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Abstract

The cloning algorithm has been introduced in the theoretical physics litera-

ture as a numerical procedure to study the large deviations of additive path function-

als of stochastic processes. Due to its broad applicability, the convergence properties

of the cloning algorithm have recently become a subject of research interest with

only partial progress in continuous time. In this work, we derive rigorous conver-

gence results by providing a novel interpretation of the cloning algorithm based on

Feynman-Kac models and their particle approximations. We then adapt already

established convergence results for mean field particle approximations to a broader

class of interacting particle approximations, which includes cloning algorithms. This

way, we obtain bias and Lp error bounds, with order of convergence given respec-

tively by 1/N and 1/
√
N , and a Central Limit Theorem. Finally, we show how to

apply these results to the study of large deviations of additive path functionals for

Markov processes and, in particular, how to construct efficient interacting particle

approximations for estimating the scaled cumulant generating function. Our results

apply to a vast class of jump processes on locally compact state spaces, and do not

involve any time discretization in contrast to previous approaches. This also provides

a rigorous framework that can be used to explore the various degrees of freedom in

the design of interacting particle approximations and to improve the efficiency of the

algorithms.
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Chapter 1

Introduction

The study of large deviations for additive path functions of stochastic pro-
cesses arises in many physical applications such as molecular dynamics, chemical
reactions and current fluctuations of non-equilibrium lattice gas models. Unfor-
tunately, when a system is complex enough, it ceases to be feasible to simulate
repeatedly the true dynamics to observe a rare event. One solution is to generate
the atypical trajectories in a controlled way.

A widely-used class of numerical procedures for generating rare events ef-
ficiently are importance sampling methods based on cloning algorithms (Giardinà
et al., 2006; Lecomte and Tailleur, 2007), which are used to evaluate numerically
the scaled cumulant generating function (SCGF) of additive observables in Markov
processes, a quantity which plays an essential role in the study of large deviations of
non-equilibrium systems. Cloning algorithms combine importance sampling with a
stochastic selection mechanism, based on classical ideas of evolutionary algorithms
(Anderson, 1975; Grassberger, 2002): a fixed size population of copies of the orig-
inal system evolves in parallel, subject to cloning or killing in such a way as to
favour the realisation of atypical trajectories. Various variants of this approach
are now applied to different physical systems of interest, including current fluctu-
ations of non-equilibrium lattice gas models (Hurtado and Garrido, 2009; Hurtado
et al., 2014; Nemoto et al., 2019; Chleboun et al., 2018), dynamical phase transi-
tions (Pérez-Espigares and Hurtado, 2019), turbulent flows (Lestang et al., 2020),
glassy dynamics (Pitard et al., 2011), heat waves in climate models (Ragone et al.,
2018), and pressure of the edge-triangle model (Giardinà et al., 2020). Due to its
widespread applications, the mathematical justification and convergence properties
of the cloning algorithm have recently become a subject of research interest with
only partial progress. Formal approaches so far are based on a branching process
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interpretation of the algorithm in discrete time (Nemoto et al., 2017), with limited
and mostly numerical results in continuous time (Hidalgo et al., 2017; Tchernookov
and Dinner, 2010; Nemoto et al., 2016; Brewer et al., 2018).

In this thesis, we provide a novel interpretation of the cloning algorithm
through Feynman-Kac models and their particle approximations (Del Moral, 2004;
Del Moral and Miclo, 2000), which is itself an established approach to understand
sequential Monte Carlo (SMC) methods and particle filtering. Feynman-Kac models
were originally introduced in the 1940s (Kac, 1949) to express the semigroup of
a quantum particle evolving in a potential in terms of a functional-path integral
formula. In turn, Kac was inspired by Feynman (1949), who provided a heuristic
connection between the Schrödinger equation and path integration theory. The
key idea behind Feynman-Kac models is to enter the effects of a potential into the
distribution of the paths of a stochastic process. One of the main advantages of this
interpretation is that it is possible to construct explicitly N -particle systems which
converge to the associated Feynman-Kac model as the size of the system tends to
infinity. In particular, the Feynman-Kac representation provides natural semigroup
and martingale techniques to analyze the asymptotic behaviour of the associated
interacting particle approximation. These considerations have inspired us to find the
Feynman-Kac interpretation of the SCGF and to understand the cloning algorithm
as a particular interacting particle approximation of Feynman-Kac formulae.

More formally, we consider a pure jump Markov process Xt on a locally
compact Polish state space E, with initial distribution µ0 and with associated ex-
pectation denoted by Eµ0 . This setting covers in particular any finite-state Markov
chain or stochastic interacting system on a bounded domain (e.g. finite lattice) with
bounded total mass. We are interested in studying the large deviations associated
with a time-additive observable AT taken to be a real measurable function of the
paths of Xt over the time interval [0, T ], in particular our aim is to provide an
estimate of the scaled cumulant generating function (SCGF),

Λ(k) := lim
T→∞

1

T
log Eµ0

[
ekTAT

]
, k ∈ R .

Under general conditions, the SCGF can be rewritten in terms of asymptotics
of normalised t-marginal Feynman-Kac measures µt on E which solve a non-linear
evolution equation in the form

d

dt
µt(f) = µt

(
L̂kf + Vkf − µt(Vk)f

)
,
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for any bounded continuous real-valued function f ∈ Cb(E), where L̂k is a probability-
preserving modified version of the infinitesimal generator of the original jump process
and Vk ∈ C(E) is a potential function related to the observable AT . A key property of
Feynman-Kac models is that µt can be interpreted as the law of a non-linear Markov
process associated to a nonlinear probability generator in the form L̂k + L̃µt , known
as McKean interpretation (Del Moral, 2004). The non-linear part of the generator,
L̃µt , is not unique and the accuracy of the corresponding particle approximation
also depends on the choice of the McKean interpretation. The rates associated to
L̃µt depend on the distribution of µt itself, which in general is not known a priori.
A standard approach is to sample such processes through particle approximations,
which consist in running in parallel N copies (or ‘particles’) XN

t := (X1
t , . . . , X

N
t )

of the process, where the interactions between particles are introduced by ‘selection’
events consisting in replacing one or more particles with copies of another particle
appropriately chosen from the population. Then, µt is approximated by the empirical
distribution of the realisations

m(XN
t ) :=

1

N

N∑
i=1

δXi
t
.

The most basic particle approximation is given by mean field particle systems
(Del Moral, 2013, Section 5.4), which consist in simply running the McKean dynamic
in parallel on each of the particles. The study of the asymptotic behaviour of these
models is based on semigroup and martingale techniques (Del Moral and Miclo, 2000,
2007; Rousset, 2006; Cérou et al., 2016). This literature generally considers diffusive
dynamics and relies upon approximate time-discretisations.

One of the two main contributions in this thesis is the adaptation of well-
established convergence results for mean field particle approximations, in the context
of jump processes, to a broader class of interacting particle approximations, which
includes cloning algorithms (Angeli et al., 2020). In particular, we provide general
assumptions on the infinitesimal generator and carré du champ of an interacting
particle approximation XN

t which guarantee that the empirical distribution m(XN
t )

converges uniformly in time to µt in Lp and almost surely in the weak topology,
as the size N of the population goes to infinity. Moreover, we show that the order
of convergence of the bias and Lp error is given respectively by 1/N and 1/

√
N ,

as for mean field approximations. In a similar fashion, we also provide a central
limit theorem and explicit formulas for the asymptotic variance of the algorithms.
The framework we develop here can be used to explore several degrees of freedom
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in the design of interacting particle approximations that can be used to improve
performance.

The second major contribution is about the study of convergence of the
cloning algorithm (Angeli et al., 2019). We provide an infinitesimal description of
the cloning algorithm through Markov generators and the associated carré du champ
to show that the cloning algorithm is part of the above class of interacting particle
approximations and, hence, the aforementioned limit theorems apply to cloning too.
In contrast to previous work in the context of cloning algorithms (Nemoto et al.,
2017; Hidalgo et al., 2017), our mathematical approach does not require a time dis-
cretization and works in the very general setting of a pure jump Markov process on a
locally compact state space. This covers in particular any finite-state Markov chain
or stochastic particle systems on finite lattices with bounded total mass.

The thesis is structured as follows. In Chapter 2, we introduce various math-
ematical concepts used throughout this work, such as Markov semigroups, infinitesi-
mal generators and the carré du champ operator. In the second part of the Chapter,
we introduce general Feynman-Kac models associated to pure jumpMarkov processes
and show that they can be interpreted as the law of a non-linear Markov process,
known as a McKean interpretation (Del Moral, 2004). In Chapter 3, we describe a
general class of interacting particle approximations for Feynman-Kac models - which
includes cloning and mean field particle methods - and we adapt the convergence
results for mean field particle approximations (Del Moral and Miclo, 2000; Rousset,
2006) to this more general class of interacting particle approximations. In particular,
we establish general conditions for rigorously studying the Lp error and asymptotic
variance of estimators associated with a given interacting particle approximation.
In Chapter 4, we introduce mean field particle approximations and cloning algo-
rithms, and we provide a discussion on their convergence properties. We conclude
the chapter by presenting a third interacting particle approximation, the resampling
algorithm, which does not satisfy the assumptions for studying the convergence of
the algorithm, and we show in particular that the convergence results in Chapter 3
do not hold. In Chapter 5, we introduce large deviations and scaled cumulant gen-
erating functions (SCGF) of additive observables for pure jump Markov processes
and discuss how the results presented in Chapter 3 can be applied to estimate the
SCGF. We conclude the chapter by illustrating how to apply interacting particle
approximations to current fluctuations of lattice gases using the inclusion process as
an example. We conclude with a short discussion in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we introduce the setting of Markov pure jump processes and
present the general theory for continuous-time Feynman-Kac models. The defini-
tions and results presented in Section 2.1 are based on Liggett (2010); Kutner and
Masoliver (2017), whereas the content presented in Section 2.2 is based on Del Moral
(2004); Del Moral and Miclo (2000) and references therein.

2.1 The setting

2.1.1 Feller processes

Throughout this dissertation, E is a locally compact Polish state space. The
measurable structure on E is given by the Borel σ-algebra B(E). We denote by P(E)

the set of probability measures on E and by Cb(E) the space of bounded continuous
real-valued functions on E, with the uniform norm

||f || := sup
x∈E
|f(x)|,

which makes Cb(E) a Banach space.
The path space of the processes considered is

Ω = D([0,∞), E) := {ω : [0,∞)→ E càdlàg},

where càdlàg stands for right-continuous functions with left limits. The measurable
structure on Ω is given by the Borel σ-algebra F induced by the Skorohod topology.
The right-continuous filtration (Ft)t≥0 on Ω is such that the σ-algebra Ft is the
smallest such that the mapping ω 7→ ω(t), with ω ∈ Ω, is Ft-measurable for each
t ≥ 0.
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A continuous-time stochastic process on E is denoted by (Xt)t≥0, i.e. a family
of random variables Xt. The canonical construction of the random variables is
Xt(ω) = ω(t). In general, the process (Xt)t≥0 is characterised by a probability
measure P on the filtered measure space (Ω, F , Ft) with associated expectation
denoted by E. If we want to stress a particular initial condition x ∈ E of the process
we write Px and Ex. With ω drawn from this measure, the function t 7→ Xt(ω) is
called sample path. In the following we restrict ourselves to Feller processes, which
are defined as follows.

Definition 2.1.1 (Feller Process). A Feller process on E consists of a collection of
probability measures (Px)x∈E on (Ω, F) and a right-continuous filtration (Ft)t≥0 on
Ω with respect to which the random variables Xt are adapted, satisfying

• Px(X0 = x) = 1,

• (Feller property) the mapping x 7→ Ex[f(Xt)] is in Cb(E) for all f ∈ Cb(E) and
t ≥ 0,

• (Markov property) Ex[Y ◦ θs | Fs] = EXs [Y ], Px-almost surely, for all x ∈ E

and all bounded measurable Y on Ω. Here θs ωt := ωt+s denotes a time shift.

The Feller property allows to consider processes with general initial distribu-
tion µ0 ∈ P(E) via Pµ0 :=

∫
E Px µ0(dx). One advantage of Feller processes is that

they can be described via semigroups, infinitesimal generators or through martin-
gales.

Definition 2.1.2 (Semigroup). A family of continuous linear operators
(
P (t)

)
t≥0

on Cb(E) is called semigroup if it satisfies the following properties:

• P (0)f = f for all f ∈ Cb(E),

• limt→0+ P (t)f = f , for all f ∈ Cb(E),

• P (s+ t)f = P (s)P (t)f , for all f ∈ Cb(E) and s, t ≥ 0,

• P (t)f ≥ 0, for all non-negative f ∈ Cb(E) and t ≥ 0.

If, in addition, P (t)1 = 1 for each t ≥ 0, then
(
P (t)

)
t≥0

is called probability semi-
group.

Definition 2.1.3 (Generator). An infinitesimal generator is a linear operator L
on Cb(E) (possibly unbounded), with domain DL and range R(L), satisfying the
following properties:
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• DL is dense in Cb(E),

• if f ∈ DL, λ ≥ 0 and g := f − λL(f), then

inf
x∈E

f(x) ≥ inf
x∈E

g(x),

• R(1− λL) = Cb(E), for sufficiently small λ > 0, where 1 denotes the identity
function.

If in addition L(1) = 0, then L is called probability generator.

The following two results underline the connection of a Feller process with
its infinitesimal generator, through its probability semigroup.

Proposition 2.1.4. Given a Feller process Xt, define

P (t)f(x) = Exf(Xt),

for f ∈ Cb(E). Then P (t) is a probability semigroup on Cb(E).

Proof. See Liggett (2010), Theorem 3.15.

Remark. We stress that, if E is not compact and thus Cb(E) is not separable, the con-
verse of Proposition 2.1.4 doesn’t hold in general, i.e. given a probability semigroup
P (t) on Cb(E), the existence of a Feller process Xt satisfying Ex[f(Xt)] = P (t)f(x)

is not ensured (see Liggett, 2010, Theorem 3.26).

Theorem 2.1.5 (Hille-Yosida). Suppose that P (t) is a probability semigroup and
define L by

L(f) := lim
t→0

P (t)f − f
t

(2.1)

on
DL := {f ∈ Cb(E) | the limit (2.1) exists} .

Then L is a probability generator. Furthermore, the following statements hold:

• if f ∈ DL, then P (t)f ∈ DL for all t ≥ 0, and it is a continuously differentiable
function on t and satisfies

d

dt
P (t)f = P (t)L(f) = L(P (t)f);
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• for f ∈ Cb(E) and t > 0,

lim
n→∞

(
1− t

n
L
)−n

f = P (t)f.

Proof. See Liggett (2010), Theorem 3.16.

To study the fluctuation of a Feller process, it is useful to introduce the carré
du champ associated to a generator.

Definition 2.1.6 (carré du champ). Given a probability generator L on DL, the
carré du champ associated to L is the bilinear operator on DL ×DL given by

ΓL(γ, ϕ) := L(γ · ϕ)− γ · L(ϕ)− ϕ · L(γ) ,

for any γ, ϕ ∈ DL.

Lemma 2.1.7. Let Xt be a Feller process adapted to the filtration (Ft)t≥0, with
semigroup P (t) and generator L with domain DL ⊆ Cb(E) and let DL×C1

b (R+) denote
the space of continuous real-valued functions ϕ· on E × R+, such that ϕt ∈ DL, for
any t ≥ 0, and t 7→ ϕt(x) is a bounded continuous function with bounded continuous
first derivative, for any x ∈ E.

For any ϕ· ∈ DL × C1
b (R+), the process

Mt(ϕ·) := ϕt
(
Xt

)
− ϕ0

(
X0

)
−
∫ t

0

(
∂sϕs + L(ϕs)

)(
Xs

)
ds (2.2)

is a martingale relative to Px, for every x ∈ E, with predictable quadratic variation
given by 〈

M·(ϕ·)
〉t

0
=

∫ t

0
ΓL(ϕs, ϕs)

(
Xs

)
ds . (2.3)

Proof. The proof that Mt(ϕ·) is a martingale is a simple generalisation of Liggett
(2010, Theorem 3.32) to time-dependent functions. Indeed, for any γ· ∈ DL×C1

b (R+),
the expectation of the process (2.2) can be written as

Ex
[
Mt(γ·)

]
= P (t)γt(x)− γ0(x) −

∫ t

0
P (s)

(
∂sγs + L(γs)

)
(x) ds

= 0 ,

since P (s)
(
∂sγs+L(γs)

)
= d

dsP (s)(γs), by Hille-Yosida (Theorem 2.1.5). Moreover,
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Ex
[∣∣Mt(ϕ·)

∣∣] <∞ for any t ∈ R+, and

Ex
[
Mt(ϕ·)

∣∣∣Fu]
= Mu(ϕ·) + E

[
ϕt(Xt)− ϕu(Xu) −

∫ t

u

(
∂sϕs + L(ϕs)

)(
Xs

)
ds
∣∣∣Fu] ,

for any 0 ≤ u ≤ t. Substituting γs = ϕs+u, we obtain

Ex
[
ϕt(Xt)− ϕu(Xu) −

∫ t

u

(
∂sϕs + L(ϕs)

)(
Xs

)
ds
∣∣∣Fu]

= EXu
[
γt−u(Xt−u)− γ0(X0) −

∫ t−u

0

(
∂sγs + L(γs)

)(
Xs

)
ds
]

= EXu
[
Mt−u(γ·)

]
= 0.

For proving the second part of the statement, we have to show that

Mt(ϕ·)
2 −

∫ t

0
ΓL(ϕs, ϕs)

(
Xs

)
ds

is a martingale. Note that

Mt(ϕ·)
2 =

∫ t

0
2Ms(ϕ·)dMs(ϕ·)

=

∫ t

0
2
(
ϕs(Xs)− ϕ0(X0)

)
dMs − 2

∫ t

0

(∫ s

0

(
∂u + L

)
ϕu(Xu) du

)
dMs ,

and ∫ t

0
2
(
ϕs(Xs)− ϕ0(X0)

)
dMs

=
(
ϕt(Xt)− ϕ0(X0)

)2 − ∫ t

0
2
(
ϕs(Xs)− ϕ0(X0) ·

(
∂sϕs + L(ϕs)

)
ds

=

∫ t

0
ΓLs(ϕs, ϕs)(Xs) ds + Mt

(
ϕ2
·
)
− 2ϕ0(X0) · Mt(ϕ·) ,

by a simple computation. Therefore,

Mt(ϕ·)
2 −

∫ t

0
ΓL(ϕs, ϕs)

(
Xs

)
ds

= Mt

(
ϕ2
·
)
− 2ϕ0(X0) · Mt(ϕ·) − 2

∫ t

0

(∫ s

0

(
∂u + L

)
ϕu(Xu) du

)
dMs ,

which is a martingale, as the integral of a progressively measurable process with
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respect to a martingale is itself a martingale.

2.1.2 Pure jump Markov processes

Under the setting presented in Section 2.1.1, we introduce the pure jump
Markov processes, which will be the main object of our study.

Definition 2.1.8. A pure jump Markov process is a right-continuous Feller
process such that there exists a sequence of strictly increasing stopping times (Tn)n≥0

such that T0 = 0, Xt is constant on the interval [Tn, Tn+1) and XT−n
6= XTn for every

n ≥ 0.

To describe these jumps, it is usual to introduce the escape rate function
λ(x), such that λ(x)dt + o(dt) is the probability that Xt undergoes a jump during
[t, t+ dt] starting from the state Xt = x. More formally, the jumping times (Tn)n≥0

are given by the recursive formulae

Tn+1 := inf
{
t ≥ Tn |

∫ t

Tn

λ(Xs) ds ≥ en
}
,

where T0 = 0 and (en)n≥0 stands for a sequence of i.i.d. exponential random variables
with unit parameter. Moreover, when a jump occurs, Xt+dt is then distributed
with the probability kernel p(x, dy). The path of a pure jump process can thus
be represented by the sequence of visited states in E, together with the sequence of
waiting times in those states, so that the space of paths is equivalent to [E×(0,∞)]N.

Assumption 2.1.9. From now on, we assume:

• λ(·) : E → (0,∞) to be a strictly positive, bounded and continuous function;

• x 7→ p(x,A) is a continuous function for every A ∈ B(E).

Under Assumption 2.1.9, the overall transition rate is

W (x, dy) := λ(x) p(x, dy) ,

for (x, y) ∈ E2 and the pure jump process is a Feller process with probability gener-
ator given by

L(f)(x) =

∫
E
W (x, dy)

(
f(y)− f(x)

)
, ∀f ∈ Cb(E), x ∈ E, (2.4)

with domain DL = Cb(E) (see Ethier and Kurtz, 2009, p. 162).
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Along with jump processes on continuous compact space such as continuous-
time random walks (see e.g. Kutner and Masoliver, 2017), this setting includes in
particular finite-state continuous-time Markov chains. Typical examples we have in
mind are given by stochastic particle systems on E = SΛ; in this context, if S is finite
then E is compact even if Λ is countably infinite, whereas if S is countably infinite
and Λ is finite then E is locally compact. Classical examples are spin systems with
S = {−1, 1} or exclusion processes with S = {0, 1}, in which particles can jump
only onto empty sites (see e.g. Liggett, 2012).

The next result extends the domain of the infinitesimal generator of a pure
jump process to a broader class of (possibly unbounded) continuous functions. This
justifies the discussion in Section 5.4, where we make use of unbounded continu-
ous functions to construct an unbiased estimator for unnormalized Feynman-Kac
measures based on the cloning factor.

Lemma 2.1.10. Let Xt be a pure jump process satisfying Assumption 2.1.9. Let
f ∈ C(E) be a (possibly unbounded) continuous function on E such that∫

E

∣∣f(y)− f(x)
∣∣ p(x, dy) ≤ c ·max{1, f(x)} ,

for all x ∈ E. If f(X0) is integrable, then also f(Xt) is integrable, moreover the
process

Mt(f) := f(Xt) − f(X0) −
∫ t

0
L(f)(Xs) ds (2.5)

is a martingale and Dynkin’s formula

E
[
f(Xt)

]
= E

[
f(X0)

]
+

∫ t

0
E
[
L(f)(Xs)

]
ds

holds.

Proof. See (Hamza and Klebaner, 1995, Theorem 2).

For example, applying Lemma 2.1.10 to pure jump processes on a metric space
(E, d) with uniformly bounded jumps (i.e. there exists k > 0 such that p(x, dy) = 0

for any x, y ∈ E with d(x, y) > k) and considering the function f(x) = x (or similarly
f(x) = log x), we obtain that the processMt(f) (2.5) is a martingale.
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2.2 Feynman-Kac models

Feynman-Kac models arise in a wide variety of contexts, such as particle
physics, biology, nonlinear filtering or financial mathematics. The basic idea is to
enter the effects of a potential into the evolution of a Markov process. More precisely,
Feynman-Kac measures represent the semigroup of a given Feller process Xt on
E weighted by a potential function V ∈ Cb(E). In Chapter 5 we will show, as
an application, how to interpret large deviations for additive path functionals of
stochastic processes via Feynman-Kac models. One main advantage of Feynman-
Kac models is that they can be interpreted as genetic type particle models, with
mutation-selection transitions, as we illustrate in the following chapters.

Lemma 2.2.1. Consider a potential function V ∈ Cb(E) and the tilted generator

LV(f)(x) := L(f)(x) + V(x)f(x) defined for all f ∈ Cb(E) . (2.6)

Then the family of operators
(
PV(t) : t ≥ 0

)
with PV : Cb(E) → Cb(E), defined as

the solution to the backward equation

d

dt
PV(t)f = LV

(
PV(t)f

)
with PV(0)f = f (2.7)

for all f ∈ Cb(E), forms a non-conservative semigroup, the so-called Feynman-Kac
semigroup, and LV is its infinitesimal generator in the sense of the Hille-Yosida
Theorem.

Proof. See (Liggett, 2010, Theorem 3.47).

The semigroup PV(t) can be also expressed in terms of the original process
Xt and potential V via the usual formula

PV(t)f(x) = Ex
[
f(Xt) · exp

(∫ t

0
V(Xs) ds

)]
.

In order to control the asymptotic behaviour of PV(t), we make the following
assumption, which closely resembles (Rousset, 2006, Assumption 1) on asymptotic
stability.

Assumption 2.2.2 (Asymptotic Stability). The spectrum of LV = L + V (2.6)
is bounded by a principal eigenvalue λ0. Moreover, λ0 is associated to a positive
eigenfunction r ∈ Cb(E) and an eigenmeasure µ∞ ∈ P(E). Finally, there exist
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constants α > 0 and ρ ∈ (0, 1) such that

∥∥e−tλ0PV(t)f(·)− µ∞(f)
∥∥ ≤ ‖f‖ · αρt , (2.8)

for every t ≥ 0 and f ∈ Cb(E).

Asymptotic stability is for example guaranteed for all irreducible, finite-state
continuous-time Markov chains which necessarily have a spectral gap. For alter-
native sufficient conditions implying asymptotic stability in a more general context
including continuous state spaces, see Section 2.4.

We introduce the measures νt,µ0 for any general initial distribution µ0 ∈ P(E)

and t ≥ 0, defined by
νt,µ0(f) := µ0

(
PV(t)f

)
, (2.9)

for any f ∈ Cb(E). In the literature (Del Moral, 2004), νt is known as the unnor-
malised t-marginal Feynman-Kac measure. Applying Lemma 2.2.1, we can see that
νt solves the evolution equation

d

dt
νt,µ0(f) = νt,µ0

(
LV(f)

)
= νt,µ0

(
L(f) + V · f

)
, (2.10)

for any f ∈ Cb(E), t ≥ 0 and µ0 ∈ P(E). The measures with which one can most
naturally associate a process are the corresponding normalised t-marginal Feynman-
Kac measures in P(E),

µt,µ0(f) :=
νt,µ0(f)

νt,µ0(1)
, (2.11)

defined for any t ≥ 0 and f ∈ Cb(E).

Lemma 2.2.3. Under Assumption 2.2.2 on asymptotic stability, there exist con-
stants α̃ ≥ 0 and 0 < ρ < 1 such that for any f ∈ Cb(E),

∣∣µt,µ0(f)− µ∞(f)
∣∣ ≤ ‖f‖ · α̃ρt , (2.12)

for any t ≥ 0 and independently of the initial distribution µ0 ∈ P(E), where
µ∞ ∈ P(E) is the eigenmeasure associated to the principal eigenvalue λ0 w.r.t. the
generator LV . In particular µt,µ0 converges weakly to µ∞, as t→∞.

Proof. By definition of µt,µ0 (2.11) and then by asymptotic stability (Assumption
2.2.2),

µ∞(f) − ‖f‖α · ρt

1 + α · ρt
≤ µt,µ0(f) =

µ0

(
e−tλ0PV(t)f

)
µ0

(
e−tλ0PV(t)1

) ≤ µ∞(f) + ‖f‖α · ρt

1− α · ρt
,

(2.13)
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for any t > − logα/ log ρ and for some constant α > 0. This gives the bound (2.12)
for any t large enough. Increasing α accordingly to ensure that the bound holds also
for small t, we obtain (2.12) for any t ≥ 0.

For simplicity, in the rest of this dissertation the initial distribution µ0 is
fixed and we write µt (resp. νt) instead of µt,µ0 (resp. νt,µ0).

Now, we want to outline the evolution of the time-marginal distribution µt in
terms of interacting jump-type infinitesimal generators. The content presented in the
rest of this section is based on Del Moral (2004, 2013); Del Moral and Miclo (2000).
In this established framework it is possible to define generic Markov processes with
time marginals µt and then use Monte Carlo sampling techniques to approximate
those marginals.

Lemma 2.2.4. For every f ∈ Cb(E) and t ≥ 0, the normalised t-marginal µt (2.11)
solves the non-linear evolution equation

d

dt
µt(f) = µt

(
L(f)

)
+ µt(Vf)− µt(f) · µt(V). (2.14)

Proof. Using the evolution equation (2.10) of νt, we see that

d

dt
µt(f) =

d

dt

νt(f)

νt(1)

=
1

νt(1)
· νt
(
L(f) + V · f

)
− νt(f)

νt(1)2
νt
(
L(1) + V

)
= µt

(
L(f)

)
+ µt(Vf)− µt(f) · µt(V) .

The evolution equation (2.14) results from the unique decomposition of the
non-conservative generator L + V into a conservative and a diagonal part given
by the potential V. The latter, together with the normalisation of νt, leads to the
nonlinear second part in (2.14) which we want to rewrite to be in the form of another
infinitesimal generator, that we denote by L̃µt . Since (2.14) is non-linear in µt, this
depends itself on the current distribution such that

µ
(
L̃µ(f)

)
= µ(Vf) − µ(f) · µ(V) , (2.15)

for every µ ∈ P(E) and f ∈ Cb(E).
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Moreover, the evolution equation (2.14) can be interpreted as the evolution of
the Law(Xt) = µt of a time-inhomogeneous process Xt with a probability generator

Lµt := L+ L̃µt . (2.16)

In this situation, it is essential to observe that Lµt depends on the current distribution
µt of the random state Xt. The stochastic model Xt, or equivalently the collection
of probability generators (Lµ)µ∈P(E), is known as McKean interpretation of the non-
linear evolution equation in distribution space defined in (2.14). As will become clear
later, there is a natural evolutionary interpretation of the process Xt and we call the
jumps given by L mutation events and the jumps given by L̃µt selection events.

The evolution of the McKean model can be described using the propagator

Θt,T f(x) :=
PV(T − t)f(x)

µt
(
PV(T − t)1

) such that µT (f) = µt(Θt,T f) , (2.17)

for all 0 ≤ t ≤ T , which follows directly from the definition of µt (2.11) and the
semigroup characterising the time evolution for νt (2.7). We will show in Section
3.2.1 some key properties of the propagator Θt,T .

2.3 Description of some McKean models

The choice of the non-linear generator L̃µ satisfying (2.15) is not unique,
leading to various representations in the form

L̃µ(f)(x) =

∫
E
W̃ (x, y)

(
f(y)− f(x)

)
µ(dy) , (2.18)

where W̃ (x, y)µ(dy) is the overall transition rate of L̃µ and depends on the current
distribution µ. In order to have the generator of a well-defined Markov process, we
assume W̃ (x, y) ≥ 0, for any x, y ∈ E.

Lemma 2.3.1 (Sufficient conditions). An infinitesimal generator L̃µ in the form
(2.18) satisfies the McKean condition (2.15) if and only if

µ
(
W̃ (·, x)− W̃ (x, ·)

)
= V(x)− µ(V) , (2.19)

for all µ ∈ P(E) and x ∈ E. In particular, a sufficient condition on L̃µ for the
McKean condition (2.15) to hold is

W̃ (y, x) − W̃ (x, y) = V(x) − V(y) , (2.20)
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for all x, y ∈ E.

Proof. It is enough to observe that

µ
(
L̃µ(f)

)
=

∫
E2

W̃ (x, y)
(
f(y)− f(x)

)
µ(dy)µ(dx)

=

∫
E2

(
W̃ (y, x)− W̃ (x, y)

)
f(x)µ(dy)µ(dx) .

Lemma 2.3.1 leads to various possible McKean representations in the form
(2.16)-(2.18) (see e.g. Angeli et al., 2019; Rousset, 2006), that can be characterised
by the operator W̃ . One common choice related to algorithms in (Giardinà et al.,
2006; Lecomte and Tailleur, 2007) is

W̃c(x, y) =
(
V(x)− c

)−
+
(
V(y)− c

)+
, (2.21a)

where c ∈ R is an arbitrary constant and using the standard notation a+ = max{0, a}
and a− = max{0,−a} for positive and negative part of a ∈ R. The function V(x)

can be interpreted as a fitness potential for the process. Generic choices are:

• c = 0 is the default and simplest choice, but is usually not optimal as shown
in Proposition 4.1.3;

• c = µt(V) corresponding to the current average potential: if the system in
state x is less fit than the average it jumps with rate

(
V(x) − c

)− to a new
state y chosen from the distribution µt(dy) (so that the overall escape rate is(
V(x)− c

)−
µt(dy)), and independently, the system jumps to states fitter than

the average irrespective of its current state with overall escape rate
(
V(y) −

c
)+
µt(dy);

• c = supz∈E V(z) or infz∈E V(z), so that the selection events are independent
of the fitness potential at the target state y or at the departure state x, re-
spectively. This simplifies the implementation.

Another common choice of W̃ (2.18) satisfying (2.20) is (see e.g. Del Moral,
2013, Section 5.3.1)

W̃ (x, y) =
(
V(y)− V(x)

)+
, (2.21b)

which is particularly interesting for implementing efficient selection dynamics as dis-
cussed in Section 4.1.2. Here every jump from this part of the generator strictly
increases the fitness of the process, which is a stronger version of the previous idea
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where the process on average increased its fitness above level c. The rate depends
on departure state x and target state y, which is in general computationally more
expensive to implement than rates in (2.21a), but can still be feasible due to simpli-
fications in many concrete examples as illustrated by Angeli et al. (2019). A further
improvement of that idea is given by

W̃ (x, y) =
(
V(x)− µ(V)

)− · (V(y)− µ(V)
)+

µ
(
(V − µ(V))+

) , (2.21c)

which resembles a continuous-time version of selection processes which are known
under the names of stochastic remainder sampling (Baker, 1985) or residual sampling
(Kong et al., 1994) in discrete time. Here selection events change the process from
states x of less than average fitness µ(V) to states y fitter than average. However,
this variant is harder to implement than (2.21b) and offers only limited extra gain
on selection efficiency, as illustrated in Section 5.5 for inclusion processes (see Figure
5.2).

The process Xt can be described as follows. Between the selection events,
the process Xt evolves as a copy of the reference process Xt with generator L. The
rate of the selection events is given by the function

λ̃µt(x) = µt
(
W̃ (x, ·)

)
.

Moreover, when a selection event occurs, Xt+dt is distributed with probability kernel

p̃t(x, dy) =
W̃ (x, y)

µt
(
W̃ (x, ·)

) µt(dy) .

Independent of the particular McKean representation, the rates of the McK-
ean process (Xt : t ≥ 0) depend on the distribution µt itself, which is in general not
known. A standard approach is to sample such processes through particle approxi-
mations (Del Moral and Miclo, 2003), as we will see in Chapter 3.

2.4 Asymptotic stability

We present sufficient conditions for asymptotic stability as given in Assump-
tion 2.2.2, which is essential for ensuring that the process forgets exponentially fast
its initial conditions and thus for guaranteeing the stability of the associated parti-
cle approximations, as shown in Chapter 3. The discussion is based on the work of
Down et al. (1995); Tweedie (1994).
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Definition 2.4.1. A Feller process Yt is said to be φ-irreducible for a non-trivial
measure φ (i.e. φ(E) > 0) on (E,B(E)), if Ex

[ ∫∞
0 1Yt∈Adt

]
> 0 for every x ∈ E and

every set A ∈ B(E) such that φ(A) > 0. We simply say that Yt is irreducible if it is
φ-irreducible for some φ.

Definition 2.4.2. A φ-irreducible Feller process Yt is called aperiodic if there exist
a set C ∈ B(E) with φ(C) > 0, a non-trivial measure η and t, τ > 0 such that

Px(Yt ∈ B) ≥ η(B) and Px(Ys ∈ C) > 0 ,

for all x ∈ C, B ∈ B(E) and s ≥ τ .

Lemma 2.4.3. Let Yt be a φ-irreducible and aperiodic Feller process on a locally
compact state space E such that suppφ has non-empty interior. Denote by L and
P (t) the associated infinitesimal generator and the semigroup, respectively. Assume
that for a given function h ∈ Cb(E) such that h ≥ 1, there exist constants b, c > 0

and a compact set S ∈ B(E) such that for all x ∈ E

L(h)(x) ≤ −c · h(x) + b1S(x) .

Then there exist constants α ≥ 0 and ρ ∈ (0, 1) such that for any test function
f ∈ Cb(E) and t ≥ 0,

∣∣P (t)f(x)− π(f)
∣∣ ≤ ‖f‖h(x) · αρt ,

for any x ∈ E, where π is the (unique) invariant measure of Yt.

Proof. See Down et al. (1995), Theorem 5.2(c), using the fact that if a Feller process
Yt is φ-irreducible and suppφ has non-empty interior, then every compact set is
petite (See Tweedie (1994), Theorem 7.1 and Theorem 5.1).

In the following we discuss how the spectral properties of the (pure-jump)
tilted generator LV in Assumption 2.2.2 can imply asymptotic stability in the sense
of (2.8).

Assumption 2.4.4. We assume that the spectrum of LV (2.6) is bounded by a
greatest eigenvalue λ0. Moreover, there exist a positive function r ∈ Cb(E), unique
up to multiplicative constants, and a probability measure µ∞ ∈ P(E) satisfying
respectively

LV(r) = λ0 · r ,

18



and
µ∞
(
LV(f)

)
= λ0 · µ∞(f) for any f ∈ C(E) .

Without loss of generality, we can assume µ∞(r) = 1.

Remark. Sufficient conditions for Assumption 2.4.4 to hold can be found, for in-
stance, in Gong and Wu (2006); Gong et al. (2001). These are of course satisfied if
the original process with generator L is an irreducible, finite-state Markov chain, in-
cluding for example stochastic particle systems on finite lattices with a fixed number
of particles.

Under Assumption 2.4.4, we define the generator

LVr (f)(x) = r−1(x) · LV(r · f)(x) − λ0 · f(x) , (2.22)

which is known in the literature asDoob’s h-transform of LV (Chetrite and Touchette,
2015) or twisted Markov kernel (Whiteley and Kantas, 2017). Observe that LVr (1) =

0, so that it is a probability generator associated to a Markov process with probability
semigroup defined for any f ∈ Cb(E) by

PVr (t)f(x) := r−1(x) · e−λ0 PV(t)(rf)(x).

Proposition 2.4.5 (Asymptotic stability). Assume that there exists ε > 0 such that
the set

Kε :=
{
x ∈ E

∣∣V(x) ≥ λ0 − ε
}

is compact. Under Assumption 2.4.4, if the initial pure jump process (Xt : t ≥ 0)

with generator L is φ-irreducible for some φ for which suppφ has non-empty interior,
and aperiodic as defined above then (2.8) holds, i.e. there exist α > 0 and ρ ∈ (0, 1)

such that ∥∥e−λ0PV(t)f − µ∞(f)
∥∥ ≤ ‖f‖ · αρt

for every t ≥ 0 and f ∈ Cb(E).

Proof. First, note that if the initial process Xt is irreducible and aperiodic, then also
the process associated to LVr is irreducible and aperiodic. Moreover, LVr is bounded
in Kε and LVr (r−1) ≤ −ε r−1 for every x 6∈ Kε. Therefore, the hypotheses of Lemma
2.4.3 are satisfied for the generator LVr acting on the function h = r−1. Thus,
applying the lemma we obtain

∣∣PVr (t)f(x)− π(f)
∣∣ ≤ ‖f‖ r−1(x) · αρt,
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for any f ∈ Cb(E) and x ∈ E, where π(·) = µ∞(r ·) ∈ P(E) is the invariant measure
for LVr . Dividing by r−1(x) and substituting f with r−1f ∈ Cb(E), we obtain the
statement (‖r−1‖ <∞ and can be included in the constant α).
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Chapter 3

Interacting Particle
Approximations

In this Chapter, we present a generic description for interacting particle ap-
proximations of Feynman-Kac models, which include the classical mean field version
and cloning algorithms, as illustrated in Chapter 4. In particular, we provide gener-
alised conditions for convergence as our main result. Adapting already established
convergence results for mean field approximations (Del Moral and Miclo, 2000; Rous-
set, 2006) to a broader class of interacting particle approximations, we provide gen-
eral assumptions on the infinitesimal generator and carré du champ of the interacting
particle system which guarantee that the empirical distribution converges uniformly
in time to µt in Lp and almost surely in the weak topology. Moreover, we show
that the order of convergence of the Lp and systematic errors is given respectively
by 1/

√
N and 1/N , as for mean field approximations. We further provide a CLT

and explicit formulas for the asymptotic variance of the algorithms. These results
underline the several degrees of freedom in the design of the algorithms, providing a
new perspective on how to optimise the implementation of sequential Monte Carlo
methodologies.

3.1 General description

This section is concerned with the general description of interacting particle
approximations of Feynman-Kac t-marginal measures µt (2.11). These particle ap-
proximations involve running, in parallel, N copies or clones ξt := (ξ1

t , . . . , ξ
N
t ) ∈ EN

of the process (called particles), and then approximating µt by the empirical distri-
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bution m(ξt) of the realisations. For any x ∈ EN the latter is defined as

m(x)(dy) :=
1

N

N∑
i=1

δxi(dy) ∈ P(E). (3.1)

We write LN for the infinitesimal generator of an N -particle system ξt and
also call this an IPS generator, and denote the associated empirical distribution as

µNt (·) := m(ξt)(·). (3.2)

Recalling Definition 2.1.6, we denote by

Γ
L
N (γ, ϕ) = L

N
(γ · ϕ)− γ · LN (ϕ)− ϕ · LN (γ) , γ, ϕ ∈ Cb(EN ) ,

the standard carré du champ operator associated to the generator LN .
The full dynamics can be set up in various different ways such that µNt → µt

converges in an appropriate sense as N → ∞ for any t ≥ 0. Theoretical conver-
gence results can be obtained under the following assumptions, which are fulfilled by
standard mean field particle approximations (as shown in Section 4.1) and cloning
algorithms (Section 4.2).

Assumption 3.1.1. Given a family of McKean generators
(
Lµ
)
µ∈P(E)

(2.16) on
Cb(E), we assume that the sequence of particle approximations (ξt : t ≥ 0) with
generators (L

N
)N∈N on Cb(EN ) satisfies

L
N

(F )(x) = m(x)
(
Lm(·)(f)

)
, (3.3a)

Γ
L
N (F, F )(x) =

1

N
m(x)

(
Gm(·)(f, f)

)
+ O

(
1

N2

)
, (3.3b)

for mean-field observables F ∈ Cb(EN ) of the form F (x) = m(x)(f), f ∈ Cb(E).
Here

(
Gµ
)
µ∈P(E)

is a family of bilinear operators Gµ : Cb(E) × Cb(E) → Cb(E)

independent of the population size N , such that

sup
µ∈P(E)

sup
‖f‖≤1

‖Gµ(f, f)‖ <∞ .

Furthermore, we assume there exists a constant K < ∞ (independent of N), such
that for all N ∈ N, almost surely,

sup
t≥0

∣∣{i ∈ 1, . . . , N : ξit 6= ξit−
}∣∣ ≤ K . (3.3c)
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For the initial condition of the particle approximation we assume that

ξ1
0 , . . . , ξ

N
0 are i.i.d.r.v’s with distribution µ0 . (3.3d)

Remark. In general, the goal is to approximate µt(f) for a given f ∈ Cb(E), so it
is natural to set up the auxiliary particle approximation in a permutation invariant
way and use test functions of the form

F (x) = m(x)(f) =
1

N

N∑
i=1

f(xi) .

For instance, in the physics literature, these functions describe mean-field observables
averaged over the particle ensemble which are generally of most interest, e.g. for
the estimator (5.17) of the large deviation function it is sufficient to consider such
functions, as shown in Chapter 5.

To better understand the above assumptions, recall that the carré du champ
of an interacting particle system is a quadratic operator associated to the fluctu-
ations of the process, whereas the generator determines the expected behaviour of
the observables F (ξt). Thus, Assumption 3.1.1 implies that trajectories of mean-
field observables in a particle approximation coincide in expectation with average
trajectories of the McKean representation they are based on (3.3a), and concentrate
on their expectation with diverging N (3.3b). Condition (3.3c) assures that at any
given time only a bounded number of particles can change their state, which is a
mild technical assumption, necessary for applying Lemma 3.2.1 in the proof of the
Lp error estimates.

Theorem 3.1.2. Consider a sequence of particle approximations satisfying Assump-
tion 3.1.1 with empirical distributions µNt (3.2). Under Assumption 2.2.2 on asymp-
totic stability, for every p ≥ 2 there exists a constant cp > 0 independent of N and
T such that

sup
T≥0

E
[(
µNT (f)− µT (f)

)p]1/p
≤ cp‖f‖

N1/2
, (3.4)

for any f ∈ Cb(E). Furthermore, there exists a constant c′ > 0 independent of N
and T such that

sup
T≥0

∣∣E [µNT (f)
]
− µT (f)

∣∣ ≤ c′‖f‖
N

, (3.5)

for any f ∈ Cb(E) and N ∈ N large enough.

Remark. The constants cp and c′ depend on the Feynman-Kac model of interest, on
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the choice of the McKean model and on the considered interacting particle approxi-
mation.

The proof, presented in Section 3.2, is an adaptation of the results in Rousset
(2006) and makes use of the propagator (2.17) of µt and the martingale characteri-
sation of (ξt : t ≥ 0).

Remark. Theorem 3.1.2 implies in particular that the usual random error
∣∣µNT (f)−

E
[
µNT (f)

] ∣∣ converges in Lp norm as N goes to infinity, with rate 1/
√
N . Moreover,

by Markov’s inequality, Theorem 3.1.2 implies

Pµ0

(∣∣µNt (f)− µt(f)
∣∣ ≥ ε) ≤ cp · ‖f‖p

εp ·Np/2
,

for every ε, t > 0, f ∈ Cb(E), N ≥ K and p ≥ 2, where cp > 0 does not depend on
N . In particular, considering p > 2, we can see that

µNt (f) → µt(f) Pµ0 − a.s. (3.6)

as N → ∞, for any f ∈ Cb(E), by a Borel-Cantelli argument. The existence of a
countable determining class allows this to be further strengthened to the almost sure
convergence of µNt to µt in the weak topology (see, for example, Schmon et al., 2020,
Theorem 4).

Theorem 3.1.3 (Central Limit Theorem). Consider a sequence of particle approxi-
mations satisfying Assumption 3.1.1 with empirical distributions µNt (3.2) and such
that

µNt
(
GµNt (f, f)

)
→ µt

(
Gµt(f, f)

)
Pµ0 − a.s. (3.7)

as N → ∞, for any f ∈ Cb(E) and 0 ≤ t ≤ T . Under Assumption 2.2.2 on
asymptotic stability, for any f ∈ Cb(E), the sequence

V N
T (f) :=

√
N
(
µNT (f)− µT (f)

)
converges in law as N → ∞ to a centered Gaussian random variable VT (f) with
variance given in terms of the propagator (2.17) as

E
[
VT (f)2

]
= µ0

(
(Θ0,T f)2

)
+

∫ T

0
µs

(
Gµs

(
Θs,T f, Θs,T f

))
ds , (3.8)

where f := f − µT (f).

The proof of Theorem 3.1.3 is an adaptation of the results presented by
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Del Moral and Miclo (2000, Section 3.3.2) and is outlined in Section 3.3, where we
also provide sufficient conditions for the limit (3.7) to hold.

It is important to clarify that the estimators of the Feynman-Kac distribution
µt given by the empirical measures µNt usually have a bias, i.e. E[µNt (f)] 6= µt(f)

for f ∈ Cb(E), which vanishes only asymptotically, as illustrated in Theorem 3.1.2.
This arises from the non-linear time evolution of µt. However, it is straightforward
to derive unbiased estimators of the unnormalised measures νt (2.9), as shown by
the following result.

Proposition 3.1.4 (Unbiased Estimators). Consider a sequence of particle approx-
imations satisfying (3.3a) and (3.3d), with empirical distributions µNt (3.2). Then,
the unnormalised empirical measure

νNt (f) := νNt (1)µNt (f) with νNt (1) := exp
(∫ t

0
µNs (V)ds

)
,

is an unbiased estimator of the unnormalised t-marginal νt (2.9), i.e.

E
[
νNt (f)

]
= νt(f) for all t ≥ 0 and N ≥ 1 , (3.9)

for any f ∈ Cb(E).

Proof. First observe that E
[
νN0 (f)

]
= ν0(f). Indeed, νN0 (f) = µN0 (f) is the aver-

age of N i.i.d. random variables with law f#µ0, and µ0 corresponds to the initial
distribution of νt = νt,µ0 (2.9). Here f#µ0 denotes the image measure given by
f#µ0(B) = µ0(f−1(B)), for every Borel set B on R.

By Hille-Yosida (Theorem 2.1.5),

d

dt
Ex
[
F (ξt)

]
= Ex

[
L
N

(F )(ξt)
]
,

for any F ∈ Cb(EN ), where ξt is the realisation of the interacting particle system at
time t. Thus, considering functions of the form F (x) = m(x)(f), f ∈ Cb(E), and
recalling the definition of the empirical measure µNt (3.2), we can write

d

dt
Ex
[
µNt (f)

]
= Ex

[
L
N

(µNt (f))
]
.

Hence, by the chain rule, E
[
νNt (f)

]
satisfies the evolution equation

d

dt
E
[
νNt (f)

]
= E

[
νNt (f)µNt (V) + νNt (1)L

N(
µNt (f)

)]
. (3.10)
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Moreover, by assumption (3.3a) and using the characterisation of Lµ (2.15)-(2.16),
we have

L
N(
µNt (f)

)
= µNt (L(f)) + µNt (V f)− µNt (V) · µNt (f) .

Inserting into (3.10), this simplifies to

d

dt
E
[
νNt (f)

]
= E

[
νNt (L(f)) + νNt (Vf)

]
.

Since L + V also generates the time evolution of νt(f) (2.10), a simple Gronwall
argument with E

[
νN0 (f)

]
= ν0(f) gives (3.9).

3.2 Weak propagation of chaos

This section is devoted to the proof of Theorem 3.1.2, which is an adaptation
of the results presented by M. Rousset in Rousset (2006). Throughout this section we
consider a generic sequence of IPS generators (L

N
)N∈N satisfying Assumption 3.1.1

for some McKean generator Lµ (2.16). Furthermore, we assume that the normalised
Feynman-Kac measure µt is asymptotically stable, i.e. Assumption 2.2.2 holds.

The proof makes use of the propagator Θt,T of µt defined in (2.17), and the
martingale characterisation of LN . We denote by C0,1

b (E × R+) the set of bounded
functions ϕ· such that ϕt is continuous on E for every t ∈ R+ and ϕ·(x) has contin-
uous time derivative for every x ∈ E. Following the standard martingale characteri-
sation of Feller-type Markov processes (Lemma 2.1.7), one can show that, for every
ϕ· ∈ C0,1

b (E × R+), the process

MN
t (ϕ·) = µNt (ϕt)− µN0 (ϕ0)−

∫ t

0
µNs
(
∂sϕs + LµNs (ϕs)

)
ds (3.11)

is a martingale (see also Rousset, 2006, Proposition 3.3). With (3.3b) its predictable
quadratic variation is given by

〈
MN (ϕ·)

〉
t

=
1

N

∫ t

0
µNs
(
GµNs (ϕs, ϕs)

)
ds + O

(
1

N2

)
, (3.12)

and with (3.3c) jumps are bounded by

∣∣∆MN
t (ϕ·)

∣∣ ≤ 2K ‖ϕt‖
N

. (3.13)

The following technical Lemma for martingales will play a central role in the
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proof of Theorem 3.1.2.

Lemma 3.2.1. Let M be a locally square-integrable martingale with predictable
quadratic variation 〈M〉, M0 = 0 and uniformly bounded jumps supt |∆Mt| ≤ a <

∞. Then, for every q ∈ N0 and T ≥ 0, there exists a constant Cq > 0 such that

sup
t≤T

E
[
M2q+1

t

]
≤ Cq

q∑
k=0

a2q+1−2k+1
E
[
(〈M〉T )2k

]
.

Proof. See (Rousset, 2006, Lemma 6.2).

3.2.1 Properties of the normalised propagator

Lemma 3.2.2. For any test function f ∈ Cb(E) and 0 ≤ t ≤ T , we have for the
normalised propagator (2.17)

∂t
(
Θt,T f(x)

)
= −

(
L + V(x)− µt(V)

)(
Θt,T f(x)

)
.

Proof. See (Rousset, 2006, p. 836). The idea of the proof is to use the backward
equation (2.7) to compute the time derivative of the propagator Θt,T f (2.17).

Lemma 3.2.3. Under Assumption 2.2.2 on asymptotic stability, for any 0 ≤ t ≤ T
and n ∈ N and f ∈ Cb(E), there exists a constant β > 0 such that

‖Θt,T f‖ ≤ β · ‖f‖ and

∫ T

t
‖Θs,T f‖2

n
ds ≤ β2n · ‖f‖2n · (T − t).

Moreover, for any f := f − µT (f), there exists some 0 < ρ < 1, such that

‖Θt,T f‖ ≤ β · ‖f‖ · ρT−t and

∫ T

t
‖Θs,T f‖2

n
ds ≤ β2n · ‖f‖2n .

Proof. The proof can be found in (Rousset, 2006, Lemma 5.1) and the result is due
to the asymptotic stability of the Feynman-Kac model.

Observe that, applying Lemma 3.2.2 to the martingale characterisation (3.11)
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of LN , we obtain

MN
T

(
Θ·,T f

)
= µNT (f)− µN0

(
Θ0,T f

)
−
∫ T

0
µNs

((
L̃µNs − V + µs(V)

)(
Θs,T f

))
ds

= µNT (f)− µN0
(
Θ0,T f

)
−
∫ T

0
µNs
(
Θs,T f

)
·
(
µs(V)− µNs (V)

)
ds ,

(3.14)

for any f ∈ Cb(E), where the last equality follows by the characterisation (2.18) of
McKean models.

By (3.14), we obtain the stochastic differential equation

dµNt (Θt,T f) = dMN
t (Θ·,T f) +

(
µt(V)− µNt (V)

)
· µNt (Θt,T f) dt . (3.15)

Moreover, applying Lemma 3.2.3 to the predictable quadratic variation (3.12),
we obtain that almost surely,

〈
MN (Θ·,T f)

〉
t
≤ 1

N
‖G‖ · β2 ‖f‖2 (T − t) + O

(
1

N2

)
, (3.16)

where G(f, f) = supµ∈P(E)Gµ(f, f) .
Note that Equation (3.14) for centered test functions f = f − µT (f) can be

rewritten as

µNT (f)−µT (f) = µN0 (Θ0,T f) +MN
T (Θ·,T f) +

∫ T

0
µNs
(
Θs,T f

)
·
(
µs(V)−µNs (V)

)
ds .

(3.17)
The martingale characterisation (3.14)-(3.17) will be the key element in the

proof of Theorem 3.1.2.

3.2.2 Lp and bias estimates

Define

Φt,T (µ) :=
µPV(T − t)

µ
(
PV(T − t)1

) ∈ P(E), (3.18)

with µ ∈ P(E) and 0 ≤ t ≤ T . Observe that the measure Φt,T (µ) can be also
rewritten in terms of Θt,T (2.17) as

Φt,T (µ)(f) =
µ(Θt,T f)

µ(Θt,T 1)
, (3.19)

for any f ∈ Cb(E).
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To prove Theorem 3.1.2, we consider the decomposition

E[|µNT (f)− µT (f)|p]1/p ≤ E[|µNT (f)− Φt,T (µNt )(f)|p]1/p

+ E[|Φt,T (µNt )(f)− µT (f)|p]1/p, (3.20)

for any 0 ≤ t ≤ T . The proof is structured as follows:

• In Lemma 3.2.4, we bound the first term of the decomposition under Assump-
tions 2.2.2 and 3.1.1;

• In Lemma 3.2.5, we bound the second term under Assumption 2.2.2;

• In Lemma 3.2.6, we combine Lemma 3.2.4 and Lemma 3.2.5 to obtain Lp-error
estimates of order 1/N δ/2, for some δ ∈ (0, 1);

• Finally, from Lemma 3.2.6 we derive, by iteration, Lp estimates of order 1/
√
N ,

as presented in Theorem 3.1.2.

Lemma 3.2.4. Consider a sequence of particle approximations satisfying Assump-
tion 3.1.1 with empirical distributions µNt (3.2). Under Assumption 2.2.2 on asymp-
totic stability, for any p ≥ 2 there exists a constant cp > 0 such that

E
[∣∣µNT (f)− Φt,T (µNt )(f)

∣∣p] ≤ cp e
4p(T−t)‖V‖

(
‖f‖p (T − t)p/2

Np/2
+ O

( 1

Np

))
,

for any f ∈ Cb(E) and 0 ≤ t ≤ T .

Proof. This is an adaptation of the first part of the proof of (Rousset, 2006, Lemma
5.3).

First, consider

At2t1 := exp
(∫ t2

t1

(
µNs (V)− µs(V)

)
ds
)
, (3.21)

with 0 ≤ t1 ≤ t2. Observe that, by the stochastic differential equation (3.15), we
can write

d
(
Astµ

N
s (Θs,T f)

)
= Ast dMN

s (Θ·,T f) ,

for any t ≤ s ≤ T . Therefore,

ATt µ
N
T (f)− µNt (Θt,T f) =

∫ T

t
Ast dMN

s (Θ·,T f) . (3.22)
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Fixing 0 ≤ t ≤ T , the process

NN
τ (f) :=

∫ τ

t
Ast dMN

s (Θ·,T f) = Aτt · µNτ
(
Θτ,T f

)
− µNt (Θt,T f) ,

with t ≤ τ ≤ T , as the integral of a progressively measurable process with respect
to a martingale, is itself a martingale with predictable quadratic variation given by

〈NN (f)〉τ =

∫ τ

t

(
Ast
)2
d〈MN

s (Θ·,T f)〉 ,

and jumps bounded by

∣∣∆NN
τ (f)

∣∣ ≤ e2(T−t)‖V‖ · 4K β ‖f‖
N

,

by Assumption (3.3c) on bounded jumps, (3.13) and Lemma 3.2.3.
Moreover, with (3.19), we can write

∣∣µNT (f)− Φt,T (µNt )(f)
∣∣

=
∣∣∣µNT (f)− (ATt )−1µNt (Θt,T f)−

(
1− (ATt )−1µNt (Θt,T 1)

)
· Φt,T (µNt )(f)

∣∣∣
= (ATt )−1

∣∣∣NN
T (f) − NN

T (1) · Φt,T (µNt )(f)
∣∣∣ ,

where the last equality follows by (3.22). Noting that (ATt )−1 ≤ exp
(
2(T − t) · ‖V‖

)
by definition (3.21), we get

E
[∣∣µNT (f)− Φt,T (µNt )(f)

∣∣p]
≤ e2p(T−t)‖V‖ E

[ ∣∣∣NN
T (f) − NN

T (1) · Φt,T (µNt )(f)
∣∣∣p ] . (3.23)

By Lemma 3.2.1, we have that, for any q ∈ N0,

E
[∣∣NN

T (f)
∣∣2q+1

]
≤ Cq

q∑
k=0

(
e2(T−t)‖V‖ · 2K β‖f‖

N

)2q+1−2k+1

E
[(〈
NN
· (f)

〉
T

)2k]
,

and thus, by (3.16),

E
[∣∣NN

T (f)
∣∣2q+1

]
≤ C̃q

q∑
k=0

(
e2(T−t)‖V‖·‖f‖

N

)2q+1−2k+1( 1

N
‖f‖2 (T−t) +O

( 1

N2

))2k

.
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Therefore, for p = 2q+1, q ∈ N0, we get

E
[∣∣NN

T (f)
∣∣p] ≤ C̃p e

2p(T−t)‖V‖
(
‖f‖p (T − t)p/2

Np/2
+ O

( 1

Np

))
.

By Jensen’s inequality, this bound holds for any p ≥ 2. Applying this to inequality
(3.23), we obtain the result.

Lemma 3.2.5. Under Assumption 2.2.2 on asymptotic stability with constants α > 0

and ρ ∈ (0, 1), we have that for any p ≥ 2 and any 0 ≤ t ≤ T such that T − t ≥
(log ε − logα)/ log ρ for some ε ∈ (0, 1), the following bound holds

E
[
|Φt,T (µNt )(f)− µT (f)|p

]1/p ≤ 4‖f‖αρT−t

1− ε
.

Furthermore, when t = 0, there exists a constant Cp > 0 depending on p such that

sup
T≥0

E
[∣∣Φ0,T (µN0 )(f) − µT (f)

∣∣p]1/p ≤ Cp ‖f‖
N1/2

.

Proof. By definition (3.18) of Φt,T , for any η ∈ P(E) and λ ∈ R we have

Φt,T (η)(f) =
η
(
e−(T−t)λPV(T − t)f

)
η
(
e−(T−t)λPV(T − t)1

) .
Taking λ to be the principal eigenvalue of L+V, using Assumption 2.2.2 on asymp-
totic stability and the basic fact η(1) = 1, we can write

η
(
e−(T−t)λPV(T − t)f

)
≤ µ∞(f) + ‖f‖ · αρT−t ,

η
(
e−(T−t)λPV(T − t)1

)
≥ 1 − αρT−t .

Therefore, for T − t ≥ (log ε − logα)/ log ρ, for some ε ∈ (0, 1), we have

Φt,T (η)(f) − µ∞(f) ≤ µ∞(f) ·
( 1

1− αρT−t
− 1

)
+
‖f‖αρT−t

1− αρT−t

≤ 2‖f‖αρT−t

1− ε
,

and similarly

Φt,T (η)(f) − µ∞(f) ≥ − 2‖f‖αρT−t

1− ε
.
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Hence,

E
[
|Φt,T (µNt )(f)− µT (f)|p

]1/p
≤ E

[
|Φt,T (µNt )(f)− µ∞(f)|p

]1/p
+ E

[
|Φt,T (µt)(f)− µ∞(f)|p

]1/p
≤ 4‖f‖αρT−t

1− ε
.

This proves the first part of Lemma 3.2.5. Now, for t = 0, by definition of Φ0,T , we
have

Φ0,T (µN0 )(f) =
µN0
(
Θ0,T (f)

)
µN0
(
Θ0,T (1)

) .
Thus, we can write

Φ0,T (µN0 )(f) − µT (f)

= Φ0,T (µN0 )(f) ·
(
1− µN0 (Θ0,T (1))

)
+ µN0

(
Θ0,T (f)

)
− µ0

(
Θ0,T (f)

)
= Φ0,T (µN0 )(f) ·

(
µ0(Θ0,T (1))− µN0 (Θ0,T (1))

)
+ µN0

(
Θ0,T (f)

)
− µ0

(
Θ0,T (f)

)
,

by using the basic substitution 1 = µ0(Θ0,T (1). To conclude it is enough to observe
that, for any g ∈ Cb(E),

E
[∣∣µN0 (g)− µ0(g)

∣∣p] ≤ Cp ‖g‖p

Np/2
, (3.24)

with Cp > 0 constant depending on p (so, we can apply (3.24) for g = Θ0,T (1) and
g = Θ0,T (f)). Indeed, with (3.3d) at time t = 0, µN0 is the sum of N i.i.d. random
variables with law µ0. Inequality (3.24) is then a direct application of Marcinkiewicz-
Zygmund/BDG inequalities for i.i.d. variables.

Lemma 3.2.6. Consider a sequence of particle approximations satisfying Assump-
tion 3.1.1 with empirical distributions µNt (3.2). Under Assumption 2.2.2, there
exists δ ∈ (0, 1) such that for any p ≥ 2 there exists cp > 0 such that

sup
T≥0

E[|µNT (f)− µT (f)|p]1/p ≤ cp ‖f‖
N δ/2

,

for any N ∈ N large enough.

Proof. Recalling decomposition (3.20), where the first term is estimated in Lemma
3.2.4 and the second in Lemma 3.2.5, and using the basic fact T − t ≤ eT−t, we
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obtain

E[|µNT (f)− µT (f)|p]1/p

≤ cp ‖f‖ ·
e(4‖V‖+1/2)T + 1

N1/2
+ e4T‖V‖O

( 1

N

)
, (3.25)

taking t = 0, and

E[|µNT (f)− µT (f)|p]1/p

≤ cp‖f‖ ·
(e(4‖V‖+1/2)·(T−t)

N1/2
+ ρT−t

)
+ e4(T−t)‖V‖O

( 1

N

)
, (3.26)

taking 0 ≤ t ≤ T such that T − t is large enough.
The idea is to find t ≥ 0 and ε ∈ (0, 1) such that e(4‖V‖+1/2)·(T−t)

N1/2 ≤ 1
Nε/2 ,

ρT−t ≤ 1
Nε/2 .

Recalling that log ρ < 0, the solution is given by ε = − log ρ

4‖V‖+ 1
2
−log ρ

,

t = T − logN
8‖V‖+1−2 log ρ ,

(3.27)

provided T ≥ logN/(8‖V‖+ 1− 2 log ρ) to ensure that t ≥ 0. Also observe that for
N large enough, T − t satisfies the conditions in Lemma 3.2.5.

Otherwise, in case T < logN/(8‖V‖+ 1− 2 log ρ), we consider the bound
(3.25) instead, and we obtain

e(4‖V‖+1/2)T + 1

N1/2
≤ 1

N ε/2
+

1

N1/2
,

with
ε = 1 − 8‖V‖+ 1

8‖V‖+ 1− 2 log ρ
.

Taking δ = min{ε, ε} the result follows from observing that

e4(T−t)‖V‖

N
=

1

Nα
, with α >

1

2
,

for t = 0 and T at most of order logN as above, or for t ≥ 0 given by (3.27).
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Proof of Theorem 3.1.2. We denote

Ip(N) := sup
‖g‖=1

sup
T≥0

E
[∣∣µNT (g) − µT (g)

∣∣p] ,
in accordance with Rousset (2006, Section 5.2).

Using (3.17), we have for any f = f − µT (f), f ∈ Cb(E),

∣∣µNT (f)− µT (f)
∣∣p ≤ 3p

∣∣µN0 (Θ0,T f)
∣∣p + 3p

∣∣MN
T (Θ·,T f)

∣∣p +

3p
(∫ T

0

∣∣µNs (Θs,T f
)∣∣ · ∣∣µNs (V)− µs(V)

∣∣ ds)p . (3.28)

Writing

∣∣µNs (Θs,T f
)∣∣ · ∣∣µNs (V)− µs(V)

∣∣
= ‖Θs,T f‖1−1/p ·

( ∣∣∣µNs ( Θs,T f

‖Θs,T f‖

)∣∣∣ · ‖Θs,T f‖1/p ·
∣∣µNs (V)− µs(V)

∣∣ ) ,
and using Hölder’s inequality, we get that the third term in (3.28) can be bounded
by

(∫ T

0

∣∣µNs (Θs,T f
)∣∣ · ∣∣µNs (V)− µs(V)

∣∣ ds)p
≤
(∫ T

0
‖Θs,T f‖ ds

)p−1
·
(∫ T

0

∣∣∣µNs ( Θs,T f

‖Θs,T f‖

)∣∣∣p · ‖Θs,T f‖ ·
∣∣µNs (V)− µs(V)

∣∣p ds)
≤ Cp‖f‖p−1

(∫ T

0

∣∣∣µNs ( Θs,T f

‖Θs,T f‖

)∣∣∣p · ‖Θs,T f‖ ·
∣∣µNs (V)− µs(V)

∣∣p ds) ,
by Lemma 3.2.3. Using the fact that

µNs
(
Θs,T f

)
= µNs

(
Θs,T f

)
− µs

(
Θs,T f

)
,
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for centered test functions, and applying the Cauchy-Schwarz inequality, we get

E

[ ∫ T

0

∣∣∣µNs ( Θs,T f

‖Θs,T f‖

)∣∣∣p · ∣∣µNs (V)− µs(V)
∣∣p · ‖Θs,T f‖ ds

]
≤
∫ T

0
E
[∣∣∣µNs ( Θs,T f

‖Θs,T f‖

)
− µs

( Θs,T f

‖Θs,T f‖

)∣∣∣2p]1/2

· ‖V‖p E
[∣∣∣µNs ( V‖V‖) − µs

( V
‖V‖

)∣∣∣2p]1/2
· ‖Θs,T f‖ ds

≤
∫ T

0
I2p(N) ‖V‖p · ‖Θs,T f‖ ds

≤Cp‖f‖ I2p(N) . (3.29)

Furthermore, similarly to (3.24), we can bound the first term in (3.28) by

E
[∣∣µN0 (Θ0,T f)

∣∣p] = E
[∣∣µN0 (Θ0,T f)− µ0(Θ0,T f)

∣∣p] ≤ Cp‖f‖p

Np/2
,

for some other constant Cp > 0 depending on p. Finally, by Lemma 3.2.1 and bound
(3.16), we can bound the second term in (3.28) by

E
[∣∣MN

T (Θ·,T f)
∣∣p] ≤ Cp‖f‖p

Np/2
,

where Cp is another p-dependent constant.
Combining all together, we obtain

E
[∣∣µNT (f) − µT (f)

∣∣p] ≤ Cp‖f‖p ( 1

Np/2
+ I2p(N)

)
,

for any f ∈ Cb(E) and T ≥ 0. In particular,

Ip(N) ≤ Cp

( 1

Np/2
+ I2p(N)

)
, (3.30)

for any p ≥ 2. Applying Lemma 3.2.6, we get

Ip(N) ≤ Cp

Nmin{1,2kδ}p/2 ,

for any k ∈ N, by iteration of (3.30). Thus, we can conclude

Ip(N) ≤ Cp

Np/2
.

This proves the Lp-error estimate (3.4).
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We conclude by proving the bias estimate (3.5). By Equation (3.17), we have

E
[
µNT (f)

]
− µT (f) =

∫ T

0
‖Θs,T f‖ · E

[
µNs

( Θs,T f

‖Θs,T f‖

)
·
(
µs(V) − µNs (V)

)]
ds .

Using (3.29) for p = 1, we obtain

∣∣E[µNT (f)
]
− µT (f)

∣∣ ≤ C‖f‖ · I2(N) ≤ C‖f‖
N

.

3.3 Central Limit Theorem

In this section, we prove the central limit theorem (Theorem 3.1.3), following
similar arguments as in Del Moral and Miclo (2000), Section 3.3.2, and, similarly to
the proof of Theorem 3.1.2, it makes use of the propagator Θt,T (2.17).

Recall Equation (3.17), that is

µNT (f)−µT (f) = µN0 (Θ0,T f) +MN
T (Θ·,T f) +

∫ T

0
µNs
(
Θs,T f

)
·
(
µs(V)−µNs (V)

)
ds ,

where the martingaleMN
T

(
Θ·,T f

)
has predictable quadratic variation given by

〈
MN

(
Θ·,T f

)〉
t

=
1

N

∫ t

0
µNs
(
GµNs (Θs,T f, Θs,T f)

)
ds + O

(
1

N2

)
, (3.31)

and jumps bounded by

∣∣∆MN
t

(
Θ·,T f

)∣∣ ≤ 2Kβ ‖f‖
N

.

If the hypotheses of Theorem 3.1.3 are satisfied, we have that∫ T

0
µNs
(
GµNs (Θs,T f, Θs,T f)

)
ds →

∫ T

0
µs
(
Gµs(Θs,T f, Θs,T f)

)
ds Pµ0 − a.s.

as N → ∞, for any f = f − µT (f) centered test function, by using Theorem 3.1.2
and dominated convergence. In particular, by (3.31), we see that

lim
N→∞

N ·
〈
MN (Θ·,T f)

〉
T

=

∫ T

0
µs
(
Gµs(Θs,T f, Θs,T f)

)
ds ,

in probability. Thus, in the same fashion as Del Moral and Miclo (2000, Lemma
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3.33), we can apply (Jacod and Shiryaev, 2013, Theorem 3.11, p. 432) and obtain
that the process

√
N ·MN

T (Θ·,T f) converges in law as N →∞ to a centered Gaussian
martingale whose variance is given by∫ T

0
µs
(
Gµs(Θs,T f, Θs,T f)

)
ds .

Moreover, the following result shows that

lim
N→∞

√
N

∫ T

0

∣∣∣µNs (Θs,T f) ·
(
µs(V)− µNs (V)

)∣∣∣ ds = 0 ,

in probability.

Lemma 3.3.1. Consider a sequence of particle approximations satisfying Assump-
tion 3.1.1 with empirical distributions µNt (3.2). If Assumption 2.2.2 on asymptotic
stability is satisfied, then

lim
N→∞

E

[√
N

∫ T

0

∣∣∣µNs (Θs,T f) ·
(
µs(V)− µNs (V)

)∣∣∣ ds] = 0 .

Proof. This proof is an adaptation of (Del Moral and Miclo, 2000, Lemma 3.30).
Using the Cauchy-Schwarz inequality, we can write

E
[√

N

∫ T

0

∣∣∣µNs (Θs,T f) ·
(
µNs (V)− µs(V)

)∣∣∣ ds]
≤

√
N E

[ ∫ T

0

(
µNs (Θs,T f)

)2
ds
]
·

√
E
[ ∫ T

0

(
µNs (V)− µs(V)

)2
ds
]
.

By Theorem 3.1.2 and dominated convergence, the second factor goes to zero
as N →∞. Moreover, for any 0 ≤ s ≤ T , we can write

µNs (Θs,T f)

µNs (Θs,T 1)
=

µNs (Θs,T f)

µNs (Θs,T 1)
−
µs(Θs,T f)

µs(Θs,T 1)
,

by using the basic fact

µNs
(
Θs,TµT (f)

)
µNs (Θs,T 1)

= µT (f) =
µs(Θs,T f)

µs(Θs,T 1)
.
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Therefore,

(µNs (Θs,T f)

µNs (Θs,T 1)

)2
≤ 2

(
µNs (Θs,T f)− µs(Θs,T f)

)2
µNs (Θs,T 1)2

+ 2
µs(Θs,T f)2 ·

(
µs(Θs,T 1)− µNs (Θs,T 1)

)2
µNs (Θs,T 1)2µs(Θs,T 1)2

.

The conclusion follows by observing that

sup
0≤s≤T

N E
[(
µNs (Θs,T f)− µs(Θs,T f)

)2]
< ∞ ,

for any f ∈ Cb(E), by Theorem 3.1.2.

Finally, recalling that µN0 (Θ0,T f) converges to µ0(Θ0,T f) = 0 in probability
and that E

[
N · µN0

(
(Θ0,T f)2

)]
= µ0

(
(Θ0,T f)2

)
, we obtain the statement.

The following result provides sufficient conditions for the sequence µNt
(
GµNt (f, f)

)
to satisfy the a.s. convergence (3.7), for any f ∈ Cb(E).

Lemma 3.3.2. Consider a sequence of particle approximations satisfying Assump-
tion 3.1.1 with empirical distributions µNt (3.2) and such that Gµ(f, f) is of the form

Gµ(f, f)(x) = g0(x) +

∫
E
g1(y, x)µ(dy) +

(∫
E
g2(y, x)µ(dy)

)2
, (3.32)

for any µ ∈ P(E), f ∈ Cb(E) and x ∈ E, where g0 ∈ Cb(E), g1, g2 ∈ Cb(E2) depend
on f but are independent of µ, and such that

lim
z→x
‖gi(·, z)− gi(·, x)‖ = 0 , (3.33)

for any x ∈ E, with i = 1, 2. Then,

µNt
(
GµNt (f, f)

) a.s.−−→ µs
(
Gµt(f, f)

)
as N →∞ .

Remark. Note that for discrete state spaces, condition (3.33) is always satisfied with
the usual topology.

Proof. The statement is a direct application of a variant of Lebesgue’s dominated
convergence theorem (Feinberg et al., 2020, Corollary 2.8) which applies in the con-
text of weakly converging measures (see also Serfozo, 1982, Theorem 3.5). Indeed,
µNt converges a.s. to µt in the weak topology via the argument following (3.6). More-
over, GµNt (f, f) ∈ Cb(E) and supN∈N ‖GµNt (f, f)‖ < ∞ by condition (3.3b), hence
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the sequence of functions
(
GµNt (f, f)

)
N∈N can easily be seen to be asymptotically

uniformly integrable w.r.t. the empirical measures µNt (see Feinberg et al., 2020,
Definition 2.1). Finally, we need to show that

lim
(z,N)→(x,∞)

GµNt (f, f)(z) = Gµt(f, f)(x) Pµ0 − a.s. (3.34)

for any x ∈ E. Indeed, by triangular inequality,∣∣∣ ∫
E
g1(y, z)µNt (dy) −

∫
E
g1(y, x)µt(dy)

∣∣∣
≤
∣∣∣ ∫

E
g1(y, z)µNt (dy) −

∫
E
g1(y, x)µNt (dy)

∣∣∣
+
∣∣∣ ∫

E
g1(y, x)µNt (dy) −

∫
E
g1(y, x)µt(dy)

∣∣∣ ,
and ∣∣∣ ∫

E
g1(y, z)µNt (dy) −

∫
E
g1(y, x)µNt (dy)

∣∣∣ ≤ ‖g(·, z) − g(·, x)‖ .

Thus,

lim
(z,N)→(x,∞)

∫
E
g1(y, z)µNt (dy) =

∫
E
g1(y, x)µt(dy) Pµ0 − a.s.

for any x ∈ E, by condition (3.33) on g1 and by a.s. weak convergence of µNt .
Moreover,∣∣∣( ∫

E
g2(y, z)µNt (dy)

)2
−
(∫

E
g2(y, x)µt(dy)

)2∣∣∣
≤
∣∣∣ ∫

E
g2(y, z)µNt (dy) +

∫
E
g2(y, x)µt(dy)

∣∣∣
·
∣∣∣ ∫

E
g2(y, z)µNt (dy) −

∫
E
g2(y, x)µt(dy)

∣∣∣
≤ 2 ‖g2‖ ·

∣∣∣ ∫
E
g2(y, z)µNt (dy) −

∫
E
g2(y, x)µt(dy)

∣∣∣ .
Thus, similarly to g1, we obtain

lim
(z,N)→(x,∞)

(∫
E
g2(y, z)µNt (dy)

)2
=
(∫

E
g2(y, x)µt(dy)

)2
Pµ0 − a.s.

for any x ∈ E and, in particular, we see that (3.34) holds. Therefore, the hypotheses
in (Feinberg et al., 2020, Corollary 2.8) are satisfied almost surely and we conclude
by applying it.
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Lemma 3.3.2 provides a sufficient condition that is easy to verify. In partic-
ular, we will show that (3.32) holds for both mean field approximations and cloning
algorithms, as illustrated respectively in Proposition 4.1.1 and Proposition 4.2.5.

40



Chapter 4

Description of some Interacting
Particle Models

In this chapter we describe two common constructions for interacting particle
approximations, namely mean field particle approximations (in Section 4.1) and
cloning algorithms (in Section 4.2), and provide a discussion on their convergence
properties by applying the results presented in Chapter 3. In Section 4.3, we present a
third interacting particle approximation - the continuous time resampling algorithm
- and show that in this case Assumption 3.1.1 is not satisfied and the convergence
results presented in Chapter 3 do not hold, in disagreement with the well-established
convergence results for discrete time resampling algorithms.

4.1 Mean field particle approximation

The most basic particle approximation is simply to run the McKean dynam-
ics in parallel on each of the particles, replacing the distribution µt by the empirical
measure. This procedure has been studied in the applied probability literature in
great detail (Del Moral and Miclo, 2003; Rousset, 2006), providing quantitative con-
trol on error bounds for convergence.

Formally, the mean field particle model (ξt : t ≥ 0) with ξt = (ξit : i =

1, . . . , N) associated to a McKean generator Lµt (2.16), is a Markov process on EN

with homogeneous infinitesimal generator LN defined by

L
N

(F )(x1, . . . , xN ) :=

N∑
i=1

L(i)
m(x)(F )(x1, . . . , xi, . . . , xN ) , (4.1)

for any F ∈ Cb(EN ). Here L(i)
m(x) denotes the McKean generator Lm(x) (2.16) acting
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on the function xi 7→ F (x1, . . . , xi, . . . , xN ), where the dependence on µ has been
replaced by the empirical distribution m(x).

In analogy to the decomposition Lµ = L + L̃µ in (2.16), the generator (4.1)
can be decomposed as LN = LN + L̃N with

LN (F )(x) :=
N∑
i=1

L(i)(F )(x) , (4.2)

L̃N (F )(x) :=

N∑
i=1

L̃(i)
m(x)(F )(x) , (4.3)

where L(i) and L̃(i)
m(x) stand respectively for the operators L and L̃m(x) acting on the

function xi 7→ F (x), i.e. only on particle i.
Moreover, using representation (2.18) for L̃µ, we can write

L̃(i)
m(x)(F )(x) =

1

N

N∑
j=1

W̃ (xi, xj)
(
F (xi,xj )− F (x)

)
, (4.4)

with xi,y := (x1, . . . , xi−1, y, xi+1, . . . , xN ), which introduces an interaction between
the particles. In this decomposition, (4.2) generates the so-called mutation dynam-
ics, where the particles evolve independently under the dynamics given by the in-
finitesimal generator L of the original process, whereas (4.3) generates the selection
dynamics, which leads to mean field interactions between particles. With (4.4), for
every particle i = 1, . . . , N , the state of i gets killed and replaced by that of particle
j with overall escape rate 1

N W̃ (xi, xj). Hence, the total selection rate for a particle i
is 1

N

∑N
j=1 W̃ (xi, xj), and depends on the McKean representation, in particular the

choice of L̃µ in (2.18).

4.1.1 Convergence results

By definition of LN (4.1), for any function F on EN of the form F (x) =

m(x)(f), with f ∈ Cb(E), we have that

L
N

(F )(x) = m(x)
(
Lm(x)(f)

)
, (4.5)

Γ
L
N (F, F )(x) =

1

N
m(x)

(
ΓLm(x)

(f, f)
)
, (4.6)

thus conditions (3.3a)-(3.3b) are satisfied.
Analogous relations hold also for the individual mutation and cloning parts of

the generator. Since generators are linear, the identity (4.5) is immediate. The carré
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du champ (4.6) is quadratic in F , but off-diagonal terms in the corresponding double
sum turn out to vanish in a straightforward computation, leading to the additional
factor 1/N . More in detail, using the Definition 2.1.6 of carré du champ,

Γ
L
N (F, F )(x) =

N∑
i=1

L(i)
m(x)(F

2)(x) − 2F (x)

N∑
i=1

L(i)
m(x)(F )(x) ,

and observing that, for any F of the form F (x) = m(x)(f), we have

N∑
i=1

L(i)
m(x)(F

2)(x) =
1

N2

( N∑
i=1

Lm(x)(f
2)(xi) + 2

N∑
i=1

Lm(x)(f)(xi) ·
∑
j 6=i

f(xj)
)
,

and

F (x)

N∑
i=1

L(i)
m(x)(F )(x) =

1

N2

( N∑
i=1

f(xi)Lm(x)(f)(xi)+

N∑
i=1

Lm(x)(f)(xi) ·
∑
j 6=i

f(xj)
)
,

we obtain the identity (4.6).

Remark. Note that similar relations hold also for marginal test functions F (x) =

f(xl), f ∈ Cb(E), depending only on a single particle, namely

L
N

(F )(x) = Lm(x(f)(xl) and Γ
L
N (F, F )(x) = ΓLm(x

(f, f)(xl) .

So, generator and carré du champ both coincide with the corresponding operators
for the McKean dynamics. This means that for large enough N and µN (ξt) close
to µt, each marginal process t 7→ ξlt has essentially the same distribution as the
corresponding McKean process t 7→ ξlt. However, while the marginal processes for
a given particle approximation are identically distributed, they are not independent
due to the correlations between particles resulting from selection events.

Furthermore, by construction, for almost every realisation ξt, t > 0, of the
mean field particle approximation, there exists at most one particle i such that
ξit 6= ξit−, since during mutation events, as well as selection events, only one particle
changes its state. In other words,

sup
t≥0

∣∣{i ∈ 1, . . . , N : ξit 6= ξit−
}∣∣ ≤ 1 ,

and thus condition (3.3c) is satisfied with K = 1. Therefore, under the initial
condition (3.3d), Theorem 3.1.2 holds and provides Lp-error and bias estimates of
order 1/

√
N and 1/N respectively, in accordance with already established results,
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e.g. in Rousset (2006); Del Moral and Miclo (2003); Del Moral (2013).

Proposition 4.1.1 (CLT). Let µNt be the empirical measure of the mean field N -
particle model associated to a McKean interpretation Lµt (2.15) of the Feynman-Kac
marginal µt such that the operator W̃ (x, y) defining the selection generator L̃µ (2.18)
satisfies

lim
z→x
‖W̃ (z, ·) − W̃ (x, ·)‖ = 0 . (4.7)

Then, under the initial condition (3.3d), for any fixed T > 0, the sequence

V N
T (f) :=

√
N
(
µNT (f)− µT (f)

)
converges in law as N → ∞ to a centered Gaussian random variable VT (f) with
variance given by

E
[
VT (f)2

]
=µT

(
(f − µT (f))2

)
+

∫ T

0
µs

(
(Θs,T f)2

(
V − µs(V)

)
+ ΓL̃µs

(Θs,T f, Θs,T f)
)
ds . (4.8)

Proof. For any f ∈ Cb(E), Gµ(f, f) = ΓLµ(f, f) is in the form (3.32) with

g0(x) = ΓL(f, f)(x) ,

g1(y, x) = W̃ (x, y)
(
f(y)− f(x)

)2
,

g2(y, x) = 0 .

Therefore, condition (3.33) is satisfied and we can apply Lemma 3.3.2 and
obtain that the Central Limit Theorem (Theorem 3.1.3) holds. In particular,

E
[
VT (f)2

]
= µ0

(
(Θ0,T f)2

)
+

∫ T

0
µs

(
ΓLµs

(Θs,T f, Θs,T f)
)
ds. (4.9)

To conclude, it is enough to observe that, applying the evolution equation (2.14) of
µt and then Lemma 3.2.2, we have

µt((Θt,T f)2) − µ0((Θ0,T f)2)

=

∫ t

0
µs
(
2 Θs,T f · ∂s(Θs,T f) + L(Θs,T f)2 + (Θs,T f)2 · (V − µs(V))

)
ds

=

∫ t

0
µs
(
− 2Θs,T f · L(Θs,T f) + L(Θs,T f)2 + (Θs,T f)2 ·

(
µs(V)− V

))
ds

=

∫ t

0
µs
(
ΓL(Θs,T f, Θs,T f) + (Θs,T f)2 ·

(
µs(V)− V

))
ds.
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Thus,∫ t

0
µs

(
ΓL(Θs,T f,Θs,T f)

)
ds

= µt((Θt,T f)2)− µ0((Θ0,T f)2) +

∫ t

0
µs

(
(Θs,T f)2 ·

(
V − µs(V)

))
ds .

(4.10)

Substituting into the expression (4.9), we obtain the statement.

Remark. Condition (4.7) is just a technical regularity condition on W̃ which imposes
a degree of continuity on G, namely

lim
(z,N)→(x,∞)

GµNt (f, f)(z) = Gµt(f, f)(x) Pµ0 − a.s.

for any x ∈ E, so to ensure the a.s. convergence for the sequence µNt
(
GµNt (f, f)

)
.

Moreover, observe that condition (4.7) is satisfied for all the three McKean models
considered in Section 2.3. Indeed, it is immediate to see that the limit (4.7) is
satisfied for (2.21a) and (2.21c) since V ∈ Cb(E). Now, consider the McKean model
defined by (2.21b). For any x ∈ E and ε > 0, there exists δ > 0 such that, for any
z ∈ E s.t. |z − x| < δ, |V(x) − V(z)| < ε. Hence, for any y ∈ E and z ∈ E s.t.
|z − x| < δ, we have the following bounds:

(
V(y)− V(z)

)+ ≤ (V(y)− V(x) + ε
)+ ≤ (V(y)− V(x)

)+
+ ε ,(

V(y)− V(z)
)+ ≥ (V(y)− V(x)− ε

)+ ≥ (V(y)− V(x)
)+ − ε .

In conclusion, for any z ∈ E s.t. |z − x| < δ,

∣∣W̃ (x, y) − W̃ (z, y)
∣∣ ≤ ε,

independently of the choice of y ∈ E and, thus, condition (4.7) is satisfied.

4.1.2 Some remarks on the asymptotic variance

From general practical experience it is favourable to minimise the total selec-
tion rate in order to improve the estimator’s asymptotic variance; indeed it’s widely
understood in the SMC literature that eliminating unnecessary selection events can
significantly improve estimator variances (see, for example, Gerber et al., 2019). This
can be explained by the fact that the selection events in a particle approximation
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increase the correlations among the particles in the ensemble, and thereby decrease
the resolution in the empirical distribution µNt . For mean field particle approxima-
tions this suggests that (2.21b) is preferable to (2.21a) since the total selection rate
for the McKean model (2.21a) is

S1
c (x) :=

1

N

N∑
i,j=1

((
V(xi)− c

)−
+
(
V(xj)− c

)+)
=

N∑
i=1

∣∣V(xi)− c
∣∣ ,

by symmetry of summations, whereas the total selection rate for the McKean model
(2.21b) is

S2(x) :=
1

N

N∑
i,j=1

(
V(xi)− V(xj)

)+
=

1

2N

N∑
i,j=1

∣∣V(xi)− V(xj)
∣∣ ,

hence, by triangular inequality, we can see that S1
c (x) ≥ S2(x), for every c ∈ R. The

fact that the McKean model (2.21b) leads to a lower total selection rate compared
to the McKean model (2.21a) can also be seen more intuitively by observing that,
using (2.21b), every selection event increases the fitness potential V, whereas this is
not necessarily the case with (2.21a), which increases the potential only on average.
From the point of view of the total selection rate, there are even more optimal
choices than (2.21b), such as the McKean model (2.21c), for instance. Indeed, the
total selection rate for the McKean model (2.21c) is

S3(x) =
1

N

N∑
i,j=1

(
V(xi)−m(x)(V)

)− (
V(xj)−m(x)(V)

)+
m(x)

(
(V −m(x)(V))+

)
=

N∑
i=1

(
V(xi)−m(x)(V)

)−
=

1

2

N∑
i=1

∣∣V(xi)−m(x)(V)
∣∣ ,

hence S3(x) ≤ S2(x), by applying the Jensen’s inequality to the convex function
v 7→ |V(xi)− v|, for any given i = 1, . . . , N .

On the other hand, depending on the particular application, implementing
particle approximations with lower total selection rate could be computationally
more expensive, leading to a trade-off in lower values for N to be accessible in prac-
tice, as illustrated in Section 5.5, for the particular example of inclusion processes.

More precisely, to improve the accuracy of an algorithm, we need to reduce
the asymptotic variance. In the context of mean field particle approximations, if
the hypotheses of Proposition 4.1.1 are satisfied, the asymptotic variance E

[
VT (f)2

]
associated to a mean field particle approximation can be written in the form (4.8).
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Unfortunately, we see that E
[
VT (f)2

]
cannot be estimated a priori, as it depends on

the (normalised) Feynman-Kac measures µt and on the corresponding propagator
Θt,T , with t ∈ [0, T ], thus we cannot provide a quantitative comparison between
mean field particle approximations based on different McKean models. However, we
can still obtain some preliminary qualitative results.

Lemma 4.1.2. Consider the mean field N -particle systems associated to two differ-
ent McKean models LaµT and LbµT in the form (2.16). Then, using the same notation
of Proposition 4.1.1 and specifying the upper-indices a and b to distinguish the quan-
tities associated respectively to LaµT and LbµT ,

E
[
V a
T (f)2

]
− E

[
V b
T (f)2

]
=

∫ T

0
µs
(

ΓL̃aµs
(Θs,T f, Θs,T f) − ΓL̃bµs

(Θs,T f, Θs,T f)
)
ds .

Proof. It is a direct consequence of Central Limit Theorem for mean field particle
approximations (Proposition 4.1.1).

Lemma 4.1.3. Consider the class of McKean generators L̃µ,c defined by (2.21a),
with kernel

W̃c(x, y)µ(dy) =
((
V(x)− c

)−
+
(
V(y)− c

)+)
µ(dy) ,

with c ∈ R possibly depending on the current distribution µ of the process. Given
f ∈ Cb(E) and µ ∈ P(E), the value of c that minimises µ

(
ΓL̃µ,c(f, f)

)
depends on f

and µ, is the real number c ∈ R such that∫
x∈E

∫
V(y)≥c

(
f(y)− f(x)

)2
µ(dy)µ(dx) ≥ I

2
, (4.11)

and ∫
x∈E

∫
V(y)≤c

(
f(y)− f(x)

)2
µ(dy)µ(dx) ≥ I

2
, (4.12)

where I =
∫
E2

(
f(y)− f(x)

)2
µ(dy)µ(dx).
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Proof. It is enough to observe that

µ
(
ΓL̃µ,c(f, f)

)
=

∫
V(x)≤c

∫
y∈E

(
c− V(x)

) (
f(y)− f(x)

)2
µ(dy)µ(dx)

+

∫
x∈E

∫
V(y)≥c

(
V(y)− c

) (
f(y)− f(x)

)2
µ(dy)µ(dx)

=

∫
x∈E

∫
y∈E

∣∣V(y)− c
∣∣ (f(x)− f(y)

)2
µ(dy)µ(dx) ,

which is well-known that it is minimised by the real number c ∈ R such that (4.11)
and (4.12) hold (see e.g. Cramér, 1999, p. 179).

Lemma 4.1.4. Let K be the class of infinitesimal ‘selection’ generators L̃µ, µ ∈
P(E), in the form (2.18) with W̃ (x, y) ≥ 0 and such that condition (2.20) holds,
that is

W̃ (y, x) − W̃ (x, y) = V(x) − V(y) ,

for any x, y ∈ E. Denote by L̃Vµ the infinitesimal generator for the selection dynamics
associated to the McKean model defined by (2.21b), with kernel

W̃ (x, y)µ(dy) =
(
V(y)− V(x)

)+
µ(dy) .

Then, L̃Vµ is the optimal generator in K, i.e. L̃Vµ ∈ K and

µ
(
ΓL̃Vµ

(f, f)
)

= min
L̃µ∈K

µ
(
ΓL̃µ(f, f)

)
,

for any µ ∈ P(E) and f ∈ Cb(E).

Remark. Note that the infinitesimal generators given by (2.21a) and (2.21b) satisfy
condition (2.20), hence they are in K, whereas the McKean model (2.21c) does not
satisfy the pointwise assumption (2.20).

Proof. First, it is easy to see that L̃Vµ satisfies condition (2.20), hence L̃Vµ ∈ K.
Given µ ∈ P(E) and f ∈ Cb(E), note that for any ‘selection’ generator L̃µ

we can write

µ
(
ΓL̃µ(f, f)

)
=

1

2

∫
E2

(
W̃ (x, y) + W̃ (y, x)

) (
f(y)− f(x)

)2
µ(dy)µ(dx) .

Given x, y ∈ E, the minimal value of
(
W̃ (x, y) + W̃ (y, x)

)
subject to (2.20) and
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W̃ (x, y), W̃ (y, x) ≥ 0 is achieved by

W̃ ?(y, x) = V(x)− V(y) and W̃ ?(x, y) = 0 , if V(x) ≥ V(y) ,

W̃ ?(y, x) = 0 and W̃ ?(x, y) = V(y)− V(x) , if V(y) ≥ V(x) .

We conclude by noting that W̃ ?(x, y) =
(
V(y)− V(x)

)+ for any x, y ∈ E.

Remark. Lemma 4.1.4 implies in particular that, for any f ∈ Cb(E), µ ∈ P(E) and
for every choice of c ∈ R,

µ
(
ΓL̃Vµ

(f, f)
)
≤ µ

(
ΓL̃µ,c(f, f)

)
,

where L̃µ,c is the selection generator considered in Lemma 4.1.3, and the inequality
is strict except for degenerate cases, e.g. if V takes only two values and c lies in
between the two.

4.2 A generalised cloning algorithm

Cloning algorithms have been proposed in the theoretical physics literature
(Giardinà et al., 2006; Lecomte and Tailleur, 2007) for evaluating large deviation
functions associated to Markov processes similar to the mean field system (4.1),
using the same mutation dynamics. While selection and mutation events are in-
dependent in the latter due to the additive structure of LN in (4.2) and (4.3), in
cloning algorithms both are combined to reduce computational cost. Recalling that
the overall escape rate and probability kernel of the original dynamics L are denoted
respectively by λ(x) and p(x, dy), the dynamics of the cloning algorithm can be
described as follows:

• Any particle i = 1, . . . , N “jumps” (i.e. it changes its state) with rate λ(xi)

depending only on the state of the given particle but not on the rest of the
population;

• During a jump of a particle i, a set A of particles is chosen at random from
the ensemble with probability πx(xi, A) possibly dependent on the whole pop-
ulation x ∈ EN , and every particle j ∈ A is replaced by a clone of i;

• Then, the particle i mutates to a new state y ∈ E with probability kernel
p(xi, dy), so that the overall escape rate at which a clone i mutates to a new
state y is W (xi, dy).

49



Hence, the infinitesimal description of the cloning process is given by the
generator

L
N

(F )(x) =

N∑
i=1

λ(xi)
∑
A∈N

∫
y∈E

πx(xi, A) · p(xi, dy)
(
F (xA,xi; i,y)− F (x)

)
, (4.13)

for any F ∈ Cb(EN ) and x ∈ EN , where N is the set of all subsets of N particle
indices and xA,w; i,y denotes the vector (z1, . . . , zN ) ∈ EN with

zj :=


xj j 6∈ A, j 6= i

w j ∈ A, j 6= i

y j = i,

for j ∈ {1, . . . , N} and w, y ∈ E.

4.2.1 Convergence results

Let ψx(xi, xj) be the probability of replacing a particle j ∈ {1, . . . , N} during
a cloning event for a particle i = 1, . . . , N , i.e.

ψx(xi, xj) :=
∑
A|j∈A

πx(xi, A) ,

where the summation is over all sets A ∈ N containing the index j.
The following result shows that condition (3.3a) on the generator, which

ensures the correct expected behaviour of mean-field observables, is satisfied for the
cloning algorithm if ψx is in the form

ψx(xi, xj) =
W̃ (xj , xi)

N · λ(xi)
, N ≥ sup

x,y∈E

W̃ (y, x)

λ(x)
, (4.14)

for every i, j ∈ {1, . . . , N}, where W̃ (x, y) is the kernel defining the McKean model
(2.16)-(2.18).

Proposition 4.2.1. Given a McKean interpretation Lµ (2.16)-(2.18), let LN be the
generator (4.13) associated to a cloning process satisfying (4.14), then

L
N

(F )(x) = m(x)
(
Lm(x)(f)

)
,

for any test function of the form F (x) = m(x)(f), f ∈ Cb(E), and x ∈ EN .
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Proof. We start by considering the first term in the expression of LN (4.13). Observe
that with F (x) = m(x)(f),

F (xA,xi; i,y)− F (x) =
1

N

(
f(y)− f(xi)

)
+

1

N

∑
j∈A

(
f(xi)− f(xj)

)
=
(
F (xi,y)− F (x)

)
+
(
F (xA,xi)− F (x)

)
. (4.15)

Thus, we can write∫
y∈E

p(xi, dy)
∑
A∈N

πx(xi, A)
(
F (xA,xi; i,y)− F (x)

)
=

∫
y∈E

p(xi, dy)
∑
A∈N

πx(xi, A)

((
F (xi,y)− F (x)

)
+
(
F (xA,xi)− F (x)

))
=

∫
E
p(xi, dy)

(
F (xi,y)− F (x)

)
+
∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)
.

Moreover,

∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)
=

N∑
j=1

∑
A|j∈A

πx(xi, A)
(
f(xi)− f(xj)

)
=

1

N

N∑
j=1

W̃ (xj , xi)

λ(xi)

(
f(xi)− f(xj)

)
, (4.16)

by hypothesis. As a result, the generator LN (4.13) can be rewritten as

L
N

(F )(x) =
1

N

N∑
i=1

λ(xi)

∫
E
p(xi, dy)

(
f(y)− f(xi)

)
+

1

N2

N∑
i,j=1

W̃ (xj , xi)
(
f(xj)− f(xi)

)
= m(x)

(
Lm(x)(f)

)
by changing summation variables in the cloning term.

Remark. Note that a similar relation holds also for marginal test functions F (x) =

f(xl), f ∈ Cb(E), l ∈ {1, . . . , N}, depending only on a single particle, namely

L
N

(F )(x) = Lm(x)(f)(xl) .
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Indeed,

L
N

(F )(x) = λ(xl)

∫
y∈E

p(xl, dy)
(
f(y)− f(xl)

)
+

N∑
i=1

λ(xi)ψx(xi, xl)
(
f(xi)− f(xl)

)
= Lm(x)f(xl) ,

where the last equality follows by condition (4.14). Moreover, since this holds for
every marginal test function, we also obtain

Γ
L
N (F, F )(x) = L

N
(F 2)(x) − 2F (x) · LN (F )(x)

= ΓLm(x)
(f, f)(xl) .

So, as for mean field particle systems, the generator and carré du champ of a cloning
process satisfying (4.14) both coincide with the corresponding operators for the McK-
ean dynamics. This means that for large enough N and µN (ξt) close to µt, each
marginal process t 7→ ξlt has essentially the same distribution as the corresponding
McKean process t 7→ ξlt. However, while the marginal processes for a given particle
approximation are identically distributed, obviously they are not independent due
to the correlations between particles resulting from cloning events.

To control the fluctuations of the cloning algorithm we introduce the prob-
ability Ψx(xi; xj , xk) of replacing two different particles j, k ∈ {1, . . . , N}, j 6= k,
during a cloning event for a particle i = 1, . . . , N , namely

Ψx(xi; xj , xk) :=
∑

A|j,k∈A

πx(xi, A) ,

for any i, j, k ∈ {1, . . . , N}. The following result shows that condition (3.3b) on the
carré du champ, which ensures that the trajectories concentrate on their expectation,
is satisfied for the cloning algorithm in case Ψx can be written in the form

Ψx(xi; xj , xk) =
Q(xi)

N2
ω(xi, xj) · ω(xi, xk) +O

( 1

N3

)
, (4.17)

for any i, j, k ∈ {1, . . . , N}, j 6= k, where the functions Q ∈ Cb(E) and ω ∈ Cb(E2)

are independent of N .

Proposition 4.2.2. Given a McKean interpretation Lµ (2.16)-(2.18), let LN be the
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generator (4.13) associated to a cloning process satisfying the hypothesis in Proposi-
tion 4.2.1 and such that Ψx satisfies condition (4.17).

Then, for any test function of the form F (x) = m(x)(f), with f ∈ Cb(E),

Γ
L
N (F, F )(x) =

1

N
m(x)

(
Gm(·)(f, f)

)
+ O

( 1

N2

)
,

as N →∞, where

Gµ(f, f)(x) = ΓLµ(f, f)(x) + λ(x) ·Q(x)
(
`µ(f)(x)

)2
− 2

λ(x)
L(f)(x) · L̃tµ(f)(x) , (4.18)

with
`µ(f)(x) :=

∫
E
ω(x, y)

(
f(y)− f(x)

)
µ(dy) ,

and
L̃tµ(f)(x) :=

∫
E
W̃ (y, x)

(
f(y)− f(x)

)
µ(dy) .

Remark. Due to the linearity of the generator, the combined mutation/cloning events
in the cloning algorithm can be decomposed easily, which leads to extra terms only
in the quadratic carré du champ. In the expression of the operator Gµ (4.18), the
term

1

λ(x)
L(f)(x) · L̃tµ(f)(x)

is due to the dependence between mutation and cloning dynamics and its sign is not
known a priori. Whereas, the term λ(x)·Q(x)

(
`µ(f)(x)

)2 arises from the dependence
between clones (since multiple cloning events are allowed at the same time) and is
always non-negative. In particular, in any setting in which there is at most one clone
per event, i.e. when Ψx ≡ 0, the term vanishes.

Moreover, note that the generator L̃tµ(f) differs from the selection generator
L̃µ(f), having kernel W̃ (y, x)µ(dy) instead of W̃ (x, y)µ(dy).

Proof. Consider the carré du champ of LN ,

Γ
L
N

(
F, F

)
(x)

=
N∑
i=1

λ(xi)

∫
E
p(xi, dy)

∑
A∈N

πx(xi, A) ·
(
F (xA,xi; i,y)− F (x)

)2
.
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Using the decomposition (4.15), we can write∫
E
p(xi, dy)

∑
A∈N

πx(xi, A)
(
F (xA,xi;i,y)− F (x)

)2
=

∫
E
p(xi, dy)

(
F (xi,y)− F (x)

)2
+
∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)2
+ 2

∫
E
p(xi, dy)

(
F (xi,y)− F (x)

) ∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)
,

where, by (4.16), the last line can be rewritten as

2

N2

∫
E
p(xi, dy)

(
f(y)− f(xi)

) N∑
j=1

W̃ (xj , xi)

λ(xi)

(
f(xi)− f(xj)

)
= − 2

N2
· 1

λ(xi)2
L(f)(xi) · L̃tm(x)(f)(xi) .

Substituting in the expression of the carré du champ Γ
L
N , we obtain

Γ
L
N

(
F, F

)
(x) =

N∑
i=1

λ(xi)

∫
E
p(xi, dy)

(
F (xi,y)− F (x)

)2
+

N∑
i=1

λ(xi)
∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)2
− 2

N2

N∑
i=1

1

λ(xi)
L(f)(xi) · L̃tm(x)(f)(xi) . (4.19)

The first line in (4.19) is simply

N∑
i=1

λ(xi)

∫
E
p(xi, dy)

(
F (xi,y)− F (x)

)2
=

1

N2

N∑
i=1

ΓL(f, f)(xi) .
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Now, considering the second line of (4.19), we can write

λ(xi)
∑
A∈N

πx(xi, A)
(
F (xA,xi)− F (x)

)2
=
λ(xi)

N2

∑
A∈N

πx(xi, A)
∑
j,k∈A

(
f(xi)− f(xj)

)
·
(
f(xi)− f(xk)

)
=
λ(xi)

N2

( N∑
j=1

ψx(xi, xj)
(
f(xi)− f(xj)

)2
+

N∑
j,k=1
k 6=j

Ψx(xi; xj , xk)
(
f(xi)− f(xj)

)
·
(
f(xi)− f(xk)

))
.

By hypothesis on ψx, we get

N∑
i=1

λ(xi)

N2

N∑
j=1

ψx(xi, xj)
(
f(xi)− f(xj)

)2
=

1

N2

N∑
i=1

ΓL̃m(x)
(f, f)(xi) ,

and, by hypothesis on Ψx (4.17),

N∑
i=1

λ(xi)

N2

N∑
j,k=1
k 6=j

Ψx(xi; xj , xk)
(
f(xi)− f(xj)

)
·
(
f(xi)− f(xk)

)

=
1

N2

N∑
i=1

λ(xi) ·Q(xi)
(
`m(x)(f)(xi)

)2
+ O

( 1

N2

)
.

Combining all together, we obtain the statement.

Proposition 4.2.1 and Proposition 4.2.2 ensure respectively that condition
(3.3a) on the generator and condition (3.3b) on the carré du champ in Assumption
3.1.1 are satisfied for the cloning algorithm.

Roughly speaking, condition (4.17) on Ψx means that, during a cloning event
for a particle i, the probability of replacing a particle j ∈ {1, . . . , N} (i.e. deciding
whether or not j ∈ A) provided k1 ∈ A or provided k2 ∈ A is the same for any
k1, k2 ∈ {1, . . . , N}. Moreover, in order to satisfy condition (3.3b) on the carré du
champ, condition (4.17) can be weakened by simply assuming that Ψx(xi; xj , xk)

has order O
(
1/N2

)
, for any i, j, k ∈ {1, . . . , N}. The decision to use a stronger

condition (4.17) for Ψx in Proposition 4.2.2 was made in order to have an explicit
expression for the operator Gµ(f, f) (4.18).
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Example 4.2.3. The easiest choice of a cloning generator LN (4.13) satisfying con-
ditions (4.14) and (4.17) is to decide whether or not to replace each particle j ∈
{1, . . . , N} independently from the rest of the population with probability ψx(xi, xj),
so that we can write

πx(xi, A) =
∏
j∈A

ψx(xi, xj)
∏
j 6∈A

(
1− ψx(xi, xj)

)
,

for any i ∈ {1, . . . , N} and A ∈ N . Choosing ψx as in (4.14), we see that also
condition (4.17) is satisfied with

Ψx(xi; xj , xk) = ψx(xi, xj) · ψx(xi, xk) =
Q(xi)

N2
ω(xi, xj) · ω(xi, xk) ,

where Q(x) = 1/λ2(x) and ω(x, y) = W̃ (y, x). In particular, in this case, `µ(f) =

L̃tµ(f).

However, the construction described in Example 4.2.3 does not satisfy con-
dition (3.3c) on the boundedness of the jumps, required for the convergence results
(Theorem 3.1.2 and Theorem 3.1.3), since with this approach the number of clones
per cloning event is not bounded by a constant independent of N . Indeed, in order to
ensure that condition (3.3c) is satisfied, we need to assume that there exists K > 0

such that
πx(x,A) = 0 for all A ∈ N s.t. |A| ≥ K , (4.20)

for any x ∈ E and N ∈ N. We further assume N ≥ K, i.e. N is large enough so that
the process (4.13) is well defined.

Example 4.2.4. A possible construction of a cloning algorithm satisfying conditions
(4.14), (4.17) and (4.20) is the following. During a cloning event for the particle i,
we first (randomly) decide how many particles n we want to consider according to a
probability π̃(xi, n); then n particles are uniformly selected from the population, so
that every particle has probability n/N to be chosen; finally, every selected particle
j is substituted with xi with some probability q(xi, xj), or kept unchanged with
probability 1− q(xi, xj). Using this construction, we have

ψx(xi, xj) =

N∑
n=1

π̃(xi, n) · n
N
· q(xi, xj) , (4.21)
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where π̃(x, n) ∈ [0, 1] such that

N∑
n=0

π̃(x, n) = 1 , for all x ∈ E .

Then, condition (4.14) is satisfied by assuming

M(x) :=

N∑
n=1

n · π̃(x, n) ≥ sup
y∈E

W̃ (y, x)

λ(x)
, (4.22)

independent of N , and

q(x, y) =
W̃ (y, x)

M(x) · λ(x)
∈ [0, 1] . (4.23)

Finally, in order to satisfy (4.20), we assume that

π̃(x, n) = 0 for all n ≥ K and x ∈ E . (4.24)

One common choice for π̃(x, n) is

π̃(x, n) =


M(x)− bM(x)c n = bM(x)c+ 1,

bM(x)c+ 1−M(x) n = bM(x)c,

0 otherwise.

(4.25)

This corresponds to a binary distribution on the two integers nearest to the pre-
scribed mean M(x), and minimises the second moment Q of the distribution for a
given mean. Note that if M(x) is an integer, π̃(x, n) = δn,M(x) concentrates, which
includes the case M(x) = 0.

Under this construction, condition (4.17) holds with

Q(x) =

∑K
n=0 π̃(x, n) · n(n− 1)

M2(x) · λ2(x)
and ω(x, y) = W̃ (y, x) , (4.26)

where K > 0 is given by (4.24), so that Q(x) is independent of N and condition
(3.3c) on bounded jumps is satisfied.

Remark. In case W̃ (y, x) = W̃ (y, x) is independent of y ∈ E, i.e. W̃ (y, x) = h(x)

for some h ∈ Cb(E) and for any x, y ∈ E, then conditions (4.22)-(4.23) are satisfied
by taking q(x, y) ≡ 1 and M(x) = h(x)/λ(x). The independence of W̃ (x, y) from
the first variable x ∈ E occurs for instance with the McKean model given by (2.21a)
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with c ≤ inf V. This particular case is illustrated by Angeli et al. (2019, Section 3.3).

Under the initial condition (3.3d) and assuming (4.20), Proposition 4.2.1 and
Proposition 4.2.2 show in particular that Assumption 3.1.1 is satisfied for cloning
algorithms, hence Theorem 3.1.2 holds and provides bias and Lp error bounds.

Proposition 4.2.5 (CLT). Let µNt be the empirical measure of an N -particle cloning
process satisfying conditions (3.3d), (4.14), (4.17) and (4.20). Furthermore, assume
that

lim
z→x
‖W̃ (z, ·) − W̃ (x, ·)‖ = 0 , lim

z→x
‖W̃ (·, z) − W̃ (·, x)‖ = 0 , (4.27)

and that
lim
z→x
‖ω(z, ·) − ω(x, ·)‖ = 0 . (4.28)

Then, under the initial condition (3.3d), for any fixed T > 0, the sequence

V N
T (f) :=

√
N
(
µNT (f)− µT (f)

)
,

converges in law as N → ∞ to a centered Gaussian random variable VT (f) with
variance given by

E
[
VT (f)2

]
=µT

(
(f − µT (f))2

)
+

∫ T

0
µs

(
(Θs,T f)2 ·

(
V − µs(V)

)
+ ΓL̃µs

(Θs,T f, Θs,T f)

+ λQ
(
`µs(Θs,T f)

)2 − 2

λ
L(Θs,T f) · L̃tµs(Θs,T f)

)
ds . (4.29)

Proof. For any f ∈ Cb(E), the operator Gµ(f, f) (4.18) is in the form (3.32), with

g0(x) = ΓL(f, f)(x) ,

g1(y, x) = W̃ (x, y)
(
f(y)− f(x)

)2 − 2

λ(x)
L(f)(x) W̃ (y, x)

(
f(y)− f(x)

)
,

g2(y, x) =
√
λ(x) ·Q(x) · ω(x, y)

(
f(y)− f(x)

)
,

independent of the distribution µ ∈ P(E).
Under conditions (4.27) and (4.28), the hypotheses in Lemma 3.3.2 are sat-

isfied and then Theorem 3.1.3 holds and provides a central limit theorem for such
algorithms.

Similarly to Proposition 4.1.1, the conclusion follows by (4.10).
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Remark. Observe that condition (4.27) is satisfied for all three McKean models
(2.21a)-(2.21c), as discussed in the remark below Theorem 4.1.1. Furthermore, this
implies that condition (4.28) holds for cloning algorithms satisfying (4.22)-(4.23),
since in this case ω(x, y) = W̃ (y, x).

4.2.2 Some remarks on the asymptotic variance

As for mean field particle approximations (Section 4.1.2), in order to im-
prove the accuracy of cloning algorithms, we need to reduce the asymptotic variance
E
[
VT (f)2

]
, which can be written in the form (4.29), provided the hypotheses in

Proposition 4.2.5 are satisfied. However, E
[
VT (f)2

]
cannot be estimated a priori

and, moreover, it is not possible to say a priori whether a mean field particle ap-
proximation is better than a cloning algorithm or not. Indeed, comparing the central
limit theorem for mean field particle approximations (Proposition 4.1.1) with the one
for cloning algorithms (Proposition 4.2.5), we can see that, given a McKean model
LµT , the difference of the asymptotic variances of VMF

T and V clon
T is given by

E
[
V clon
T (f)2

]
− E

[
VMF
T (f)2

]
=∫ T

0
µs

(
λQ

(
`µs(Θs,T f)

)2 − 2

λ
L(Θs,T f) · L̃tµs(Θs,T f)

)
ds .

Whereas the term λQ
(
`µs(Θs,T f)

)2 is always non-negative (and vanishes
when there is at most one clone, i.e. when Ψx ≡ 0), meaning that the dependence
between clones brings an extra error, the sign of the term L(Θs,T f)·L̃tµs(Θs,T f) is not
known a priori and also depends on time, because of the propagator Θs,T . However,
observe that this term is independent of the particular choice of cloning algorithm,
but depends on the McKean model. In particular, given a McKean model, we can
optimise the construction of the cloning algorithm.

Indeed, consider two sequences of cloning processes
(
L
N,(1))

N∈N and
(
L
N,(2))

N∈N

associated to a given McKean model
(
Lµ
)
µ∈P(E)

, such that the hypotheses for the
Central Limit Theorem for cloning processes (Proposition 4.2.5) hold and satisfy the
construction given in Example 4.2.4 with Q(1) and ω(1) (resp. Q(2) and ω(2)) in the
form (4.26), i.e.

Q(x) =

∑K
n=0 π̃(x, n) · n(n− 1)

M(x)2 · λ(x)2
and ω(x, y) = W̃ (y, x) ,

for some K > 0 independent of N ∈ N, and hence `µ(f) = L̃tµ(f), for any f ∈ Cb(E).
By the Central Limit Theorem for cloning processes (Proposition 4.2.5), we have
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that

E
[
V

(1)
T (f)2

]
− E

[
V

(2)
T (f)2

]
=

∫ T

0
µs

(
λQ(1)

(
`(1)
µs (Θs,T f)

)2 − λQ(2)
(
`(2)
µs (Θs,T f)

)2)
ds .

By construction of Q(1) and `(1) (resp. Q(2) and `(2)), we obtain

E
[
V

(1)
T (f)2

]
− E

[
V

(2)
T (f)2

]
=

∫ T

0
µs

(
λ (Q(1) −Q(2)) ·

(
L̃tµs(Θs,T f)

)2)
ds .

Therefore, it is easy to see that the asymptotic variance is minimised by min-
imising Q(x), subject to M(x) ≥ supy∈E W̃ (y, x)/λ(x), by (4.22). Fixing M(x), we
see that the optimal Q(x) is obtained by minimising the second moment

∑
π̃(x, n) ·

n(n− 1), and this is achieved by the common choice (4.25). In particular, with this
choice, in case M(x) ≤ 1, we have π̃(x, n) = 0 for any n > 1 and thus Q(x) = 0.

4.2.3 The classical cloning algorithm

We conclude the section with a brief description of a variant of the cloning
algorithm proposed by Lecomte and Tailleur (2007) and commonly used in the the-
oretical physics literature. This procedure is constructed from the McKean model
Lµ (2.16) with selection rates W̃c(x, y) =

(
V(x) − c

)−
+
(
V(y) − c

)+ as in (2.21a),
and we denote the associated McKean generator by

Lµ(f)(x) := L(f)(x) +

∫
E
W̃c(x, y)

(
f(y)− f(x)

)
µ(dy) . (4.30)

The infinitesimal description of this cloning algorithm as a continuous-time
Markov process on the state space EN is given by the generator

L
N
c (F )(x) =

N∑
i=1

λ(xi)

∫
E
p(xi, dy)

∑
A∈N

πx(xi, A) ·
(
F (xA,xi; i,y)− F (x)

)
+

N∑
i=1

(
V(xi)− c

)− 1

N

N∑
j=1

(
F (xi,xj )− F (x)

)
, (4.31)
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for any F ∈ Cb(EN ) and x ∈ EN , where the probabilities πx(xi, A) are such that

ψx(xi, xj) =
∑
A|j∈A

πx(xi, A) =

(
V(xi)− c

)+
N λ(xi)

,

so to satisfy condition (4.14), which ensures the correct expected behaviour of mean-
field observables. With this version of cloning algorithm, if V(xi) > c, a non-empty
set A of particles is chosen at random from the ensemble with probability πx(xi, A)

and every particle j ∈ A is replaced by a clone of i, before particle i mutates to a
new state y ∈ E. If V(xi) ≤ c we set πxi(A) = δA,∅, so that no cloning occurs. The
killing part in the second line runs independently.

A common choice for πx(xi, A) in the theoretical physics literature is given by
the construction in Example 4.2.4, with π̃(x, n) given by the common choice (4.25),
where

M(x) =

(
V(x)− c

)+
λ(x)

gives the average number of clones and q(x, y) ≡ 1. With this construction, the
probability of replacing a particle j during a cloning event for a particle i is given
by

ψx(xi, xj) =
N∑
n=1

n

N
π̃(xi, n) =

M(x)

N
=

(
V(x)− c

)+
N λ(x)

,

hence condition (4.14) on ψx is satisfied. Furthermore, under this construction,
condition (4.17) holds with

Q(x) =

∑K+1
n=K π̃(x, n) · n(n− 1)((
V(x)− c

)+)2 , with K = bM(x)c ,

and ω(x, y) =
(
V(x)− c

)+.
We will consider this variant of the cloning algorithm in Section 5.4, where

we will construct estimators based on the so-called ‘cloning factor’.

4.3 The resampling algorithm

We present here a third interacting particle approximation, the resampling
algorithm, as an example of a particle approximation that does not satisfy Assump-
tion 3.1.1, and we show indeed that the convergence results proved in Chapter 3
do not hold for the considered class of resampling algorithms. The results shown
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in this section help to better understand the relevance of Assumption 3.1.1, and in
particular of condition 3.3b on the carré du champ, in the study of the convergence
of an interacting particle approximation.

The (continuous-time) resampling algorithm presented here consists in run-
ning in parallel mutation and selection (or resampling) events, independently from
each other. The mutation dynamics coincides with the mutation for mean field
particle systems, i.e. (4.2), whereas, mimicking the basic idea for discrete-time re-
sampling procedures (see, for example, Douc et al., 2005; Hol et al., 2006; Doucet
and Johansen, 2011), the resampling dynamics gathers selection events together and
can be described as follows:

• the resampling events have escape rate λ∆(x);

• at each resampling event, a setB of particles is chosen with probability p∆(x; B),
so that ∑

B∈N
p∆(x; B) = 1 ;

• every element i ∈ B is killed and replaced by a clone of a particle j with
probability q∆

m(x)(xi, xj), so that

N∑
j=1

q∆
m(x)(xi, xj) = 1 ,

with j = 1, . . . , N .

Remark. The quantities λ∆, p∆ and q∆
m(·) possibly depend on N , but we omit writing

explicitly the dependence with N , to avoid notation overload.

With this construction, the infinitesimal generator of a resampling process
can be written as

LN = Lmut,N + L∆, N , (4.32)

with Lmut,N :=
∑

i L(i) and

L∆, N (F )(x) = λ∆(x)
∑
B∈N

p∆(x; B) ·

∑
δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
(
F
(
xB,δ

)
− F (x)

)
. (4.33)

where b1 < · · · < b|B| denote the elements of B and xB,δ denotes the vector
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(z1, . . . , zN ) ∈ EN with

zi :=

xi i 6∈ B,

xδk i = bk, k ∈ {1, . . . , |B|}.

To simplify the presentation, we limit ourselves to consider resampling pro-
cesses in which the resampling escape rate λ∆(x) = λ∆ is independent of the state
x of the system and the particles to be replaced are selected independently from the
whole populations, so that∑

B|i,k∈B

p∆(x; B) = P∆(x; i) · P∆(x; k), (4.34)

for any i 6= k, where
P∆(x; i) :=

∑
B|i∈B

p∆(x; B)

is the probability of i being chosen to be replaced. However, this assumption is not
necessary and different constructions are possible.

Assumption 4.3.1. Given a family of McKean generators
(
Lµ
)
µ∈P(E)

(2.16)-(2.18),
we assume that the sequence of interacting particle approximations with resampling
generators LN (4.32)-(4.33), N ∈ N, satisfies

a) λ∆ ≥ sup
i∈{1,...,N}

m(x)
(
W̃ (xi, · )

)
,

b) P∆(x; i) =
m(x)

(
W̃ (xi, · )

)
λ∆

,

c) q∆
m(x)(xi, xj) =

W̃ (xi, xj)

N ·m(x)
(
W̃ (xi, · )

) ,
for any configuration x and i, j ∈ {1, . . . , N}.

Example 4.3.2. Let Lµ be the McKean model given by (2.21a) with c = supx V(x).
One possible choice of parameters for a resampling algorithm associated to Lµ is the
following:

λ∆ ≡ sup
x
V(x) − inf

x
V(x) ,

P∆(x; i) =
supx V(x) − V(xi)

supx V(x) − infx V(x)
,

q∆
m(x)(xi, xj) =

1

N
.
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With this choice, the rate of resampling events has order 1 and, during each resam-
pling event, the size of the set B of particles that get replaced is of order N .

Example 4.3.3. As for the previous example, we consider the McKean model given by
(2.21a) with c = supx V(x). A second possible choice of parameters for an N -particle
resampling algorithm associated to Lµ is the following:

λ∆ ≡ N ·
(

sup
x
V(x) − inf

x
V(x)

)
,

P∆(x; i) =
supx V(x) − V(xi)

N
(

supx V(x) − infx V(x)
) ,

q∆
m(x)(xi, xj) =

1

N
.

However, this second choice is highly expensive from a computational point of view,
since the rate of resampling events has order N , in particular the number of re-
sampling events in a given time interval goes to infinity as N goes to infinity. Fur-
thermore, at every resampling event, each particle gets replaced with only a small
probability of order 1/N . Hence, the probability p∆(x,B) of resampling a set B
of particles is of the order 1/N |B|, and therefore the size of resampling events is
typically of order 1. This is in line with mean field particle approximations, where
the overall selection rate is of order N and the size of selection events is 1. How-
ever, we can easily see that the computational cost of this version of resampling is
N times higher than the cost of the mean field particle approximation (associated
to the same McKean model given by (2.21a) with c = supx V(x)), since at every
resampling event the algorithm runs through the whole population and checks each
particle independently to decide whether or not to replace it. Therefore, it would be
impractical to implement this version of the resampling algorithm.

Proposition 4.3.4. Given a family of McKean generators
(
Lµ
)
µ∈P(E)

(2.16)-(2.18),

with selection part denoted by L̃µ, consider a sequence of resampling processes with
generators LN (4.32)-(4.33), N ∈ N, and satisfying Assumption 4.3.1. Then, for
any function F ∈ Cb(EN ) in the form F (x) = m(x)(f), f ∈ Cb(E),

LN (F )(x) = m(x)
(
Lm(x)(f)

)
, (4.35)

and

ΓLN (F, F )(x) =
1

λ∆

(
m(x)

(
L̃m(·)(f)

))2
+

1

N
m(x)

(
Gm(·)(f, f)

)
, (4.36)
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where (Gµ)µ∈P(E) is a family of bilinear operators given by

Gµ(f, f) := ΓLµ(f, f) − 1

λ∆

(
L̃µ(f)

)2
,

for any F ∈ Cb(EN ) in the form F (x) = m(x)(f), f ∈ Cb(E).

Proof. For proving Equation (4.35), it is enough to observe that, for the considered
class of functions, given a set B ∈ N , we can write

∑
δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
(
F
(
xB,δ

)
− F (x)

)

=
1

N

∑
δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
|B|∑
k=1

(
f(xδk)− f(xbk)

)

=
1

N

∑
δ∈{1,...,N}|B|

|B|∑
k=1

q∆
m(x)(xbk , xδk) ·

(
f(xδk)− f(xbk)

)
=

1

N

∑
i∈B

N∑
j=1

q∆
m(x)(xi, xj) ·

(
f(xj)− f(xi)

)
. (4.37)

Thus, the infinitesimal generator can be rewritten as

L∆, N (F )(x) =λ∆
∑
B∈N

p∆(x; B)
∑
i∈B

N∑
j=1

q∆
m(x)(xi, xj)

f(xj)− f(xi)

N

=λ∆
N∑
i=1

P∆(x; i)

N∑
j=1

q∆
m(x)(xi, xj)

f(xj)− f(xi)

N
.

Substituting the quantities λ∆, P∆ and q∆
m(x) as in Assumption 4.3.1, we

obtain
L∆,N (F )(x) = m(x)

(
L̃m(x)(f)

)
.

Including the mutation dynamics, we then obtain (4.35).
To prove Equation 4.36, first we recall that the carré du champ ΓL∆,N asso-
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ciated to the resampling generator L∆,N (4.33) can be written as

ΓL∆,N (F, F )(x)

= λ∆
∑
B∈N

p∆(x;B)
∑

δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
(
F
(
xB,δ

)
− F (x)

)2
.

(4.38)

Note that for functions in the form F (x) = m(x)(f), f ∈ Cb(E),

(
F
(
xB,δ

)
− F (x)

)2
=

1

N2

|B|∑
k=1

(
f(xδk)− f(xbk)

)2
+

1

N2

∑
k,l∈B
k 6=l

(
f(xδk)− f(xbk)

)
·
(
f(xδl)− f(xbl)

)
.

Similarly to (4.37), for any fixed set B ∈ N we can write

∑
δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
|B|∑
k=1

(
f(xδk)− f(xbk)

)2
=
∑
i∈B

N∑
j=1

q∆
m(x)(xi, xj) ·

(
f(xj)− f(xi)

)2
,

and

∑
δ∈{1,...,N}|B|

( |B|∏
k=1

q∆
m(x)(xbk , xδk)

)
·
∑
k,l∈B
k 6=l

(
f(xδk)− f(xbk)

)
·
(
f(xδl)− f(xbl)

)

=
∑
i,k∈B
i 6=k

N∑
j,l=1

q∆
m(x)(xi, xj) q

∆
m(x)(xk, xl) ·

(
f(xj)− f(xi)

) (
f(xl)− f(xj)

)
.

Substituting in (4.38) and using condition (4.34), we get

ΓL∆,N (F, F )(x)

=
λ∆

N2

N∑
i=1

P∆(x; i)

N∑
j=1

q∆
m(x)(xi, xj) ·

(
f(xj)− f(xi)

)2
+

λ∆

N2

N∑
i,k=1
i 6=k

P∆(x; i) ·

· P∆(x; j)
N∑

j,l=1

q∆
m(x)(xi, xj) q

∆
m(x)(xk, xl) ·

(
f(xj)− f(xi)

) (
f(xl)− f(xj)

)
.
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Applying the substitutions given in Assumption 4.3.1, we obtain

ΓL∆,N (F, F )(x)

=
1

N
m(x)

(
ΓL̃m(x)

(f)
)

+
1

N2 · λ∆

N∑
i,k=1
i 6=k

L̃m(x)(f)(xi) · L̃m(x)(f)(xk) .

The conclusion follows by splitting the summation as

1

λ∆ ·N2

∑
i,k
i 6=k

L̃m(x)(f)(xi) · L̃m(x)(f)(xk)

=
1

λ∆

(
m(x)

(
L̃m(x)(f)

))2
− 1

λ∆ ·N
m(x)

((
L̃m(x)(f)

)2)
.

Including the mutation dynamics, which is independent from the resampling, we
obtain (4.36).

Proposition 4.3.4 shows that the family of resampling processes (LN ) satisfies
condition (3.3a) on the generator, but the carré du champ differs from (3.3b) by the
extra term

1

λ∆

(
m(x)

(
L̃m(x)(f)

))2
. (4.39)

In case λ∆ = O(N), as for the Example 4.3.3, condition (3.3b) is satisfied, however
this procedure would be of little practicality in terms of applications, as discussed in
Example 4.3.3. On the other hand, if we consider resampling algorithms in which the
resampling rate λ∆ is a constant independent of the population size N (as seen in
Example 4.3.2, for instance), (4.39) does not vanish as N goes to infinity. Therefore
we expect µNt not to concentrate on µt in the limit, and thus Lp errors will not
converge with rate 1/

√
N , as opposed to mean field approximations and cloning

algorithms, as illustrated in the following result.

Proposition 4.3.5. Consider a sequence of resampling processes satisfying Assump-
tion 4.3.1, with λ∆ constant independent of N , with empirical distribution µNt , and
with initial configuration satisfying (3.3d). Then, for any T ≥ 0, p > 2 and for any
f ∈ Cb(E) such that µs(V · Θs,T f) 6= µs(V) · µT (f), for some s ∈ [0, T ], there does
NOT exist any constant cp > 0 independent of N such that

E
[(
µNT (f)− µT (f)

)p]1/p
≤ cp‖f‖

N1/2
, (4.40)

for any N ∈ N large enough.
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Remark. Observe that the condition µs(V ·Θs,T f) 6= µs(V)·µT (f) for some s ∈ [0, T ]

is always ensured if µT (V · f) 6= µT (V) · µT (f), by taking s = T . This occurs for
example when f(x) = V(x) and V is not constant a.e. on the domain of µT .

Proof. Given f ∈ Cb(E), suppose that the bound (4.40) holds for any T ≥ 0, with
cp independent of T . Then, in the same way as for (3.6), µNt (f) converges a.s. to
µt(f) as N → ∞, for any t ≥ 0 and f ∈ Cb(E). Similarly to the argument used in
Section 3.2.1, we can write

µNT (f)−µT (f) = µN0 (Θ0,T f) +MN
T (Θ·,T f) +

∫ T

0
µNs
(
Θs,T f

)
·
(
µs(V)−µNs (V)

)
ds ,

(4.41)
where the martingaleMN

T

(
Θ·,T f

)
has predictable quadratic variation given by

〈
MN

(
Θ·,T f

)〉
t

=

∫ t

0

1

N
µNs
(
GµNs (Θs,T f, Θs,T f)

)
+

1

λ∆

(
µNs
(
L̃µNs (Θs,T f)

))2
ds ,

by using the formulation of the carré du champ (4.36) for resampling algorithms.
Under the assumption that the bound (4.40) holds, we can apply Lemma 3.3.1 and
obtain

lim
N→∞

∫ T

0

∣∣∣µNs (Θs,T f) ·
(
µs(V)− µNs (V)

)∣∣∣ ds = 0 ,

in probability. Moreover, as N → ∞, µN0 (Θ0,T f) converges to µ0(Θ0,T f) = 0 in
probability by the initial condition (3.3d), and also µNT (f) − µT (f) converges to
0 in probability, by assumption. Thus, using the identity (4.41), we see that the
martingaleMN

T (Θ·,T f) converges in law to 0 as N →∞ and, in particular,

lim
N→∞

E
[〈
MN

(
Θ·,T f

)〉
T

]
= 0 .

On the other hand, by Fatou’s Lemma,

lim
N→∞

E
[〈
MN

(
Θ·,T f

)〉
T

]
= lim

N→∞
E
[ ∫ T

0

1

λ∆

(
µNs
(
L̃µNs (Θs,T f)

))2
ds
]

≥ E
[ ∫ T

0
lim inf
N→∞

1

λ∆

(
µNs
(
L̃µNs (Θs,T f)

))2
ds
]
,

and, by the characterisation (2.15) of McKean models, the quantity

µNs
(
L̃µNs (Θs,T f)

)
= µNs (V ·Θs,T f) − µNs (V) · µNs (Θs,T f)
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converges a.s. to
µs(V ·Θs,T f) − µs(V) · µs(Θs,T f) ,

as N →∞, by assumption. Thus,

lim
N→∞

E
[〈
MN

(
Θ·,T f

)〉
T

]
≥ 1

λ∆

∫ T

0

(
µs(V ·Θs,T f) − µs(V) · µs(Θs,T f)

)2
ds

=
1

λ∆

∫ T

0

(
µs(V ·Θs,T f)

)2
ds ,

since µs(Θs,T f) = µT (f) = 0, where the right-hand side is zero only if µs(V·Θs,T f) =

0 for almost every s ≥ 0. By hypothesis and continuity in time, this does not hold,
hence µNt (f) does not converge a.s. to µt(f) as N → ∞ and, in particular, the
bound (4.40) does not hold.

This result is in disagreement with the convergence results for discrete time
resampling algorithms (see e.g. Douc et al., 2005). One possible explanation is that
in discrete time the sampling rate λ∆ is effectively of order N if resampling happens
at every time step together with mutation. In continuous time, mutation events
occur independently for each clone, so in total at rate N , while resampling only has
a rate of order 1. While it is natural that we cannot expect a central limit theorem for
resampling algorithms given by (4.33), different versions of resampling could work as,
for example, performing resampling only during mutation events. However, for the
definition of resampling algorithms itself, the number of particles that get replaced
during a single resampling event is typically not bounded uniformly in N and thus
condition (3.3c), i.e.

sup
t≥0

JNt := sup
t≥0
|{i ∈ 1, . . . , N : ξit 6= ξit−}| ≤ K a.s. , K indep. of N ,

is not satisfied. This condition is essential for applying Lemma 3.2.1 in the proof of
Lp convergence, however it could be possible to replace it with a weaker condition
on the jumps. For instance, one possible weaker assumption is to require that the
expectation E

[
sups≤T |JNs |p

]
is bounded for any p ≥ 1. This would still give a similar

result to Lemma 3.2.1 (see, for instance, Borovskikh and Korolyuk, 2019, Theorem
3.2.4, for discrete-time martingales).
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Chapter 5

Application to Rare Events
Simulation

Dynamic large deviations of continuous-time jump processes are a common
application area of cloning algorithms (Giardinà et al., 2006; Lecomte and Tailleur,
2007). In this Chapter, we present how to apply interacting particle approximations
to the study of large deviations for additive path functionals of pure jump processes.
In particular, we will present numerical procedures for evaluating the scaled cumulant
generating function (SCGF), which plays an essential role in the study of large
deviations. We conclude the chapter by applying a mean field particle approximation
and a cloning algorithm to the inclusion process as an example.

5.1 Large deviation theory

In this section, we introduce the key elements of Large Deviation Theory
needed to define and study the large deviations for additive path functionals of pure
jump processes. The main result stated here is Theorem 5.1.7, which motivates the
importance of the SCGF (Definition 5.1.4) in the study of the large deviations. The
main references for this section are Dembo and Zeitouni (2009) and Den Hollander
(2008).

Throughout this section, we consider a family of bounded continuous real-
valued functions ht ∈ Cb(E), t ≥ 0, and consider a Markov process (Xt)t≥0 on
a Polish state space E, with initial distribution µ0 ∈ P(E). The large deviation
principle (LDP) characterises the limiting behaviour as t→∞ of Pµ0(ht(Xt) ∈ ·) in
terms of a rate function.
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Definition 5.1.1 (Rate function). The function I : R → [0,∞] is called a rate
function if:

(D1) I 6≡ ∞.

(D2) I is lower semi-continuous.

(D3) I has compact level sets, that is {x ∈ R | I(x) ≤ c} is compact for all c ∈ [0,∞).

Remark. In the large deviation literature, functions I : R → [0,∞] satisfying con-
ditions (D1)-(D3) are sometimes referred to as good rate functions (Dembo and
Zeitouni, 2009), to distinguish them from functions I : R→ [0,∞] that only satisfy
conditions (D1)-(D2). Since in this work we always assume that the rate functions
have compact level sets as in Definition 5.1.1, there is no confusion with the notation
and we simply refer to them as ‘rate functions’.

Given a rate function I : R→ [0,∞], we define the corresponding set function
by

I(S) = inf
x∈S

I(x), S ⊂ R.

Definition 5.1.2 (Large deviation principle). The family
(
Pµ0(ht(Xt) ∈ ·)

)
t≥0

is
said to satisfy the large deviation principle (LDP) with rate function I if:

(D1’) I is a rate function in the sense of Definition 5.1.1;

(D2’) lim supt→∞
1
t log Pµ0(ht(Xt) ∈ C) ≤ −I(C), for all C ⊂ R closed;

(D3’) lim inft→∞
1
t log Pµ0(ht(Xt) ∈ O) ≥ −I(O), for all O ⊂ R open.

Lemma 5.1.3. If
(
Pµ0(ht(Xt) ∈ ·)

)
t≥0

satisfies the LDP, then the associated rate
function I is unique.

Proof. See Dembo and Zeitouni (2009, Lemma 4.1.4).

Remark. The LDP implies that

inf
x∈R

I(x) = I(R) = 0 ,

because I is non-negative by definition and Pµ0(ht(Xt) ∈ R) = 1.
Moreover, there exists an x ∈ R such that I(x) = 0, since a lower semi-

continuous function attains a minimum on every non-empty compact set and I has
compact level sets.
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In what follows we show that, under general conditions, the rate function
associated to an LDP is the Fenchel-Legendre transform of the scaled cumulant gen-
erating function (SCGF). This motivates our interest in approximating the SCGF via
interacting particle approximations in order to study the large deviations associated
to a pure jump Markov process.

The logarithmic moment generating function Λt : R → (−∞, ∞] is defined
to be

Λt(k) := log Eµ0

[
ek h(Xt)

]
, k ∈ R .

Definition 5.1.4. The scaled cumulant generating function (SCGF) is defined by

Λ(k) := lim
t→∞

1

t
Λt(k · t) ,

provided the limit exists.

Definition 5.1.5. In this setting, the Fenchel-Legendre transform of a function
f : R→ [−∞, ∞] is defined as

f?(a) := sup
x∈R
{a x − f(a)} , a ∈ R .

Lemma 5.1.6 (Duality Lemma). Let f : R→ (−∞,∞] be a lower semi-continuous,
convex function and let g(x) := f?(x), for any x ∈ R. Then also f(x) = g?(x).

Proof. See Dembo and Zeitouni (2009, Lemma 4.5.8).

The key application of the duality lemma is in the following result which
enables us to identify convex rate functions as the Fenchel-Legendre transform of
SCGFs.

Theorem 5.1.7. Assume that Pµ0(ht(Xt) ∈ ·) satisfies the LDP with rate function
I : R→ [0, ∞] and that

lim sup
t→∞

1

t
Λt(k t) < ∞ , for any k ∈ R .

Then,

1. For each k ∈ R, the limit Λ(k) exists, is finite and satisfies

Λ(k) = sup
x∈R
{k x − I(x)} ;
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2. If I is convex, then it is the Fenchel-Legendre transform of Λ, namely I(x) =

Λ?(x);

3. If I is not convex, then Λ? is the affine regularisation of I, i.e. Λ? ≤ I and
f ≤ Λ?, for any convex rate function f such that f ≤ I.

Proof. See Dembo and Zeitouni (2009, Theorem 4.5.10).

Remark. In statistical mechanics, Theorem 5.1.7 corresponds to the thermodynam-
ical equivalence between canonical and microcanonical ensembles (Touchette, 2003,
Section III). The SCGF plays indeed an essential role in the investigation of non-
equilibrium systems - a role similar to the free energy in equilibrium ones (Touchette,
2009), whereas the rate function I plays a role akin to the specific entropy.

5.2 Large deviations and Feynman-Kac models

For a given process (Xt)t≥0 with bounded rates W (x, dy) = λ(x)p(x, dy) and
path space Ω = D([0,∞), E) as outlined in Section 2.1, we consider a time-additive
observable AT : Ω → R, taken to be a real measurable function of the paths of Xt

over the time interval [0, T ] of the form

AT (ω) :=
1

T

∑
t≤T

ω(t−)6=ω(t)

g
(
ω(t−), ω(t)

)
+

1

T

∫ T

0
h
(
ω(t)

)
dt . (5.1)

Here g ∈ Cb(E2) is such that g(x, x) = 0, for any x ∈ E, and h ∈ Cb(E), with ω ∈ Ω

a realisation of (Xt : t ≥ 0). Note that AT is well defined since the bound on λ(x)

implies that the process does not explode and the first sum contains almost surely
only finitely many non-zero terms for any T ≥ 0.

Example 5.2.1. The considered class of observables AT includes many random vari-
ables of mathematical and physical interest, such that:

• the occupation time in some set B ⊂ E, which can be obtained by considering
g ≡ 0 and h(x) = 1B(x), where 1B is the characteristic function of B;

• the net flux on a finite state space E ⊂ Zd across a particular bond (i, j), with
||i − j|| = 1, obtained with g(x, y) = 1{i}(x) · 1{j}(y) − 1{j}(x) · 1{i}(y) and
h(x) ≡ 0;
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• the action functional (Lebowitz and Spohn, 1999) on finite state spaces with
jump rates W (i, j), obtained by setting g(x, y) = log W (x,y)

W (y,x) and h(x) ≡ 0,
which is related to the entropy production in non-equilibrium systems.

More precisely, we are interested in studying the limiting behaviour, as T →
∞, of the family of probability measures Pµ0(AT ∈ · ) = Pµ0 ◦ A−1

T on (R, B(R)),
where µ0 represents the initial distribution of the underlying process. This can be
characterised by the large deviation principle (LDP). Throughout this chapter, we
assume that an LDP with convex rate function I holds. This has been established
by Bertini et al. (2015) for a large class of functionals of type (5.1), which includes
all our examples of interest.

Adapting the results in Section 5.1 to probability path measures on Ω, we
know that in the study of the long-time limit behaviour of Pµ0(AT ∈ · ), a key role
is played by the scaled cumulant generating function (SCGF) of the observable AT ,
i.e.

Λ(k) = lim
T→∞

1

T
log Eµ0

[
ekTAT

]
, (5.2)

with k ∈ R. Indeed, by Theorem 5.1.7, if the rate function I is convex and

lim sup
T→∞

1

T
log Eµ0

[
ekTAT

]
< ∞ ,

for every k ∈ R, then I is fully characterised by the SCGF via Legendre duality, i.e.

Λ(k) = sup
a∈R
{k a− I(a)} and I(a) = sup

k∈R
{k a− Λ(k)}.

The SCGF is also the object that can be numerically approximated by cloning
algorithms (Giardinà et al., 2006; Lecomte and Tailleur, 2007) and related ap-
proaches, and our main aim in this chapter is to illustrate how our results on
Feynman-Kac models can be applied here. Thus, we restrict ourselves to settings
where Λ(k) exists and is finite. In the following we introduce the associated Feynman-
Kac models in the notation that is established in this context.

Lemma 5.2.2. For any k ∈ R the family of operators
(
Pk(t) : t ≥ 0

)
on Cb(E)

defined by
Pk(t)f(x) := Ex

[
f
(
Xt

)
ektAt

]
, (5.3)

with f ∈ Cb(E), is well defined and it is a non-conservative semigroup, the so-called
tilted semigroup.

Moreover, the infinitesimal generator associated with
(
Pk(t) : t ≥ 0

)
, in the
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sense of the Hille-Yosida Theorem, can be written in the form

Lk(f)(x) =

∫
E
W (x, dy)[ekg(x,y)f(y)− f(x)] + kh(x)f(x), (5.4)

for f ∈ Cb(E) and all x ∈ E, with g and h the bounded continuous functions which
characterise AT via (5.1). In particular, the semigroup Pk(t) satisfies the differential
equations

d

dt
Pk(t)f = Pk(t)Lk(f) = Lk

(
Pk(t)f

)
, (5.5)

for all f ∈ Cb(E) and t ≥ 0.

Proof. See Chetrite and Touchette (2015), Appendix A.1.

Observe that, if the SCGF (5.2) is independent of the choice of the initial
distribution µ0, it can be written in terms of the tilted semigroup as

Λ(k) = lim
t→∞

1

t
log
(
Pk(t) 1(x)

)
, (5.6)

for all x ∈ E. However, the tilted semigroup Pk(t) does not conserve probability
and therefore it does not provide a corresponding process to sample from and use
standard MCMC methods to estimate the SCGF Λk. This can be achieved by
interpreting the tilted generator Lk through Feyman-Kac models in a similar fashion
to LV in Lemma 2.2.1, so that we can apply our results from Section 2.2 and construct
the corresponding McKean models.

Lemma 5.2.3. The infinitesimal generator Lk (5.4) can be written as

Lk(f)(x) = L̂k(f)(x) + Vk(x) · f(x) , (5.7)

for all f ∈ Cb(E) and x ∈ E. Here

L̂k(f)(x) :=

∫
E
W (x, dy)ekg(x,y)

(
f(y)− f(x)

)
(5.8)

is the generator of a pure jump process with modified rates W (x, dy) ekg(x,y), and

Vk(x) := λ̂k(x)− λ(x) + kh(x) ∈ Cb(E), (5.9)

is a diagonal potential term where λ̂k(x) :=
∫
EW (x, dy)ekg(x,y) is the escape rate of

L̂k.
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Proof. Follows directly from the definition of Lk in (5.4), by simply observing that

Lk(f)(x) =

∫
E
W (x, dy)

(
ekg(x,y)f(y)− f(x)

)
+ kh(x)f(x)

=

∫
E
W (x, dy)ekg(x,y) ·

(
f(y)− f(x)

)
+ f(x) ·

(
λ̂(x)− λ(x) + kh(x)

)
,

since λ̂k(x) =
∫
EW (x, dy)ekg(x,y) and λk(x) =

∫
EW (x, dy), by definition.

Lemma 5.2.3 states in particular that the tilted semigroup Pk(t) (5.3) is a
Feynman-Kac semigroup. Moreover, denoting by X̂k(t) the Markov process with
infinitesimal generator L̂k, the tilted semigroup Pk(t) can be also expressed in terms
of the process X̂k(t) and the potential Vk via the standard formula

Pk(t)f(x) = Ex
[
f(X̂k(t)) · exp

(∫ t

0
Vk(X̂k(s)) ds

)]
.

As shown in Section 2.2, in order to control the asymptotic behaviour of the
tilted semigroup Pk(t), we require that Assumption 2.2.2 on asymptotic stability is
satisfied. By (5.6), the SCGF Λ(k) is the spectral radius of the generator Lk (see
also (5.11) below). With Assumption 2.2.2 on asymptotic stability, Λ(k) is also the
principal eigenvalue of Lk and there exist a probability measure µ∞ = µ∞,k ∈ P(E)

and constants α > 0 and ρ ∈ (0, 1) such that

∥∥e−tΛ(k)Pk(t)f(·)− µ∞(f)
∥∥ ≤ ‖f‖ · αρt, (5.10)

for every t ≥ 0 and f ∈ Cb(E). Note that this implies the independence of the SCGF
from the initial distribution, µ0, and thus (5.6) holds for every initial state x ∈ E.
Note that (5.10) implies in particular that µ0e

−tΛ(k)Pk(t) converges weakly to µ∞ for
all initial distributions µ0, and that µ∞ is the unique invariant probability measure
for the modified semigroup t 7→ e−tΛ(k)Pk(t). Therefore we have from the generator
Lk − Λ(k) of this semigroup that

µ∞
(
Lk(f)

)
= Λ(k)µ∞(f) for all f ∈ Cb(E) . (5.11)

To avoid notation overload, we omit writing explicitly the dependence of
certain quantities on the fixed parameter k in the rest of this section.

In analogy with the notation (2.4) for generic pure jump processes, in the
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following we also use the notation with a probability kernel

W (x, dy)ekg(x,y) = λ̂k(x) p̂k(x, dy) . (5.12)

Observe that
Lk(1)(x) = Vk(x), (5.13)

thus, we get with (5.11) another representation of the SCGF,

Λ(k) = µ∞(Vk) . (5.14)

Recall the unnormalised and normalised versions of the Feynman-Kac mea-
sures defined in (2.9) and (2.11) for a given initial distribution µ0 ∈ P(E),

νt(f) = µ0

(
Pk(t)f

)
and µt(f) = νt(f)/νt(1) , f ∈ Cb(E) ,

and that asymptotic stability (5.10) implies that µt → µ∞ weakly as t → ∞ (by
Lemma 2.2.3). This suggests the following finite-time approximations for Λ(k).

Proposition 5.2.4. For any k ∈ R and every t ≥ 0, we have that

log Eµ0

[
ektAt

]
=

∫ t

0
µs(Vk) ds,

where Vk is defined in (5.9). In particular, if asymptotic stability (5.10) is satisfied,

1

T

∫ T

0
µs(Vk) ds → Λ(k) as T →∞ .

Proof. Recalling the evolution equation (2.10) of νt, we have

d

dt
log νt(1) =

1

νt(1)
· d
dt
νt(1) =

νt
(
Lk(1)

)
νt(1)

= µt
(
Lk(1)

)
.

And, thus,

νt(1) = exp

(∫ t

0
µs
(
Lk(1)

)
ds

)
,

since ν0(1) = 1. We can conclude by observing that Lk(1)(x) = Vk(x) and

νt(1) = Eµ0

[
ektAt

]
, (5.15)

using that the SCGF is well defined under asymptotic stability (5.10).
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For any t < T , we define

Λt,T (k) :=
1

T − t

∫ T

t
µs(Vk)ds (5.16)

as a finite-time approximation for Λ(k).

Lemma 5.2.5. Under asymptotic stability (5.10), there exist constants α′ > 0 and
0 < ρ < 1 such that

∣∣ΛaT,T (k)− Λ(k)
∣∣ ≤ ‖Vk‖ · α′ ρaT

(1− a)T
,

for every a ∈ [0, 1).

Proof. By (2.12), we have∣∣∣∣ 1

(1− a)T

∫ T

aT
µt(Vk)dt − µ∞(Vk)

∣∣∣∣ ≤ 1

(1− a)T

∫ T

aT

∣∣µt(Vk)− µ∞(Vk)
∣∣dt

≤ 1

(1− a)T

∫ T

aT
‖Vk‖ · α̃ ρtdt

=
α̃ ‖Vk‖

(1− a)T
· ρ

T − ρaT

log ρ

≤ ‖Vk‖ ·
α′ ρaT

(1− a)T
,

where α′ := α̃/(− log ρ) > 0, using the basic fact 0 ≤ ρaT − ρT ≤ ρaT . In particular,
limT→∞ ΛaT,T (k) = µ∞(Vk) = Λ(k), by (5.14).

Note that for a = 0 the above result only implies a convergence rate of order
1/T , since errors from the arbitrary initial condition have to be averaged out over
time. In contrast, for a fixed a > 0 which corresponds to the usual idea of burn-in in
conventional Markov chain Monte Carlo approximations where the initial iterations
of the simulation are discarded (see, for example, Gelman and Shirley, 2011), we get
a much better exponential rate of convergence dominated by the asymptotic stability
parameter ρ ∈ (0, 1).

We conclude the section with a simple example to illustrate the construction
of the overall transition rates Ŵ and W̃µ, with µ ∈ P(E), associated respectively to
the mutation and selection dynamics of the McKean model.

Example 5.2.6. Let SM = Zd ∩ [−M, M ]d, with M ∈ N, with periodic boundary
conditionsM+1 = −M and −M−1 = M . We consider the continuous-time random
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walk defined by overall transition rates W (x, y) = λ
2d with λ > 0, if ||x − y|| = 1,

and W (x, y) = 0 otherwise. We are interested in counting the number of times the
random walker crosses a particular bond (i, j) with ||j − i|| = 1. This is obtained
by considering an observable AT in the form (5.1) with

g(x, y) := 1{i}(x) · 1{j}(y) + 1{j}(x) · 1{i}(y) ,

and h ≡ 0. This observable is also called activity and note the difference in sign in
its definition compared to the net flux across a bond, illustrated in Example 5.2.1.
Given k ∈ R, by Lemma 5.2.3, the corresponding tilted generator Lk can be written
in the form Lk = L̂k + Vk, where the mutation generator L̂k is defined by overall
transition rates

Ŵk(x, y) = W (x, y)ekg(x,y) =


λ
2d e

k (x, y) = (i, j) or (j, i)

λ
2d ‖x− y‖ = 1 and (x, y) 6= (i, j), (j, i)

0 otherwise.

Hence, the escape rate for the mutation events is

λ̂k(x) =
∑

||y−x||=1

λ

2d
ekg(x,y) =

 λ
2d e

k + λ(2d−1)
2d x ∈ {i, j}

λ otherwise,

and the potential Vk is

Vk(x) = λ̂k(x) − λ(x) =

 λ
2d (ek − 1) x ∈ {i, j}

0 otherwise.

As discussed in Section 2.3, there are different ways to construct the selection
part of the corresponding McKean model. One possible construction is given for
instance by (2.21b); in this case, if k > 0, the selection events are characterised by
the rates

W̃ (x, y) =

 λ
2d(ek − 1) x 6∈ {i, j} and y ∈ {i, j}

0 otherwise,

for any x, y ∈ SM ; whereas, if k < 0, the selection events are characterised by the
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rates

W̃ (x, y) =

 λ
2d(1− ek) x ∈ {i, j} and y 6∈ {i, j}

0 otherwise,

for any x, y ∈ SM . In the trivial case k = 0, W̃ (x, y) ≡ 0 so no selection event occurs
and Ŵ0(x, y) = W (x, y), thus the mutation dynamics corresponds to the original
process.

5.3 Estimation of the SCGF

In this section we establish the convergence of estimators of the SCGF, Λ(k)

(5.2), provided by interacting particle approximations. Approximating µt by the
empirical distribution µNt (3.2) associated to an interacting particle system, we can
estimate Λt,T (k) with

Λt,T,N (k) :=
1

T − t

∫ T

t
µNs (Vk) ds . (5.17)

Note that, choosing f ≡ 1 in Proposition 3.1.4 about unbiased estima-
tors and recalling (5.15), we see that exp

(
t · Λ0,t,N (k)

)
is an unbiased estimator of

exp
(
t · Λ0,t(k)

)
. Recall that particle approximations are characterised by a sequence

of generators (L
N

)N∈N on Cb(EN ), based on McKean generators (2.16)

Lµ,k := L̂k + L̃µ,k for all µ ∈ P(E) ,

where L̃µ,k describes the selection dynamics of the McKean model as in Lemma 2.3.1,
with examples in (2.21a) or (2.21b). Due to tilted dynamics explained in Lemma
5.2.3 we have an additional dependence on the parameter k.

Proposition 5.3.1. Let (L
N
k )N∈N be a sequence of generators satisfying Assumption

3.1.1 with McKean generators Lµ,k. With asymptotic stability (5.10), for every p ≥ 2

and a ∈ [0, 1) there exist constants cp, c′, α′ > 0 and 0 < ρ < 1 independent of N
and T such that

E
[ ∣∣ΛaT,T,N (k)− Λ(k)

∣∣p]1/p
≤ cp

N1/2
+

α′ · ρaT

(1− a)T
, (5.18)

and ∣∣∣E[ΛaT,T,N (k)
]
− Λ(k)

∣∣∣ ≤ c′

N
+

α′ · ρaT

(1− a)T
, (5.19)
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for any N ∈ N large enough and T > 0.

Proof. First, note that

E
[ ∣∣ΛaT,T,N (k)− Λ(k)

∣∣p]1/p ≤ E
[ ∣∣ΛaT,T,N (k)− ΛaT,T (k)

∣∣p]1/p +
∣∣ΛaT,T (k)− Λ(k)

∣∣ .
The bound for the second term is given in Lemma 5.2.5, whereas we can bound the
first term by observing that

E
[ ∣∣ΛaT,T,N (k)− ΛaT,T (k)

∣∣p]1/p
≤ 1

(1− a)T

∫ T

aT
E
[ ∣∣µNt (Vk)− µt(Vk)

∣∣p]1/p dt ,
and applying Theorem 3.1.2. The second claim can be established similarly.

Proposition 5.3.1 provides the Lp and bias estimates of the approximation
error with order of convergence respectively given by 1/

√
N and 1/N . The nec-

essarily finite simulation time T leads to an additional error of order ρaT /T , with
ρ ∈ (0, 1), which is controlled by asymptotic stability properties of the process as
summarised in Lemma 5.2.5. Ideally, during simulations we want to choose the final
time T = T (N) with respect to the population size N so to balance both terms in
(5.18), resp. (5.19). Indeed, choosing T (N)� N would be computationally more ex-
pensive than T (N) ≈ N , but would give the same order of convergence. Proposition
5.3.1 also implies that ΛaT,T,N (k) converges almost surely to ΛaT,T (k) as N → ∞.
Similarly, we can adapt Theorem 3.1.3 to obtain a Central Limit Theorem for the
estimator Λt,T,N (k) of Λt,T (k).

Proposition 5.3.2. [CLT] Let (L
N
k )N∈N be a sequence of generators satisfying As-

sumption 3.1.1 with McKean generators Lµ,k. With asymptotic stability (5.10), for
any fixed 0 ≤ t ≤ T , the sequence

UNt,T :=
√
N(Λt,T,N (k)− Λt,T (k)) ,

converges in law as N → ∞ to a centered Gaussian random variable Ut,T whose
variance is given by

E
[
U2
t,T

]
=

1

T − t
E
[( ∫ T

t
Vs(Vk) ds

)2]
,

with Vs given in Theorem 3.1.3.
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Proof. By construction (5.17) of the estimator Λt,T,Nk ,

UNt,T =
1

T − t

∫ T

t

√
N
(
µNs (Vk)− µs(Vk)

)
ds ,

then the statement follows straightforwardly from the Central Limit Theorem for
the empirical measures µNs (Theorem 3.1.3).

Proposition 5.3.2 also provides an explicit formulation of the asymptotic vari-
ance for an interacting particle approximation of the SCGF, however it is not nu-
merically tractable and does not provide any useful insight in the comparison of
the asymptotic variance for two different particle approximation methods. In or-
der to obtain better results, one would need to evaluate covariances for Vs(Vk), i.e.
E[Vs(Vk) · Vu(Vk)] for any t ≤ s, u ≤ T , and this requires a stronger result than the
CLT for empirical measures µNs (Theorem 3.1.3).

5.4 The cloning factor

Most results in the physics literature do not use the estimator ΛaT,T,N (k)

(5.17) based on the ergodic average of the mean fitness of the clone ensemble, but
an estimator based on a so-called ‘cloning factor’ (see, e.g., Giardinà et al., 2006,
2011; Pérez-Espigares and Hurtado, 2019). This is essentially a continuous-time
jump process (CNt : t ≥ 0) on (0,∞) with CN0 = 1, where at each cloning event of
size n ∈ N0 ∪ {−1} at a given time τ , the value is updated as

CNt = CNt−

(
1 +

n

N

)
,

where n = −1 occurs when there is a ‘killing’ event. In this section, we present
convergence results for the estimator based on the cloning factor and show that the
Lp-error for this estimator has the same rate of convergence 1/

√
N as ΛaT,T,N (k)

(5.17).
In line with the physics literature (Lecomte and Tailleur, 2007), the dynamics

of the cloning factor CNt is defined jointly with the cloning algorithm given by (4.31)
via an extension of the cloning generator LNc,k, based on the McKean model (2.21a)
with parameter c ∈ R, with exit rate λ(x) and probability kernel p(x, dy) replaced
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by λ̂k(x) and p̂k(x, dy) respectively, i.e.

L
N
c,k(F )(x) =

N∑
i=1

(
λ̂k(xi)

∫
E
p̂k(xi, dy)

∑
A∈N

πx(xi, A) ·
(
F (xA,xi; i,y)− F (x)

)
+

N∑
j=1

(
Vk(xi)− c

)−
N

(
F (xi,xj )− F (x)

))
.

Thus, the joint dynamics on the state space EN × (0,∞) is given by the generator

L
(N,?)
c,k (F ?)(x, ς) :=

N∑
i=1

(
λ̂k(xi)

∫
E
p̂k(xi, dy)

∑
A∈N

πx(xi, A)
(
F ?(xA,xi; i,y, ς|A|)− F ?(x, ς)

)
+

N∑
j=1

(
Vk(xi)− c

)−
N

(
F ?(xi,xj , ς−1)− F ?(x, ς)

))
, (5.20)

where the test function F ? : EN×(0,∞)→ R now has a second counting coordinate,
and we denote ςn := ς ·

(
1+ n

N

)
, with n ∈ N0 ∪ {−1}.

To simplify the presentation, we further assume that the probability of choos-
ing a set A depends only on its size |A| and not on its elements, i.e. for any x ∈ E

πx(x,A) = π̃(x, |A|)
/(N
|A|

)
with π̃(x, 0), . . . , π̃(x, N) s.t.

N∑
n=0

π̃(x, n) = 1

and π̃(x, n) = δn,0 if V(x) ≤ c . (5.21)

Using this construction, we have

ψx(xi, xj) =
N∑
n=1

n

N
π̃(xi, n) =:

M(xi)

N
.

Thus, conditions (4.14)-(4.17) are satisfied by assuming

M(x) =

(
Vk(x)− c

)+
λ̂k(x)

. (5.22)

We introduce the coordinate projection G(x, ς) := ς in order to observe only
the cloning factor, G(ζNt , C

N
t ) = CNt . Note that EN × (0,∞) is not compact, and G

is an unbounded test function. However, since the range of the clone size distribution
is uniformly bounded (condition 3.3c), t 7→ logCNt is a birth-death process on [0,∞)
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with bounded jump length, and the generator (5.20) and associated semigroup are
therefore well defined for the test function G (by Lemma 2.1.10) and all t ≥ 0.

The following result provides an unbiased estimator for the unnormalised
quantity νt(1) based on the cloning factor.

Proposition 5.4.1. Let L(N,?)
c,k be the extension (5.20) of the cloning generator LNc,k

(4.13). Then, the quantity etcCNt is an unbiased estimator for νt(1) (2.9), i.e.

E
[
etcCNt

]
= E

[
νNt (1)

]
= νt(1),

for every t ≥ 0 and N ≥ 1, and all choices of the parameter c ∈ R (cf. (2.21a)).

Proof. First observe that, following (4.16),

L
(N,?)
c,k (G)(x, ς) =

N∑
i=1

N∑
n=0

λ̂k(xi) π̃(xi, n) · (ς n/N) −
N∑
i=1

ς

N

(
Vk(xi)− c

)−
=
ς

N

N∑
i=1

(
Vk(xi)− c

)
, (5.23)

using the mean M(xi) of the distribution π̃(xi, n) as given in (5.22). Therefore,

L
(N,?)
c,k (G)(x, ς) = ς m(x)

(
Vk − c

)
,

and analogously to (3.10), the expected time evolution of CNt is then given by

d

dt
E[CNt ] = E[CNt · µNt (Vk − c)].

This is also the evolution of νNt (e−tc) = e−tcνNt (1), since

d

dt
E[νNt (e−tc)] = E[µNt (Vk) · e−tcνNt (1)− c e−tcνNt (1)]

= E[νNt (e−tc) · µNt (Vk − c)].

With initial conditions CNk (0) = 1 = νNt (1), the statement follows by a Gronwall
argument analogous to (3.9) and by Proposition 3.1.4.

Proposition 5.4.1 leads to an alternative estimator for Λt,T (k) (5.16) given by

Λ
t,T,N

(k) :=
1

T − t
(

logCNT − logCNt
)

+ c. (5.24)
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Note that this is not itself unbiased as a consequence of the nonlinear transformation
involving the logarithm.

In order to study the convergence of the new estimator to the SCGF, it is
convenient to use the martingale characterisation of the process, which is given by
the following result.

Proposition 5.4.2. Let L(N,?)
c,k be the extension (5.20) of the cloning generator LNc,k.

Then, the process

M?
t := logCNt −

∫ t

0
L

(N,?)
c,k (H)

(
ζNs , C

N
s

)
ds,

with H(x, ς) = log ς, is a martingale satisfying

M?
t = logCNt −

∫ t

0

(
µNs (Vk)− c

)
ds + t ·O

( 1

N

)
,

and with predictable quadratic variation

〈M?
· 〉t =

1

N

∫ t

0
µNs
(
λ̂kQ + (Vk − c)−

)
ds + t ·O

( 1

N2

)
,

where Q(x) :=
∑
n2 π̃(x, n) is the second moment of the distribution π̃(x, n).

Remark. Note that, in case there is at most one clone per transition event, i.e. if
Q(xi) = M(xi) = (Vk(xi)− c)+/λ̂k(xi), then

〈M?
· 〉t =

1

N

∫ t

0

(
µNs (Vk)− c

)
ds + t ·O

( 1

N2

)
.

Proof. Observe that we can rewrite (5.20) as

L
(N,?)
c,k (H)(x, ς) =

N∑
i=1

( N∑
n=0

λ̂k(xi) π̃(xi, n) log(1+n/N) +
(
Vk(xi)−c

)−
log(1−1/N)

)
= m(x)

(
Vk
)
− c + O

( 1

N

)
,
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using the expansion log(1 + x) = x+O(x2) as x→ 0. Similarly,

Γ
L

(N,?)
c,k

(H,H)(x, ς)

=
N∑
i=1

( N∑
n=0

λ̂k(xi) π̃(xi, n)
(

log(1+n/N)
)2

+
(
Vk(xi)−c

)− (
log(1−1/N)

)2)
=

1

N
m(x)

(
λ̂kQ + (Vk − c)−

)
+ O

( 1

N2

)
.

The statement corresponds to the martingale problem associated to L(N,?)
c,k (H).

By Proposition 5.4.2 and recalling the definition of the SCGF estimators
Λt,T,N (k) (5.17) and Λ

t,T,N
(k) (5.24) we immediately get

Λt,T,N (k) = Λ
t,T,N

(k) −
M?

T −M?
t

T − t
+ O

( 1

N

)
.

In what follows, we discuss the convergence of the estimator Λ
aT,T,N

(k) to
the SCGF Λ(k), which is based on the cloning factor.

Theorem 5.4.3. Let Λ
t,T,N

(k) be the cloning factor estimator for Λt,T (k) as given
in (5.24), and let Λt,T,N (k) be the estimator for Λt,T (k) as given in (5.17). Then,
for every p ≥ 2 and a ∈ [0, 1), there exists a constant C?p > 0 such that, for all N
large enough and T ≥ 1,

E

[∣∣∣ΛaT,T,N (k)− ΛaT,T,N (k)
∣∣∣p]1/p

≤
C?p

N1+1/p ·
√
T
. (5.25)

If in addition Assumption (5.10) on asymptotic stability holds, there exist constants
γ?p , c

?
p, α
′ > 0 and 0 < ρ < 1 (dependent on a, p, λ̂k, Q and Vk) such that

E

[∣∣∣ΛaT,T,N (k)− Λ(k)
∣∣∣p]1/p

≤
γ?p

N1+1/p ·
√
T

+
c?p√
N

+
α′ρaT

(1− a)T
,

for every T ≥ 1.

Proof. Thanks to Jensen’s inequality, it is enough to prove the inequality for all
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p = 2q, q ∈ N. First, we can write

E

[∣∣∣∣ΛaT,T,N (k)− ΛaT,T,N (k)

∣∣∣∣2q] =
1(

N · (1− a)T
)2q · E[∣∣M?

T −M?
aT

∣∣2q]
≤ 1(

N · (1− a)T
)2q · E[∣∣M?

T

∣∣2q].
Observe that supt≤T

∣∣M?
t

∣∣ < ∞, so the assumptions of Lemma 3.2.1 are satisfied.
Thus, using Lemma 3.2.1, we obtain

1

N2q · T 2q
· E
[∣∣M?

T

∣∣2q] ≤ Cq
N2q · T 2q

q−1∑
k=0

E
[
(〈M?

· 〉T )2k
]

≤ C̃q
N2q

q−1∑
k=0

1

T 2q−2k

(
1

N2k
+ O

( 1

N2k+1

))
≤

C?q

N2q+1 · T 2q−1 ,

for every T ≥ 1. The second part of the Theorem follows directly by Proposition
5.3.1.

Therefore, the Lp-error for estimator Λ
aT,T,N

(k) has the same rate of con-
vergence 1/

√
N as ΛaT,T,N (k). Analogous results hold for the bias estimates, which

have order of convergence 1/N as for the estimator ΛaT,T,N (k) (Proposition 5.3.1),
since with (5.25) the difference of both estimators is only of order 1/N1+1/p.

5.5 Current large deviations for lattice gases

In this Section, we illustrate how to apply interacting particle approxima-
tions for studying the current large deviations for lattice gases and we apply these
algorithms to the inclusion process as an example.

We consider one-dimensional stochastic lattice gases with periodic boundary
conditions on the discrete torus TL with L sites and a fixed number of particles
M < L, so that the total density is ρ0 = M/L. Within our general framework,
they are simply Markov chains on the finite state space E = STL , with S ⊆ N0,
of all particle configurations, which have been of recent research interest in the
context of current fluctuations. We denote the configurations by η = (ηx |x ∈ TL)

where ηx ∈ N0 is interpreted as the occupation number at site x, and the process
is denoted as

(
η(t)

)
t≥0

. In order to use standard notation for lattice gases, in this
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section x, y ∈ TL denote the sites on the discrete torus, whereas in the previous
sections they denoted states in E. Monomers jump to nearest neighbour sites with
rates u(ηx, ηy) ≥ 0 for y = x± 1 depending on the occupation numbers of departure
and target site, multiplied with a spatial bias p = 1− q ∈ [0, 1]. The generator is of
the form

Lf(η) =
∑
x∈TL

[
p u(ηx, ηx+1)

(
f(σx,x+1η)− f(η)

)
+ q u(ηx, ηx−1)

(
f(σx,x−1η)− f(η)

)]
, (5.26)

where σx,yη results from the configuration η after moving one particle from x to y.
The number of particles M =

∑
x∈TL

ηx is a conserved quantity, but otherwise we
assume the process to be irreducible for any fixed M , which is ensured for example
by positivity of the rates, i.e. for all k, l ≥ 0

u(k, l) = 0 ⇔ k = 0 .

This class includes various models that have been studied in the literature, for ex-
ample the inclusion process introduced in Giardina et al. (2009), where

u(k, l) = k(d+ l) for all k, l ≥ 0 , (5.27)

with a positive parameter d > 0. Particles perform independent jumps with rate d
and in addition are attracted by each particle on the target site with rate 1, giving
rise to the ‘inclusion’ interaction. This model has attracted recent attention due
the presence of condensation phenomena (Grosskinsky et al., 2013; Bianchi et al.,
2017) and in the context of large deviations of the particle current (Chleboun et al.,
2018). Other well-studied models covered by this set-up are the exclusion process
with state space E ⊂ {0, 1}TL and u(ηx, ηy) = ηx(1 − ηy), or zero-range processes
with E ⊂ NTL

0 and rates u(ηx, ηy) = u(ηx) depending only on the occupation number
on the departure site.

In terms of previous notation, the jump rates for a lattice gas of type (5.26)
between any two configurations η and ζ are given as

W (η, ζ) =
∑
x∈TL

(
p u(ηx, ηx+1)δζ,σx,x+1η + q u(ηx, ηx−1)δζ,σx,x−1η

)
. (5.28)

In the following we focus on lattice gases where
∑

x u(ηx, ηx+1) =
∑

x u(ηx, ηx−1)

for all configurations η. While this is not true for models of type (5.26) in general,
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it holds for many examples including inclusion, exclusion and zero-range processes
mentioned above. With p+ q = 1, the total exit rate out of configuration η is then
simply given by

λ(η) =
∑
x∈TL

(
p u(ηx, ηx+1) + q u(ηx, ηx−1)

)
=
∑
x∈TL

u(ηx, ηx+1) . (5.29)

In this setting, we are interested in an observable AT measuring the total particle
current up to time T , which is achieved by choosing h(η) ≡ 0 in (5.1) and

g(η, ζ) = ±1 if ζ = σx,x±1η and g(η, ζ) = 0 otherwise .

By Lemma 5.2.3, the corresponding tilted process Lk (5.4) can be written as

Lk(f)(η) = L̂k(f)(η) + Vk(η) · f(η) ,

where the mutation generator is in the form

L̂kf(η) =
∑
x∈TL

[
ek p u(ηx, ηx+1)

(
f(σx,x+1η)− f(η)

)
+ e−k q u(ηx, ηx−1)

(
f(σx,x−1η)− f(η)

)]
. (5.30)

In particular, the total exit rate out of a configuration η is given by

λ̂k(η) = Rk
∑
x∈TL

u(ηx, ηx+1) = Rk · λ(η) , where Rk := pek + qe−k ,

hence the potential Vk can be written as

Vk(η) = λ̂k(η) − λ(η) = (Rk − 1) · λ(η) . (5.31)

Remark. Note that Rk = 1 corresponds to k = 0. In this case, L̂k = L, hence the
McKean model coincides with the original process and V0 ≡ 0. In particular, by
Proposition 5.2.4, Λ0 = 0 and does not require any estimation.

In this setting, we implement two interacting particle approximations to es-
timate the SCGF associated to the large deviations of the total particle current for
inclusion processes. In the following we fix p, q = 1− p and k ∈ R and we omit the
subscript k for configurations and write η = (ηi, i = 1, . . . , N) to simplify notation.

The first algorithm we consider is the cloning algorithm given by (4.31),
associated to the McKean model (2.21a) with the common choice c = 0, and under
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the standard conditions (5.21) and (5.22). Namely, we consider the McKean model
characterised by the selection rates

W̃
(1)
0,k (η, ζ) =

(Rk − 1)λ(ζ) Rk > 1

(1−Rk)λ(η) Rk < 1 .

Therefore, if Rk < 1, the cloning algorithm is given by mutations and killing events
which happen independently from each other. However, the similarity between W̃ (1)

0,k

and λ̂k provides a direct relation between mutation and killing rates, and allows us
to set up an efficient rejection-based implementation. More precisely, we sample the
ensemble of N clones at a total rate of λN (η) :=

∑N
i=1 λ(ηi), and pick a clone i

with probability λ(ηi)/λ
N (η) for the next event. With probability Rk ∈ (0, 1) this

is a simple mutation within clone i and we replace ηi with a configuration ζ with
probability Ŵk(ηi, ζ)/λ̂k(ηi), where Ŵk and λ̂k are respectively the overall transition
rate and the escape rate associated to the mutation generator (5.30). Otherwise, with
probability 1−Rk we perform a killing event for the clone i and we replace ηi with a
configuration ηj , with j ∈ {1, . . . , N} chosen uniformly at random. This procedure
ensures that mutation and killing events are sampled with the correct rates.

If Rk > 1, the cloning algorithm is given by mutations and cloning events,
which happen simultaneously with rate λ̂k(ηi) = Rk λ(ηi) for every clone ηi, i =

1, . . . , N , and, by (5.22), the average number of clones per mutation/cloning event
is

Mk(ηi) =
Rk − 1

Rk
∈ (0, 1) .

In particular, Mk is independent of the state η = (η1, . . . , ηN ) of the clone ensemble
and, using the common choice (4.25) for the distribution of the number of clones,
we see that there is at most one clone per cloning event.

The second algorithm considered is a mean field particle approximation as-
sociated to the McKean model given by (2.21b), that is the McKean model charac-
terised by the selection rates

W̃
(2)
k (η, ζ) =

(Rk − 1)
(
λ(ζ)− λ(η)

)+
Rk > 1

(1−Rk)
(
λ(η)− λ(ζ)

)+
Rk < 1 .

As for the mutation+killing dynamics described above, the similarity between W̃ (2)
k

and λ̂k provides a direct relation between mutation and selection rates, and allows
us to set up an efficient rejection-based implementation for the mean field particle
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Figure 5.1: Illustration of Rk (left) as given in (5.31) and the drift 2pek/Rk − 1 for
the modified dynamics (right) as a function of k for different values of the asymmetry
p = 1 − q. The minimum of Rk is 2

√
pq, attained at k = 1

2 log q
p ∈ [−∞,∞], which

is also where the modified drift vanishes.

approximation.
In practice, if Rk < 1, we sample the ensemble of N clones at a total rate

of λN (η), and pick a clone i with probability λ(ηi)/λ
N (η) for the next event. With

probability Rk ∈ (0, 1) this is a simple mutation within clone i, and then we replace ηi
with a configuration ζ with probability Ŵk(ηi, ζ)/λ̂k(ηi). Otherwise, with probability
1 − Rk we perform a selection event: we pick a clone j ∈ {1, . . . , N} uniformly
at random (including i), if λ(ηj) < λ(ηi), we replace ηi by ηj with probability(
λ(ηi)− λ(ηj)

)
/λ(ηi), otherwise nothing happens.

If Rk > 1, we combine the mutation and selection events as in the cloning
algorithm and sample the ensemble of N clones at a total rate of RkλN (η), and
pick a clone i with probability λ(ηi)/λ

N (η) and a clone j uniformly at random. If
λ(ηj) < λ(ηi), we replace ηj with ηi with probability Rk−1

Rk

λ(ηi)−λ(ηj)
λ(ηi)

, otherwise no
selection is performed. Then, we replace ηi with a configuration ζ with probability
Ŵk(ηi, ζ)/λ̂k(ηi).

To avoid confusion, we specify the upper indices (1) and (2) to distinguish
the quantities associated respectively to the cloning algorithm with selection rates
W̃

(1)
0,k and the mean field particle approximation with selection rates W̃ (2)

k .
Note that, while in both algorithms the total mutation rate is Rk ·λN (η), the

selection rates are respectively given by

S
(1)
k (η) =

N∑
i=1

|Vk(ηi)| = |Rk − 1|λN (η) , (5.32)
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and

S
(2)
k (η) =

1

2N

N∑
i,j=1

|Vk(ηi)− Vk(ηj)| =
|Rk − 1|

2N

N∑
i,j=1

∣∣λ(ηi)− λ(ηj)
∣∣ ≤ S(1)

k (η) .

(5.33)
So, for very small values of Rk close to 0, the mutation rate can become very small in
comparison to selection, which means that significant computation time is devoted to
re-weighting by selection, rather than advancing the dynamics via mutation events.
This effect is typically much stronger for the standard cloning algorithm with c = 0,
and occurs for example for totally asymmetric lattice gases with p = 1 and negative
k conditioning on low currents. In Figure 5.1, we include a sketch of Rk for different
values of asymmetry, including also the drift of the modified dynamics, which can
be reversed in partially asymmetric systems.

As discussed in Section 4.1.2 and Section 4.2.2, to compare the accuracy of
the two interacting particle approximations considered, we need to look at their
asymptotic variances, namely E

[
V

(1)
T (f)2

]
and E

[
V

(2)
T (f)2

]
. Applying the Central

Limit Theorem for mean field particle approximations (Proposition 4.1.1) and for
cloning algorithms (Proposition 4.2.5), we see that

E
[
V

(1)
T (f)2

]
− E

[
V

(2)
T (f)2

]
=

∫ T

0
µs

(
ΓL̃(1)

µs
(Θs,T f, Θs,T f) − ΓL̃(2)

µs
(Θs,T f, Θs,T f)

− 2

λ̂k
L̂k(Θs,T f) · L̃(1),t

µs (Θs,T f)
)
ds ,

for any f ∈ Cb(E), since Q = 0, because there is at most one clone per cloning event,
as seen above. By Lemma 4.1.4, we know that ΓL̃(1)

µ
− ΓL̃(2)

µ
is non-negative, for

any function f ∈ Cb(E) and any probability measure µ ∈ P(E), hence the choice
of the McKean model (2.21b) instead of (2.21a) reduces the asymptotic variance.
However, we cannot determine a priori the sign of the product of the infinitesimal
generators L̂k(f) · L̃(1),t

µ (f). In other words, the dependence between cloning and
mutation events in the cloning algorithm could potentially increase or decrease the
total variance, but this also depends on the particular choice of f ∈ Cb(E) and
µ ∈ P(E).

Considering the very limited analytical results, we want to conclude the sec-
tion with a numerical comparison of the two algorithms for an inclusion process with
d = 1, L = 64, M = 128 and asymmetry p = 0.7. It is known (Chleboun et al.,
2018) that the SCGF Λ(k) scales linearly with the system size L, and outside the
convergent regime k ∈ [− ln(1−p

p ), 0] ≈ [−0.85, 0] the rescaled SCGF Λ(k)/L diverges
as L → ∞ (divergent regime). In Figure 5.2, we compare estimates Λt0,T,N (k) for
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Figure 5.2: Inclusion process (5.27) with d = 1, system size L = 64, M = 128 parti-
cles, asymmetry p = 0.7 and N = 211 clones at time t = 42000. (Top) The rescaled
estimator Λt0,T,N (k)/L as a function of k in the convergent regime, comparing the
cloning algorithm with c = 0 (orange) and the mean field particle approximation
with (2.21b) (blue). Error bars indicate 5 standard deviations, which are bounded
by the size of the symbols for the mean field particle approximation. (Bottom) Il-
lustration of the relationship between the total selection rates S(1)

k (depending on
c), S(2)

k (5.33) and S(3)
k (5.34) for k = −0.79 (left) and k = 0.1 (right) based on the

state η(t) of the clone ensemble. Mean and median of the potential Vk are indicated
by dashed vertical lines.
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Figure 5.3: Inclusion process (5.27) with d = 1, system size L = 64, M = 128
particles, asymmetry p = 0.7 and N = 211 clones. Time series of the mean fitness
mN (η(t))(Vk)/L for the cloning algorithm (red dots) and the mean field particle
approximation with (2.21b) (blue crosses), with time averages indicated by full lines.
(Left) In the convergent regime, namely [− ln(1−p

p ), 0] ≈ [−0.85, 0], for k = −0.79
we see a clear variance reduction using the mean field particle approximation, but
similar time average. (Right) In the divergent regime for k = 0.1 we have similar
variance but the mean field particle approximation improves on the time average.

the algorithms (1) and (2) in the convergent regime. We use initial conditions where
M particles are distributed on L lattice sites uniformly at random, and a burn-in
time of t0 = 10 · L = 640, as discussed in Lemma 5.2.5. As we can see from the top
of Figure 5.2, both algorithms perform very well and agree with a simple theoretical
estimate based on bias reversal, which is not the main concern in this work and we
refer the reader to Chleboun et al. (2018). However, enlarged error bars indicating 5

standard deviations reveal that the mean field particle approximation with McKean
model (2.21b) is significantly more accurate than the cloning algorithm based on
(2.21a). This can be explained by the lower total selection rates, as illustrated at
the bottom of Figure 5.2 for the converging and diverging regime. While the total
selection rate S(2)

k (5.33) is much lower than S(1)
k with c = 0 (5.32), the total selection

rate S(3)
k of the McKean model (2.21c), i.e.

S
(3)
k (η) =

1

2

N∑
i=1

∣∣V(xi)−m(x)(V)
∣∣ ≤ S

(2)
k (η) , (5.34)

does not offer significant further improvement. Since the efficient rejection based
implementation of the mean field particle approximation explained above does not
work for the McKean model (2.21c), we focus on the McKean model (2.21b) in our
context.

As illustrated in Figure 5.3, the cloning algorithm with (2.21a) has a signifi-
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cantly higher time variation of the average potential mN (η(t))(Vk)/L in the conver-
gent regime compared to the mean field particle approximation with (2.21b). Hence,
in comparison to the classical cloning, the mean field particle approximation leads to
reduced finite size effects and/or a significant variance reduction in this example, and
a significant improvement of convergence of the estimator Λt0,T,N (k). This is due
to the much higher selection rate for the McKean model (2.21a) and possibly to the
dependence between mutation and cloning events in the cloning algorithm. These
promising first numerical results pose interesting questions for a systematic study
of practical properties of the algorithms and associated time correlations for future
work, also in comparison with various recent results on improvements of cloning
algorithms (Nemoto et al., 2016; Brewer et al., 2018; Ferré and Touchette, 2018).
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Chapter 6

Conclusion and Outlook

We conclude with a summary of the main contributions of this work, men-
tioning a couple of interesting directions for future works.

In Chapter 3, we adapted already established convergence results for mean
field approximations (Del Moral and Miclo, 2000; Rousset, 2006) in the context of
pure jump processes to a broader class of interacting particle approximations, pro-
viding general assumptions on the infinitesimal generator (condition 3.3a), carré du
champ (condition 3.3b) and jumps (condition 3.3c) of the interacting particle system.
These guarantee that the empirical distribution µNt converges uniformly in time to
µt in Lp and almost surely in the weak topology, with order of convergence of the Lp

and systematic errors given respectively by 1/
√
N and 1/N (see Theorem 3.1.2), as

for mean field approximations. We also provided a central limit theorem (Theorem
3.1.3) and explicit formulas for the asymptotic variance of the algorithms. These
results apply in the general setting of jump Markov processes on locally compact
state spaces. Essential conditions for this approach are summarised in Assumption
2.2.2 on asymptotic stability of the Feynman-Kac model and Assumption 3.1.1 on
the particle approximation, which are usually straightforward to check for practi-
cal applications. The proofs are based on the martingale characterisation of the
particle system and also make use of the propagator Θt,T and its differential equa-
tion. These results underline the several degrees of freedom in the design of the
algorithms, providing a new perspective on how to optimise the implementation of
interacting particle approximations. Our results apply in the general setting of jump
Markov processes on locally compact state spaces. A future development would be
the adaptation of similar statistical techniques to more general processes, including
piecewise deterministic processes (Davis, 1984; Finke et al., 2014), jump-diffusions,
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or possibly non-Markovian dynamics (see e.g. Cavallaro and Harris, 2016, for first
heuristic results in this direction).

In Chapter 4, we described the construction of mean field particle approxi-
mations, cloning algorithms and a particular version of resampling algorithms, and
discussed the limit properties of these methods. The main contribution of the Chap-
ter is the novel interpretation of the cloning algorithm based on Feynman-Kac models
and the infinitesimal description of the algorithm through its generator and associ-
ated carré du champ. Once we obtain an explicit formulation for these two quantities,
it is then easy to check that Assumption 3.1.1 is satisfied for the cloning algorithm
and, hence, that Theorem 3.1.2 and Theorem 3.1.3 hold. This allows us to establish
rigorous error bounds for the cloning algorithm in continuous time, and to sug-
gest different versions of the algorithm based on different McKean interpretations of
Feynman-Kac models.

Finally, in Chapter 5, we show how to apply interacting particle approxi-
mations in the study of large deviations for additive path functions of stochastic
processes. In particular, by interpreting the scaled cumulant generating function
(SCGF) via Feynman-Kac measures, we can construct an estimator Λt,T,N (k) for
the SCGF based on the empirical distribution of an interacting particle system and
show that Λt,T,N (k) converges in Lp to the finite-time approximation Λt,T (k) of the
SCGF, with order of convergence of the bias and Lp error given by 1/

√
N . In Section

5.4 we discuss another estimator for Λt,T (k) based on the cloning factor, which is
commonly used in the physics literature (we recall, for instance, Giardinà et al., 2006;
Pérez-Espigares and Hurtado, 2019). Our contribution is the analytical justification
of this estimator by showing that it converges to Λt,T (k) as the size N of the system
goes to infinity and the rate of convergence is still 1/

√
N , as for the first estimator.

The proof is based on the martingale characterisation of the cloning factor and on
its connection with the first estimator Λt,T,N (k).

An outlook on asymptotic variance estimators. As discussed in Section 4.1.2
and Section 4.2.2, in order to study the accuracy of an interacting particle approxi-
mation, we need to look at the asymptotic variance E

[
VT (f)2

]
, which unfortunately

cannot be estimated a priori, as it depends on µt and on the corresponding prop-
agator Θt,T , t ∈ [0, T ]. An interesting direction for future research would be the
construction of an estimator of the asymptotic variance based on a single realisation
of an interacting particle approximation. Recent results for discrete-time Markov
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processes by Lee and Whiteley (2018) and Du and Guyader (2019) are based on
coalescent tree-based measures. However, most of the tools used in the discrete-time
case fail to work in the continuous-time. For instance, the explicit expression of the
asymptotic variance (3.8), that in our case is an integral over [0, T ], namely

E
[
VT (f)2

]
= µ0

(
(Θ0,T f)2

)
+

∫ T

0
µs

(
Gµs

(
Θs,T f, Θs,T f

))
ds ,

in the discrete-time case is a simple summation over the times p = 1, . . . , n. One
of the key ideas in the work of Du and Guyader (2019) is to interpret every term
in the summation as a coalescent tree-based measure with only one coalescence at
time p. This of course cannot work in the continuous-time setting, however it could
be possible to define in an appropriate way a random sequence of times τp and then
consider a coalescent tree-based measure with only a coalescence at time τp, adapt
the results by Du and Guyader (2019) and then conclude by Monte Carlo integration.
The work of Lee and Whiteley (2018) provides a different insight based on tensor
product measures that could be more natural to adapt in the continuous-time case.

An outlook on driven process estimators. In the context of interacting par-
ticle approximations for the study of large deviations, one interesting direction for
further research would be the study of the connection between McKean models and
the driven process (also known in the literature as Doob’s h-transform or twisted
Markov kernel), which is a key object in the study of large deviations in statisti-
cal mechanics (see, for example, Garrahan, 2016; Oakes et al., 2018; Chetrite and
Touchette, 2015). We mentioned it in Section 2.4, namely in Equation (2.22), and we
recall here that the h-transform of a tilted generator Lk is the infinitesimal generator
Lk defined as

Lk := r−1
k Lkrk − r

−1
k (Lkrk) = r−1

k Lkrk − Λ(k) ,

where rk is the right eigenfunction associated to the principal eigenvalue Λ(k) of Lk.
Although the tilted generator Lk is not conservative, Lk is, since (Lk1) = 0, and it
remains a pure jump process described by the modified kernel

Wk(x, dy) = r−1
k (x)W (x, dy)ekg(x,y)rk(y),

for all x, y ∈ E. Unfortunately, the right eigenfunction cannot be determined analyt-
ically, so numerical procedures are required to estimate rk, and thus the kernel of the
driven process (see e.g. Ferré and Touchette, 2018). Interpreting rk via Feynman-Kac
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measures, as we have done for the principal eigenvalue Λ(k) and the left eigenmeasure
µ∞, could provide an estimator for rk based on interacting particle approximations.
The idea is to adapt some previous results for discrete-time Feynman-Kac models
(Whiteley and Lee, 2014; Whiteley and Kantas, 2017) to the continuous-time case.
We briefly illustrate here some preliminary discussion about this approach in the
continuous-time case.

First, recall that, in Section 5.2, we started by providing a ‘deterministic’
approximation of the eigenquantities Λ(k) and µ∞ given by ΛaT,T (k) (5.16) and µT ,
respectively, and then we estimated these two quantities numerically via interacting
particle approximations. In a similar fashion, we want to first approximate rk via
a sequence of functions

(
rs,t
)

0≤s<t≤∞, with rs,t ∈ Cb(E), and then approximating
these via numerical procedures. Thus, a candidate for estimating the h-transform
Lk is given by

Ls,t(f)(x) = r−1
s,t (x) · Lk(rs,tf)(x) − r−1

s,t (x) · Lk(rs,t)(x) · f(x) ,

for every f ∈ Cb(E).
Mimicking the discrete-time case (Whiteley and Lee, 2014, Section 2.3), a

good candidate is given by

rs,t(x) :=
νt−s,x(1)

νt−s,µs(1)
,

for every x ∈ E and s ≤ t, where νt,x and νt,µ are the unnormalized t-marginal
Feynman-Kac measures (associated to the tilted generator Lk) with initial distri-
bution respectively given by δx and µ. Note that, by definition, rt,t(x) = 1 and
µs(rs,t) = 1. Moreover, the functions rs,t satisfy a recursive relationship that re-
sembles the one in the discrete-time case (see Whiteley and Lee, 2014, Lemma 1),
as illustrated by the following result.

Lemma 6.1. The function s 7→ rs,t is left-differentiable and the left-derivative is
given by

d−
ds
rs,t(x) = −Lk(rs,t)(x) + µs(Vk) · rs,t(x) .

Remark. Compare the backward recursion for rs,t,

d−
ds
rs,t(x) = −L̂k(rs,t)(x) − Vk(x) rs,t(x) + µs(Vk) · rs,t(x) ,

with the forward equation for µt (2.2.4), namely

d

dt
µt(f) = µt

(
L̂k(f)

)
− µt(Vk f) + µt(Vk) · µt(f) , f ∈ Cb(E) .
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Proof. By the Markov property of νt,x, we have

νt−s,x(1) =

∫
E
νε,x(dz) · νt−s−ε,z(1)

=

∫
E
νε,x(dz) · rs+ε,t(z) · νt−s−ε,µs(1)

= νt−s−ε,µs(1) · νε,x
(
rs+ε,t

)
,

for every 0 ≤ ε ≤ t− s. Moreover,

d

dt
log νt,µ0(1) =

1

νt,µ0(1)
· d
dt
νt,µ0(1) =

νt,µ0(Lk(1))

νt,µ0(1)
= µt(Vk).

And, thus,

νt,µ0(1) = exp

(∫ t

0
µs(Vk) ds

)
,

since ν0,µ0(1) = 1.
Thanks to these considerations, we can rewrite rs,t as

rs,t(x) = exp

(
−
∫ s+ε

s
µu(Vk) du

)
· νε,x

(
rs+ε,t

)
,

for every 0 ≤ ε ≤ t− s. Therefore,

d−
ds

rs,t(x) = lim
ε→0+

rs,t(x) − rs−ε,t(x)

ε

= lim
ε→0+

rs,t(x) − exp
(
−
∫ s
s−ε µu(Vk) du

)
· νε,x

(
rs,x
)

ε

= lim
ε→0+

rs,t(x) ·
1− exp

(
−
∫ s
s−ε µu(Vk) du

)
ε

− lim
ε→0+

exp

(
−
∫ s

s−ε
µu(Vk) du

)
· νε,x(rs,t)− rs,t(x)

ε
.

The conclusion follows by observing that

lim
ε→0+

rs,t(x) ·
1− exp

(
−
∫ s
s−ε µu(Vk) du

)
ε

= rs,t(x) exp
(
−
∫ s

0
µu(Vk) du

) d−
ds

exp
(∫ s

0
µu(Vk) du

)
= rs,t(x)µs(Vk) ,
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and

lim
ε→0+

exp

(
−
∫ s

s−ε
µu(Vk) du

)
· νε,x(rs,t)− rs,t(x)

ε
=

d

du
νu,x(rs,t)

∣∣
u=0

= Lk(rs,t)(x) .

This preliminary result suggests that the results on exponential convergence
for the discrete-time case (see Whiteley and Lee, 2014, Proposition 1) could be
adapted to the continuous-time case and we expect that, for any 0 ≤ s ≤ t, there
exist constants α, β > 0 and ρ ∈ (0, 1) (independent of the initial distribution µ0)
such that

‖rs,t − rk‖ ≤ αρ(t−s)∧s ,

‖Ls,t(f)− Lk(f)‖ ≤ ‖f‖ · β ρ(t−s)∧s ,

for every f ∈ Cb(E). The backward equation given by Lemma 6.1 also suggests that
rs,t could be estimated via a forward-backward particle approximation, first running
the interacting particle system forward till time 2T and then proceeding backward
in an appropriate way, from time 2T to time T . However, this construction would be
of little practicality in terms of applications, and one way to improve it is to update
the driven kernel in time. One approach that could be worthwhile inspecting is the
following. Considering a (possibly random) sequence of times 0 = t0 < t1 < t2 < . . . ,
such that tn − tn−1 diverges as n → ∞, we construct recursively a sequence of
functions (hn)n∈N, hn ∈ Cb(E) and a sequence of generators (Ln)n∈N respectively by

h1 = r0,t1 , hn = rtn−1,tn · h−1
n−1 ,

and
L0 = Lk , Ln = h−1

n Ln−1(hn) ,

for any n ∈ N, n > 1. Therefore, we see that rtn−1,tn = hn . . . h1 and Ltn−1,tn = Ln.
This would give a forward in time approximation of the driven process generator.
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