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HIGHLIGHTS 

⚫ Correct Jones matrix of the fiber coil for backward propagation was given. 

⚫ Non-reciprocal phase shift induced by the linear and circular birefringence of the coiled fiber were derived. 

⚫ Performance of Fiber-optic gyroscope strongly limited by the intrinsic linear and induced circular birefringence of the coiled fiber. 
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ABSTRACT 

The non-reciprocal phase shift in fiber ring interferometers due to the fiber birefringence and the 

path topology is investigated for the first time. It is shown that the resultant birefringence of the 

fiber, which is the combination of the linear birefringence intrinsic to the fiber and the circular 

birefringence induced by the twisting in the fiber coiling, is not reciprocal for both rays in the 

bidirectional propagation due to the path topology confined by the coiled fiber. Our model 

indicates that the performance of fiber ring interferometers periodically depends on both the 

linear and the circular birefringence of the coiled fiber, and the bias error can be reduced in the 

typical fabrication process of the fiber coil. 

1.  INTRODUCTION 

Fiber ring interferometers (FRIs) have wide applications 

in refractive index sensors [1], temperature sensors [2], fiber 

loop mirrors [3], optical current transformers [4], and 

especially fiber-optic gyroscopes [5]. In order to improve the 

performance of FRIs, research works were dedicated to 

mitigating two types of error sources from perturbations [6]. 

One is the intrinsic perturbations such as polarization 

cross-couplings in fibers [7,8] and splicing misalignments 

between fibers [9,10]. The other is the external perturbations 

from surrounding environments such as thermal fields [11-13], 

magnetic fields [14-16], and thermal stress fields [17-19]. 

Another new type of error source identified recently is the 

topology of the optical circuit formed in the coiled fiber [20-24]. 

Most reported investigations were based on the conviction that 

optical fibers with the linear birefringence, in the absence of 

magnetic fields, are reciprocal for bidirectional propagations of 

the forward light in counter-clockwise (CCW) sense and the 

backward light in clockwise (CW) sense [25]. This enables 

Sagnac and Faraday effects to be the only detectable 

non-reciprocal effects [26]. It concludes that the Jones matrices 

of the fiber for both rays are mutually transposed [27,28], which 

have been widely accepted in FRIs [10,14,15]. Unfortunately, it 

is not true for practical FRIs, where the coiled 

polarization-maintaining fibers (PMFs) have both linear and 

circular birefringence. The linear birefringence arises from the 

thermal stress established in the fiber fabrication, and this is 

intrinsic to PMFs [29]. The circular birefringence originates 

from two factors, the internal rotation (IR) of the linear 

birefringence axes and the external twist (ET) of the fiber. The 

IR is also intrinsic to the fiber and is established in the drawing 

process during the fiber fabrication [30,31]. The ET is inevitable 

in the fiber handlings, such as fiber coiling and splicing [32-34]. 

Consequently, as shown later in this paper, the resultant 

elliptical birefringence, which is the combination of the linear 

and the circular birefringence, is non-reciprocal for 

bidirectional propagations of light waves in FRIs, although both 

purely linear and circular birefringence are reciprocal indeed 

[35-38]. For the first time to our knowledge, it is demonstrated 

that the Jones matrix (JM) of the coiled fiber for the backward 

light propagation should be the transpose of that for the 
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forward light propagation, while with opposite signs for all 

off-diagonal elements. This relationship works for both light 

propagations in CCW and CW directions in the fiber coils of FRIs. 

Therefore, FRIs are non-reciprocal for bidirectional 

propagations. Both the linear and the circular birefringence of 

the coiled fiber will produce non-reciprocal errors, which will 

play important roles in FRIs. 

2. THEORY 

The optical circuit formed in the coiled fiber of an ideal 

FRI is illustrated in Fig.1. There is a loop produced in the coiled 

fiber, which is a circle centered at O  with a radius of R . The 

normal vector to the disk (circle) coincides with the x̂ -axis of 

the rectangular coordinate system ˆ ˆ ˆxyz , in which all light beam 

vectors of this paper are described. The incident light (denoted 

by an electric vector 0E ) is linearly polarized along the x̂

-axis and travels in the ẑ -axis direction. The propagation of 

the light refers to the travel of the electric and magnetic field 

vectors. For simplicity, only coordinates associated to electric 

field vectors are listed in Fig. 1. For the light traveling from 

point 1O  to point 2O  in the CW direction along the arc 1 2O O , 

it is transferred from the coordinate 1 1 1x y z
 

to the coordinate 

2 2 2x y z . If the light is propagated along the straight line 1 2OO , it 

will be transferred from the coordinate 1 1 1x y z
 

to the 

coordinate 1 1 1x y z   . It is obviously found that there is a rotation 

angle 2  about the subnormal ( x̂ -axis) introduced during the 

light propagation along the curved path 1 2O O
 

and the straight 

path 1 2OO . The rotation angle 2
 

equals the central angle 1
 

subtended by the curved path (arc 1 2O O ). That indicates that 

there is a rotation operation about the subnormal ( x̂ -axis here) 

when the light travels via the curved path, i.e., the coiled fiber in 

the FRI. The operation is denoted by the rotation matrix 

( )xx R
 

about x̂ -axis in the CW case, where the left arrow on 

top of x
 

refers to the CW light. Similarly, we have 4 3 =
 

from the operation of the rotation matrix ( )xx R
 

for the CCW 

light (denoted by the right arrow). Then we will have
 

0( )x x=E R E     (1a) 

for the CCW light and  

0( )x x=E R E
    

(1b)
 

for the CW light propagation in the ideal FRI (no birefringence), 
respectively. Where the rotation matrix 

1 0 0

( ) 0 cos sin

0 sin cos

x x x x

x x

  

 

 
 

=  
 − 

R            (2) 

describes the impact from the topology of the curved light path 

formed in the coiled fiber. The rotation angle is named as the 

phase angle of the topological or geometric phase [15], the 

anholonomy [16], or the Berry phase [17]. Its value is positive 

( 0x  ) for the right-handed propagation (CCW light), and is 

negative ( 0x  ) for the left-handed propagation (CW light), 

since all coordinate systems for describing light travels are 

right-handed, the same as the initial coordinate system ˆ ˆ ˆxyz . 

For the entire loop shown in Fig.1, we have 2x =
 

and 

2x = −
 

for the CCW and the CW light propagations, 

respectively. Then we have ( ) ( )x x x x = =R R I  and hence 

=E E , where I  denotes the unit matrix. This indicates that 

the reciprocity works in the coiled fiber when there is no 

birefringence. 

 

Fig.1. Topological phases introduced by the parallel transport of the 
light vector traveling along the circular path in the coiled fiber of an 
ideal FRI. The phase angles are positive for right-handed paths (CCW 

light) and are negative for left-handed paths (CW light). 

In general, a rotation matrix represents the JM of a circular 

retarder in the optical system [35], to show the polarization 

rotation (PR) of a linear polarization induced by the circular 

birefringence of the fiber [36] or the parallel transport of the 

polarization in the light propagation [24]. The topological phase

x , from the rotation about x̂ -axis ( )x xR , can be considered 

as the retardation effect from an equivalent circular retarder. 

Similarly, the retardation due to the circular birefringence in a 

practical fiber can also be regarded as the topological phase z
 

from the rotation ( )z zR
 

about ẑ -axis. The rotation arises 

from the IR of the linear birefringence axis and the ET over the 

PMFs. However, since the parallel transport follows the 

direction of the rotation axis in this case, the trajectory 

experienced by the optical vector is a spatial helix as shown in 

Fig.2, instead of the plane curve in Fig.1. The helix has a fixed 

handedness. Then topological phase angle z  is always the 

same for the forward (traveling from left to right) and the 

backward (from right to left) rays in Fig. 2. The forward and the 

backward propagated rays in Fig. 2 refer to the CW and the CCW 

rays in Fig.1, respectively, with ẑ -axis in Fig. 2 (the 

propagation direction of both rays) bended into a loop. Then we 

have 0( ) ( )x x z z =E R R E
 

and 0( ) ( )x x z z =E R R E , i.e., 

=E E . Therefore, the reciprocity also works in the coiled fiber 

with the circular birefringence. If we assume fixed rates of   

and   (both in rad/m) in the IR and the ET of the fiber with a 

length of L , the rotation angle z
 

about ẑ -axis is the same 

for both directions with 

( )1z g L  = + +       (3) 
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where 2
44pg n= − , n  and 44p  are the refractive index and 

the Pockels’ coefficient, respectively. For the PR introduced by 

IR and ET showed in equation (3), Jones matrices are same one 

for CCW and CW lights. The effect from IR and ET of the coiled 

fiber both for CCW and CW lights, is the same rotation operation 

about ẑ -axis, ( )z zR , 

       

cos sin 0

( ) sin cos 0

0 0 1

z z

z z z z

 

  

 
 

= − 
 
 

R . (4) 

 

Fig.2. Rotation about the direction of light propagation is a space helix 
with constant handedness. The rotation angles are same (instead of 
opposite) for both rays. 

It is now found that the reciprocity is held in the coiled 

fiber when there is no linear birefringence, i.e., purely circular 

birefringence, as shown in our above analyses. Unfortunately, 

this will not be applicable in coiled fibers with both the linear 

and the circular birefringence, i.e., real fiber with the elliptical 

birefringence. The effect of the linear birefringence can be 

described using the matrix of a linear retarder

diag[ , , 1]i L i L i Le e e   − =U , where ( ) 2x y  = −  and 

( ) 2x y  = +  are halves of the difference between 

propagation constants and the sum of propagation constants, 

respectively, and x
 

and y
 

are propagation constants of 

the slow-mode and the fast-mode, respectively [36]. Then JMs of 

the coiled fiber can be written as ( ) ( )z zL =M R U
 

for the 

CCW light, and ( ) ( )z zL =M UR
 

for the CW light. Note that the 

orders of the linear and the circular retarders will not affect the 

unidirectional propagation in the fiber, but they will influence 

bidirectional propagations, which happen in the coiled fiber of 

the FRI. This results in the fundamental non-reciprocity in the 

FRI. Meanwhile, the JMs of the splitter for the reflection and the 

transmission can be described as ( )r x =S R S
 

and 
(0)t x=S R S

 
( 2=S I ), respectively. Then the JMs of the FRI, 

( ) ( )r x x tL=M S R M S  and ( ) ( )t x x rL=M S R M S
 

can be 

expressed as 

0

0
2

0 0 1

i L
A B

e
B A







 
 

= − 
 − 

M                (5a) 

for the CCW propagation, and 

 

0

0
2

0 0 1

i L
A B

e
B A


 

− 
 

= − − 
 − 

M               (5b) 

for the CW propagation, where cosi L

zA e  = and 

sini L

zB e  = . The element 1−  indicates the reverse of the 

propagation direction for the CCW and the CW rays. The 

relationship between Eq. (5a) and Eq. (5b) has not been 

correctly clarified in previous works. It was wrongly stated as 

either the “identity” [25] or the “transposition” [10,14-16]. In 

fact, JMs of an FRI for the CCW and the CW propagations are 

mutually transposed with opposite signs for all off-diagonal 

elements, as for the case of a purely circular retarder [22]. 

Once correct JMs of the FRI are obtained, the 

non-reciprocity can be calculated based on following steps [10]. 

Firstly, the output electric field of the FRI can be written as 
2 2i ie e −= +E E E , where   is the Sagnac phase shift. 

Secondly, the coherence matrix †=J EE  of the output electric 

field can be calculated via the matrix product of the field E  
and its Hermitian matrix †

E . Thirdly, the trace of the 

coherence matrix, trJ , can be acquired through the measured 

intensity in an optical detector. Fourthly, the null shift 0
 can 

be assessed from the condition 0d(tr ) d 0 = =J . In the 

approximation of the plane wave, the null shift 0
 in the FRI is 

finally expressed as: 

 

( ) ( ) ( ) 

( ) ( ) ( ) 

2 2 2 2

0 22
2 2 2 2

2 sin 2 sin cos cos 2 4 sin sin1
arctan

2 sin 2 sin cos cos 2 4 sin sin

z z z

z z z

L L L

L L L

      


      

  −  + 
=

 − −  + 

      

      
.   (6)

Equation (6) provides the expression of the null shift 0  

due to the non-reciprocity of the FRI, with respect to 

parameters of   and z  from the linear and the circular 

birefringence of the fiber, respectively. The FRI is reciprocal, i.e., 

0 0 = , when there is no linear or circular birefringence in the 

fiber, i.e., 0 =  or 0z = , corresponding to an ideal FRI. 

The non-reciprocity originates from the non-zero linear and 

circular birefringence in practical fibers and coiling processes in 

practical FRIs. This indicates the importance of the fiber 

birefringence. The non-reciprocity described by the null shift in 

Eq. (6) will vary periodically due to the trigonometric functions 

of the fiber birefringence. Similar impacts from the polarizer 

amplitude extinction ratio   and the fiber length L  are also 

explicitly described in Eq. (6). The same dependence on the 

fiber birefringence occurs to the bias error of the FRI, since it 

scales linearly with the null shift via 00 K =
 

according to 

Sagnac effect, where the scale factor 2K c LD =  is a 

coefficient dominated by the wavelength   and the velocity 

 

 

ẑ  

y  ê  

ŷ  

x̂  

z  
ẑ  

ê  

x̂  

ŷ  

z  
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c  of the light in vacuum, as well as the length L  and the 

diameter D  of the coiled fiber. It is found that the dependence 

of the bias error on the fiber birefringence behaves similarly as 

the null shift does in Eq. (6). 

3. CALCULATIONS 

Numerical calculations of bias errors are carried out for an 

FRI according to Eq. (6) and the Sagnac formula, using MATLAB. 

Parameters are listed in Table 1. The wavelength and the 

velocity of the light in vacuum are 1,550 = nm and 

299,792,458c = m/s, respectively. The average refractive index 

of the core is 2 1.4578n  = = . The beat length (indicating 

the linear birefringence) of the fiber is around 3.0  =  =

mm. The circular birefringence of the fiber manifests itself as 

the induced PR. The total length of the fiber is 1000L = m. The 

amplitude extinction ratio of the polarizer is 0 0 0.1y xE E = = . 

It is clearly found that the bias errors show periodical 

dependence on the linear and the circular birefringence of the 

fiber, as results in Fig. 3 and Fig. 4. The performance fluctuation 

of practical FRIs can be explained based on such dependence. 

The bias errors can span several orders of magnitude, even for 

the same batch of FRIs. It ranges from the best case (0 deg/h for 

both the linear and the circular birefringence) to the worst case 

( 0.24  deg/h for the circular birefringence and 0.024  

deg/h for the linear birefringence). It can also be found from Eq. 

(6) that the circular birefringence of the fiber plays a more 

dominant role for the performance of FRIs. 

Table 1 

Parameters used in numerical simulations. 

Symbol Parameter    Value   Reference 

c   Speed of light in vacuum  299,792,458 m/s [5,6] 

   Wavelength in vacuum  1,550 nm 

n   Refractive index of fiber  1.4578  [29] 

   Beat length of fiber  3.0 mm  [29,31] 

L   Fiber length    1,000 m  [13] 

D   Diameter of fiber loop  100 mm  [13] 

44p   Pockels coefficient  -0.075  [33] 

   External twist rate  0.01-0.1 deg/mm [32-34] 

    of the PMFs 

   Amplitude extinction  0.1   [10] 

ratio of the polarizer 

   Internal rotation rate of  0.01-0.5 deg/mm [30,31] 

    the linear birefringence 

axes of the PMFs 

The periodic dependence of bias errors on the PR induced 

by the circular birefringence of the fiber is shown in Fig. 3(a). 

Within each period, there is a clear discontinuity point between 

the upper and the lower halves. Singularities are located at the 

middle and the edges of each period, corresponding to the 

worst bias errors of the FRI, which gives 0max 0.24 =  deg/h 

with PR 58z=  deg/h in the example here. The worst null 

shift is 0 max (1 2)arctan[ (tan 2 ) 2]z = − accordingly, where PR is 

given by 2 1/2arccot{ [4 sin ( ) cos(2 ) sin(2 )] }z L L L    =   +  +  . 

This will occur at angles of (2 1) 4z k =  + ( 0,1,2,3k = ) 

when the following two conditions are satisfied. One is that the 

polarizer should be ideal, i.e., 0 = , and the other is that the 

fiber length should be the odd multiples of a quarter of the beat 

length, i.e., (2 1) 4L k= +  . The two conditions arise from

cos(2 ) 0L =  and the two opposite maxima come from

sin(2 ) 1L =  . 

There are two different minima, at the middle of the upper 

and the lower halves within a period, respectively. The first 

minimum i.e., the optimal bias error opt0 0 = (corresponding 

to opt0 0 = ), always occurs at z k =   in the lower half. It 

means that the total PR vanishes (equal to 0 or integral 

multiples of   for the linear polarization). This shows the 

condition to achieve the best performance of an FRI, which is 

independent of the linear birefringence in the fiber. The second 

minimum 0 min
 

is located at the middle of the upper half. At 

this position, the PR induced by the circular birefringence is 

given by (2 1) 2z k =  + . This means that the polarization of 

the output light is orthogonal to the polarization of the incident 

light. The general expression of the null shift for this second 

minimum can be attained by substituting the conditions of 

sin 1z =   and cos 0z =  into corresponding terms in Eq. 

(3). The second minimum is always positive and larger than the 

first minimum, i.e., 0min opt0 0   = . We will have 

0min 2 L =   in the case of an ideal polarizer ( 0 = ), and 

here we have 0min 0min 0.15K = = deg/h in our example. 

 

Fig.3. Dependence of bias errors on (a) the PR induced by the circular 
birefringence and (b) the beat length variation of the coiled fiber in a 
FRI. 

The periodic dependence of bias errors on the linear 

birefringence of fibers in FRIs is shown in Fig. 3(b). Three 

curves provide bias values as functions of variations in beat 

length, 2 2L =  . It is found that the considered beat length 

varies in the level of nanometer, which is very small to adjust in 

practical fibers. In our example in Fig. 3(b), we have 3.00 =

mm, and the variation of bias errors ranges from 0 nm to 10 nm. 

The fluctuations of bias errors span several orders of magnitude 

for a non-zero PR. They range from the optimal value of 0 deg/h 

to the worst cases of 30.1 10−  deg/h, 30.8 10−  deg/h, and 
32.4 10−  deg/h for PRs of 1 deg, 3 deg, and 5 deg, respectively. 

The periods of three schemes are all 4.5 = nm. Such a small 

period, at nanometer level, indicates the extremely high and 
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sensitive dependence of bias errors on the linear birefringence. 

It arises from the zero linear birefringence term in Eq. (6), 

cos(2 ) 0L = , i.e., cos(2 ) cos(2 ) 0L L  =  = . The high 

dependence of bias errors on the fiber length can also be 

observed, as shown in Fig. 4(a), for the same three PR values. 

The periods for all three PRs equal the beat length. The optimal 

bias error opt0 0 =
 

always occurs when the PR vanishes. For 

PR 0 , the optimal bias opt0 0 =  occurs at the integral 

multiples of half the beat length, i.e., 2L k=  , according to the 

condition of sin(2 ) 0L = . The worst bias errors take place at 

the odd multiples of a quarter of the beat length. 

 

Fig.4. Dependence of bias errors on (a) length variation induced by 
fiber end cutting at the level of millimeter and (b) total length of the 
coiled fiber in a FRI. 

The dependence of bias errors on the total length of the 

fiber is shown in Fig. 4(b). The period (equal to the beat length) 

is still at the level of millimeter, similar as in Fig. 4(a). It is 

observed in Fig. 4(b) that the amplitudes of maxima decrease 

with the increment of fiber lengths. It indicates that Sagnac 

effect is enhanced in FRIs with the increase of fiber lengths. This 

property also works in results in Fig. 3(b) and Fig. 4(a), but is 

more clearly observed in Fig. 4(b). This means that the 

performance improvement by increasing the fiber length is not 

so obvious for FRIs, especially when the fiber length varies 

within the same order of magnitude. On the contrary, the 

dependence on the birefringence is much more significant, and 

can be applied to efficiently improve the performance of FRIs. 

The performance improvement originates from the periodic 

dependence of the null shift in Eq. (6) or bias errors in Fig. 3 

and Fig. 4. This can be controlled via the fiber splicing, a typical 

process in the assembly and the manufacture of FRIs to link 

coiled fibers to polarizers. The length and the birefringence of 

the fiber can be adjusted by operations e.g., fiber end cutting 

and facet alignment, in the slicing process, respectively. There 

are inevitable twists applied to the fiber in the facet alignment, 

which will introduce a third PR through the same way as the ET. 

The total PRs will be the sum of all additional PRs and intrinsic 

PR induced by the circular birefringence of the fiber. If the twist 

PR behaves in an opposite way to the intrinsic PR, the 

alignment-introduced PR will mitigate the intrinsic PR to some 

extent. Then the performance will be optimized and maintained 

around the zero points, as shown in Fig. 3(a). A similar 

improvement can be realized in the cutting process (via several 

trials of the precise cutting) according to the length variation 

shown in Fig. 4(a). Such performance improvement relies on 

two aspects. One is the uniformity of FRIs fabricated in the same 

batch, e.g., in the above splicing method. The other is the stable 

response of FRIs to external (e.g., thermal and magnetic) 

perturbations, which will be investigated in our future work. 

4. CONCLUSION 

In summary, the non-reciprocal phase shift in FRIs due to 

the birefringence and the topology of the coiled fiber is 

investigated based on the topological phase method. It is found 

that the performance periodically depends on both the linear 

and the circular birefringence of the fiber. Such dependence 

allows significant improvements in the performance via typical 

operations in the fabrications. 
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