
Genetics and population analysis

KwARG: Parsimonious reconstruction of ancestral

recombination graphs with recurrent mutation

Anastasia Ignatieva 1,∗, Rune B. Lyngsø 2, Paul A. Jenkins 1,3,4 and Jotun

Hein 2,4

1Department of Statistics, University of Warwick, Coventry CV4 7AL, UK, 2Department of Statistics, University of Oxford, 24-29 St

Giles’, Oxford OX1 3LB, UK, 3Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK, and 4The Alan Turing

Institute, British Library, London NW1 2DB, UK.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The reconstruction of possible histories given a sample of genetic data in the presence of

recombination and recurrent mutation is a challenging problem, but can provide key insights into the

evolution of a population. We present KwARG, which implements a parsimony-based greedy heuristic

algorithm for finding plausible genealogical histories (ancestral recombination graphs) that are minimal or

near-minimal in the number of posited recombination and mutation events.

Results: Given an input dataset of aligned sequences, KwARG outputs a list of possible candidate

solutions, each comprising a list of mutation and recombination events that could have generated the

dataset; the relative proportion of recombinations and recurrent mutations in a solution can be controlled

via specifying a set of ‘cost’ parameters. We demonstrate that the algorithm performs well when compared

against existing methods.

Availability: The software is available at https://github.com/a-ignatieva/kwarg.

Contact: anastasia.ignatieva@warwick.ac.uk

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

For many species, the evolution of genetic variation within a population

is driven by the processes of mutation and recombination in addition to

genetic drift. A typical mutation affects the genome at a single position,

and may or may not spread through subsequent generations by inheritance.

Recombination, on the other hand, occurs when a new haplotype is created

as a mixture of genetic material from two different sources, which can

drive evolution at a much faster rate. The detection of recombination is

an important problem which can provide crucial scientific insights, for

instance in understanding the potential for rapid changes in pathogenic

properties within viral populations (Simon-Loriere and Holmes, 2011).

Consider a population evolving through the replication, mutation, and

recombination of genetic material within individuals, emerging from a

common origin and living through multiple generations until the present

day. In general, the history of shared ancestry, mutation, and recombination

events are not observed, and must be inferred from a sample of genetic

data obtained from the present-day population. Crossover recombination

can occur anywhere along a sequence, and the breakpoint position is also

unobserved. This article focuses on methods for reconstructing possible

histories of such a sample, in the form of ancestral recombination graphs

(ARGs) — networks of evolution connecting the sampled individuals to

shared ancestors in the past through coalescence, mutation, and crossover

recombination events; an example is illustrated in Figure 1. This is

a very important but challenging problem, as many possible histories

might have generated a given sample. Moreover, recombination can be

undetectable unless mutations appear on specific branches of the genealogy

(Hein et al., 2004, Section 5.11), and recombination events can produce

patterns in the data that are indistinguishable from the effects of recurrent

mutation (McVean et al., 2002); that is, two or more mutation events in a

genealogical history that affect the same locus.

Parsimony is an approach focused on finding possible histories which

minimise the number of recombinations and recurrent mutations. This does

not necessarily describe the most biologically plausible version of events,

but produces a useful lower bound on the complexity of the evolutionary
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4 Ignatieva et al.

The construction of a history for the dataset given in Figure 1 is

illustrated in Figure 2. The first step corresponds to the construction

of a neighbourhood, two of the states N 1

1
,N 2

1
∈ N1 are pictured.

Then, the ‘Clean’ algorithm is applied to each state in the neighbourhood

(illustrated as a series of steps following blue arrows). From the resulting

reduced neighbourhood {N 1

1
,N 2

1
, . . .}, the state N 2

1
is selected; the

other illustrated path is abandoned. This process is repeated until all

incompatibilities are resolved and the empty state is reached. Following

the path of selected moves in this figure left-to-right corresponds to the

events encountered when traversing the leftmost ARG in Figure 1 from the

bottom up. If instead the state N 1

2
were selected at the second step of the

algorithm, the resulting path would correspond to the ARG in the centre

of Figure 1.

2.2.2 Score

When considering which next step to take, more informed choices can be

made by considering not just the cost of the step, but also the complexity of

the configuration it leads to. This is the principle behind the A* algorithm

(Hart et al., 1968), using a heuristic estimate of remaining distance to

guide the choice of the next node to expand. KwARG applies the same

principle in a greedy fashion, following a path of locally optimal choices

in an attempt to find a minimal history.

The score implemented in KwARG is

S
(
N i

t ,N
i
t ,Dt

)
=

(
C

(
N i

t ,Dt

)
+ L

(
N i

t

))
·maxAM

(
Nt

)
+AM

(
N i

t

)
,

(1)

where

L(N i
t ) =
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Rmin

(
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)
if maxAM(Nt) < 75,

HB
(
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)
if 75 ≤ maxAM(Nt) < 200,

HK
(
N i

t

)
otherwise.

Here, C
(
N i

t ,Dt

)
denotes the cost of the corresponding event, defined

in Section 2.2.3; maxAM(Nt) denotes the maximum amount of ancestral

material seen in any of the states in Nt, and AM(N i
t ) gives the amount

of ancestral material in state N i
t . Incorporating a measure of the amount

of ancestral material in a state helps to break ties by assigning a smaller

score to simpler configurations.

The method of computing the lower bound L depends on the

complexity of the dataset, with a trade-off between accuracy and

computational cost. For relatively small datasets, it is feasible to

compute Rmin exactly using Beagle. HB refers to the haplotype bound,

employing the improvements afforded by first calculating local bounds

for incompatible intervals, and applying a composition method to obtain

a global bound (Myers and Griffiths, 2003). HK refers to the Hudson-

Kaplan bound (Hudson and Kaplan, 1985); this is quick but less accurate,

so is reserved for larger, more complex configurations. Note that these

bounds are computed under the infinite sites assumption.

The particular form and components of the score were chosen through

simulation testing; we found that the given formula provides a good level

of informativeness regarding the quality of a possible state.

2.2.3 Event cost

Each type of event is assigned a cost, which gives a relative measure of

preference for each event type in the reconstructed history:

• CR: the cost of a single recombination event, defaults to 1.

• CRR: the cost of performing two successive recombinations, defaults

to 2. It is sufficient to consider at most two consecutive recombination

events before a coalescence (Lyngsø et al., 2005); this type of event

also captures the effects of gene conversion.

• CRM : the cost of a recurrent mutation. If N i
t is formed from Dt by

a recurrent mutation in a column representing k agreeing sites, this

corresponds to proposing k recurrent mutation events, so the cost is

C(N i
t ,Dt) = k · CRM .

• CSE : this event is a recurrent mutation which affects only one

sequence in the original dataset, i.e. it occurs on the terminal branches

of the ARG. Thus, the event can be either a regular recurrent mutation,

or an artefact due to sequencing errors. The cost can be set to equal

CRM , or lower if the presence of sequencing errors is considered

likely.

KwARG allows the specification of a range of event costs as tuning

parameters, as well as the numberQof independent runs of the algorithm to

perform for each cost configuration. The proportions of recombinations to

recurrent mutations in the solutions produced by KwARG can be controlled

by varying the ratio of costs for the corresponding event types.

2.2.4 Selection probability

The method of selecting the next state from a neighbourhood of candidates

will impact on the efficiency and performance of the algorithm. At one

extreme, selecting at random amongst the states will mean that the solution

space is explored more fully, but will be prohibitively inefficient in terms

of the number of runs needed to find a near-optimal solution. On the other

hand, always greedily selecting the move with the minimal score will

quickly identify a small set of solutions for each cost configuration, at the

expense of placing our faith in the ability of the score to assess the quality

of the candidate states accurately.

We propose a selection method that is intermediate between these two

extremes, randomising the selection but focusing on moves with near-

minimal scores. A pseudo-score for state N i
t is calculated:

exp(T ·
(
1− S̃

(
N i

t ,N
i
t ,Dt

))
), (2)

where
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and states in Nt are selected with probability proportional to their

pseudo-score. The annealing parameter T controls the extent of random

exploration; T = 0 corresponds to choosing uniformly at random from the

neighbourhood of candidates, and T = ∞ to always choosing a state with

the minimal score. The default value of T = 30 was chosen following

simulation testing, which showed that this provides a good balance

between efficiency and thorough exploration of the neighbourhood.

2.3 Output

The default output consists of the number of recombinations and recurrent

mutations in each identified solution; an example for the Kreitman dataset

is given in Table 1. Each iteration is assigned a unique random seed,

which can be used to reconstruct each particular solution and produce

more detailed outputs, such as a detailed list of events in the history, the

ARG in several graph formats, or the corresponding sequence of marginal

trees.

3 Performance on simulated data

We have tested the performance of KwARG based on two main criteria.

Firstly, we compared its performance against exact methods, PAUP* and

Beagle, to demonstrate that KwARG successfully reconstructs minimal

histories in the mutation-only and recombination-only cases, respectively.

Secondly, we carried out simulation studies to determine how accurately

KwARG reconstructs local trees, compared against three other methods:
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Fig. 3. Top: number of simulated recurrent mutations against Pmin . Bottom: number of

simulated recombinations against Rmin . Cell colouring intensity is proportional to the

number of datasets generated for each pair of coordinates. Numbers in each cell correspond

to the number of cases where for a dataset with the true minimum number of events given

on the x-axis, KwARG inferred the number of events given on the y-axis (unlabelled cells

correspond to 0 such cases).

tsinfer, RENT+, and ARGweaver. Finally, we compared how well

KwARG performs against the parsimony-based heuristic methods SHRUB

(Song et al., 2005) and SHRUB-GC (Song et al., 2006); these results

are presented in Supplementary Section S4. We also investigated the

dependence of the run time of KwARG on the number and length of

sequences, through simulation studies.

3.1 Finite sites

3.1.1 Comparison to PAUP*

Disallowing recombination, the quality of computed upper bounds on

Pmin was tested by comparison with PAUP* (Swofford, 2001, version

4.0a168), which was used to compute the exact minimum parsimony

score via branch-and-bound on 994 datasets simulated as described in

Supplementary Section S3.1.

KwARG failed to find Pmin in 11 (1.1%) cases out of 994. The

results are illustrated in the top panel of Figure 3. Where KwARG failed

to find an optimal solution, in all 11 cases it was off by just one recurrent

mutation. Figure 3 also demonstrates that a substantial proportion of

recurrent mutations do not create incompatibilities in the data, and the

number of actual events often far exceeds Pmin.

3.2 Infinite sites

3.2.1 Comparison to Beagle

Under the infinite sites assumption (disallowing recurrent mutation), the

accuracy of KwARG’s upper bound on Rmin was tested by comparison

with Beagle (Lyngsø et al., 2005), on 1 037 datasets simulated as described

in Supplementary Section S3.2.

Using the default annealing parameter T = 30, KwARG foundRmin

in all cases. In 97% of the runs, this took under 5 seconds of CPU time (on a

2.7GHz Intel Core i7 processor); all but one run took less than 40 seconds.

In 93% of the runs, 1 iteration was sufficient to find an optimal solution;

in 99% of the runs, 5 iterations were sufficient. Beagle found the exact

solution in 5 seconds or less in 86% of cases; for datasets with a small

Rmin Beagle runs relatively quickly (median run time for Rmin = 5

was 1 second, compared to KwARG’s 0.3 seconds). For more complex

datasets, KwARG finds an optimal solution much faster; for Rmin = 9,

the median run time of Beagle was 56 seconds, compared to KwARG’s 3

seconds.

Setting T = 10 and T = ∞ resulted in 5 and 22 failures to find an

optimal solution, respectively, when KwARG was run for Q = 1000

iterations per dataset (or terminated after 10 minutes have elapsed),

demonstrating that setting the annealing parameters too low or too high

results in deterioration of performance.

The bottom panel of Figure 3 illustrates the results, and shows

the relationship between the true simulated number of recombinations

and Rmin. This demonstrates that in many cases, substantially more

recombinations have occurred than can be confidently detected from the

data.

3.2.2 Comparison to tsinfer, RENT+, and ARGweaver.

We tested the performance of KwARG in recovering the topology of

simulated local trees for a range of recombination and mutation rates

(under the infinite sites assumption). For each combination of rates, we

simulated 100 datasets using msprime; details of the simulation parameters

and settings used in running each program are given in Supplementary

Section S5. From the output of each method, we calculated the Kendall–

Colijn metric (Kendall and Colijn, 2016) between the inferred and true

tree topologies at each variant site position, calculating the mean across

all variant sites and averaging over the 100 datasets. We note that ARGs

contain more information than local trees, but there is no obvious way of

comparing ARG topologies (and tsinfer only infers local trees, rather than

full ARGs).

The results are shown in the top panel of Figure 4 and Supplementary

Figure S4. All methods show very comparable performance across the

range of considered scenarios, with KwARG slightly outperforming the

other methods, based on the chosen metric, when the recombination rate is

relatively low and the mutation rate relatively high. We have performed the

same analysis using the Robinson–Foulds metric (Robinson and Foulds,

1981), and found this to give very similar results.

3.3 Run time analysis

A comparison of the run times of KwARG against tsinfer, RENT+,

and ARGweaver is presented in the bottom panel of Figure 4 and

Supplementary Figure S5. KwARG demonstrates good efficiency when

the recombination and mutation rates are relatively low, and shows roughly

linear growth in run time as the mutation rate increases.

The dependence of the run time of KwARG on the number and length

of sequences was further investigated through simulations; the results are

presented in Supplementary Section S6. Keeping the sequence length fixed
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Fig. 4. Comparison of performance in inferring local trees. Top panel: points show mean

across 100 simulated datasets for each value of mutation rate µ (per generation per site)

with recombination rate ρ = 4 · 10
−7 (per generation per site); error bars show mean ±

standard error. Lower K-C distance indicates better accuracy. Bottom panel: points show

mean run time averaged over 100 datasets for each combination of rate parameters; error

bars show mean ± standard error. ARGweaver results not shown past µ = 3.2 · 10
−6

due to prohibitively long run time.

showed that KwARG runs very quickly when the number of sequences is

very low, and shows roughly exponential growth in run time when the

number of sequences is 6 or more. Keeping the number of sequences fixed

shows that, after an initial exponential increase (due to small datasets

taking very little time per iteration), the run time scales roughly linearly

in sequence length.

4 Application to Kreitman data

The performance of KwARG is illustrated on the classic dataset of

Kreitman (1983, Table 1); this is not close to the performance limit of

KwARG, but has been widely used for benchmarking algorithms used

for ARG reconstruction. The dataset consists of 11 sequences and 2 721

sites, of which 43 are polymorphic, of the alcohol dehydrogenase locus of

Drosophila melanogaster. The data is shown in Figure 5, with columns

containing singleton mutations removed for ease of viewing. Applying the

‘Clean’ algorithm, as described in Section 2.2.1, reduces this to matrix of

9 rows and 16 columns. KwARG was run with the default parameters,

Q = 500 times for each of 13 default cost configurations given in

Supplementary Section S2. An example of the output is shown in Table 1.

KwARG correctly identified the Rmin of 7 and the Pmin of 10

(confirmed by running Beagle and PAUP*, respectively). The 6 500

iterations of KwARG took just under 9 minutes to run. Of these,

1,829 (28%) resulted in optimal solutions; some are shown in Table 1.

KwARG identified multiple combinations of recombinations and recurrent

mutations that could have generated this dataset. By default, slightly

cheaper costs are assigned to recurrent mutations if they happen on terminal

branches, so the results show a bias towards solutions with moreSE events

for each given number of recombinations.

Seed T CSE CRM CR CRR SE RM R
∑

t |Nt|

2263536315 30.0 ∞ ∞ 1.00 2.00 0 0 7 143

2347021759 30.0 0.90 0.91 1.00 2.00 1 0 6 853

1791455164 30.0 0.80 0.81 1.00 2.00 1 0 5 728

1684879495 30.0 0.60 0.61 1.00 2.00 2 0 4 783

1884182000 30.0 0.40 0.41 1.00 2.00 3 0 3 806

1900122424 30.0 0.20 0.21 1.00 2.00 5 0 2 702

2111915557 30.0 0.10 0.11 1.00 2.00 8 0 1 833

2888657821 30.0 0.01 0.02 1.00 2.00 10 0 0 715

Table 1. Example output of KwARG for the Kreitman dataset. SE: number

of recurrent mutations occurring on terminal branches of the ARG (possible

sequencing errors). RM: number of other recurrent mutations. R: number of

recombinations. Last column gives the total number of neighbourhood states

considered.

The ten recurrent mutations appearing in the solution in row 8 of Table

1 are highlighted on the dataset in Figure 5. It is striking that 7 of these

10 recurrent mutations affect the same sequence Fl-2S. In fact, these 7

recurrent mutations could be replaced by 3 recombination events affecting

sequence Fl-2S, with breakpoints just after sites 3, 16, and 35; leaving

the other identified recurrent mutations unchanged yields the solution in

row 5 of Table 1. These findings suggest that the sequence may have

been affected by cross-contamination or other errors during the sequencing

process, or it could indeed be a recombinant mosaic of four other sequences

in the sample. This recovers the results obtained by Stephens and Nei

(1985), who posited the recombinant origins of sequence Fl-2S following

manual examination of a reconstructed maximum parsimony tree, which

also highlighted the five consecutive mutations identified by KwARG. The

ARG corresponding to the solution in row 5 of Table 1, visualised using

Graphviz (Ellson et al., 2004), is shown in Figure 6.

Examination of the identified solutions also shows that site 36 of

sequence Ja-S “necessitates" two of the seven recombinations inferred in

the minimal solution in the absence of recurrent mutation, while sites 3 and

9 in sequences Wa-S and Fl-1S, respectively, each create incompatibilities

that could be resolved by one recombination.

5 Discussion

Methods for the reconstruction of parsimonious ARGs generally rely on

the infinite sites assumption. When examining the output ARGs, it is often

difficult to tell by how much the inferred recombination events actually

affect the recombining sequences. As is the case with the Kreitman dataset,

sometimes further examination reveals that two crossover recombination

events have the same effect as one recurrent mutation, raising questions

about which version of events is more likely. KwARG removes the need for

such manual examination, and provides an automated way of highlighting

such cases, which is particularly useful for larger datasets.

While KwARG performs well in inferring ARGs under the infinite

sites assumption, it can be particularly useful in analysing genetic data
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information about the history of a sample. This will obviously depend

strongly on the true recombination rate. Based on our comparisons with

RENT+, tsinfer, and ARGweaver, KwARG achieves very good accuracy

of inference of local tree topologies at least comparable to these other

methods, particularly when the recombination rate is low to moderate

and the mutation rate moderate to high. We emphasise that KwARG

demonstrates relatively good accuracy even when the recombination rate

is high and even though its express goal is to seek the most parsimonious,

rather than necessarily the most likely, history. Moreover, for datasets with

relatively few incompatibilities, the run time of KwARG is competitive

with that of the other methods. It is also interesting to note that although

all four programs incorporate very different approaches and heuristic

algorithms, they demonstrate very similar performance in inferring local

tree topologies over the range of considered scenarios.

The scalability of KwARG remains a challenge for large and more

complex datasets. Performance gains could be readily achieved by running

multiple iterations of KwARG in parallel, or incorporating more efficient

ways of storing the intermediate states. Further improvements could

also be obtained by amending the calculation of lower bounds within

the cost function in order to account for the presence of recurrent

mutation, which should make the scores more accurate, and hence the

neighbourhood exploration more efficient. Other avenues for further work

include explicitly incorporating gene conversion as a possible type of

recombination event with a separate cost parameter, with a view to

developing the underlying model of evolution to even more closely reflect

biological reality.
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