario performs worst, justifying computation offload. Less
computationally-intensive applications would reduce this disparity between plat-
forms since the computation latency would not be so dominant, but a simpler neu-
ral network was selected for this study, and others are likely to show even more
disparity.

Replacing the edge node with a more capable Xilinx Zynq SoC platform im-
proves latency by 30% due to the hardware acceleration provided by the FPGA. The
embedded FPGA SoC, however, is limited in capacity and cannot fully parallelise

119



execution of the neural network, and so numerous iterations of hardware execution
are managed by software, adding to the latency. Further optimisation is possible,
for example, 8 bit fixed -point quantization, which would improve area efficiency,
though require further design effort.

The Edge TPU was deployed as a network-connected accelerator on account
of its cost compared to other options meaning it is more likely to be a shared
resource. It demonstrates a significant reduction in computation latency on account
of the optimised parallel hardware and native compilation of the model for this
architecture that supports 8-bit arithmetic. As an offload engine attached to the
network, there is some communication latency due to the software network stack
running on the ARM core on the Edge TPU board. The Zynq FPGA SoC platform
can also perform this role with lower ingestion latency by diverting packets directly
into the PL for processing by the accelerator without the involvement of the PS
processor, as has been demonstrated in [204].

Offloading to the server outperformed both the Raspberry Pi and FPGA SoC
platforms due to the more capable server processor. Indeed, it achieves close to the
computation latency of the Edge TPU, albeit at much higher power consumption.
Improved network stack performance on a server-class processor also results in lower
communication latency compared to the Edge TPU.

Adding a more capable hardware accelerator using a server-class FPGA offers
even lower computation latency compared to the other architectures discussed so
far, as loops can be fully parallelised and there are fewer movements of data to
and from memory. This FPGA accelerator is integrated into a server over a PCIe
link which adds a modest communication latency as data must first traverse the
network stack, then be moved to the accelerator over PCIe. The software stack that
manages this accelerator also adds some management overhead that contributes to
the communication latency. However, the significant acceleration of the computation
means total latency is significantly reduced.

Attaching the FPGA accelerator directly to the switch drastically reduces
communication latency as network packets can be directly ingested by the accel-
erator, and all data movement is managed in hardware. This coupled with the
low computation latency of the FPGA accelerator means this deployment has sig-
nificantly lower latency than those discussed earlier. The communication latency
measured here does not include multiple hops over a network, as characterised in
[194], which would further increase the magnitude and variability of communication
latency, rather the isolated the platform-specific components in these experiments.

While the Edge TPU is capable of very low inference latency, measured at

120



just 6ms in isolation, packet ingestion and data transfer from the host processor to
the Edge TPU silicon increases latency. This highlights, once again, that the data
movement is of paramount importance in determining the end-to-end performance
of such a connected application.

This chapter is concerned with relationship between computation latency
and communication (ingestion) latency, considering deep neural network inference
as a case study. Further tweaking of neural network model parameters to opti-
mise for latency against accuracy can improve performance on constrained edge
platforms [205]. Alternative neural networks also exhibit different scaling of com-
putation latency on different devices. The effect of varying these parameters on the
different accelerators is an avenue for further work, as is the effect of other factors
such as network, processor, and I/O stress.

5.5.2 Impact of Multiple Edge Devices

The results presented so far consider one edge device with exclusive access to the
network and computing resources. In reality, multiple connected devices will stream
data, leading to contention for resources and larger, more unpredictable delays.
Computing on edge platforms, such as the Raspberry Pi and FPGA SoC, while
having a higher latency individually, is not subject to these resource contention
issues, as computation is done locally, with no communication cost. So for large
numbers of devices, this approach may scale favourably. Cloudlet servers or net-
worked FPGA accelerators will typically share computing resources across multiple
streams.

To examine the effects of resource contention, the previous experiments were
adapted to support different numbers of streaming edge devices. The experimental
setup allows us to connect up to 4 edge nodes to the network switch and FPGA and
take detailed measurements. The same experimental procedure was used: the FPGA
switch generates a broadcast ‘start’ message to all connected devices, upon which
all devices transmit their image data through the switch to the appropriate offload
resource. Experiments were completed with a closed-loop traffic model, where one
measurement was taken before the next experiment was started to avoid flooding
the network with data and causing packet loss. While multiple streams were active
in the system, the latency of a single stream is measured.

When using the cloudlet server, all edge devices share the output port of the
layer 2 switch, the output port of the FPGA switch, as well as the network pipeline
on the FPGA switch, in order to reach the server. At the server, the streams share
the network and processor resources. Once a full image for the measured stream is

121



0.4

0.5

0.6

0.7

0.8

Experiment num.

La
te

nc
y

(s
)

1 stream 2 streams
3 streams 4 streams

Figure 5.5: Latency for cloudlet server servicing multiple edge devices for 100 ex-
periments.

5 · 10−2

0.1

0.15

Experiment num.

La
te

nc
y

(s
)

1 stream 2 streams
3 streams 4 streams

Figure 5.6: Latency for network-attached FPGA servicing multiple edge devices for
100 experiments.

captured, it is processed with the SqueezeNet model in a separate software process.
Latency results are shown in Figure 5.5. As the number of data sources scales,
overall latency increases, up to 600ms with 4 devices connected.

It can be inferred that increasing the number of devices would further increase
latency. This could cause the cloudlet to be slower than accelerated edge platforms
such as the Zynq, where computation is performed locally and resources are not
shared. With a large number of edge devices serviced by a single cloudlet server,

122



standard edge nodes without acceleration might offer lower overall latency due to
this network/compute contention. The server-hosted FPGA accelerator would suffer
similar sharing costs since its computation is managed in software and the commu-
nication latency is similar to the cloudlet server scenario.

For the in-network switch-hosted FPGA, the sharing is more fine-grained, so
it can be expected to better scale with the number of edge nodes. The results shown
in Figure 5.6 demonstrate that an additional edge node has minimal effect on total
latency due to the buffering and pipelining of the FPGA design resulting in reduced
contention. Adding a third edge node almost doubles total latency, and increases
jitter. A fourth edge node adds around 3× the latency compared to a single node,
and adds even greater jitter. There are multiple factors that contribute to these
increases. The accelerator shares the memory interface with the network pipeline,
and to avoid the loss of data, the arbiter gives priority to network data. As the
accelerator cannot retrieve image and weight data from memory while the memory
interface is busy, latency is higher. Increasing the number of edge node streams
means that the memory interface is busy more often. Further increases in latency
come from the sharing of a single network interface. More streams means that the
data for any given stream is more likely to be in a queue, which also explains the
increased variation.

Despite these increases in latency with several connected devices, the network-
attached FPGA still outperforms the equivalent number of edge nodes performing
computation locally by a large margin. The lower computation latency of the FPGA
relative to the server software means that it is more likely to scale well with a greater
number of edge node data streams.

5.5.3 Discussion

The interplay between computation latency and communication latency has a signif-
icant impact on overall application latency when offloading computation. Network
round-trip time is only one aspect of communication latency, and packet ingestion
latency also has a noticeable impact. For complex applications, where computation
latency dominates, these factors may not be as important. However, with the wider
use of hardware acceleration, computation latency is reduced and communication
latency, including ingestion latency becomes more important.

Integrating the accelerator into the network switch made communication
latency negligible. The TPU hardware, while capable of the fastest inference, had
its overall effectiveness reduced by preprocessing and communication time. Going
forward, it can be seen that a complete view of computation and communication

123



latency must be considered when evaluating offload platforms.
While for a single device, offloading from the edge node to any other platform

led to large reductions in end-to-end latency, this benefit diminished as the number
of edge nodes increased. As systems scale, considerations must be made as to
how offload from a large number of devices is handled. In these situations, local
accelerators such as the Zynq, while seeming to under-perform in these experiments,
will gain value as they are not shared across devices.

5.6 Accelerator Location

The previous section compared computation latency and ingestion latency for a deep
neural network (DNN) image classification application using a variety of accelerated
computing platforms. That study demonstrated that ingestion latency can have a
significant impact on the overall latency reduction achievable for different platforms.
Images generated at a Raspberry Pi edge node were transmitted to different offload
platforms over a network. Performing the DNN computation on the edge node
itself resulted in a computing latency of 2.3s due to the constrained capabilities
of the embedded processor on that node. Offload targets investigated included
server-based platforms where data enters the system through a PCIe network card
and is moved to an accelerator PCIe card via a controlling application running in
Linux userspace. This is representative of a typical host deployment in a cloudlet
or datacenter. The same experiments were also explored with network-attached
FPGA accelerators integrated into a network switch. In this deployment, packets
received at the network interface of the switch were forwarded to the accelerator
implemented on the same FPGA fabric depending on pre-specified packet headers.
From these experiments, an average ingestion latency of 60ms was measured for the

Figure 5.7: Network structure used for the discussion in this scenario.

entire image for a server-based platform, and 1ms for the network-attached FPGA

124



platform. While both platforms resulted in the same reduction in computing latency,
down to 60ms, the low ingestion latency of the network-attached platform gave it
superior overall latency.

In [194], the authors carried out a series of experiments measuring the net-
work traversal time of packets from a mobile phone source to various locations that
could be used to offload processing. This includes the eNodeB base station, a telco
central office re-architected as a datacenter, the ISP datacenter, and various Ama-
zon Web Services (AWS) virtual machines (VMs) in different geographic locations.
These different offload locations have varying network distances to the data sources
and hence result in a range of different network latencies, as reproduced in Table 5.2.

Location Latency (ms)

BS – Base station 28
EdDC – Edge datacenter 41
ISPDC – ISP datacenter 62
RgCld – Regional cloud 77
IntCld – International cloud 151

Table 5.2: Network traversal time to various offload locations, measured in [194].

The overall network scenario is typical of an Internet of Things deployment,
and can be seen in Figure 5.7: data is generated at the edge node and transmitted to
the nearest access point, in this case, a base station a single hop away. From there,
it travels through multiple network hops to a local edge datacenter, then to the ISP
datacenter, and finally to a cloud datacenter, which can be located anywhere across
the Internet. With each successive hop, additional network latency is introduced.
Once the data reaches the target destination, it must be ingested by the computing
platform and processed, with the result sent back to the edge node source. The time
taken to complete this process is the total application latency.

Each of these networked locations could potentially host computing plat-
forms to perform this computation. More capable accelerator hardware can also be
deployed to be shared across multiple edge node clients and perform the computa-
tion with lower latency. Typically, with each successive hop, there is an increase
in available computing resources and therefore opportunities to reduce computation
latency further. Each location can host a range of computing platforms, which can
reduce computation latency by varying amounts.

This case-study aims to examine the relationship and trade-offs present be-
tween the amount the offload platform – such as a server or hardware accelerator –

125



reduces the computation time, and the communication latency due to moving data
to the that platform. Using the results previously discussed, total offload latency for
similar streaming applications offloaded onto different platforms deployed at these
different network locations is estimated, while considering varying acceleration fac-
tors achievable for different platforms. The degree to which the computation latency
is reduced by the offload platform using an acceleration factor, can be represented
such that:

acceleration factor =
latencycompbase

latencycompoffload

(5.1)

where the base computation latency is the latency when performing processing at
the IoT edge node. The acceleration factor is dependent on the platform being
used to carry out the computation, such as a server class processor, or hardware
accelerator like an FPGA, not on the location where the platform is hosted.

The total application latency hence depends on that computation time, the
latency for data to be sent to the offload platform, and the ingestion latency at that
platform, estimated as:

latencytotal = latencycomp + latencyingestion

+ latencynetwork
(5.2)

While this model does not capture all the details of a real implementation,
such as network congestion, it is detailed enough to allow us to reason about the mix
of computation offload platforms and where to locate them for improved application
latency.

5.6.1 Results

The results for total latency estimation for each location and platform can be seen
in Figure 5.8. Intuitively, as the acceleration factor increases, the computation
time decreases, reducing total latency. However this provides diminishing returns,
as the communication latency begins to dominate as computation latency reduces.
This means that communication latency limits achievable performance when the
computational complexity results in comparable computation latencies. Beyond a
certain point, further increasing the processing capability of the offload platform
results in minimal overall latency improvement improvement.

Utilising network-attached accelerator platforms, shown with the dashed
lines, reduces total latency further for a given location, due to reduction of in-
gestion latency. The communication latency required to reach platforms further

126



from the edge means less computationally-capable platforms closer to the edge can
sometimes provide better performance overall than more capable platforms further
away. Similarly, utilising network-attached computing platforms further away can
result in lower latency than a more local platform using server-based compute, since
ingestion latency is significantly reduced. It can be seen that a strategy of increasing
computing capability has limits in terms of achievable latency and that reduction
of communication latency is ultimately required to improve overall latency further.

10 20 30 40

102

103

Acceleration factor

To
ta

ll
at

en
cy

(m
s)

BS EdDC ISPDC
RgCld IntCld

Figure 5.8: Estimated total latencies when computing is offloaded to the network
locations in Table 5.2, for varying acceleration factors. Solid lines represent server-
based acceleration platforms, and dashed lines represent network-attached acceler-
ation platforms.

The closer processing is moved to the edge, the greater the relative improve-
ment achieved through network-attached processing. The same can be seen as ac-
celeration factor increases – the relative difference between the server and server-less
deployments increases in turn. Figure 5.9 demonstrates this further, showing the
relative reduction in total latency achieved when using network-attached over server-
based acceleration at each location, and similarly shows that network-attached plat-
forms yield greater benefits when applied to platforms closer to the edge, and for
higher acceleration factors. This is because as the computation and network traver-
sal times reduce, through improved processing capabilities and moving the compute
closer to the source, the ingestion latency becomes a relatively more significant con-
tributor to overall latency. For example, for an acceleration factor of 40×, for a
base station offload (BS), using server-based computing, total latency was around
140ms. Ingestion latency contributed 60ms to this total, over 40%, greater than

127



each of the network traversal and computation latency. By comparison, using a
network-attached accelerator resulted in a total latency of 85ms, and ingestion la-
tency contributed only 1%.

10 20 30 40

0.6

0.7

0.8

0.9

1

Acceleration factor

R
el

at
iv

e
di

ffe
re

nc
e

(I
n-

ne
tw

or
k/

Se
rv

er
)

BS EdDC ISPDC
RgCld IntCld

Figure 5.9: Relative reduction of total latency provided by network-attached ac-
celeration compared to server-based, when computing is offloaded to the different
networked locations in Table 5.2.

These results are based on the characteristics of the DNN application used
in 5.4, which had a base computation latency of 2.3s on the Raspberry Pi edge
node. In this situation, the computation latency by far outweighs the communica-
tion latency, so benefits can be achieved without requiring a significant acceleration
factor on the offload platform. Also of interest is how this analysis changes when the
balance of computation latency and communication latency changes. Figure 5.10
shows the results when the base computation latency is 200ms as opposed to 2.3s,
and hence closer to the magnitude of the network latency. In this scenario, it can
be seen that depending on the location and the ingestion latency of the platform,
a greater acceleration factor is required to justify offloading. The base station (BS)
must be able to perform processing at least 3× as fast as the edge node if using
a server-based platform, but only around 1.4× faster when using network-attached
acceleration. In this situation the furthest AWS instance as a server-based accelera-
tor can never achieve an improvement over the edge node, even for extremely large
acceleration factors, though network-attached acceleration would still be feasible.

When the base computation time is reduced further, to 100ms, an even
greater acceleration factor is needed to justify offload, as shown in Figure 5.11.

128



2 4 6 8 10

102

102.5

Acceleration factor

To
ta

ll
at

en
cy

(m
s)

BS EdDC ISPDC
RgCld IntDC Base

Figure 5.10: Estimated total latencies when a 200ms base computation time is
offloaded to the different networked locations in Table 5.2, for varying acceleration
factors. Solid lines represent server-based acceleration, and dashed lines network-
attached. The black dotted line shows the base computing latency.

Even at the base station, the resource closest to the edge node, achieving increased
latency performance would be a challenge unless using network-attached processing.
Any of the other platforms wouldn’t achieve improvements without utilising this,
regardless of acceleration factor.

This study shows that deploying network-attached acceleration offers new
opportunities to offload smaller IoT tasks that may have traditionally not have ben-
efited from offloading. Additionally, more lightweight accelerators can be deployed
that require less computing power, while still achieving reductions in total latency.
These network-attached accelerator platforms also scale better to servicing multiple
IoT edge nodes.

5.6.2 Discussion

Computational offload is an attractive method of reducing processing time for la-
tency sensitive applications. While computation time is reduced, there is an asso-
ciated communication latency caused by the traversal to the offload location, and
the time taken to move the data to the processing platform at that location. Com-
putational resources can be increase through the use of more powerful hardware,
or using specialised accelerators. This chapter presented a case study for an image
processing application where an edge node offloaded processing to one of several
locations, ranging from a base station a single hop away, to a cloud datacenter in

129



2 4 6 8 10

102

102.5

Acceleration factor

To
ta

ll
at

en
cy

(m
s)

BS EdDC ISPDC
RgCld IntCld Base

Figure 5.11: Estimated total latencies when a 100ms base computation time is
offloaded to the different networked locations in Table 5.2, for varying acceleration
factors. Solid lines represent server-based acceleration, and dashed lines network-
attached. The black dotted line shows the base computing latency.

another continent. While efforts can be made to improve hardware and bring down
processing time, this offers diminishing returns.

Reducing the communication time through moving the processing closer to
the data source can reduce the total latency. However this only effects the time taken
for data to traverse the network to the offload location. This case study showed
that the ingestion latency, the time taken for data to traverse the network interfaces
and software stacks of the compute platforms, is a considerable contributor to the
overall latency. Utilising network-attached processing platforms that bypass these
interfaces reduces ingestion latency, and thus allows greater potential to reduce the
total latency through both moving compute to the edge, and increasing hardware
capability. As computation improves, and network traversal is reduced, the next
step to increasing performance is tackling how data is managed consumed by the
compute.

This opens up opportunities to offload smaller tasks that may have tradi-
tionally not have benefited from computational offload. Likewise, it could enable
the use of more lightweight processing that requires less hardware resources, per-
forming more, with less – as well as open up hardware for sharing across multiple
applications or client devices.

130



5.7 Summary

This chapter explored alternative approaches to accelerated computation near the
edge, showing how the benefits of hardware accelerators can be exploited for lightweight
Internet of Things nodes. A case study neural network image classification applica-
tion was implemented on a variety of platforms typically used to move computation
closer to the edge of a network. It showed that for an application of significant com-
putational complexity, offloading processing from the edge node to more capable
hardware through a network results in overall lower latency, despite the communi-
cation delay. Adding an accelerator to the cloudlet server improved performance
further despite the additional PCI Express latency, due to significant acceleration
achieved from hardware acceleration. Much improved performance was possible us-
ing an in-network accelerator approach where the hardware accelerator is not in a
server but part of the network switching infrastructure instead. More edge devices
sharing these near-edge computing resources leads to increases in total latency due
to the sharing of hardware resources and increased network traffic, and hence the
benefits of offloading are diminished. However the in-network FPGA accelerator ap-
proach is less impacted due to the low latency management of shared network flows
and movement of data into the accelerator, meaning it can scale to more requests.

Offloading computation from resource-constrained nodes to more capable
networked resources can lead to improvements in latency despite the communication
costs, but in order to maximise these benefits, the way data is handled by these
systems must be considered. FPGAs allow for large reductions in computation
latency without a significant software overhead or additional interconnect.

131



Chapter 6

Conclusions and Future Work

This thesis examines in-network computation in the context of computational of-
fload, in particular with FPGAs. It is demonstrated that network-attached FPGAs
provide significant improvements to latency and throughput compared to server-
based systems, which is vital to achieve the increasingly more stringent latency
characteristics driven by the IoT and large-scale distributed applications.

6.1 Summary of Contributions

This work approaches several key challenges regarding computational offload. The
mathematical model can be used to aid in the decision of where in a network dif-
ferent parts of an application should be offloaded to. It provides thorough analysis
on the performance costs associated with utilising FPGA accelerators, and have
demonstrated a method to greatly reduce communication latency through extend-
ing network elements to perform additional computation.

6.1.1 Mathematical representation of in-network and near edge
computing

Chapter 3 outlines a mathematical formulation that could be used to represent a
network of heterogeneous compute nodes and complex compositions of application
tasks allocated to them. This model can be used to aid decision-making when
designing the network, and can be used to evaluate task allocation strategies. The
application and network structure can vary greatly, and will have an impact on
the suitability of a particular deployment. Thus unlike other works, the model is
designed to be generalisable to a greater range of domains, and the MILP structure
used makes it simple to model additional parameters and constraints. Determining

132



where to offload computation is a key challenge as the number of available platforms
grows.

6.1.2 Optimising hardware and task placement

As the complexity of networks and task structures increases, manual placement of
tasks and allocation of hardware resources becomes more and more cumbersome to
the point of being impractical. Additionally, non-intuitive deployments may exist
that better satisfy a given performance requirement. The chapter also presents a
method to utilise the mathematical formulation to determine task and hardware
allocations within a set of networked heterogeneous resources. The optimisation
generated equal or improved latency performance at lower costs than naive place-
ment strategies.

6.1.3 Quantifying costs associated with FPGA accelerators

Hardware acceleration is key to achieving decreased computation time, which is one
of the main goals of computational offload. FPGA accelerators have seen significant
use in this area as highly parallel architectures can be utilised to reduce processing
time. However FPGAs are typically deployed in a host-slave configuration, where an
FPGA is managed and controlled by a host server. In Chapter 4 it is demonstrated
that the communication latency costs associated with this approach. Results showed
that the host is a significant contributor to latency, and using serverless, network-
attached FPGAs can reduce this.

6.1.4 Demonstration of in-network FPGA acceleration

In Chapter 4, it was shown that network-attached FPGA deployments had signif-
icantly lower communication latencies than PCIe based hosted FPGAs. In Chap-
ter 5, a method to take advantage of this is demonstrated. By extending an FPGA
network switch to perform additional computation as well as its packet forwarding
functions, the total latency of a DNN application was reduced compared to using an
ASIC or server-based FPGA. Despite these alternative platforms having the same
or lower computation time, integrating the FPGA accelerator directly in to the
network resulted in the best performance.

6.2 Future Research

There are several promising areas of future research.

133



6.2.1 Practically validating the model

The model and optimisation outlined in Chapter 3 would benefit greatly from val-
idating the accuracy of the results it can generate. Currently, it is limited to com-
paring the relative performance of different task and hardware placement strategies.
Confidence could be given to the actual values it generates through practical experi-
mentation, where cases could be physically implemented and performance measured,
and compared against results from the model of an equivalent deployment. Perform-
ing these experiments at scale would require the resources to construct a substantial
test-bed, and additionally would be aided by more readily available off-the-shelf
components. As it stands, the lack of practical validation is a limitation of the
model.

6.2.2 Improving optimisation runtime

The model and optimisation outlined in Chapter 3 is focused on evaluating and de-
termining hardware placement strategies off-line, while designing the network. With
further research, this optimisation could be extended to run post-deployment, to dy-
namically allocate tasks to nodes in the network. This can be useful to take into
account events such as high network traffic or utilisation, nodes becoming unavail-
able or new nodes added, or the application being modified. The main challenge
associated with this would be coming up with ways to reduce the runtime of the
optimisation. As the network topology and task structure would mostly be set al-
ready in this scenario, certain variables can be fixed which would reduce the time
taken to generate a solution. More research could also be carried out into heuristics
that could be used to reduce runtime even further.

6.2.3 Developing generalised in-network FPGA infrastructure

Chapter 4 and Chapter 5 demonstrate that integration of FPGAs directly into net-
work elements such as switches had the chance to greatly reduce total latency and
increase throughput. This approach has several open challenges regarding manage-
ment and deployment of accelerators within these devices. A direction of future
research would be to generalise the FPGA network switch architecture shown in
Chapter 5 to support loading accelerators into the switch at runtime utilising par-
tial reconfiguration. Control information received over the network should be able
to trigger this reconfiguration.

It would be extremely valuable to be able to also integrate high level data-
center and cloud management frameworks with such an infrastructure. This would

134



allow provisioning and management of in-network FPGA accelerator resources with
the same tools as any other resource in the datacenter.

6.2.4 Combination of model and FPGA infrastructure

If such an infrastructure was developed, it could be integrated with the placement
model. Given changing requirements or conditions, and knowledge of the network
and available FPGA accelerator slots, the model could be used to dynamically allo-
cate tasks to these augmented FPGA network elements on-the-fly.

6.2.5 Defining accelerator communication protocols

In order to manage flows of accelerator data, it would be beneficial to develop
standard packet formats and protocols. These could allow for more intelligent man-
agement of data flows to and from accelerators. Load balancing, security, and QoS
policies could be implemented using these protocols.

6.3 Summary

This thesis has contributed to the design and deployment of computational offloading
to network elements traditionally only used for packet processing. FPGAs are well
suited to this task, and this work demonstrates that using this approach results
in greatly reduced latency and improved throughput. The work also addresses the
related challenge of determining where in the network tasks should be offloaded
to, by developing a generalised mathematical model that can be used to generate
placements to meet combinations of objectives. Experiments detailed in this thesis
have also been used to quantify the overhead associated with different approaches
to accelerator deployment.

135



Bibliography

[1] R. A. Cooke and S. A. Fahmy, “In-network online data analytics,” in Proceed-
ings of the International Workshop on Edge Systems, Analytics and Networking
(EdgeSys), 2017.

[2] ——, “A model for distributed in-network and near-edge computing with het-
erogeneous hardware,” Future Generation Computer Systems, vol. 105, pp.
395–409, 2020.

[3] ——, “Quantifying the latency benefits of near-edge and in-network FPGA
acceleration,” in Proceedings of the International Workshop on Edge Systems,
Analytics and Networking (EdgeSys), 2020, pp. 7–12.

[4] ——, “Characterizing latency overheads in the deployment of fpga accelera-
tors,” in International Conference on Field-Programmable Logic and Applica-
tions (FPL), 2020.

[5] J. Yiu, The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4
Processors, 3rd ed. Newnes, 2014.

[6] M. Jackson and R. Budruk, PCI Express Technology. Mindshare press, 2017.

[7] G. Yeap, “Smart mobile SoCs driving the semiconductor industry: Technol-
ogy trend, challenges and opportunities,” in International Electron Devices
Meeting, 2013.

[8] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: at the Leading Edge of Mobile-Cloud Convergence,” in Inter-
national Conference on Mobile Computing, Applications and Services, 2014,
pp. 1–9.

[9] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari, “Resource effiicient
mobile computing using cloudlet infrastructure,” in Conference on Mobile Ad-
hoc and Sensor Networks, 2013.

136



[10] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,” Network
and Computer Applications, vol. 59, pp. 46–54, 2016.

[11] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud ac-
celeration architecture,” in Symposium on Computers and Communications,
2012, pp. 59–66.

[12] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,”
in Workshop on Hot Topics in Web Systems and Technologies (HotWeb), 2016,
pp. 73–78.

[13] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “To-
wards wearable cognitive assistance,” in International Conference on Mobile
Systems, Applications, and Services, 2014, pp. 68–81.

[14] Y. Chen, E. Blasch, B. Liu, Y. Chen, E. Blasch, K. Pham, D. Shen, and
G. Chen, “A holistic cloud-enabled robotics system for real-time video tracking
application,” Lecture Notes in Electrical Engineering, vol. 309, 2014.

[15] Z. Chen et al., “An emperical study of latency in an emerging class of edge
computing applications for wearable cognitive assistance,” in Proc. SEC, 2017.

[16] W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile
augmented reality,” in Proc. VR/AR Network, 2017.

[17] M. Satyanarayanan, P. B. Gibbons, L. Mummert, P. Pillai, P. Simoens, and
R. Sukthankar, “Cloudlet-based just-in-time indexing of IoT video,” in GIoTS,
2017.

[18] S. Shreejith and S. A. Fahmy, “Smart network interfaces for advanced auto-
motive applications,” IEEE Micro, vol. 38, no. 2, pp. 72–80, 2018.

[19] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for in-
network stream query processing,” in Symposium on Principles of database
systems, 2005, p. 250.

[20] M. Vestias and H. Neto, “ Trends of CPU, GPU and FPGA for high-
performance computing,” in FPL, 2014.

[21] R. P. Foundation, “Raspberry Pi 4,” 2020. [Online]. Available: https://www.
raspberrypi.org/products/raspberry-pi-4-model-b/?resellerType=home

137

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/?resellerType=home
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/?resellerType=home


[22] Y. Tokusashi, H. Matsutani, and N. Zilberman, “LaKe: the power of in-
network computing,” in International Conference on Reconfigurable Comput-
ing and FPGAs (ReConFig), 2018.

[23] R. Bajaj and S. A. Fahmy, “Mapping for maximum performance on FPGA
DSP blocks,” Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, pp. 1–1, 2015.

[24] Xilinx, “7 series FPGAs configurable logic block user guide,” 2016.

[25] ——, “7 series DSP48E1 slice,” 2018.

[26] ——, “Vivado high-level synthesis,” 2020. [Online]. Available: https:
//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[27] F. Kermarrec, S. Bourdeauducq, J.-C. L. Lann, and H. Badier, “LiteX: an
open-source SoC builder and library based on Migen Python DSL,” 2020.

[28] Intel, “Intel fpga sdk for OpenCL software technology,” 2020. [On-
line]. Available: https://www.intel.co.uk/content/www/uk/en/software/
programmable/sdk-for-opencl/overview.html

[29] Xilinx, “SDAccel development environment,” 2020. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[30] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis, “Towards
prototyping and acceleration of java programs onto Intel FPGAs,” in In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019, pp. 310–310.

[31] Y. Uguen and E. Petit, “Pyga: A python to fpga compiler prototype,” in
International Workshop on Artificial Intelligence and Empirical Methods for
Software Engineering and Parallel Computing Systems, 2018, p. 11–15.

[32] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain specific language
to a platform FPGA,” in Design Automation Conference (DATE), 2004, pp.
924–927.

[33] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4FPGA: A rapid prototyping framework for P4,” in Sym-
posium on SDN Research, 2017, p. 122–135.

138

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/sdk-for-opencl/overview.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html


[34] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “P4-compatible high-
level synthesis of low latency 100 Gb/s streaming packet parsers in FPGAs,” in
International Symposium on Field-Programmable Gate Arrays (FPGA), 2018,
p. 147–152.

[35] O. Reiche, M. A. Ozkan, R. Membarth, J. Teich, and F. Hannig, “Generat-
ing FPGA-based image processing accelerators with hipacc,” in International
Conference on Computer-Aided Design (ICCAD), 2017, pp. 1026–1033.

[36] J. Li, Y. Chi, and J. Cong, “Heterohalide: From image processing DSL
to efficient FPGA acceleration,” in International Symposium on Field-
Programmable Gate Arrays (FPGA), 2020, pp. 51–57.

[37] C. Dennl, D. Ziener, and J. Teich, “On-the-fly composition of FPGA-based
SQL query accelerators using a partially reconfigurable module library,” in In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2012, pp. 45–52.

[38] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio, “A
common backend for hardware acceleration on FPGA,” in International Con-
ference on Computer Design (ICCD), 2017, pp. 427–430.

[39] Xilinx, “Vivado design suite user guide: Partial reconfiguration,” 2018.

[40] M. Papadonikolakis and C. S. Bouganis, “A novel FPGA-based SVM classi-
fier,” in International Conference on Field-Programmable Technology (FPT),
2010, pp. 2–5.

[41] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno, “An
FPGA Implementation of decision tree classification,” in Design, Automation
and Testing in Europe conference (DATE), 2007.

[42] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a
random forest classifier: multi-core, GP-GPU, or FPGA?” in International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
2012.

[43] Y. R. Qu, “Scalable and dynamically updatable lookup engine for decision-
trees on FPGA,” in High Performance Extreme Computing Conference
(HPEC), 2014.

139



[44] C. Zhang, G. S. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-
based accelerator design for convolutional nerual networks,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2015, pp. 161–170.

[45] A. Rahman, J. Lee, and K. Choi, “Efficient FPGA acceleration of convolu-
tional neural networks using logical-3d compute array,” in Design, Automation
and Testing in Europe conference (DATE), 2016, pp. 1393–1398.

[46] R. García, A. Gordon-Ross, and A. George, “Exploiting partially reconfig-
urable FPGAs for situation-based reconfiguration in wireless sensor networks,”
in Symposium on Field Programmable Custom Computing Machines, (FCCM),
2009, pp. 243–246.

[47] H. M. Hussain, K. Benkrid, and H. Seker, “An adaptive implementation of a
dynamically reconfigurable K-nearest neighbour classifier on FPGA,” in Con-
ference on Adaptive Hardware and Systems, 2012, pp. 205–212.

[48] J. Delahaye, J. Palicot, C. Moy, and P. Leray, “Partial reconfiguration of
FPGAs for dynamical reconfiguration of a software radio platform,” in Mobile
and Wireless Communications Summit, 2007, pp. 1–5.

[49] T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, “An end-to-end multi-
standard OFDM transceiver architecture using FPGA partial reconfigura-
tion,” IEEE Access, vol. 5, pp. 21 002–21 015, 2017.

[50] H. M. Hussain, K. Benkrid, and H. Seker, “Dynamic partial reconfiguration
implementation of the SVM/KNN multi-classifier on FPGA for bioinformatics
application,” in International Conference of the IEEE Engineering in Medicine
and Biology Society, 2015, pp. 7667–7670.

[51] H. Hussain, K. Benkrid, C. Hong, and H. Seker, “An adaptive FPGA imple-
mentation of multi-core K-nearest neighbour ensemble classifier using dynamic
partial reconfiguration ,” in International conference on Field Programmable
Logic and Applications (FPL), 2012.

[52] N. Chalhoub, F. Muller, and M. Auguin, “FPGA-based generic neural network
architecture,” in International symposium on Industrial Embedded Systems,
2006.

[53] M. Feilen, M. Ihmig, C. Schwarzbauer, and W. Stechele, “Efficient DVB-T2
decoding accelerator design by time-multiplexing FPGA resources,” in Inter-

140



national conference on Field Programmable Logic and Applications (FPL),
2012.

[54] N. W. Bergmann, S. K. Shukla, and J. Becker, “QUKU: A dual-layer reconfig-
urable architecture,” Transactions on Embedded Computing Systems, vol. 12,
2013.

[55] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput Oriented FPGA
Overlays Using DSP Blocks,” in Design, Automation and Testing in Europe
conference (DATE), 2016.

[56] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the DySER
Architecture with DSP Blocks as an Overlay for the Xilinx Zynq,” SIGARCH
computer architecture news, vol. 43, 2016.

[57] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell, N. Shanker,
J. Chu, I. Prins, J. Fender, A. C. Ling, and G. R. Chiu, “DLA: Compiler
and FPGA overlay for neural network inference acceleration,” in International
Conference on Field Programmable Logic and Applications (FPL), 2018, pp.
411–4117.

[58] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-based over-
lay processor for convolutional neural networks,” Transactions on Very Large
Scale Integration Systems, vol. 28, no. 1, pp. 35–47, 2020.

[59] S. Mcgettrick, K. Patel, and C. Bleakley, “High performance programmable
FPGA overlay for digital signal processing,” in International conference on
Reconfigurable computing: architectures, tools and applications, 2011, pp. 375–
384.

[60] J. D. C. Maia, G. A. U. Carvalho, C. P. Mangueria, S. R. Santana, L. A. F.
Cabral, and G. B. Rocha, “GPU linear algebra libraries and GPGPU pro-
gramming for accelerating MOPAC semiempirical quantum chemistry calcu-
lations,” Journal of Chemical Theory and Computation, vol. 8, pp. 3072–3081,
2012.

[61] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang, and H. Yang,
“Large scale recurrent neural network on gpu,” in International Joint Confer-
ence on Neural Networks (IJCNN), 2014, pp. 4062–4069.

[62] A. X. M. Chang and E. Culurciello, “ Hardware accelerators for recurrent
neural networks on FPGA,” in ISCAS, 2017.

141



[63] H. M. Hussein, K. Benkrid, A. T. Erdogan, and H. Seker, “Highly parame-
terized K-means clustering on FPGAs: comparative results with GPPs and
GPUs,” in International Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2011.

[64] P. Meng, M. Jacobsen, and R. Kastner, “FPGA-GPU-CPU heterogenous ar-
chitecture for real-time cardiac physiological optical mapping,” in FPT, 2012.

[65] S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, “FPGA-GPU architecture
for kernel SVM pedestrian detection,” in Computer Vision and Pattern Recog-
nition, 2010.

[66] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and
D. Marr, “Accelerating recurrent neural networks in analytics servers: Com-
parison of FPGA, CPU, GPU, and ASIC,” in International Conference on
Field Programmable Logic and Applications (FPL), 2016, pp. 1–4.

[67] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of FPGA,
CPU, GPU, and ASIC,” in International Conference on Field-Programmable
Technology (FPT), 2016, pp. 77–84.

[68] G. Cloud, “Cloud TPU,” 2020. [Online]. Available: https://cloud.google.
com/tpu

[69] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and evalua-
tion of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3, pp. 10–19,
2018.

[70] Intel, “Intel Movideus Myriad X Vision Processing Unit,” 2020. [Online].
Available: https://www.intel.com/content/www/us/en/products/processors/
movidius-vpu/movidius-myriad-x.html

[71] Xilinx, “Xilybus product brief v1.12,” 2019.

[72] IBM, “Coherent accelerator processor interface (CAPI),” 2019.

[73] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A reusable integration
framework for FPGA accelerators,” in International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2012, pp. 216–219.

[74] J. Gong, J. Chen, H. Wu, F. Ye, S. Lu, J. Cong, and T. Wang, “EPEE:
an efficient PCIe communication library with easy-host-integration property

142

https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html


for FPGA accelerators,” in International Symposium on Field-Programmable
Gate Arrays (FPGA), 2014.

[75] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled accel-
erator and test platform,” in International Conference on Field-Programmable
Logic and Applications (FPL), 2014.

[76] M. Jacobsen and R. Kastner, “RIFFA 2 . 0 : A reusable integration framework
for FPGA accelerators,” in International Conference on Field-Programmable
Logic and Applications (FPL), 2016.

[77] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, “JetStream: An open-
source high-performance PCI Express 3 streaming library for FPGA-to-host
and FPGA-to-FPGA communication,” in International Conference on Field-
Programmable Logic and Applications (FPL), 2016.

[78] J. Yan, N. Y. Xu, X. F. Cai, R. Gao, Y. Wang, R. Luo, and F. H. Hsu, “FPGA-
based acceleration of neural network for ranking in web search engine with a
streaming architecture,” in International Conference on Field Programmable
Logic and Applications (FPL), 2009, pp. 662–665.

[79] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient KNN algorithm im-
plemented on FPGA based heterogeneous computing system using OpenCL,”
in International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2015, pp. 167–170.

[80] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dillen-
berger, and S. Asaad, “Database analytics acceleration using FPGAs,” in In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), 2012.

[81] A. M. Caulfield, E. S. Chung, P. Kaur, J.-y. K. Daniel, L. Todd, and M. Kalin,
“A cloud-scale acceleration architecture,” in International Symposium on Mi-
croarchitecture (MICRO), 2016.

[82] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure accelerated
networking: SmartNICs in the public cloud,” in Symposium on Networked
Systems Design and Implementation (NSDI), 2018, pp. 51–66.

[83] Y. Tokusashi, F. Pedone, and R. Soulé, “The Case For In-Network Computing
On Demand,” in EuroSys Conference, 2019, pp. 1–16.

143



[84] A. Hayashi, Y. Tokusashi, and H. Matsutani, “A line rate outlier filtering
FPGA NIC using 10GbE Interface,” SIGARCH Computer Architecture News,
vol. 43, 2015.

[85] Y. M. Choi and H. K. H. So, “Map-reduce processing of k-means algorithm
with FPGA-accelerated computer cluster,” in International Conference on
Application-Specific Systems, Architectures and Processors, 2014, pp. 9–16.

[86] A. Alhamali, N. Salha, R. Morcel, M. Ezzeddine, O. Hamdan, H. Akkary, and
H. Hajj, “FPGA-accelerated hadoop cluster for deep learning computations,”
in International Conference on Data Mining Workshop (ICDMW), 2015, pp.
565–574.

[87] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration manage-
ment on the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp.
41–44, 2014.

[88] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, “MiCAP: a custom recon-
figuration controller for dynamic circuit specialization,” in International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig), 2015, pp.
1–6.

[89] A. Kulkarni and D. Stroobandt, “MiCAP-Pro: a high speed custom reconfig-
uration controller for dynamic circuit specialization,” Design Automation for
Embedded Systems, vol. 20, no. 4, pp. 341–359, 2016.

[90] S. Shreejith, B. Banarjee, K. Vipin, and S. A. Fahmy, “Dynamic cognitive
radios on the Xilinx Zynq hybrid FPGA,” in International Conference on
Cognitive Radio Oriented Wireless Networks, 2015, pp. 427–437.

[91] X. Zhai, A. A. S. Ali, A. Amira, and F. Bensaali, “MLP neural network based
gas classification system on Zynq SoC,” IEEE Access, vol. 4, pp. 8138–8146,
2016.

[92] M. Russell and S. Fischaber, “OpenCV based road sign recognition on Zynq,”
in International Conference on Industrial Informatics (INDIN), 2013, pp. 596–
601.

[93] J. Whiteaker, F. Schneider, and R. Teixeira, “Explaining packet delays under
virtualization,” SIGCOMM Computer Communication Review, vol. 41, no. 1,
pp. 39–44, 2011.

144



[94] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into network
performance in virtual machine based cloud environments,” in International
Conference on Computer Communications (INFOCOM), 2014, pp. 1285–1293.

[95] L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and understanding virtual-
ization overhead in cloud,” in International Conference on Parallel Processing,
vol. 2015-Decem, 2015, pp. 31–40.

[96] N. Zilberman, M. Grosvenor, N. Manihatty-bojan, D. A. Popescu, G. Antichi,
S. Galea, A. Moore, R. Watson, and M. Wojcik, “Where has my time gone?” in
International Conference on Passive and Active network measurement, 2017.

[97] R. Neugebauer, G. Antichi, J. F. Zazo, S. López-buedo, and A. W. Moore,
“Understanding PCIe performance for end host networking,” in SIGCOMM
Computer Communication Review, 2018, pp. 327–341.

[98] Z. Xincheng, LTE Optimization Engineering Handbook. John Wiley Sons,
Ltd, 2017.

[99] B. C. Lee, Datacenter Design and Management: A Computer Architect’s Per-
spective. Morgan Claypool, 2016.

[100] D. Abts and B. Felderman, “A guided tour of data-center networking,” Com-
munications of The ACM, vol. 55, pp. 44–51, 2012.

[101] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart,
G. Palukar, and W. Snow, “Central office re-architected as a data center,”
IEEE Communications Magazine, vol. 54, pp. 96–101, 2016.

[102] Cisco, “The Cisco edge analytics fabric system,” 2016.

[103] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-network
computing is a dumb idea who’s time has come,” in Workshop on Hot Topics
in Networks (HotNets), 2017.

[104] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
SIGCOMM Computer Communication Review, vol. 46, no. 2, pp. 18–24, 2016.

[105] T. G. Robertazzi, Introduction to Computer Networking. Springer Interna-
tional Publishing, 2017.

[106] I. Elhanany and M. Hamdi, High performance packet switching architectures.
Springer International Publishing, 2007.

145



[107] G. Watson, N. McKeown, and M. Casado, “NetFPGA: A tool for network
research and education,” in 2nd workshop on Architectural Research using
FPGA Platforms (WARFP), vol. 3, 2006.

[108] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-rate
network switching and routing,” in International Conference on Microelec-
tronic Systems Education, 2007, pp. 160–161.

[109] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “NetFPGA
SUME: Toward 100 Gbps as research commodity,” IEEE micro, vol. 34, no. 5,
pp. 32–41, 2014.

[110] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on a single
FPGA,” in International Symposium on Architectures for Networking and
Communications Systems, 2011, pp. 12–23.

[111] V. Puš, L. Kekely, and J. Kořenek, “Design methodology of configurable high
performance packet parser for FPGA,” in International Symposium on Design
and Diagnostics of Electronic Circuits Systems, 2014, pp. 189–194.

[112] A. Bitar, M. S. Abdelfattah, and V. Betz, “Bringing programmability to the
data plane: Packet processing with a NoC-enhanced FPGA,” in International
Conference on Field Programmable Technology (FPT), 2015, pp. 24–31.

[113] W. Jiang and V. K. Prasanna, “A FPGA-based parallel architecture for
scalable high-speed packet classification,” in International Conference on
Application-specific Systems, Architectures and Processors, 2009, pp. 24–31.

[114] W. Jiang and V. K. Prasanna, “Field-split parallel architecture for high per-
formance multi-match packet classification using FPGAs,” in Symposium on
Parallelism in Algorithms and Architectures, 2009, p. 188–196.

[115] T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+ packet
classification,” in International Conference on High Performance Switching
and Routing, 2012, pp. 1–6.

[116] C. R. Clark, C. D. Ulmer, and D. E. Schimmel, “An FPGA-based network in-
trusion detection system with on-chip network interfaces,” International jour-
nal of electronics, vol. 93, pp. 403–420, 2006.

146



[117] A. Das, D. Nguyen, J. Zambreno, G. Memik, and A. Choudhary, “An FPGA-
based network intrusion detection architecture,” Transactions on Information
Forensics and Security, vol. 3, no. 1, pp. 118–132, 2008.

[118] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable high through-
put firewall in FPGA,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2008, pp. 43–52.

[119] S. M. Keni and S. Mande, “Design and implementation of hardware firewall
using FPGA,” in International Conference for Convergence in Technology,
2018, pp. 1–4.

[120] J. Cullen, A. Gerbeth, and M. Dorojevets, “FPGA-based satisfiability filters
for deep packet inspection,” in Long Island Systems, Applications and Tech-
nology Conference (LISAT), 2018, pp. 1–4.

[121] M. Ceška, V. Havlena, L. Holík, J. Korenek, O. Lengál, D. Matoušek, J. Ma-
toušek, J. Semric, and T. Vojnar, “Deep packet inspection in FPGAs via ap-
proximate nondeterministic automata,” in International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 109–117.

[122] Q. Chen, V. Mishra, and G. Zervas, “Reconfigurable computing for network
function virtualization: A protocol independent switch,” in International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig), 2016, pp. 1–6.

[123] N. Tarafdar, T. Lin, N. Eskandari, D. Lion, A. Leon-Garcia, and P. Chow,
“Heterogeneous virtualized network function framework for the data center,”
in International Conference on Field Programmable Logic and Applications
(FPL), 2017, pp. 1–8.

[124] J. Meng, N. Gebara, H. Ng, P. Costa, and W. Luk, “Investigating the fea-
sibility of FPGA-based network switches,” in International Conference on
Application-specific Systems, Architectures and Processors, vol. 2160-052X,
2019, pp. 218–226.

[125] Z. Dai and J. Zhu, “Saturating the transceiver bandwidth: Switch fabric design
on FPGAs,” in International Symposium on Field Programmable Gate Arrays
(FPGA), 2012, p. 67–76.

[126] A. Bitar, J. Cassidy, N. Enright Jerger, and V. Betz, “Efficient and pro-
grammable ethernet switching with a NoC-enhanced FPGA,” in Symposium

147



on Architectures for Networking and Communications Systems, 2014, p.
89–100.

[127] M. S. Abdelfattah, A. Bitar, and V. Betz, “Take the highway: Design for em-
bedded NoCs on FPGAs,” in International Symposium on Field-Programmable
Gate Arrays (FPGA), 2015, p. 98–107.

[128] P. Papaphilippou, J. Meng, and W. Luk, “High-performance FPGA network
switch architecture,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), 2020, p. 76–85.

[129] S. Wijeratne, A. Ekanayake, S. Jayaweera, D. Ravishan, and A. Pasqual,
“Scalable high performance sdn switch architecture on FPGA for core net-
works,” 2019.

[130] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4->NetFPGA
workflow for line-rate packet processing,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2019, p. 1–9.

[131] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weatherspoon, M. Canini,
N. Zilberman, F. Pedone, and R. Soule, “P4xos: Consensus as a network
service,” Research Report 2018-01. USI., Tech. Rep., 2018.

[132] Amazon, “Amazon EC2,” 2020. [Online]. Available: https://aws.amazon.
com/ec2/?nc2=h_ql_prod_fs_ec2

[133] ——, “Amazon F1,” 2020. [Online]. Available: https://aws.amazon.com/ec2/
instance-types/f1/

[134] Microsoft, “What is Azure?” 2020. [Online]. Available: https://azure.
microsoft.com/en-gb/overview/what-is-azure/

[135] Google, “Google Cloud,” 2020. [Online]. Available: https://cloud.google.com/

[136] Baidu, “FPGA cloud server,” 2020. [Online]. Available: https://cloud.baidu.
com/product/fpga.html

[137] Huawei, “FPGA accelerated cloud server,” 2020. [Online]. Available:
https://www.huaweicloud.com/en-us/product/fcs.html

[138] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Mas-
sengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera, L. Adams,
H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin, K. S. Gatlin,

148

https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2
https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://azure.microsoft.com/en-gb/overview/what-is-azure/
https://azure.microsoft.com/en-gb/overview/what-is-azure/
https://cloud.google.com/
https://cloud.baidu.com/product/fpga.html
https://cloud.baidu.com/product/fpga.html
https://www.huaweicloud.com/en-us/product/fcs.html


M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz, K. Kagi, R. K.
Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel, B. Perez, A. Rap-
sang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan,
G. Weisz, L. Woods, P. Yi Xiao, D. Zhang, R. Zhao, and D. Burger, “Serving
DNNs in real time at datacenter scale with project brainwave,” IEEE Micro,
vol. 38, no. 2, pp. 8–20, 2018.

[139] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure accelerated
networking: SmartNICs in the public cloud,” in Symposium on Networked
Systems Design and Implementation, 2018, pp. 51–66.

[140] Y. Lin and L. Shao, “Supervessel: The open cloud service for openpower,”
White paper, IBM corporation, 2015.

[141] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators for
efficient cloud computing,” in International Conference on Cloud Computing
Technology and Science (CloudCom)), 2015, pp. 430–435.

[142] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,
“Enabling FPGAs in the cloud,” in Conference on Computing Frontiers, 2014,
pp. 1–10.

[143] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized
execution runtime for FPGA accelerators in the cloud,” IEEE Access, vol. 5,
pp. 1900–1910, 2017.

[144] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FP-
GAs in hyperscale data centers,” in International Conference on Ubiquitous
Intelligence and Computing, 2015, pp. 1078–1086.

[145] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
FPGAs for data center applications,” in International Conference on Field-
Programmable Technology (FPT), 2016, pp. 36–43.

[146] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and T. Mosci-
broda, “The Feniks FPGA operating system for cloud computing,” in Asia-
Pacific Workshop on Systems, 2017, pp. 1–7.

[147] W. Wang, M. Bolic, and J. Parri, “pvFPGA: accessing an FPGA-based hard-
ware accelerator in a paravirtualized environment,” in International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2013, pp. 1–9.

149



[148] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in
the cloud: Booting virtualized hardware accelerators with openstack,” in In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2014, pp. 109–116.

[149] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P. Chow, “Galapagos: A
full stack approach to FPGA integration in the cloud,” IEEE Micro, vol. 38,
no. 6, pp. 18–24, 2018.

[150] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wire-
less sensor networks for habitat monitoring,” in International workshop on
Wireless sensor networks and applications, 2002, p. 88.

[151] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A tiny
aggregation service for ad-hoc sensor networks,” in Symposium on Operating
systems design and implementation, vol. 36, 2002, pp. 131–146.

[152] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion,” in In-
ternational conference on Mobile computing and networking, 2000, pp. 56–67.

[153] M. Ding, X. Cheng, and G. Xue, “Aggregation tree construction in sensor
networks,” in Vehicular Technology Conference, vol. 4, 2003, pp. 2168–2172.

[154] H. Luo, H. Tao, H. Ma, and S. K. Das, “Data fusion with desired reliability in
wireless sensor networks,” Transactions on Parallel and Distributed Systems
(TPDS), vol. 23, no. 3, pp. 501–513, 2012.

[155] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and archi-
tecture for data stream management,” International Journal on Very Large
Data Bases (VLDB), vol. 12, no. 2, pp. 120–139, 2003.

[156] Y. Ahmad and U. Cetintemel, “Network-aware query processing for stream-
based applications,” in International conference on Very Large Databases
(VLDB), 2004, pp. 456–467.

[157] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. B. Zdonik, “The design of the Borealis stream processing engine.” in
Cidr, 2005, pp. 277–289.

150



[158] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing sys-
tems,” in PInternational Conference on Data Engineering, 2006, p. 49.

[159] L. Ying, Z. Liu, D. Towsley, and C. H. Xia, “Distributed operator placement
and data caching in large-scale sensor networks,” in International Conference
on Computer Communications (INFOCOM), 2008, pp. 1651–1659.

[160] S. Rizou, F. Dürr, and K. Rothermel, “Solving the multi-operator placement
problem in large-scale operator networks,” in International Conference on
Computer Communications and Networks, 2010.

[161] A. Benoit, H. Casanova, V. Rehn-Sonigo, and Y. Robert, “Resource allocation
for multiple concurrent in-network stream-processing applications,” Parallel
Computing, vol. 37, no. 8, pp. 331–348, 2011.

[162] ——, “Resource allocation strategies for constructive in-network stream pro-
cessing,” International Journal of Foundations of Computer Science, vol. 22,
no. 03, pp. 621–638, 2011.

[163] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in International
Conference on Distributed and Event-Based Systems, 2016, pp. 69–80.

[164] N. Tapoglou, J. Mehnen, A. Vlachou, M. Doukas, N. Milas, and D. Mourtzis,
“Cloud-based platform for optimal machining parameter selection based on
function blocks and real-time monitoring,” Journal of Manufacturing Science
and Engineering, vol. 137, no. 1, 2015.

[165] B. Lohrmann and O. Kao, “Processing smart meter data streams in the cloud,”
in PES Innovative Smart Grid Technologies Conference Europe, 2011.

[166] W. Zhang, P. Duan, Q. Lu, and X. Liu, “A Realtime Framework for Video
Object Detection with Storm,” in International Conference on Ubiquitous In-
telligence and Computing, no. January 2017, 2014, pp. 732–737.

[167] Y. Simmhan, B. Cao, and M. Giakkoupis, “Adaptive rate stream processing
for smart grid applications on clouds,” in International Workshop on Scientific
Cloud Computing, 2011, pp. 33–37.

[168] Z. Li, C. Chen, and K. Wang, “Cloud computing for agent-based urban trans-
portation systems,” IEEE Intelligent Systems, vol. 26, no. 1, pp. 73–79, 2011.

151



[169] E. Jean, R. T. Collins, A. R. Hurson, S. Sedigh, and Y. Jiao, “Pushing sensor
network computation to the edge,” in International Conference on Wireless
Communications, Networking and Mobile Computing, 2009.

[170] L. Hong, C. Cheng, and S. Yan, “Advanced sensor gateway based on FPGA for
wireless multimedia sensor networks,” in International Conference on Electric
Information and Control Engineering, 2011, pp. 1141–1146.

[171] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-
based cloudlets in mobile computing,” Pervasive Computing, vol. 8, no. 4, pp.
14–23, 2009.

[172] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Workshop on Mobile Cloud Computing (MCC),
no. August 2012, 2012, p. 13.

[173] S. H. Park, O. Simeone, and S. S. Shitz, “Joint Optimization of Cloud and
Edge Processing for Fog Radio Access Networks,” in Transactions on Wireless
Communications, vol. 15, no. 11, 2016, pp. 7621–7632.

[174] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of Cloud
computing and Internet of Things: A survey,” Future Generation Computer
Systems, vol. 56, pp. 684–700, 2016.

[175] O. Tomanek, P. Mulinka, and L. Kencl, “Multidimensional cloud latency mon-
itoring and evaluation,” Computer Networks, vol. 107, no. 1, pp. 104–120,
2016.

[176] M. Hatto, T. Miyajima, and H. Amano, “Data reduction and parallelization for
human detection system,” in Workshop on Synthesis And System Integration
of Mixed Information Technologies, 2015, pp. 134–139.

[177] C. Blair, N. M. Robertson, and D. Hume, “Characterising a Heterogeneous
System for Person Detection in Video using Histograms of Oriented Gradients:
Power vs. Speed vs. Accuracy,” Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 3, no. 2, pp. 236–247, 2013.

[178] M. Kachouane, S. Sahki, M. Lakrouf, and N. Ouadah, “HOG based fast human
detection,” in International Conference on Microelectronics (ICM), no. 24,
2012.

152



[179] B. Benfold and I. Reid, “Stable multi-target tracking in real-time surveillance
video,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2011, pp. 3457–3464.

[180] R. A. Cooke and S. A. Fahmy, “A model for distributed in-network and near-
edge computing with heterogeneous hardware,” Future Generation Computer
Systems, vol. 105, pp. 395–409, 2020.

[181] H. M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker, “Highly parame-
terized k-means clustering on FPGAs: Comparative results with GPPs and
GPUs,” in International Conference on Reconfigurable Computing and FPGAs
(ReConFig), no. 1, 2011, pp. 475–480.

[182] Y. R. Qu, H. H. Zhang, S. Zhou, and V. K. Prasanna, “Optimizing many-
field packet classification on FPGA, multi-core general purpose processor, and
GPU,” in Symposium on Architectures for Networking and Communications
Systems (ANCS), 2015.

[183] A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore, “HyPaFilter: a
versatile hybrid FPGA packet filter,” in Symposium on Architectures for Net-
working and Communications Systems (ANCS), 2016.

[184] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized
Execution Runtime for FPGA Accelerators in the Cloud,” IEEE Access, vol. 5,
pp. 1900–1910, 2017.

[185] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualisation,”
in International Conference on Field Programmable Logic and Applications
(FPL), 2018.

[186] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat, “Chronos:
predictable low latency for data center applications,” in Symposium on Cloud
computing, 2012.

[187] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the ACM,
vol. 56, 2013.

[188] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern GPU interconnect: PCIe, NVLink, NV-SLI, NVSwitch
and GPUDirect,” Transactions on Parallel and Distributed Systems (TPDS),
vol. 31, no. 1, pp. 94–110, 2020.

153



[189] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-network
computing is a dumb idea whose time has come,” in Workshop on Hot Topics
in Networks (HotNets), 2017.

[190] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached FP-
GAs for data center applications,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), 2016.

[191] R. A. Cooke and S. A. Fahmy, “Quantifying the latency benefits of near-
edge and in-network FPGA acceleration,” in International Workshop on Edge
Systems, Analytics and Networking (EdgeSys), 2020, pp. 7–12.

[192] S. Shreejith, R. A. Cooke, and S. A. Fahmy, “A smart network interface ap-
proach for distributed applications on Xilinx Zynq SoCs,” in International
Conference on Field Programmable Logic and Applications (FPL), 2018, pp.
186–1864.

[193] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A
reusable integration framework for FPGA accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 8, no. 4, p. 22,
2015.

[194] A. Cartas et al., “A reality check on inference at mobile networks edge,” in In-
ternational Workshop on Edge Systems, Analytics and Networking (EdgeSys),
2019, pp. 54–59.

[195] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” IEEE Micro, vol. 35,
no. 3, pp. 10–22, 2015.

[196] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
SIGCOMM Computer Communication Review, vol. 46, no. 2, pp. 18–24, 2016.

[197] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration: A
survey of architectures, methods, and applications,” ACM Computing Surveys,
vol. 51, no. 4, pp. 72:1–72:39, Jul. 2018.

154



[198] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and <0.5mb model size,” 2016.

[199] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting
on microcontrollers,” 2017.

[200] H. Kwon, T. Krishna, L. Lai, and V. Chandra, “HERALD: Optimizing het-
erogeneous DNN accelerators for edge devices,” 2019.

[201] D. Velasco-Montero, J. Fernández-Berni, R. Carmona-Galan, and
A. Rodríguez-Vázquez, “Performance analysis of real-time dnn inference
on raspberry pi,” in Real-Time Image and Video Processing, 2018.

[202] S. Lanka, “Squeezenet hls implementation,” 2017. [Online]. Available:
https://github.com/lankas/SqueezeNet

[203] Coral, “Edge TPU performance benchmarks,” 2019. [Online]. Available:
https://coral.ai/docs/edgetpu/benchmarks/

[204] S. Shreejith, R. A. Cooke, and S. A. Fahmy, “A smart network interface ap-
proach for distributed applications on Xilinx Zynq SoCs,” in Proc. FPL, 2018,
pp. 186–190.

[205] N. D. Lane and P. Warden, “The deep (learning) transformation of mobile
and embedded computing,” Computer, vol. 51, no. 5, pp. 12–16, 2018.

155

https://github.com/lankas/SqueezeNet
https://coral.ai/docs/edgetpu/benchmarks/

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Introduction
	Motivations
	Objectives
	Contributions
	Thesis Roadmap
	Publications

	Chapter Background and Literature Review
	Computing Platforms
	Central Processing Units
	Field Programmable Gate Arrays
	FPGA Accelerator Design
	Graphics Processing Units
	Application Specific Integrated Circuits (ASICs)
	Summary

	Accelerator Integration
	PCIe
	Network interface
	Tightly coupled SoC
	Interface overheads

	Summary
	Networked computing systems
	Edge Networks
	Datacentre Networks
	In-network computing
	Network elements
	FPGAs for network applications
	Cloud Computing
	FPGAs in the cloud

	Mathematical Modelling
	Sensor network modelling
	Distributed Stream Processing Models
	Summary


	Chapter Modelling distributed computing with heterogeneous hardware
	Introduction
	Contributions
	Related Work
	Edge/Fog Computing
	Hardware acceleration

	Scenario and Metrics
	Latency
	Bandwidth
	Energy
	Financial Cost

	Proposed Model
	Tasks
	Implementations
	Platforms
	Network
	Sources and Data
	Allocation Variables
	Constraints

	Performance Metrics
	End-to-End Latency
	Throughput
	Data-rate
	Energy Consumption
	Financial Cost
	Combined Evaluation Metrics

	Case Study
	Network
	Tasks
	Platforms
	Centralised Software
	In-network software
	Centralised Hardware
	In-network hardware
	Optimal Placement
	Summary
	Event Driven Simulation

	Further Analysis
	Relative Computing Capability
	Task Data Reduction
	Network Structure
	Hardware Acceleration

	Generating In-Network Task and Hardware Placement with Heterogeneous Hardware
	Objective function formulation
	Case Study
	Evaluation with Synthetic Networks
	Summary

	Summary

	Chapter Quantifying the Latency Overheads of FPGA Accelerators
	Introduction
	Contributions
	Related Work
	Experiments
	Latency
	Throughput
	Platforms

	Results
	Median Latency
	FPGA Latency Breakdown
	Latency Distributions
	Tail Latencies
	Packet Size
	Throughput

	Discussion
	PCIe Accelerators
	Network-attached Accelerators

	Summary

	Chapter Near-Edge FPGA Acceleration for the Internet of Things
	Introduction
	Contributions
	Related Work
	Design and Experiments
	Application
	Measurements
	Platforms

	Results
	Isolated Edge Node Measurements
	Impact of Multiple Edge Devices
	Discussion

	Accelerator Location
	Results
	Discussion

	Summary

	Chapter Conclusions and Future Work
	Summary of Contributions
	Mathematical representation of in-network and near edge computing
	Optimising hardware and task placement
	Quantifying costs associated with FPGA accelerators
	Demonstration of in-network FPGA acceleration

	Future Research
	Practically validating the model
	Improving optimisation runtime
	Developing generalised in-network FPGA infrastructure
	Combination of model and FPGA infrastructure
	Defining accelerator communication protocols

	Summary


