THE UNIVEFSTTY OF WARWICN

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/153057

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Fourier multipliers and transfer operators

Mark Pollicott*

1 Introduction

In an interesting recent paper of Volkmer and Chen they considered a family of operators with trigonometric weights and estimated their spectral radii. In addition to their intrinsic interest, they are additionally motivated by their connections to problems in the theory of Fourier Multipliers (see Application 1.3 below).

As a simple example, consider the bounded linear operator $\mathcal{L}: C^{0}([0,1]) \rightarrow C^{0}([0,1])$ defined by

$$
(\mathcal{L} u)(t)=\frac{1}{3} \sum_{i=0}^{3}\left|\sin \left(\frac{\pi(t+i)}{3}\right)\right| u\left(\frac{t+i}{3}\right) .
$$

In [1] they have established rigorous bounds on the spectral radius $c:=\lim _{n \rightarrow+\infty}\left\|\mathcal{L}^{n}\right\|^{\frac{1}{n}}$ of the form:

$$
0.643815 \leq c \leq 0.649415
$$

and they then conjecture:
Conjecture 1.1 (Volkmer-Chen). $c=648314 \cdots$
We have the following rigorous estimate.
Theorem 1.2. We can write

$$
c=0.648314752798325682324771447 \cdots \pm 10^{-27} .
$$

We will first prove an easier preliminary estimate in Theorem 3.1 which is accurate to 21 decimal places. This only requires the ideas from the original article of Ruelle [4]. The method of proof of the stronger Theorem 1.2 is based on the approach that was used in [3]. In the interests of simplicity, we have not implemented the full machinery from [3], which would have lead to an even more accurate estimate for c.

Part of the interest in the estimate in Theorem 1.2 is that it can be applied directly to Bochner-Riesz type Fourier multipliers, relative to the middle third Cantor set, as explained in [1] and as we briefly recall below.

[^0]Application 1.3. Let μ be the usual natural measure supported on the middle third cantor set and let $\alpha=\frac{\log 2}{\log 3}$ be its dimension. A function $m(\cdot)$ is an L^{1} Fourier multiplier if the linear operator $T: L^{1}(d x) \rightarrow L^{1}(d x)$ defined by $\widehat{T f}(\xi)=m(\cdot) \widehat{f}$ is bounded. To define BochnerRiesz type Fourier multipliers, assume $\chi(x)$ is a compactly supported bump function with $\widehat{\chi} \geq 0$ and $\delta>0$, then let

$$
m_{\delta}(\xi)=\int \frac{\chi(\xi-\eta)}{|\xi-\eta|^{\alpha}} d \mu(\eta)
$$

By Theorem 6.1 in [1], this is a L^{1}-Fourier multiplier iff

$$
\delta>\alpha+\frac{\log c}{\log 3}=0.236451214234647382935 \cdots
$$

Application 1.4. Let $f(t)=|\sin (\pi t)|$. We can write

$$
\int_{0}^{1} \prod_{k=0}^{n-1} f\left(d^{k} x\right) d x \sim c^{n}, \quad \text { as } n \rightarrow+\infty
$$

In particular, where $d=3$ we can use the numerical estimates for c in Theorem 1.2. Quantities of this form appear in the work of Fan and Lau [2], for example.

2 Estimating the spectral radius

To estimate the value of c we first introduce the following complex function.
Definition 2.1. We can formally define a complex function

$$
d(z):=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \frac{1}{3^{n}-1} \sum_{j=0}^{3^{n}-1} \prod_{k=0}^{n-1} \sin \left(\frac{3^{k} j \pi}{3^{n}-1}\right)\right)
$$

for $z \in \mathbb{C}$.
There is a natural dynamical interpretation for $d(z)$ whereby the values $\frac{3^{k} j}{3^{n}-1}(\bmod 1)$ correspond to periodic points for the classical trebling map $x \mapsto 3 x(\bmod 1)$ of the unit circle.

One easily sees that $d(z)$ converges to an analytic function for $|z|<\frac{1}{3}$. The connection between $d(z)$ and c is given by the following proposition.

Proposition 2.2 (after Ruelle). The function $d(z)$ extends analytically to \mathbb{C}. The smallest positive zero $\alpha>0$ is the reciprocal of the spectral radius c, i.e., $c=\frac{1}{\alpha}$.

This is easily deduced from [4] (see also [3]).
We can therefore consider the expansion

$$
d(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

where $b_{n} \in \mathbb{C}, n \geq 1$. To estimate α, and thus c, we can consider the sequence of truncations

$$
d_{N}(z)=1+\sum_{n=1}^{N} b_{n} z^{n}
$$

and consider their smallest zeros $z_{N}>0$. These give approximations $c_{N}=\frac{1}{z_{N}}$ to c which can be efficiently computed to high accuracy.

The larger we choose N, the better the approximation. As we can see from Table 2, a good approximation to z_{N} based on $N=15$ is

$$
z_{15}=1.54246065770321086721156153797824343314677299 \ldots
$$

which corresponds to an approximation c_{15} to c of

$$
c_{15}=0.64831475279832568232477144769601239350930429 \cdots
$$

N	z_{N}
5	1.54246074617008138578022152837049794979310989
6	1.54246065795434503327103554155227221319368967
7	1.54246065770349592275701430307427675571759810
8	1.54246065770321099322481446600053607984440150
9	1.54246065770321086723283011105355390760844307
10	1.54246065770321086721156288770669047295526711
11	1.42460657703210867211561538010061072043216200
12	1.54246065770321086721156153797824370901762535
13	1.54246065770321086721156153797824343314764551
14	1.54246065770321086721156153797824343314677299
15	1.54246065770321086721156153797824343314677299

Table 1: The smallest positive zeros z_{N} for the approximations $d_{N}(z)$ to $d(z)$.
However, it remains to get rigorous error bounds on these approximations. We will prove a preliminary error bound (Theorem 3.1) in $\S 3$ and then, after a little more work, prove a better error bound (Theorem 1.2) in $\S 4$.

3 A preliminary result

In the next two sections we will explain how to obtain basic rigorous bounds on the approximation of c by c_{N}, or equivalently, of α by z_{N}. This based on using bounds on $\sum_{n=16}^{\infty}\left|b_{n}\right|\left(z_{N} \pm \epsilon\right)$.

In this section, we begin by describing a basic method which already gives quite good bounds. This establishes the following preliminary version of Theorem 1.2 with a more modest error estimate.

Theorem 3.1. We can estimate

$$
c=0.6483147527983256823247 \pm 10^{-21} .
$$

In the next section, we will apply a more sophisticated approach which improves these initial estimates. Both methods are based on studying the operator \mathcal{L} acting on a smaller space of functions. However, this does not effect the spectral radius.

3.1 Space of analytic functions

We can use estimates based on the operator \mathcal{L} restricted to a Hilbert space of analytic functions on the disk $D(r)=\left\{z \in \mathbb{C}:\left|z-\frac{1}{2}\right|<r\right\}$ of radius $r>\frac{1}{2}$.

Definition 3.2. We can let \mathcal{H} be the space of analytic functions $f: D(r) \rightarrow \mathbb{C}$ with norm $\|\cdot\|^{2}$ given by

$$
\|f\|^{2}=\frac{1}{r^{2}} \sup _{0<\rho<r} \int_{0}^{1}\left|f\left(\frac{1}{2}+r e^{2 \pi i \theta}\right)\right|^{2} d \theta
$$

We can define a natural basis $q_{n}(z)=\frac{1}{r^{n}}\left(z-\frac{1}{2}\right)^{n}, n \geq 1$, for \mathcal{H}. Moreover, since $\cup_{i=0}^{2} T_{i} D(z, r) \subset D\left(\frac{r+1}{3}\right)$ where $T_{i}(z)=\frac{z+i}{3}$, for $i=0,1,2$, we see that the operator \mathcal{L} also preserves \mathcal{H}.

3.2 First bounds on coefficients

We can obtain easy bounds on the coefficients by using simple "Euler bounds" (using the terminology from [3]).

Lemma 3.3. We can bound

$$
\begin{equation*}
\left|b_{n}\right| \leq C^{n} \frac{\theta^{n(n+1) / 2}}{\prod_{k=0}^{\infty}\left(1-\theta^{k}\right)}, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

where $\theta=\theta(r)=\frac{r+1}{3 r}$ and $C=C(r)=\left(e^{\pi \theta r}+1\right) / 2$.
These standard bounds follow easily as in [4] and [3].
We have the freedom to change $r>1 / 2$ in order to find the best possible bound. The following example illustrates this.

Example $3.4\left(r=\frac{5}{2}\right)$. If we take the value $r=\frac{5}{2}$ then we have $\theta=\frac{7}{12}$ and $C=20.0318 \cdots$.
Given z_{N} and $\delta>0$, to see that there is a zero $z \in\left[z_{N}-\delta, z_{N}+\delta\right]$ for $d(z)$ it suffices to show rigorously that

$$
\begin{align*}
& \left|d_{N}\left(z_{N}-\delta\right)-d\left(z_{N}-\delta\right)\right|<\epsilon \\
& \left|d_{N}(z+\delta)-d\left(z_{N}+\delta\right)\right|<\epsilon \text { and } \tag{3.2}\\
& d_{N}\left(z_{N}-\delta\right) \leq-\epsilon<0<\epsilon \leq d_{N}\left(z_{N}+\delta\right) .
\end{align*}
$$

Then by the triangle inequality and the intermediate value theorem the zero z lies between $z_{N}-\delta$ and $z_{N}+\delta$. To show the first two inequalities in (3.2) we can bound

$$
\begin{align*}
\left|d_{N}\left(z_{N} \pm \delta\right)-d\left(z_{N} \pm \delta\right)\right| & \leq\left|\sum_{n=N+1}^{\infty}\left(z_{N} \pm \delta\right)^{n} b_{n}\right| \tag{3.3}\\
& \leq \sum_{n=N+1}^{\infty}\left(z_{N} \pm \delta\right)^{n}\left|b_{n}\right|
\end{align*}
$$

and we can use the bound (3.1) in Lemma 3.3 for individual terms. This gives a basic, but still respectable, upper bound on (3.3) of the following form

$$
\begin{align*}
\sum_{n=N}^{\infty} C^{n} \theta^{n(n+1) / 2}\left(z_{N} \pm \delta\right)^{n} & \leq\left(C\left(z_{N} \pm \delta\right)\right)^{N} \theta^{N(N+1) / 2} \sum_{k=0}^{\infty}\left(C\left(z_{N} \pm \delta\right) \theta^{N}\right)^{k} \theta^{k / 2} \tag{3.4}\\
& \leq \frac{\left(C\left(z_{N} \pm \delta\right)\right)^{N} \theta^{N(N+1) / 2}}{1-\left(C\left(z_{N} \pm \delta\right) \theta^{N}\right)}
\end{align*}
$$

Letting $N=15$ and $\delta=10^{-21}$ we take ϵ to be the resulting numerical value of the upper bound in (3.4), which is approximately $6.66711 \cdots \times 10^{-22}$. Finally, we can numerically compute (with an accuracy far in excess of 22 decimal places) the values

$$
\begin{aligned}
& d_{N}\left(z_{N}+\delta\right)=-8.09 \ldots \times 10^{-22} \\
& d_{N}\left(z_{N}-\delta\right)=8.09 \ldots \times 10^{-22}
\end{aligned}
$$

to establish the final inequality in (3.2) with with $\epsilon=10^{-21}$, say. This establishes Theorem 3.1 (with a more modest error estimate than in Theorem 1.2).

4 Proof of Theorem 1.2

We next describe a method for improving the error terms in order to establish Theorem 1.2.

4.1 Better bounds on the coefficients

The advantage of working with the Hilbert space of analytic functions rather than, say, Hölder continuous functions is that we obtain good bounds on the coefficients c_{n} in terms of the norm of the operator acting on the functions $\left\{q_{n}\right\}$. We can write

$$
\begin{equation*}
\left\|\mathcal{L} q_{n}\right\|^{2}=\frac{1}{r^{2 n}} \int_{0}^{1}\left|\left(\mathcal{L} q_{n}\right)\left(\frac{1}{2}+r e^{2 \pi i n \theta}\right)\right|^{2} d \theta \tag{4.1}
\end{equation*}
$$

We then denote

$$
\alpha_{n}:=\left(\sum_{k=n-1}^{\infty}\left\|\mathcal{L} q_{k}\right\|^{2}\right), \quad n \geq 1
$$

This leads to we have the following bound on $\left|b_{n}\right|$, which helps to improve on the preliminary bounds (3.1).

Lemma 4.1. Let $M \geq N$. We can bound the coefficients $\left|b_{n}\right|$ for $N+1 \leq n \leq M$ by

$$
\left|b_{n}\right| \leq \sum_{k=1}^{\min \{M, n\}} Q_{k, M} C^{(n-k)}\left(\frac{\Theta^{M(n-k)+(n-k)(n-k+1) / 2}}{\prod_{i=1}^{n-k}\left(1-\Theta^{i}\right)}\right)
$$

where $\Theta=\frac{r+1}{3 r}<1, C=\frac{e^{\pi \Theta r}+1}{\Theta \sqrt{1-\Theta^{2}}}$ and

$$
Q_{k, M}=\sum_{m_{1}<\cdots<m_{k} \leq M} \alpha_{m_{1}} \alpha_{m_{2}} \cdots \alpha_{m_{k}} .
$$

Proof. We will sketch the proof, using the bounds established in [3]. In particular, by Lemma 2 in [3] we can bound

$$
\begin{equation*}
\left|b_{n}\right| \leq \sum_{i_{1}<\cdots<i_{n}} \prod_{j=1}^{n} s_{i_{j}}(\mathcal{L}) \tag{4.2}
\end{equation*}
$$

where

$$
s_{i}(\mathcal{L})=\inf \{\|\mathcal{L}-K\|: \operatorname{rank} \leq i-1\}, \quad i \geq 1
$$

are the approximation numbers. (The inequality (4.2) has its origins in the Weyl inequality.) Moreover, by Proposition 1 in [3] $s_{n}(\mathcal{L}) \leq z_{n}$ for $n \geq 1$. Therefore, we can bound the right hand side of (4.2) by

$$
\begin{equation*}
\sum_{k=1}^{\min \{M, n\}} Q_{k, M}\left(\sum_{M<m_{k+1}<\cdots<m_{n}} \alpha_{m_{k+1}} \cdots \alpha_{m_{n}}\right) . \tag{4.3}
\end{equation*}
$$

Moreover, we can bound $\alpha_{n} \leq C \Theta^{n}$, for $n>M$, (by Corollary 1 in [3]) and thus we can bound the inner summation in (4.3) by

$$
C^{(n-k)} \sum_{M<m_{k+1}<\cdots<m_{n}} \Theta^{m_{k+1}+\cdots+m_{n}}=C^{n-k} \frac{\Theta^{M(n-k)+(n-k)(n-k+1) / 2}}{\prod_{i=1}^{n-k}\left(1-\Theta^{i}\right)}
$$

which can be compared with Lemma 3.3. This completes the proof.
In this lemma, the improvement on the bounds comes from the terms $Q_{k, M}$ being relatively small for small k. In order to make this into a bound which can be numerically estimated we need to replace α_{n} by the upper bound

$$
\widetilde{\alpha_{n}}:=\left(\sum_{k=n-1}^{L}\left\|\mathcal{L} g_{k}\right\|^{2}+\frac{C^{2} \theta^{2 L}}{1-\Theta^{2}}\right)^{\frac{1}{2}}
$$

where $L \geq M$ following [3]. Correspondingly, we can bound $Q_{k, M}$ by

$$
\widetilde{Q_{k, M}}=\sum_{m_{1}<\cdots<m_{k} \leq M} \widetilde{\alpha_{m_{1}}} \widetilde{\alpha_{m_{2}}} \cdots \widetilde{\alpha_{m_{k}}}
$$

In particular, we can bound the contribution from the terms for $N+1 \leq n \leq M$ by

$$
\sum_{n=N+1}^{M}\left(z_{N} \pm \delta\right)^{n}\left|b_{n}\right| \leq \sum_{n=N+1}^{M}\left(z_{N} \pm \delta\right)^{n} \sum_{k=1}^{\min \{M, n\}} \widetilde{Q_{k, M}} C^{(n-k)}\left(\frac{\Theta^{M(n-k)+(n-k)(n-k+1) / 2}}{\prod_{i=1}^{n-k}\left(1-\Theta^{i}\right)}\right)
$$

Finally, for the terms with $n \geq M+1$ we have an upper bound

$$
\begin{align*}
\sum_{n=M+1}^{\infty}\left(z_{N} \pm \delta\right)^{n}\left|b_{n}\right| & \leq \sum_{k=1}^{M} \widetilde{Q_{k, M}}\left(\sum_{n=M+1}^{\infty}\left(z_{N} \pm \delta\right)^{n} C^{(n-k)}\left(\frac{\Theta^{M(n-k)+(n-k)(n-k+1) / 2}}{\prod_{i=1}^{n-k}\left(1-\Theta^{i}\right)}\right)\right) \\
& \leq \frac{1}{\prod_{i=1}^{\infty}\left(1-\Theta^{i}\right)} \sum_{k=1}^{M} \widetilde{Q_{k, M}}\left(\sum_{n=M+1}^{\infty}\left(z_{N} \pm \delta\right)^{n} C^{(n-k)}\left(\Theta^{M(n-k)+(n-k)(n-k+1) / 2}\right)\right) \\
& \leq \frac{1}{\prod_{i=1}^{\infty}\left(1-\Theta^{i}\right)} \sum_{k=1}^{M} \widetilde{Q_{k, M}}(\alpha+\epsilon)^{k} \frac{\left(C \theta^{M}\left(z_{N} \pm \delta\right)\right)^{(M+1-k)}}{1-C \theta^{M}\left(z_{N} \pm \delta\right)} . \tag{3.8}
\end{align*}
$$

In now only remains to make judicious choices for the various arbitrary values, which we do in the next subsection.

4.2 Error term bounds

For practical considerations (based on computation time) we can choose $N=15, M=100$ and $L=500$. We can let $r=2$ then $\Theta=\frac{1}{2}$ and $e^{\pi}+1=13.4187 \cdots$. We make no claim that these choices are optimal, but with these choices we obtain concrete bounds on the contribution coming from the terms corresponding to $n \geq 16$.

We now take $\delta=10^{-26}$, and with this choice we have the bound $\sum_{n=16}^{\infty}\left|b_{n}\right|\left(z_{n}+\delta\right)^{n} \leq$ $3.63 \cdots \times 10^{-27}$, which can be compared with the bound in (3.3). In particular, since we can compute

$$
\begin{aligned}
d_{N}\left(z_{N}+\delta\right) & =-8.09 \ldots \times 10^{-27} \\
d_{N}\left(z_{N}-\delta\right) & =8.09 \ldots \times 10^{-27}
\end{aligned}
$$

we can use the corresponding inequalities in (3.2) to complete the proof of Theorem 1.2.

5 Generalizations

The method we have described above for estimating the spectral radius of \mathcal{L} applies more generally. For example, one can consider transfer operators $\mathcal{L}_{d, q}: C^{0}([0,1]) \rightarrow C^{0}([0,1])$ (where $d \geq 2$ and $q \geq 1$) defined by

$$
\left(\mathcal{L}_{d, q} u\right)(t)=\frac{1}{d} \sum_{i=0}^{d} f_{q}\left(\frac{t+i}{d}\right) u\left(\frac{t+i}{d}\right)
$$

where either $f_{q}(t)=|\cos (\pi t)|^{q}$ or $f_{q}(t)=|\sin (\pi t)|^{q}$.
Definition 5.1. We let $c_{d}(q)$ be the spectral radius of $\mathcal{L}_{d, q}$.

| k | $\left\\|\mathcal{L} q_{k}\right\\|$ | |
|---|---|---|---|---|
| 1 | 5.086023222 |
| 2 | 1.113848198 |
| 3 | 0.317490130 |
| 4 | 0.178212967 |
| 5 | 0.091573051 |
| 6 | 0.041201463 |
| 7 | 0.017851464 |
| 8 | 0.008068454 |
| 9 | 0.003857587 |
| 10 | 0.001881168 |
| 11 | 0.000910710 |
| 12 | 0.000435966 |
| 13 | 0.000207753 |
| 14 | 0.000099228 |
| 15 | 0.000047642 |\quad| n | $\widetilde{\alpha_{n}}$ |
| :--- | :--- |
| 1 | 5.220281249 |
| 2 | 1.176309529 |
| 3 | 0.378214620 |
| 4 | 0.205539086 |
| 5 | 0.102403389 |
| 6 | 0.045834817 |
| 7 | 0.020081582 |
| 8 | 0.009197562 |
| 9 | 0.004415337 |
| 10 | 0.002148074 |
| 11 | 0.001037028 |
| 12 | 0.000236576 |
| 13 | 0.000113166 |
| 14 | 0.000054408 |
| 15 | 0.000026275 |

Table 2: The first few values of $\left\|\mathcal{L} q_{k}\right\|$ and $\widetilde{\alpha_{n}}$

k	$\widetilde{Q_{100, k}}$
1	7.166413516
2	11.262024489
3	6.009094824
4	1.345702822
5	0.135230283
6	0.006173517
7	0.000128659
8	$1.241338291 \times 10^{-6}$
9	$5.638788290 \times 10^{-9}$
10	$1.219753034 \times 10^{-11}$
11	$1.262398454 \times 10^{-14}$
12	$6.257402794 \times 10^{-18}$
13	$1.486214073 \times 10^{-21}$
14	$1.694078690 \times 10^{-25}$
15	$9.291306353 \times 10^{-30}$

n	bounds on b_{n}
1	$5.176742012 \times 10^{-52}$
2	$1.526929255 \times 10^{-48}$
3	$2.251911477 \times 10^{-45}$
4	$1.660556730 \times 10^{-42}$
5	$6.122462367 \times 10^{-40}$
6	$1.128674038 \times 10^{-37}$
7	$1.040353545 \times 10^{-35}$
8	$4.794721336 \times 10^{-34}$
9	$1.104881739 \times 10^{-32}$
10	$1.273028787 \times 10^{-31}$
11	$7.333826946 \times 10^{-31}$
12	$2.112482380 \times 10^{-30}$
13	$3.042464622 \times 10^{-30}$
14	$2.190927381 \times 10^{-30}$
15	$7.888609052 \times 10^{-31}$

Table 3: The first few values of $\widetilde{Q_{100, k}}$ and the corresponding bounds on b_{n}.

There are particular cases where $c_{d}(q)$ is easily computed. In the case that $d=2$ one can explicitly compute $c_{2}(q)=2^{-\min \{q, 1\}}(q>0)$. Furtermore, when $q=2$ and $q=4$ then one can explicitly compute $c(2)=\frac{1}{3}$ and $c(4)=\frac{3}{8}$ [5]. In general, when q is even then the values $c_{d}(q)$ can be easily expressed in terms of finite matrices.

For completeness, we briefly describe the modifications for the more general setting. In the general case, we can introduce the following complex function, generalizing Definition 2.1.

Definition 5.2. We can formally define

$$
d_{d, q}(z):=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \frac{1}{d^{n}-1} \sum_{j=0}^{d^{n}-1} \prod_{k=0}^{d-1} f_{q}\left(\frac{2^{k} j}{d^{n}-1}\right)\right)
$$

for $z \in \mathbb{C}$.
Since $\left\|f_{q}\right\|_{\infty} \leq 1$ we see that $d(z)$ converges to an analytic function for $|z| \leq \frac{1}{d}$. We can therefore consider the expansion

$$
d_{d, q}(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

where $b_{n} \in \mathbb{C}, n \geq 1$. One can show that the smallest positive zero $\alpha=\alpha_{d, q}>0$ is the reciprocal of the spectral radius c, i.e., $c=c_{d, q}=\frac{1}{\alpha}$ of $\mathcal{L}_{d, q}$. To estimate α, and thus c, we can consider the sequence of truncations

$$
d_{N}(z)=1+\sum_{n=1}^{N} b_{n} z^{n}
$$

and consider their smallest zeros $z_{N}>0$. These give approximations $c_{N}=\frac{1}{z_{N}}$ to c.
We can choose small complex neighbourhoods $U_{i} \supset[i / q,(i+1) / q]$ and consider analytic functions on $\coprod_{i} U_{i}$. The operator is nuclear. In particular, this allows computation of the values $c=c_{d, q}$ much as before.

References

[1] X. Chen and H. Volkmer, On transfer operators on the circle with trigonometric weights, J. Fractal Geom. 5 (2018) 339-460
[2] A.-H. Fan and K.-S. Lau, Asymptotic behavior of multiperiodic functions $G(x)=$ $\prod_{n=1}^{\infty} g\left(x / 2^{n}\right)$, J. Fourier Anal. Appl. 4 (1998) 129150.
[3] O. Jenkinson and M. Pollicott, Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred decimal digits for the dimension of E_{2}. Adv. Math. 325 (2018) 87115.
[4] D. Ruelle, Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976) 231242
[5] R. S. Strichartz. Self-similar measures and their Fourier transforms. I. Indiana Univ. Math. J., 39 (1990)797-817.

[^0]: *Department of Mathematics, Warwick University, Coventry, CV4 7AL

