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a b s t r a c t 

We consider a new type of asymmetric rendezvous search problem in which player II needs to give 

player I a ‘gift’ which can be in the form of information or material. The gift can either be transfered 

upon meeting, as in traditional rendezvous, or it can be dropped off by player II at a location he passes, 

in the hope it will be found by player I. The gift might be a water bottle for a traveller lost in the desert; 

a supply cache for Captain Scott in the Antarctic; or important information (left as a gift). The common 

aim of the two players is to minimize the time taken for I to either meet II or find the gift. We find 

optimal agent paths and drop off times when the search region is a line, the initial distance between the 

players is known and one or both of the players can leave gifts. 

A novel and important technique introduced in this paper is the use of families of linear programs to 

solve this and previous rendezvous problems. Previously, the approach was to guess the answer and then 

prove it was optimal. Our work has applications to other forms of rendezvous on the line: we can solve 

the symmetric version (players must use the same strategy) with two gifts and we show that there are 

no asymmetric solutions to this two gifts problem. We also solve the GiftStart problem, where the gift 

or gifts must be dropped at the start of the game. Furthermore, we can solve the Minmax version of the 

game where the objective function is to minimize the maximum rendezvous time. This problem admits 

variations where players have 0 , 1 or 2 gifts at disposal. In particular, we show that the classical Wait For 

Mommy strategy is optimal for this setting. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

This paper introduces a new variation of the Asymmetric Ren- 

ezvous Problem on the Line (ARPL). That problem was the first 

symmetric version of the continuous time rendezvous problem 

 Alpern & Gal, 1995 ): Two agents, I and II, are placed a distance D

part on a foggy road (real line) and faced equiprobably in one of 

he two possible directions. Each agent knows the distance D but 

ot the direction to the other. That is, they do not know whether 

he other is in front of them (in the direction they are facing) or 

ehind them. As it is foggy, they keep moving at unit speed until 

he first time T that they meet (bump into each other). Their com- 

on goal is to minimize the expected value ˆ T of their rendezvous 

ime T . The minimum value of ˆ T , calculated over all pairs of paths,

s called the Rendezvous Value R of the problem. 
∗ Corresponding author. 

E-mail addresses: Pierre.Leone@unige.ch (P. Leone), Julia.Buwaya@unige.ch 

(J. Buwaya), Steve.Alpern@wbs.ac.uk (S. Alpern). 
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A simple strategy pair is the so called Wait For Mommy (WFM) 

trategy. To illustrate this more simply we fix a particular value 

 = 16 and call the distance units miles and the time units hour. 

n WFM, agent I (Baby) stays still at his starting point. Mommy 

nows that Baby is either 16 miles in front of her, or 16 miles 

ehind. So she goes to these two locations successively, with ren- 

ezvous times T of either 16 or 16 + 32 = 48 and 

ˆ T = 24 . In Alpern

nd Gal (1995) Alpern and Gal showed that a small modification of 

FM, called Modified Wait For Mommy (MWFM), is in fact opti- 

al: Mommy moves as in WFM but Baby (I) tries to meet ear- 

ier by guessing the arrival direction of Mommy while returning to 

is start at times 16 and 48. If Baby guesses correctly, the meet- 

ng time of 16 reduces to 8 and of 48 reduces to 32, so that
ˆ 
 is the average of 8,16,32 and 48, giving a Rendezvous Value 

f ( 8 + 16 + 32 + 48 ) / 4 = 26 , or more generally R = 13 D/ 8 for the

lassical problem. The fact that the two agents must adopt differ- 

nt paths to achieve the Rendezvous Value is what makes this an 

symmetric problem. If they must adopt the same mixed strategy, 

his is the symmetric problem, which is surprisingly unsolved. It 

s worth noting that simply by exhibiting this MWFM strategy and 

alculating the meeting times, we have shown that R ≤ 13 D/ 8 . The 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ifficult part of rendezvous problems is establishing the reverse in- 

quality to prove optimality. 

In this paper, we introduce a new version of the ARPL in which 

ne or both agents have gifts , which they can drop anywhere along 

heir path. The game ends, as before, if the agents meet. But it also 

nds at any earlier time when an agent finds (reaches) the gift 

ropped by the other. If only one player has a gift, this game is 

enoted G 1 ; and if both have a gift it is denoted G 2 . (The original

ame without gifts is denoted G 0 . ) There are several interpreta- 

ions of the gift games. For G 1 , the agent with a gift might be a

earch party for Scott of Antarctica, with a gift of food and heat- 

ng oil. Scott would have been saved if the search party reached 

im, or if he came across the gift. Gal (2019) has suggested the 

ift could be a fully charged mobile phone with which to call the 

escue party. An interpretation of G 2 is of a boy and girl who want

o meet up at a huge rock concert but have not specified a meeting

oint or exchanged phone numbers. Each has a business card with 

hone number which can be pinned to a bulletin board - if either 

nds the other’s card, they can call the phone number and arrange 

o meet. If the agents are spies, the gift might be a memory card 

ith the information they wish to transmit. 

While the notion of gifts is new to this paper, an earlier notion 

f markers was studied by Baston and Gal (2001) and Leone and 

lpern (2018a) . In the former, the marker had to be dropped by the 

gent at his starting point, while in the latter the time and place 

f the drop is decided by the agents. The markers are worthless 

n that finding them is of no direct benefit to the finder, but they 

re useful in learning where the other agent has been and can re- 

uce the rendezvous times. Obviously gifts are better for the finder 

han just markers, as finding them ends the game immediately. 

aston and Gal (2001) found that when both agents have a marker 

hich must be dropped at time 0, the game we call M 2 ( t = 0 ) , the

endezvous value is R = 3 D/ 2 . Leone and Alpern (2018a) found that

hen one agent has a marker which can be dropped at any time, 

he game M 1 , the rendezvous value is also R = 3 D/ 2 . The Ren-

ezvous Value does not improve when both agents have a marker 

hich can be dropped at any time, the game we call M 2 . This may

e summarized by the equation: 1 marker = 2 markers. 

The main results of this paper are for the games where one 

layer has a gift (which we call G 1 ) and where both have a gift

which we call G 2 ). The Rendezvous Values for theses games are 

espectively 21 D/ 16 and 20 D/ 16 . For D = 1 , one-gift reduces the

endezvous value by (26 − 21) / 26 = 19% , while the second gift 

one for the other player) further reduces it by another (21 −
0) / 21 = 4 . 7% . Note that while a second marker was not of any

enefit, the Rendezvous Values of the M 2 and M 1 games are the 

ame, here a second gift lowers the Rendezvous Value. The proof 

ethod in Leone and Alpern (2018a) is based on simulation and is 

ot related to what is presented here. 

An important aspect of this paper is that we introduce a linear 

rogramming (LP) solution method to the rendezvous problems, 

hich we use here to solve the gift games G 1 and G 2 . This also

ives an alternative method of obtaining a solution to the origi- 

al problem G 0 of Alpern and Gal (1995) . This method potentially 

rings solutions to more complex search regions like planar grids 

r networks, which are currently not covered by any methods of 

nalysis. 

Furthermore, our work has implications for other forms of ren- 

ezvous search on the line. We are able to solve the Symmetric 

endezvous Problem on the Line (both players must adopt same 

trategy) for two gifts, while the no-gift version remains unsolved 

fter 25 years. We solve the analog of Baston and Gal (2001) Mark- 

tart problem (markers must be dropped at the start) for gifts. We 

re also able to show that G 2 has no asymmetric solution. 

We apply the same solution tools to solve the Minmax problem, 

.e. optimal strategies minimize the maximum rendezvous time. 
580 
his setting admits variations where players have gifts at disposal 

r not. This leads to Minmax versions of G 0 , G 1 and G 2 . New so-

utions are shown for these problems. In particular the Wait For 

ommy strategy is shown to be optimal for the G 0 Minmax prob- 

em. 

. Literature review 

The rendezvous search problem was first informally proposed 

n Alpern (1976) . A discrete version of the problem with a fi- 

ite number of locations was analyzed in Anderson and Weber 

1990) . This problem was later solved for three locations by Weber 

2012) . Rendezvous-evasion on discrete locations was studied in 

im (1997) and solved for two locations (boxes) in Gal and Howard 

2005) . 

The continuous form of the problem was introduced in Alpern 

1995) , for symmetric players who had to use the same mixed 

trategy when placed a known distance apart on the line. The 

layer-asymmetric form of the problem (used in this paper), where 

layers can adopt distinct strategies, was introduced in Alpern and 

al (1995) . 

The corresponding player-symmetric problem on the line was 

eveloped in Anderson and Essegaier (1995) . Their results have 

een successively improved in Baston (1999) , Gal (1999) , and Han, 

u, Vera, and Zuluaga (2008) . These papers assumed that the ini- 

ial distance between the players on the line was known. The ver- 

ion where the initial distance between the players is unknown 

as studied in Baston and Gal (1998) , Alpern and Beck (1999) , 

lpern and Beck (20 0 0) and Ozsoyeller, Beveridge, and Isler (2013) . 

Problems where players move on a circle share similarities 

ith problems on the line ( Di Stefano & Navarra, 2017; Flocchini, 

ranakis, Krizanc, Santoro, & Sawchuk, 2004b; Kranakis, Krizanc, & 

arkou, 2010; Kranakis, Santoro, Sawchuk, & Krizanc, 2003 ). On 

he circle, symmetry breaking has to be solved as well to en- 

ure rendezvous. Versions where tokens may be left by players 

re presented in Czyzowicz, Dobrev, Kranakis, and Krizanc (2008) , 

locchini et al. (2004a) and Das, Mihalák, Šrámek, Vicari, and Wid- 

ayer (2008) . 

The continuous rendezvous problem has been studied on finite 

etworks: the unit interval and circle in Howard (1999) ; arbitrary 

etworks in Alpern (2002b) ; planar grids in Anderson and Fekete 

2001) and Chester and Tutuncu (2004) , the star graph in Di Ste- 

ano and Navarra (2017) ; Kikuta and Ruckle (2007) . 

The present paper is an application of rendezvous search to 

search-and-rescue’ operations ( Lidbetter, 2020 ). A different ap- 

lication of search theory to that area is in Alpern (2011) and 

hrobak, G ̨asieniec, Gorry, and Martin (2015) , where the searcher 

ust find the hider (injured person) and then bring him back 

o a specified first aid location. An application of rendezvous to 

obotic exploration is given in Roy and Dudek (2001) . An appli- 

ation of rendezvous to the communications problem of finding 

 common channel is given in Chang, Liao, and Lien (2015) . Us- 

ng markers in communication networks to help matching pub- 

ishers and consumers of information is suggested in Sarkar, Zhu, 

nd Gao (2009) , Shi, Zheng, Yang, and Zhao (2012) , Leone and 

uñoz (2013) , Muñoz and Leone (2014) , Kündig, Leone, and Rolim 

2016) and Tang, Kuo, and Tsai (2017) . These works have rele- 

ant applications to anonymous communication networks where 

he content of information is important (content based routing). 

t is observed that decentralized search strategies prove to be ef- 

cient in terms of congestion. A survey of the rendezvous search 

roblem is given in Alpern (2002a) . 

It will be of interest to consider all of these problems in the 

wo dimensional setting of a planar grid ( Z 2 ) , as initiated for 

symmetric rendezvous ( Anderson & Fekete, 2001 ) and studied 

n Chester and Tutuncu (2004) ; Zoroa, Zoroa, and Fernández-Sáez 
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Fig. 1. Player I starts at position 0 and his path follows the black line. The paths 

of the four agents of player II starting at position ±1 with directions up or down 

are depicted with the green lines. The rendezvous of player I with the four agents, 

occurring at times t 1 , t 2 , t 3 , t 4 , are circled. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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2009) , and on arbitrary graphs as studied in Alpern (2002b) or 

ipartite graphs ( Baston & Kikuta, 2019 ). The use of gifts could 

lso be studied in the rendezvous contexts of Howard (1999) , Lim 

1997) , Anderson and Essegaier (1995) , Han et al. (2008) and in 

ther settings discussed in the surveys ( Alpern, 2002a; Pelc, 2019 ). 

ifts might also be used in the discrete rendezvous problem dis- 

ussed in Kikuta and Ruckle (2010) ; Weber (2012) or in the context 

f bounded resources, as in Alpern and Beck (1997) . 

It is useful to distinguish the dropping of gifts described and 

nalyzed here with the dropping of markers introduced in Baston 

nd Gal (2001) and further studied in Leone and Alpern (2018a) . 

he earlier papers analyzed the situation where the rendezvous 

layers arrive on the scene by parachutes, which cannot be moved. 

hen one player comes upon the parachute of the other, he learns 

he initial location of the other player. He can then alter his in- 

ended movements accordingly. The game does not end, however, 

ntil the players eventually meet. Thus markers only help in meet- 

ng, whereas gifts end the game in themselves. When both players 

ave a marker that must be dropped at time 0, Baston and Gal 

2001) found the Rendezvous Value and optimal strategy. 

. Formalization of the problems 

We begin by presenting the formalization of the problem G 0 

hen there are no-gifts, as given in Alpern and Gal (1995) . This 

resentation is essentially the same as that given in Leone and 

lpern (2018a) . Two players, I and II, are placed a distance D apart 

n the real line, and faced in random directions. They are restricted 

o moving at maximum at unit speed, so their position, relative to 

heir starting point, is given by a function f ( t ) ∈ F where 

 = 

{
f : [ 0 , T ] → R, f ( 0 ) = 0 , 

∣∣ f ( t ) − f 
(
t ′ 
)∣∣

≤
∣∣t − t ′ 

∣∣∀ t , t ′ ∈ [ 0 , T ] 
}
, (1) 

or some T sufficiently large so that the rendezvous will have taken 

lace. We will see in Proposition 4 that optimal paths are piece- 

ise linear with slopes ±1 and so they can be specified by their 

urning points. Suppose I chooses path f ∈ F and I I chooses path 

 ∈ F . The meeting time depends on which way they are initially 

acing. If they are facing each other, the meeting time is given by 

 

1 = t →← = min { t : f ( t ) + g ( t ) = D } . 
f they are facing away from each other, the meeting time is given 

y 

 

2 = t ←→ = min { t : − f ( t ) − g ( t ) = D } . 
f they are facing the same way, say both left, and I is on the left,

he meeting time is given by 

 

3 = t ←← = min { t : − f ( t ) + g ( t ) = D } . 
f I is on the left and they are both facing right, the meeting time 

s given by 

 

4 = t →→ = min { t : + f ( t ) − g ( t ) = D } . 
o summarize, the four meeting times when strategies (paths) f

nd g are chosen are given by the four values, see Fig. 1 , 

in { t : ± f ( t ) ± g ( t ) = D } . 
he rendezvous time for given strategies is their expected meeting 

ime 

 ( f, g ) = 

1 

4 

(
t 1 + t 2 + t 3 + t 4 

)
. (2) 

he Rendezvous Value R̄ is the optimum expected meeting time, 

¯
 = min 

f,g∈F 
R ( f, g ) = R 

(
f̄ , ̄g 

)
. (3) 
581 
There is a simple interpretation of Eq. (2) as being the average 

ime for player I (whose position at time t is f ( t ) ) to meet four 

gents of player I I . We take as the origin of the line the starting

oint of Player I and we take his forward direction to be the posi- 

ive direction on the line (up, if the line is depicted vertically). The 

our ’agents’ of I I start at + D and −D and face up or down, so their

aths are ±D ± g ( t ) . The meeting times with these ‘agents’ are ex- 

ctly the rendezvous times t i , i = 1 , 2 , 3 , 4 , see Fig. 1 . 

It has been shown in Alpern and Gal (1995) for the ‘no gift’ 

ase, that optimal paths are of the form 

f = [ f 1 , . . . , f k ] , (4) 

here the times f k are the turning points of the path f, namely 

f ′ ( t ) = 

{+1 , for f 2 j ≤ t ≤ f 2 j+1 (where f 0 ≡ 0 ), and 

−1 for f 2 j−1 ≤ t ≤ f 2 j . 

f a player has a gift to drop off, we denote his strategy by 

f = [ τ ; f 1 , . . . , f k ] , (5) 

here τ is the dropoff time and the f j are as above. We are now 

n a position to state and illustrate the initial result in the field, for 

he case of no-gifts. 

heorem 1 ( Alpern & Gal (1995) ) . ( G 0 -Game) An optimal solution

air for the asymmetric rendezvous problem on the line, with initial 

istance D, is given, using the path notation of (4) , by 

f̄ = [ D/ 2 , D/ 2 , D ] , ḡ = [ D ] , 

r equivalently, see Figs. 2 and 3 . The corresponding meeting times 

re 

 1 = t 1 = D/ 2 , t 2 = t 4 = D, t 3 = t 3 = 2 D, t 4 = t 2 = 3 D, (6)

ith Rendezvous Value 

¯
 = R 

(
f̄ , ̄g 

)
= ( D/ 2 + D + 2 D + 3 D ) / 4 = 13 D/ 8 . 

The optimal strategy is illustrated on Fig. 1 . 

Note that in (6) we have introduced the subscripted times t j as 

he meeting times t i given in increasing order. The duration of the 

trategy pair is the final meeting time t 4 . We now illustrate the 

ptimal strategies f̄ , ̄g separately and then show how the solution 

an be seen by drawing the single path of I ( ̄f ) together with the 
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Fig. 2. Plot of f̄ ( t ) in G 0 for D = 2 . 

Fig. 3. Plot of ḡ ( t ) in G 0 for D = 2 . 
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aths of the four agents of player I I ( ±D ± g ( t ) ). We take D = 2 and

raw the paths up to time t 4 = 3 D = 6 , see Figs. 2 and 3 . 

f̄ ( t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

t if t < 1 

1 − ( t − 1 ) if 1 ≤ t < 2 

t − 2 if 2 ≤ t < 4 

2 − ( t − 4 ) if 4 ≤ t ≤ 6 

¯
 ( x ) = 

{
x if x < 2 

2 − ( x − 2 ) if x ≥ 2 

. Statement of results for the games G 1 and G 2 . 

In this section we state our theorems regarding the optimal so- 

utions for the one and two gift games G 1 and G 2 . The strategies

hat we define here immediately give upper bounds on the cor- 

esponding Rendezvous Values R̄ 1 and R̄ 2 . The proofs that these 

trategies are optimal will be given later. 

In this section we have to extend the definition of the t i so 

hat they represent the first of three events: player I meets agent 

, player I finds the gift dropped by agent i, agent i finds the gift

ropped by player I (in the G 2 game only). 

.1. The game G 1 

In the game G 1 , only player II has a gift. The game ends when

he two players meet or when player I finds the gift dropped by 

layer II, whichever comes first. It is optimal for player II to drop 

he gift at time D/ 4 , where D denotes the initial distance between

he players. The full optimal strategies are given in the following 

esult. Recall that in our notation (5) the strategy ḡ indicates that 

layer II drops the gift at time D/ 4 and turns at times D/ 4 and

 D/ 2 . 

heorem 2. ( G 1 -game) An optimal solution for the asymmetric ren- 

ezvous problem on the line when one player has a gift is given, using 

he path notation of (5) , by 

f = [ 3 D/ 4 ] , g = [ D/ 4 ; D/ 4 , 3 D/ 2 ] . (7) 

he corresponding times are 

 1 = t 1 = 3 D/ 4 , t 2 = t 4 = 3 D/ 4 , t 3 = t 2 = 3 D/ 2 , t 4 = t 3 = 9 D/ 4 , 

(8) 

ith Rendezvous Value 

¯
 1 = R ( f, g ) = ( 3 D/ 4 + 3 D/ 4 + 3 D/ 2 + 9 D/ 4 ) / 4 = 21 D/ 16 . 

The proof of this Theorem is deferred to Section 6.2.3 . 
582 
Fig. 4 illustrates the optimal strategy for G 1 outlined in 

heorem 2 . The path of player I is indicated by a thick solid line,

tarting at height (location) 0. The paths of the four agents of 

layer II, starting each at + D and −D , are labeled with their agent

umbers. At time D/ 4 , indicated by four solid squares, these agents 

rop a gift which is indicated by a dashed horizontal line from 

ime D/ 4 . These paths are labeled by the agent number with an 

pper bar, say 1̄ for agent 1. The four meeting times are marked 

s the circles A, B and C. There are two meetings at A (time 3 D/ 4 ),

layer I meets agent 4 and also finds the gift dropped earlier by 

gent 1 (crosses the line 1̄ ): Thus t 1 = t 4 = 3 D/ 4 . The meeting

oint B at time 3 D/ 2 denotes the meeting of player I with agent 2,

o t 2 = 3 D/ 2 . Finally, the meeting at C at time 9 D/ 4 occurs when

layer I finds the gift dropped by agent 1 (crosses the line 3̄ ); 

o t 3 = 9 D/ 4 . The average of these generalized meeting times is

1 D/ 16 . Thus this number is an upper bound on the Rendezvous 

alue R̄ 1 . What remains to do (the harder part) is to show that 

o strategy has a smaller Rendezvous Value. This will be shown in 

ection 6 . The computation of the optimal solution of G 1 is pre- 

ented in Section 6.2.1 while suboptimal solutions are presented 

n Section 6.2.1 . There, Table 2 summarizes our findings for G 1 . 

n Section 6.2.2 , we use the linear programs to compute the Ren- 

ezvous Value as a function of the dropping time z. 
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Table 1 

Rendezvous Values with markers and gifts. 

G, M R ; with D = 16 where 

G 0 13 D/ 8 = 26 [ 9 ] , Theorem 3.2 

M 1 3 D/ 2 = 24 Leone and Alpern (2018a) , Theorem 2 

M 2 3 D/ 2 = 24 Leone and Alpern (2018a) , Theorem 9 

G 1 21 D/ 16 = 21 Theorem 2 

G 2 20 D/ 16 = 20 Theorem 3 

Table 2 

Summary of the Rendezvous Values for the G 1 game. 

Linear programs Dropping time Rendezvous Value; D = 16 Figure 

(13) z ≤ t 1 21 D/ 16 = 21 4 

(−−) t 1 ≤ z ≤ t 2 11 D/ 8 = 22 8 

(−−) t 2 ≤ z ≤ t 3 13 D/ 8 = 26 9 

Fig. 5. Solution of the G 2 -game. The gifts are dropped off at time D/ 2 . In point A, 

the gifts of player I and agent 1 are dropped simultaneously. Each green line has a 

label 1 , 2 , 3 , 4 that is the identifier of the agent of player II that follows the trajec- 

tory. The labels 1̄ and 3̄ and Ī refer to the position of the gift of the agents 1 and 

3 and of player I. The circles are meant to highlight the times t i when rendezvous 

occur or when a gift is found. The red squares highlight the positions of the gifts 

dropped off by the agents of player II. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

4

i

p

d  

l

T

d

u

T

t

w

R

T

T  

s

p  

n

a

l

w

w

A  

o  

m

I  

g  

p  

t

u

t

p

5

m

d

t  

I

g

o

w  

[  

P

g

(

d

i

t

t

a

e

s

w

t  

u

i

s

t

w

t  

p  

a  

fi

o  

s

(

t

s

P

w  

m

(  

c

.2. The game G 2 

In the G 2 game, each player has one-gift to drop. The game ends 

n three possible ways, whichever comes first: the players meet, 

layer I finds the gift dropped by player II, player II finds the gift 

ropped by player I. The optimal solution to G 2 is given in the fol-

owing. 

heorem 3. ( G 2 -game) An optimal solution for the asymmetric ren- 

ezvous problem on the line when both players have a gift is given, 

sing the path notation of (5) , by 

f ∗ = [ D/ 2 ; D/ 2 ] , g ∗ = [ D/ 2 ; D/ 2 ] . (9) 

he corresponding meeting times are 

 1 = t 1 = D/ 2 , t 2 = t 4 = 3 D/ 2 , t 3 = t 2 = 3 D/ 2 , t 4 = t 3 = 3 D/ 2 , 

(10) 

ith Rendezvous Value 

¯
 2 = R ( f ∗, g ∗) = ( D/ 2 + 3 D/ 2 + 3 D/ 2 + 3 D/ 2 ) / 4 = 20 D/ 16 . 

The proof of this Theorem follows the structure of the proof of 

heorem 2 given in Section 6.2.3 . It is detailed in Section 6.3 . 

Fig. 5 illustrates the optimal strategy for G 2 outlined in 

heorem 3 . The path of player I is indicated by a thick solid line,

tarting at height (location) 0. The paths of the four agents of 

layer II, starting each at + D and −D , are labeled with their agent
583 
umbers. At time D/ 2 , indicated by four solid squares, these agents 

nd player I drop a gift which is indicated by a dashed horizontal 

ine from time D/ 2 . These paths are labeled by the agent number 

ith an upper bar, 3̄ indicates the position of the gift of agent 3 

hile Ī the gift of player I. 

The four generalized meeting times are marked as the circles 

 , B and C. At A (time D/ 2 ), player I and agent 1 meet, the gift

f agent 1 is no longer relevant after that time. Thus t 1 = D/ 2 . The

eeting points B and C at time 3 D/ 2 denotes the meeting of player 

 with agent 2, so t 2 = 3 D/ 2 . At the same time, player I finds the

ift of agent 3 (crosses the line 3̄ ) and agent 4 finds the gift of

layer I (crosses the line Ī ). Thus t 3 = t 4 = 3 D/ 2 . The average of

hese generalized meeting times is 20 D/ 16 . Thus this number is an 

pper bound on the Rendezvous Value R̄ 2 . We see in Section 6 that 

his is the optimal solution. The solution of the family of linear 

rograms (16) corresponds to this optimal strategy. 

. Properties of optimal strategies 

In this section we prove Proposition 4 that is the tool that 

akes possible the reduction of optimal strategies from the set F
efined by Eq. (1) to the much smaller set defined by strategies of 

he form of Eq. (4) . More precisely, it proves that the turning points

f i must occur only at the times where player I meets one of player 

I’s agents or at the time of dropping the gift. This proposition is a 

eneralization of Lemma 5.1 of Alpern and Gal (1995) , Theorem 1 

f Alpern (2002b) and Theorem 16.10 of Alpern and Gal (2006) . 

Note that in Fig. 1 (with no gifts), each player moves 

ith slope ±1 in each of the time intervals [0 , t 1 ] = [0 , D/ 2] ,

 t 1 , t 2 ] = [ D/ 2 , D ] , [ t 3 , t 4 ] = [ D, 2 D ] and [ t 4 , t 2 ] = [2 D, 3 D ] .

roposition 4 states that this also holds when players have a 

ift at disposal. 

The proof of Proposition 4 is based on a method of improving 

reducing) one of the four meeting times of a strategy pair if it 

oes not satisfy the property that players must move at unit speed 

n a fixed direction on time intervals between meeting times (or 

ime of dropping or finding a gift), i.e. a player turns inside the 

ime interval or moves more slowly. We have already seen an ex- 

mple of this method of improving the Wait For Mommy strat- 

gy in the Introduction. In WFM, Baby stays still (so not at unit 

peed) on the time interval J [ 0 , D ] until a first possible meeting 

ith Mommy, see the left of Fig. 6 . Suppose we modify Baby’s mo- 

ion during J = [0 , D ] only, so that he moves in some direction at

nit speed during [ 0 , D/ 2 ] and goes back to his starting point dur- 

ng time [ D/ 2 , D ] . After time D, he moves as in WFM (in this case 

tays still). This has the effect of bringing one of the meetings at 

ime D (those where Mommy starts by moving towards him) for- 

ard to time D/ 2 . So instead of meeting Mommy equiprobably at 

imes D and 3 D with average time 2 D = 16 D/ 8 , he meets her with

robability 1 / 4 at each time D/ 2 and D, and (as before) with prob-

bility 1 / 2 at the 3 D, hence with average time 15 D/ 8 . The modi-

ed strategy (on the way to Modified Wait For Mommy, see right 

f Fig. 6 ) is not yet optimal, but it shows that the original WFM

trategy was not optimal. In a similar manner it can be shown 

see proof of Proposition 4 ) that a strategy pair in which one of 

he players does not move at unit speed in a single direction on 

ome such time interval J cannot be optimal. 

roposition 4. Let G be any asymmetric rendezvous game on the line 

here each player has at most one-gift, G 0 , G 1 , G 2 . Then in any opti-

al strategy pair each player moves at unit speed in a fixed direction 

no turns) on each of the time intervals [ c 1 , c 2 ] where c 1 , c 2 are suc-

essive times of events of the form: 

1. The times t i when player I and agent i of player II meet, 
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Fig. 6. Illustration of Wait For Mommy strategy (WFM) on the left and the partly modified strategy on the right. 
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2. The times t i when player I finds the gift dropped by agent i of

player II, or agent i of player II finds the gift dropped by player I

(in the two-gift game G 2 ), 

3. The time τ when one player drops off a gift. 

4. The starting time of the game, c 1 = 0 . 

The intervals are then of the form [0 , t i ] , [0 , τ ] , [ t i , t i +1 ] , [ τ, t i ] ,

 t i , τ ] . 

roof. Assume on the contrary that for some optimal strategy pair 

 

f, g ) , the condition fails on some time interval J = [ c 1 , c 2 ] , i.e. sup-

ose player I, whose path is given by f ( t ) , does not move at (max-

mal) unit speed on J. There are three cases, depending on what 

appens at time c 2 . 

1. At time c 2 = t i when player I and agent i of player II meet .

By increasing his speed, player I arrives at the meeting location 

f ( c 2 ) at an earlier time c 2 − e (< c 2 ) with e > 0 . At time c 2 − e,

agent i of player II is either at location f ( c 2 ) or lies in some

direction (call this i ’s direction) from f ( c 2 ) . 

In the former case the meeting with i is moved forward to time 

c 2 − e. So player I can stay there until time c 2 and then resumes

his original strategy, so all other meeting times are unchanged. 

Otherwise, player I goes from f (c 2 ) in agent i ’s direction at unit

speed on interval [ c 2 − e, c 2 − e/ 2 ] and then back to f ( c 2 ) at 

time c 2 , when he resumes his original strategy. This brings the 

meeting time with i no later than c 2 − e/ 2 , without changing 

any other meeting times. It may also be that player I meets 

agent i on his way to f (c 2 ) , before time c 2 − e , reducing again

the meeting time. After the meeting time player I goes to f (c) , 

waits for time c 2 and resumes his strategy letting unchanged 

the other meeting times. 

In either case the expected rendezvous time is lower, contra- 

dicting the assumption that ( f, g) is an optimal strategy pair. 

The arguments are the same if it is player II that is not moving

at maximal speed. 

2. At time c 2 = t i , player Ifirst finds the gift dropped by agent 

i (or vice-versa). If the gift has just been dropped off at time 

c 2 , then I also meets agent i at time c 2 , so the previous case

applies. Similarly, the previous case applies if the gift is not 

present at time c 2 − e when player I can reach the position 

f (c 2 ) . Otherwise, player I finds the gift at time c 2 − e , waits

there until time c 2 , and then resumes his original strategy f . 

The meeting time is then reduced while others are unchanged. 

This contradicts the assumption that ( f, g) is an optimal strat- 

egy pair. The arguments are the same if it is player II that is 

not moving at maximal speed. 

3. At time c 2 = τ, when one player drops off a gift. Suppose first 

that it is the player that drops off the gift that does not move 

at maximal speed. His speed can be increased to get earlier to 

the dropoff location f (c 2 ) at time c 2 − e , drop off the gift, then 

stay still until time c , and resume with the original strategy. 
2 

584 
In the next time interval, of the form [ τ, t i ] , the player is not

moving at maximal speed and case 1. or 2. occurs. Hence, the 

strategy can again be modified to decrease the average meeting 

times. 

Notice, that there is still the particular case where the game 

stops after the other player finds the gift. In this case the speed 

of the player that dropped the gift is immaterial. We do not 

observe such optimal solutions. 

In the three cases The assumption that ( f, g) is an optimal 

trategy pair is contradicted. The arguments are the same if it is 

layer II that is not moving at maximal speed. �

orollary 5. Optimal strategy pairs ( f, g) in the games G 0 , G 1 , G 2 ad-

it a representation as in (4) , (5) . In particular, there are only a finite

et of strategies candidate for optimality. 

roof. By proposition 4 players move at full speed and turning 

oints must coincide with locations where the player drops/finds 

 gift or meets the other player. At the start, the configuration is 

he one displayed in Fig. 1 . If there is no-gift, trying all possible NE

mounts to check all strategies that can be enumerated in the fol- 

owing way. Let ξ a permutation of { 1 , . . . , 4 } player I rendezvous

ith agents ξ (1) , then ξ (2) , then ξ (3) , and finally ξ (4) . Given

 permutation each rendezvous time is deterministic and leads to 

he definition of f i in (4), (5) . In the case where there is a gift,

he number possible paths are doubled since player II can change 

irection. �

. Reduction of the G 0 , G 1 , G 2 games to families of linear 

rograms (LPs) for solutions 

In this section, we show how the G 0 , G 1 , G 2 games can be re-

uced to families of LPs. For the computations, we set D = 1 . For

he statements of the results, D is reintroduced in Tables and Fig- 

res. 

Proposition 4 teaches us that for a strategy to be optimal, play- 

rs must move at maximal speed and that the turning points occur 

nly at specified times. This makes it possible to reduce the prob- 

em to a family of linear programs. As mentioned in the Introduc- 

ion, this is an important new idea for solving rendezvous prob- 

ems. For the original G 0 game, the family is given by (11) . For the

 1 game, we have 4 families to write down and solve. One family 

or the dropping time z constrained to z ≤ t 1 , see (13) , and three

thers when t 1 ≤ z ≤ t 2 , t 2 ≤ z ≤ t 3 or t 3 ≤ z ≤ t 4 . By solving all the

P constituting the families we prove that the strategies given in 

heorems 2 and 3 are optimal. 

We first illustrate the technique by reproving Theorem 1 . 
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Fig. 7. Plot of the two optimal solutions of the G 0 games with D = 1 . The vertical axis is the position of the players on the line and the horizontal axis is the time. On the 

left are plotted the strategies of player I and on the right of player II. The only difference between the two strategy pairs is that player I reverses the direction of motion at 

times t 2 and t 3 . 
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.1. Reduction of the G 0 game to a family of LPs and optimal 

olutions 

A strategy amounts to selecting the order in which player I 

eets with the agents of player II. Hence, given any of the 4! = 24

ermutations π of { 1 , 2 , 3 , 4 } , a strategy amounts to the succes-

ive meetings of player I with the agents π(1) , π(2) , π(3) , and

(4) . For the G 0 game, there are two permutations that are op- 

imal π1 = { 1 , 3 , 4 , 2 } (so that t 1 = t 1 , t 2 = t 3 , t 3 = t 4 , t 4 = t 2 ) and

2 = { 1 , 3 , 2 , 4 } (so that t 1 = t 1 , t 2 = t 3 , t 3 = t 2 , t 4 = t 4 ). The opti-

al solutions are plotted in Fig. 7 . 

To represent the agents of player II in the LPs, we use two vari-

bles o and d that may take the values ±1 . The variable o is used 

o represent the initial position of the agent while d represents 

he forward direction of the agent, i.e. if d = 1 ( d = −1 ) the agent

orward direction is along the positive (negative) axis. According 

o the numbering of the agents of player II in Fig. 1 , we have

 = 1 , d = 1 for agent 4, o = 1 , d = −1 for agent 1, o = −1 , d = 1 for

gent 3, o = −1 , d = −1 for agent 2. 

The strategies are given by direction variables a 1 , a 2 , a 3 , a 4 for

layer I and b 1 , b 2 , b 3 , b 4 for player II. By Proposition 4 , these vari-

bles are restricted to be ±1 to indicate that a player moves in the 

orward (backward) direction at maximal speed. 

Variable a i , b i indicates the direction of the motion of the two 

layers during the time interval [ t i −1 , t i ] , with t 0 = 0 (remember

hat t i is the time of the i th rendezvous). To reduce the computa-

ions, we always have a 1 = b 1 = 1 because there is nothing essen-

ial to consider the other cases by the symmetry of the problem. 

his reduces from 24 to 6 the number of permutations to be con- 

idered. With a 1 = b 1 = 1 the first rendezvous occurs always with 

layer I and agent 1. 

In the rendezvous search problem, we search for minimizing 

he average meeting time, hence the cost function to minimize is 

iven by 

 1 + t 2 + t 3 + t 4 = 4 t 1 + 3(t 2 − t 1 ) + 2(t 3 − t 2 ) + (t 4 − t 3 ) 

= 4�1 + 3�2 + 2�3 + �4 , (11a) 

here �1 = t 1 and �i = t 1 − t i −1 , i = 2 , 3 , 4 (to simplify the nota-

ion the division by 4 is not included). 
585 
The first rendezvous occurs between player I and the agent rep- 

esented by (o 1 , d 1 ) where the particular values of o 1 and d 1 are

1 depending on the order on which the rendezvous occur with 

he agents. The first meeting occurs at time t 1 defined by the equa- 

ion ( a 1 = b 1 = 1 are not included because not essential by symme-

ry of the problem) 

 1 = o 1 + d 1 t 1 . (11b) 

he left side of (11b) accounts for the motion of player I that starts

t the origin and moves for a duration t 1 . The right side accounts 

or the motion of the agent of player II that starts at position 

 1 (= ±1) and moves in direction d 1 (= ±1) for a duration t 1 . The

quality between the two sides accounts for the rendezvous. 

Next, player I meets with the agent whose initial position is 

 2 and forward direction d 2 at time t 2 . The occurrence of a ren-

ezvous is stated by equation 

 1 + a 2 (t 2 − t 1 ) = o 2 + d 2 
(
t 1 + b 2 (t 2 − t 1 ) 

)
, (11c)

here a 2 is introduced to indicate whether player I continues in 

he forward direction a 2 = 1 or backward a 2 = −1 . The left hand

ide of the equation is the position of player I at time t 2 , while the

ight hand side is the position of agent (o 2 , d 2 ) at time t 2 . 

The third meeting occurs with agent (o 3 , d 3 ) at time t 3 defined

y 

t 1 + a 2 (t 2 − t 1 ) + a 3 (t 3 − t 2 ) 

= o 3 + d 3 
(
t 1 + b 2 (t 2 − t 1 ) + b 3 (t 3 − t 2 ) 

)
. (11d) 

Finally, the fourth and last meeting occurs with agent (o 4 , d 4 ) 

nd occurs at time t 4 defined by 

t 1 + a 2 (t 2 − t 1 ) + a 3 (t 3 − t 2 ) + a 4 (t 4 − t 3 ) 

= o 4 + d 4 
(
t 1 + b 2 (t 2 − t 1 ) + b 3 (t 3 − t 2 ) + b 4 (t 4 − t 3 ) 

)
. (11e) 

The problem can be stated as the following family of LPs where 

 i , b i , o i , d i are parameters and an LP is solved for �i : 

in 

�i 

4�1 + 3�2 + 2�3 + �4 (11a) 

1 = o 1 + d 1 �1 (11b) 
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Fig. 8. Suboptimal solution when the dropping time is constraint to z ∈ [ t 1 , t 2 ] , 
R ( f, g) = 11 D/ 8 . 
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1 + a 2 �2 = o 2 + d 2 
(
�1 + b 2 �2 

)
(11c) 

1 + a 2 �2 + a 3 �3 = o 3 + d 3 
(
�1 + b 2 �2 + b 3 �3 

)
(11d) 

�1 + a 2 �2 + a 3 �3 + a 4 �4 

= o 4 + d 4 
(
�1 + b 2 �2 + b 3 �3 + b 4 �4 

)
�i ≥ 0 . (11e) 

The variables o i , d i , a i and b i are the parameters of the problem.

heir values are constraint to 

 i , b i , o i , d i ∈ {−1 , 1 } , ∑ 

o i = 0 , 
∑ 

d i = 0 , o i = o j ⇒ d i � = d j , 

(12) 
 

o i = 0 ensures that there are two agents located at the +1 and

wo at the −1 initial positions. 
∑ 

d i = 0 ensures that two of them

ave direction +1 and two have direction −1 . o i = o j ⇒ d i � = d j en-

ures that two agents located at the same position have opposite 

orward directions. The other ones are used to generate the fam- 

ly of LPs that has to be solved. We found 1536 parameter tuples 

hat satisfy the constraints (12) each tuple leading to an LP to be 

olved. Among the solved tuples 6 are feasible. 

In (11a) , the decreasing arithmetic sequence 4,3,2,1 is easily ex- 

lained. Any delay in the first meeting delays all the subsequence 

eetings as well, so four equiprobably meetings. A delay to the 

econd meeting affects all but the first meeting, so three meetings, 

nd so on. Note that we minimize the sum of the meeting times, 

hich is equivalent to the mean of these equally likely meeting 

imes. 

The optimal solutions found are displayed in Fig. 1 . The first 

olution corresponds to the strategy given in Theorem 1 , where 

layer I’s strategy is f̄ = [ D/ 2 , D/ 2 , D ] and player II’s strategy ḡ =
 D ] . In the second solution, player I’s strategy is f̄ = [ D/ 2 , 3 D/ 2]

nd player II’s strategy ḡ = [ D ] , see the plots on Fig. 7 . 

.2. Reduction of the G 1 game to families of LPs and optimal 

olutions 

The G 1 game stops when player I meets with agent i or finds 

he gift of agent i . Independently of which event occurs, we will 

peak of a generalized rendezvous time. Similarly to the G 0 game, 

roposition 4 says that an optimal strategy is given by a permu- 

ation π of { 1 , 2 , 3 , 4 } such that the generalized rendezvous times

re of the form t 1 = t π(1) , t 2 = t π(2) , t 3 = t π(3) , t 4 = t π(4) . 

The solution of the G 1 game is obtained by writing the prob- 

em in a form similar to (11) . However, we have four more cases

epending on when the gift is dropped off. If the dropping time is 

ritten z, the four possibilities are: z ∈ [0 , t 1 ] , z ∈ [ t 1 , t 2 ] , z ∈ [ t 2 , t 3 ] ,

 ∈ [ t 3 , t 4 ] . The optimal solution for each case is computed by solv-

ng the families of linear programs given by (13) when the drop- 

ing time z is constrained by z ≤ t 1 , see (13) , and three others

hen t 1 ≤ z ≤ t 2 , t 2 ≤ z ≤ t 3 or t 3 ≤ z ≤ t 4 . 

The optimal solution for the G 1 game is found for z ∈ [0 , t 1 ] . The

amily of LPs to be solved in this case is written in (13) . The opti-

al solution is drawn in Fig. 4 . 

in 

�i ,z 
4�1 + 3�2 + 2�3 + �4 (z ≤ t 1 ) 

 0 z + a 1 (�1 − z) = o 1 + k 1 d 1 
(
b 0 z + b 1 (�1 − z) 

)
+ (1 − k 1 ) d 1 b 0 z 

 0 z + a 1 (�1 − z) + a 2 �2 = 

 2 + k 2 d 2 
(
b 0 z + b 1 (�1 − z) + b 2 �2 

)
+ (1 − k 2 ) d 2 b 0 z 

 0 z + a 1 (�1 − z) + a 2 �2 + a 3 �3 = 
586 
 3 + k 3 d 3 
(
b 0 z + b 1 (�1 − z) + b 2 �2 + b 3 �3 

)
+ (1 − k 3 ) d 3 b 0 z 

 0 z + a 1 (�1 − z) + a 2 �2 + a 3 �3 + a 4 �4 = 

 4 + k 4 d 4 
(
b 0 z + b 1 (�1 − z) + b 2 �2 + b 3 �3 + b 4 �4 

)
+ (1 − k 4 ) d 4 b 0 z 

 ≤ z ≤ �1 , �i ≥ 0 (13) 

In the LP family (13) , the variable z denotes the dropping time, 

he variables k i are used to distinguish the cases where player I 

eets with the agent (o i , d i ) (if k i = 1 ) or finds the gift of agent

o i , d i ) (if k i = 0 ). The gift is dropped of at position d i b 0 z. The pa-

ameters are constrained by 

 i ∈ { 0 , 1 } , a i , b i , o i , d i ∈ {−1 , 1 } , (14) ∑ 

o i = 0 , 
∑ 

d i = 0 , o i = o j ⇒ d i � = d j , 

hich have the same meaning than in (11) with the addition of 

he constraint on the dropping time z, z ≤ �1 , to fix z ∈ [0 , t 1 ] . 

Each particular LP in the family is determined by the direction 

nd origin variables a i , b i and o i , d i . Once these are fixed, we have

he LP of (13) to solve for �i and z. It is more convenient to use

he differences �i instead of the rendezvous time t i . The objective 

unction, which we minimize, is the average meeting time (multi- 

lied by 4 to remove fractions). The top four constraints say that 

1. At time t 1 = �1 player I (at position a 0 z�1 + a 1 (�1 − z) ) meets

agent (o 1 , d 1 ) (at position o 1 + d 1 
(
b 0 z + (�1 − z) b 1 

)
) if k 1 = 1 ,

or finds the gift at position d 1 b 0 z if k 1 = 0 , 

2. At time t 2 = �1 + �2 player I meets agent (o 2 , d 2 ) if k 2 = 1 , or

finds the gift at position d 2 b 0 z if k 1 = 0 , 

3. At time t 3 = �1 + �2 + �3 player I meets agent (o 3 , d 3 ) if k 3 =
1 , or finds the gift at position d 3 b 0 z if k 1 = 0 , 

4. At time t 4 = �1 + �2 + �3 + �4 player I meets agent (o 4 , d 4 )

if k 4 = 1 , or finds the gift at position d 4 b 0 z if k 1 = 0 . 

.2.1. Optimal solutions when the dropping time is constraint to 

 1 ≤ z ≤ t 2 , or t 2 ≤ z ≤ t 3 
To solve the cases when t 1 ≤ z ≤ t 2 , or t 2 ≤ z ≤ t 3 two fami-

ies of LPs similar to (13) are written down and solved. The Ren- 

ezvous Values obtained in each case are presented in Table 2 . 

trategies leading to suboptimal Rendezvous Values are drawn in 

igs. 8 and 9 . 

.2.2. Optimal solution as a function of the dropping time z

In Fig. 10 , we observe that the optimal solution as a function 

f the dropping time z is piecewise linear. This follows from the 

heory of parametric linear programming pioneered in Gass and 

aaty (1955) . 

By computing the optimal solutions for z in a mesh of val- 

es, we obtain Fig. 10 where the solution value is linear on the 
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Fig. 9. Suboptimal solution when the dropping time z = D + λ is constraint to z ∈ [ t 2 , t 3 ] , R ( f, g) = 13 D/ 8 . Left: λ ≤ 1 
2 

. Right: λ ≥ 1 
2 

. 

Fig. 10. Optimal solution value of the G 1 game as a function of the gift dropping 

time z. 
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egments [0 , D/ 4] , [ D/ 4 , 2 D/ 5] , [2 D/ 5 , D/ 2] , [ D/ 2 , 2 D ] . We numeri-

ally found the optimal strategies on these intervals as plotted in 

igs. 11 and 12 with the algebraic expression of the Rendezvous 

alue as a function of the dropping time z summarized in Table 3 . 

ig. 12 is interesting in providing an example where the optimal 

olution (for fixed dropping time z) does not turn at time of drop- 

ing the gift. 

.2.3. Proof of Theorem 2 

Theorem 2 ( G 1 -game) An optimal solution for the asymmet- 

ic rendezvous problem on the line when one player has a gift is 

iven, using the path notation of (5) , by 

f = [ 3 D/ 4 ] , g = [ D/ 4 ; D/ 4 , 3 D/ 2 ] . 

he corresponding times are 

 1 = t 1 = 3 D/ 4 , t 2 = t 4 = 3 D/ 4 , t 3 = t 2 = 3 D/ 2 , t 4 = t 3 = 9 D/ 4 , 

(15) 

ith Rendezvous Value 

¯
 1 = R ( f, g ) = ( 3 D/ 4 + 3 D/ 4 + 3 D/ 2 + 9 D/ 4 ) / 4 = 21 D/ 16 . 

roof. The proof of this Theorem is in three steps. The first step 

onsists in the reduction of the space the optimal solution belongs 

o. In the problem formulation, the optimal solution are Lipschitz 

unctions as defined in (1) . Proposition 4 shows that the optimal 

olutions are piecewise linear, i.e. the players move at constant 

aximal speed between events corresponding to rendezvous or 

ropping of the gift. Hence, the player’s strategy is given by (4) if 

he player has no gift, or (5) if a gift is at disposal. This reduction

s stated by Corollary 5 . 

In the second step of the proof, the problem is formulated as a 

arametric LP, i.e. a family of linear programs that enumerates all 
587 
he permutations of the rendezvous or gift dropping time. More 

ormally, the family of LPs enumerates the linear orderings of the 

our rendezvous time t 1 , t 2 , t 3 , t 4 and the dropping time z. 

In the third and last step, an LP solver finds the optimal solu- 

ion (if any) of each LP belonging to the family of LPs (13) if the

ropping time is restricted to z ≤ t 1 and similar LP families when 

 1 ≤ z ≤ t 2 and t 3 ≤ z ≤ t 4 . The optimal strategies are discovered by 

nspection of the results. �

.3. Reduction of the G 2 game to families of LPs and optimal 

olutions 

For the G 2 game, each player has a gift, and we denote by 

 1 , z 2 the dropping times of player I and II respectively. We have 

ow 16 different families to write down corresponding to the dif- 

erent dropping times: z 1 , z 2 ∈ [0 , t 1 ] , z 1 , z 2 ∈ [ t 1 , t 2 ] , z 1 , z 2 ∈ [ t 2 , t 3 ] ,

 1 , z 2 ∈ [ t 3 , t 4 ] . We find that the optimal solution occurs for z 1 =
 2 = D/ 2 and for z 1 = z 2 = 0 . 

Around the dropping time D/ 2 there are only 3 possibilities: 

 1 , z 2 ≤ t 1 , z 1 ≤ t 1 ≤ z 2 ≤ t 2 , t 1 ≤ z 1 , z 2 ≤ t 2 . 

In the first case, z 1 , z 2 ≤ t 1 = �1 , the system to solve is given

y (16) . This system is very similar to the systems solving G 1 . We

ave introduced the supplementary variables k i , l i to indicate that 

layer I meets player II ( k i = l i = 1 ), player I finds the gift of player

I ( k i = 1 , l i = 0 ) or player II finds the gift of player I ( k i = 0 , l i = 1 ).

he case k i = l i = 0 is not meaningful. 

In (16) , a particular linear program results from the choices of 

he direction and origin variables variables a i , b i and o i , d i as well

s the variables k i , l i that decide for each i which event occurs 

mong the following: player I meets agent (o i , d i ) (k i = 1 , l i = 1) ,

layer I finds the gift of agent (o i , d i ) (k i = 1 , l i = 0) , agent (o i , d i )

nds the gift of player I (k i = 0 , l i = 1) . The linear program is

olved for the optimal �i (leading to the generalized rendezvous 

imes t i ) and the dropping times z 1 , z 2 . The optimal solutions are

lotted in Figs. 5 and 14 . The 15 other cases are not included here

nd do not lead to optimal solutions. 

min 

i ,z 1 ,z 2 
4�1 + 3�2 + 2�3 + �4 (z 1 ≤ t 1 , z 2 ≤ t 1 ) 

1 − k 1 ) l 1 a 0 z 1 + k 1 
(
a 0 z 1 + a 1 (�1 − z 1 ) 

)
= 

 1 + l 1 d 1 
(
b 0 z 2 + b 1 (�1 − z 2 ) 

)
+ k 1 (1 − l 1 ) d 1 b 0 z 2 

1 − k 2 ) l 2 a 0 z 1 + k 2 
(
a 0 z 1 + a 1 (�1 − z 1 ) + a 2 �2 

)
= 

 2 + l 2 d 2 
(
b 0 z 2 + b 1 (�1 − z 2 ) + b 2 �2 

)
+ k 2 (1 − l 2 ) d 2 b 0 z 2 

1 − k 3 ) l 3 a 0 z 1 + k 3 
(
a 0 z 1 + a 1 (�1 − z 1 ) + a 2 �2 + a 3 �3 

)
= 

 3 + l 3 d 3 
(
b 0 z 2 + b 1 (�1 − z 2 ) + b 2 �2 + b 3 �3 

)
+ k 3 (1 − l 3 ) d 3 b 0 z 2 

1 − k 4 ) l 4 a 0 z 1 + k 4 
(
a 0 z 1 + a 1 (�1 − z 1 ) + a 2 �2 + a 3 �3 + a 4 �4 

)
=

 4 + l 4 d 4 
(
b 0 z 2 + b 1 (�1 − z 2 ) + b 2 �2 + b 3 �3 + b 4 �4 

)
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Fig. 11. Optimal solutions as a function of the dropping time z. Left: 0 ≤ z ≤ D/ 4 , R ( f, g) = (6 D − 3 z) / 4 . Right: D/ 4 ≤ z ≤ 2 D/ 5 , R ( f, g) = (9 D/ 2 + 3 z) / 4 . 

Fig. 12. Optimal solutions as a function of the dropping time z. Left: 2 D/ 5 ≤ z ≤ D/ 2 , R ( f, g) = (13 D/ 2 − 2 z) / 4 . Right: D/ 2 ≤ z ≤ 2 D , R ( f, g) = (9 D/ 2 + 2 z) / 4 . 

Table 3 

Optimal play for fixed dropping time z. 

Dropping time Rendezvous Value Figure 

0 ≤ z ≤ D/ 4 (6 D − 3 z) / 4 11 Left 

D/ 4 ≤ z ≤ 2 D/ 5 (9 D/ 2 + 3 z) / 4 11 Right 

2 D/ 5 ≤ z ≤ D/ 2 (13 D/ 2 − 2 z) / 4 12 Left 

D/ 2 ≤ z ≤ 2 D (9 D/ 2 + 2 z) / 4 12 Right 

Table 4 

Rendezvous Value R when markers or gifts must be dropped at start. 

G, M R ; with D = 16 where 

MS 1 13 D/ 8 = 26 [36], Fig. 7 

MS 2 3 D/ 2 = 24 [16], Theorem 2 

GS 1 3 D/ 2 = 24 Fig. 14 left 

GS 2 5 D/ 4 = 20 Fig. 14 right 
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v

Fig. 13. Contour plot of the Rendezvous value of G 2 as a function of the dropping 

times z 1 , z 2 of players I and II. 
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a  
+ k 4 (1 − l 4 ) d 4 b 0 z 2 

 ≤ z 1 ≤ �1 , 0 ≤ z 2 ≤ �1 , �i ≥ 0 (16) 

he variables o i , d i , a i , b i , k i , l i are parameters of the problem to be

olved. Their values are constraint to 

 i , l i ∈ { 0 , 1 } , a i , b i , o i , d 1 ∈ {−1 , 1 } , ∑ 

o i = 0 , 
∑ 

d i = 0 , o i = o j ⇒ d i � = d j , k i + l i ≥ 1 

The constraints are similar than the constraints of the G 1 game 

iven in Eq. (14) . Here, variables l i are added to deal with the gift

old by player I. Two new cases may occur. Agent i finds the gift 

f player I ( l i = 0 ) or agent i rendezvous with player I ( l i = 1 ). 

In Fig. 13 we plot the Rendezvous value of G 2 as a function of

he dropping times z 1 and z 2 with initial inter distance D = 1 . 

. GiftStart, symmetric and minmax rendezvous 

This section looks more closely at optimal solutions to the rele- 

ant LPs and gives some qualitative results when the gifts in prob- 
588 
em G 2 must be dropped at the start and when players must play 

dentically. 

.1. GiftStart rendezvous 

The form of rendezvous search where the players had to drop 

arkers at their starting points was termed MarkStart Rendezvous 

y Baston and Gal (2001) . When both players have markers, we 

enote this by MS 2 if only one has a marker as in Leone and Alpern

2018b) , we denote it as MS 1 . By analogy, we call the problems

hen one or both players have gifts that must be dropped at the 

tart as GiftStart Rendezvous, denoted by GS 1 and GS 2 . The solution 

o GS 1 has already been shown: the Rendezvous Value of 3 D/ 2 for 

S 1 is given in Fig. 10 and the optimal strategy can be seen as 

n extreme case of the left side of Fig. 13 . This optimal strategy for
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Fig. 14. Optimal strategy for the GS 1 and GS 2 game on the left and right respectively. 
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Table 5 

Minmax values of the games G 0 , G 1 , G 2 , GS 1 and GS 2 . 

G Minmax Value; D = 16 Dropping Time where 

G 0 Minmax 3 D = 48 −− Figs. 1, 15 left, 6 

G 1 Minmax 2 D = 32 z = D/ 2 Fig. 15 right 

G 2 Minmax 3 D/ 2 = 24 z 1 = z 2 = D/ 2 Fig. 5 

GS 1 Minmax 5 D/ 2 = 40 z = 0 Fig. 16 left 

GS 2 Minmax 2 D = 32 z 1 = z 2 = 0 Fig. 16 right 

t

l

T

w

i

a

u

fi

b

s

u

w  

e  

t

s

f

t

a

t

a

r

m

T

T

a

l

7

e

t

t

S 1 is [ D ] for the player without a gift and [ 0 ; 3 D/ 2 ] for the player 

ho drops the gift at time 0. 

To find an optimal strategy pair for GS 2 , we added the con- 

traint z ≤ 0 to our LP system (16) and found the following optimal 

olution 

f ∗∗ = g ∗∗ = [ 0 ; D ] , (17) 

hey both drop their gift at the start and turn after time D , as dis-

layed on the right of Fig. 14 . 

This gives a rendezvous time of 5 D/ 4 . Note that by 

heorem 3 this is the Rendezvous Value of the larger strategy G 2 

ame (with no restriction on dropping times), which proves it is 

lso optimal in GS 2 . This is a good point to compare the MarkStart

nd GiftStart Rendezvous Values. When dropping at the start: 

• one gift is as good as two markers (both give 24) 
• one marker is no better than none (both give 26, compare with 

Table 1 ) 
• two markers are better than one marker ( 20 < 24 ) 
• two gifts at the start are as good as two gifts which can be

dropped at any time, (both give 2, compare with Table 1 or 

Theorem 3 ) 

.2. Symmetry and asymmetry of strategy pairs 

A strategy pair ( f, g ) is called symmetric if f = g. Similarly 

e talk about the player-symmetric (or just symmetric) or player- 

symmetric forms of the rendezvous problem. So far in this paper 

e have been considering the asymmetric rendezvous problem. If 

ne is to say write a best selling book for hikers saying what to 

o if you get separated from your partner, then if both hikers read 

t, this is the symmetric form. If however it says what the taller 

nd shorter hiker should each do, then it is the asymmetric form. 

or the line with a given distance between the players, the asym- 

etric problem (without gifts or markers) was posed and solved 

n Alpern and Gal (1995) . Surprisingly, the equivalent symmetric 

roblem posed earlier in Alpern (1995) is still unsolved. Progress 

as been made in successively reducing the upper bound on the 

endezvous Value in Han et al. (2008) . 

A simple but important observation about symmetric ren- 

ezvous on the line is the following. In the traditional version, 

ithout gifts or markers, a symmetric pure strategy pair ( f, f ) has 

nfinite expected meeting time. This is because if the two players 

appen to start facing the same direction, following the same path 

f will preserve their initial distance, so they will never meet. For 

his reason all the work on the symmetric rendezvous problem on 

he line has considered common mixed strategies for the players. 

owever for the symmetric problem G 2 where each player has a 

ift, we have already exhibited two symmetric strategies (the one 

n Theorem 3 and the one in Fig. 14 left) which are optimal (ren-

ezvous time 5 D/ 4) . This means that they are necessarily still op- 
589 
imal in the smaller symmetric rendezvous problem, so that prob- 

em is solved in the presence of gifts, as follows. 

heorem 6. Consider the Symmetric Rendezvous Problem on the Line, 

here two players are placed a distance D apart on the line and faced 

n random directions. They each have a gift which they may drop at 

 chosen time. They must follow the same mixed strategy based on 

nit speed paths and arbitrary dropping times. The game ends at the 

rst time T when the players meet or one finds a gift dropped earlier 

y the other player. An optimal mixed strategy is the pure (atomic) 

trategy where each drops their gift at the starting time, moves at 

nit speed in the direction they are facing and turns at time D. They 

ill meet with probability 1 / 4 at times D/ 2 and 5 D/ 2 and each will

ach find the other’s gift at time D with disjoint probability 1 / 4 . So

he Rendezvous Value (the expected value of T ) is 5 D/ 4 . 

The reason our earlier argument (about the non existence of 

ymmetric optimal strategies which are pure) fails is that when 

aced in the same direction the player who starts behind will reach 

he gift left by the other at time D. 

To review, the only optimal strategies in the no-gift game G 0 

re asymmetric. In the G 2 game, we found two symmetric op- 

imal strategies. So a natural question is whether there are any 

symmetric optimal strategies in G 2 . To answer this question, we 

an our LPs in a way to find all optimal solutions. We deter- 

ined that there were only two, namely the symmetric ones from 

heorem 3 and (17) . To summarize, we have found the following. 

heorem 7. The two gift games which are symmetric in definition 

re G 0 and G 2 . For these, 

1. The game G 0 has only asymmetric solutions. 

2. The game G 2 has only symmetric solutions. 

While the first result is perhaps widely known (but unpub- 

ished), the second is new to this paper. 

.3. Minmax rendezvous 

An anonymous referee has suggested that our techniques allow 

asily changing the objective function, for example to minimizing 

he maximum rendezvous time ( t 4 ). If Captain Scott in the Antarc- 

ic can go without food for at most three days, it is natural to 
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Fig. 15. Optimal strategies for the G 0 Minmax Rendezvous problem on the left and the G 1 Minmax Rendezvous problem on the right. 

Fig. 16. Minmax strategies for the Rendezvous problem when gifts are dropped at the start time. The solution to the problem with one gift on the left ( GS 1 ) and two gifts 

on the right ( GS 2 ). 
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ee if there is a rendezvous strategy which ensures rendezvous be- 

ore this, even if it does not minimize the expected time for him 

o get food. We would want to know if the Minmax rendezvous 

ime (possibly with gifts) is less than this. In this case the objec- 

ive function for our LPs becomes �1 + �2 + �3 + �4 . The strat- 

gy reduction obtained by our use of Proposition 4 still holds, as 

iven any Minmax strategy, the proof creates one with unit speed 

aths without increasing any of the meeting times, in particular 

t doesn’t increase the last meeting time. The results of changing 

he objective function to Minmax are listed in Table 5 . Note that, 

nlike earlier results for Rendezvous Values (expected time), the 

inmax values strictly decrease, in both regular or Giftstart ver- 

ions, as the number of gifts increase. The new Minmax strategies 

or G i and for GS i are shown in Figs. 15 and 16 . 

For the original game G 0 with no gifts, the optimal solution 

Modified Wait For Mommy MWFM) of Fig. 1 (or Theorem 1 ) is 

lso Minmax. However the simpler (unmodified) Wait For Mommy 

s also a Minmax strategy, although it is not (expected time) opti- 

al because the second meeting for example takes place later than 

hat of MWFM. The Minmax problem for G 0 is the only one which 

as previously been studied, see Alpern and Lim (2002) . 

For the one gift problem G 1 , there is no strategy which is both

ptimal and Minmax. A Minmax solution is shown on the right 

ide of Fig. 15 , with all agents meeting player I by time 2 D. How-

ver for the two gift problem G 2 there the symmetric strategy 

f ∗ = g ∗ stated in Theorem 3 (and drawn in Fig. 5 ) is both opti-

al and Minmax, with last meeting at time 3 D/ 2 . Thus we have

lso found a Minmax solution for the symmetric problem with two 

ifts. It is worth observing that the optimal Giftstart solution of G 2 , 

hown on the right side of Fig. 14 , while also an optimal solution

or G 2 , is not also a Minmax solution to that problem, as the last

eeting is at time 5 D/ 2 . 

Finally, we consider the Minmax problem for one or two gifts, 

hen they must be dropped at the start (Minmax Giftstart). Here 

he Minmax solutions are different from the optimal solutions. The 
590 
inmax solutions are shown in Fig. 16 . Our techniques could easily 

e adapted to finding the best average meeting time subject to a 

aximum meeting time, a useful objective for search and rescue. 

. Conclusions 

This paper introduced a new variation of the rendezvous search 

roblem tailored to the context of search-and-rescue. In the basic 

ase (one-gift), we distinguish one of the players as the lost one 

nd the other player as the rescuer . We assume that the lost player 

equires something (e.g. water) which he can obtain from the res- 

ue player either on meeting or by finding it in the form of a gift

in this case a canteen of water) dropped earlier by the rescuer. 

he gift could also consist of information, in the form of a dropped 

essage, which is useful for the lost player (perhaps telling him 

o go downhill to a lake). This form of rendezvous search involves 

oth optimal movement patterns and optimal times to drop a gift. 

e solve the problem where only one player has a gift and also 

hen both have gifts and only one of them needs to be found. 

nlike the qualitative solution for the related marker game, where 

wo markers are no better than one, we find that two-gift are bet- 

er than one. 

In addition to solving the problems with one or two gifts, we 

emonstrate a new solution method which can hopefully be used 

oth retrospectively to give derivations for previous forms of ren- 

ezvous and in a forward looking manner to solve two dimensional 

endezvous problems which have been considered too difficult to 

ttack. These applications of the method will be the subject of fu- 

ure work. The idea of the method is to use a result on when the

layers can turn (our Proposition 4 ) to reduce the general prob- 

em to a finite number of linear programs. When we compare the 

endezvous times for each of these, the minimum represents a so- 

ution to the original problem. Previous rendezvous problems have 

enerally been solved by guessing the solution and then proving it 

s optimal. Ours is a more algorithmic approach. 
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We have also introduced the GiftStart Rendezvous problem 

here both players have a gift that must be dropped at the start. 

his game is a gift version of the MarkStart problem known in the 

iterature. We show that this symmetric problem admits symmet- 

ic solution. This result contrasts with the G 1 problem where we 

howed that solutions must be asymmetric. 

Finally, we show how our methods are easily adaptable to min- 

mizing the maximum rendezvous time. This is important when 

here is a deadline for rendezvous. 
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