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Abstract

The main contribution of this paper is to provide a framework in which the no-
tion of farsighted stability for games, introduced by Chwe (1994), can be applied
to directed networks. In particular, we introduce the notion of a supernetwork.
A supernetwork is made up of a collection of directed networks (the nodes) and
uniquely represents (via the arcs connecting the nodes) agent preferences and
the rules governing network formation. By reformulating Chwe’s basic result on
the nonemptiness of farsightedly stable sets, we show that for any supernetwork
(i.e., for any collection of directed networks and any collection of rules governing
network formation), there exists a farsightedly stable directed network. We also
introduce the notion of a Nash network relative to a given supernetwork, as well
as the notions of symmetric, nonsimultaneous, and decomposable supernetworks.
To illustrate the utility of our framework, we present several examples of super-
networks, compute the farsightedly stable networks, and the Nash networks.

¤An earlier version of this paper, Warwick Economic Research Papers No 621, was presented at
the University of Warwick Summer Workshop on Networks and Coalition Formation, July, 2001. The
authors thank Anne van den Nouweland and workshop participants for many helpful comments. The
penultimate version of this paper was completed while Page and Wooders were visiting CERMSEM,
University of Paris 1. The authors thank CERMSEM and Paris 1 for hospitality and …nancial
support. Both authors thank John Conley and Cuong Le Van for many helpful comments.
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1 Introduction

Overview
Since the seminal paper by Jackson and Wolinsky (1996) there has been a rapidly

growing literature on social and economic networks and their stability and e¢ciency
properties (e.g., see Jackson (2001) and Jackson and van den Nouweland (2001)).
As noted by Jackson (2001), an important issue that has not yet been addressed in
the literature on networks and network formation is the issue of farsighted stability
(see Jackson (2001), p.21 and p.35)). This issue is the focus of our paper. Our main
contribution is to construct a framework in which the notion of farsighted stability for
games, introduced by Chwe (1994), can be applied to collections of directed networks.
Our construction proceeds in two steps. First, we extend the de…nition of a directed
network found in the literature (e.g., see Rockafellar (1984)). Second, using our
extended de…nition we introduce the notion a network formation network. We call
such a network a supernetwork. All directed networks are composed of nodes and arcs.
In most economic applications, nodes represent economic agents, while arcs represent
connections or interactions between agents. In a supernetwork, nodes represent the
networks in a given collection, while arcs represent coalition moves and coalitional
preferences over the networks in the collection. Given any collection of directed
networks and any pro…le of agent preferences over the collection, a supernetwork
uniquely represents all the coalitional preferences and all the coalitional moves allowed
by the rules governing network formation (i.e., the rules governing the addition,
subtraction, or replacement of arcs).

Given the rules governing network formation as represented via the supernetwork,
a directed network (i.e., a particular node in the supernetwork) is said to be farsight-
edly stable if no agent or coalition of agents is willing to alter the network (via the
addition, subtraction, or replacement of arcs) for fear that such an alteration might
induce further network alterations by other agents or coalitions that in the end leave
the initially deviating agent or coalition no better o¤ - and possibly worse o¤. By
reformulating Chwe’s basic result on the nonemptiness of farsightedly stable sets,
we show that for any supernetwork corresponding to a given collection of directed
networks, the set of farsightedly stable networks is nonempty.

Our second contribution concerns noncooperative network formation. In particu-
lar, we use our framework to de…ne the notion of a Nash network relative to a given
supernetwork, and to introduce the notions of symmetric, nonsimultaneous, and de-
composable supernetworks. Extending Chwe’s (1994) results on Nash equilibrium and
farsighted stability, we show that any strict Nash network relative to a given sym-
metric, nonsimultaneous supernetwork is contained in the set of farsightedly stable
networks. We also show that any strict, strong Nash network relative to a given
symmetric, decomposable supernetwork is contained in the farsightedly stable set.

In order to illustrate the power and utility of our framework, we present several
examples. In our …rst series of examples, we examine, within the context of strategic
information sharing, the relationship between the rules governing the formation of in-
formation sharing networks and the resulting supernetwork. In order to illustrate the
way in which these rules - as represented via the supernetwork - a¤ect the resulting
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set of farsightedly stable networks as well as the set of Nash networks, we compute
the Nash and farsightedly stable networks corresponding to several supernetworks
representing various rules. Next, we expand our example of strategic information
sharing by adding to the number of possible information sharing networks. Assum-
ing a particular set of network formation rules, we again compute the Nash and
farsightedly stable networks relative the supernetwork representing these rules for
our expanded collection of information sharing networks. In our expanded example,
there is a unique Nash network relative to the given supernetwork, and this unique
Nash network is not contained in the set of farsightedly stable networks. Moreover,
in our expanded example the set of farsightedly stable networks is equal to the set of
Pareto e¢cient networks. Thus, not only is the unique Nash network not farsightedly
stable, it is not e¢cient.

In our …nal example we consider the problem of strategic pollution. In particular,
we construct the supernetwork corresponding to a discrete, 3-agent version of the
Shapley-Shubik garbage game (Shapley and Shubik (1969)). In the garbage game,
each agent has a bag of garbage that can be kept by the agent or dumped onto the
property of another agent. The game is discrete in that each agent’s bag of garbage
cannot be divided up - each agent either keeps his bag or dumps the entire bag onto
the property of one other agent. For the garbage game supernetwork, we show that
the set of farsightedly stable garbage networks and the set of Nash garbage networks
are not equal - but have a nonempty intersection. Moreover, we show that for all
farsightedly stable garbage networks, each agent ends up with one bag garbage. Thus,
the garbage network in which each agent keeps his own bag of garbage, and therefore
chooses not to pollute his neighbor, is farsightedly stable. This is not the case for
the set of Nash garbage networks. In particular, there are Nash garbage networks in
which agents choose to pollute others (i.e., pollution is a Nash equilibrium).
Directed Networks vs Linking Networks

In a directed network, each arc possesses an orientation or direction: arc j con-
necting nodes i and i0 must either go from node i to node i0 or must go from node
i0 to node i:1 In an undirected (or linking) network, arc j would have no orientation
and would simply indicate a connection or link between nodes i and i0. Under our
extended de…nition of directed networks, nodes are allowed to be connected by mul-
tiple arcs. For example, nodes i and i0 might be connected by arcs j and j0; with
arc j running from node i to i0 and arc j0 running in the opposite direction (i.e.,
from node i0 to node i).2 Thus, if node i represents a seller and node i0 a buyer,
then arc j might represent a contract o¤er by the seller to the buyer, while arc j0

might represent the acceptance or rejection of that contract o¤er. Also, under our
extended de…nition arcs are allowed to be used multiple times in a given network.
For example, arc j might be used to connect nodes i and i0 as well as nodes i0 and
i00. However, we do not allow arc j to go from node i to node i0 multiple times in the
same direction. By allowing arcs to possess direction and be used multiple times and

1 We denote arc j going from node i to node i0 via the ordered pair (j; (i; i0)), where (i; i0) is also
an ordered pair. Alternatively, if arc j goes from node i0 to node i, we write (j; (i0; i)):

2 Under our extended de…nition, arc j0 might also run in the same direction as arc j.
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by allowing nodes to be connected by multiple arcs, our extended de…nition makes
possible the application of networks to a richer set of economic environments. Until
now, most of the economic literature on networks has focused on linking networks
(see for example, Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997)).

Given a particular directed network, an agent or a coalition of agents can change
the network to another network by simply adding, subtracting, or replacing arcs from
the existing network in accordance with certain rules represented via the supernet-
work.3 For example, if the nodes in a network represent agents, then the rule for
adding an arc j from node i to node i0 might require that both agents i and i0 agree
to add arc j: Whereas the rule for subtracting arc j, from node i to node i0; might
require that only agent i or agent i0 agree to dissolve arc j:

In current research, we are analyzing the e¢ciency properties of farsightedly stable
networks. While here we focus on directed networks, the same methodology can be
used to deduce the existence of farsightedly stable undirected networks (i.e., linking
networks - such as the networks considered by Jackson and Wolinsky (1996) and
Dutta and Mutuswami (1997)). An excellent paper on stability and e¢ciency in
linking networks is Jackson (2001) (see also, Jackson and Watts (1998), Jackson and
van den Nouweland (2000), Skyrms and Pemantle (2000), Watts (2001), and Slikker
and van den Nouweland (2001)). In future research, we will focus on the dynamics
of network formation - along the lines of Konishi and Ray (2001).

3 Put di¤erently, agents can change one network to another network by adding, subtracting, or
replacing ordered pairs, (j; (i; i0)); in accordance with certain rules.
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2 Directed Networks

We begin by giving a formal de…nition of the class of directed networks we shall
consider. Let N be a …nite set of nodes, with typical element denoted by i, and let
A be a …nite set of arcs, with typical element denoted by j. Arcs represent potential
connections between nodes, and depending on the application, nodes can represent
economic agents or economic objects such as markets or …rms.4

De…nition 1 (Directed Networks)
Given node set N and arc set A; a directed network, G; is a subset of A £ (N £ N).
We shall denote by N(N; A) the collection of all directed networks given N and A:

A directed network G 2 N(N; A) speci…es how the nodes in N are connected
via the arcs in A: Note that in a directed network order matters. In particular, if
(j; (i; i0)) 2 G; this means that arc j goes from node i to node i0: Also, note that
under our de…nition of a directed network, loops are allowed - that is, we allow an
arc to go from a given node back to that given node. Finally, note that under our
de…nition an arc can be used multiple times in a given network and multiple arcs can
go from one node to another. However, our de…nition does not allow an arc j to go
from a node i to a node i0 multiple times.

The following notation is useful in describing networks. Given directed network
G µ A £ (N £N), let

G(j) :=
n
(i; i0) 2 N £N : (j; (i; i0)) 2 G

o
;

G(i) :=
n

j 2 A : (j; (i; i0)) 2 G or (j; (i0; i)) 2 G
o

G(i; i
0
) :=

n
j 2 A : (j; (i; i

0
)) 2 G

o
;

G(j; i) :=
n

i0 2 N : (j; (i; i0 )) 2 G
o

:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1)

Thus,

G(j) is the set of node pairs connected by arc j in network G,
G(i) is the set of arcs going from node i or coming to node i in network G;

G(i; i0) is the set of arcs going from node i to node i0 in network G;
and

G(j; i) is the set of nodes which can be reached by arc j from node i in network G:

Note that if for some arc j 2 A, G(j) is empty, then arc j is not used in network
G: Moreover, if for some node i 2 N , G(i) is empty then node i is not used in network
G, and node i is said to be isolated relative to network G.

4 Of course in a supernetwork, nodes represent networks.
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If in our de…nition of a directed network, we had required that G(j) be single-
valued and nonempty for all arcs j 2 A, then our de…nition would have been the
same as that given by Rockafellar (1984).

Suppose that the node set N is given by N = fi1; i2; : : : ; i5g ; while the arc set A
is given by A = fj1; j2; : : : ; j5; j6; j7g : Consider the network, G; depicted in Figure 1.

i

j 1

j2

j3

j4

j 5

1

i 2

i 3

i 4 i 5
j 6

Figure 1: Network G

In network G; G(j6) = f(i4; i4)g : Thus, (j6; (i4; i4)) 2 G is a loop: Also, in network
G; arc j7 is not used. Thus, G(j7) = ;:5 Finally, note that G(i4) = fj4; j5; j6g, while
G(i5) = ;. Thus, node i5 is isolated relative to G:6

Consider the new network, G0 2 N(N; A) depicted in Figure 2.

i 1

j1

i 2

i 3

i 4 i 5j2

j4

j5

j7

j 6

j 1

j 3

Figure 2: Network G0

5 The fact that arc j7 is not used in network G can also be denoted by writing

j7 =2 projAG;

where projAG denotes the projection onto A of the subset

G µ A£ (N £N)

representing the network.
6 If the loop (j7 ; (i5 ; i5)) were part of network G in Figure 1, then node i5 would no longer be

considered isolated under our de…nition. Moreover, we would have G(i5) = fj7g.
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In network G0; G0(j1) = f(i1; i2); (i3; i1)g : Thus, (j1; (i1; i2)) 2 G0 and (j1; (i3; i1)) 2
G0: Note that in network G0; node i5 is no longer isolated. In particular, G0(i5) =
fj6; j7g: Also, note that nodes i2 and i4 are connected by two di¤erent arcs pointed
in opposite directions. Under our de…nition of a directed network it is possible to
alter network G0 by replacing arc j5 from i4 to i2 with arc j4 from i4 to i2: However,
it is not possible under our de…nition to replace arc j5 from i4 to i2 with arc j4 from
i2 to i4 - because our de…nition does not allow j4 to go from i2 to i4 multiple times.
Finally, note that nodes i1 and i3 are also connected by two di¤erent arcs, but arcs
pointed in the same direction. In particular, G(i3; i1) = fj1; j3g.

3 Supernetworks

3.1 De…nition

Let D denote a …nite set of agents (or economic decision making units) with typical
element denoted by d, and let 2D denote the collection of all nonempty subsets (or
coalitions) of D with typical element denoted by S: We shall denote by jSj the number
agents in coalition S.

Given collection of directed networks G µ N(N;A), we shall assume that each
agent’s preferences over networks in G are speci…ed via a network payo¤ function,

vd(¢) : G ! R:

For each agent d 2 D and each directed network G 2 G; vd(G) is the payo¤ to agent
d in network G: Agent d then prefers network G0 to network G if and only if

vd(G0) > vd(G):

Moreover, coalition S0 2 2D prefers network G0 to network G if and only if

vd(G0) > vd(G) for all d 2 S0:

By viewing each network G in a given collection of directed networks G µ N(N; A)
as a node in a larger network, we can give a precise network representation of the
rules governing network formation as well as agents’ preferences. To begin, let

M :=
©
mS : S 2 2D

ª
denote the set of move arcs (or m-arcs for short),

P :=
©
pS : S 2 2D

ª
denote the set of preference arcs (or p-arcs for short),

and
A := M [ P.

Given networks G and G0 in G; we shall denote by

G G’
S’m
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(i.e., by an m-arc, belonging to coalition S0, going from node G to node G0) the fact
that coalition S0 2 2D can change network G to network G0 by adding, subtracting,
or replacing arcs in network G: Moreover, we shall denote by

G G’
S’p

(i.e., by a p-arc, belonging to coalition S0, going from node G to node G0) the fact
that each agent in coalition S0 2 2D prefers network G0 to network G:

De…nition 2 (Supernetworks)
Given directed networks G µ N(N; A), agent payo¤ functions fvd(¢) : d 2 Dg ; and
arc set A := M [ P; a supernetwork, G, is a subset of A £ (G£ G) such that for all
networks G and G0 in G and for all coalitions S0 2 2D ,

(mS0; (G;G0)) 2 G if and only if coalition S0 can change network G to networkG0

by adding, subtracting, or replacing arcs in network G;
and

(pS0 ; (G; G0)) 2 G if and only if vd(G0) > vd(G) for all d 2 S0:

For each coalition S0 2 2D; m-arc mS 0 2 M; and p-arc pS 0 2 P

(mS0 ; (G; G0)) 2 G is denoted by

G G’
S’m

while
(pS 0; (G; G0)) 2 G is denoted by

G G’
S’p

:

Thus, supernetwork G speci…es how the networks in G are connected via coalitional
moves and coalitional preferences - and thus provides a network representation of
preferences and the rules of network formation.
Remarks:

(1)Under our de…nition of a supernetwork, m-arc loops and p-arc loops are ruled
out. Thus, for any network G and coalition S0,

(mS 0; (G;G)) =2 G and (pS0; (G;G)) =2 G:

While m-arc loops are ruled out by de…nition, the absence of p-arc loops in supernet-
works is due to the fact that each agent’s preferences over networks are irre‡exive.
In particular, for each agent d 2 D and each network G 2 G, vd(G) > vd(G) is not
possible. Thus, (pfdg; (G; G)) =2 G:

(2) The de…nition of agent preferences via the network payo¤ functions,

fvd(¢) : d 2 Dg ;
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also rules out the following types of p-arc connections:

G G’
S’p

S’p
:

Thus, for all coalitions S0 2 2D and networks G and G0 contained in G,

if (pS 0; (G;G0)) 2 G; then (pS0 ; (G0;G)) =2 G:

(3) For all coalition S0 2 2D and networks Gand G0 contained in G, if (pS0; (G;G0)) 2
G, then

(pS; (G; G0)) 2 G for all subcoalitions S of S0:

(4) Under our de…nition of a supernetwork, multiple m-arcs, as well as multi-
ple p-arcs, connecting networks G and G0 in supernetwork G are allowed: Thus, in
supernetwork G the following types of m-arc and p-arc connections are possible:

For coalitions S and S0, with S 6= S0

G G’

S’m

Sm

;
and

G G’
S’p

Sp

:

However, multiple m-arcs, or multiple p-arcs, from network G 2 G to network G0 2 G
belonging to the same coalition are not allowed - and moreover, are unnecessary.
Allowing multiple arcs can be very useful in many applications. For example, multiple
m-arcs (not belonging to the same coalition) connecting networks G and G0 in a given
supernetwork G denote the fact that in supernetwork G there is more than one way
to get from network G to network G0 - or put di¤erently, there is more than one way
to change network G to network G0.

(5) In many economic applications, the set of nodes, N , used in de…ning the
networks in the collection G, and the set of economic agents D are one and the same
(i.e., in many applications N = D).

The following notation, analogous to the notation introduced in expression (1)
for directed networks, is useful in describing the m-arc connections in supernetworks.
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Given supernetwork G µ A £ (G £G)

G(mS ) :=
n
(G; G0 ) 2 G £G : (mS; (G;G0)) 2 G

o

G(G) :=
n

mS 2 M : (mS; (G; G0)) 2 G or (mS; (G0; G)) 2 G
o

G(G;G0) :=
n

mS 2 M : (mS; (G; G0 )) 2 G
o

;

G(mS ;G) :=
n
G0 2 G : (mS; (G; G0)) 2 G

o
:

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2)

Similar notation can be introduced to describe p-arc connections. Thus,

G(mS) is the set of network pairs connected by move arc mS in supernetwork G,
G(G) is the set of move arcs going from network G or coming to network G in

supernetwork G;
G(G;G0) is the set of move arcs going from network G to network G0 in

supernetwork G;
and

G(mS; G) is the set of networks which can be reached by move arc mS from
network G in supernetwork G:

Note that if G(mS) is empty for some move arc mS 2 M, then in supernetwork
G coalition S is not permitted to make any changes in any network, and thus in
supernetwork G, coalition S is isolated and has no power. Also, note that if for some
network G 2 G, G(G) is empty, then network G is isolated relative to supernetwork
G. Finally, note that the set G(mS;G) is simply the set of all the networks in G to
which coalition S can deviate in supernetwork G starting from network G:

3.2 Supernetwork Classi…cations

A supernetwork G is symmetric if any move from one network to another brought
about by some coalition can be reversed by that coalition. G is closely connected
if it is possible to get from one non-isolated network to another non-isolated in one
move via some m-arc. G is simple if there is one and only one way to get from
one network to another via an m-arc.7 G is nonsimultaneous if any move from one
network to another can only be brought about by a single agent (i.e., by one agent
acting alone). Finally, G is decomposable if any move from one network G to another
network G0 brought about by some coalition S consisting of more than one agent can

7 Thus, if supernetwork G is simple, then

(mS; (G;G0)) 2 G

implies that
(mS0 ; (G; G0)) =2 G

for all S0 6= S.
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be decomposed for each agent d 2 S into two moves, a move from network G to some
network G00 by coalition Snfdg, and then a move from network G00 to network G0 by
agent d. Formally, we have the following de…nitions.

De…nition 3 (Supernetwork Classi…cations)
(1) A supernetwork G µ A £ (G£ G) is said to be symmetric if for all networks

G and G0 in G,
G(G; G0) = G(G0; G):

(2) A supernetwork G µ A £ (G£ G) is said to be closely connected if for all
networks G and G0 in G, not isolated relative to G,

G(G; G0) is nonempty.

(3) A supernetwork G µ A £ (G £G) is said to be simple if for all networks G
and G0 in G

G(G;G0) is either empty or consists of a single arc:

(4) A supernetwork G µ A £ (G £G) is said to be nonsimultaneous if for all
networks G and G0 in G,

mS 2 G(G; G0) implies that jSj = 1.

(5) A supernetwork G µ A£ (G£ G) is said to be decomposable if for all

(mS; (G;G0)) 2 G with jSj > 1,

there exists for each agent d 2 S a network G00 2 G(mSnfdg;G) such that G0 2
G(mfdg; G00).

Figure 3 graphically depicts the notion of decomposability.

G

Sm
G’

G’’

S\{d}m {d}m

Figure 3: Decomposability

In supernetwork G, the move from network G to network G0 by coalition S, jSj > 1,
is decomposable for each agent d 2 S into a move from network G to some network
G00 by coalition Snfdg followed by a move from network G00 to network G0 by agent
d:
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If supernetwork G is symmetric, then for all coalitions S 2 2D and all pairs of
networks (G; G0) 2 G £G,

(mS; (G;G0)) 2 G if and only if (mS; (G0; G)) 2 G:

Moreover, if supernetwork G is simple, then for all coalitions S 2 2D and all pairs of
networks (G; G0) 2 G £G,

(mS; (G;G0)) 2 G implies that (mS0 ; (G; G0)) =2 G for all S0 6= S:

Thus, if supernetwork G is simple, then there is one and only one way to get from
one network to another via an m-arc.

It is important to note that under our general de…nition of supernetworks, super-
networks are not required to be symmetry, closely connected, simple, nonsimultane-
ous, or decomposable.

3.3 Network Formation Rules and Supernetwork Classi…cations

In this subsection we shall present several examples illustrating the connections be-
tween the rules governing network formation and supernetworks. For concreteness,
we shall focus on the problem of strategic information sharing.

To begin, consider a situation in which three individuals, i1, i2, and i3, have
private information, and assume that only three con…gurations of information sharing
arrangements are possible. In Figure 4 we have represented these con…gurations as
an information sharing networks.

i

j 3

1

i 2 i3

j1

j3

j1

j2

j 2

Information Sharing Network G1

i

j 3

1

i 2 i3

j1

j3j2

j 2

Information Sharing Network G2
i

j 3

1

i 2 i3

j1

j3j2

Information Sharing Network G3
Figure 4: Three Possible Information Sharing Networks
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For example in network G1, the arc j1 running from agent i1 to agent i2 indicates
that agent i1 observes the private information of agent i2. In fact, in network G1
there is full information sharing: each agent observes the private information of the
other agents. Note that in this example the set of agents D = fi1; i2; i3g and the set
of nodes N are one and the same.

In order to construct a supernetwork over our collection

G = fG1; G2;G3g;

we must …rst specify the rules governing network formation - and therefore, we must
specify the rules governing the establishment or termination of information sharing
arrangements. We shall consider several possibilities.

An Example without Symmetry: We begin with an example in which the rules
governing network formation are such that the resulting supernetwork is not symmet-
ric - nor is it simple, nonsimultaneous, or decomposable, but it is closely connected.

Rules 0 - Asymmetric Network Formation Rules (arc addition is bilateral - arc
subtraction is unilateral): In order for an agent to observe another agent’s
private information (for example, in order for agent i1 to observe agent i02s
private information, and therefore, in order to establish an arc j1 from i1 to
i2), both agents must agree to this arrangement. Thus, adding an arc requires
a bilateral agreement (i.e., arc addition is bilateral). However, either agent (or
both agents acting together) can terminate such an arrangement (i.e., either
agent or both agents can remove the arc j1 from i1 to i2). Thus, subtracting
an arc can be accomplished by a unilateral decision (i.e., arc subtraction can
be unilateral).
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Figure 5 depicts the m-arc connections between networks, G1, G2 and G3 in the
supernetwork G0 corresponding to these rules.

G3

i1

i2 i3

j1j
1

j2

j2

j3

j3

G1

i1

i2 i3

j1
j2

j2

j3

j3

G2

i1

i2 i3

j
1

j2

j3

j3

i2
m { , i3 }

i2
m{ , i3 }

i2
m { }

i1 i2
m { , i3 }, i2

m { } m {i3 }i1 i2
m { },i1

m { , i3 }

i1 i2
m{ },

i1
m { }

Figure 5: The m-Arcs in Asymmetric Supernetwork G0

Because the rules of governing network formation are a mix of bilateral and unilateral
rules, the m-arc connections in supernetwork G0 are asymmetric. For example, in
Figure 5, moving from network G1 to network G2 requires the removal of arc j1 from
i1 to i2 (indicating the termination of an arrangement whereby agent i1 observes the
private information of agent i2). According to the rules, the removal of this arc can
be accomplished by agent i1, by agent i2, or by both agents acting together. Thus, in
Figure 5 there are three m-arcs, mfi1g, mfi2g, and mfi1;i2g, running from network G1
to network G2: However, because the move from network G2 to network G1 requires
the addition of arc j1 from i1 to i2 (indicating the establishment of an arrangement
whereby agent i1 observes the private information of agent i2), the rules require that
both agents i1 and i2 agree to the addition of this arc. Hence, there is only one m-arc,
mfi1 ;i2g, running from network G2 to network G1. Because there is an mfi1;i2g-arc
running from network G1 to network G2, and an mfi1 ;i2g-arc running from network
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G2 to network G1, the mfi1 ;i2g-arc connecting networks G1 and G2 depicted in Figure
5 has arrow heads at both ends.

Two Examples with Symmetry: In the next two examples the rules governing
network formation are such that the corresponding supernetworks are symmetric,
closely connected, and simple, but are not nonsimultaneous and not decomposable.

Symmetric Example 1 Suppose the rules governing the establishment or ter-
mination of information sharing arrangements are as follows:

Rules 1 - Symmetric Network Formation Rules 1 (purely bilateral): In order for an
agent to observe another agent’s private information (for example, in order for
agent i1 to observe agent i02s private information, and therefore, in order to
establish an arc j1 from i1 to i2), both agents must agree to this arrangement.
Moreover, in order to terminate such an arrangement, both agents must agree
(i.e., both agents must agree to remove the arc j1 from i1 to i2).

As depicted in Figure 6, under these purely bilateral rules, the resulting super-
network G1 is symmetric and simple. In general, if the rules governing the estab-
lishment or termination of information sharing arrangements are purely bilateral or
purely unilateral, then the resulting supernetwork will be symmetric and simple. It
is also easy to see from Figure 6 that supernetwork G1 is closely connected, but is
not nonsimultaneous or decomposable.
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Figure 6: The m-Arcs in Symmetric Supernetwork G1

Symmetric Example 2 Next, let us consider rules which are purely unilateral:

Rules 2 - Symmetric Network Formation Rules 2 (purely unilateral): In order for
an agent to observe another agent’s private information (for example, in order
for agent i1 to observe agent i02s private information, and therefore, in order to
establish an arc j1 from i1 to i2), all that is required is that the agent unilaterally
initiate the arrangement. Moreover, in order to terminate this arrangement,
all that is required is that the agent who initiated the arrangement, unilaterally
terminate the arrangement. (i.e., all that is required is that agent i1 remove
arc j1 from i1 to i2).

As depicted in Figure 7, under purely unilateral rules the resulting supernetwork
G2 is symmetric and simple. G2 is also closely connected, but it is not nonsimulta-
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neous or decomposable.
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Figure 7: The m-Arcs in Symmetric Supernetwork G2

Note that in moving from network G1 to network G3 both agents i1 and i2 must act
simultaneously and unilaterally to remove an arc, and in moving from network G3 to
network G1 both agents i1 and i2 must act simultaneously and unilaterally to add an
arc. Thus, in Figure 7 there is an mfi1;i2g-arc connecting networks G1 and G3 with
arrow heads at both ends.

An Example of a Symmetric, Simple and Nonsimultaneous Supernetwork:
Suppose we modify Rules 2 as follows:

Rules 3 - Symmetric Network Formation Rules 3 (purely unilateral and nonsimul-
taneous): In order for an agent to observe another agent’s private information
(for example, in order for agent i1 to observe agent i02s private information, and
therefore, in order to establish an arc j1 from i1 to i2), all that is required is
that the agent unilaterally initiate the arrangement. Moreover, in order to ter-
minate this arrangement, all that is required is that the agent who initiated the
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arrangement, unilaterally terminate the arrangement. (i.e., all that is required
is that agent i1 remove arc j1 from i1 to i2). Finally, starting from any given
con…guration of information sharing arrangements (as represented by a given
information sharing network), only one agent at a time can change the existing
con…guration.

As depicted in Figure 8, under Rules 3 the resulting supernetwork G3 is sym-
metric, simple, nonsimultaneous, and decomposable. However, G3 is not closely
connected.
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Figure 8: The m-Arcs in Symmetric Supernetwork G3
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4 Farsightedly Stable Networks

4.1 Farsighted Dominance and Farsighted Stability

Given supernetwork G ½ A £ (G £G), we say that network G0 2 G farsightedly
dominates network G 2 G if there is a …nite sequence of networks,

G0;G1; : : : ;Gh;

with G = G0, G0 = Gh; and Gk 2 G for k = 0;1; : : : ; h; and a corresponding sequence
of coalitions,

S1; S2; : : : ;Sh;
such that for k = 1; 2; : : : ;h

(mSk ; (Gk¡1Gk)) 2 G;
and

(pSk ; (Gk¡1Gh)) 2 G:

We shall denote by G CC G0 the fact that network G0 2 G farsightedly dominates
network G 2 G: Figure 9 below provides a network representation of the farsighted
dominance relation in terms of m-arcs and p-arcs. In Figure 9, network G3 farsight-
edly dominates network G0:

G3

G0 G1 G2

S1p

S1m S2m

S2p S3p S3m

Figure 9: G3 farsightedly dominates G0

De…nition 4 (Farsightedly Stable Networks)
Let G µ N(N; A) be a collection of directed networks and let G ½ A £ (G £G) be a
supernetwork, and let FG be a subset of G: The subset of directed networks, FG; is
said to be farsightedly stable if

for all G0 2 FG and (mS1; (G0; G1)) 2 G;
there exists G2 2 FG

with G2 = G1 or G2 BBG1 such that,
(pS1; (G0; G2)) =2 G:

Thus, a subset of directed networks FG is farsightedly stable if given any network
G0 2 FG and any mS1 -deviation to network G1 2 G by coalition S1 (via adding,
subtracting, or replacing arcs) there exists further deviations leading to some network
G2 2 FG where the initially deviating coalition S1 is not better o¤ - and possibly
worse o¤.

There can be many farsightedly stable sets. We shall denote by F?G the largest
farsightedly stable set: Thus, if FG is a farsightedly stable set, then FG ½ F?G:
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4.2 Nonemptiness of the Largest Farsightedly Stable Set

By reformulating Chwe’s existence and nonemptiness results for the supernetwork
framework, we are able to conclude that any supernetwork contains a nonempty set
of farsightedly stable networks.

Theorem 1 (F?G 6= ;)
Let G µ N(N; A) be a collection of directed networks. Given any supernetwork

G ½ A £ (G£ G), there exists a unique, nonempty, largest farsightedly stable set
F?G: Moreover, F?G is externally stable with respect to farsighted dominance, that is,
if network G is contained in GnF?G, then there exists a network G0 contained in F?G
that farsightedly dominants G (i.e., G0 BBG):

Proof. The existence of a unique, largest farsightedly stable set, F?G, follows from
Proposition 1 in Chwe (1994). Moreover, since the set of networks, G, is …nite and
since each agent’s preferences over networks are irre‡exive, nonemptiness follows from
the Corollary to Proposition 2 in Chwe (1994).

5 Nash Networks

5.1 De…nitions

Within the framework developed above, we can de…ne various Nash-type notions for
networks relative to a given supernetwork.8

De…nition 5 (Nash Networks, Strict Nash Networks, and Strict Strong Nash Net-
works)

Given directed networks G µ N(N; A), agent preferences fvd(¢) : d 2 Dg ; and arc
set A := M [ P; let G ½ A £ (G £G) be a supernetwork:

(1) A network G¤ 2 G is said to be a Nash network relative to supernetwork G if
for all agents d 2 D

vd(G¤) ¸ vd(G) for all G 2 G(mfdg; G¤):

(2) A network G¤ 2 G is said to be a strict Nash network relative to supernetwork
G if for all agents d 2 D

vd(G¤) > vd(G) for all G 2 G(mfdg;G¤):

(3) A network G¤ 2 G is said to be a strict strong Nash network relative to
supernetwork G if for all coalitions S 2 2D and all networks G 2 G(mS;G¤)

vd0 (G¤) > vd0(G) for some agent d0 2 S:
8 In their interesting paper on noncooperative network formation, Bala and Goyal (2000) de…ne the

notion of a Nash network for one and two-way linking networks, for a particular set of noncooperative
network formation rules. For example, in their framework the rules of network formation allow each
agent to form links (one-way or two-way depending on the context) with any other agent. This
contrasts with our framework which allows arbitrary restrictions to be placed on link formation.
Moreover, in our framework, the notions of Nash and farsightedly stable networks are de…ned relative
to any given set of network formation rules (rules represented via a supernetwork).
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5.2 The Relationship Between Nash and Farsightedly Stable Net-
works

The following results, which relate strict Nash and strict strong Nash networks to
farsightedly stable networks, extend Propositions 5 and 6 in Chwe (1994) to the
supernetwork setting developed here.

Theorem 2 (Strict and Strict Strong Nash Networks Are Farsightedly Stable)
Let G ½ A £ (G £G) be a given supernetwork.
(1) Let G¤ be a strict Nash network relative to supernetwork G. If G is symmetric

and nonsimultaneous, then G¤ is a farsightedly stable network relative to G:
(2) Let G¤ be a strict strong Nash network relative to supernetwork G. If G is

symmetric and decomposable, then G¤ is a farsightedly stable network relative to G:

Proof. Part (1) follows immediately from Proposition 5 in Chwe (1994). To prove
part (2) we begin by de…ning the following mapping:

Let P(G) denote the collection of all subsets (i.e., subcollections) of G (including
the empty set or the empty subcollection), and de…ne the mapping

¤G(¢) : P (G) !P(G);

as follows:

for subcollection of networks H 2 P(G) and network G0 2 G ,
G0 is contained in ¤G(H)

if and only if
8 G1 2 G such that (mS; (G0; G1)) 2 G for some coalition S 2 2D

9 a network G2 2 H such that
(i) G2 = G1 or G2 BB G1, and

(ii) (pS ; (G0; G2)) =2 G, that is, vd(G2) · vd(G0) for some d 2 S.

By Proposition 1 in Chwe (1994), a subcollection F?G of G is the unique, largest
farsightedly stable set if and only if F?G is a …xed point of the mapping ¤G(¢) (i.e.,
if and only if F?G = ¤G(F?G)): Moreover, because ¤G(¢) is isotonic, that is, because
H µ H0 implies ¤G(H) µ ¤G(H0), the mapping ¤G(¢) has a …xed point - but it may

be empty. However, if there exists a nonempty subcollection of networks H such that

H µ¤G(H)

then ¤G(¢) has a nonempty …xed point, F?G; and in particular, H µ F?G. We show
here that for G a symmetric and decomposable supernetwork, if G¤ is a strict strong
Nash network relative to G, then

fG¤g µ¤G(fG¤g):

In fact, it su¢ces to show that if G¤ is a strict strong Nash network relative to a
symmetric, decomposable supernetwork G, then

G¤ BB G0 for all networks G0 2 G(mS0; G¤) for some coalition S0 2 2D: (*)

21



First, let G0 2 G(mfdg; G¤) for some agentd 2 D: By symmetry, G¤ 2 G(mfdg; G0):
Because G¤ is a strict strong Nash network, vd(G¤) > vd(G0): Thus, G¤ BBG0.

Now suppose statement (*) holds for all coalitions S0 of size k (i.e., jS0j = k): We
will show that under this induction hypothesis, statement (*) continues to hold for all
coalitions S0 of size k+1: Let G0 2 G(mS0; G¤) for some coalition S0 with jS0j = k+1:
Because G¤ is a strict strong Nash network, vd0(G¤) > vd0 (G0) for some agent d0 2 S0:
By decomposability, there exists some network G00 2 G(mS 0nfd0g; G¤) such that
G0 2 G(mfd0g;G00). By symmetry, G00 2 G(mfd0g; G0) and G¤ 2 G(mS0nfd0g;G00).
Since jS0nfd0gj = k, by the induction hypothesis G¤ BB G00. Moreover, since
G00 2 G(mfd0g;G0) and vd(G¤) > vd(G0), it follows from the de…nition of farsighted
dominance that G¤ BB G0:

A strict Nash network in a symmetric supernetwork G that is not nonsimultaneous
may or may not be farsightedly stable. Moreover, a strict, strong Nash network in a
symmetric supernetwork G that is not decomposable may or may not be farsightedly
stable.

6 Computational Examples

In this section, we compute the Nash and farsightedly stable networks for several
examples. All of our computations are carried out using a Mathematica package
developed by Kamat and Page (2001).

6.1 The Nash and Farsightedly Stable Networks Relative to Infor-
mation Sharing Supernetworks G0,G1,G2, and G3

In this subsection, we again focus on our collection,

G =fG1; G2;G3g ;

of information sharing networks. In particular, we compute the Nash and farsightedly
stable networks corresponding to the supernetworks G0, G1, G2; and G3 presented
in section 3.3 above. In computing the Nash and farsightedly stable networks we
shall assume that agents’ network payo¤ functions,

vd(¢) : H ! R; d = i1; i2; i3

are given by the following table:

i1 i2 i3
G1 vi1(G1)=3 vi2(G1)=2 vi3(G1)=3

G2 vi1(G2)=2 vi2(G2)=3 vi3(G2)=2

G3 vi1(G3)=2.5 vi2(G3)=2.1 vi3(G3)=2.5

Table 1: Payo¤s to Information Sharing Networks

Reading across the …rst row of payo¤s, agent i01s payo¤ in network G1 is vi1(G1) = 3,
agent i02s payo¤ is vi2 (G1) = 2, and agent i03s payo¤ is vi3(G3) = 3:

22



The Supernetwork G0 For asymmetric supernetwork G0; with m-arcs depicted
in Figure 6, the farsightedly stable set of networks, F?G0

, is given by

F?G0 = fG3g ;

and the set of Nash networks, NG0, is also given by

NG0 = fG3g :

Thus, for supernetwork G0
F?G0 = NG0 = fG3g :

In this example, asymmetries in the network formation rules favor the termination
of information sharing arrangements. As a result, given agents’ network payo¤s, in
the only farsightedly stable network information sharing is the network in which there
is the least information sharing.

The Supernetwork G1 For the symmetric supernetwork G1, with m-arcs depicted
in Figure 7, F?G1

is given by

F?G1 = fG1; G2; G3g ;

and the set of Nash networks, NG1, is also given by

NG1 = fG1; G2; G3g :

Thus, for supernetwork G1

F?G1 = NG1 = fG1; G2;G3g :

In this example, the network formation rules make it equally di¢cult to establish
or terminate information sharing arrangements. As a result, all the information
sharing networks in the collection G are farsightedly stable as well as Nash. In this
particular example, all networks are Nash under our de…nition because no single agent
defections from a given network are possible.

The Supernetwork G2 For the symmetric and decomposable supernetwork
G2, with m-arcs depicted in Figure 8, F?G2 is given by

F?G2 = fG1; G3g ;

while the set of Nash networks, NG2, is given by

NG2 = fG1g :

Here, the network formation rules are purely unilateral, making it easy for each agent
to establish or terminate information sharing arrangements. However, the payo¤s in
Table 1 are such that the extremes of maximal and minimal information sharing
emerge as the farsightedly stable networks. Thus, for supernetwork G2

NG2 = fG1g ½ fG1;G3g = F?G2:
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The Supernetwork G3 For the symmetric and nonsimultaneous supernetwork
G3, with m-arcs depicted in Figure 9, F?G3

is given by

F?G3 = fG1; G2g ;

while the set of Nash networks, NG3, is given by

NG2 = fG1g :

In this example, the network formation rules are purely unilateral and simultaneous
moves are not allowed. Note that with simultaneity eliminated, under the payo¤s
in Table 1 maximal and intermediate information sharing emerge as the farsightedly
stable networks. Thus, for supernetwork G3

NG3 = fG1g ½ fG1;G2g = F?G3:

The above series of examples illustrates how the rules governing network forma-
tion, as represented via supernetworks, a¤ect the set of farsightedly stable networks
as well as the set of Nash networks. In all of the examples above the set of Nash net-
works is equal to or contained in the set of farsightedly stable networks. In the next
subsection, we expand upon on our information sharing examples and we show that,
in general, it is not the case that the Nash networks are contained in the farsightedly
stable set.

6.2 Strategic Information Sharing: An Expanded Example

6.2.1 Information Sharing Networks

Again consider the problem of strategic information sharing for the case in which three
individuals, i1, i2, and i3, have private information, but now consider the collection
of all possible information sharing networks, assuming that each agent observes the
private information of at least one other agent. Denote this collection by GI. Table
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2 lists all the information sharing networks contained in the collection.

((j3; (i3; i1))

(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))
(j1; (i1; i2)) G1 G2 G3
(j1; (i1; i3)) G4 G5 G6

((j1; (i1; i2)); (j1; (i1; i3))) G7 G8 G9

((j3; (i3; i2))
(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))

(j1; (i1; i2)) G10 G11 G12
(j1; (i1; i3)) G13 G14 G15

((j1; (i1; i2)); (j1; (i1; i3))) G16 G17 G18

((j3; (i3; i1)); (j3; (i3; i2)))

(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))
(j1; (i1; i2)) G19 G20 G21
(j1; (i1; i3)) G22 G23 G24

((j1; (i1; i2)); (j1; (i1; i3))) G25 G26 G27

Table 2: The Collection GI of Information Sharing Networks

Note that network G27 in Table 2 corresponds to network G1 in our previous infor-
mation sharing examples - while network G24 in Table 2 corresponds to network G2,
and network G22 in Table 2 corresponds to network G3: Also, note that our collection
of networks GI listed in Table 2 is a proper subset of the collection of all possible
networks N(N;A) given node set N = fi1; i2; i3g and arc set A = fj1; j2; j3g:

In this example, the set of nodes, N = fi1; i2; i3g, and the set of agents D are
one and the same, and the subscript on each arc denotes the agent to whom the arc
belongs, and thus identi…es the node from which the arc must emanate. In construct-
ing the supernetwork over collection GI we shall assume that the rules governing
network formation are purely unilateral (see Rules 2 above). Thus, the resulting
supernetwork, GI; is symmetric, closely connected, simple, and decomposable, but
not nonsimultaneous. Moreover, in supernetwork GI no network in collection GI is
isolated.

6.2.2 Payo¤s

Suppose now that the network payo¤ functions, fvd(¢) : d 2 Dg ; de…ned on GI are
speci…ed as follows:

Given any network G 2 GI and any agent d 2 D = fi1; i2; i3g;

if d observes directly another agent d0; d then receives a payo¤ of 2 ;

if d observes directly another agent d0 who is, in turn, observing directly another
agent d00; d 6= d00, then d receives a payo¤ of 3 ;
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if d is observed directly by another agent d0, then d pays a cost of 3;

if d is observed directly by another agent d0 who is, in turn, being observed directly
by another agent d00; d 6= d00, then d pays a cost of 6 :

Table 3 below gives the net payo¤s to agents corresponding to the networks in
collection GI under the payo¤ rules listed above.

((j3; (i3; i1))
(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))

(j1; (i1; i2)) (¡4;¡4;3) (¡3; ¡3; ¡3) (¡6;¡1; ¡3)
(j1; (i1; i3)) (¡4;3; ¡4) (¡4;3;¡4) (¡7;6; ¡7)

((j1; (i1; i2)); (j1; (i1; i3))) (¡2; ¡3; ¡3) (¡1; ¡3; ¡6) (¡4;0; ¡9)

((j3; (i3; i2))

(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))
(j1; (i1; i2)) (¡4; ¡4;3) (3;¡4;¡4) (¡3; ¡2; ¡3)
(j1; (i1; i3)) (¡3;¡3;¡3) (3;¡4;¡4) (¡3; ¡1; ¡6)

((j1; (i1; i2)); (j1; (i1; i3))) (¡1;¡6;¡3) (6;¡7;¡7) (0;¡4;¡9)

((j3; (i3; i1)); (j3; (i3; i2)))
(j2; (i2; i1)) (j2; (i2; i3)) ((j2; (i2; i1)); (j2; (i2; i3)))

(j1; (i1; i2)) (¡7;¡7;6) (¡3; ¡6; ¡1) (¡9;¡4;0)
(j1; (i1; i3)) (¡6; ¡3; ¡1) (¡3; ¡3; ¡2) (¡9;0; ¡4)

((j1; (i1; i2)); (j1; (i1; i3))) (¡4;¡9;0) (0;¡9;¡4) (¡6;¡6; ¡6)

Table 3: The Payo¤s to the Information Sharing Networks in GI

6.2.3 Nash and Farsightedly Stable Networks Relative to Supernetwork
GI

Under purely unilateral network formation rules with resulting information sharing
supernetwork GI, the set of farsightedly stable networks, F?GI , is given by

F?GI = fG3;G7;G8; G12; G15;G16;G20;G22; G23g :
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Figure 10 depicts the information sharing networks contained in F?GI .
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Figure 10: Farsightedly Stable Networks Relative to Information Sharing Supernetwork GI

An interesting pattern emerges: in each of the farsighted stable networks in supernet-
work GI, one agent observes each of the other two agents directly, while each of the
two remaining agents observes one agent directly and one agent indirectly. For ex-
ample, in farsightedly stable network G12 agent i2 observes agents i1 and i3 directly,
while agent i1 observes i2 directly and agent i3 indirectly, and agent i3 observes i2
directly and agent i1 indirectly. Note that in the other two networks, G3 and G15, in
the same row with network G12, agent i2 observes agents i1 and i3 directly.

Relative to supernetwork GI there is only one Nash network, network G27. Figure
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11 depicts network G27.
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Figure 11: The Nash Network G27 Relative to Information Sharing Supernetwork GI

Thus, in this example,

NGI = fG27g ;

F?GI = fG3;G7;G8; G12; G15;G16;G20;G22; G23g ;
and

NGI \ F?GI = ;:

Moreover, since the farsightedly stable set F?GI is externally stable (see Theorem
1 above), there exists some farsightedly stable network G 2 F?GI that farsightedly
dominates the Nash network G27. Thus, G BB G27 for some G 2 F?GI .

Before moving to our last example, let us consider the issue of Pareto e¢ciency.
De…ne the set of Pareto e¢cient networks relative to the collection GI as follows:

EI :=
©
G 2 G : there does not exist G0 such that vd(G0) > vd(G) for all d 2 D

ª
:

Given the payo¤s in Table 3, the set of Pareto e¢cient networks, EI, is equal to
the set of farsightedly stable networks. Thus, not only is the Nash network G27
farsightedly dominated by some network in F?GI , it is also Pareto dominated by some
network in F?GI . Unfortunately, equality of the set of farsightedly stable networks
and the set of e¢cient networks is not a general property of farsightedly stable sets
in supernetworks. In fact, it is possible to construct a supernetwork example in
which the set of e¢cient networks and the set of farsightedly stable networks are
non-intersecting.

6.3 Strategic Pollution: The Garbage Game

In this our last example, we construct the supernetwork corresponding to a discrete,
3-agent version of the Shapley-Shubik garbage game (Shapley and Shubik (1969)). In
the garbage game, each agent, i1; i2; and i3, has a bag of garbage which can be kept
by the agent or dumped onto the property of another agent. The game is discrete in
that each agent’s bag of garbage cannot be divided up - each agent either keeps the
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bag or dumps it on the property of one other agent. In the network representation of
the garbage game, each agent has under his control one arc which must begin at the
node representing that agent. The ending node of the arc indicates where the agent
has chosen to dump his garbage. For example, if arc j1 (the arc under the control of
agent 1) runs from node i1 to node i3 this means that agent i1 has chosen to dump his
bag of garbage on the property of agent i3. Alternatively, if agent i1 decides to keep
his bag of garbage, this is denoted by the arc j1 running from node i1 to node i1 (i.e.,
by a loop). Thus, the rules for adding or subtracting arcs are purely unilateral (see
Rules 2 above). Figure 12 depicts the garbage network corresponding to a particular
con…guration of dumping strategies.

i 1

i 3i 2
j 3

j1

j 2

Figure 12: A Garbage Network G

In the garbage network depicted in Figure 12, agent i1 dumps his garbage onto agent
i2, agent i2 dumps his garbage onto agent i3, and agent i3 keeps his garbage. We
shall assume that the payo¤ to each agent in any given garbage network is given
by ¡b where b = 0; 1;2;3 is number of bags of garbage the agent ends up with in
that network. Thus, the payo¤ to each agent in the garbage network, G, depicted in
Figure 12 is given by

vi1(G) = 0; vi2(G) = ¡1; and vi3(G) = ¡2:

Table 4 lists all the possible networks. We shall denote by GP the collection of
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networks in Table 4.
((j3; (i3; i1))

(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))
(j1; (i1; i1)) G1 G2 G3
(j1; (i1; i2)) G4 G5 G6
(j1; (i1; i3)) G7 G8 G9

((j3; (i3; i2))

(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))
(j1; (i1; i1)) G10 G11 G12
(j1; (i1; i2)) G13 G14 G15
(j1; (i1; i3)) G16 G17 G18

(j3; (i3; i3))
(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))

(j1; (i1; i1)) G19 G20 G21
(j1; (i1; i2)) G22 G23 G24
(j1; (i1; i3)) G25 G26 G27

Table 4: All Possible Garbage Networks

Note that the network depicted in Figure 12 corresponds to network G24 in Table 4.
Under purely unilateral network formation rules (Rules 2 ), the resulting super-

network, GP ; is symmetric, closely connected, simple, and decomposable, but not
nonsimultaneous. Moreover, in supernetwork GP , no network in collection GP is
isolated

Table 5 lists the payo¤s corresponding to the networks in collection GP .

((j3; (i3; i1))

(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))
(j1; (i1; i1)) (¡3;0; 0) (¡2;¡1;0) (¡2;0;¡1)
(j1; (i1; i2)) (¡2;¡1; 0) (¡1;¡2;0) (¡1; ¡1; ¡1)
(j1; (i1; i3)) (¡2;0;¡1) (¡1;¡1;¡1) (¡1;0;¡2)

((j3; (i3; i2))
(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))

(j1; (i1; i1)) (¡2;¡1;0) (¡1; ¡2; 0) (¡1; ¡1; ¡1)
(j1; (i1; i2)) (¡1;¡2;0) (0;¡3;0) (0;¡2;¡1)
(j1; (i1; i3)) (¡1; ¡1; ¡1) (0;¡2;¡1) (0;¡1;¡2)

(j3; (i3; i3))
(j2; (i2; i1)) (j2; (i2; i2)) (j2; (i2; i3))

(j1; (i1; i1)) (¡2;0; ¡1) (¡1; ¡1; ¡1) (¡1;0; ¡2)
(j1; (i1; i2)) (¡1; ¡1; ¡1) (0;¡2;¡1) (0; ¡1; ¡2)
(j1; (i1; i3)) (¡1;0; ¡2) (0;¡1;¡2) (0;0;¡3)

Table 5: Payo¤s to Garbage Networks
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6.3.1 Nash and Farsightedly Stable Networks Relative to Supernetwork
GP

For the garbage game supernetwork GP , F?GP is given by

F?GP = fG6;G8; G12; G16;G20;G22g :

Figure 13 depicts the garbage networks contained in F?GP .

i1

i3i2

j 3j 1

j 2

G6

i1

i3i2
j 3

j 1j 2

G16

i 1

i 3i 2

j 3j 1

j 2

G8

i 1

i 3i 2

j 3

j 1

j2

G12

i 1

i3i2

j 3

j 1j 2

G22

i1

i3i 2

j 3

j1

j2

G20

Figure 13: Farsightedly Stable Networks in the Garbage Game Supernetwork GP

Again, an interesting pattern emerges: in each of the farsighted stable networks
in supernetwork GP , each agent ends up with one bag of garbage - an outcome
equivalent, in terms of payo¤, to each agent keeping his bag of garbage. By reasoning
farsightedly, agents always end up with an equitable outcome.

Relative to supernetwork GP , the set of Nash garbage networks is given by

NGP = fG4;G6;G7;G9; G13; G15;G16;G18g :
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Figure 14 depicts the Nash garbage networks.
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i 3i 2
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i 3i 2
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i 1

i 3i 2
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i 1

i 3i 2 j 3
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i 1

i 3i 2
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j 1

j 2
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i 1

i 3i 2
j3

j 1

j 2
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Figure 14: Nash Networks in the Garbage Game Supernetwork
Thus, in this example,

NGP = fG4;G6;G7;G9; G13; G15;G16;G18g ;

F?GP = fG6;G8; G12; G16;G20;G22g ;
and

NGP \ F?GP = fG6;G16g:
Note that in none of the Nash equilibrium garbage networks does an agent keep his
own bag of garbage (recall that in farsightedly stable garbage network G20 each agent
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keeps his bag of garbage). Moreover, except in Nash networks G6 and G16, payo¤s are
not equitable. For example, in Nash garbage network G7; vi1(G7) = ¡2; vi2(G7) = 0;
and vi3(G7) = ¡1:
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