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Abstract

Fracture is a fundamental process through which materials fail. Our under-

standing of fracture mechanics determines our ability to predict the process.

Griffith first conceptualised a continuum description of fracture in the

1920s, and today, simulations are also performed at the atomistic scale.

Hierarchical, and simultaneous, multiscale approaches are used; where DFT

provides accurate electronic interactions at the crack tip coupled with clas-

sical mechanics to reach the large length scale required to capture the long

range stress fields found in fractured systems. Here, tools are developed with

hierarchical modelling in mind and to reduce computational cost.

The accuracy of DFT is demonstrated via a comparison to experimental

fracture propagation of the SiC 6H polytype on the (0001) plane. The slow

stable crack growth of the experiment allowed comparison of the experiment-

ally measured fracture energy with the computational surface energy from

DFT calculations, which showed relatively good agreement.

The discretised nature of an atomistic lattice leads to a feature called lat-

tice trapping. To explore this, methods to compute energy barriers for break-

ing a single bond along the crack advancement direction were developed.

The methods were tested on a fractured diamond-structured carbon system,

which was open along the (111) plane, and a fractured 2D hexagonal lattice.

The continuum description for fracture is not sufficient for an atomistic

lattice. A method which attempts to improve the discrepancy between the

descriptions by computing a correction term on a larger atomistic domain

was developed. It showed improved convergence of the strain and total

energy with respect to the uncorrected case.

xv



xvi



Acronyms

2D two dimensional.

3D three dimensional.

BFGS Broyden–Fletcher–Goldfarb–Shanno.

CASTEP Cambridge Serial Total Energy Package.

CLE continuum linear elastic.

DCB double cantilever beam.

DFT density functional theory.

EPSRC Engineering and Physical Sciences Research Council.

FIB focused ion beam.

FIRE fast inertial relaxation engine.

GGA generalised gradient approximation.

IBS ideal brittle solid.

ICSD Inorganic Crystal Structure Database.

KKT Karush–Kuhn–Tucker.

KMC kinetic Monte Carlo.

L-IBS linearised ideal brittle solid.

LBFGS limited-memory Broyden–Fletcher–Goldfarb–Shanno.

LDA local density approximation.

LJ Lennard-Jones.

MD molecular dynamics.

MM molecular mechanics.

PBE Perdew–Burke–Ernzerhof.

xvii



QM quantum mechanics.

QMC quantum Monte Carlo.

SCRTP Scientific Computing Research Technology Platform.

SEM scanning electron microscope.

SiC silicon carbide.

SW Stillinger-Weber.

xviii



1 Introduction

Structures and materials are designed to a specification and are expected to

withstand their operating loads and stresses for the duration of their life-

time. Components are becoming increasingly complicated and are required

to withstand greater demands. Materials are rarely perfect and consist of

many defects, such as impurities, vacancies, dislocations, grain boundaries,

and stacking faults. While production methods continue to improve, redu-

cing the number of unwanted defects, flaws can still develop during their

operation. These defects can compromise the integrity of the material and

can develop into larger scale damage even within the specified conditions.

This can cause a material to fail; whether it is an operational specification

loss or structural loss, both can be costly and dangerous to the user.

The need for stronger, more resilient materials is present in several in-

dustries and is growing as demand for improved properties increases. For

example, superalloys and ceramic-based materials have become popular in

the aerospace industry [3], where their properties make them suitable for the

extremely demanding conditions within a jet engine. Superalloys can have

complex grain structures. The properties of superalloys have improved over

time, with techniques such as grain boundary strengthening and manufac-

turing techniques which reduce the number of grain boundaries in the com-

ponent [4]. Components formed from ceramic matrix composites overcome

some limitations of conventional ceramics and superalloys, such as improved

fracture toughness and a higher temperature performance respectively [5].

However, these components can still fail via fracture mechanisms. The com-

petition to build more efficient and reliable engines to reduce the cost of

travel and improve safety, respectively, is ever-present. This contributes to

the demand for ceramic-based materials. Many industries can benefit from

an increased understanding of fracture mechanics. However, the information

can be difficult to obtain, and thus a need for improved design and simulation

1



tools exist.

Our understanding of fracture mechanics determines our ability to pre-

dict the process. Griffith was amongst the first to formally conceptualise the

failure of brittle materials in 1921 [6]. Griffith’s ideas were developed in terms

of macroscopic thermodynamic quantities, such that small thermal fluctu-

ations are negligible and so do not affect the quantity of interest. Today, the

field has progressed to modelling at the atomistic scale [7–9].

The dynamic behaviour of cracks is highly specific to the material un-

der investigation and its structural changes as defects propagate can lead

to complex behaviour [8]. Experimental investigations are often extremely

expensive or even unachievable, especially at the atomistic scale, suggesting

that alternative computational methods would be highly beneficial.

Accurate atomistic modelling of these processes, in principle, requires

hundreds of thousands of atoms to represent the long range stress fields.

Complex electronic interactions near the crack tip require modelling with

quantum mechanical precision. These simulations are not feasible. It is pos-

sible to reduce the computational cost while maintaining comparable accur-

acy overall by considering molecular mechanics for longer range effects away

from defect cores [10]. These simulations, often referred to as simultaneous

simulations, reduce the cost; however, errors are introduced at the boundary

at which the different modelling techniques come into contact. The simula-

tions are still limited to the timescales available via methods used to model

quantum mechanics (QM). Hierarchical modelling attempts to incorporate

different modelling techniques via outputs of one that feed into the inputs of

another [11]. This allows for simulations with greater timescales compared

to simultaneous simulations. However, errors are introduced as information

is lost when the physical description changes.

The computational cost of single atomistic scale simulations is still high

and outside the realms of treatment using quantum mechanical accuracy.

Here, methods to reduce the domain size are presented, with the intension

that they could be run with higher accuracy mechanics.

The accuracy available through quantum mechanical simulations is

demonstrated, in Chapter 3, with the computation of the surface energy

for silicon carbide (SiC). SiC is mainly used as an abrasive with applications

in semiconductors, cutting tools, body amour, and more recently automot-

ive parts [12]. However, it can be difficult to work with due to its extremely

2



brittle behaviour.

Differences exist between continuum and atomistic fracture theory due to

the discrete nature of atomistic lattice sites. The nature of the lattice modi-

fies the behaviour of the fracture dynamics giving rise to a phenomenon called

lattice trapping. Lattice trapping and the related energy barriers required

to advance the crack front are explored in Chapter 4. Energy barriers for

diamond-structured carbon were computed. Diamond-structured carbon is

also extremely brittle, and it is used commercially within many applications

from gems to cutting tools [13]. Through use of a numerical continuation

method, the lattice trapping range for a simple fractured two dimensional

(2D) hexagonal lattice was found, as a proof of concept.

The application of continuum fracture theory to atomistic domains pro-

duces a discrepancy. To improve upon the discrepancy, a correction scheme

is introduced, in Chapter 5, and demonstrated on a fractured 2D hexagonal

lattice, as a proof of concept.

First, the concepts and theory regarding atomistic simulations of brittle

fracture are outlined in Chapter 2.

3
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2 Background

2.1 Introduction

Atomistic simulations of crack propagation are key to understanding the

behaviour of materials [8, 14]. Modelling both the large length scale of

a fractured system and the complex chemistry at the crack tip is a diffi-

cult task. Outlined below are the fundamental concepts and theory used

to model atomistic systems, mainly classical mechanics and QM. In regards

to fracture, only a small subset of the field is studied here. The continuum

concepts of brittle fracture are outlined. Three materials were investigated

in this work. Two real-world brittle materials were studied, and for proof

of concept for the new methodology developed here a simple 2D hexagonal

lattice was used.

2.2 Atoms

An atom consists of subatomic particles: protons, neutrons, and electrons.

The protons and neutrons are localised at the centre of the atom, and to-

gether they are called the nucleus. The electrons exist beyond the nucleus

and are bound electronically to the nucleus. These subatomic particles can

be considered either classically as particles or through a quantum description

as waves. Together, this is known as the wave-particle duality principle [15].

The quantum and classical characterisations are explained in further detail

in the Sec. 2.3 and Sec. 2.4, respectively.

The energy, position, and electronic charge of an atom are important

properties used to describe how a collection of atoms may interact with each

other. The energy of an atom depends on several factors: its mass, i.e. the

number of protons and neutrons; the likely locations of its electrons at a
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Figure 2.1: Schematic of the real part of a one dimensional probabilistic wave-
function, Ψ, where x is a spatial coordinate.

given time; and its momentum, i.e. its relative velocity in its inertial frame

or its temperature. The electronic charge is dependent on the number of

protons and electrons.

Atoms and their subatomic particles interact via the four fundamental

forces: the gravitational, the electromagnetic, the weak, and the strong inter-

action. In materials the electromagnetic force is the governing force between

atoms [15]. This interaction will modify the atom’s energy either by changing

its momentum, its position, or the likely positions of its electrons.

2.3 Quantum Mechanics

Accurate modelling of interactions between atoms requires consideration of

nuclei and their electrons. In order to capture the nuclear and the electronic

response of atoms interacting with one another, a first principles approach

must be considered. QM establishes methods in which a system and its in-

teractions can be represented as probabilistic wavefunctions, Fig. 2.1, where

each particle is represented by a linear partial differential equation.

One formulation for QM relies on solving the Schrödinger equation. How-

ever, a direct analytical approach is practically impossible as it requires one

to simultaneously solve this equation for all particles. Thus, approximations

are needed in order to tackle anything beyond a system with a couple of

hydrogen particles [16].
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The general form for the time-independent Schrödinger equation is

E|Ψ〉 = Ĥ|Ψ〉, (2.1)

where E is the energy of the system, Ĥ is the Hamiltonian operator, and Ψ

is the wavefunction of the system [16]. The Hamiltonian operator describes

the set of possible energies of a system and is comprised of the sum of the

kinetic energies, T̂ , and potential energies, V̂ , expressed as

Ĥ = T̂ + V̂ . (2.2)

In a quantum description there are three interactions that contribute to

the potential energy term: nucleus-nucleus, nn; nucleus-electron, ne; and

electron-electron, ee. The kinetic energy term is the sum of the kinetic en-

ergies of the nuclei, n, and electrons, e. Hence, the Hamiltonian is expressed

as

Ĥ = T̂e + T̂n + V̂nn + V̂ne + V̂ee. (2.3)

For a many-body system the components of the Hamiltonian can be written

as

T̂e + T̂n = − ~2

2me

Ne∑

i

∇2
i −

~2

2

Nn∑

I

1

mI

∇2
I , (2.4)

V̂nn + V̂ne + V̂ee =
e2

4πε0

(
Nn∑

I

Nn∑

J>I

ZIZJ
|RI −RJ |

−
Ne∑

i

Nn∑

I

ZI
|ri −RI |

+
Ne∑

i

Ne∑

j>i

1

|ri − rj|

)
,

(2.5)

where ~ is the reduced Planck constant; me is the mass of the electron; mI is

the mass of a nuclei; e is the elementary electronic charge; ε0 is the vacuum

permittivity; Ne and Nn are the number of electrons and nuclei respectively;

i and j indices denote electrons; I and J indices denote nuclei; Z are the

atomic numbers; r are the positions of the electrons; and R are the positions

of the nuclei [16].

Solving the equations exactly is impossible for a many-body system and

so approximations are used. One common method to simplify the Hamilto-

nian is using the Born-Oppenheimer approximation [17], which revolves
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around separating the motion of the nucleus from the electrons. The mass

of a nucleus is orders of magnitude larger than that of an electron, and it

can be considered that the motion of the nuclei is considerably slower than

that of the electrons. First, the kinetic energy term regarding the nuclei, T̂n,

is neglected. The Schrödinger equation is solved for the electronic part. The

term is later reintroduced and then solved for the nuclei only using classical

mechanics. Thus, the approximation requires that the electronic response

is instantaneous compared to nuclear motion, i.e. the electrons do not re-

quire a finite relaxation time. This is often also referred to as the adiabatic

approximation. Therefore, the Hamiltonian for the electronic structure, i.e.

ignoring the T̂n term, can be written as [18]

Ĥ = T̂e + V̂nn + V̂ne + V̂ee. (2.6)

The Born-Oppenheimer approximation allows for the separation of the wave-

function into two parts: the nuclear, Ψn, and the electronic, Ψe, such that

Ψ = ΨnΨe [16]. This separation makes calculations of wavefunctions for

elements larger than hydrogen possible. This approach is still limited to a

few electrons. To go beyond this, further approximations of the Schrödinger

equation are needed. There are two main types of methods: wavefunction-

based methods and density-based methods. A density-based method used

today is density functional theory (DFT), which was formulated in 1964 [19]

and is still improved upon today. DFT is an approximate method, and thus

there are issues with the methodology and its accuracy [20]. More accurate

and more expensive methods exist, i.e. quantum Monte Carlo (QMC) and

other similar approaches [21, 22]. However, DFT has become an accepted

standard used by many today.

2.3.1 Density Functional Theory

DFT is a computational technique based on the framework by Hohenberg

and Kohn [23]. One of its theorems states that the ground state energy of

a system is uniquely related to its electron density, n(r). The significance

of this theorem is the reduction of variables in the model. A system of N

electrons will have 3N spatial coordinates which get reduced down to an

electron density of 3 spatial coordinates. From Eq. 2.1 and Eq. 2.6, the total

energy of the electronic system, E|Ψe〉, can be written as a functional of the
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density, E[n(r)]; thus

E|Ψe〉 =
(
T̂e + V̂nn + V̂ne + V̂ee

)
|Ψe〉 (2.7)

is equivalent to

EHK[n(r)] = FHK[n(r)] +

∫
Vext(r)n(r) d3r + En, (2.8)

where FHK is the unique Hohenberg-Kohn functional which includes all the

kinetic energies, T̂e, and potential energies, V̂ee, of the underlying electron

system; En includes the potential energies, V̂nn, of the nuclei interactions;

and Vext is the external potential through which the electrons interact with

the nuclei, V̂ne [18]. The square brackets denote functionals.

Kohn and Sham progressed the theoretical framework by assuming that

the ground state density of an interacting system is equivalent to one of a

non-interacting system [24]. The electron density is given in relation to the

orbitals of each electron, which is

n(r) =
∑

s

n(r, s) =
∑

s

Ns∑

i=1

|ψsi (r)|2, (2.9)

where s denotes the spin of the electron, ψ is the particle’s wavefunction,

and N is the number of electrons. The Hohenberg-Kohn energy expression

of Eq. 2.8 can be rewritten as

EKS[n(r)] =Ts[n(r)] + EHartree[n(r)] + Exc[n(r)]

+

∫
Vext(r)n(r) d3r + En,

(2.10)

where

Ts[n(r)] =
1

2

∑

s

Ns∑

i=1

∫
|∇ψsi (r)|2 d3r (2.11)

is the independent particles kinetic energy;

EHartree[n(r)] =
1

2

∫∫
n(r)ρ(r′)

|r − r′| d3r d3r′ (2.12)

is the self-interaction energy of the electron density, treated as a classical
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charge density; and

Exc[n(r)] =
1

2

∫∫
n(r)

nxc(r, r
′)

|r − r′| d3r d3r′ (2.13)

is the exchange-correlation energy functional [18]. Exchange interactions

are due to interactions between identical particles. Correlation interactions

describe how one electron is effected by all the remaining electrons. Un-

fortunately, it is not possible to obtain an exact form of Exc[n(r)] as the

density of the exchange-correlation, nxc, is unknown. Instead, Exc[n(r)] is

approximated. There are many functionals and many parametrisations of

those functionals [25, 26] which are computed with more accurate and com-

putationally expensive methods, such as QMC which is still an approxim-

ation [27]. Here, two exchange-correlation functionals are used. The local

density approximation (LDA) exchange-correlation assumes that Exc[n(r)]

at each point is assumed to be the same as in an uniform electron gas with

that density [18]. The generalised gradient approximation (GGA) builds

upon LDA and considers density and the local gradient at each point; this

allows for systems with more strongly fluctuating electronic densities [28].

Plane Wave Basis Set

While the Kohn-Sham formulation of DFT reduces the complexity to non-

interacting particles and introduces the exchange-correlation energy func-

tional term, the number of electrons to solve remain the same. This leaves

the same number of equations to solve simultaneously. The dimensions of

the problem can be reduced by using periodic domains. Bloch’s theorem

states that each electron in a periodic solid can be represented by a Bloch

wave, ψ(r), given as

ψ(r) = φ(r)eik·r, (2.14)

where the φ(r) factor has the same periodicity as the domain periodicity, the

wave-like part is captured by the eik·r factor, and k is the wave vector [29].

The periodicity of lattice allows for the solution of the Bloch wave to be

characterised in a single Brillouin zone [30]. The domain periodicity can

be rewritten using a basis set of discrete plane waves in reciprocal lattice
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vectors. Thus, the wavefunction becomes

ψ(r) =
∑

G

ck+Ge
i(k+G)·r, (2.15)

where G are the reciprocal lattice vectors, and ck+G are the plane wave

coefficients. Modelling an infinite wave can be reduced by truncating the

plane wave basis set. For sufficiently large kinetic energies, |k + G|2, the

plane wave coefficients, ck+G, are less important than ones associated with

smaller kinetic energies [29]. The truncation of the plane wave basis set is

referred to as the cutoff energy [29], Ecut, given by

Ecut =
~2

2me

|k +G|2. (2.16)

This cutoff introduces an error which can be reduced or mitigated by con-

verging the total energy with respect to Ecut, or additionally by using a

finite basis set correction which applies a correction factor to account for

the different number of k-points. This correction is particularly important

for domains in which the domain size changes during computation of the

Kohn-Sham equations [31].

k-point Sampling

While Bloch’s theorem reduces the number of wavefunctions, the wavefunc-

tion still needs to be computed for an infinite number of k-points. However,

the contributions to the wavefunction of k-points which are sufficiently close

together are similar [29]. Hence, it is possible to reduce the number of k-

points needed to represent a wavefunction. One method, used here, is the

Monkhorst and Pack grid, which uses high symmetry sets of k-points within

the Brillouin zone [32]. Using a reduced number of k-points introduces an-

other source of error. This error can be reduced by converging the total

energy with respect to the number of k-points used.

Pseudopotentials

Further simplifications can be made to reduce computational expense. The

wavefunctions of the electrons are subject to an orthogonality constraint. As

such, the wavefunctions of the valence electrons exhibit rapid oscillations in
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the core region which requires a very large basis set [29]. The size of the

basis set can be reduced by considering the core electrons, i.e. tightly bound

electrons, to be frozen with the nuclei. This introduces a pseudopotential

to account for the change in interaction behaviour; a replacement for what

would be a strong Coulombic potential with a weaker potential that acts on

pseudo wavefunctions. This pseudo wavefunctions does not typically oscillate

within the core region, so should not have any nodes, and thus the pseudo

wavefunction requires a smaller basis set compared to its counterpart [29].

In this approach, it is assumed that chemical bonding does not involve any

core electrons.

A pseudopotential should faithfully reproduce the valence functional form

of the non-frozen electron model. Hamann et al. found norm-conserving

pseudopotentials reproduce this behaviour [33]. Later, Vandererbilt re-

laxed the norm-conservation requirement to formulate ultrasoft pseudopo-

tentials [34]. The smoother pseudopotential leads to a reduction in the plane

wave cutoff energy, and thus a smaller basis set is required. This class of

pseudopotentials were also found to have better transferability and accuracy

compared to norm-conserving pseudopotentials [35]. A schematic of these

pseudopotentials and pseudo wavefunctions are shown in Fig. 2.2.

Bloch’s theorem only applies to periodic domains. Non-uniform, inhomo-

geneous, or anisotropic objects like defects and surfaces are not periodic. In

order to model the object it must be surrounded by enough bulk periodic

material such that the periodic image of the object does not interact with

itself. This is called the supercell approximation.

These various approximations, and many more allow a computational

approach for solving the Kohn-Sham DFT formulation to find the ground

state energy of a system. Throughout this work the Cambridge Serial Total

Energy Package (CASTEP) implementation of DFT was used [36].

Electronic Minimisation

The Kohn-Shan method provides a feasible approach to compute the ground

state of the many-body electron system [18]. The solution to the Kohn-Sham

formulation of the energy, shown in Eq. 2.10, can be solved as a minimisation
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Figure 2.2: Schematic of the energy of an electron wavefunction, Ψ, and a poten-
tial, V , with respect to the distance from the centre of an atom, r. The pseudo
wavefunction, Ψpseudo, and pseudopotential, Vpseudo, replace the description for
the core electrons, below a cutoff radius, rc, and match the real functions above
rc [29].

problem with respect to the wavefunction. The minimum [18] is given by

δEKS

δψs∗i (r)
= 0 (2.17)

δTs
δψs∗i (r)

+

[
δEext

δn(r, s)
+
δEHartree

δn(r, s)
+

δExc

δn(r, s)

]
δn(r, s)

δψs∗i (r)
= 0 (2.18)

where

δTs
δψs∗i (r)

= −1

2
∇2ψsi (r), (2.19)

δEext

δn(r, s)
+
δEHartree

δn(r, s)
+

δExc

δn(r, s)
= V s

KS(r), (2.20)

and
δn(r, s)

δψs∗i (r)
= ψsi (r). (2.21)

13



From an effective Hamiltonian of Hs
KS(r) = −1

2
∇2 + V s

KS(r) the above equa-

tion can be rewritten as

(Hs
KS − εsi )ψsi (r) = 0 (2.22)

where εsi are the eigenvalues. These are the Kohn-Sham equations [18].

A minimisation of the Kohn-Sham equations provides a ground state

energy and an electron density of the system. The equations are solved self-

consistently via an iterative approach. First, an initial guess of the electron

density is given. Then the effective potential V s
KS(r) is calculated. The

effective potential is used to solve the Kohn-Sham equations to provide new

wavefunctions. A new electron density is calculated using the wavefunctions.

This electron density is then used to compute a new effective potential.

The iteration is repeated until changes in the energy are less than a given

tolerance, or multiple tolerances of system properties are converged [18].

Geometry Optimisation

The minimisation of the energy with respect to the ionic positions, as well

as the size and shape of the encompassing cell, can also be computed. This

is achieved via computation of the forces on the ions themselves.

The Hellmann-Feynman theorem,

∂E

∂λ
=

〈
ψλ

∣∣∣∣∣
∂H

∂λ

∣∣∣∣∣ψλ
〉

, (2.23)

relates the derivative of the energy with respect to some parameter λ to the

expectation value of the derivative of the Hamiltonian with respect to λ [16].

∂E/∂λ can be interpreted as a generalised force associated with λ, if λ is a

degree of freedom of the system. In the given approximate formulation of

DFT, the ions of a system are treated as classical particles. Let λ be the

position vector, then the Hellmann-Feynman force is the classical force on

that ion [16]. The force on an ion via the Hellmann-Feynman theorem can
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be shown to be [18]

fI = −∂EKS

∂RI

(2.24)

= −
N∑

i

〈
ψi

∣∣∣∣∣
∂HKS

∂RI

∣∣∣∣∣ψi
〉

. (2.25)

The minimisation of the forces are achieved in an iterative approach along

with the electronic minimisation. The ions are moved along the direction of

the force until the forces are below a tolerance using optimisation algorithms.

The stress of the cell is computed and the cell vectors are adjusted until the

stress is below a tolerance [29]. Further details regarding the optimisation

algorithms are provided in Sec. 2.6.

2.4 Classical Mechanics

Classical mechanics is based on Newtonian mechanics and describes the mo-

tion of atoms using a particle description. Newton first proposed the method

in the 17th century [37]. Improved reformulations and advancements such as

Lagrangian mechanics were made in the 19th century [38], shortly followed

by Hamiltonian mechanics.

The Hamiltonian, which often describes the total energy of a system, of a

classical system is similar to that of Eq. 2.2. The total energy is comprised of

the kinetic energy, T , and the potential energy, V . T is calculated using the

momentum of a particle, pi. V is calculated using a function which depends

on the positions, {ri}, and often other atomistic or system properties. Thus,

the Hamiltonian, H, which is equal to the total energy, E, is

H = T ({pi}) + V ({ri}), (2.26)

where i is the particle index; {pi} denotes the set of all momenta; and {ri}
denotes the set of all positions. The kinetic energy is given by

T ({pi}) =
N∑

i

p2
i

2mi

, (2.27)

where m is the mass of the particle [39]. The force on an atom is computed
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by

Fi = −∇iV ({ri}). (2.28)

The work done, W , to move an atom from point a to point b is

Wab =

∫ b

a

Fi dsi, (2.29)

where s is the displacement along from a to b [39].

2.4.1 Molecular Dynamics

The dynamics of a system are evolved in discrete time steps with the interac-

tion between the atoms being governed by interatomic potentials. Thus, the

trajectories of the atoms are obtained from evolving the equations of motion

with time. Dynamics is possible using forces obtained either from molecular

mechanics (MM) force fields or from quantum mechanical calculations.

To perform dynamics, Newton’s second law of motion is numerically in-

tegrated with respect to time to obtain the positions. The positions and

velocity can be obtained from the velocity Verlet algorithm [40]. An outline

of the method is detailed. The objective is to obtain the new positions of

the atoms from the forces that act upon them. Let rn be the positions at

step n, such that the time is tn = nh and rn = r(tn), where h is the time

step. The central difference formulas, obtained from Taylor expansions of

rn+1 and rn−1, allow for approximations to the velocity, ṙ, and acceleration,

r̈, which are

ṙn ≈
rn+1 − rn−1

2h
, (2.30)

r̈n ≈
rn+1 − 2rn + rn−1

h2
. (2.31)

Treating the approximation of r̈n as an equality and substituting Fn = mr̈n

gives the position of the atom in the next time step to first order as

rn+1 = 2rn − rn−1 + h2Fn
m

, (2.32)

which is the Verlet algorithm. The velocities, vn, to first order, can be
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obtained by treating ṙn as an equality, which is given by

vn =
rn+1 − rn−1

2h
. (2.33)

More accurate estimates of the velocity, compared to the Verlet equations,

can be obtained. Rearrangement and substitution of vn into rn+1, and the

velocity for the next time step, vn+1, can be shown to be [41]

rn+1 = rn + hvn +
h2

2

Fn
m

, (2.34)

vn+1 = vn +
h

2m
(Fn+1 + Fn). (2.35)

These are known as the velocity Verlet equations. The velocity Verlet equa-

tions provide a simple method to integrate the equations of motion. Due

to integration errors the energy of the system tends to diverge. Higher or-

der algorithms are good at conserving energy for a few time steps; however,

the energy drifts over long timescales. The energy over long timescales tend

to drift less in Verlet based algorithms [41]. Time reversibility of the Ver-

let based algorithm also consolidates the concept of energy conversation. A

true Hamiltonian based dynamical system will conserve the occupied volume

in phase space over time. A non-time reversible algorithm would result in

a change in this volume and thus a change in energy. The velocity Verlet

equations approaches the true volume conserving Hamiltonian in the limit of

h→ 0 [41]. Macroscopic thermodynamic properties can be determined if the

system obeys the ergodic hypotheses, which states that all microstates are

equally probable. Thus, the time averaged property in the limit of infinite

time will tend and equal to an ensemble average [41].

2.4.2 Interatomic Potentials

Interatomic potentials aim to capture the behaviour of an interacting sys-

tem of atoms. The potential typically incorporates various parameters that

need to be adjusted in order to best describe the system. These empirical

parameters are either fitted to the results of experimental data or ab ini-

tio calculations [42]. Therefore, interatomic potentials are approximations.

Depending on which parameters and reference configurations are used, they

can often describe certain properties more accurately than others.
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In MM the atoms are considered as a whole, such that the nucleus and

electrons are considered as one particle. The energy is related to the geo-

metry, which is modified as the atoms move from their equilibrium lengths

and angles. The description in which these atoms move is represented by

the interatomic potential, V . The potential can be decomposed into a com-

bination of n-body interactions, which can be written as

V ({ri}) =
∑

i

V1(ri) +
∑

i,j
i<j

V2(ri, rj) +
∑

i,j,k
i<j<k

V3(ri, rj, rk)

+ . . .+
∑

i,...,m
i<...<m

Vm(ri, . . . , rm) + . . . ,
(2.36)

where {ri} is the set of all positions; the r subscripts denote the atom index;

V1 is the one-body term which can describe an external force applied to the

system; V2 is the two-body term which can describe the interaction of an

atom pair at a distance; V3 is the three-body term and can include angle

dependency between atoms; and Vm is a many-body term, where m is the

number of atoms [43].

Interatomic potentials are atomic-species dependent and can be physical-

state dependent. Potentials are often fitted to experimental measurements

or more accurate QM-based energy calculations such as DFT. The compu-

tational cost of MM is significantly cheaper than say DFT. This makes MM

a desirable alternative to quantum mechanical simulations. As a result of

its cheaper computational cost, MM allows for simulations of much larger

length scales and timescales compared to QM. Potentials generally tend to-

wards zero at an infinite range. Thus in practice, potentials are truncated

in range to reduce computation cost, often referred to as the cutoff distance.

While potentials are made to be as generic as possible, they are limited

to the data they were fitted on. Thus, potentials are not simply transferable

to other systems which are beyond their design [44]. Therefore, care must

be taken when applying the potential to a previously untested system, such

as comparison of the potential with electronic-based calculations. While

configurational energies and quantitative values of material properties may

no longer be accurate, qualitative descriptions may still be possible.

Pair potentials, i.e. two-body potentials, are relatively simple and are

commonly a function of the separation length between atom pairs. An
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example of these potentials is the Lennard-Jones (LJ) potential. Bond

angles can be introduced to form two- and three-body potentials, such as

the Stillinger-Weber (SW) potential [42]. Bond order potentials attempt to

describe multiple bonding states of an atom, where the strength of a bond

is affected by the bonding environment. An example of this potential is the

Tersoff potential [45]. This potential includes a many-body interaction term

via the bond-order term.

These potentials typically consider first neighbour interactions, with their

bonding environment determined with a fixed interaction range. While the

potentials are able to describe properties near equilibrium, issues arise for

more complicated interactions such as bond breaking [46, 47]. This can

be improved upon by increasing the range of the potential and introducing

screening functions which screen the strength of an interaction if there are

other atoms within the interaction distance of a particular atom pair. An

example of a potential improved by addressing the screening effect is the

screened Tersoff potential [47].

2.4.3 Dynamics at Finite Temperature

Many real-world situations occur at a finite temperature such that the system

is at a temperature that matches its surroundings. In order to simulate a

system in thermal equilibrium a thermostat is required. This allows for

the system to exchange energy with a heat bath and once the system has

equilibrated it would allow for correct sampling of the canonical ensemble.

The Langevin thermostat was used here to moderate the temperature.

Newtonian molecular dynamics (MD) simulations conserve: total en-

ergy, E; number of particles, N ; and volume, V . These simulations are

ensemble averages in the microcanonical ensemble, or NVE ensemble. To

perform MD in different ensembles, two major methods are available; one

is to mix MD with Monte Carlo moves, and the other is to reformulate the

Lagrangian equations of motion [41]. Andersen first introduced a modified

Lagrangian method, which allowed constant pressure simulations [48]. Here,

constant temperature is required. A statistical view of constant temperature

is achieved by thermal contact of the system with a large heat bath. This is

the canonical ensemble, or the NVT ensemble [41].
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Langevin Dynamics

The Langevin model uses an addition friction term, γ, and random force, φ,

term to simulate the simple heat bath. Langevin dynamics is governed by

mr̈(t) = −∇V (r(t))− γmṙ(t) + φ(t), (2.37)

where −∇V (r(t)) is the original force term [49]. γ is also known as the col-

lection parameter, or damping constant. φ is a stationary Gaussian process

with a mean, 〈r(t)〉, and variance, 〈r(t)r(t′)T 〉, defined as

〈r(t)〉 = 0, (2.38)

〈r(t)r(t′)T 〉 = 2mγkBTMδ(t− t′), (2.39)

where kB is the Boltzmann constant, T is the target temperature, and δ is

the Dirac delta function [49]. The addition of the friction term dampens

the motion while the random force term ensures stochastic excitation to the

kinetic energy. These excitations are time-dependent, as well as uncorrelated

from each particle and each time step [50].

The Langevin model can be implemented via the Verlet algorithm [49],

which retains the benefits and simplicity of the Verlet algorithm while provid-

ing a description of the canonical ensemble. The trajectories from Langevin

dynamics can represent the canonical ensemble since the trajectories are er-

godic. A system is ergodic if the trajectory averages are the same as the

phase space averages on the energy surface [51].

2.5 Multiscale Mechanics

The scale of components in production run from tens of nanometres to tens

of metres. Current computational techniques, along with current computa-

tional power, limit the size of the problem addressable in design and testing,

as shown in Fig. 2.3. Therefore, the size of the problem in space and time

determines the level of accuracy achievable and vice versa.

Continuum models work on the basis of solving for displacement fields

subject to boundary conditions. Due to the complex stability of a fracture

system, such models need to also incorporate consideration of a path [14],

which relies on empirical data. This can be attributed to the lack of detail
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Figure 2.3: Physical descriptions with respect to the length scales and timescales
which are accessible via modelling techniques [11].

at the crack tip as the instabilities occur within this region. Without this

information the models lack accuracy and therefore provide only a qualit-

ative description [52]. Due to the discrete nature of materials, a discrete

representation is required to achieve better quantitative and qualitative de-

scriptions.

The use of MD relies on a system with many bodies as the interatomic

potentials that are used to describe the system describe the average inter-

action between atoms. While MD simulations rely on statistical techniques

to average over small fluctuations to produce properties of interest [41], the

details of crack propagation are located where the average description of in-

teratomic potential breaks down, i.e. outside of the harmonic regime. For

example the stress near a crack tip diverges, as shown in Fig. 2.4. MD sim-

ulations model the discrete nature of materials as opposed to a continuum

description used in continuum simulations; however, MD is still not able

to accurately describe the different chemical reactions near the crack tip.

Furthermore, MD is only applicable to small systems in comparison to the

system sizes available for continuum models. Attempts have been made

to produce an environment-dependent interatomic potential for silicon [53].

However, the increased complexity makes it computationally more expensive

to calculate and it has limited transferability beyond where it was fitted. Re-
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cent attempts have used machine learning techniques to produce a potential

for silicon which used DFT calculations as the training data. This approach

enabled computation of properties which would be relatively expensive with

first-principles methods [54].

Figure 2.4: Graphical representation of the maximum principal stress around a
crack tip of a system under uniaxial tension [55]. Yellow areas are the most stressed
and black areas are the least stressed.

Fracture simulations can benefit from the use of QM. However, the com-

putational costs associated with approximate QM solutions, such as DFT,

are high. This limits simulations times to the order of picoseconds and sys-

tem sizes to the order of hundreds of atoms.

Hybrid methods, or multiscale methods, combine different modelling

techniques to capture features at different scales, which would otherwise

not be feasible with the use of a single scale method. Typically, a finer

scale model is combined with a coarser scale model. The finer scale model

allows for detail to be retained and captured at the points of interest, and

the coarser scale model is used in the remaining areas where a less detailed

method is sufficient for capturing the other features. Some examples of

combinations of multiscale techniques include quantum-molecular [55] and

molecular-continuum [56]. This allows for larger scale simulations for a re-

duced computational cost compared to the same simulation with the use of

only the higher accuracy method. In practice, it enables a simulation of

much larger length scales than what would be possible for high accuracy

single scale methods.

In general, there are two systematic methods for multiscale modelling,

and they are simultaneous modelling and hierarchical modelling. Simultan-

eous modelling requires the use of models at different length scales coupled
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in real time. Typically, forces and displacements are computed on-the-fly

to link the scales. For example, atomic motion computed within a quantum

mechanical region is compatible with the atomic motion computed in the mo-

lecular mechanical region. Thus, information regarding the dynamics of the

system can be obtained [55]. In hierarchical modelling the finer scale model

is used to parametrise the coarser scale model and vice versa [57]. This can

be achieved in different ways. For example, information can be passed from

microscale models to macroscales models to take microscale phenomena and

observe macroscale behaviour [58, 59]. Information can also be passed in the

opposite direction, for example coarse gains models can help generate finer

scale models to improve accuracy within domains where more detail is re-

quired [60] or where the result exceeds an error threshold [61]. The atomistic

fracture simulations performed here can somewhat be considered as part of a

hierarchical model as they use continuum fracture theory to set the bound-

ary region for the atomistic domain, and thus information obtained from

the simulation could be mapped into a continuum model. Multiscale mod-

elling is key for crack defects as the chemistry near the crack tip requires a

quantum level of precision with a system that is large enough to model the

dynamics of a crack tip across the material for a significant time [62–65].

Several issues arise when coupling modelling techniques of two different

length scales [11, 66]. In the process of changing length scales, information

can be lost and the underlying physical descriptions changes, which reduces

the accuracy of the calculation. The need to quantify this loss becomes in-

creasingly important in order to validate the calculation. Fluctuations and

uncertainties can naturally occur in the systems modelled with one tech-

nique. The combination of two techniques introduces further errors. The

uncertainty of a calculation can arise from various sources. During a sim-

ulation, model uncertainty and input uncertainty are inherent. Model un-

certainty is the inadequacy to capture the true underlying physics, whether

that is due to approximations in the physics or due to natural random fluc-

tuations. Input uncertainty is the lack of available knowledge regarding the

precise details of every degree of freedom. Computer simulations also suffer

from numerical errors, for example: the truncation of an infinite series, the

discretisation of continuous functions, and the floating point representation

of real numbers [67].
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2.6 Geometry Optimisation

The energy minimisation of the positions as well as optimisation of the size

and shape of the encompassing cell were performed using a few different

methods.

Various optimisations methods exist. Methods such as damped MD [68]

and fast inertial relaxation engine (FIRE) modify the equations of mo-

tion. Another class of optimisation methods, often referred to as descent

methods, include methods such as steepest-descent, conjugate gradient and

Newton’s method [69]. Here, geometry optimisations were performed with,

FIRE, Broyden–Fletcher–Goldfarb–Shanno (BFGS), limited-memory Broy-

den–Fletcher–Goldfarb–Shanno (LBFGS), and the Interior-Point Primal-

Dual Newton method; an overview of the methods are detailed.

2.6.1 Steepest Decent Method

The objective of optimisation algorithms are to find the solutions to, or

minimise, a function f(x). The solutions to f are of the form f(x∗) = 0,

where x∗ is a solution. The line search method is an algorithm that for

each iteration it moves along x with direction p to find a new x with a

corresponding lower function value. An iteration of a line search method is

given by

xk+1 = xk + αkpk, (2.40)

where αk is the step length, pk is the search direction, and k is the current

iterate [70].

The steepest decent method, or gradient descent method, is conceptually

a relatively simple optimisation algorithm. The search direction is given by

pk = −∇fk, (2.41)

where ∇fk is the gradient of fk. The descent direction of −∇fk is an in-

tuitive direction to move in as it is the one along f which decreases most

rapidly. While this is intuitive, the direction can lead to a slow rate of

convergence [70].
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2.6.2 Fast Inertial Relaxation Engine Method

FIRE is based on the idea of letting inertia decide the direction in which to

descend [71]. It follows a modified Newton’s equation of motion of the form

ma(t) = F (t)−mγ(t)|v(t)|
[
v̂(t)− F̂ (t)

]
, (2.42)

where the hat denotes a unit vector. In particular, the descent is governed

by γ which modifies the acceleration towards a direction that is steeper

downhill, as long as the power, P (t) = F (t) · v(t), is positive. A similar

algorithm used in the Verlet formulation is used to find the minimum. FIRE

performs better than the conjugate gradient method, and similar to LBFGS,

for some problems [71].

2.6.3 Broyden–Fletcher–Goldfarb–Shanno Method

The BFGS method is rooted in Newton’s method for optimisation; specific-

ally, it is referred to as a quasi-Newton method as it only requires the gradient

of the objective function for each step [70]. The objective is to minimise a

function, f(x). Newton’s method for optimisation, is an iterative scheme

that uses

xk+1 = xk − αH−1
k ∇fk (2.43)

to find the minimum, where H is the Hessian, α is step length, and when

α = 1 it forms the Newton scheme. The path search direction, pk, is

pk = −H−1
k ∇fk. (2.44)

Let H−1
k = Bk. The BFGS method approximates the next Hessian by ac-

counting for the curvature measured during the most recent step.

The Hessian at the next iteration is approximated by

Bk+1 = (I − ρkskyTk )Bk(I − ρkyksTk ) + ρksks
T
k , (2.45)
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where

sk = xk+1 − xk, (2.46)

yk = ∇fk+1 −∇fk, (2.47)

ρk =
1

yTk sk
, (2.48)

and I is the identity matrix [70]. The first approximation, B0, is computed

by whichever means, such as finite differences or simply set to be the identity

matrix. An overview of each iteration is detailed. First B0 is computed, to

then compute p0 in Eq. 2.44. Then it is possible to compute x1 using Eq. 2.43.

The x0 and x1 are then used to compute s0, y0, and thus ρ0 of Eqs. 2.46 to

2.48. These are fed into the approximation of the Hessian B1 using Eq. 2.45.

Then the next search direction, p1 can be calculated using Eq. 2.44. The

iteration is repeated until converged.

The steepest decent method is simply Eq. 2.43 without the Hessian, i.e.

xk+1 = xk−α∇fk. The BFGS method performs better than steepest decent

methods and is also known to have effective self-correcting properties if the

Wolfe line search conditions are met [70].

2.6.4 Limited-Memory

Broyden–Fletcher–Goldfarb–Shanno Method

For large scale simulations, where the Hessian of the BFGS method can not

be reasonably computed, the LBFGS method can be used. This memory

efficient method only stores m number of vectors of length n to represent

the full Hessian of n × n, instead of storing the entire Hessian. Only the

most recent information regarding the curvature of the previous iterations

are stored, information from earlier iterations are discarded [70].

Let Vk = I−ρkyksTk . In the LBFGS implementation Bk relies on the fact
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that Bk can be further estimated via

Bk = (V T
k−1 · · ·V T

k−m)B0
k(Vk−m · · ·Vk−1)

+ ρk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(Vk−m+1 · · ·Vk−1)

+ ρk−m+1(V T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1,

(2.49)

where H0
k is the initial matrix and it is allowed to vary between each iteration.

In practice, a recursive algorithm is used to directly compute the product

Bk∇fk, which is used to compute the path direction, pk. The iterative

algorithm similar to the BFGS method is used. The LBFGS method tends

to be less robust for small m, though m is dependent on the system [70].

2.6.5 Interior-Point Primal-Dual Newton Method

The aim is to minimise the energy of the system with constraints, e.g. such

that certain separation distances between particular atoms are held to a

prescribed length, particularly the pair(s) of atoms directly ahead of the

crack tip.

Here, the interior-point primal-dual Newton method for nonlinear op-

timisation is used [70]. An outline of the method and its iteration step is

described.

A general form of a nonlinear minimisation problem is

minimise f(x) (2.50)

subject to gi(x) 6 or > 0 for i ∈ {1, . . . ,m}, (2.51)

hj(x) = 0 for j ∈ {1, . . . , p}, (2.52)

where f(x) is the objective function to minimise, gi(x) are known as the

inequality constraints, hj(x) are the equality constraints, with a total of m

inequality constraints, and and with a total of p equality constraints.

For a constraint to be within a particular tolerance an inequality con-

straint is used, compared to a constraint with an exact value for which an

equality constraint would be used. For simplicity, the inequality constraints

can be made into equality constraints through use of slack variables, s, such
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that c(x) 6 or > 0 becomes c(x)− s = 0, with s > 0. The objective func-

tion can be modified to use a logarithmic barrier function, which removes

the requirement for s > 0 as the barrier term prevents s from reaching zero

or even being too close to zero.

The nonlinear minimisation problem is now of the form

minimise f(x)− µ
m∑

i=1

log si (2.53)

subject to ci(x)− si = 0 for i ∈ {1, . . . ,m}, (2.54)

where µ is the barrier coefficient, ci(x)− si are the new constraint functions,

and si are the individual components of s. Define a Lagrangian function of

the above problem as

L(x, λ) = f(x)− µ
m∑

i=1

log si − λ
(
c(x)− s

)
, (2.55)

where λ is the Lagrange multiplier.

For a solution (x∗, λ∗) to be a local optimum, the solution must satisfy

the Karush–Kuhn–Tucker (KKT) conditions [70] which are:

stationarity: ∇xL(x∗, λ∗) = 0, (2.56)

primal feasibility: ci(x
∗) 6 0 for i ∈ {1, . . . ,m}, (2.57)

dual feasibility: λi > 0 for i ∈ {1, . . . ,m}, (2.58)

complementary slackness: λ∗i ci(x
∗) = 0 for i ∈ {1, . . . ,m}, (2.59)

where stationarity refers to the stationarity point of the problem in x;

primal feasibility is the condition to meet to solve the primal problem, i.e.

the original optimisation problem subject to the constraints, Eq. 2.53 and

Eq. 2.54 respectively; dual feasibility is the condition to meet to solve the

dual problem, which are Eq. 2.56 and Eq. 2.58, formulated through formation

of the Lagrangian and the Lagrange multiplier λ [72]; and complementary

slackness refers to the slack available between the primal constraint, ci, and

the dual constraint, λi, such that one is active and the other is zero or both

are zero [70, 72].

The derivatives of the Lagrangian at the optimum point are zero, and
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they are written as

∇x =∇f(x)− A(x)λ = 0, (2.60)

∇s = −µS−1e+ λ = 0, (2.61)

∇λ = c(x)− s = 0, (2.62)

where A(x) is the Jacobian matrix of the constraint function, with Aij =

∂ci/∂xj; S is a diagonal matrix whose diagonal entries are the components

of s; and let e = (1, ..., 1)T which has a length equal to the number of

constraints.

The roots of the Lagrangian are calculated by the iterative approach of

Newton’s method. For a twice differentiable function, f(x), to find the roots,

∇f(x∗) = 0, each step of the iteration is of the form

xn+1 = xn −∇2f−1(xn)∇f(xn), (2.63)

where ∇2f(xn) is the Hessian matrix of xn. Computing the inverse of the

Hessian is a computational expensive operation. A less intensive method is

to compute ∆x = xn+1 − xn, by solving the linear system

∇2f(xn)∆x = −∇f(xn). (2.64)

Thus for the nonlinear system, in Eqs. 2.60 to 2.62, applying Newton’s

method leads to



∇xxL 0 −AT (x)

0 Ω −I
A(x) I 0






px

ps

pλ


 = −



∇f(x)− AT (x)λ

−µS−1e+ λ

c(x)− s


 (2.65)

where p is the step direction, I is the identity matrix, Ω = S−1Λ, and Λ is a

diagonal matrix whose diagonal entries are the components of λ. The points

of the next step can then be calculated using

xn+1 = x+ αmax
s px, (2.66)

sn+1 = s+ αmax
s ps, (2.67)

λn+1 = λ+ αmax
λ pλ, (2.68)
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where

αmax
s = max{α ∈ (0, 1] : s + αps > (1− τ)s }, (2.69)

αmax
λ = max{α ∈ (0, 1] : λ+ αpλ > (1− τ)λ}, (2.70)

where τ ∈ (0, 1). The formulae for α are called the fraction to the boundary

rule [70].

Newton’s method on the Lagrangian forms the basis of the interior-point

primal-dual Newton method. Further information on this method can be

found in Numerical Optimization [70]. The implementation of this method

used here is via the Optim package [73].

2.7 Surface Energy

The surface energy, γ, is the amount of energy required to build, or cut, a

surface from a bulk material per unit area. It is the energy required to break

the intermolecular bonds between atoms. This makes surfaces intrinsically

less energetically favourable, and thus an input of energy from an external

force is required for them to be created. The surface energy of a material

is quoted as if it was situated in a vacuum. A surface can oxidise or react

with the air, causing the energy to change via the addition of extra atoms

or subtraction of existing atoms. These surface energies are altered via the

processes of passivation or adsorption. Surface atoms can also positionally

rearrange, which alters the bonding between the atoms. This is known as

surface reconstruction.

For a particular surface of a crystalline solid, the surface energy can be

calculated by comparing the energies of the bulk material and a slab of the

material, in which the slab of material exposes that particular surface. Ex-

amples of the systems used are shown in Fig. 2.5. The bulk cell is generated

by replicating the unit cell of the crystal. It is possible to compare systems

with different number of atoms. The energy of the bulk would need to be

scaled by the number of atoms in the bulk and the number of atoms in the

slab system, to give an energy per atom comparison. The atomic and cell’s

degrees of freedom undergo a geometry optimisation. To generate the slab

system, the bulk system is duplicated and a vacuum is added in one direc-

tion on either side of the material. Periodic computational cells are used to
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(a) (b)

Figure 2.5: For a particular surface of a crystalline solid, the surface energy can
be calculated by comparing the energies of the a) bulk and b) slab systems, in
which the slab system exposes that particular surface. The atoms of that surface
are highlighted in blue. The box surrounding the atoms is the computational cell.
For b) the box extends well away from the surfaces to implement a vacuum.

simulate larger systems. Due to the slab system having a vacuum along one

direction, the size of the vacuum should be sufficient to avoid interactions

with surfaces in the periodic cells.

The surface energy, γ, is calculated using

γ =
Eslab − Ebulk

2A
(2.71)

where A is the exposed surface area, Ebulk is the energy of the bulk system

and Eslab is the energy of the slab system.

2.8 Linear Elasticity

The theory of elasticity describes the relationship between the displacements,

strains, and stresses of a material; it links deformations to applied loads and

internal forces, and vice versa. Note that tensor notation [74] is used within

this section.

Stresses represent the internal resistance due to external forces. Strains

represent the change in the material’s dimensions compared to its original

length [75].
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Figure 2.6: Schematic of a stress-strain curve. Some materials will undergo a
linear elastic deformation phase and then undergo a plastic deformation phase.
Brittle materials break near the elastic/plastic region and experience little to no
plastic deformation.

For small stresses a material can be considered as elastic, such that it can

restore itself to its original state if the external force is no longer applied.

In this regime, if the relationship between stress and strain is linear it is

known as linear elasticity. For large stresses the material can undergo plastic

deformation, i.e. irreversible deformation, and then fracture; this relationship

is non-linear. For brittle materials there is little to no plastic deformation

and the material fractures beyond a certain stress. A typical stress-strain

curve is shown in Fig. 2.6, with the different regimes labelled.

A force, ∆F , acting on an area, ∆A, can be related as the traction vector,

T , which is defined as

lim
∆An→0

∆Fn
∆An

=
dFn
dAn

= Tn, (2.72)

where n is the unit normal to the area segment ∆An. Tn is also known as

the stress vector [76]. The traction in terms of Cartesian components is

Ti = σijej, (2.73)

where ej is the unit normal, σij is the stress component of the Cauchy stress

tensor. The first subscript i denotes the face on which Ti acts and the second

subscript j denotes the direction in which the stress acts. The strain tensor

32



in Cartesian components, εij, is

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.74)

where u are the displacements.

For a material at constant temperature and gradual loading within the

linear elastic regime, stresses and strains are related by the generalised

Hooke’s law given by

σ = Cε, (2.75)

where σ is the stress tensor, ε is the strain tensor, and C is the elastic

constants tensor [76]. Each component can be written as

σij = Cijklεkl. (2.76)

The strain and stress tensors are second-order tensors of nine components

each, which allows it to represent the complex possible states a material

can undergo, such as compression, stretching, and shearing, in all directions.

The stress tensor and the strain tensor are related by the elastic constant

tensor, a fourth-order tensor. Due to the symmetry of C and a continuous

strain energy density [76], the number of components can be reduced, from

81 components to 36 components, comprised of 21 independent components,

leading to




σ11

σ22

σ33

σ23

σ13

σ12




=




C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

C1212







ε11

ε22

ε33

2ε23

2ε13

2ε12




. (2.77)

The indices of σ and ε are written in Voigt notation order, i.e. Voigt notation

without the reduction of indices [74].

A material under tensile strain in one direction will compress in the other

directions. This phenomenon is the Poisson effect. The ratio of a strain in

an axial direction and a strain in the transversal direction is the Poisson’s
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ratio, given by

νij = −εjj
εii

, (2.78)

where i and j can be any direction. In other words, for an applied strain in i

there is a response in j. Under an applied stress the material naturally resists

deformation. For a uniaxial stress the Young’s modulus, E, is a measure of

this stiffness, defined by

Ei =
σii
εii

, (2.79)

where i can be any direction [76].

2.9 Brittle Fracture

Many causes can lead to the failure of a material. Fracture is one of the

fundamental mechanisms through which a material responds as a result of

stress on the system. Fracture mechanisms are extremely complicated, with

many considerations to account for when modelling. The initiation of frac-

ture is less amenable to systematic analysis. On the other hand, systematic

study of fracture propagation is possible [14]. Here, only properties of brittle

fracture propagation are examined.

Fracture is fundamentally driven by long range stress fields with com-

plex electronic interactions occurring near the crack tip. Brittle fracture has

its foundations in continuum techniques. Recent advancements have pro-

gressed fracture methods to the atomistic scale in order to include electronic

considerations of the bonds and atoms around the crack tip.

Continuum fracture theory was predominantly progressed by Inglis, Grif-

fith and Irwin: Inglis showed that near an elliptical cavity the local stress

can rise to levels much higher than the applied stress; Griffith considered the

system with reversible thermodynamical processes; and Irwin formulated the

solutions for the stress and the displacements fields [6, 14].

2.9.1 Griffith Thermodynamic Energy Balance

The energy balance of a crack system allows the comparison between the

energy released and the energy required to generate surfaces.

Griffith first modelled a continuum static crack as a reversible thermody-

namical system. This was instrumental in understanding crack propagation.
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The concept was that a crack system is always in a state which minimises

the total energy, i.e. in equilibrium, and thus on the verge of extension. The

formulation considers the components of energy which change during crack

extension.

The total energy of the system, U , can be considered as a combination

of mechanical, UM, and surface, US, terms, such that

U = UM + US. (2.80)

The mechanical term can be further broken down into the potential energy

of the applied load, UA, and the stored elastic potential energy in the system,

UE. US is the free energy expended in creating new surfaces. The equilibrium

condition is such that
dU

dC
= 0, (2.81)

where C is the crack interfacial area [14]. This implies that a small devi-

ation from equilibrium would result in extension or retraction of the crack.

Mechanical energy, UM, decreases as crack extends, i.e. dUM

dC
< 0, while the

surface energy contribution, US, increases as crack extends, i.e. dUS

dC
> 0.

The mechanical term favours crack extension, while the surface energy term

resists crack extension.

The mechanical energy release rate, G, is defined to be

G = −dUM

dC
, (2.82)

i.e. the loss of mechanical energy per unit area [14]. For a simple, straight

crack the area can be simplified to a single dimension representing the crack

extension, c. It can also be shown that the change in mechanical energy is

independent of the loading configuration, and so UM only depends on UE.

Thus, G can be considered as the strain energy release rate per unit crack

length, given by

G = −∂UE

∂c
. (2.83)

The intrinsic work per unit area to separate the inter-surface forces, R0, is

R0 = +
dUS

dC
. (2.84)

Similarly as with G, C can be reduced to c. Durpé showed that the work
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Figure 2.7: The three modes of fracture: a) mode I, opening mode; b) mode II,
sliding mode; and c) mode III, tearing mode [14].

performed is twice the surface energy, given by

R0 = 2γ, (2.85)

where γ is the surface energy. This is similar to Griffith’s intrinsic surface

energy [14]. Thus, the equilibrium condition for energy balance of a crack

extension can be rewritten as

dU

dC
=

dUM

dC
+

dUs

dC
, (2.86)

0 = −Gc +R0, (2.87)

Gc = 2γ, (2.88)

where Gc is the critical mechanical energy release rate [14]. As such, for

G < Gc the crack retracts and for G > Gc the crack extends.

2.9.2 Stress Intensity Factor

The stress intensity factor, K, encapsulates the magnitude of the stress

within a system due to an applied load.

There are three modes of displacement that further extend fracture sur-

faces: mode I, opening mode, where the load is applied on either side of the

crack, away from the crack; mode II, sliding mode, where the load is applied
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Figure 2.8: Schematic of Irwin’s infinitesimal narrow slit crack geometry, with the
stress, σ, components shown at position (r, θ) relative to the crack tip [14].

in opposite directions above and below the crack, with one in the direction

of crack extension; and mode III, tearing mode, where the load is applied in

opposite directions above and below the crack, perpendicular to the crack

direction on the crack plane [14]. Schematics of the three modes are shown

in Fig. 2.7.

For an infinitesimally narrow slit crack geometry, shown in Fig. 2.8, Irwin

derived solutions for displacement and stress fields from principles of linear

elasticity. The stress and displacement fields can be written as

σij =
K√
2πr

fij(θ), (2.89)

ui =
K

2E

√
r

2π
fi(θ), (2.90)

where σ are the Cauchy stresses, r is the distance from the crack tip, θ is the

angle with respect to the crack plane, and fij are functions which depend on

the type of mode loading and the geometry [14]. The stress intensity factor

captures the applied loading, while the other term is dependent on relative

spatial coordinates. The
√
r term in Irwin’s solutions implies that there is a

singularity at the crack tip, as the initial geometry requires an infinitesimally

small, and thus perfectly sharp, crack tip. To avoid this, and to match the

boundary conditions, higher order terms are required. As such, the stress

field does not necessarily hold for small or large r [14]. The sharp stress field
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near the crack tip can be mitigated through non-linear or inelastic behaviour

around the crack tip. The solutions still maintain an adequate description

provided the inelastic region is small compared to the length scales of the

system and crack length.

The fracture toughness, Kc, is the critical stress intensity factor for which

the crack propagates [14]. The Irwin fracture criterion is that for K > Kc

the crack advances and for K < Kc the crack retreats.

By considering infinitesimal crack extension, Irwin showed that the in-

tegration of the strain energy release per unit crack extension can be shown

to relate K and G as

G =
K2

I

E ′
+
K2

II

E ′
+
K2

III(1 + ν)

E
, (2.91)

where E ′ is the effective Young’s modulus [14]. Throughout this work only

mode I cracks were investigated, so there are no loads applied to form mode

II and mode III cracks. So KI will now simply be K and G can be simplified

to

G =
K2

E ′
. (2.92)

The effective Young’s modulus is different depending on the thickness of the

system. For a thick plate plane strain applies, and for a thin plate plane

stress applies. The effective Young’s modulus is given by

E ′ =




E (1− ν2)

−1
plane strain,

E plane stress,
(2.93)

where ν is the Poisson’s ratio [14].

Thus, the critical stress intensity factor can be related to the surface

energy of the material as

Kc =
√
GcE ′, (2.94)

=
√

2γE ′. (2.95)

This is particular useful as Kc can be estimated from the surface energy of

a material, without any actual fracture simulations.
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2.9.3 Mode I Fracture

Mode I fracture for the plain strain case was analysed throughout this work.

Consider a geometry where the length in one dimension, z, is much greater

than the other two dimensions, x and y, then an approximation to the strain

tensor is

ε =



ε11 ε12 0

ε21 ε22 0

0 0 0


 . (2.96)

The components ε31, ε32, and ε33, of the longer dimension are constrained

by the nearby material and so are negligible compared to the cross-sectional

strains in the other dimensions. Eq. 2.96 is considered as a plane strain

tensor. For 2D materials, the z direction does not exist, and so there is no

response in that direction. Thus, the plane strain case still applies.

The displacement solutions for a mode I system are

u =

[
ux

uy

]
=

K

2E

( r

2π

) 1
2

(1 + ν)

[
(2κ− 1) cos

(
θ
2

)
− cos

(
3θ
2

)

(2κ+ 1) sin
(
θ
2

)
− sin

(
3θ
2

)
]

, (2.97)

where κ = 3 − 4ν and applies for plane strain situations, K is the stress

intensity factor, E is the Young’s Modulus, r is the radial distance from the

crack tip, ν is Poisson’s ratio, and θ is the angle from measured from the

normal vector of the crack front plane [14]. These displacements will often

be referred to as the continuum linear elastic (CLE) displacements.

2.10 Materials

Fracture can occur in a vast number of different materials. The composition,

manufacturing process, and environmental conditions all effect the structure,

and thus affect the way it fractures. To gain a deeper understanding into

the process, atomistic modelling of fracture was explored here with relatively

simple and pristine materials.

2.10.1 Crystals

A crystalline solid is a solid with an ordered arrangement of atoms which have

translational symmetry. Crystals are categorised into 14 Bravais lattices,
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Figure 2.9: A diamond-structured carbon slab with exposed (111) surfaces. The
box surrounding the atoms is the computational cell. The box extends well away
from the surfaces to implement a vacuum.

which are 14 groups based on their symmetry. Crystallographic planes are

noted using the Miller indices, with [hkl] for directions and (hkl) for surfaces.

For the case of hexagonal structures, the Bravais-Miller notation is used, with

[hkil] for directions and (hkil) for surfaces [30].

A Fourier transform of the Bravais lattice leads to a reciprocal lattice.

This allows for study of the lattice through momentum space, i.e. momentum

vectors of particles which correspond to its motion. The reciprocal lattice is

divided into Brillouin zones ; the first Brillouin zone is a Wigner–Seitz cell,

i.e. primitive cell, of the reciprocal lattice [77].

2.10.2 Carbon

Carbon is one of Earth’s most abundant elements [78]. There are many

allotropes of carbon, one of which is diamond. Naturally occurring diamond-

structured carbon is formed under intense heat and pressure. These days,

diamonds can be grown in a few different ways in laboratory conditions and

at commercial scales [79]. Diamond is known to have the highest hardness of

any natural material. This, coupled with a good thermal conductivity, makes

diamond a popular material for cutting tools, coatings, and polishing. At

the same time, diamond is brittle, and thus sensitive to flaws, such as defects

or microstructural variations [13]. In this work, the atomistic properties of

fracture in diamond-structured carbon were investigated.

In particular, fracture systems which were open along the (111) plane
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Figure 2.10: Unit cell of the SiC polytype 6H. The hexagonal Bravais lattice is
approximately 3.08 Å×3.08 Å×15.12 Å. The carbon and silicon atoms are coloured
grey and beige respectively.

were investigated. A slab system with exposed (111) surfaces is shown in

Fig. 2.9. For the MM based calculations, the Tersoff screened potential

was used to model diamond-structured carbon, as it has been shown to be

accurate compared to DFT and experimental results [47]. For the DFT

based calculations, the Perdew–Burke–Ernzerhof (PBE) parametrisation of

the GGA to the exchange correlation functional was used [80], along with the

standard set of ultrasoft pseudopotentials distributed with CASTEP [36].

2.10.3 Silicon Carbide

Ceramics often have a wide range of useful properties which enables them

to be used in variety of applications. Ceramics can also be used with com-

mon materials to enhance their properties, such as carbon-based ceramics

which are used in commercial steel to improve hardening and wear resistance,

though at the cost of increased brittleness [12].

SiC is already used in cutting tools, heat exchangers, engine parts, and

has potential use in high temperature electronics. A major issue with SiC is

that is it extremely brittle and can break during installation [12, 81].

In particular, fracture systems of the SiC 6H polytype, which were open

along the (0001) plane, were investigated. The SiC 6H unit cell is shown in

Fig. 2.10. For the MM based calculations the Tersoff screened potential was

used, as it has been shown to be accurate for modelling the equivalent 3C

polytype [47]. For the DFT based calculations, the LDA and PBE paramet-

risation of the GGA to the exchange correlation functional were used [80],

along with the standard set of ultrasoft pseudopotentials distributed with

CASTEP [36].
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Figure 2.11: Visualisation of a 2D hexagonal lattice with triangular tessellation,
with an equilibrium bond length of 1 Å.

2.10.4 Two Dimensional Hexagonal Lattice

A 2D hexagonal lattice with triangular tessellation was used as a simplified

material to test methods shown in this work. The model follows the work

of M. Marder [82]. The motion of the atoms were restricted to the x − y

plane. The lattice had an equilibrium bond length of 1 Å. A visualisation of

the lattice is shown in Fig. 2.11. Throughout this work, this lattice will be

simply referred to as a 2D hexagonal lattice.

For the MM based calculations three potentials were used, an ideal brittle

solid (IBS), a linearised ideal brittle solid (L-IBS), and a LJ potential. The

IBS potential produces a brittle response, the L-IBS projects any rotational

forces back onto the vector of the atom pair. The LJ potential is a simple two

body potential with a long range attractive term and a short range repulsive

term [83], which also gives a brittle response. These potentials are described

in more detail in Sec. 2.11.

The edge energy of this material was computed similarly to that of the

surface energy for three dimensional (3D) materials, as described in Sec. 2.7.

The energies of the bulk and slab systems are divided over a line segment

forming a line energy, or edge energy. In this work, to compute the surface

energy of this material the computational cells are given a nominal depth of

10 Å. This is to ensure the property maintains the appropriate dimensions

for it to be simply used within other equations. In the context of this work,

the surface energy for the 2D material will refer to the edge energy over a

nominal depth.
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2.11 Simple Potentials

In MM, potentials are used to govern the behaviour in which atoms interact.

The basis of the potentials used here describe the relationship between the

potential energy and the separation between a pair of atoms. In this work,

three potentials were used model to the 2D hexagonal lattice.

First, the IBS potential, which is formulated from Hooke’s Law, is given

by

VIBS(r) =





1
2
κ(r − a)2 for r < rc,

0 for r > rc,
(2.98)

where κ is the spring constant, a is the characteristic bond length, r is the

separation distance between a pair of atoms, and rc is the cutoff distance [82].

The parabolic potential is modified to have a potential energy of zero for

distances greater than the cutoff distance. This potential describes a simple

model where the atoms break sharply once the separation of a pair of atoms

is greater than the cutoff distance. However, this model is non-physical due

to the discontinuous change in the potential, and similarly the force, at the

cutoff distance. The force is also singular at the cutoff distance. Throughout

this work this potential was defined to have κ = 1.0 eV Å
−2

, and a = 1.0 Å,

where a is the equilibrium bond length for the 2D hexagonal lattice.

While the force response is linear with respect to r, any force component

not directly along the bond direction will introduce rotation and thus some

non-linearity. The L-IBS potential projects those forces back onto the bond

direction, and is given as

VL-IBS(pi, pj) =





1
2
κ
[
(uj − ui) ·

(
xj−xi
a

)]2

for ‖pj − pi‖ < rc,

0 for ‖pj − pi‖ > rc,
(2.99)

where x are the crystal positions; u are the fracture displacements; p =

x + u are the positions of the atoms; i and j denote atom indices; a is

the characteristic bond; and ‖pj − pi‖ is the separation distance between

a pair of atoms. Throughout this work this potential was defined to have

κ = 1.0 eV Å
−2

, and a = 1.0 Å, where a is the equilibrium bond length for

the 2D hexagonal lattice.
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Figure 2.12: a) Potential energy and b) force of the LJ potential of varying cutoff
distances with respect to the separation distance of a two atom system.

The LJ potential captures the smooth, continuous potential energy change

when breaking a bond, as well as the repulsion of an interaction. The po-

tential is given as

VLJ(r) =





4α

[(
β
r

)12

−
(
β
r

)6
]

for r < rc,

0 for r > rc,

(2.100)

where r is the separation distance between a pair of atoms, β is a length

scale parameter, and α is the depth of the well, such that at a distance of 2
1
6

the potential energy is equal to −α. The r−12 term encapsulates repulsions

at short ranges mimicking the Pauli exclusion principle, and the r−6 term

describes the attractive forces, i.e. van der Waals forces.

The potential was modified to achieve zero energy at the cutoff distance,

rc. The functional form of the potential between the equilibrium length of

1.0 Å and the cutoff distance was modified with a fifth order polynomial. This

altered the gradient of the slope at the tail end of the potential, resulting

in a difference in stiffness depending on the cutoff distance. In particular,

a piecewise quintic regular polynomial was used. The high order of the
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potential allows enough degrees of freedom to ensure: that the values of

minimum point and cutoff point are satisfied; that the first gradient, i.e.

the force, is smooth; and that the second gradient, i.e. the gradient of the

force, is smooth. Throughout this work this potential was defined to have

α = 0.01 eV and β = rc/2
(1/6), where rc has units of Å. A possible range of

cutoff distances are shown in Fig. 2.12.

Practically, a cutoff distance should be chosen to reduce the computa-

tional expense of computing the energies for atoms at large distances, where

the contribution to the overall potential energy is essentially zero.

Specific formulations of potentials are often categorised by the distance

at which the potential energies of neighbouring atoms contribute to the po-

tential energy of a single atom. Increasing the distance often increases the

complexity of a potential as more atoms are able to influence surround-

ing atoms. For open fracture surfaces, the main considerations are surface

reconstructions and interaction with the opposing surface. Thus, an in-

creasing interaction distance increases the complexity of the model. Further

considerations and complexities beyond a pair potential could include angle

dependency, such as the SW potential [42].

The hexagonal lattice has an equilibrium bond length of 1.0 Å, and thus a

cutoff distance of 1.2 Å would be sufficient to include first nearest neighbour

interactions and exclude any second nearest neighbour interactions. This

was done to limit the open surface interactions, produce a brittle response,

and keep to a simplified model to show a proof of concept of the schemes

introduced later.

The LJ potential appears to be smooth for different cutoffs, as shown

in Fig. 2.12. However, analysis of how the potential changes with different

choices of cutoffs shows a non-smooth functional form of the forces. The

forces of the potential reveal the tight curvature needed to meet a cutoff of

1.2 Å, whereas longer cutoffs have smoother curvature, as shown in Fig. 2.12.

Taking the derivatives of the forces reveal even rougher behaviour at

shorter cutoffs compared to higher cutoff distances. The first and second

gradient of the force at cutoff distances of rc = 1.2 Å, 1.4 Å, and 2.0 Å are

shown in Fig. 2.13.

The gradients display that unexpected behaviour can arise due to a short

cutoff. Simulations ran using rc = 1.2 Å resulted in non-typical and incon-

sistent behaviour particularly during bond breaking processes. Ultimately,
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a cut off distance of 1.4 Å was used, as a compromise to only include first

nearest neighbours while achieving a relatively smooth gradient of the force.

For reference, the second neighbour distance in the 2D hexagonal lattice is

approximately 1.7 Å.

Short range, first nearest neighbour potentials can be problematic. While

a continuous and smooth profile of the potential energy will lead to a con-

tinuous force profile, it does not guarantee that the profile of the forces are

sensible in the context of forces felt on an atom pair. Particular care must

be taken when generating and using short range potentials.

2.12 Force Locality

Theoretical potentials have infinite range. In practice, they are truncated

because beyond a certain distance the magnitude of the effects are small

and can be ignored. In the ab initio formulation the electron density is

conceptually computed such that every particle is aware of the other. At 0 K
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a perturbation of one atom could be felt at some distance away. At a finite

temperature the stochastic process of the movement of atoms blurs the effect

of the force, and as a result shortens the distance at which an atom would

feel the perturbation of another atom. Analysis on how a system responds to

a small perturbation is key to understanding how properties and parameters

may be affected and, more importantly, at what range these affects extend

to.

The range of effects of the force on two materials, the 6H polytype of SiC

and diamond-structured carbon, were tested. Configurations were sampled

from MD simulations at a finite temperature. Individual atoms in the con-

figurations were perturbed. The forces were computed using DFT based

code. The forces of the perturbed and unperturbed configuration were then

compared.

2.12.1 Molecular Dynamics

In order to simulate an ensemble of possible bulk configurations at finite

temperature, a Langevin thermostat was used to moderate the temperature

as it was important to sample the canonical ensemble. MD simulations were

performed using the screened Tersoff potential [47]. A time step of 1 fs was

used.

Each MD simulation started with a bulk crystal. The structure was

produced by repeating the crystal unit cell to form a system with approx-

imately 150 atoms. The size chosen was with respect to the computational

resources available. The atoms were then given momenta, which were ran-

domly sampled from a Maxwell-Boltzmann distribution of twice the final

system temperature desired. The desired temperature was 300 K. The virial

theorem relates the time average of the potential energy to the time average

of the kinetic energy [39]. The equipartition theorem relates the average

kinetic energy to the temperature [41]. Since all the energy is initialised as

kinetic energy at the start of the simulation, twice the final temperature was

used for the kinetic energy, as the energy was transferred into the potential

energy over time.

As the dynamics ran, the system took time to equilibrate the potential

energy and the kinetic energy. Once they were roughly equal to each other,

then the system can be considered to be in a thermal equilibrium and thus
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at the desired temperature. The temperature evolution of one simulation is

shown in Fig. 2.14. After the system had reached the desired temperature,

configurations were sampled from the MD simulation. In total, a hundred

different MD simulations were run, where each was initialised with a different

seed for which to draw numbers from the normal distribution. For each MD

simulation run, two configurations were sampled after 1000 fs had elapsed,

with 500 fs between the first and second sample. This was done to ensure as

little correlation between the samples.
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Figure 2.14: Temperature evolution of a MD simulation of a SiC 6H bulk system,
modelled with the screened Tersoff potential [47], and using a Langevin thermo-
stat. A time step of 1 fs was used for the Langevin dynamics.

2.12.2 Forces

Each sampled configuration was then run though a CASTEP single point

calculation. These configurations will be referred to as the reference con-

figurations. The single point calculation obtained the forces on each atom

as a snapshot of that exact state. The PBE parametrisation of the GGA

exchange correlation functional was used [80]. A plane wave cutoff energy of

600 eV with a self-consistent energy tolerance of 10−6 eV was adequate as no

significant change of the total energy was observed compared to the higher

plane wave cutoff energy. Plane wave cutoff energies of 400 eV, 600 eV and

800 eV were tested. The grid of k-points to sample the Brillouin zone was

also tested. Tests for 1× 1× 3, 2× 2× 5, 2× 2× 8, and 4× 4× 15 showed

48



(a) (b)

Figure 2.15: Schematic of the a) reference configuration and the b) perturbed
configuration, in which the forces, F and F ′, of a comparison atom, (c.a.), were
compared with respect to the distance, rref, between the comparison atom’s posi-
tion and the original position of a perturbed atom, (p.a.). The p.a. was perturbed
an amount rp.

that 2× 2× 8 was adequate as no significant change of the total energy

was observed compared to the denser grid. The energy was converged to

within 0.01 eV per atom. The forces were converged to within a tolerance of

0.1 eV Å
−1

.

The perturbation process was carried out for each reference configuration.

First, the configuration was duplicated. A randomly chosen atom in the

duplicated configuration was perturbed in the x direction with a length, rp, of

0.01 Å. This configuration will be referred to as the perturbed configuration.

Each perturbed configuration is then run though the same CASTEP single

point calculation. The perturbation process was repeated for another atom

for each reference configuration.

The forces between the perturbed and reference configuration were com-

puted. Within the two configurations, a comparison atom was chosen. The

absolute force on the comparison atom in the reference configuration, ||F ||,
and the perturbed configuration, ||F ′||, was calculated. The difference in

the absolute forces, ∆F , acting on the comparison atom was calculated as
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∆F = ||F || − ||F ′||. In the reference configuration, the distance between the

comparison atom and original position of the perturbed atom was calculated,

rref, using a minimum image convention to be mindful of the periodic cell.

A schematic of the configurations and forces are shown in Fig. 2.15. This

process was repeated for a set of comparison atoms, i.e. comparing the force

difference of one perturbed atom to many surrounding atoms. The whole

comparison process was repeated for each pair of perturbed and reference

configurations.
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Figure 2.16: Force locality graphs for both a) bulk SiC 6H and b) bulk diamond-
structured carbon. The absolute difference in force, ∆F , between the comparison
atom in the reference configuration and the perturbed configuration, normalised
with respect to the perturbed length, rp, is shown as a function of the distance, r,
between the original position of the perturbed atom and the comparison atom in
the reference configuration. The left panel, in a) and b), at a distance of 0 Å, show
the normalised difference in force on the perturbed atom. Rate of decay lines are
shown.

The plots in Fig. 2.16 show ∆F normalised with respect to the perturbed

length, rp, as a function of the distance from the perturbed atom. ∆F/rp

levels out beyond a certain radius, likely due to the finite precision of the

DFT calculation of forces used here.

As shown in the figures, as the distance from the perturbed atom increases

the effect of the perturbation felt by distant atoms decreases. ∆F/rp decays,

50



and thus has a form of
∆F (r)

rp

= αr−β + µ, (2.101)

where r is the radial distance, β is the force decay constant, α and µ are

constants. β represents the force change per unit length. Eq. 2.101 would

allow for predictions on how far a change in an atom’s original position would

effect the surrounding system. The force decay could also be computed as

a function of the perturbed length, rp, or even as a function of a perturbed

vector. These would be material dependent, as suggested by the analysis

on two crystals examined here. The force is more localised in the diamond

system, as shown by the steeper decay rate. The distances at which the

perturbations were felt is comparable to the typical cutoff distance of the

interatomic potentials used in this work, which was 6 Å.

This method enables a systematic approach to the force locality of a

perturbation. The size of a quantum region necessary for QM-MM simula-

tions [10] could be decided by using concepts of this method.

An improvement to this method would be to test the response of per-

turbing various groups of atoms. A possible limitation made here, was the

size of the cell, an improvement could increase the size of the cell to reduce

the effects of periodic images. This would modify the force decay rate, as the

effects of the perturbation could be measured at greater distances without

the influence of interacting with itself in the periodic image. A force locality

decay as a function of temperature would also be of interest. Conceptually,

this can be computed for different properties and larger length scales, to give

insight to how those properties are localised within regions and how their

effects begin to fade as the distance increases.

2.13 Summary

Fundamental concepts and the theory required to understand the following

work have been outlined. Approaches in computational QM and MM which

are used to compute the energies and forces of atomistic configurations were

described. Mode I fracture with emphasis on brittle fracture for quasi-static

systems was also described. A brief introduction to the materials studied

was given, along with the simple potentials used to model the 2D hexagonal

lattice. A simple test on the locality of forces within materials was described,
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with results suggesting that at finite temperature the effect of a perturbed

atom is only felt within a finite range.
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3 Brittle Fracture

of Silicon Carbide

Parts of this chapter build upon the following published article: Ser-

nicola, G., Giovannini, T., Patel, P., Kermode, J. R., Balint, D. S.,

Britton, T. B. & Giuliani, F. In situ stable crack growth at the micron

scale. Nature Communications 8, 108. doi:10.1038/s41467-017-

00139-w (Dec. 2017). The experimental work was conducted by Ser-

nicola, G., Giovannini, T., Balint, D. S., Britton, T. B., and Giuliani,

F.

3.1 Introduction

Advanced engineering technologies have demanding physical and mechanical

specifications, and improvements over today’s generation are limited by the

performance of available materials. Several applications such as gas turbines,

atmospheric re-entry vehicles, and medical implants, require materials with

high hardness, high thermal stability, high strength, and low density; ceram-

ics exhibit these attributes [84–87]. However, ceramics are prone to failure

via fracture mechanisms as they are generally brittle materials. Understand-

ing these processes could lead to improved manufacturing techniques which

allow better resistance to fracture, i.e. their fracture toughness is improved.

The material’s strength, or lack thereof, is partly dictated by the grain

boundary structure; understanding this would allow for the design of stronger

materials. Grain boundaries are the interfaces of differently oriented crystals.

Understanding the micro-structure requires experimental and computational

tests of individual features to provide mechanistic insight into which grain

boundaries are preferred and why.

Precise control during fabrication and manufacturing processes would
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allow for some control over the micro-structure. Successful manufacturing

relies on understanding the processes involved during fabrication, such as

preferred boundary orientations and interface chemistry. Then, preferred

boundaries can be promoted to grow to tailor the micro-structure and in

turn tailor the toughness.

Macroscopic experiments help to understand the limits of components

and enable precise measurements of properties at that scale [88–90]. How-

ever, properties of individual grain boundaries are not attainable via these

tests. Microscopic tests can provide understanding about grain boundar-

ies, which are often attributed to the weakest boundary interfaces. Before

studying these interfaces, it would be beneficial to gain a quantitative un-

derstanding of the mechanics within the crystal structures themselves.

Fracture toughness can be computed from both microscopic fracture ex-

periments and atomistic simulations. In the work reported here, the experi-

mental fracture toughness was computed via considering the elastic energy in

the beams of the double cantilever beam (DCB). The computational fracture

toughness was computed using the surface energy of the crystal. Given stable

crack growth in the experiments, the static calculations of the surface energy

can be compared to the strain energy release rate from the experiment.

Here, the SiC ceramic was investigated. Previous literature has shown

that chemistry at the interfaces has a strong influence on the fracture tough-

ness [91, 92]. To explore the mechanics within the crystal, microscale frac-

ture experiments using a wedge nanoindenter to control loading across a

long timescale were performed to achieve a slow and stable crack growth.

Static DFT energy calculations were performed with considerations of sur-

face termination, surface passivation, surface reconstruction, and MM finite

temperature effects. A finite temperature MD simulation was also performed.

3.2 Background

3.2.1 Silicon Carbide

SiC is a relatively common ceramic, example uses include: cutting tools,

composite armour, and brake disks [12, 93].

SiC is a bi-elemental crystal, containing silicon and carbon atoms. It is

naturally occurring; however, it is extremely rare, and as such almost all
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Polytype Bravais Lattice Stacking Sequence

3C face-centred cubic ABC
6H hexagonal ABCACB

Table 3.1: Lattice structure and the stacking sequence of the SiC polytypes 3C
and 6H.

(a) (b)

Figure 3.1: Unit cells of SiC polytypes a) 3C and b) 6H. The cubic unit cell for 3C
has a lattice constant of approximately 4.36 Å, and the 6H cell is a hexagonal Brav-
ais lattice of approximately 3.08 Å× 3.08 Å× 15.12 Å. The face of the hexagonal
lattice shaped as a rhombus has angles of 60◦ and 120◦. The carbon and silicon
atoms are coloured grey and beige respectively.

SiC used for commercial purposes is synthetically produced. SiC has many

polytypes. The 6H and 3C are the most common stable polytypes. The

unit cells are shown in Fig. 3.1, and the stacking sequences are shown in

Table 3.1.

The stacking sequence of a SiC 6H crystal leads to three inequivalent

low-index surfaces in the stacking direction. The SiC 6H crystal with a crys-

tallographic surface (0001) was examined here, due to its brittle fracture

dynamics, as the bonds are perpendicular to the crack surface. This ensures

a straight fracture propagation path, with little to no deviation, or oscilla-

tions, as each bond along the fracture path breaks. Cleavage of a perfectly

repeating crystal will create two surfaces. Each surface is entirely composed

of a single element, where one surface terminates with silicon atoms and the
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(a)

[101̄0]

[0001]

(b) (c)

Figure 3.2: Energy minimised SiC 6H (0001) surface structures. The three inequi-
valent surface terminations: a), b), and c). The grey lines are the computational
cell, which extend away from the surfaces to represent the vacuum required to
model the surfaces. The height of the atomic system is approximately 30 Å, with
an additional vacuum region of 10 Å on each side. The carbon and silicon atoms
are coloured grey and beige, respectively.

other terminates with carbon atoms. For a (0001) surface there are three

inequivalent terminations; where the created surfaces are shown at the top

and bottom ends of the slab in Fig. 3.2.

3.2.2 Statistical Thermodynamics

In thermodynamics there are a few potentials that quantify the change in

energy of a system as it evolves from its initial state to its final state [94].

The Helmholtz free energy, F , describes the energy of work available in

a system at constant temperature, T , and constant volume, V , defined as

F = U − TS, (3.1)

where U is the internal energy, T is the temperature, and S is the entropy

of the system. The Gibbs free energy, G, similar to Helmholtz free energy,
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is for a system at constant temperature and constant pressure, p, defined as

G = U + pV − TS. (3.2)

Both F and G are for systems in which the number of particles in that system

remain fixed.

A system at constant temperature is kept at thermal equilibrium with

an external heat bath. Systems at a finite temperature have many possible

configurations and states. Thermodynamic ensembles represent the many

possible microscopic states with macroscopic constraints. The canonical en-

semble, or NVT ensemble, describes a system, i.e. fixed number of particles,

N , at a constant volume, V , and at a constant temperature, T [95].

The entropy, S, of a system is related to the possible microstates of the

system, and is given by

S = kBT
∑

i

pi ln pi, (3.3)

where kB is Boltzmann’s constant, and pi is the probability that a microstate

occurs given by

pi =
1

Z
e
− Ei
kBT , (3.4)

where Z is the partition function. The partition function, Z, for a canonical

ensemble is defined as

Z =
∑

i

e
− Ei
kBT , (3.5)

where Ei is the energy of the microstate and acts as a normalisation constant

for pi. It can be shown that Helmholtz free energy can be rewritten in terms

of the partition function [95]

F = −kBT lnZ. (3.6)

3.2.3 Phonons

DFT calculations obtain the ground state energy, i.e. the energy at 0 K.

For temperatures above 0 K, it is possible to obtain the energy of a system

at a finite temperature by considering the dynamics of atoms at a finite

temperature.
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A phonon represents an excited state of an elastic structure; it is a col-

lective excitation of oscillating atoms in a lattice. They are quantisations

of the modes of vibrations of a lattice. Thermal energy, or external forces,

causes the lattice to vibrate. This generates phonons, transferring mechan-

ical energy through the material [96].

The energy, E, of the phonon is linked to its frequency, ω, and is given

by

E = ~ω, (3.7)

and its momentum vector, p, is defined as

p = ~k, (3.8)

where k is the wave vector. The relationship between the ω and k is the

dispersion relation, ω(k). The dispersion relation shows all the possible

energy states a phonon, and thus the lattice, can be in. The energy of a

vibrating system, i.e. a system at a finite temperature, can be determined

from the expected phonon states in which the system is vibrating in.

One method to calculate phonons is to use the frozen phonon method [97],

which is outlined here. A system at the ground state energy has an energy

of E0. For small oscillations, it can be shown, that the energy of a system

in which atoms move around their equilibrated positions is

E(uj,l) = E0(0) +
∑

j,l

∂E0

∂uj,l
· uj,l

+
1

2

∑

j,l,j′,l′

uTj,l ·
∂2E0

∂uj,l∂uj′,l′
· uj′,l′ + . . . ,

(3.9)

where uj,l is a vector of displacements from the atoms’ equilibrium positions,

j is the atom index in the lth unit cell, and their respective primes denote

the other atom in an atom pair [98]. The expansion up to the second order

displacements is the harmonic approximation. The higher order terms are

the anharmonic terms. The derivatives are computed at the equilibrium

configuration. The first order derivative, ∂E/∂u, is the force, and it is equal

to zero, since at the equilibrium positions the potential energy of the atom

is at a minimum. The second order derivative is an element of the force
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constant matrix, Φ, where each element is defined as

Φj,l,j′,l′ =
∂2E0

∂uj,l∂uj′,l′
. (3.10)

Thus, Newton’s equation of motion for the motion of the jth atom can be

written as

mjüj,l(t) = −
∑

j′,l′

Φj,l,j′,l′ · uj′,l′(t). (3.11)

Phonons can be described using a wave equation. A general solution to

the wave equation is of the form

u(x, t) = f(x)eiωt, (3.12)

where t is time, x is the spatial variable, ω is the angular frequency, and

f(x) is a function. For a traveling phonon wave in a 3D lattice, a solution

of the wave equation is of the form

uj,l(t) =
∑

k,β

Uj,k,βe
i(k·rj,l−ωβ(k)t), (3.13)

where rj,l are the equilibrium positions, β is the dispersion branch index,

ωβ(k) is the dispersion branch of index β of wave vector k, and Uj,k,β is the

displacement vector which is independent of l due to repeated unit cells that

allow the description to be captured by the exponential phase factor [98].

Thus from Newton’s equation of motion, the wave solution yields an eigen-

value problem, given by

ωβ(k)2εβ(k) = D(k) · εβ(k), (3.14)

where εβ(k) is the polarisation vector, and it combines the displacement

vector and masses; and D(k) is the dynamical matrix which is the mass

reduced Fourier transform of the force constant matrix. The elements of

εβ(k) are

εj,β(k) =
√
mjUj,k,β, (3.15)
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and the elements of D(k) are

Dj,α,j′,α′(k) =

(
1

√
mjmj′

∑

l′

Φj,0,α,j′,l′,α′e
−ik·(rj′,l′−rj,0)

)
. (3.16)

The eigenvalues and eigenvectors of the dynamical matrix give the vibra-

tional frequencies and the corresponding atomic motion, respectively [98].

The mean energy of each vibrational mode, Eβ(k), is

Eβ(k) =

(
1

2
+ nβ(k)

)
~ωβ(k), (3.17)

where nβ(k) is the number of phonons in the dispersion branch of index β

of wave vector k, also known as the phonon number [98]. From thermody-

namics, the Bose-Einstein distribution gives the phonon number as

nβ(k) = n(ωβ(k), T ) =
1

exp (~ωβ(k)/kBT )− 1
, (3.18)

where kB is Boltzmann’s constant, and T is the temperature. Thus the

expected energy is

E =
∑

k,β

~ωβ(k)

[
1

2
+

1

exp (~ωβ(k)/kBT )− 1

]
. (3.19)

This energy can be substituted into the partition function, Z, and used to

compute Helmholtz free energy, F , which provides a way to get the free

energy of the system via phonon calculations.

The merits of the harmonic approximation are that it has an exact solu-

tion. The Helmholtz free energy is for a fixed volume and as such does not

account for thermal expansion. The Gibbs free energy allows for a chan-

ging volume, while the pressure remains fixed. A transformation from the

Helmholtz free energy to Gibbs free energy is

G(T, p) = min
V

[F (T ;V ) + pV ], (3.20)

where the Gibbs free energy is the energy that minimises the volume, V .

The Helmholtz free energy can be considered as the sum of the config-

urational energy, Ec, a vibrational term, Fphonon, and an electronic term,
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Felectronic [99]; thus

F = Ec + Fphonon + Felectronic. (3.21)

Ec is the static contribution to the internal energy, i.e. the ground state en-

ergy at 0 K, and Felectronic captures the thermal electron contributions and

electron-phonon coupling. The Felectronic term was neglected here, as is often

done [99–102]. The aim of the investigation performed here was to provide

an approximate insight into how the thermal effects can change the sur-

face energy. Hence, only interatomic potentials were used. To compute the

electronic contributions suitable electronic computational methods, such as

DFT, would need to be used [101]. Furthermore, the temperatures con-

sidered here are well below the electronic energy scale, and as such the con-

tribution of electronic excitations to the thermal expansion is negligible [102].

The vibrational term is then computed in terms of the partition function.

Substituting the expected phonon energy into the partition function [103]

gives

Fphonon = −kBT lnZ (3.22)

=
1

2

∑

k,j

~ωj(k) + kBT
∑

k,j

ln [1− exp(−~ωj(k)/kBT )] . (3.23)

Thus F (T ;V ) is approximately

F (T ;V ) ≈ Ec(V ) + Fphonon(T ;V ). (3.24)

This calculation is repeated for each temperature at a fixed volume to provide

the Helmholtz free energy as a function of temperature.

To account for the thermal expansion at a given temperature, the calcu-

lation of Eq. 3.24 is repeated for different volumes, where at each volume the

harmonic approximation is held. The volume which minimises the energy

is the Gibbs free energy at that temperature. This is the quasi-harmonic

approximation [104]. The procedure is repeated for each temperature to

provide the Gibbs free energy as a function of temperature.
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2h

δ

δ

W∞

Figure 3.3: Schematic of the thin strip geometry. The geometry is loaded by
displacing the top and bottom boundaries, coloured orange, by an amount δ. In
simulations this region remains clamped. The energy density, W∞, far ahead of
the crack tip, within the blue coloured region, is independent of the crack length,
with W∞ = δ2E′/h, where E′ is the effective Young modulus, and h is half of the
strip’s height.

3.2.4 Finite Temperature Surface Energy

The surface energy at 0 K is calculated as

γ =
Ec,s − Ec,b

2A
, (3.25)

where the subscripts s and b denote the slab and bulk systems respectively.

The surface energy at a finite temperature is given by

γ(T ) =
Ws −Wb

2A
(3.26)

≈

(
Ec,s +Ws,phonon(T )

)
−
(
Ec,b +Wb,phonon(T )

)

2A
, (3.27)

where W (T ) is either Helmholtz free energy, F , or Gibbs free energy, G, for

the harmonic case and for the quasi-harmonic case, respectively.

3.2.5 Thin Strip Geometry

The thin strip geometry consists of a thin slab of material, with a narrow

slit as the crack. The edges are clamped and displaced perpendicularly away

from the crack tip. A schematic is shown in Fig. 3.3.

To obtain the strain energy release rate, G, the crack length is often
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required. The advantage of this geometry is that G is independent of the

crack length. In an infinitely long slab crack extension is translationally

invariant. Since the top and bottom edges are clamped, any change in the

energy is through the extension of the crack. Elastic energy density, W∞,

far behind the crack is zero and the release of elastic energy density ahead

the crack is equal to the energy release rate, which is

W∞ =
δ2E ′

h
= G, (3.28)

where δ is the size of the clamped regions, E ′ is the effective Young’s modulus,

and h is half the strip’s height [105].

Irwin’s solutions to the stress and displacement fields only apply to re-

gions not too far from the crack tip. A modified solution involving higher

order terms was achieved by Knauss [106].

3.3 Methodology

The experimental work described within this chapter was conducted by Ser-

nicola, G., Giovannini, T., Balint, D. S., Britton, T. B., and Giuliani, F [1].

3.3.1 Experimental

The experiments loaded a DCB made from SiC to visualise stable crack

growth and compute the fracture energy.

Fabrication

The SiC single crystals used for experimental characterisation were 5 mm ×
5 mm × 0.5 mm in size and were supplied by the MTI Corporation. The

crystals were milled into the DCB shape using focused ion beam (FIB) ma-

chining in a FEI Helios Nanolab 600 Dual-Beam, which used an automated

path made in the Nano-Builder software. The DCB geometry is shown in

Fig. 3.4.

The DCB was first modelled with the finite element method software

Ansys. Elastic finite element analysis was used to optimise the initiation of

the crack close to the fabricated notch. The final geometry achieved this as

it magnified the stress near the notch. The final geometry had dimensions of
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(a) (b) (c)

Figure 3.4: Schematic of the DCB geometry a) and c), where: a is the crack
length, with a0 as the original crack length; d is the beam width; e is the initial
notch width; t is the beam depth; l is the beam length; f is the notch length;
and δ is the beam displacement [1]. b) A micrograph with a scale bar of 5 µm
of the sample is shown. The DCB schematic in c) shows the wedge being used
to apply the load, consequently displacing the beams. The red coloured arrows
demonstrated the direction of the load and displacements of the geometry. The
blue coloured arrow shows the crack growth direction The black dashed lines form
the undeformed geometry, and the red lines form the deformed geometry.

15 µm× 2 µm× 5 µm for the height, width, and thickness, respectively. The

DCB was machined to align the fracture plane along the (0001) plane, with

the notch face in the perpendicular plane leading into the fracture plane.

The FIB machining was broken down into several stages; at the end of each

stage the sample was realigned to correct for any shift that occurred in that

stage. A total of four samples were made. Each sample was imaged using a

Auriga Zeiss scanning electron microscope (SEM) and their exact dimensions

were measured for use in further analysis.

In theory, the DCB and the alignment of the loading wedge is symmet-

ric. Thus, loading the sample would result in equal strain energy stored in

each of the beams. In practice, asymmetries in both structures arise during

manufacturing and within the setup. Misalignment between the loading tip’s

central axis and the DCB central axis would lead to asymmetrical loading.

Misalignment between the surface normal and the loading tip’s displacement

axis would lead to an asymmetrical load angle of each beam. Beam thickness

can also vary during automated manufacturing.
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Fracture Energy

From simple beam theory, it is possible to obtain the elastic strain energy

and thus the strain energy release rate, G, for comparison with the Griffith

criterion. The DCB can be modelled as two individual, clamped, end-loaded

cantilevers, with the contact point between the beam and the wedge as the

loading point. Beam theory can be extended to account for the initial short

length of the beam, using the CLE solution for short crack configurations [1].

This is important for cases when the beam length and beam thickness are

comparable, as the correction ensures a reliable calculation for a short vari-

able crack length. Thus, the final strain energy release rate for each beam

is

G =
3Ed3δ2

8a4
+

3E(1 + ν)d5δ2

8a6
(3.29)

where E is the elastic modulus, d is the beam width, δ is the maximum dis-

placement, a is the crack length, and ν is the Poisson’s ratio. The first term

is the derivative of the elastic strain energy, UM, with respect to the area,

which is given by Euler-Bernoulli beam theory, and the second term is the

extension using the linear elasticity solutions for short crack configurations.

More details are available in the supplementary information in the article by

Sernicola et al. [1]. The fracture energy, Gc, is taken as the average strain

energy release rate of the samples during the crack growth period.

Mechanical Tests

The mechanical tests were performed in situ in a SEM, which allowed for

direct observations during the experiment. A wedge was pushed into the

notch at the top of the crack in order to advance the crack. The beams split

and bent away from the central axis, which drove the crack further.

The SEM provided imaging with a high spatial and temporal resolution,

and the visual feedback allowed for good alignment between the loading tip

and the sample. It also enabled continuous image capture of the sample

during loading and through the slow fracture process. Using a 5 kV beam

energy, at a working distance of roughly 5 mm, images were captured using

an in-lens detector to measure secondary electrons.

The load was applied with a 60◦ diamond wedge nanoindenter made by

Alemnis, with a nominal tip length of 10 µm. The wedge movement was

controlled using a piezoelectric transducer, with control in three spatial di-
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mensions. The indenter was modified to add rotational control, in order to

control the angle between the tip of the indenter and notch in the sample.

The indenter was moved at rates between 1 nm s−1 and 2 nm s−1. This helped

achieve the slow propagation speed. The rate for each loading period was

kept constant to achieve a overall linear displacement profile, with a time

length of 6 min. Movement of the indenter was stopped, and the indenter

retracted, before complete failure of the DCB. In order to observe the sta-

bility of the crack, the sample was loaded and the crack was propagated for

a few microns. Then, the indenter was held in place for 2 min to 5 min. The

indenter was then either immediately retracted or driven further into the

crack to then be retracted later in time.

3.3.2 Computational

The initial crystal structure was obtained from experimental results by Cap-

itani et al. via the Inorganic Crystal Structure Database (ICSD) [107]. The

unit crystal was then oriented to the [0001] direction, such that any surface

created would be along the basal (0001) plane, which matched the mechan-

ical experiment.

Molecular Dynamics Simulation

Initial tests for fracture of SiC began with MD simulations using a thin strip

geometry.

The simulations were performed by adapting code written by Ker-

mode [105]. The code was extended to handle hexagonal cell structures.

The thin strip system was created by multiplying the unit cell to approxim-

ately 290 Å × 90 Å × 12 Å, for its length, height, and depth, respectively.

The length and height ratio of 3 : 1 was used to mitigate effects from the

unclamped boundary that may affect the crack tip during the simulation.

An initial crack was formed in the slab, on the left hand side, at an initial

length of approximately 40 Å to mitigate boundary effects from the left hand

edge. The slab was then relaxed to simulate an initial steady state, i.e. an

equilibrated fracture system. The screened Tersoff potential was used to

simulate the dynamics. This potential is known to provide an accurate de-

scription of SiC [47]. The simulation was performed at a finite temperature

of 300 K, with a time step of 1 fs, using the velocity Verlet algorithm. To
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simulate loading the system, the edges of the system were displaced further,

outwards from the centre fracture line, with a strain rate of 10 ns−1. This rate

is faster than the rates used in the experiments, which were approximately

1 ns−1. The differences in the strain rate used in these MD fracture sim-

ulations and the experiments are not pertinent to the comparison between

the experimentally measured fracture energy and the DFT surface energy

calculations, since the surface energy calculations have no dependence on a

strain rate.

Surface Energy

To compute the surface energy, two systems were required: a bulk system,

and a slab system. The oriented crystal unit cell was replicated to generate a

bulk crystal. The slab system was created by duplicating the bulk crystal and

adding vacuum in the [0001] direction, on either side creating two surfaces.

The surfaces are either entirely silicon- or carbon-terminated. The stacking

sequence leads to the choice of three possible inequivalent terminations. In

practice, the slab system was created after a well converged bulk system was

calculated, the process of which is described below.

To ensure a self-consistent well converged final surface energy, several

convergence tests were performed with respect to the system’s total energy

and forces. These tests involved geometry optimisations through a DFT

based scheme using CASTEP [36].

The computational cells for the bulk and slab systems were periodic in all

directions. During the geometry optimisation, the atoms in the bulk system

and the enclosing cell were free to move. In the slab system, the enclosing

cell was kept fixed to maintain the vacuum.

The grid of k-points to sample the Brillouin zone was also converged.

Tests for 4× 4× 4, 6× 6× 6, and 8× 8× 8 for the bulk cell showed that

4× 4× 4 was adequate, as no significant change in the total energy was

observed compared to the denser grids. The energy was converged to within

0.01 eV per atom.

The plane wave basis set was converged. Tests for the plane wave cutoff

energies of 200 eV, 400 eV, 600 eV, and 800 eV were performed at the three

different k-point densities, mentioned above. 600 eV was adequate as no

significant change in the total energy or forces were observed compared to the
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higher energies. A plane wave basis set of 600 eV with a self-consistent energy

tolerance of 10−6 eV was chosen, and a finite basis set correction was used to

account for changes in the cell size during the geometry optimisation. The

standard set of ultrasoft pseudopotentials distributed with CASTEP were

used [36]. The geometry optimisation calculations were performed with the

LDA and the PBE parametrisation of the GGA to the exchange correlation

functional [80].

The bulk crystal was relaxed to within a force tolerance of 0.05 eV Å
−1

and a stress tolerance of 0.1 GPa. The slab system was tested with different

vacuum spacings. This was to ensure the periodic images of the slab were

decoupled from one another. A vacuum of 10.0 Å on each side was found to

be sufficient, to have the energy of the system converged to within 0.01 eV

per atom. This was compared to vacuum spacings of 20.0 Å and 30.0 Å.

The number of layers, i.e. the height of the slab, was tested to remove any

interaction effects of the two surfaces within the structure. Up to four repeat

unit cells along the [0001] direction were tested, and it was found that two

repeated unit cells were sufficient to have the energy of the system converged

to within 0.05 eV per atom. This resulted in a system with 24 atoms.

Geometry optimisations were performed on both the bulk and slab sys-

tems. The optimisations were performed with the BFGS method. Then the

surface energy was computed. In the slab system each surface is entirely com-

posed of a single element, where one surface terminates with silicon atoms

and the other terminates with carbon atoms. Thus, the surface energy is

effectively averaged across both of the surfaces. Leung et al. used a similar

approach for modelling the polytype SiC 3C [108]. The DFT calculations

gave an energy minimised, zero temperature, surface energy in a perfectly

clean environment.

Critical Stress Intensity Factor

The elastic constant matrix, C, was computed for both exchange correlation

functionals. The 21 independent Cij components were computed. For each

Cij component, a bulk system was strained for five points in the range of

−1.5 % to 1.5 % and, for each point, the stress was computed. The gradient

of a straight line from a least squares fit of the points determined the elastic

constant. The error of the elastic constants was the error of the least squares
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fit [109].

The Young’s modulus was extracted from the compliance matrix, S,

where S = C−1 [76]. The error of the Young’s modulus was propagated

forwards using interval analysis from the errors on the fit of the strain-stress

lines. Each elastic constant was represented as a range of values, with the

errors forming the range for each constant, i.e. [Cij − errij, Cij, Cij + errij].

The extrema of the ranges and median were used to build three elastic con-

stant matrices. The Young’s modulus was computed for each matrix. The

maximum difference between the Young modulus of the median matrix and

the Young’s modulus of the extrema matrices was used as the error.

The surface energy and the Young’s modulus was then used to compute

the critical stress intensity factor, which is given by Kc =
√
GcE ′.

Surface Passivation

Bare and perfectly cleaved surfaces are not common in nature. The surface

structure can change due to exposure to the atmosphere. The experiment

was performed in a vacuum. However, the vacuum within the chamber is

not perfect and some atoms may interact with the material. Exposure to

an atmosphere can lead to the surface reacting and becoming passive, which

reduces the surface energy.

Two methods to obtain the surface energy were considered: the standard

method, where the surface energy is an average surface energy across both

surfaces in a slab system; and the isolated method, where the surface energy

was computed for individual surfaces in a slab system. The effects of surface

passivation were considered by passivating the surfaces with hydrogen. For

each method, the surfaces were passivated and the passivated surface energy

was computed.

The approach used here is built upon an approach used by Abavare et

al. [110], where the surface energy was computed with chemical potentials.

The surface energy using chemical potentials, γs, is defined as

γs =
1

2A
(Eslab − µSiCNSiC) , (3.30)

where A is the surface area, Eslab is the energy of the SiC slab system,

µSiC is the SiC chemical potential of bulk SiC, and NSiC is the number of

atoms in the slab system. Since µSiCNSiC = Ebulk, this equation is equivalent
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to the previous surface energy definition in Eq. 2.71. Both surfaces of the

slab system are considered; thus the surface energy is effectively the average

across the two surfaces. This surface energy definition will be referred to as

the standard surface energy and the standard method.

Abavare et al. proposed hydrogen termination of either surface to invest-

igate the surface energy of a single surface. In general, the surface energy can

be considered as the energy increase due to the formation of dangling bonds

along the newly created surface. In a slab system, hydrogen termination of

one surface removes the dangling bonds along that surface. This leaves the

non-terminated surface clean for surface energy investigation [110]. Using

chemical potentials, the surface energy of the unterminated surface, γi, is

defined as

γi =
1

A

(
Eslab, t − (µSiCNSiC + µH,XNH,X)

)
, (3.31)

where Eslab, t is the energy of the slab system with one terminated surface,

NH,X is the number of hydrogen atoms used to terminate one surface, µH,X

is the hydrogen chemical potential, and X denotes the molecule used to

compute the hydrogen chemical potential for the hydrogen atoms which ter-

minate the surface. This surface energy definition will be referred to as the

isolated surface energy and the isolated method.

In Eq. 3.30 the factor of 2 accounts for the two surfaces in a slab system.

In Eq. 3.31 there is no factor of 2, as only one surface in the slab system

is investigated. The sum of the two isolated surface energies can be shown

to equal twice the standard surface energy. The energies of the terminated

systems used to compute the isolated surface energies are Eslab, t and Eslab, t′ ,

where t and t′ denote termination on opposites sides of a slab. The sum of

these energies can be considered as the combination of: the energy of a non-

terminated slab, Eslab; the energy of an additional set of bulk SiC atoms, as

the sum involves two slab systems; and the energy of two sets of hydrogen

atoms, to account for the hydrogen termination of a surface on each slab

system. This can be written as

Eslab, t + Eslab, t′ = Eslab + µSiCNSiC + µH,XNH,X + µH,X′NH,X′ , (3.32)

where X and X ′ denote the molecules used for the terminated surfaces.
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The sum of the two isolated surface energies, γi, t and γi, t′ , using Eq. 3.31,

is

2γ = γi, t + γi, t′ (3.33)

=
1

A

(
Eslab, t − (µSiCNSiC + µH,XNH,X)

)

+
1

A

(
Eslab, t′ − (µSiCNSiC + µH,X′NH,X′)

) (3.34)

=
1

A

(
Eslab, t + Eslab, t′ − 2µSiCNSiC − µH,XNH,X − µH,X′NH,X′

)
. (3.35)

Then, substituting in Eq. 3.32 gives

2γ =
1

A

(
Eslab − µSiCNSiC

)
, (3.36)

which is twice the standard surface energy, and thus

γ =
1

2A

(
Eslab − µSiCNSiC

)
, (3.37)

which is the standard surface energy as defined in Eq. 3.30. Thus, Eq. 3.31

calculates the surface energy of a single surface, and therefore no factor of 2

is required.

The isolated surface energy was computed using reference chemical po-

tentials from silane and methane molecules. Different molecules are used

for the hydrogen chemical potential, µH,X , as the hydrogen atoms are either

attached to the carbon-rich surface or the silicon-rich surface. Thus, µH,X is

given by either

µH,CH4 =
1

4
(µCH4 − µC), (3.38)

or

µH,SiH4 =
1

4
(µSiH4 − µSi), (3.39)

where µCH4 , µSiH4 , µC, and µSi are the chemical potentials for methane,

silane, carbon, and silicon respectively [110].

Methane and silane were used as reference chemical potentials as they are

simple, stable molecules of carbon with hydrogen and silicon with hydrogen,

respectively. In particular, all the free electrons of the carbon atom and

silicon atom are covalently bonded with the electrons of the hydrogen atoms.

Similarly, diamond cubic forms of carbon and silicon were used as all the
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free electrons are covalently bonded with electrons from the other carbon

atoms and silicon atoms, respectively. This maintained a consistent bonding

environment to obtain a reasonable hydrogen-carbon and hydrogen-silicon

chemical potential. The chemical potentials were computed and converged

using CASTEP, using a similar approach to the method used for the SiC

systems.

The isolated method is useful for systems where the two surfaces are

inequivalent, as it does not average over the chemically different surfaces.

Abavare et al. took this approach with the 3C polytype, since the surfaces

are inequivalent. The surfaces of the polytypes 3C and 6H are similar, which

gives confidence in using this approach for the 6H polytype. They also noted

that large system sizes are required for polar surfaces in order to mitigate

long range interactions. This makes convergence with respect to system size

slow [110].

The effects of environmental hydrogen passivation was computed by con-

sidering H2 molecules which dissociate and combine with the surface or sur-

faces. The standard surface energy under environmental hydrogen passiva-

tion, γs, p, was calculated as

γs, p =
1

2A
(Eslab, 2t − µSiCNSiC − µHNH) , (3.40)

where Eslab, 2t is the energy of the slab system where both surfaces have

hydrogen attached to them; µH is the hydrogen chemical potential, which

was computed using H2 as the reference molecule; and NH is the number

of hydrogen atoms used for environmental passivation. The isolated surface

energy under environmental hydrogen passivation, γi, p, was calculated as

γi, p =
1

A

(
Eslab, 2t − (µSiCNSiC + µH,XNH,X)− µHNH

)
. (3.41)

The surface energies using chemical potentials were calculated for the SiC

6H (0001) surfaces. Two surfaces are created during fracture propagation.

Thus, twice the surface energy, 2γ, is an appropriate quantity to compute.

The surface energy with no terminated surfaces is equivalent to the definition

of surface energy in Eq. 2.71. The system was hydrogen passivated and

the passivated surface energy was computed. The systems used for these

calculations are shown in Fig. 3.5.
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(a)

[101̄0]

[0001]

(b) (c) (d)

Figure 3.5: SiC 6H slab systems where the (0001) surfaces are passivated, or
terminated, with hydrogen. In system: a) no surfaces are terminated, b) the
silicon-rich surface is terminated, c) the carbon-rich surface is terminated, and
d) both the silicon-rich and carbon-rich surfaces are passivated, or terminated.
The carbon, silicon, and hydrogen atoms are coloured grey, beige, and white
respectively. The grey lines are the computational cell, which extend away from
the surfaces to represent the vacuum required to model the surfaces. The height
of the atomic system was approximately 30 Å, with an additional vacuum region
of 10 Å on each side.

The isolated surface energies were computed, and 2γ was computed as the

addition of the silicon-rich surface energy and the carbon-rich surface energy.

Similarly, the systems were hydrogen passivated and the passivated surface

energies were computed. Twice the passivated surface energy was computed

as the addition of the passivated silicon-rich isolated surface energy and the

passivated carbon-rich isolated surface energy. The systems used for these

calculations are shown in Fig. 3.5.

The isolated surface energies for the SiC 3C (111) surfaces were also

calculated. This allowed comparison of the method used here and the method

used by Abavare et al. The SiC 3C bulk and surface systems were generated

in a similar manner to the SiC 6H systems.
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Surface Reconstructions

The surface structure can deform and reconstruct along the surface of the

crack. A dynamically created surface can reconstruct into different arrange-

ments due to new free electrons from the process of breaking bonds, as well as

extra energy to overcome reconstruction barriers. The atoms can reconstruct

to form a lower energy state.

The more widely studied 3C (111) surface, which is structurally related to

the 6H (0001) surface, has a number of known surface reconstructions. Previ-

ous literature shows that these reconstructions require additional atoms, such

as: silicon atoms [111], or environmental molecules such as H2 or O2 [112].

Brittle cleavage follows Griffith’s energy balance, and so it usually argued

that the relevant surface energy is the as-cleaved surface energy [14]. Thus,

for surface reconstruction to have an effect on the surface energy for creating

new surfaces the process must happen instantaneously at the propagating

crack tip [113]. In other words, the energy required to reconstruct must be

smaller in comparison to the energy barrier of the propagating crack.

The energy of the systems were calculated from a geometry optimised

relaxed configuration and thus allow for the exclusion of barrierless surface

reconstructions.

Temperature Effects

The DFT geometry optimisations performed here were at 0 K. The ex-

periment was performed at room temperature. Thermal excitations can

propagate the crack by allowing the system to more easily overcome energy

barriers, which in turn reduces the surface energy. For the similar polytype

3C at 300 K Leung et al. saw up to a 15 % decrease in surface energies [108].

Temperature effects can be measured via phonon-based methods. DFT-

based phonon methods are computationally expensive. Since earlier MD

simulations produced qualitative results that match more accurate methods,

the effects of temperature on the surface energy were assessed using em-

pirical interatomic potentials. The Tersoff and Erhart screened interatomic

potential and the Albe screened interatomic potential were used, as they are

known to provide accurate descriptions of SiC [47]. Static surface energies

using the interatomic potentials were computed to use as reference points.

The systems were minimised using the FIRE algorithm.
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The entropic contributions were computed via the frozen phonon method

using the phonopy code [114]. The force constant matrix, Φ of Eq. 3.10, of the

system was computed using a modified Parlinski-Li-Kawazoe method [115].

The phonon dispersions, ωβ(k), were calculated by solving the eigenvalue

problem, Eq. 3.14, of the wave equation and the dynamical matrix con-

structed from the force constants, Eq. 3.16. The phonon dispersions were

calculated under both the harmonic approximation and the quasi-harmonic

approximation.

Convergence tests were performed with respect to the supercell, i.e. re-

peat number of cells, and the k-point mesh. A supercell of 2 × 2 × 2 and a

k-point mesh of 20× 20× 20 was found to be adequate.

The Helmholtz and Gibbs free energies were computed, to then compute

the finite temperature surface energy for the harmonic and quasi-harmonic

schema respectively, where the surface energy is given by Eq. 3.27.

3.4 Results and Discussion

The experimental work described within this chapter was conducted by Ser-

nicola, G., Giovannini, T., Balint, D. S., Britton, T. B., and Giuliani, F [1].

3.4.1 Experimental

Measurements were taken from the SEM images of the sample. In total

four samples were loaded and fractured with slightly different displacement

profiles of the loading wedge. A selection of SEM images from one of the

samples is shown in Fig. 3.6.

During the measurements, some of the asymmetries listed earlier were

observed, such as differences in beam thickness. When the samples were

loaded, the cracks did not form in line with the central axis. Instead, they

were offset by tens of nanometres to the side of the milled notch. This was

as a result of asymmetries in the loading of the sample, and this required the

beams to be treated independently for the analysis and measurements. The

energies calculated take into account the discrepancies in the beams and so

do not under- or over-estimate the final energy.

The loading wedge’s tip displacement was controlled using a piezoelectric

transducer. Measurements of the cantilever width, crack length, and each
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Figure 3.6: Selection of frames extracted from the video recorded of a loaded SiC
DCB sample inside an SEM [1]. The time elapsed from the initial loading of each
image from left to right is 0 s, 200 s, 300 s, and 400 s. The wedge, at the top, loads
the DCB, as it advances downwards, further splitting the sample. Scale bar: 2 µm.

beam’s displacement were extracted from the SEM images by hand. A Monte

Carlo error analysis was used to compute the errors on these properties.

Variables with known errors were independently adjusted to have a Gaussian

distribution, with the measurement as the mean and the measurement error

as the standard deviation.

The data analysis steps, for one sample, S3, are shown in Fig. 3.7. The

figure shows the following all as a function of time: the displacement profile

of the loading wedge, the independent beam displacements obtained from the

SEM images, and the crack length. The displacement profiles with respect to

time for each sample, along with the computed fracture energy as a function

of crack length are shown in Fig. 3.8.

When loaded, three samples formed a crack, approximately 100 nm in

length, slightly to the left, which is indicative of a slight asymmetry in the

loading geometry. The crack in the fourth sample grew without any bursts

for the whole test period.

For one sample, the deflection of the beams over time is shown in Fig. 3.7

b). The measurements were done from the SEM images, and thus pixel

counts were converted into distance measures. The beams initially did not

move under an increasing load, i.e. tip displacement remained constant for

some time, which indicated the sample was absorbing the energy. The bend-
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Figure 3.7: Data analysis of a SiC 6H DCB sample, which was open along the
(0001) plane, where the crack within the sample was driven forward by driving
a wedge into the sample [1]. a) The displacement profile of the loading wedge
with respect to time. b) The beam displacement with respect to time, which
shows displacement of the left beam and the right beam independently. c) Crack
length measured from the nucleation point of the sample, with respect to time.
A fit through the crack length was used for the fracture energy calculations. The
period in which crack growth was measured is marked with grey coloured dashed
lines in a), b), and c). In particular, this data is from sample 3, S3 as labelled in
the text and other figures.
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Figure 3.8: Fracture energies of the SiC 6H (0001) surface, which were obtained
through loading of DCB samples [1]. a) The displacement profile of the loading
wedge for each of the four DCB samples, labelled S1 to S4. SEM images were
taken and the crack length was extracted. A fit of the crack length was used to
compute the fracture energy, which is shown in b).
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ing started at around 200 s and continued for 100 s, during which the crack

grew linearly.

The fracture energy measurements were performed during the linear dis-

placement period of the beams. The fracture paths of the DCBs in the SEM

images showed a linear crack propagation with a sharp tip, and so no plastic

deformation was expected [1]. These measurements were taken at a distance

well away from the notch, and it is expected that the energy would not be

affected by the crack initiation process or ion penetration damage which is

found to be <100 nm from the surface [116, 117].

For each frame during the crack growth period the crack length was

measured. The crack length, as shown for one sample in Fig. 3.7 c), jolts

in small increments. Over a period of roughly 10 s the jolts are relatively

small compared to the total time period of almost approximately 200 s. The

crack tip data was fitted to a third-order polynomial to reduce noise for

the fracture energy calculation. The fracture energy was computed using

the smoothed crack length data. The Poisson’s ratio and elastic modulus

were calculated from Landolt-Börnstein values for the (0001) plane [1]. The

fracture energy was then calculated for each sample. The average fracture

energy was (5.95± 1.79) J m−2. The energies are shown in Fig. 3.9, alongside

the DFT results and previous literature. The experimental fracture energy

values are also summarised in Table 3.5.

The stability of the crack was demonstrated by holding the wedge for

5 min, which showed no advancement of the crack tip. Only when the tip

was further displaced into the sample did the crack tip progress.

The fracture toughness, Kc, was also calculated. The Poisson’s ratio

was computed to be 0.08 [1]. Thus, the difference in the effective Young’s

modulus between the plane stress and the plane strain cases is small. There-

fore, the plane stress case was used to compute the fracture toughness. The

average fracture toughness was found to be (1.80± 0.26) MPa
√

m [1].

3.4.2 Computational

Molecular Dynamics Simulation

The results of the MD simulations show a brittle response in a thin strip

geometry, as shown in Fig. 3.10, which agrees with experimental results [1].

While the potential was adequately able to capture the dynamics for a pure
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Figure 3.9: Fracture energies, Gc, of the SiC 6H (0001) surface, obtained from
microscale tests of loading a DCB; four samples are shown labelled S1 to S4 [1].
Twice the surface energies values, 2γ, from DFT simulations, of two exchange cor-
relations, PBE and LDA [1]. Fracture energies from macroscopic tests in literature
by McColm [118] and Henshall et al. [119], labelled L1 and L2 respectively.

crystal, the potential is not expected to be transferable, e.g. to a system with

environmental chemistry such as stress corrosion cracking.

The system was considered to be large enough to be self-thermostatic,

as the temperature throughout the simulation was monitored and found to

roughly maintain 300 K, and thus it did not require an external thermostat.

The surface energy with the Tersoff potential of two surfaces gives 2γ =

3.7 J m−2. The Young’s modulus was computed to be 509.0 GPa and the

Poisson ratio was 0.047. The fracture toughness, using the plane stress case

for the effective Young’s modulus, was calculated to be 1.37 MPa
√

m.

Simple MD was found to be adequate for simulating brittle fracture in

SiC. However, it did not provide accurate quantitative values on the process

or structure. Instead, DFT was used to provide more accurate energies, at

a cost of reduced simulation size and reduced timescales.

Surface Passivation

Exposure of the surfaces to an atmosphere can lead to the surface react-

ing and becoming passive, which reduces the surface energy. The effects

of surface passivation were considered by passivating the silicon-rich and

carbon-rich surfaces with hydrogen.

The surface energy was calculated using two methods: the standard
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(a)

(b)

(c)

Figure 3.10: Frames taken from a SiC 6H MD crack simulation, with the times
at a) 200 fs, b) 1600 fs, and c) 4000 fs. The system had an approximate height of
90 Å and an approximate length of 290 Å. The slab had a cleavage plane along the
(0001) plane, and it was modelled with the screened Tersoff potential [47], near
300 K within the NVE ensemble using velocity Verlet dynamics. The dynamics
showed a brittle response as seen in the experiments by Sernicola et al. [1].
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Polytype Method
Environmental 2γ

Passivation [J m−2]

3C* Isolated 4.55
3C Isolated 8.42

6H Standard 7.68
6H Standard Yes -

6H Isolated 7.26
6H Isolated Yes 0.35

Table 3.2: Surface energy values for two surfaces, 2γ, from DFT using the PBE
exchange correlation functional, for the SiC 3C (111) surface and SiC 6H (0001)
surface. Two methods to obtain the surface energy were used: the standard
method, where the surface energy is an average surface energy across both surfaces
in a slab system; and the isolated method, where the surface energy was computed
for individual surfaces in a slab system. For the standard method, 2γ is simply
two times the standard surface energy. For the isolated method, 2γ was computed
as the sum of the two isolated surface energies. For each method, the surfaces
were also passivated with hydrogen. The 3C surface energy of 4.55 J m−2, labelled
3C*, was computed by Abavare et al. [110].

method, where the surface energy is an average surface energy across both

surfaces in a slab system; and the isolated method, where the surface energy

was computed for individual surfaces in a slab system. Since two surfaces

are created during fracture propagation, twice the surface energy, 2γ, was

considered. For the standard method, 2γ is simply two times the standard

surface energy. For the isolated method, 2γ was computed as the sum of the

two isolated surface energies. For each method, the surfaces were then pas-

sivated with hydrogen, in order to computed the passivated surface energies.

The surface energies are summarised in Table 3.2.

Abavare et al. computed the isolated surface energies for the SiC 3C

(111) surfaces. In order to compare the method used by Abavare et al. with

the method used here, the isolated surface energy for the 3C polytype was

calculated with the method used here. It was not possible to reproduce

the 2γ = 4.55 J m−2 obtained by Abavare et al. for the 3C polytype. The

method used here produced a 2γ = 8.42 J m−2. The differences between

the calculation by Abavare et al. and the ones conducted here could be due

to differences in the parameters used in the DFT simulations, such as the

exchange correlation functions and the pseudopotentials. However, alternate
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studies showed similar energies for the 3C polytype compared to the values

reported here, giving reassurance on this method [47, 108].

Twice the isolated surface energy of 2γ = 7.26 J m−2 was found to be in

good agreement with twice the standard surface energy of 2γ = 7.68 J m−2.

This agreement shows that the isolated method works and that it is reas-

onably accurate for calculating the surface energies of individual isolated

surfaces. This gives confidence that the method can be used for calculating

the surface energy of environmentally passivated isolated surfaces. Environ-

mental passivation of the systems yielded significantly lower surface energies

compared to the non-passivated surface energies. For the standard method,

the difference in the systems’ energies was smaller than the achieved en-

ergy convergence tolerance. In other words, the energies were not converged

enough to produce a sensible result. Therefore, this result was excluded from

the comparison. The environmental passivation of the isolated systems found

a 2γ = 0.35 J m−2. This is significantly lower than that of non-passivated

surfaces. A surface energy at this value would significantly lower the fracture

energy. This would allow the crack to propagate much more easily compared

to propagation near non-passivated surfaces.

Surface Termination

When creating a surface in the [0001] direction, the stacking sequence of the

6H crystal gives rise to three inequivalent terminations. The surface ener-

gies for each plane, for two exchange correlations are tabulated in Table. 3.3.

The mean surface energy and its standard error for two surfaces, for the

LDA exchange correlation is 2γ = (8.58± 0.04) J m−2 and for the PBE ex-

change correlation is 2γ = (7.71± 0.04) J m−2. The three planes are close to

degenerate in regards to the surface energy, and both exchange correlation

functionals have a standard error less than 0.05 J m−2.

Temperature Effects

The effects of temperature were calculated using empirical force fields to cal-

culate the temperature dependent contributions to the ground state surface

energy using the frozen phonon method. Results from both the harmonic

approximation and quasi-harmonic approximation, for each potential, are

shown in Fig. 3.11. There was less than 4 % decrease at 1000 K compared to
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Termination
2γ [J m−2]

LDA PBE

a 8.51 7.65
b 8.68 7.81
c 8.55 7.68

Mean 8.58 7.71
Standard Error 0.04 0.04

Table 3.3: DFT surface energy values for two surfaces 2γ for the SiC 6H (0001)
surface, of two exchange correlation functionals LDA and PBE. Due to the SiC
6H stacking sequence, there are three inequivalent termination surfaces, that can
arise when creating a surface in the [0001] direction. The mean surface energy
and its standard error are also tabulated.

the zero temperature surface energy and thus a marginal decrease at 300 K.

This is a smaller change in the surface free energy than what Leung et al.

reported for the 3C polytype [108].

While computing a DFT-level accurate free energy would be possible [101],

the results of the empirical force fields show that there was not a significant

decrease in the surface energy at 300 K and therefore there is unlikely to be

a significant decrease with DFT. Thus, for this work, the temperature of the

system was expected to only have a marginal effect on the surface energy.

Surface Energy

The computed surface energy for two surfaces was 2γ = (8.15± 0.44) J m−2.

This is an average of the two DFT results across the two exchange correl-

ations. The error estimate includes: a deviation of ±0.43 J m−2 between

the two exchange correlations, an uncertainty of ±0.04 J m−2 in the exact

termination surface, and a numerical convergence error of ±0.1 J m−2. The

error shown here is an underestimate of the actual error that could be pos-

sible with a DFT based result. Different exchange correlation functionals

will likely give different energies. The aggregate error from testing many of

them would lead to a better error estimate. The MM accuracy temperature

effects could not be added to the DFT calculated surface energy. DFT ac-

curacy temperature effects is possible and would provide another source of

error.
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Figure 3.11: Finite temperature surface energies for two surfaces, 2γ, for the SiC
6H (0001) surface, which was computed via the frozen phonon method. The sys-
tems were modelled with empirical potentials, which were a) the Tersoff screened
potential, and b) the Erhart and Albe screened potential [47]. The zero tem-
perature surface energy, along with the the harmonic and the quasi-harmonic
approximations of the surface energy are shown.
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Method Polytype Description
Lattice Constant

Reference
a
[
Å
]

c
[
Å
]

DFT 6H LDA 3.05 15.02 [1]
DFT 6H PBE 3.09 15.19 [1]
DFT 3C LDA 4.34 [47]

MM 6H Tersoff S. 3.06 14.97
MM 3C Tersoff S. 4.32 [47]

Table 3.4: Computed lattice constants, a and c, for the SiC 6H unit cell and SiC
3C unit cell. Results from the DFT and MM methods are shown. Tersoff S. is
the Tersoff screened potential. LDA and PBE are the DFT exchange correlation
functionals.

The computational results for twice the surface energy, 2γ, are tabulated

in Table 3.5, and visually shown with the experimental results in Fig. 3.9.

The lattice constants are tabulated in Table 3.4.

Fracture Toughness

The elastic constant matrix was computed for both exchange correlation

functionals, and they were

CLDA =




523.38 104.64 59.32 0.01 0.00 1.70

525.15 61.46 0.01 −0.01 0.05

565.24 0.01 −0.01 1.85

166.22 1.00 0.01

164.87 0.00

208.41




±




7.95 2.48 1.86 0.21 0.46 0.58

5.54 1.41 0.93 0.30 0.79

7.68 1.13 1.13 0.69

0.01 0.05 0.42

0.05 0.43

0.59




(3.42)
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and

CPBE =




494.68 92.49 50.79 −0.01 −0.01 1.64

496.17 52.67 0.49 −0.02 −0.07

533.39 −0.14 −0.01 1.62

165.1 1.07 0.18

167.69 0.00

199.99




±




7.91 2.46 1.64 0.31 0.16 0.39

5.68 1.25 0.28 0.20 0.91

7.39 0.79 0.67 0.48

2.31 0.04 0.20

0.05 0.07

0.49




(3.43)

for LDA and PBE respectively. The values are given in GPa and the

matrix after the ± are the errors associated with each component. The

Young’s modulus was calculated for both exchange correlations, and they

were (553.00± 7.21) GPa for LDA and (524.00± 7.02) GPa for PBE.

In this stable fracture growth, Gc = 2γ and thus the fracture toughness,

Kc =
√
GcE ′, was calculated. The Poisson’s ratio was computed and found

to be small, it was 0.094 and 0.086 for LDA and PBE respectively. Thus,

the difference in the effective Young’s modulus between the plane stress and

the plane strain cases was small. Therefore, the plane stress case was used

to compute the fracture toughness. The fracture toughness was calculated

to be Kc = (2.10± 0.08) MPa
√

m. This is similar to the reported value for

the polytype 3C, a Kc = 2.0 MPa
√

m, by Leung et al. [120]. The fracture

toughness values are displayed in Table 3.5.

3.4.3 Discussion: Experimental and Computational

This section compares the methods and results obtained from the in situ

fracture experiments with that of the computational surface energy calcula-

tions.

The experimental fracture energy, Gc, is lower than that of twice the com-

putational surface energy, 2γ, (5.95± 1.79) J m−2 and (8.15± 0.44) J m−2 re-

spectively. The DFT based error is an underestimate as it only includes a
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Method Polytype Description
2γ or Gc Kc Reference[

J m−2
]

[MPa
√

m]

Experiment 6H Microscale 5.95± 1.79 1.80± 0.26 [1]
Experiment 6H Macroscale 16–25 3.3± 0.2 [118, 119, 121]

DFT 6H LDA 8.58± 0.04 2.18± 0.03 [1]
DFT 6H PBE 7.71± 0.04 2.01± 0.03 [1]
DFT 6H Combined 8.51± 0.44 2.10± 0.08 [1]
DFT 3C LDA 8.34 [47]
DFT 3C PBE 8.40 2.00 [108]

MM 6H Tersoff S. 3.71 1.37
MM 3C Tersoff S. 3.70 1.36
MM 3C Tersoff S. 3.70 [47]

Table 3.5: Fracture energy, Gc, twice the surface energy, 2γ, and fracture tough-
ness, Kc, of the SiC 6H (0001) surface and the equivalent SiC 3C (111) surface.
Results from different experimental methods and different computational methods
are shown. Tersoff S. is the Tersoff screened potential. LDA and PBE are the
DFT exchange correlation functionals.

few sources. Further sources of error could arise from the slight asymmet-

rical loading seen in the experiments and stress due to surrounding material

which was not present as strain or stress in the computational cells.

Growth of a crack due to corrosion is referred to as stress-corrosion crack-

ing. The process of corrosion takes finite time. In the case of brittle fracture,

fracture propagation is relatively fast, and thus it is unlikely that there would

be sufficient time for the reaction to take place and effect further propaga-

tion or play a significant role. The experimental chamber was not expected

to have a significant concentration of hydrogen, due to the vacuum required

for SEM studies. To confirm the lack of hydrogen and dismiss a slower

process of stress-corrosion, the loading wedge was held still for up to five

minutes and no observable increase in the crack length was observed. Thus,

no stress-corrosion cracking was observed.

The closely related 3C polytype is known to have some surface recon-

structions in the presence of additional molecules such as H2 or O2. For

surface reconstruction to affect the fracture energy it must occur near in-

stantaneously, i.e. the barrier to creation should be much smaller than kBT .

However, due to the lack of environmental particles in the experimental

chamber, as well as surface geometry optimisations showing no reconstruc-
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tions, the surface energy is taken to be that of the as-cleaved surface.

Furthermore, upon resuming the displacement of the loading wedge, there

was no significant change to the fracture energy. Therefore, the effects of

hydrogen termination, or surface reconstruction, are not relevant and can

be dismissed as the energies are significantly lower than that of the fracture

energy measured from the experiments or the computational results.

The effects of temperature on the computational system were marginal.

If appropriate DFT studies were performed, the difference due to temperat-

ure would likely be of a similar magnitude and account for a few percentage

drop of the surface energy. The change in the surface energy due to tem-

perature alone is not enough to be able to match the experiment with the

computational results.

The difference in energies could partly be due to surface imperfections,

which was not considered here. Further work into a fully dynamical fracture

propagation simulation at a quantum-mechanical level may provide further

insight into the bond breaking process revealing further differences which are

not apparent in the static method employed here.

3.5 Conclusion

Fracture propagation of the SiC 6H polytype along the (0001) plane was

performed computationally and experimentally. Fracture energies and sur-

face energies were computed from dynamical experiments and static DFT

computations, respectively.

Fracture experiments and MD fracture simulations showed brittle cleav-

age. The experiment involved in situ wedging of a DCB with a controlled

displacement profile, which showed crack extension over a substantial time.

This resulted in a relative slow and stable crack growth, with extension in

the order of a few micrometres over hundreds of seconds. This allowed the

comparison of the experimentally measured fracture energy to static DFT

calculations of the surface energy. DFT ground state energies were computed

for a slab and bulk system. The DFT calculations also accounted for surface

reconstruction, surface termination, and surface passivation.

The experimental fracture energy is lower than that of twice the compu-

tational surface energy, (5.95± 1.79) J m−2 and (8.15± 0.44) J m−2, respect-

ively. Although not exactly the same, the values shown here are in much

89



greater agreement than previous literature.

The method employed in the experiments improved upon previous studies

of fracture. It allows for the study of fracture at the micro-structural length

scale, which leads towards the possibility of optimisation of materials with

specific boundaries and microstructures. Static DFT calculations produced

similar results. This provides confidence in DFT simulations, as well as

confidence to move investigations towards larger timescales and length scales,

such as simulations of dynamical fracture systems and surface energies of

geometries with interfaces.
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4 Energy Paths for

Crack Propagation

Parts of this chapter are in preparation for publication in the follow-

ing article: Patel, P., Buze, M., Pastewka, L., Braun, J., Ortner, C.

& Kermode, J. R. Atomistic Modelling of Fracture with Nonlinear

Elastic Boundary Conditions (In prep.)

4.1 Introduction

The inherent process of fracture propagation requires an input of energy

into the system in order to overcome the electronic bonding of atoms. A

large enough external load applied to a fractured system will drive the crack

forward [122].

At the continuum scale, Griffith showed that a crack will propagate given

that the strain energy release rate is greater than the energy required to

create the surfaces [6]. However, the discrete nature of atomistic sites within

a material modifies the barrier for fracture propagation. At the continuum

scale the crack tip can be stable for any crack length. At the atomistic scale

the crack tip can not simply advance in a continuous manner. Instead, the

crack tip is stable only at discrete sites, and as such it advances in discrete

steps as bonds ahead of the crack tip are broken. This effect is referred to

as lattice trapping [123, 124]. Within the regime of lattice trapping, these

discrete sites are separated by an energy barrier. The energy barrier to crack

advancement is the minimum energy required to break the bonds ahead of

the crack tip and advance to the next stable site.

Practically all systems have complex energy landscapes, with many local

minima and saddle points across the landscape. Further complexity can

arise when considering the temperature, pressure, interaction environments,
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etc. Thermal excitations can cause a crack system to overcome the barrier.

Environmental conditions can modify the barrier, such as oxygen molecules

inducing stress corrosion cracking in silicon [63].

A previous study on silicon required a method using two modelling tech-

niques of different length scales to accurately predict lattice trapping [125].

In this chapter two approaches to obtain energy barriers and explore the lat-

tice trapping range are described. Here, single scale atomistic methods are

developed in an attempt to reduce the complexity and simplify the process

to investigate lattice trapping. The methods compute ground state ener-

gies with the use of interatomic potentials. The ground state energy is used

because the results can be considered as the minimum energy required for

fracture propagation. The idea is that future work could be performed with

more accurate ground state energy methods, such as DFT, to provide de-

tails of the energy landscape. Temperature effects could also be investigated,

with the use of kinetic Monte Carlo (KMC) methods using the barriers to

simulate larger timescales [126].

4.2 Background

4.2.1 Energy Barriers

A system under internal or external forces can undergo a change, which

causes the system to go from one stable state to another. A system typically

sits in one energy minimum, the additional energy moves the system into

another minimum. The energy required to move from one minimum to

another minimum is the energy barrier. The reverse process is sometimes

called the healing barrier. A schematic of the energy profile is shown in

Fig. 4.1.

The critical points of an energy path are the energy barrier, Eb; the

difference in energy minima, ∆E; and the healing barrier, Eh. These are

given by

Eb = Es − Em1 , (4.1)

∆E = Em1 − Em2 , (4.2)

Eh = Es − Em2 , (4.3)
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Figure 4.1: Schematic of an energy profile with respect to a reaction coordinate.
The minima, Em1 and Em2 , and the saddle point, Es, of the energy profile are
labelled. The energy barrier, Eb, is the minimum amount of energy required to
move the system into the next minimum and is defined as Es−Em1 . The difference
in energy minima, ∆E, is defined as Em1−Em2 . The healing barrier, Eh, is defined
as Es − Em2 .

where Em1 and Em2 are the initial and final state minima; and Es is the

saddle point of the energy profile. The energy barrier represents the min-

imum amount of energy required to transition into the next minimum, with

respect to a reaction coordinate or collective variable. A reaction coordin-

ate, or collective variable, represents the system as a single variable, and it

helps describe the transition the system undergoes. The difference between

energy minima represents the energy lost, or gained, by the system during

the transition.

Em1 and Em2 are the minimum energy of the system at which atoms at the

crack tip can be considered bonded and unbonded, respectively. Therefore,

Eb is the minimum input energy required to allow the system to transition

into its next minimum, i.e. minimum energy required to break the bond.

For a sufficiently large system under load at the critical stress intensity

factor, Kc, the minima in the energy barrier profile to progress a crack are

equal in energy. This signifies that within the system there is translational

symmetry regarding fracture propagation.

93



Figure 4.2: Schematic of the lattice trapping range [124]. Multiple energy profiles
as a function of crack advancement for different K values are shown. For high K,
K > K+, the cracked state is globally stable and the crack opens. For low K,
K < K−, the uncracked state is globally stable and the crack closes. At K = Kc

the states are of equal energy and is separated by a finite barrier.

4.2.2 Lattice Trapping

Griffith’s criteria demonstrates that there exists a critical stress intensity

factor, Kc, for which the crack system is stable. As such, for K < Kc the

crack retreats and for K > Kc the crack advances, where K is the stress

intensity factor of the system. However, Griffith’s approach applies to the

continuum description of fracture where the crack can continuously advance

through the material.

Fracture systems with an atomistic description have atoms at particular,

discrete sites. Bulk materials are periodic in nature; thus, crack advancement

can be considered as advancing through a grid of discrete points. This gives

rise to a range of stress intensity factors for which the system is stable [123].

This effect is known as lattice trapping. The system gets trapped, which

results in no advancement until enough energy is provided. The range for
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which K is trapped is represented as

K− < Kc < K+, (4.4)

where K− and K+ are the lower and upper bounds respectively. Beyond the

trapping range, for K < K− the system retracts and for K > K+ the system

advances [124]. A schematic of the energy profiles of a system at different

K values is shown in Fig. 4.2. Since the lattice trapping range arises from

the periodicity of the the potential, the potential itself affects the range.

For short ranged potentials the lattice trapping range is larger than those of

longer ranged potentials [124]. The lattice trapping for fracture is analogous

to the Peierls barriers for dislocations [127].

4.2.3 Pseudo Arc-length Continuation Method

The energy landscape of a fractured system is complex, with many min-

ima and saddle points. It is possible to obtain the configurations of these

stationary points without the need to simulate overcoming energy barriers.

The solutions to a system of nonlinear equations can often not be found

analytically. Instead, numerical approaches are used to compute solutions.

Here, a numerical continuation method is used to compute the family of

solutions of the system, the method is known as the pseudo arc-length con-

tinuation method. An overview of the scheme is outlined below [128, 129]. A

schematic of the pseudo arc-length continuation scheme is shown in Fig. 4.3.

Consider a system of nonlinear equations, G(x), with solutions of the

form

G(x∗) = 0, (4.5)

where G : RN and is sufficiently smooth; x is a vector of length N ; and x∗

is a solution. Computing the solutions to G can be complicated and can be

simplified via the introduction of a real parameter, λ, which forms a system of

parameter-dependent, or parametrised, nonlinear equations. Subsequently,

the solutions to G are of the form

G(x∗, λ∗) = 0, (4.6)

where (x∗, λ∗) is a solution. It can be shown that if (x∗, λ∗) is a solution then
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Figure 4.3: Schematic of the pseudo arc-length continuation method [128]. Sup-
pose (x0, λ0) is a solution to the nonlinear system of equations, G(x). It is possible
to find a nearby solution (x1, λ1). Computing the direction vector, (ẋ0, λ̇0), and
taking a step, ∆s, in the direction of the direction vector achieves an approxim-
ation to (x1, λ1). The approximation is then iteratively solved to find the actual
solution (x1, λ1).

there exists a unique solution family that pass through (x∗, λ∗) [128].

Suppose a solution, (x0, λ0), to G = 0 is already computed. To perform

a continuation method a direction vector is required. A natural continu-

ation method can be used to find more solutions of G. However, there are

several issues with this method, one of which is that it fails to continue at

limit points [129], which are also known as fold bifurcations [130]. A fold

bifurcation is when a stable solution and unstable solution collide and dis-

appear [130]. This occurs when the solutions cross over from being stable to

unstable and from unstable to stable; the overlap is the fold bifurcation.

In the context of this work fold bifurcations were expected [131, 132].

This is due to the periodic nature of the lattice and thus the periodic nature

of the real parameter that is chosen, K. For a sufficiently large system,

the lattice trapping range does not vary as the crack advances, and thus

K remains within a bounded region. This results in folds within the set of

solutions, and thus overlapping sets of solutions in K space, of the nonlinear

system of equations. Therefore, the solutions remain bounded with respect to

K space. The pseudo arc-length continuation method is used as it overcomes

some shortcomings of the natural continuation method [129].

Consider parametrising the solution with an arc-length parameter, s, and
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an arc-length condition

∣∣∣∣ẋn
∣∣∣∣2 +

∣∣∣∣λ̇n
∣∣∣∣2 − 1 = 0, (4.7)

where ẋ and λ̇ are the derivatives with respect to s of x and λ respect-

ively [129]. The index n denotes the iteration step. The derivative of

G(x, λ) = 0 with respect to the arc-length parameter is

d

ds
G(xn, λn) = Gxnẋn + λ̇nGλn = 0, (4.8)

where the subscript, x or λ, on G denotes the partial derivative of G with

respect to that subscript at the location of (xn, λn). The derivatives ẋ and

λ̇ can then be written as

ẋn = −G−1
xnGλnλ̇n, (4.9)

λ̇n = ± 1√∣∣∣∣G−1
xnGλn

∣∣∣∣2 + 1
. (4.10)

This forms the first direction vector, i.e. when n = 0.

The pseudo arc-length continuation method solves the following equa-

tions

G(xn, λn) = 0, (4.11)

(xn − xn−1)∗ẋn−1 + (λn − λn−1)λ̇n−1 −∆s = 0, (4.12)

for n > 1. This is solved using Newton’s method, such that

(
Gxn Gλn

ẋTn−1 λ̇n−1

)(
∆xn

∆λn

)
= −

(
G(xn, λn)

(xn − xn−1)∗ẋn−1 + (λn − λn−1)λ̇n−1 −∆s

)
,

(4.13)

where ∆s can be considered as the step size. Since xn and λn are required,

they are first estimated using

xn ≈ xn,k=0 = xn−1 + ẋn−1∆s, (4.14)

λn ≈ λn,k=0 = λn−1 + λ̇n−1∆s, (4.15)

where (xn,0, λn,0) is the approximate solution, and k is the Newton’s method
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iteration step. The arc length system of equations, Eq. 4.13, is then solved

iteratively to find (xn, λn). The estimates xn,k and λn,k are updated for each

iteration by adding ∆xn,k and ∆λn,k to the respective estimate. The iterative

algorithm is considered converged when all components of the gradient of

the right-hand-side of Eq. 4.13 are below a tolerance. Once converged, this

Newton minimisation gives the solution (xn, λn).

For n > 1 the direction vector, (ẋn, λ̇n), can be obtained via a computa-

tionally cheaper method, by solving

(
Gxn Gλn

ẋTn−1 λ̇n−1

)(
ẋn

λ̇n

)
=

(
0

1

)
(4.16)

which is formed by the derivative of G and the arc length condition [128].

This can not be used to compute the first, n = 0, direction vector since it

requires the previous, n − 1, direction vector. The direction vector is then

used to estimate the next solution using Eq. 4.14 and Eq. 4.15. The estim-

ates are then used to start solving Eq. 4.13, for which the actual solution

is computed iteratively. The process using Eq. 4.16 can be repeated for all

n > 1. This algorithm forms the basis of the pseudo arc-length continu-

ation method. Given an initial starting solution, repeating the continuation

scheme for many steps produces the stationary solutions to the given system

of equations.

4.2.4 Hausdoff Distance

The Hausdoff distance, dH, is a measure of how far two sets, X and Y , are

from each other; in other words, it is measure of how similar, or dissimilar,

the sets are [133]. The directed Hausdoff distance, dH̄, is defined as

dH̄(X, Y ) = max
x∈X

{
min
y∈Y
{d(x, y)}

}
, (4.17)

where d(x, y) is the Euclidean distance, which is defined as

d(x, y) =

√√√√
n∑

i=1

(xi − yi)2. (4.18)

98



The Hausdoff distance is then defined as

dH = max
{
dH̄(X, Y ), dH̄(Y,X)

}
. (4.19)

Here, the Hausdoff distance was used as a measure to determine how similar

one continuation path is to another.

4.3 Methodology

Two different approaches were used to compute the energy barrier of break-

ing a single bond ahead of the crack tip. The first approach constrained the

bond at various lengths, that were expected as the bond went from a bonded

to an unbonded state. The energy of the atoms that formed the bond were

computed at each length to form an energy profile. The stationary points

were calculated, to then obtain the energy barrier. The second approach

computed the family of stationary points of the system. The energy barrier

was then computed using the stationary points.

4.3.1 Static and Flexible Boundaries

The energy barrier to break the next bond along in the direction of the

advancement of the crack was computed on a fractured diamond-structured

carbon lattice using a constrained bond approach. In a fracture system, the

bond nearest to the crack tip along the crack advancement direction was

constrained at various lengths, and then the energy profile was calculated.

The screened Tersoff potential was used to model the system as it is known

to provide an accurate description of diamond-structured carbon [47].

A carbon crystal of diamond cubic structure was made by repeating the

unit cell. The crystal was then orientated to expose (111) surfaces when

fractured. The elastic constant matrix was computed, from which the Pois-

son’s ratio, ν, and the Young’s modulus, E, were extracted. Twice the

ground state surface energy, 2γ, of the (111) cleavage plane was computed.

The critical stress intensity factor, Kc, was computed using Kc =
√
GcE ′,

where Gc = 2γ. The CLE displacements were generated using ν, E, and Kc,

and the displacements were applied to the bulk system which created the

fractured system. A visualisation of the system is shown in Fig. 4.4. The
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boundary of the system was formed of a region of atoms with a width ap-

proximately 4.4 Å measured inwards from the outer edge. The atoms within

the boundary region are spatially clamped. The system was then energy

minimised to obtain a stable crack configuration.

The next bond, and the corresponding pair of atoms, along the crack

advancement direction was found. The separation distance of the atom pair

is what was constrained during the procedure. The energy barrier was com-

puted by constraining the separation length, si, for a set, S, of varying mag-

nitudes to obtain the energy profile. The bond length of a carbon-carbon

pair in a ground state crystal system, using the Tersoff potential, was ap-

proximately 1.7 Å. The set of separations, S, had a range of 1.6 Å to 3.2 Å,

which translates to approximately 95 % to 188 % of the relaxed bond length.

The potential energy, E, between the atom pair over S can be computed

by integrating the force, F , over the separation distance, and this is given

by

E(s) = −
∫ sfinal

sinitial

F (s) ds, (4.20)

where sinitial and sfinal are the initial and final separation magnitudes, re-

spectively.

The energy profile was computed for two cases: the static boundary case,

where the boundary atoms remains fixed for each constraint; and the flexible

boundary case, where the boundary atoms are spatially adjusted for each

constraint.

Static Boundary

For each constraint, si, the atoms of the selected bond were initially placed

to satisfy the constraint. The system was then minimised while maintaining

this constraint. The minimisation was performed with the LBFGS method.

The forces on this atom pair were calculated. The process was repeated

for each separation length. Then the integral of the forces was calculated

to obtain the energy. The boundary of this approach remains fixed for all

constraints and minimisations. This will be referred as the static boundary

case.
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Figure 4.4: A mode I fractured diamond-structured carbon system, which is open
along the (111) plane. The size of the system is approximately 20 Å by 30 Å or the
system has a radial size of approximately 10 Å. The pair of atoms that form the
bond ahead of the crack tip are highlighted in blue. These atoms were constrained
at multiple distances to be able to compute the energy profile and thus the energy
barrier of the process of breaking a single bond.

Flexible Boundary

A variation to the static boundary was also computed. Here, the boundary

was adjusted for each separation length, compared to the static boundary

case where the boundary remained fixed. The idea here is that a moving

boundary better simulates the advancement of the crack tip. This was ex-

pected to result in a faster size convergence when compared to the static

case, especially for small systems.

For each constraint, si, the atoms were initially placed to satisfy the con-

straint. The system was then minimised while maintaining the constraint.

The minimisation was performed with the LBFGS method. The minim-

isation caused the abstract crack tip to move. A change in the crack tip

suggests that the crack is receding or advancing. This causes extra strain

on surrounding atoms which may not be present in larger systems. Thus,

to reduce this extra strain, the boundary was updated self-consistently via

a fit of the crack tip. The crack tip was fitted using a least squares fit

between the actual displacements and a new set of CLE displacements. The

fit minimises the difference between a new set of CLE displacements with a

new crack tip and the target displacements. The boundary was updated in

an iterative approach. First, a crack tip position was fitted to the minim-

ised constrained configuration. The boundary of the minimised constrained
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configuration was adjusted such that it matched the boundary of the fitted

CLE displacements. The process was repeated until the difference between

the current fitted crack tip and the fitted crack tip of the last iteration was

below a tolerance.

The whole process was repeated for each separation length. The integral

of the forces was calculated to obtain the energy. This will be referred as

the flexible boundary case.

Energy Barrier

Once the potential energy profile was computed the barrier was extracted.

A seventh order polynomial was fitted to the energy points; seventh order

polynomials were found to best match the energy profiles. The high order of

the polynomial allowed enough degrees of freedom to ensure: that the values

of minima and saddle points were satisfied; and that the gradients were also

satisfied.

The critical points were computed, and the local minima, Em, and saddle

point, Es, were found. The energy barrier, Eb, and change in the energy

minima, ∆E, were calculated.

Varying Stress Intensity Factor

The procedures of computing the energy profile for breaking a single bond

along the crack advancement direction was repeated for a range of stress

intensity factors. Increasing the stress intensity factor, K, and computing

the energy barrier should reveal the load at which the barrier goes to zero,

K+.

In theory, K± are points along a continuous range of K. In practice, it

is only possible to compute with discrete values of K. This led to unusable

energy profiles. For K > K+ or K < K−, i.e. the load being too high or

too low, multiple bonds can break, or heal. At K = K+ or K = K− there

is only one minimum and thus no saddle point to be found between the two

minima. As K approaches K+ or K− from within the lattice trapping range,

one of the minima and the saddle point turn into inflection points at K+ and

K−. In other words, for K+ the energy barrier is zero and the healing barrier

exists, and for K− the reverse is true. Further issues arise, for K close to K±

and beyond the lattice trapping range, i.e. K + ε > K+ and K − ε < K−,
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Figure 4.5: The critical points for different energy paths, for breaking a single
bond ahead of the crack tip are shown. The critical points were computed by
finding the stationary solutions to a seventh order polynomial which was fitted to
the energy profiles. The first minimum, m1, the saddle point, s, and the second
minimum, m2, are coloured blue, orange, and green respectively. The energy
profiles, coloured grey, are of a bond breaking process in a fracture system of
diamond-structured carbon which was open along the (111) plane. The system
had a size of approximately 20 Å by 30 Å and was periodic in the third dimension.
It was modelled with the Tersoff potential. The different curves are for different
stress intensity factors, which are labelled normalised with respect to Kc, where
Kc is the critical stress intensity factor computed via surface energy calculations.

where ε is small. The inflection point is shifted, in comparison to K+ and

K−, or simply cease to exist.

Profiles that had multiple broken, or healed, bonds were removed, since

the energy profile of a single bond is the target of this method. Profiles that

exhibited the other issues were filtered out, as it was not possible to obtain

reliable stationary points. Smaller increments, or decrements, of K would

increase the number of reliable profiles and help to further explore the lattice

trapping range; however, this would increase the computational cost.

Each suitable profile was fitted with a seventh order polynomial to ob-

tained the energy barriers. The stationary points of the suitable energy

profiles were calculated. The energy barrier, Eb, and the change in energy

103



minima, ∆E, were calculated for each energy profile, i.e. for several K val-

ues. The set of energy barriers essentially gives the energy barrier of the

system as a function of the stress intensity factor, Eb(K). Example profiles

and stationary points are shown in Fig. 4.5.

The solution at which Eb(K) = 0 is K ′+. The prime superscript is used to

denote the value of K obtained via the energy profiles. Similarly, the solution

at which ∆E(K) = 0 is K ′c. The prime superscript is used to distinguish

between the value of K obtained via the energy profiles compared to the

non-prime Kc which is computed via surface energy calculations. In theory

K ′c = Kc. ∆E(K) was fit with a linear function, and Eb(K) was fit with

a quadratic function; their respective solutions were then computed. For

the quadratic case the relevant solution was chosen. K ′+ existed beyond the

range of calculated K values, and thus the K ′+ was an extrapolated value.

System Size Convergence

As with any simulation with a finite system size, a convergence test of the

property of interest with respect to system size is crucial, and it is particu-

larly important given the long range stress fields found in fractured systems.

The objective is to identify the minimum system size required for a precise

calculation without excessive computation. Here, the convergence of the

energy barrier and difference in the energy of the minima were calculated.

Since the energy was computed from the force on the atom pair alone,

the energy could be compared across system sizes, regardless to the changing

number of atoms across different systems size or varying boundaries. The

energy barrier of breaking a single bond is a local property. This is in contrast

to methods which compare total energy, in which the number of atoms need

to be accounted for. Systems with varying boundaries are not comparable

since the total energy varies too much to see small energy changes such as

breakage of a single bond.

Therefore, the computed energy profiles were easily compared across sys-

tem sizes. ∆E(K) was fit using a linear function and Eb(K) was fit using a

quadratic function to find K ′c and K ′+, respectively. This was repeated for

several system sizes.
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4.3.2 Strained Surface Energy

Kc was computed via Kc =
√

2γE ′, where 2γ is twice the surface energy.

The surface energy has been computed on unstrained systems. A fracture

system is under strain, and thus local differences in the strain at the exposed

surface could lead to differences in Kc. Thus, the surface energy as a function

of strain was computed.

To gain a better understanding a simplified model was used. Here, a

2D hexagonal lattice was used. A stable crack system with a radial size of

25 Å was generated, such that the crack tip was stabilised at the centre of

the system. An IBS potential with a cutoff of 1.4 Å was used to model the

system.

Atomistic Strain Components

The Young’s modulus is a measure of the constant of proportionality between

the stress and the strain of a system under uniaxial deformation. Stress is

inherently a continuum concept since it is a force per unit area. However,

Zimmerman et al. showed that it is possible to consider stress as an atomistic

concept [134]. While it is possible to compute atomistic stresses, it is relat-

ively difficult to compute compared to the computation of atomistic strain.

Strain is easier to compute; thus, to gain an understanding on the effect of

uniaxial deformation, the atomistic strain was investigated.

Local atomistic strain components were computed to investigate the

strain profile experienced by atoms as a function of distance from the crack

tip.

The strain tensor was computed by comparing the deformed positions

of the system under uniform strain with the non-deformed positions. The

local strain on each atom is then calculated by minimising the mean-square

difference between the displacements of neighbouring atoms relative to the

atom itself and the relative displacements that they would have if they

were uniformly strained. This process was originally described by Falk and

Langer [135]. The local strain of each atom along the crack surfaces were

computed.
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Strained Surface Energy

The local surface energy as a function of strain along the crack face was

computed. First, the local strain of each atom along the crack surface was

computed as detailed above. For surface energy calculations two systems

are required, the bulk and slab system. A unstrained surface energy was

computed. Then the strained surface energies were computed. Each local

strain value from the crack system was applied to both bulk and slab systems,

where all atoms and the enclosing cell were deformed. The surface energy

as a function of strain was computed. The strain varies as a function of

distance from the crack tip, and as such the surface energy as a function of

strain along the crack surface was computed.

The effect of energy minimisation was also considered. The minimisations

were performed with the FIRE algorithm. An unstrained, energy minimised

surface energy was computed. Then, the bulk system was strained and

then minimised. The minimised bulk system was used to make the surface

system, which was then strained and then minimised. The shape and size

of the cell were not geometrical optimised, in order to maintain the strain

on the system. Only the atomic positions were energy minimised. This was

repeated for all strains along the crack surface.

4.3.3 Pseudo Arc-length Continuation Scheme

The pseudo arc-length continuation method was used to extract configur-

ations of the stationary points of the fracture system. These configura-

tions were then used to compute an energy path for different stress intensity

factors. The method can obtain a family of stationary points and thus obtain

configurations which were within the lattice trapping range K− 6 K 6 K+.

The continuation scheme constantly changes the boundary of the system.

Thus, the commonly calculated fracture system properties such as the strain

and the total energy of a system can no longer be compared across different

system sizes. The energy barriers are somewhat local, i.e. independent from

the boundary, and thus they can be compared and converged with respect

to system size.
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Continuation Path

The continuation method is described in Sec. 4.2.3. In the context of a

fracture system and the stationary points of interest, the nonlinear system

G(x, λ) was formulated to be: G as the gradient of the energy, E, of the

fracture system, i.e. G = ∇E; λ as the stress intensity factor, K; and x as a

modification to the positions of a fracture system, ∆u.

The energy of the system is dependent on the positions of the atoms. A

fracture system with CLE displacements is formed of the lattice positions,

a, and the CLE displacements, uCLE, with the atomic positions written as

a+ uCLE.

Here, K has been introduced as an explicit variable of the energy and

so the energy is now also a function of K. Hence, the CLE displacements

are rewritten as a function of K, uCLE(K). For simplicity of notation, let

uCLE(K) = uK . The atomistic positions of a fractured system with CLE dis-

placements can be written as a+uK , and any modification to those positions

can be written as a+ uK + ∆u.

The solutions to ∇E are of the form

∇E(∆u∗, K∗) = 0, (4.21)

where (∆u∗, K∗) is a solution. Thus, atomistic positions for a solution, which

are the energy minimised positions, will be written as a + uK∗ + ∆u∗. For

simplicity of notation, let the energy minimised displacements be written as

uK∗ + ∆u∗ = ûK .

The continuation path is formed of a set of the solutions of Eq. 4.21.

To test the method, a simple fractured 2D hexagonal lattice was used. The

lattice had an equilibrium bond length of 1.0 Å. The atoms were modelled

using a LJ potential, with a cutoff of 1.4 Å. The unit cell was repeated until

a circular system of a particular radius, with an additional region of two and

a half times the potential cutoff, was generated. The additional region acts

as the clamped boundary, i.e. was fixed during minimisations, to mitigate

finite size and surface effects. The CLE displacements were calculated and

applied to the circular crystal; a schematic diagram is shown in Fig. 4.6.

The stress intensity factor, K, Young’s modulus, E, and Poisson’s ratio, ν,

were computationally chosen to ensure an equilibrated stable crack system,

such that the crack tip is at the centre of the domain. The system was also
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Figure 4.6: A 2D hexagonal lattice, with an equilibrium bond length of 1.0 Å,
which has the CLE displacements applied producing a mode I fracture system.
The pair of atoms that form the bond ahead of the crack tip are highlighted in
blue.

restricted to movement of positions in the x − y plane. The crack tip was

initially positioned halfway between two layers of atoms, i.e. midway along

the vertical bond perpendicular to the crack propagation direction.

The continuation path was calculated. The pseudo arc-length procedure

was repeated for many iterations to obtain several families of stationary

points such that the periodic nature of the path could be seen. To compute

an energy barrier a minimum of a set of stable, unstable, and stable segments

are required. A visualisation of a path is shown in Fig. 4.7, with the solid

lines representing the stable solutions and the dashed lines representing the

unstable solutions. The system undergoes a fold bifurcation as it transitions

from the stable segment to the unstable segment, and similarly from the

unstable segment to the stable segment.

The stable segment corresponds to the range of K at which the system

is at an energy minimum. The unstable segment corresponds to the range

of K at which the system is at a saddle point in the energy landscape. The

fold bifurcation characterises that the different segments overlap one another

in the K dimension. Thus for a particular K, the points on the stable and

unstable segments represent the energy landscape for fracture propagation

for a given load applied to the system.

For each step, i.e. computation of a new solution, in the continuation path

a crack tip was fitted to the corresponding configuration. The fit generated

new sets of displacements while adjusting the tip position to match the

configuration’s displacements. Only atoms within an annular region around
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Figure 4.7: Schematic of a continuation path of a fracture system using the pseudo
arc-length continuation scheme. The stable segment and unstable segment repres-
ents the minima and the saddle points of the system respectively. The system
undergoes a fold bifurcation as it transitions from the stable segment to the un-
stable segment, and similarly from the unstable segment to the stable segment.
Discontinuities near the junction of the stable and unstable segments can exist in
this visualisation as the crack tip position is fitted.

the crack tip position were used. Further description on the fitting of the

crack tip is given in Sec. 4.3.4.

Lattice Trapping

The range of K for which the unstable and stable segments overlap represents

the lattice trapping regimes of fracture propagation. The K at the transition

from a stable segment to an unstable segment is the K+ bound, and the K

at the transition from an unstable segment to a stable segment is the K−

bound. If the extrema of the range of K translates to the K− and K+

properties, then Kc is likely to exist within this range.

The range of stationary solutions of an unstable segment represents the

range of K for which there is a forward, or backward, energy barrier that

involves that particular bond along the crack front. For a given configuration

extracted from the continuation path, any K outside the range of the K− and

K+ of the nearest unstable segment could lead to several bonds breaking, or

healing.
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Extract a Configuration

A configuration’s energy is largely determined by the load applied to the

system. The larger the load, the larger the displacements and thus the

higher the energy. Furthermore, the outer regions of the system contain

more atoms and thus changes to them influence a greater change in energy,

compared to changes within the inner regions.

A bond breaking process near the crack tip leads to small energy differ-

ences between atoms near the crack tip. These differences lead to a small

change in the total energy of the systems. In order to detect these small

energy differences, through computation of the total energy, the boundaries

of the configurations should be the same. This requires a constant K across

the configurations.

In practice, the continuation path was computed on discrete points which

resulted in a finite set of K points. These points were not necessarily the

same across all segments. A configuration within a segment for a particular

K was approximated using a nearby configuration that existed within the

continuation path.

To extract a single configuration with a target K, Kt, along a particular

segment along the continuation path, the configuration with the most similar

K to Kt, Ks, was chosen as a starting point. The changes in the positions

during that configuration’s energy minimisation, ûKs − uKs = ∆u∗Ks
, were

extracted. New CLE displacements were generated usingKt, and the changes

due to minimisation for the Ks system were added on. Thus, the target

configuration’s minimised displacements, ûKt , were approximately

ûKt ≈ uKt + ∆u∗Ks
. (4.22)

This was an adequate approximation, as the step size in the pseudo arc-

length continuation scheme was small.

Energy Barrier

The energy barrier of breaking a single bond was calculated and compared

across the systems.

The energy barrier of a single bond breaking process was extracted from

the continuation path. The stationary solutions represent the local minima
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Figure 4.8: Continuation path of a fracture system using the pseudo arc-length
continuation scheme, coloured orange. For select stress intensity factors, K, the
continuation path is marked with the configurations required to compute the en-
ergy path to break a single bond ahead of the crack tip. The markers denote the
configurations extracted from the continuation path. The lines between the mark-
ers represent configurations between the nodes, which in practice are interpolated.

and the saddle points of the system for different K. In other words, given

a particular K, it represents the key points of the energy landscape that

a crack will propagate through or near. An energy barrier requires two

minima and a saddle point, where the saddle point exists between the two

minima. Thus, three configurations of a particular K were extracted from

the continuation path. The configurations were from a continuous set of

stable-unstable-stable segments.

A schematic of the solutions used to generate the configurations are shown

as nodes in Fig. 4.8, which have been overlaid onto a continuation path.

K ′c is the value of K at which the configurations corresponding to the two

minima are expected to be of equal energy. The prime superscript is used to

distinguish between the value of K obtained via the energy profiles compared

to the non-prime Kc which is computed via surface energy calculations. The

K ′c pathway is shown with nodes marked as circles in Fig. 4.8.

Then, a pathway of configurations was generated. The configurations

extracted from the continuation path form the start, middle, and end of the

pathway. The intermediate configurations were linearly interpolated using

the extracted configurations. A schematic pathway is shown as a solid line

connecting the nodes in Fig. 4.8.
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The energy of each configuration along the path was calculated, which

gave the energy path. A crack tip was also fitted to each configuration.

While the configurations from the continuation path are at their minimal

energies, the interpolated configurations are not minimised before computing

the energy. Thus, the energy pathway can not be considered as a minimal

energy pathway. This approach gave an upper bound on the energy pathway.

The energy barrier, healing barrier, and the energy difference between the

two minima were calculated from the energy pathway, and are noted as Eb,

Eh, and ∆E respectively. The full energy path was not needed to calculate

the barriers. However, inspection of the fully calculated pathway can show

that the path has the expected profile for an energy barrier, as well as provide

overall information about the path.

Energy paths and associated properties were computed for a range of K

values within the interval of K− 6 K 6 K+. A schematic of the expected

K− path and the K+ path are shown in Fig. 4.8, which are labelled as K ′−
and K ′+ respectively. The paths appear to only have two configurations that

have been extracted from the path. However, close to the region where the

segments change from the stable to unstable, and vice versa, the nodes are

very close together and visually overlap one another.

Eh and Eb do not exist for K− and K+ respectively. Near K− the second

minimum is at a higher energy than the first minimum. Near K+ the second

minimum is at a lower energy than the first minimum. Thus, for some K

within the interval of K− 6 K 6 K+ the energy difference between the

minima is zero, ∆E = 0.

K ′c was expected to be near the midway point along the unstable seg-

ment. Since the lattice trapping range does not have to be symmetric, K ′c is

interpolated using nearby pathways. The pathway which crosses the midway

point along the unstable segment is an approximate K ′c, which is hereafter

referred to as K̃ ′c.

The exact K at which the energy difference is zero, K ′c, was linearly

interpolated between the two paths whose ∆E = +ε and ∆E = −ε, where

ε is small. Since the minima at K ′c are equal, then Eh = Eb. Then, similar

to how ∆E was computed, the Eb at K ′c was linearly interpolated from the

closest two paths.
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System Size Convergence

The errors on the system properties were compared to a reference system

with a radial size of 128 Å. The boundary region of this system extended

beyond the given radius, and thus the stated radial sizes are of the region in

which atoms were free to move.

The reference system was initialised with CLE displacements which had

a crack tip in the centre of its domain. The same parameters were used to

generate the displacements for the smaller systems. However, for the smaller

radii systems, the K was not optimal for that particular radius. Thus, the

smaller minimised systems where initialised with crack tips that were not

localised in the centre of their systems. Continuation paths for system sizes

of 8 Å, 16 Å, 32 Å, and 128 Å were computed.

Eb, K ′c, and the bounds K ′± were computed for each system size. The er-

ror computed of these properties were with respect to the respective values

computed on the reference system. The Hausdoff distance was also com-

puted with respect to the reference system; the distance is a measure of the

similarity of the continuation paths.

4.3.4 Fitting the Crack Tip

The crack tip is a point in space, which in general is not located on any

atom. During the construction of a fracture system a crack tip is specified.

It defines the central radial point to form the CLE displacements. During

minimisations or dynamics, the crack propagates through the material. In

order to track its progress the CLE displacements are used to estimate the

new crack tip position as if the system where to be constructed at that

location. A schematic of a fitted crack tip is shown in Fig. 4.9.

Atomistic CLE displacements require: the stress intensity factor, K; the

Young’s modulus, E; the Poisson ratio, ν; and the radial positions and angles

of the atomic positions. The radial positions require a centre point. This

centre point is the crack tip.

As a crack system is minimised, or propagates, a new crack tip is formed.

The fit is a least squares regression which fits a new set of CLE displacements

using a new centre point, i.e. crack tip, onto the target displacements. The

fit was performed on an annular, or radially small, domain of atoms around a

guess of the crack tip. This was done to avoid biases in the fit. The number
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Figure 4.9: An example of a crack system which has advanced from its starting
position, a), to a position further along, b). Here, a 2D hexagonal lattice is
shown. The positions are plotted relative to the centre point used to generate the
CLE displacements. The atoms are coloured grey. The crack tip was fitted by
comparing the system’s displacements to that of similar CLE displacements. The
next bond along the crack advancement direction can be automatically selected.
The bond is coloured purple and labelled next bond. px and py are the components
of the atomic positions in x and y respectively, which are plotted relative to the
position of the crack tip in a).

of atoms scales with r2, and so there are many more atoms at further radii

than radii closer to the centre point. The displacements of those atoms is

also larger compared to those closer to the centre point. These attributes can

skew the fit resulting in a crack tip much further ahead than expected. An

annulus can be used to avoid atoms close to the centre as their displacements

are not so easily captured by the CLE displacements, including these atoms

can lead to skews in the fit.

A propagating crack can cause the guess of the crack tip to move beyond

the region to which the fit was originally performed on. To accommodate

this, the fit was performed twice. The first fit provided a reasonable guess

for the crack tip. The fit domain was updated and centred around the first

guess. The second fit uses the updated domain for the final fit of the crack

tip.
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4.3.5 Initial Stress Intensity Factor

The load required, i.e. the stress intensity factor, K, to initialise a stable

crack system can be computed using surface energy calculations. An altern-

ative approach is through an iterative approach.

The bulk system was generated by repeating the crystal unit cell. A set of

CLE displacements were computed. Atomistic CLE displacements require:

the stress intensity factor, K; the Young’s modulus, E; the Poisson ratio,

ν; and the radial positions and angles of the atomic positions. The radial

positions require a centre point. This centre point is the crack tip.

E and ν are material properties. K and the crack tip are the properties

related to the crack configuration. The stress intensity factor scales the

displacements to produce a wide, or narrow, crack opening. The crack tip

dictates the position of the crack.

Simulation domains are finite in size. To avoid edge effects, large system

sizes are required. Furthermore, the region of interest, such as defects, should

be surrounded by bulk-like material. This is to ensure that the edges do not

interact with the defect itself, as it may alter its behaviour. Since most crack

systems are not periodic in all directions, it is not possible to use common

supercell methods to tackle simulation domain size. Thus, it would be ideal

for the crack tip to be positioned well away from the boundary of the system.

In the geometries used here, the centre of the system was used as the

location for the crack tip. This meant that any boundary effects were equal

on both sides. This was particularly required for small systems, as edge

effects are better mitigated in large systems.

Stabilisation of the crack configuration at the crack tip was performed

using a trial and error approach. The objective was to find a suitable K for

an initial crack tip, such that when the system was energy minimised, the

fitted crack tip position remained approximately equal to the initial crack tip,

given some tolerance. The minimisations were performed with the LBFGS

method.

An initial K was given to determine whether the crack configuration

propagated forwards or backwards. Depending on the outcome, the K value

was modified and a new attempt was made. Once a bounded region of

K existed, the algorithm performed a bisection search within the bounded

values of K to find the K value which satisfied the objective. This value of
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K was then used in the formulation of the CLE displacements for the crack

configuration.

4.4 Results and Discussion

4.4.1 Static and Flexible Boundaries

Energy Barriers

The energy profiles were calculated for several K values around Kc, where Kc

was obtained from computing the surface energy of the crystal. The energy

profiles of a system are shown in Fig. 4.10 with respect to the separation

distance, s, between the atom pair ahead of the crack tip. The energy

barrier, Eb, difference in energy minima, ∆E, were calculated for each of the

profiles. Their values as a function of a normalised stress intensity factor,

K/Kc, are plotted in Fig. 4.10.

The energy profiles and computed energy barriers of Fig. 4.10 show a

clear trend that as the stress intensity factor, K, increases, i.e. with an

increasing load, the energy barrier reduces to zero. The location of the first

minimum shifts in the positive s direction as K increases, as does the second

minimum. The saddle point shifts in the negative s direction. The linear fit

and quadratic fit are suitable for ∆E and Eb, respectively. The fit functions

are shown in Fig. 4.10.

System Size Convergence

For each system size, the fitted functions were used to calculate K ′c and K ′+.

K ′c was calculated at the point where ∆E(K) = 0, and K ′+ was calculated

at the point where Eb(K) = 0. Two models were used: the static boundary

case, where the boundaries were fixed; and the flexible boundary case, where

the boundaries were adjusted to compensate for the moving crack tip. Both

properties and models are shown in Fig. 4.11.

For an infinite system, at the critical stress intensity factor, Kc, where

Kc =
√
GcE ′ =

√
2γE ′, the difference in energy of the minima should be

zero. E ′ is the effective Young’s modulus. The convergence of K ′c with

respect to system size shows: for the static boundary case, this condition is

met close to Kc; and for the flexible boundary case, the condition is not met.
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Figure 4.10: Energy properties for breaking a single bond of a fractured diamond-
structured carbon system, approximately 20 Å by 30 Å and periodic in the third
dimension. It was modelled with the Tersoff potential [47]. The open surfaces
were along the (111) plane. These profiles used the static boundary method. a)
Minimal energy profiles were constructed by computing the energy of the bond
while constraining the separation distance between a pair of atoms which formed
the bond ahead of the crack tip. The energy profiles for several stress intensity
factors, which are shown normalised to Kc, where Kc is the critical stress intensity
factor computed via surface energy calculations. b) Energy barriers, Eb, and the
difference in the energy of the minima, ∆E, of the energy profiles in a) against
the respective normalised K. A linear fit through ∆E and a quadratic fit through
Eb are shown.
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Figure 4.11: Convergence of the critical stress intensity factor, K ′c, and the upper
bound of the lattice trapping range, K ′+, with respect to radial system size, R.
K ′c and K ′+ were computed from energy profiles of breaking a single bond ahead
of the crack tip of a fractured diamond-structured carbon system which was open
along the (111) plane. The atomic interactions were modelled with the Tersoff
potential [47]. The system was modelled with two methods: a) the static boundary
case and b) flexible boundary case. K ′c and K ′+ are shown normalised with respect
to Kc, where Kc is the critical stress intensity factor computed via surface energy
calculations.
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Figure 4.12: Convergence of errors for the critical stress intensity factor, K ′c, and
the upper bound of the lattice trapping range, K ′+, with respect to a reference
system with a radial size of approximately 52 Å. The errors have been normalised
with respect to the value of that property found in the reference system. K ′c
and K ′+ were computed from energy profiles of breaking a single bond ahead of
the crack tip of a fractured diamond-structured carbon system which was open
along the (111) plane. The atomic interactions were modelled with the Tersoff
potential [47]. The system was modelled with two methods: a) the static boundary
case and b) flexible boundary case. R is the radial size of the system.
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Conceptually the flexible boundary case should be a more realistic model of

a fracture system. The boundary was updated to take into account that the

surrounding atoms should be displaced further as the crack tip progresses.

The finite system size and boundary edge effects may have skewed the energy

of the minima compared to larger systems.

The errors of these properties with respect to a reference system is shown

in Fig. 4.12. The errors have been normalised with respect to the values

obtained from the reference system, which had a radial size of approximately

52 Å. K ′c decays in both boundary methods. The upper bound of K ′+ decays,

however the values themselves are less consistent compared to K ′c. Thus, the

decay of K ′+ is questionable, particularly for the static boundary case. K ′+
for the flexible boundary case is more consistent; however, the reference

system does not resemble an infinite system as K ′c does not equal Kc. In

other words, it is not converging to the expected theoretical value.

Kc was computed via Kc =
√

2γE ′, and so the errors could arise from the

surface energy or the Young’s modulus components. The Tersoff screened

potential does accurately describe diamond-structured carbon [47], and so a

qualitative description of a fracture system in MM could be feasible. Other

errors could be a result of the small finite system size, of which the errors

are not evident in the limited size convergence tests performed here. Small

system sizes are particularly an issue for longer range potentials, as the

effects of interactions are felt over greater distances compared to shorter

range potentials. Furthermore, even larger systems are required to mitigate

the longer ranged finite edge effects. The limitations in the accuracy of the

CLE displacements to represent discrete points is another source of error;

this is explored in Chapter 5.

The discrepancy in Kc and K ′c prompted further investigation into Kc,

by looking into the surface energy and strain components of E.

4.4.2 Strained Surface Energy

Initial simulations to compute the energy barrier of breaking a single bond

in a fractured diamond-structured carbon system, with (111) crack surfaces,

displayed a disparity between the critical stress intensity factor, Kc, and the

K at which the difference in energy minima was zero, K ′c. Griffith’s energy

balance for an infinite system states that at a stress intensity factor of Kc
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Figure 4.13: Strain components εxx, εxy, and εyy of individual atoms along the
two surfaces of a fractured 2D hexagonal lattice modelled with an IBS potential
with a cutoff of 1.4 Å are shown in b) with respect to distance from the crack tip.
The atoms are categorised by the surface they are apart of, labelled above and
below, as shown in a).

the difference in energy minima is zero.

Kc was computed via Kc =
√

2γE ′ where 2γ is twice the surface energy of

unstrained systems. The surface energy as a function of strain was computed.

To gain a better understanding the model was simplified to a 2D hexagonal

lattice modelled with an IBS potential with a cutoff of 1.4 Å.

Atomistic Strain Components

Fig. 4.13 shows the strain components, εxx, εxy, and εyy, of the atoms on

the top and bottom crack surfaces, labelled above and below respectively.

As expected, the strain decays with distance from the crack tip, with the

greatest strain found on the bonded atoms near the crack tip, and greater

strain in the y direction. The strains with y components are not equal; this

is likely due to the asymmetry in the bonds, as they are not parallel to the

y axis.
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Figure 4.14: Surface energy as a function of the strain tensor, ε, as seen along the
surface of the crack, with respect to distance from the crack tip. The surface energy
of an unstrained configuration, γ, is shown as the dashed line. γ(ε) and γmin(ε) are
computed with strained configurations where the atomic positions have not been
energy minimised and where the atomic positions have been energy minimised,
respectively. The strained computational cells remain fixed for both cases. The
energies are shown normalised with respect to the unconstrained surface energy,
γ.

Strained Surface Energy

The local strain of each atom along the crack surfaces were then used to

compute the strained surface energies, for both non-minimised and min-

imised systems. Unstrained surface energies for both non-minimised and

minimised systems were also computed. The computed unstrained surface

energies were essentially identical.

The surface energy as a function of strain, or as labelled distance from

the crack tip, is plotted in Fig. 4.14. The strain of the system had little affect

on the surface energy. Thus, the change in elastic response of the system was

deemed to have a small effect on Kc. However, it could effect local properties

computed near the crack tip, such as energy barriers.

4.4.3 Pseudo Arc-length Continuation Scheme

The pseudo arc-length continuation scheme provided a way to obtain the

stationary points of a system given an initial starting condition as a function

of the stress intensity factor, K. From the continuation path, energy barriers
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for specific K were computed. The convergence of the energy barrier at K ′c
with respect to system size was calculated.

Continuation Paths

Continuation paths for system sizes of 8 Å, 16 Å, 32 Å, and 128 Å were cal-

culated and are shown in Fig. 4.15. The fitted crack tip position of the

reference system at the midpoint of the unstable segment of a particular

bond was used as a zero line. The crack tip positions, of all points for all

systems, are plotted relative to that value. The continuation parameter, K,

was normalised with respect to Kc, which was obtained from a calculation

of its surface energy. The fitted crack tip position in the x direction against

continuation parameter, K, are plotted for each system size.

The continuation paths show a differing range of the unstable segments

overlapping with the stable segment with respect to system size. The larger

systems have unstable segments that span a similar range in K as the stable

segments, whereas the range in K of the unstable segments in the smaller

systems are smaller. This results in the larger systems having an overall

smaller range of K for the whole path compared to the smaller systems;

the ranges observed were [0.98Kc, 1.03Kc] and [0.99Kc, 1.47Kc] respectively.

This suggests that for small systems, the bounds of the lattice trapping range

are overestimated and the size of the lattice trapping range is underestim-

ated. Thus, the error on the lattice trapping range for consecutive bonds

gets increasing worse.

In an infinite system, the range of K experienced is expected to be small

and around the Kc value indefinitely. The lattice trapping range of the

largest system here is only a few percent around Kc, this resembles behaviour

expected in an infinite system.

It can be seen that as the system size increases the range of K exper-

ienced decreases, suggesting that further increasing the system size would

lead to the expected infinite size behaviour. The repeating structure of the

continuation path shows the path of stable and unstable regions as the crack

advances, with each unstable segment representing another bond along the

crack advancement direction.
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Figure 4.15: Pseudo arc-length continuation paths for a fractured 2D hexagonal
lattice, which was modelled with a LJ potential with a cutoff of 1.4 Å. Multiple
system sizes defined by their radius are shown and labelled. Each path is plotted
as the x component of the fitted crack tip position, relative to the centre of one
of the unstable segments in the reference system with a radial size of 128 Å. This
unstable segment represents the bond at the centre of the domain. The path is
plotted as a function of the normalised stress intensity factor, K/Kc, where Kc

was computed with surface energy calculations. The stable segments, solid lines,
and unstable segments, dashed lines, represents the minima and the saddle points
of the system respectively.
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Figure 4.16: a) Pseudo arc-length continuation path for a fractured 2D hexagonal
lattice, modelled with a LJ potential with a cutoff of 1.4 Å. The system had
a radial size of 16 Å. The path is plotted with respect to the fitted crack tip
positions relative to the same location in the reference system and as a function of
normalised stress intensity factor, K/Kc, where Kc was computed using surface
energy calculations. The continuation path is marked with the configurations
used to compute the energy path to break a single bond ahead of the crack tip,
showing select K: K ′−, K̃ ′c, and K ′+, which form the lattice trapping range. The
solid markers denote the configurations extracted from the continuation path. The
lines between the markers represent the interpolated configurations between the
nodes. b) The energy profiles as computed using the extracted configurations,
plotted as the energy as a function of the relative fitted crack tip position.

Energy Barriers

The energy barrier of a single bond breaking process was extracted from the

continuation paths. A bond at a locally similar position across all systems

was selected; then the energy barrier of that bond was computed. In Fig. 4.16

a close up of continuation paths around the selected bond, for the system

with a radius of 16 Å is shown. Overlaid are a few pathways used to compute

the energy barriers. The target K shown are specifically the K ′−, K̃ ′c, and

K ′+, viewing them left to right on the plot for a single continuation path.

The K ′− and K ′+ pathway only have two visible stationary points while the

K̃ ′c has three.
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In Fig. 4.16 the energy pathways computed from the configurations ex-

tracted from the stationary solutions of the target K are shown. The energies

for each pathway were adjusted such that the energy of the first minimum

is zero. In other words, the energies are relative to that first minimum. In

reality, since the boundaries are different the absolute energies were different

too. The fitted crack tip positions for each pathway are relative to the fitted

crack tip of the configuration extracted from the saddle point of the K̃ ′c path.

The tip position of the first minimum for paths were different, with the tip

for K ′− behind the tip for K̃ ′c and the tip for K ′+ ahead of the tip for K̃ ′c.

This is similar behaviour that was seen with the static and flexible boundary

methods.

K ′c and the energy barrier at K ′c, Eb(K ′c), were computed for each system.

Both the energy barrier errors and the K errors with respect to system size

were computed. The system with a radial size of 128 Å was used as the

reference system. The errors were also normalised with respect to the values

calculated from the reference system and are shown in Fig. 4.17. They both

converge with a rate close to R−1. The rates for K ′−, K ′c, and K ′+ seen here

are slower compared to the error convergence rates for the static and flexible

boundary cases seen in Fig. 4.12. However, the values are more consistent

and the reference system resembles behaviour expected in an infinite system.

Thus, for larger system sizes it is expected that K ′c will tend towards Kc.

The Hausdoff distance, which obtains the greatest distance from one set

to the other, shows that the continuation paths converge to the reference

continuation path. The distance in shown in Fig. 4.18.

4.5 Conclusion

Energy profiles and energy barriers, Eb, for breaking a single bond along the

crack advancement direction were computed for both the diamond-structured

carbon (111) plane and the 2D hexagonal lattice. Two methods were used

to obtain energy profiles: the static and flexible boundary method, and the

pseudo arc-length continuation scheme.

The static and flexible boundary method demonstrated that with a chan-

ging stress intensity factor, K, the range of profiles within the lattice trapping

range was seen in a fracture model of diamond-structured carbon. Conver-

gence with respect to system size showed that at the critical load, where the
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Figure 4.18: Hausdorff distance between the continuation paths of the radially
smaller systems and the continuation path of the reference system. The reference
system had a radial size 128 Å.
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stress intensity factor is equal to Kc, the difference between the energy min-

ima was not zero. This does not match the expected theoretical result. An

investigation into the surface energy as a function of strain was performed

in an attempt to find the cause of the discrepancy. However, it was found

that the elastic response to surface energy has little effect on Kc.

Another method was developed using the pseudo arc-length continuation

scheme as a way to obtain the stationary states of the fracture system. The

collection of stable and unstable points as a function of the stress intensity

factor were computed. These continuation paths showed a glimpse of the

complicated energy landscape for fracture propagation given an initial start-

ing point. It was shown that energy profiles can be extracted from the paths,

as well as the lattice trapping range. Convergence with respect to system size

showed that with increasing system size both the lattice trapping range and

Eb at K ′c were converging. Furthermore, the difference between the energy

minima at K ′c was tending to zero.

While the continuation scheme allows for computation of the Eb at Kc

as well as obtaining the lattice trapping range, the convergence with respect

to system size, R, is R−1, and the cost of this method is computational

expensive. The cost could be reduced through use of an adaptive step size

in the pseudo arc-length continuation method. The next chapter attempts

to address the issues of slow system size convergence.
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5 Nonlinear Elastic

Boundary Conditions

Parts of this chapter are in preparation for publication in the follow-

ing article: Patel, P., Buze, M., Pastewka, L., Braun, J., Ortner, C.

& Kermode, J. R. Atomistic Modelling of Fracture with Nonlinear

Elastic Boundary Conditions (In prep.)

5.1 Introduction

Fracture propagation processes in materials are ultimately driven by the long

range stress field and breakage of chemical bonds near the crack tip. Model-

ling this requires large and highly accurate atomistic systems to sufficiently

capture the processes involved, and thus these simulations are computational

expensive.

The continuum fracture theory proposed by Griffith in 1921 [6], is what

sets the boundary for atomistic fracture simulations. This continuum model

is not entirely adequate for atomistic simulations, and thus introduces an

error when describing the atomistic system. The CLE displacements are in-

sufficient when mapped onto atomic positions, particularly in the region near

the crack tip where the important chemistry of atomic bonds are involved.

The ultimate goal of atomistic fracture modelling would be to model an

infinite atomistic domain. However, that is not possible and so the boundary

is matched to the continuum description. In order to match the atomistic

and continuum descriptions, the atoms along the boundary of an atomistic

simulation are spatially fixed to the continuum description, i.e. the lattice

positions plus the CLE displacements, while the other atoms are free to move

during a simulation. The energy of a system initialised with atomic positions

set according to CLE displacements is not at a minimum. Thus, an energy
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minimisation must be performed to obtain a stable system in which the crack

tip is stationary. If the initial displacements are not close to a minimum,

this step can be computationally expensive. This initial minimisation is only

the starting point for various fracture simulations, such as computation of

barriers and phonon calculations.

The idea presented here pertains to the concept that the atomistic de-

scription obtained with the CLE displacements can be improved upon by im-

proving the match between the atomistic and continuum models. Here, the

continuum model was modified with information from an atomistic model.

This was achieved by a nonlinear continuum model. This approach was

tested on a 2D hexagonal lattice with two short-range nearest neighbour

potentials, as a proof of concept.

5.2 Background

5.2.1 Pair Constrained Minimisation

The interior-point primal-dual Newton method was used to perform con-

strained minimisations on the fracture systems. The energy of the system

was minimised by means of optimisation of the atomic positions. In the

context of the method described in Sec. 2.6.5, f(x) is the total energy and

x are the atomic positions.

A constraint, ci, was used to hold the separation distance, ||xv − xw||,
between a pair of atoms denoted with indices v and w, at a predetermined

length, φv,w. The constraint is given by

ci(x) = ||xvi − xwi || − φv,w, (5.1)

where i denotes each constraint, and vi and wi denotes any pair of atoms

for each constraint. The constraints were held to within a tolerance of the

predetermined length which gave rise to the inequality constraint.

The idea of the interior-point method is to iteratively approach the solu-

tion from the interior of the region in n-dimensional space for which the

solution holds true. Hence, before minimisation of the atoms the conditions

of the constraints must be satisfied. Therefore, the atoms were manually

moved to meet the separation constraints.
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This method was used to optimise the atomic positions while maintaining

the separation of the atoms near the crack tip at a fixed distance. This

minimisation was performed to ensure the crack did not advance or retreat.

5.3 Methodology

A fundamental issue when crossing between branches of mechanics is the con-

version between the mathematical framework used to describe the problem

at hand. Modelling fracture systems often requires going from a continuum

description to a discrete description. This transition does not result in a

system which is in a minimal energy state. Thus, an energy minimisation is

required to alter the system’s positions into a well in the energy landscape.

This step is computationally expensive and occurs before the start of further

investigation into the system. Furthermore, continuum theory often relies on

the system having infinite length while atomistic computational domains do

not have infinite size. Thus, atomistic domains are limited by their ability

to represent the infinite domain, which results in another discrepancy.

To improve the representation of an infinite domain, a non-linear correc-

tion term was introduced.

5.3.1 Correction Scheme

The basis of the correction scheme stems from the concept that to achieve an

energy minimised system the CLE displacements are applied to the lattice

and then minimised. The correction scheme is a modification to the CLE

displacements, with the idea that the improved displacements would reduce

the number of steps during the minimisation. This is adapted from the work

done by Braun et al. for dislocations defects [136].

To initialise a fracture system, an atomistic lattice, with positions x, is

deformed with the CLE displacements, u0. The energy of the system is then

minimised, which alters the positions. The energy minimised displacements,

û, satisfy

∇E(x+ û) = 0, (5.2)

where E is the energy of the system. The system is now considered as

initialised.
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Consider decomposing û into two parts, such that

û = u0 + uc, (5.3)

where uc are the corrections to the CLE displacements which encapsulate

the changes in displacements during the energy minimisation. The displace-

ments are expected to be small, i.e. uc � u0. To maintain the link to the

infinite continuum displacements described by Irwin’s analytical solution,

the atoms towards the boundary match the CLE displacements. Then, the

new decomposition satisfies

∇E(x+ û) = ∇E(x+ u0 + uc) = 0. (5.4)

A Taylor expansion of Eq. 5.4 around the point x+ u0 gives

∇E(x+ u0 + uc) =∇E(x+ u0)

+∇∇E(x+ u0)(x+ u0 + uc − x− u0)

+O
(
(uc)

2
)
. (5.5)

As the uc terms are expected to be small, the higher order terms can be

ignored to form an approximation of Eq. 5.4 given by

∇E(x+ u0 + uc) ≈ ∇E(x+ u0) +∇∇E(x+ u0)uc. (5.6)

Let uac be an approximation to the correction term, uc ≈ uac, and solve

the now approximate equilibrium condition such that

∇E(x+ u0) +∇∇E(x+ u0)uac = 0. (5.7)

Then the approximate correction term is

uac = −
[
∇∇E(x+ u0)

]−1

∇E(x+ u0), (5.8)

where ∇∇E is also referred to as the Hessian of the energy. This is

equivalent to the high dimensional Newton step given by xn+1 = xn −[
∇∇E(xn)

]−1∇E(xn) for n > 0. Newton’s method can be used to find

the solutions to equations of the form E(x) = 0. Thus, the correction term
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is a Newton iteration towards the minimal energy of the system. The ap-

proximate correction term, uac, is applied to the CLE displacements and can

be considered as a step in a minimisation scheme.

For dislocation defects it has been shown that corrections to the corres-

ponding CLE displacements can be calculated analytically [136] and similarly

for mode III cracks [137]. However, this has not been possible for mode I

cracks. Instead, the correction term was estimated using a larger domain.

For a domain of interest, da, the correction term was computed on another

domain, db. The size of db was sufficiently large such that when the improved

boundary is applied to da the edge effects of db are mitigated for the atoms

within the size of da.

A computationally intensive part of the correction term is the calculation

of the Hessian term. Here, the correction term was further approximated.

This was done to test the method with hierarchical modelling in mind, where

the correction term could be computed with higher accuracy methods. In the

case of DFT based calculations the Hessian of a crystal cell would be cheaper

to compute due to its periodic properties, compared to a crack system which

has zero or one periodic direction. For simplified systems there is periodicity

in the crack plane direction and for realistic systems there is no periodicity.

Periodicity allows for the possibility to compute the Hessian on a smaller

cell and replicate the values to produce the Hessian of a larger bulk system.

Hence, the Hessian term was calculated on the crystal configuration. Thus,

Eq. 5.8 becomes

uac = −
[
∇∇E(x)

]−1

∇E(x+ u0). (5.9)

Implementation

Typical fracture simulations begin with generating a bulk crystal structure by

repeating a unit cell. The CLE displacements are applied to the lattice which

generates the crack configuration. The system’s energy is then minimised by

altering the positions such that the energy is reduced into a local minimum.

These steps are shown in Fig. 5.1.

The minimisation step can be computationally expensive and increases

in cost with increasing radii. Large radii are needed in fracture simulations

to reduce finite-size effects as well as capture long range stress fields.

The correction scheme can reduce the computational cost of the minim-
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(a) (b) (c)

Figure 5.1: Schematic diagram for generating an initial stable crack configuration.
a) 2D hexagonal lattice, with a lattice spacing of 1 Å, made from repeat unit cells.
b) System with CLE displacements applied onto the crystal positions. c) Energy
minimised system where the atoms coloured red are optimised and the atoms
coloured blue are not optimised. The blue atoms remain at their CLE positions.

isation step or reduce the size of the system required. The correction term

was computed on a larger system. Although the system was larger, the

boundary correction term is simpler to compute than a full minimisation.

This larger system will henceforth be referred to as the boundary system.

The correction term was computed on the boundary system which had a

radius, Rbc, defined to be

Rbc > 4R, (5.10)

where R is the radius of the system to correct. The boundary system was four

times the size of the system to correct. This size was chosen to mitigate edge

effects with the region of radius R. The Hessian component of the correction

term was calculated on the crystal lattice and the gradient was computed on

the crack configuration. Let u1 represent the corrected displacements, which

is given by

u1 = u0 + uac, (5.11)

where u0 are the CLE displacements, and uac is the correction term. The

corrected displacements, generated from the boundary system, were then

applied to smaller systems.
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R

Rref

Rbc

Figure 5.2: Schematic of the systems used to compute the correction term and
perform the convergence tests. A crack system of size Rbc with CLE displacements
was used to compute the correction term, coloured orange. The correction term
was applied to the crack system of size Rref. Here, Rbc > 4Rref. The system
of size Rref was then energy minimised and became the reference system for the
convergence tests. Multiple systems of size R 6 Rref/4 were generated, with both
CLE displacements and corrected CLE displacements. The systems of size R were
compared with the reference system; this comparison formed the convergence test.

5.3.2 Convergence Tests

Convergence tests with respect to system size were performed to demonstrate

the effectiveness of the scheme. The strain error and energy error are detailed

here.

Systems

The convergence tests require a set of subsystems and a reference system.

The error of the properties measured from the subsystems are compared with

the values obtained from the reference system. The radius of the reference

system is Rref. The radii of the subsystems are Rsub,R, where Rsub,R =

{R 6 Rref/4}. The correction term was computed on the boundary system

which had a radius of Rbc where Rbc > 4Rref. A schematic of the system

sizes are shown in Fig. 5.2.

The crystal lattice was built in the same manner for each of the three

types of systems. A simple 2D hexagonal lattice with a equilibrium bond

length of 1.0 Å was used. The atoms were modelled using either an IBS po-

tential or a LJ potential, with a cutoff of 1.4 Å. The unit cell was repeated

until a circular system of a particular radius, with an additional region of

two and a half times the potential cutoff, was generated. The stated radius

of the system is the size of the region in which the atoms are free to move.
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The additional region acts as the clamped boundary, i.e. is fixed during min-

imisations, to mitigate surface effects. The CLE displacements were applied

to the circular crystal, as shown in the schematic diagram in Fig. 5.1. The

stress intensity factor, K, Young’s modulus, E, and Poisson’s ratio, ν, were

computationally chosen to ensure the reference system had an equilibrated

stable crack system, with the crack tip at the centre of the domain and half

way between two layers of atoms. The crack tip and the initial K were cal-

culated using the methods described Sec. 4.3.4 and Sec. 4.3.5 respectively.

The system was restricted to movement of the positions to the x− y plane.

The corrected displacements, u1, were calculated using the boundary

system. The reference system was generated, and the subsystems were gen-

erated using the reference system. All the systems, the reference system and

the subsystems, were energy minimised for both sets of displacements u0

and u1. The relaxed set of displacements for each system, û0 and û1, were

composed of

û0 = u0 + ures, (5.12)

û1 = u1 + u′res, (5.13)

where ures and u′res represent the change in displacements during the minim-

isation, and where the relaxed displacements satisfied

∇E(x+ û0) = 0, (5.14)

∇E(x+ û1) = 0, (5.15)

respectively. The boundary region of a system was clamped during minim-

isation; thus, each system’s minimised displacements, ûi,R, can be written

as

ûi,R =




ûi for r 6 R,

ui for r > R,
(5.16)

where i is either 0 or 1 to denote the CLE or corrected displacements respect-

ively; r is the radius from the crack tip; within the radius R the atoms are

free to move during a minimisation; and beyond R the atoms are clamped.

The displacements of the clamped atoms match the non-minimised positions.
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The minimised displacements for the reference system will be referred to as

ûi,ref.

Each minimisation was a two stage process. First, a pair constrained

minimisation where the atoms of the next bond ahead of the crack tip, in the

crack advancement direction, were constrained at their initial bond length in

the crack configuration. Second, a unconstrained LBFGS minimisation was

performed.

Strain Error

The strain on a bond was computed by the change in bond length over the

original length. Thus, the strain error is calculated by comparing the length

of the bonds across two different configurations, where one configuration is

the reference configuration which acts as the true set of positions. The strain

across all bonds, Du, of one configuration is

Du =
(x+ u)p − (x+ u)q

l0
for (p, q) ∈ B, (5.17)

where l0 is the original bond length; (p, q) is an atom pair; (x + u)p is the

position and displacement of atom p; (x+u)q is the position and displacement

of atom q; and B is the set of all bonds. Du is a vector where the number

of elements in Du is equal to the number of bonds in the configuration.

The strain error, ρ, is then

ρ = Dua −Dub, (5.18)

where a and b are the displacements of two different systems.

To compute the strain error between systems of different radial sizes, the

domain of the smaller system must be extended to the size of the larger sys-

tem. This was done by extending the boundary region of the smaller system.

In other words, the displacements of the smaller system were embedded into

a system with a size equal to the larger system. The boundary of this ex-

tended system was generated in the same manner as the boundary of the

smaller system, i.e. the displacements matched the non-minimised displace-

ments u0 or u1. This can also be considered as systems with an equal total

size which have different sizes for the fixed boundary regions, and thus the

systems have different sizes for the free movement regions.
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The strain error of a system before and after minimisation was computed.

A system with CLE and minimised CLE displacements with a radial size of

128 Å was compared to a system with minimised CLE displacements with

a radial size of 512 Å. The strain error before and after minimisation was

calculated for three different potentials: a L-IBS potential, an IBS potential

and a LJ potential. All three potentials had a cutoff distance of 1.4 Å.

The strain error with respect to system size was computed for an IBS po-

tential and a LJ potential. The system sizes used here were: 4 Å, 8 Å, 12 Å,

16 Å, and 24 Å. The reference system had a radial size 128 Å. The min-

imised displacements of the subsystems were compared with the minimised

displacements of the reference system.

Energy Error

The energy error as a result of minimisation, ∆E, is the difference in energy

of the system before and after minimisation, which is given by

∆Ei,R = E(x+ ui,R)− E(x+ ûi,R). (5.19)

The energy error with respect to system size, η, is the difference in energy

error as a result of minimisation compared to a reference system. η will

henceforth be referred to as energy error and is given by

η = ∆Ei,R −∆Ei,ref. (5.20)

Similarly to the strain error, the domain of the smaller system must be

extended to the size of the larger system to compute the energy error between

systems of different radial sizes.

5.4 Results and Discussion

5.4.1 Minimisation Strain Error

The strain error as a result of minimisation is the discrepancy between the

continuum description and the atomistic description.

The strain error was calculated for three different potentials; a L-IBS

potential, an IBS potential and a LJ potential. The results are shown in
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Figure 5.3: Decay of the strain errors, |Dû0,ref −Du|, where Du is either Du0,R

or Dû0,R, with respect to the distance from the crack tip, r. Strain errors are
shown for three potentials: a) a L-IBS potential, b) an IBS potential, and c) a LJ
potential. The strain errors were calculated by comparing the CLE displacements,
u0,R, and energy minimised displacements, û0,R, of a configuration with a radius
of 128 Å, to the energy minimised displacements, û0,ref, of a reference system with
a radius of 512 Å. Rate of decay lines are shown.

Fig. 5.3. The non-minimised and minimised displacements are compared

with the minimised displacements of a larger system.

The strain errors associated with the L-IBS and IBS potentials decay with

respect to system size, as expected. For the simple potentials, L-IBS and

IBS, a minimisation reduced the strain error compared to a larger reference

system. The strain error associated with the anharmonic LJ potential decays

with the u0 displacements. However, for the minimised case it does not decay

as cleanly as the other two potentials, and exhibits edge effects where the

strain error increases as it approaches the fixed boundary of the system. The

rate at which the error decays is the same for some range radially close to

the crack tip. Beyond that region the error is constant for a short distance

and then increases towards the boundary. The radial distance at which the

rate increases is much greater than the cutoff distance of the potential.

This shows that even though the potentials had a cutoff distance, their
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affect upon neighbouring atoms was seen for distances greater than their

range, i.e. the range of elastic interaction is much greater than the cutoff of

the potential. It also highlights the affects of the fixed boundary and thus

its importance to the overall behaviour.

5.4.2 Corrected Displacements

The difference between the CLE displacements and the corrected displace-

ments were small, with a maximum change of < 0.5 % of the equilibrium

bond length. The difference in positions around the crack tip, where the dif-

ferences were the greatest are visually shown in Fig. 5.4. The small change

in the displacements reinforce the idea that the correction scheme can be

considered as the first iteration towards a possible energy minimum.

5.4.3 Forces

The forces across each atom were investigated to highlight the improvement

between the CLE displacements and the corrected displacements.

The forces of a system with a radial size of 128 Å were investigated. The

system was modelled using a LJ potential with a cutoff of 1.4 Å. The forces

of the system with CLE displacements, Fu0 , and the forces with the corrected

displacements, Fu1 , were computed. The forces are shown in Fig. 5.5.

The forces on the atoms across the system behave as expected, such that

they decay with increasing radii. The rate of decay of the force for the atoms

in the bulk-like part improves with the u1 displacements, compared to the

u0 displacements. The atoms along the crack surface see no improvement in

the rate. However, the overall magnitude has decreased by a small amount.

In the previous chapter during the investigation of the static and flexible

boundary methods for minimal energy paths, a hypothesis was that a non-

zero net force was hindering convergence of the barrier with respect to system

size. Therefore, the force components of an initial fracture system were

investigated.

The force components, Fx and Fy, within radial regions centred around

the crack tip were computed. The forces were of a system with a radial size

of 128 Å, which was modelled using a LJ potential with a cutoff of 1.4 Å.

The sum of force components within a ball of radius r, Br, centred at the

crack tip,
∑

Br
F , were computed with respect to the size of the ball.
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Figure 5.4: Visual representation of a fractured 2D hexagonal lattice, with the
CLE displacement, u0, and the corrected CLE displacements, u1. The system had
a radial size of 8 Å and was modelled using a LJ potential with a cutoff of 1.4 Å.
The correction term used to correct the displacements was computed on a system
with a radial size of 64 Å. The fitted crack tip for both displacements are shown,
along with the next bond along the crack propagation direction. px and py are
the components of the atomic positions in x and y respectively, which are plotted
relative to the crack tip. The atoms with u0 displacements are plotted larger than
the atoms with u1 displacements; thus, the centre points of the atoms should be
compared.
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Figure 5.5: Decay of forces, F , of a 2D hexagonal lattice with a) CLE displace-
ments, u0, and b) corrected displacements, u1. The system was modelled using a
LJ potential with a cutoff radius of 1.4 Å. The small dashed lines and the large
dashed lines are the rates of decay for atoms along the crack surface and atoms
in the bulk part of the system, respectively.
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Figure 5.6: Sum of the force components,
∑

Br
F , within a ball of radius r, Br,

centred at the crack tip, for a) the CLE displacements, u0, and b) the corrected
displacements, u1. The forces are of a 2D hexagonal lattice, with a radius of 128 Å,
modelled using a LJ potential with a cutoff of 1.4 Å. Fui,x and Fui,y are the force
components in x and y respectively. Rate of decay lines are shown.

The sum of forces components, Fu0,x and Fu0,y, for the CLE displacements

are shown in Fig. 5.6. The force component in y, red data points, decays

with radial size. The force component in x, green data points, does not

decay with radial size; it remains fairly constant and diverges at a slow rate.

There is a net force in the x direction which comes from the asymmetry in

that direction, as opposed to the y direction which maintains symmetry.

The corrected displacements, which were computed on a system four

times as large, were applied and the sum of forces components were com-

puted. The force components, Fu1,x and Fu1,y, are shown in Fig. 5.6. Fu1,y

decays with a similar rate to Fu0,y of r−1 and is of a lower magnitude. Fu1,x

decays compared to Fu0,x; although it decays with a slower rate compared

to the rate for Fu1,y. The corrected displacements remove the constant force

component in the x direction.
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Figure 5.7: Strain error of a system with respect to a reference system, Dûi,ref −
Dûi,R, plotted as a function of distance from the crack tip, r. The system was a 2D
hexagonal lattice modelled using a LJ potential with a cutoff of 1.4 Å. A system
with a radial size of 128 Å with an energy minimised region of 16 Å was compared
to a reference system with a radial size of 128 Å with a energy minimised region
of 128 Å. The displacements for the system and reference system are ûi,R and
ûi,ref respectively. For the system with the smaller minimised region, the dashed
line at r = 16 Å denotes the point at which the atomistic region transitions to the
continuum region. A subset of points are shown. The index i is 0 or 1 for the
CLE displacements or the corrected displacements respectively.

5.4.4 Strain and Energy Errors

To demonstrate the validity of the scheme, the strain errors and the energy

errors with respect to system size were calculated. Two simple potentials

were investigated to show proof of the concept.

Strain Error

The boundary effect of a smaller subsystem representing a larger one can be

seen more clearly in Fig. 5.7, where the strain error with respect to a larger

system is plotted. A system with a radial size of 128 Å with an energy minim-

ised region of 16 Å was compared with an energy minimised region of 128 Å.

The strain errors for the CLE displacements and corrected displacements
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were computed.

There is overall decay of the error, with improved overall decay from

the corrected displacements. The strain error of atoms near the centre of

the crack remain relatively similar to each other. There is a change at the

boundary of the inner region, near 16 Å, for the u0 displacements. The

optimised u1 displacements, û1, improve this mismatch over the optimised

CLE displacements, û0. The corrected displacements somewhat corrects the

finite edge effect of the smaller minimised system. The finite size effect of

the larger reference system, near 80 Å and beyond, can be seen towards the

edge of the system because the strain error increases as it approaches the

boundary.

Error Convergence

The correction scheme modifies the boundary conditions in an attempt to

improve the error decay. The strain error convergence and the energy error

convergence tests with respect to system size are detailed.

The errors computed here are the differences between two systems. A

system with a minimised region of size R was compared to a minimised

reference system with a radius of 128 Å.

Comparing the subsystems with the reference system, the strain error

convergence and the energy error convergence are shown in Fig. 5.8 and

Fig. 5.9, for an IBS potential and a LJ potential respectively.

For the IBS potential, the corrected displacements only improve the pre-

factor by a small amount and the rate of convergence remains roughly the

same. There is little benefit seen in the application of the correction term

for this simple potential, at least in regards to the strain error. However, in

terms of the energy error, the correction scheme turned the divergent error

into a convergent error.

For the LJ potential, applying the corrected displacements showed an

improvement over the CLE displacements. The rate of the strain error decay

almost doubles. The improvement of the energy error is similar to the IBS

potential where errors turned from divergent to convergent.

A divergent energy error brings into question whether the minimised u0

displacements can be considered as a valid reference system. This could be an

issue of the system sizes used here, and if so even larger systems are required
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û1,R

R0.10

R−0.70

Figure 5.8: Convergence of a) the strain error, ||Dûi,ref −Dûi,R||2, and b) the
energy error, ∆Ei,R−∆Ei,ref, with respect to system size, R, using an IBS potential
with a cutoff of 1.4 Å. Each system was compared to a reference configuration
with a radial size of 128 Å. The index i is 0 or 1 for the CLE displacements or the
corrected displacements respectively. Rate of decay lines are shown.
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Figure 5.9: Convergence of a) the strain error, ||Dûi,ref −Dûi,R||2, and b) the
energy error, ∆Ei,R−∆Ei,ref, with respect to system size, R, using a LJ potential
with a cutoff of 1.4 Å. Each system was compared to a reference configuration
with a radial size of 128 Å. The index i is 0 or 1 for the CLE displacements or the
corrected displacements respectively. Rate of decay lines are shown.
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to address this. The energy error may diverge initially and then flatten out

at larger system sizes. Or, the issue is based in the potentials investigated

here and more realistic potentials may show a convergent energy error within

the system sizes explored here. Investigation into local properties would be

beneficial to further test this method. Local properties, such as the energy

barrier, which do not depend so heavily on the boundary of the system would

allow for comparison of that property across both reference systems.

5.5 Conclusion

A method to improve the boundary conditions used for fracture simulations

was tested. To explore the ability of the method, convergence tests of the

strain error and the energy error were performed on a 2D hexagonal lattice

with short range potentials.

To tackle large system sizes required by fracture simulations, a method

to improve the boundary conditions was developed and tested. The scheme

performs an iteration, similar to Newton’s method, towards the energy min-

imum on a system with CLE displacements. The benefit of this method is

that the components of the iteration step are computed using computation-

ally cheaper variants compared to Newton’s method. This is not particularly

important for interatomic potentials, since they are relatively cheap. This

method allows the use of more accurate atomic descriptions, such as DFT, to

be easily used in place of the interatomic potentials. The convergence tests

showed improvements when using the corrected displacements, particularly

for a LJ potential. The convergence rate for the strain error doubles. The

energy errors goes from a diverging property to a converging property. This

method improves the representation of the reference system compared to

the uncorrected CLE displacements. Compared to the CLE displacements,

the corrected displacements can allow for either: the use of smaller system

sizes for the same magnitude of error; or for smaller errors on system with

comparable size.

It is expected that this method will produce varying levels of improve-

ments for different potentials and materials. Error convergence rates, with

respect to system size, are expected to be slower for longer range potentials,

when compared to shorter range potentials. Longer range potentials will

likely need larger boundary systems to produce the correction term. The
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cost of computing the correction term on a larger boundary system could be

reduced by computing the Hessian term on a crystal configuration. However,

the error convergence rates, with respect to system size, would be worse, and

therefore the method would be less effective.
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6 Conclusion

Nonlinear methods were employed to compute properties of atomistic brittle

fracture. New methodology was developed and tested with a 2D hexagonal

lattice as a proof of concept.

Fracture propagation of the SiC 6H polytype along the (0001) plane was

studied computationally and experimentally; both the experimental and MD

simulations showed brittle cleavage. The slow, stable crack growth of the ex-

periment allowed comparison of the experimentally measured fracture energy

with the static surface energy DFT calculations. The results were in relat-

ively good agreement with one another compared to previous literature. The

method employed in the experiments presents a new opportunity to study

fracture at the micro-structural length scale.

Methods to compute energy profiles and energy barriers for breaking a

single bond along the crack advancement direction were developed. The en-

ergy barrier and lattice trapping range for a fractured diamond-structured

carbon system, which was open along the (111) plane, and a fractured 2D

hexagonal lattice were computed. The static and flexible boundary meth-

ods are relatively simple compared to the pseudo arc-length continuation

scheme. However, a discrepancy between the method and theory for the

flexible case was found, which called its credibility into question. The con-

tinuation scheme was tested on a simple 2D hexagonal lattice and proved

to be useful at obtaining the energy barrier and the detailed bounds of the

lattice trapping range. The continuation scheme also showed how the sys-

tem would evolve. The methodology in its current state is computationally

expensive. An adaptive step size, which is larger in the straight segments

and smaller as it approaches a fold, would reduce a significant chunk of the

cost.

Basic MD simulations generally run in the picoseconds range. Thus,

the simulations are limited to events that happen in that time frame. The
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energy barrier of an event can be large in the sense that they are not so easily

overcome via thermal activation due to the low probability that the atom(s)

have enough energy to overcome the barrier. Consequently, this leads to long

timescales for such events to occur. These energy barriers could be used to

obtain transition rates for use in large scale KMC simulations to statistically

simulate the chance of crossing the barrier to reduce computational time.

A method to tackle the large system sizes needed, and to combat the

imperfect conversion from the CLE solutions to an atomistic domain, was

developed. The method computed a new boundary from a larger atomistic

domain. It was shown to improve convergence rates of the strain error and

the total energy error with respect to the uncorrected case. While the compu-

tation of the new boundary is expensive, the key progression and philosophy

is that the correction term could be computed using higher accuracy codes

such as DFT. The correction term partly relies on the crystal structure, and

inherent periodicity in DFT computation allows for relatively small domains

to represent much larger domains.

The computational expense of the continuation scheme could also be re-

duced by incorporating the boundary correction scheme. All the methods

developed here can be extended in a variety of directions. The methods were

only tested on a simple 2D lattice with relatively simple potentials. Extend-

ing the cutoff range to include second nearest neighbours, or beyond, will

stretch the possible application of these methods. Some other extensions

include modelling surfaces of realistic materials, or adding variations in the

structure such as dislocations, grain boundaries, and impurities. These would

add challenging environments and intricate local chemical interactions which

would require the use of higher accuracy modelling techniques such as DFT.

These simple modifications can lead to results with potentially complex out-

comes, and exploring these modifications would be another step towards the

pursuit of understanding the vast energy landscape and dynamics of brittle

fracture.
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tion methods for materials systems. Reports on Progress in Physics.

doi:10.1088/0034-4885/72/2/026501 (2009).

[11] E, W. Principles of Multiscale Modeling 488 (Cambridge University

Press, 2011).

[12] Carter, C. B. & Norton, M. G. Ceramic Materials doi:10.1007/978-

1-4614-3523-5 (Springer New York, New York, NY, 2013).

[13] Brenner, D. W. & Shenderova, O. A. Theory and modelling of dia-

mond fracture from an atomic perspective. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences 373, 20140139. doi:10.1098/rsta.2014.0139 (Mar. 2015).

[14] Lawn, B. Fracture of Brittle Solids Second, 11–12. doi:10 . 1017 /

CBO9780511623127 (Cambridge University Press, 1993).

[15] Braibant, S., Giacomelli, G. & Spurio, M. Particles and Fundamental

Interactions doi:10.1007/978-94-007-2464-8 (Springer Nether-

lands, Dordrecht, 2012).

[16] Gupta, V. P. Principles and Applications of Quantum Chemistry

doi:10.1016/C2014-0-05143-X (Elsevier, 2016).

[17] Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. An-

nalen der Physik 389, 457–484. doi:10.1002/andp.19273892002

(1927).

[18] Martin, R. M. Electronic Structure 624. doi:10 . 1017 /

CBO9780511805769 (Cambridge University Press, Cambridge, 2004).

[19] Rajagopal, a. K. & Callaway, J. Inhomogeneous electron gas. Physical

Review B 7, 1912–1919. doi:10.1103/PhysRevB.7.1912 (1973).

154

http://dx.doi.org/10.1007/s10704-015-9988-2
http://dx.doi.org/10.1007/s10704-015-9988-2
http://dx.doi.org/10.1016/j.jnucmat.2015.12.046
http://dx.doi.org/10.1088/0034-4885/72/2/026501
http://dx.doi.org/10.1007/978-1-4614-3523-5
http://dx.doi.org/10.1007/978-1-4614-3523-5
http://dx.doi.org/10.1098/rsta.2014.0139
http://dx.doi.org/10.1017/CBO9780511623127
http://dx.doi.org/10.1017/CBO9780511623127
http://dx.doi.org/10.1007/978-94-007-2464-8
http://dx.doi.org/10.1016/C2014-0-05143-X
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1017/CBO9780511805769
http://dx.doi.org/10.1017/CBO9780511805769
http://dx.doi.org/10.1103/PhysRevB.7.1912


[20] Kryachko, E. S. & Ludeña, E. V. Density functional theory: Founda-

tions reviewed 2014. doi:10.1016/j.physrep.2014.06.002.

[21] Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum

Monte Carlo simulations of solids. Reviews of Modern Physics 73,

33–83. doi:10.1103/RevModPhys.73.33 (2001).

[22] Austin, B. M., Zubarev, D. Y. & Lester, W. A. Quantum Monte Carlo

and Related Approaches. Chemical Reviews 112, 263–288. doi:10.

1021/cr2001564 (Jan. 2012).

[23] Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Physical

Review 136, B864–B871. doi:10.1103/PhysRev.136.B864 (Nov.

1964).

[24] Kohn, W. & Sham, L. J. Self-Consistent Equations Including Ex-

change and Correlation Effects. Physical Review 140, A1133–A1138.

doi:10.1103/PhysRev.140.A1133 (Nov. 1965).

[25] Tran, F., Stelzl, J. & Blaha, P. Rungs 1 to 4 of DFT Jacob’s lad-

der: Extensive test on the lattice constant, bulk modulus, and cohes-

ive energy of solids. The Journal of Chemical Physics 144, 204120.

doi:10.1063/1.4948636 (May 2016).

[26] Becke, A. D. Perspective: Fifty years of density-functional theory in

chemical physics. The Journal of Chemical Physics 140, 18A301.

doi:10.1063/1.4869598 (May 2014).

[27] Cohen, A. J., Mori-Sánchez, P. & Yang, W. Challenges for Density

Functional Theory. Chemical Reviews 112, 289–320. doi:10.1021/

cr200107z (Jan. 2012).

[28] Singh, D. J. & Nordström, L. Planewaves, Pseudopotentials and the

LAPW Method doi:10.1007/978-0-387-29684-5 (Springer US,

2006).

[29] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos,

J. D. Iterative minimization techniques for ab initio total-energy cal-

culations: molecular dynamics and conjugate gradients. Reviews of

Modern Physics 64, 1045–1097. doi:10.1103/RevModPhys.64.1045

(Oct. 1992).

155

http://dx.doi.org/10.1016/j.physrep.2014.06.002
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1021/cr2001564
http://dx.doi.org/10.1021/cr2001564
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1063/1.4948636
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1007/978-0-387-29684-5
http://dx.doi.org/10.1103/RevModPhys.64.1045


[30] Sirdeshmukh, D. B., Sirdeshmukh, L. & Subhadra, K. Atomistic Prop-

erties of Solids doi:10.1007/978-3-642-19971-4 (Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011).

[31] Milman, V., Lee, M. H. & Payne, M. C. Ground-state properties of

CoSi2 determined by a total-energy pseudopotential method. Physical

Review B 49, 16300–16308. doi:10.1103/PhysRevB.49.16300 (June

1994).

[32] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integ-

rations. Physical Review B 13, 5188–5192. doi:10.1103/PhysRevB.

13.5188 (June 1976).
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