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Abstract

Increasing interest has emerged in new mathematical approaches that simplify the study of

complex differentiation processes by formalizing Waddington’s landscape metaphor. How-

ever, a rational method to build these landscape models remains an open problem. Here we

study vulval development in C. elegans by developing a framework based on Catastrophe

Theory (CT) and approximate Bayesian computation (ABC) to build data-fitted landscape

models. We first identify the candidate qualitative landscapes, and then use CT to build the

simplest model consistent with the data, which we quantitatively fit using ABC. The resulting

model suggests that the underlying mechanism is a quantifiable two-step decision controlled

by EGF and Notch-Delta signals, where a non-vulval/vulval decision is followed by a bistable

transition to the two vulval states. This new model fits a broad set of data and makes several

novel predictions.

Author summary

Standard models of cell differentiation focus on creating and analyzing gene regulatory

networks (GRNs), which can be used to predict the evolution of a gene expression profile

and determine stable states that correspond to cell fates. These models require a large

number of parameters and variables, and the difficulty in constraining the parameters can

reduce their predictive value. Further, model complexity often limits the ability to offer

mechanistic insight. Recently there has been an increased interest in simplified models

that mathematically formalize Waddington’s landscape metaphor, focusing on cell fates

and the transitions between them at the phenotypic level without reference to the underly-

ing GRN. However, to date there is no general, systematic method to develop and fit land-

scape models to new biological problems. Here we present a methodology to formulate

landscape models and fit them to quantitative data, and apply it to model the well-studied

process of vulval development in the C. elegans worm. This model represents a qualita-

tively novel way of thinking about this process, reproduces a large quantity of existing

data, and makes novel predictions. Moreover, we provide all necessary mathematical
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background and implementation details as well as software that can serve as a resource for

the broader community to apply in other contexts.

Introduction

A key stage in the development of an organism is cell differentiation, in which unspecialized

cells, called stem cells, become specialized ones depending on the signals that they receive.

This is controlled by a very large network of interacting genes [1], the state of which defines

the characteristics of the cell. However, this process is still not completely understood.

With the recent development of experimental techniques that allow us to obtain detailed

quantitative information about the state of cells over time, new data analysis methods and

mathematical models are required for the understanding of cell differentiation. A common

approach to the modeling of stem cell differentiation is by means of gene regulatory network

(GRN) models, which aim to define the possible differentiation states of a cell by its genetic

expression profile. However, these models require a large number of parameters and variables

which rapidly increases with the size of the network, complicating its analysis. Moreover, the

complexity of such models often means they offer little mechanistic insight.

With this in mind, there has recently been an increasing interest in new kinds of mathemat-

ical models that formalize Waddington’s epigenetic landscape metaphor [2], without reference

to the underlying molecular network [3–6]. In this picture, a differentiating cell is represented

as a marble rolling down a landscape of hills and valleys, encountering decision points between

different lineages, and eventually settling in a valley that defines its cell fate. In particular, the

models developed in [3, 5] reason directly on the phenotype, expressed in geometrical terms,

focusing on the dynamics of the general process rather than on the deep molecular scale.

These models contain the essence of the process that is necessary for its understanding, which

is the structure of cell fates in the Waddington landscape and the effect that inducing signals

have upon this landscape. In their formulation, the relevant dynamical systems are gradient-

like, and the system’s trajectories, which represent the developmental path of a cell, move

downhill in this landscape until they reach a minimum representing the cell’s state. Variations

in the signals received by the cell change the underlying control parameters of the landscape

and cause bifurcations to occur, allowing the cell’s state to change by moving to another

minimum.

In these previous models a function representing the landscape was formulated in an ad-

hoc manner, however, and developing a general method to mathematically construct these

landscape models remains an open problem. The key features of the models are the ways in

which the attractors appear and disappear, i.e. the allowed bifurcations, and how the biological

signals are mapped into the parameters representing the landscape. Catastrophe Theory (CT)

and Dynamical Systems Theory provide very powerful tools for classifying the types of bifurca-

tions or singularities that can be present in a gradient-like landscape that, in mathematical

terms, can be expressed as a family of potential functions. While CT seemingly only pertains to

local bifurcations, used together with other ideas from Dynamical Systems Theory, CT and its

key results can be used to gain understanding of the global structure of landscape bifurcations.

Vulval development is an excellent but challenging problem to test this approach. It

involves a broadly studied stage in C. elegans development, and although there is an extensive

amount of data available, it is far from completely understood. The vulva is an adult structure

that develops during the larval stages of the hermaphrodite worm. The mature vulva contains

22 cells of different types, and more than 40 genes are involved in its development. It is derived
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from six ectodermal cells (P3–8.p), called vulval precursor cells (VPCs); they are partially dif-

ferentiated and situated in a row along the antero-posterior axis on the ventral side of the

larva, and they all have equivalent developmental potential at the start of the process (Fig 1A).

During vulval development, the VPCs can develop into three different fates: primary (1˚),

secondary (2˚) and tertiary (3˚). The first two fates correspond to vulval cells, while the tertiary

fate is non-vulval, and cells adopting the tertiary fate fuse with the large syncytial epidermis

Fig 1. Vulval development in C. elegans and landscape models. (A) Schematic representation of vulval development in C. elegans. Anchor cell (AC)

induces vulval precursor cells (VPCs, P3–8.p) to differentiate into three different cell types: primary fate (red), secondary fate (green) tertiary fate (blue).

The pattern is controlled by two signals, EGF from the AC (red arrows) and paracrine Notch (green arrows). VPCs are colored according to the WT

pattern. P3.p is colored in a shaded blue because it is not included in our study. (B) Example of a bifurcation controlled by a parameter ω in a landscape

with three attractors plotted over the corresponding 2-dimensional flow (B2–4) and its corresponding fate map (B1). Attractors and saddles are

represented as circles and white triangles, respectively, on the 2-dimensional flow. Attractors and their corresponding basins of attraction are colored

accordingly. (B1) Fate map defined by the parameter ω, where the bifurcation set is colored in orange. (B2) For this value of ω, the landscape contains

three attractors A, B and C. (B3) A change in the parameter of the potential that is now closer to the bifurcation set produces a change in the stability of

the landscape, making the valley corresponding to the blue attractor shallower as the attractor approaches the saddle. (B4) The parameter value has

crossed the bifurcation set and is now positioned in another region of the fate map. The bifurcation has happened: the blue attractor has bifurcated

away and is no longer present in the landscape. (C) The three possible landscape topologies for a process involving three fates, ordered by simplicity.

Basins of attraction and attractors are colored according to the fate they could represent. Saddles and repellers are represented as white triangles and

gray circles, respectively. (C1) Thom’s butterfly catastrophe where the three attractors representing the three different cell types are positioned on a

curve. This topology corresponds to the morphogen model and is inconsistent with AC ablation data. (C2) 2-dimensional landscape with two decision

points: vulval vs non-vulval fate (top saddle) and primary vs secondary fate (bottom saddle). This is the binary flip with cusp landscape and is our choice

of landscape. (C3) Symmetric 2-dimensional landscape where all transitions are allowed. This is the landscape studied in [3, 5]. (D) Schematics of the

transitions allowed in the binary flip with cusp model. The unstable manifold of the top saddle can flip from attractor B (bottom left) to attractor C
(bottom right) by going through an intermediate state where the unstable manifold of the top saddle directs the flow to the bottom saddle (middle top).

This intermediate state is called a heteroclinic connection.

https://doi.org/10.1371/journal.pcbi.1009034.g001
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hyp7. In the wild type (WT) (i.e. the typical form of C. elegans as it occurs in nature), P6.p

assumes a primary fate, P5.p and P7.p assume a secondary fate and the rest of VPCs adopt a

tertiary fate (Fig 1A). This means that only three precursor cells (P5.p, P6.p and P7.p) form the

vulva, while the remainder fuse with the syncytial epidermis [7–9]. P3.p often does not divide,

fuses with the hypodermis, and assumes a tertiary fate [3, 7, 10].

This process is orchestrated by the anchor cell (AC), positioned in the gonad of the larva,

and VPCs determine their fates through the activation of two signaling pathways [11]: the EGF

and Notch pathways. The EGF ligand (lin-3) is a signaling molecule secreted by the AC;

whereas the Notch ligands, which bind to Notch receptors (lin-12), are produced by the VPCs

themselves (Fig 1A). The period of competence for the VPCs to respond to these external sig-

nals begins in the L2 larval stage and stops shortly after the first round of cell division in L3.

The sequence of events that promote this precise pattern of cells fates (in which cells P4–8.p

adopt the fates 3˚2˚1˚2˚3˚), which happens with an accuracy higher than 97% [12], is still

unknown. Two models have been proposed to describe the patterning mechanism: the mor-

phogen model and the sequential model. In the morphogen model, EGF acts as a morphogen

and its levels determine the fate of each cell. Consequently, under this model, the fate of a cell

depends on the distance to the AC [10]. On the other hand, the sequential model hypothesizes

that the anchor cell induces the primary fate in the closest VPC which, in turn, induces the

neighboring cells towards secondary fate through activation of the Notch pathway. Cells in

which neither of these pathways are activated adopt a tertiary fate [13]. However, there is

experimental evidence supporting characteristics of both of these two mechanisms and a more

accurate description likely includes aspects of both of these models.

Phenotypes have been determined for a number of mutant worms with alterations in either

Notch or EGF signaling. These experiments shed light on the mechanisms that regulate the

development of the vulva. For example, it has been observed that a significant reduction of the

EGF signal (either by AC ablation at a very early time or by EGF loss of function) produces the

pattern 3˚3˚3˚3˚3˚ [14], suggesting that the activation of the EGF pathway is necessary for the

induction of the VPCs.

In their pioneering work, [3, 5] use a relatively complex model to quantitatively fit a sub-

stantial and complex set of experimental results, and use this to provide a number of quantita-

tive predictions. Building on their work, here we focus on vulval development in C. elegans to

illustrate a new mathematical framework to develop and quantitatively fit landscape models to

biological data, based on CT and approximate Bayesian computation (ABC) fitting.

Given a few reasonable assumptions, we first argue that CT allows us to rationally identify

the candidate landscapes. The elementary catastrophes enumerated by CT are polynomial

equations in at most two variables and a few parameters, which simplifies the analysis. The

central idea is that we can use these relatively simple dynamical systems as modules to build up

a global system with the desired characteristics, which dynamics might not be reproducible by

a single polynomial equation. Once this model is developed, we show a novel application of

ABC methods and demonstrate how coupling CT with ABC fitting to efficiently explore the

parameter space provides a useful methodology to fit landscape models to a large amount of

data. While the symmetric model developed in [3, 5] assumed that all cell states are equivalent

and cells can transition to any fate at all times, with this approach we show that a simpler

model where the the non-vulval fate is distinct from vulval ones and to which cells cannot go

back to once they are partially differentiated, is also consistent with the data. Taken together,

here we show that we can build a fundamentally different and considerably simpler model to

the ones in [3, 5] that explains the large amount of data available, and makes a number of inter-

esting predictions that suggest novel ways of understanding biological effects and new experi-

ments to validate them.
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Methods

A three-way decision landscape

Dynamical Systems Theory allows us to frame the Waddington landscape idea in mathemati-

cal terms. The state of a cell at a particular time t will be represented by the position on the

landscape, x(t) = (x(t), y(t)). The evolution of x(t) in time, representing the differentiation of a

cell, will be related to the gradient or steepness of the landscape represented by a potential

function V(x), and will move downhill in this landscape until it reaches a local minimum (an

attractor). Each attractor of V(x) corresponds to a stable fate that a cell can adopt. Given an

attractor x�, its basin of attraction is comprised of all the points with a trajectory that ends in

that given attractor. Finally, the lowest point of the barriers that separate these basins are sad-

dle points of the potential function (Fig 1B).

Now, in order for the trajectory to move from one attractor to another one, the barrier

between them needs to disappear. The induction of a new fate is biologically controlled by

cues, known as morphogens or signals, that the cell receives and produce a change in its gene

expression, pushing the cell towards a new differentiated state. Translating this idea to mathe-

matical terms, the shape of the landscape must be controlled by these signals and its shape will

change as these signals change in time. Therefore V(x) also depends on some parameters ω,

which will relate to the biological signals, becoming the family of functions V(x, ω) = Vω(x).

The most important changes in the landscape are the ones in which an attractor is created

or destroyed as the parameters change, and these are called bifurcations. These normally hap-

pen when an attractor collides with a nearby saddle. An example of this is shown in Fig 1B.

From left to right, by changing the parameter ω of the landscape, the basin of attraction corre-

sponding to the blue attractor, A, gradually becomes flatter as the attractor approaches the sad-

dle point. These two points eventually merge together and disappear. This bifurcation would

shift the trajectory of a cell starting in the blue attractor towards either the red or green one.

The values of the parameters at which bifurcations occur form the bifurcation set of the

potential function V. The bifurcation set of a potential defines regions in the parameter set that

correspond to different stability configurations in the landscape, or fate map (Fig 1B).

Choice of landscape. The problem now is to find the simplest possible parameterized

family of landscapes that can quantitatively reproduce the substantial set of experimental

results summarized in Table 1. A good starting point is to note that some of the landscapes in

this family must contain three attractors as, during the process of C. elegans vulval develop-

ment, a VPC must be able to adopt one of the three fates introduced above: primary, secondary

and tertiary. If we demand simplicity by not permitting any repelling points in the landscape,

there are essentially only two landscapes with three attractors (Fig 1C1 and 1C2). An example

of a more complex landscape with a repeller is shown in Fig 1C3, other, even more complex

examples, also exist.

As discussed above, cell state transitions occur because changes in the signals a cell receives

destabilize the attractor where the cell state lies allowing it to transition to a new one. In con-

sidering these landscapes it is important to keep in mind that since the attractors correspond

to biological cell states, there must be a clear correspondence between each attractor and a par-

ticular state, and this relationship must be tracked as the attractors move due to signal changes.

We label them here A, B and C. The first landscape (Fig 1C1), which is related to Thom’s but-

terfly catastrophe [23], differs from the second (Fig 1C2) in that, with regard to decision-mak-

ing, it is more restrained. It is characterized by the fact that, in the parameter region where

there are three attractors, the identity of the central state B cannot change. The only transitions

allowed are A! B (by bifurcating A with the top saddle), B! A (by bifurcating B with the top

saddle), B! C (by bifurcating B with the bottom saddle) and C! B (by bifurcating B with the
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bottom saddle). This means that cells need to pass through state B in order to go from A to C.

This landscape, in fact, corresponds to the morphogen model, in which a VPC would stay in

tertiary fate (A) under a low EGF signal, would transition from tertiary fate to secondary fate

(A! B) in response to a middle EGF signal, and to primary fate (A! B! C) in response to

a high EGF signal. This landscape, however, is not consistent with the AC ablation experi-

ments in [22], where early AC ablation experiments show an equal escape of cells to secondary

and primary fates (Table 1) at early AC ablation times, since this means that cells take the same

time to go from A to B than from A to C.

On the other hand, for the alternative landscape (Fig 1C2), the fact that the unstable mani-

fold of the top saddle A can flip from B to C via a heteroclinic connection allows extra transi-

tions and for either of B and C to be the central attractor (Fig 1D). Therefore, in this case, the

transition A! C is also allowed and cells can go to the state C without passing through B,

Table 1. Table of experimental data obtained from the literature [5].

Experiment VPC fates (% 1˚, 2˚, 3˚) TD VD References

P4.p P5.p P6.p

Fully penetrant phenotypes

(1) Wild type 0,0,100 0,100,0 100,0,0 ×
(2) let-23mosaic (No EGF receptors in P5/7.p) Wild type × [13, 15]

(3) Half dose of lin-3 (Half EGF ligand) Wild type × [16]

(4) Half dose of lin-12 (Half Notch receptor) Wild type × [17]

(5) Notch null, and 2 × WT EGF (2 ACs) 0,0,100 100,0,0 100,0,0 × [17]

(6) No Notch signaling, WT EGF 0,0,100 0,0,100 100,0,0 × [14, 18, 19]

Excess EGF

(7) JU1100 (overexpression of EGF ligand, level to fit) 18,46,36 45.5,54.5,0 96,4,0 × [20]

(8) JU1107 (2.75 × WT EGF) 2,15,83 19,81,0 100,0,0 × [21]

Reduced Notch [21]

(9) JU2039 (WT EGF, reduced Notch) 0,0,100 1,89,10 100,0,0 ×
(10) JU2113 (1.25 × WT EGF, reduced Notch) 4,6,90 18,70,12 100,0,0 ×

Excess EGF & ectopic Notch [21]

(11) JU2091 (1.25 × WT EGF, ectopic Notch) 0,0,100 0,100,0 100,0,0 ×
(12) JU2089 (1.79 × WT EGF, ectopic Notch) 0,6,94 1,99,0 100,0,0 ×
(13) JU2092 (2.75 × WT EGF, ectopic Notch) 5,24,71 0,100,0 100,0,0 ×

Reduced EGF [21]

(14) CB1417 (lin-3(e1417) EGF hypomorph) 0,0,100 1,99,0 54,0,46 ×
(15) JU2095 (mild ectopic Notch × EGF hypomorph) 0,1,99 0,15,85 72,0,28 ×

Phenotypes following anchor cell ablation [22]

(16) L2 lethargus - 0,0,100 0,0,100 ×
(17) Early L3 - 1.5,21,77.5 18,18,64 ×
(18) DU divided - 0,54.63,45.37 31,38,31 ×
(19) VU divided - 4,90,6 52,48,0 ×
(20) 3˚ divided - 1,99,0 65,35,0 ×
(21) 2-cell stage - 1,99,0 93,7,0 ×

Probabilities have been converted into percentages for clarity. Fates for P4.p and P8.p (or P5.p and P7.p) have been averaged, since we assume that the pattern is

symmetrical around the AC, and P3.p is not considered in this study as it often does not divide and fuses with the hypodermis, assuming tertiary fate. Abbreviations:

TD = training data; VD = validation data. Developmental stages: (L2 lethargus) lethargic L2; (Early L3) early L3; (DU divided) Dorsal Uterine precursor cells dividing or

divided once; (VU divided) Ventral Uterine precursor cells dividing or divided once; (3˚ divided) 3˚ cells have divided; (2-cell stage) all Pn.p cells have divided once.

https://doi.org/10.1371/journal.pcbi.1009034.t001
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which is consistent with the AC ablation experiments mentioned earlier. We call the landscape

in Fig 1C2 the binary flip with cusp landscape.

The more complex landscape containing a repeller shown in Fig 1C3 is essentially that used

in [3, 5], where it was shown that it can reproduce the data we are concerned with. In this

model, all attractors are equivalent to each other and all bifurcations are allowed. Biologically,

this means that all cell states are equivalent and cells can transition to any fate at all times.

Our aim is to show that the same data set can also be explained by the considerably simpler

binary flip with cusp landscape. This results in a different biological interpretation of the deci-

sion-making process. In this picture, not all the fates are equivalent, but the tertiary fate is a

special fate. It is the default state for a cell if it does not receive any signal; and cells do not

return to it once partially induced, even if the signals are switched off (as AC ablation experi-

ments show in Table 1 [22]). Transitions from fate 3˚ to fate 1˚, and fate 3˚ to fate 2˚, are

allowed [24]. Also, the transition from fate 2˚ to fate 1˚ is achieved by increasing the EGF sig-

nal and turning Notch signal off [17]. These reasons lead us to hypothesize that the topology of

decisions is represented by that of the binary flip with cusp landscape. First, cells will decide

whether to differentiate into a vulval fate or stay non-vulval (determined by a bifurcation

between the blue attractor A and the top saddle in Fig 1C2) and, if they do so and surpass the

top saddle, then they will decide whether to become 1˚ or 2˚ fated cells (determined by bifurca-

tions between the bottom critical points in Fig 1C2).

Building the landscape. In order to find a representative model for this landscape, we

could attempt to use CT to search for a parameterized set of functions such that the parameter-

ized landscape is given by the gradient flows of these functions. However, this approach is not

practicable for very complex landscapes. Therefore we employ an alternative method that can

be used in this more general context. We use catastrophe and bifurcation theory to analyze the

local structure and then use ideas from differential topology to glue the local models together.

In our case this involves composing two simple catastrophes: a fold (commonly also known as

a saddle-node bifurcation) that will explain the non-vulval vs vulval bifurcation (bifurcation

between attractor A and top saddle in Fig 1C2), and a cusp catastrophe that will explain the

primary vs secondary fate bifurcation (bifurcation between attractors B and C and bottom sad-

dle in Fig 1C2). For gradient and gradient-like systems these are the only local bifurcations

that occur generically and are universal in one and two-parameter systems [25].

The fold or saddle-node is the only bifurcation that appears generically in one-parameter

gradient-like systems of any dimension n, and it has the normal form _x1 ¼ ffoldðx1; cÞ ¼
� x2

1
� c; _xi ¼ � l

2

i xi (i = 2, . . ., n), where (x1, x2, . . ., xn) is a choice of coordinate system, and

c;li 2 R are parameters (Fig 2A). Any system displaying a saddle-node bifurcation can be

transformed into this [25]. Here, when the parameter c< 0, the system has two equilibria, an

attractor and a saddle, and when c> 0 it has none (see S1 Appendix for more details). Thus, it

can represent the disappearance of the tertiary fate upon receiving signals. The distance

between these two equilibria grows like
ffiffi
c
p

. We will use it to define the attractors correspond-

ing to 3˚ fate and the point of transition between this non-vulval state and the other two vulval

states (bifurcation between 3˚ attractor and top saddle in Fig 2C).

For 2-parameter gradient-like systems the only other generic bifurcation is the cusp. Simi-

larly, the relevant normal form is _x1 ¼ fcuspðx1; a; bÞ ¼ � 4x3
1
� 2ax1 � b; _xi ¼ � l

2

i xi (i = 2, . . .,

n), where (x1, x2, . . ., xn) is a choice of coordinate system, and a; b;li 2 R are parameters. In

this case, when the discriminant Δ = 8a3 + 27b2 < 0, the normal form system contains two

minima and a maximum; when Δ = 0, it contains one minimum and a degenerate point; and if

Δ> 0, it contains just one attractor (see Fig 2B and S1 Appendix for more details). We will use
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Fig 2. Binary flip with cusp model of vulval development in C. elegans. (A) The fold catastrophe, controlled by the parameter c, defines the stability

of the attractor representing 3˚ fate. The fate map is represented at the bottom, showing that the fold has a bifurcation at c = 0 (in orange), separating

two stability regions: one containing 3˚ fate (for c< 0) and one where the fate disappears (c> 0). At the top, from left to right, different examples of

landscapes for different values of c. For c< 0, the potential has two critical points in the state space: a minimum (blue circle) and a maximum (white

triangle), such as the one represented on the top panels. Close to the bifurcation point, c = 0, the two critical points get near each other to merge

together. For values of c> 0, the potential does not contain any critical point. (B) The cusp catastrophe, controlled by the parameters a, b, defines the

stability of the attractors representing 1˚ and 2˚ fates. The fate map, at the center, shows that the cusp has a bifurcation set determined by Δ = 8a3 + 27b2

= 0 (purple cusp), separating three stability regions: one containing 1˚ and 2˚ fate (for Δ< 0) and two where only one of the two fates is present (Δ> 0).

Examples of landscapes determined by different values of a, b are shown; in each case, 1˚ and 2˚ are represented by red and green circles, respectively,

and the saddle between them is represented by a white triangle. On the cusp mid-line (gray dotted line in the fate map) the two fates are equally

probable. Getting closer to the cusp favors one fate over the other, by the saddle approaching one of the attractors. Outside the cusp, the landscape only

has one attractor, either 1˚ or 2˚. (C) The two catastrophes are combined to generate a 2-dimensional flow with two saddles (white triangles) and three

attractors representing each fate (blue, green and red circles represent 3˚, 2˚ and 1˚ fates, respectively). By mapping the signals θE, θN onto the control

parameters a, b, c, a fate map is obtained, defining the available fates in the landscape for different signaling profiles. The presence of 3˚ fate is controlled

by the fold line, as shown in (A), and the stability of the 1˚ and 2˚ fates is controlled by the position of the signaling profile with respect to the cusp line,

as shown in (B).

https://doi.org/10.1371/journal.pcbi.1009034.g002
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it to define the attractors corresponding to fates 1˚ and 2˚ and the saddle between them (Fig

2B and 2C).

We merge the fold and the cusp catastrophe models into a two-dimensional dynamical sys-

tem (Fig 2C), the mathematical details of which are in Box 1 and S1 Appendix.

The steady states of this system will lie either on the x-axis, in which case their x-coordinates

will be given by the steady states of the cusp (i.e. there will be three, two or one steady states on

the x-axis); or they will have y-coordinates which are the zeros of a fold, (there will be two, one

or none depending on c) in which case their x-coordinates will be 0 (see Box 1, Fig 2C and S1

Appendix for more details).

We choose the attractor with zero x-coordinate to represent the 3˚ fate, the attractor with

zero y-coordinate and negative x-coordinate to represent the 1˚ fate and the attractor with

zero y-coordinate and positive x-coordinate to represent 2˚, as shown in Fig 2C. Taken

together, parameter c will control whether 3˚ fate is present in the landscape, and a, b will con-

trol whether the attractors representing 1˚ and 2˚ fates will be present in the landscape.

The advantage of building the landscape from these two catastrophes is that, firstly, mathe-

matically one has the universality property mentioned above and further described in S1

Appendix and, secondly, that the position and stability of the various restpoints and their

dependence on the parameters is transparent and, as shown in Box 1, one has complete under-

standing of the regions of the parameter space with common stability, being able to character-

ize the shape of the landscape for any parameter value.

Dependence upon the morphogens. The vulval development process is controlled by

induction of the VPCs by the anchor cell via the EGF signal and by lateral signaling through

Notch. Therefore, to connect our model to the biological data we need to define how the con-

trol parameters a, b and c defined previously depend upon the levels θE and θN of the EGF and

Notch signals, respectively.

As we describe in Box 2, in more detail, we choose a flexible linear dependence of the con-

trol parameters upon the biological signals.

Assuming that all VPCs are equivalent at the beginning and that they start at the basin of

attraction of the default state, 3˚ fate, the transformation can be constrained by noting the fol-

lowing facts:

1. The origin of the (θE, θN) coordinate system is assumed to correspond to a point in which

there is tristability in the landscape, as once induced all three fates are stable after the

removal of signals (see Table 1) [7].

2. The signals EGF and Notch drive the system out of the tristable region.

3. The Notch null, 2 × WT EGF perturbation results in an induction of P5.p and P6.p cells to

adopt primary fate (see Table 1), and therefore this signaling profile lies outside the tristable

region.

4. Similarly for the Notch null with WT EGF perturbation, P6.p cell adopts primary fate and

therefore its signaling profile lies outside the tristable region.

More details can be found in S1 Appendix.

Next, to complete our model, we need to define the signaling profile of each cell in time,

which we elaborate in Box 3. As we lack dynamic signaling data, such as could be obtained

from live-cell reporters, we make the following assumptions. First, to model the EGF signal,

y
i
EðtÞ, received by a cell Pi.p, we consider that the EGF ligand is secreted by the AC, and there-

fore the signal received by a cell will depend on its proximity to the AC. We assume this signal

is not instantaneous, so its increase is modeled as a monotonously increasing function in time.
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Box 1: Mathematical details of the model

We merge the fold and the cusp catastrophes into the following model, which will be

used to model the evolution of the state of a single VPC in time, represented by x(t) = (x
(t), y(t)):

_x ¼ Hð� yÞfcuspðx; a; bÞ � ð1 � Hð� yÞÞx ¼ f1ðx; y; a; b; c;MÞ

_y ¼ yffoldðy � M; cÞ ¼ f2ðx; y; a; b; c;MÞ;

(

ð1Þ

whereH is a Heaviside function that is equal to 0, if y is less than 0, and equal to 1 other-

wise. Strictly speaking to get a smooth dynamical system we should smooth the Heavi-

side function but, as will become clear and is shown in S1 Appendix, this does not affect

the analysis shown here.

The attractors of this system are obtained by solving f1 = f2 = 0. Since f2 does not depend

on x, one can quickly solve it to obtain the y-coordinates of the critical points, which are

given by y�
1
¼ M þ

ffiffiffiffiffiffi
� c
p

, y�
2
¼ M �

ffiffiffiffiffiffi
� c
p

and y�
3
¼ 0. If f1 = 0 is now solved with each of

the possible values of y obtained, the x-coordinate of the critical points with y ¼ y�
1

or

y ¼ y�
2

is equal to 0; while the x-coordinates of the critical points with y ¼ y�
3
¼ 0 are

given by the zeros of the cusp, i.e. fcusp(x�, a, b) = 0. The parameterM controls the rela-

tive position of top and bottom saddles in Fig 2C.

The stability of these points can be obtained by looking at the Jacobian matrix of the sys-

tem. It can be shown that the point ð0; y�
1
¼ M þ

ffiffiffiffiffiffi
� c
p
Þ is stable (blue attractor in Fig

2C, assigned to represent 3˚ fate), the point ð0; y�
2
¼ M �

ffiffiffiffiffiffi
� c
p
Þ is unstable (white top

triangle in Fig 2C), while the points laying on the x-axis can be either two stable points

(representing 1˚ and 2˚ fates) separated by a saddle (as in Fig 2C), a stable point and a

degenerate point or just a stable point. We refer the reader to S1 Appendix for more

details and for more examples of landscape configurations.

Taken together, the parameter c controls the existence and positions on the y-axis of crit-

ical points with positive y coordinate (which can be two, one or none), while the parame-

ters a, b control the the positions on the x-axis and existence of critical points with zero

y-coordinate (which can be three, two or one). With this model, 3˚ attractor can be

bifurcated away and be removed from the landscape, however, either 1˚ or 2˚ fates need

to be present and both cannot be bifurcated away to give a landscape where only 3˚ fate

is present, which is intrinsically different from the model in [3, 5].

Since the 3˚ attractor is controlled by the fold we know that if c< 0, the attractor corre-

sponding to this fate will be present, no matter the values of a and b. On the other hand,

the presence of the attractors corresponding to 1˚ and 2˚ fates depends only on the val-

ues of a and b, specifically on the value of the discriminant Δ = 8a3 + 27b2 as explained

above, independently from the value of the parameter c, and therefore their presence

will be controlled by the value of Δ.

One can then compute the bifurcation set of the landscape in Eq 1, and obtain:

B ¼ B1 [ B2 � fða; b; 0Þ : a; b 2 Rg [ fða; b; cÞ 2 R3 : 8a3 þ 27b2 ¼ 0g; ð2Þ

where B1 and B2 are represented in orange and purple colors, respectively, in Fig 2.

Bifurcations will happen at and only at the values of the parameters in B. This bifurca-

tion set divides the control space into regions with common stability, some of which are

represented in S1 Appendix. More details can be found in S1 Appendix.
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Box 2: Mathematical details of the map between control parameters and
signals

We will postulate a flexible functional form for the relationship between the control

parameters a, b and c and the signaling levels θE and θN, and then fit this to the data. We

assume that the parameters a, b and c are affine functions of θE and θN so that

a

b

c

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

m11 m12

m21 m22

m31 m32

0

B
B
B
B
B
@

1

C
C
C
C
C
A

syE

lyN

0

@

1

Aþ

q1

q2

q3

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð3Þ

wheremi,j< 1 and s, l are scaling parameters of the signals into the control space. Then

(a, b, c) lies on the plane πT given by Aa + Bb + Cc = D where A =m31m22 −m21m32, B
=m11m32 −m31m12, C =m12m21 −m11m22, and D = −Aq1 − Bq2 − Cq3

This plane intersects the bifurcation set B in different subsets depending on the values of

themij and the scaling parameters s, l, while the origin of the (θE, θN) coordinate space in

that plane will be determined by the parameters qi. Consequently, the bifurcations can

be visualized in the (θE, θN)-signal space by intersecting the plane and the bifurcation set

B and this gives a fate map for the cell as a function of the signals EGF and Notch (See

Fig 2C, and S1 Appendix for more details).

Box 3: Mathematical details of the signaling dynamics

Finally, we model the signal profile of each cell in time in the following way. To reduce

unnecessary dimensions, we only model the cells P4–6.p as the pattern is generally sym-

metric around the AC and, as mentioned in the introduction, P3.p often assumes tertiary

fate. Following the approach in [3, 5], we assume that the difference of EGF signal

between consecutive cells is regulated by a scaling parameter γ� 1, which derivation fol-

lows from the diffusion of the EGF ligand. However, we also model the increase of EGF

signal in time as a monotonous increasing function σ(t):

y
i
EðtÞ 2 fg

2sðtÞ; gsðtÞ; sðtÞg; ð4Þ

where we write σ(t) as

sðtÞ ¼
1þ tanh ðHEt þMEÞ

2
: ð5Þ

Regarding Notch signaling, following [3, 5], we define the production of Notch by a cell

by a sigmoidal function L, that depends on the current state x(t) of the cell:

LðxðtÞÞ ¼
1þ tanh ðn0 þ n1 � xðtÞÞ

2
; ð6Þ

where n0 and kn1k are constants and the vector n1 has negative x-coordinate so that L
increases as the state of the cell approaches the basin of attraction of 1˚ fate. We now

define y
i
NðtÞ of a cell Pi.p to be proportional to the sum of the autocrine and the para-

crine Notch signal received by the cell. Also following [3, 5], the autocrine signal is scaled

by a parameter α> 0 which parametrizes the relative importance of autocrine vs
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This is consistent with data published in [22], where the activity of the EGF pathway was mea-

sured using a transcriptional reporter, and showed a monotonal increase in time, as shown in

S1 Appendix. Second, to model y
i
NðtÞ, the Notch signal received by a cell Pi.p, it is known that

Notch signal production is a consequence of EGF pathway activation, so that the Notch signal

is produced by cells receiving high EGF as they adopt the primary fate. Therefore, we assume

cells produce Notch signals as they approach the basin of attraction corresponding to the 1˚

fate. Moreover, the Notch signal received by a cell is a sum of autocrine Notch via diffusible

delta ligands plus paracrine Notch from the neighboring cells. Taking this together, we model

y
i
EðtÞ and y

i
NðtÞ as described in Box 3 and S1 Appendix, in more detail.

Finally, to account for variability in the outcomes, we add some random white noise in the

dynamics of each cell, which is parameterized by a coefficient of diffusion in the phase space.

If we now combine the model in Box 1 together with the mapping from the signals to the

control parameters in Box 2 and the signaling dynamics to which a cell is exposed in time,

described in Box 3, we obtain the proposed model.

Each cell will start its trajectory in the basin of attraction representing the tertiary fate and

will move in its own dynamic flow determined by Eq 1, the shape of which depends, by the

relationship in Eq 3, on the signals it is receiving.

After the period of competence, the fate of a cell is defined by the basin of attraction at

which it ended up. The mathematical details of how this is done are presented in S1 Appendix.

This now allows us to fit the model to the experimental data.

Parameter estimation: ABC SMC implementation

Now that a parameterized model has been developed, the next step is to find whether there are

parameters that allow the model to reproduce the experimental data in Table 1 and to deter-

mine the extent of such parameters. Table 1 contains the probabilities of each VPC (P4.p, P5.p,

P6.p) acquiring each fate (1˚, 2˚, 3˚) under twenty one experimental conditions (i.e. 171 data

points or probabilities in total). From this data set, we will use a subset of nine experimental

conditions as training data set for the model to fit, and the remaining ten as validation results

(TD and VD in Table 1, respectively).

Let us denote by pe,f,c the experimental probability of cell c becoming fate f under experi-

mental condition e, the values of which are given in Table 1. Similarly, psime;f ;cðθÞ represents the

simulated probability of cell c becoming fate f under experimental condition e given parame-

ters θ. Taking a Bayesian approach, we treat the parameters of the model as random variables

with a probability distribution. Our goal is to estimate the posterior distribution of the parame-

ters that accurately reproduce the training data set X0 = (pe,f,c)e 2 TD, and check that they also

reproduce the validation data set.

paracrine signaling. We also take into account that 1˚ fated cells downregulate Notch

receptor lin-12 [19]. This downregulation is related to the cell’s production of Notch sig-

naling, scaled by a parameter ld, which controls the strength of such downregulation.

Therefore the Notch signal received by a cell Pi.p is modeled as:

y
i
NðtÞ ¼ ð1 � ldLðx

iðtÞÞðLðxi� 1ðtÞÞ þ aLðxiðtÞÞ þ Lðxiþ1ðtÞÞÞ ð7Þ
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If we denote a parameter vector by θ, the posterior distribution satisfies:

pðθ j X0Þ / pðθÞLðX0 j θÞ; ð8Þ

where π(θ) is the prior distribution of the parameters θ, LðX0 j θÞ is the likelihood of the data

X0 given the parameters θ and π(θjX0) is the posterior distribution of the parameters θ given

the data X0.

Since it is not possible to find an analytical expression for the likelihood of the model we

propose, we approximate it using approximate Bayesian computation (ABC). ABC methods,

also known as likelihood-free methods, have been developed for inferring the posterior distri-

bution of the parameters when the likelihood function is either too complex or too expensive

to compute but observations of the model can be simulated fairly easily. They have been suc-

cessfully applied to a wide range of intractable likelihood problems over the past twenty years

[26] including population genetics [27], pathogen transmission [28], reaction networks models

[29, 30] and epidemic modeling [31], among others. ABC methods use a comparison between

the experimental and simulated data to measure the goodness of fit, instead of using the likeli-

hood function, allowing for more flexibility.

In particular, here we take advantage of Sequential Monte Carlo ABC (ABC SMC) to

explore the parameter space and determine the posterior distribution of the parameters. Vari-

ous ABC SMC algorithms have been proposed in the literature [27, 32–34], but here we focus

on the fairly general ABC SMC algorithm in [34]. The ABC SMC sampler methodology

approximates the posterior distribution by sequentially sampling from a sequence of interme-

diate distributions, or approximate posterior distributions, {πt}0�t�T, that increasingly resem-

ble the posterior distribution given in Eq 8:

fptg0�t�T ¼ fpðθ j dðXðθÞ;X0Þ � εtÞg0�t�T ; ð9Þ

where d is a metric that compares the experimental and simulated data, and {εt}0�t�T is a

decreasing sequence of distance values. This ABC method is particularly useful in cases where

the number of parameters and the data are high dimensional, as it can be easily parallelised. It

can also be tuned to efficiently explore the parameter space maintaining areas of high likeli-

hood via the choice of its perturbation kernel. A summary of how this is done is shown in

Fig 3.

Our model depends on a total of 22 parameters: 1 time constant that controls the velocity of

the trajectories in the landscape, 10 landscape parameters that map the signaling values into

the shape of the landscape and 11 signaling parameters that define the signaling profile that

each cell is exposed to in time (see S1 Appendix). Both the model’s definition and the experi-

mental data constrain the range of the landscape parameters and inform the choice of their

priors, for which we choose flat priors on their support. For the rest of parameters we choose

fairly non-informative priors that still reflect our knowledge about their ranges. Moreover, tak-

ing into account the dimensionality of the parameter space, we choose to approximate the pos-

teriors by sampling N = 2 × 104 particles at each step of the algorithm. More details can be

found in S1 Appendix.

In order to compare the experimental and simulated data we define a distance d that mea-

sures the level of similarity between two data sets. If XTD
0

is the subset of data corresponding to

experiments in the training data set (see Table 1), we define the distance between XTD
0

and the

corresponding simulation XTD(θ) as

dðXTD
0
;XTDðθÞÞ ¼

1

E

X

e2TD

X3

f¼1

X3

c¼1

jpe;f ;c � p
sim
e;f ;cðθÞj þ

1

E

X

e2TD

X3

c¼1

jpsime;4;cðθÞj; ð10Þ
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where E is the number of experiments in the training data set, pe,f,c and psime;f ;cðθÞ are the experi-

mental and simulated probabilities of cell c becoming fate f in experimental condition e,
respectively, and psime;4;c is the proportion of times that our model could not assign a fate to cell c
when simulating experiment e (see S1 Appendix for more information). The distance function

penalizes parameter values for which our model cannot assign a fate, since we would like to

avoid these parameter values. More details about our implementation of the fitting algorithm

such as the choice of thresholds sequence and perturbation kernel function can be found in S1

Appendix.

Our choice of experiments for training was based on trying to find a maximally informative

set while constraining the number of experiments. For example, we included all experimental

conditions (a total of 6) with fully penetrant phenotypes resulting from different signaling

Fig 3. Application of ABC SMC to the fitting of the binary flip with cusp model. (A) First step of the algorithm. Having defined priors for the fitted

parameters and constraints between them, as well as an initial threshold ε1, particles are sampled from the priors and accepted if the distance between

the simulated data and the experimental data is less than the initial threshold. This is repeated until N particles are accepted. (B) An initial

approximation of the posterior distribution is obtained, generated by theN particles accepted in (A). (C) The algorithm then proceeds in a sequential

manner. In each step t of the algorithm, a new threshold εt is defined, in our case, the 0.3 quantile of the previous distribution of distances εt−1. Particles

are sampled from the last approximate posterior distribution and perturbed using a Markov Kernel obtained from the Optimal Local Covariance

Matrix (OLCM) [35] (black ellipses in the figure represent confidence intervals), (as described in S1 Appendix). This is repeated until N new particles

that satisfy the distance threshold are accepted. Also, each new particle is assigned a weight proportional to its prior probability and inversely

proportional to the Markov Kernels evaluated at this particle, which control for efficient exploration. (D) After each step, a new improved approximate

posterior distribution is obtained, which restricts the values of the parameters to a restricted region of the parameter set.

https://doi.org/10.1371/journal.pcbi.1009034.g003
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combinations, which explored different regions of the signal space. With regards to partially pen-

etrant phenotypes, we included one experimental condition involving EGF overexpression. We

expected that including these experiments would inform the fitting of the values of the scaling

parameters s and l and other parameter values related to the strength of the signals and the cross-

talk between them. To constrain the temporal features of the model, we also added two AC abla-

tion conditions which we considered the most informative ones, expecting that the model would

be able to reproduce the rest. The particular details of the fitting can be found in S1 Appendix.

A description of the methodology, software implementation in MATLAB, and instructions

for use are publicly available in the following GitHub repository: https://github.com/

ecamacho90/VulvalDevelopment.

Results

Fitting the model to the training data: A two-step decision

The results after 14 generations of ABC SMC are shown Figs 4 and 5, S1 and S2 Figs, and S1–

S13 Videos, which show excellent agreement overall between the simulations and the data. We

are able to reproduce both fully and partially penetrant phenotypes.

Fig 4. Fitting of the training data. (A) The patterns of the 6 fully penetrant phenotype perturbations considered in the training data set are correctly

fitted by the binary flip with cusp model. (B) The pattern of the partially penetrant phenotype given by the EGF overexpression perturbation considered

in the training data set is also correctly fitted by the model. On the left, the experimental patterns. On the right, the mean simulated patterns and

trajectories on the landscape. In both the experimental and simulated patterns, primary, secondary and tertiary fates are represented by the red, green

and blue colors, respectively, and proportions higher than 90% have been rounded. On the landscape, the mean simulated trajectories for the particle

with best overall approximation for P4.p, P5.p and P6.p are colored in blue, green and red, respectively.

https://doi.org/10.1371/journal.pcbi.1009034.g004
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S1 Video shows how the simulated VPCs pattern in the WT case. The two-step decision

logic of non-vulval vs vulval followed by primary vs secondary fates can be clearly seen. As P6.

p starts receiving EGF signal, the cell leaves the attractor corresponding to 3˚ fate, i.e. the first

decision is made, and moves into the regions of the fate map and landscape containing vulval

fates. The increase in EGF signal and lack of Notch signal from its neighbors, positions its sig-

naling profile in a region of the fate map where only primary fate is stable, and therefore, its

trajectory on the landscape moves towards this attractor. A similar effect happens for P5.p but,

due to the higher distance to the AC resulting in lower EGF signal, but higher Notch signal

from the neighboring P6.p differentiating to primary fate, the cell differentiates towards 2˚

fate. Finally, the signals received by P4.p are not enough for it to escape the attractor corre-

sponding to 3˚ fate, and therefore the cell differentiates into the non-vulval fate. S2–S7 Videos

show the differentiation of VPCs in mutants 2–7 in Table 1.

It is worth mentioning that, in our model, due to the lack of information about the exact

timings of the stages at which AC ablations were performed, relative to each other, and also

about the EGF and Notch signal dynamics, the increase in EGF and Notch signals are modeled

by monotonically increasing functions, which are initially hypothesized to be sigmoidal func-

tions of the simulation time. We find that the fitting of the data suggests a slight modification

of the EGF dependence on time (see S1 Appendix) which then allows for the model to fit the

AC ablation data (Fig 5 and S8–S13 Videos). This is probably due to the fast dynamics around

the bifurcation point between the attractor corresponding to tertiary fate and the saddle. More

details can be found in S1 Appendix.

Analysis of the evolution of the approximate posterior distributions of the parameters at

each step of the ABC algorithm shows that most of the parameters are very well constrained by

the data (S1 and S2 Figs), with the exception of the scaling parameters s and l that correlated

with the parameter q3 of the linear transformation that determines the position of the fold line.

Also, the parameter ld, which controls a direct coupling between EGF and Notch pathways,

Fig 5. AC ablation fitting and validation. (A) Patterns observed when the AC is ablated at different developmental stages. (B) Mean simulated patterns

for the different AC ablation conditions. Only proportions for P5.p and P6.p are available, which are presented in blue, green or red representing

tertiary, secondary or primary fate, respectively.

https://doi.org/10.1371/journal.pcbi.1009034.g005
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was not crucial to reproduce the data, and this is especially important because, as we will show

in the following section, the model is able to reproduce epistatic effects without this coupling.

Finally, the exponential decays λE and λN were only constrained such there was sufficient time

to allow the system to return to zero-signal condition (S1 Appendix). Interestingly, the noise

magnitude represented by the parameter σdif was strongly constrained, suggesting that the data

strongly constrained noise-driven fluctuations. Moreover, the fitting did not show strong

parameter correlations with the exception of parameters HE andME, defining the sigmoidal

increase of EGF signal in time. Also, it is important to note that the parameters γ and n1 that

control the balance between the morphogen and sequential models were strongly constrained.

In particular, γ = 0.22±0.06 < 1 and n1 pointed towards first fate, so we can infer from the data

that both morphogen and sequential features were necessary.

Finally, we also observe that the results of fitting suggest that the geometry of the fate map is

strongly constrained by the data, the details of which are shown in S1 Appendix. Taken

together, our results suggest that aspects from both the morphogen and the sequential model

are important for the correct patterning, which combine into a two-step decision logic deter-

mined by the fitted fate map and controlled by the dynamics of the EGF and Notch signals

received by the cells.

Validating the model: The model reproduces epistasis between EGF and

Notch

There is an extensive amount of experimental data available with different combinations of

signaling perturbations. In particular, [21] provides quantitative signaling data for many per-

turbation lines. We compiled a set of mutants from the literature and tested whether our

model was able to reproduce this data (Table 1). An important feature of the model developed

in [3, 5] is that it can reproduce epistatic effects between the signals, i.e. a mutation in EGF sig-

nal can alter the effect of Notch and vice versa. Here we show that our model can also explain

these effects without including any direct coupling between the pathways.

As shown in [21], an EGF overexpression perturbation of 2.75-fold with respect to the WT

(based on measured lin-3mRNA levels), named JU1107, increased P5.p induction towards pri-

mary fate, and P4.p towards secondary fate. This is an epistatic event, as an increase in EGF

signal increases the secondary fate in P4.p, promoted by Notch signaling. Our model correctly

reproduces these features as shown in Fig 6A and Table 2. This is achieved because a 2.75-fold

increase in the EGF signal of P5.p locates its signaling profile close to the cusp mid-line in the

signal space, where primary and secondary fates are equally probable. In turn, primary-fated

P5.p cells signal through Notch to their P4.p neighbors which are receiving more EGF than the

WT P4.p cells. This positions P4.p closer to the fold line, in a region where secondary and ter-

tiary fates are equally probable (Fig 6A).

Reduced Notch perturbations do not have a strong phenotype unless crossed with an EGF

overexpression mutant (see Table 2), in which case the probability of P5.p differentiating into

secondary fate is slightly reduced. We checked whether our model was capable of reproducing

these features. Since the level of reduction of Notch is not quantified in the experimental set-

tings, we first fitted a multiplicative magnitude of Notch reduction that reproduced the data.

With a Notch reduction of 0.4 × WT, our model is able to reproduce both mutant JU2039,

where EGF is WT and there is no strong phenotype, and mutant JU2113, where EGF is slightly

increased by 1.25-fold and secondary fate in P5.p is destabilized, increasing the probability of

primary and tertiary fates. This fitted fold increase is, in fact, similar to the one considered in

[5]. The model predicts that, under JU2039 signaling regime, P5.p would stay in a region of

the signal space where secondary fate is still predominant, and therefore the pattern would not
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Fig 6. Model’s further validations. (A) Left: Representative mean trajectories on the landscape and signal space for simulated WT

vulva and different signal perturbations included in the validation data set. Blue, green and red trajectories represent the evolution of

the state of P4.p, P5.p and P6.p, respectively. Right: Mean simulated and experimental patterns for the different perturbations shown

on the left. Blue, green and red represent tertiary, secondary and primary fates, respectively. (B) Representative mean trajectories on the

landscape and signal space for simulated WT vulva and EGF hypomorph perturbations. Blue, green and red trajectories represent the

evolution of the state of P4.p, P5.p and P6.p, respectively. (C) Mean simulated and experimental patterns for the EGF hypomorph

perturbations. Blue, green and red represent tertiary, secondary and primary fates, respectively.

https://doi.org/10.1371/journal.pcbi.1009034.g006

PLOS COMPUTATIONAL BIOLOGY Quantifying cell transitions with data-fitted landscape models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009034 June 1, 2021 18 / 28

https://doi.org/10.1371/journal.pcbi.1009034.g006
https://doi.org/10.1371/journal.pcbi.1009034


change. Although our model is not capable of reproducing a small number of tertiary fated P5.

p cells under the JU2113 perturbation, since the signaling profile moves them slightly outside

the tristability region, it does reproduce the increase in primary fated P5.p, by approaching the

cusp mid-line in the signal space while not leaving the bistability region inside the cusp

(Table 2 and Fig 6A).

We also tested whether the model is able to reproduce mutants with ectopic Notch expres-

sion. Similar to the previous subset of data, these perturbations are silent unless crossed with

EGF overexpression perturbations. As in [5], we modeled these perturbations as an additive

constant for the Notch signaling parameter as, in this case, the perturbation is independent of

the state of the cell and its neighbors (see S1 Appendix). We fitted this constant to the experi-

mental outcome of the JU2092 mutant, where ectopic Notch is combined with a 1.25-fold EGF

overexpression. This fitting resulted in a constant equal to 0.12. With this, we were able to fit

the three crosses shown in Table 2. Interestingly, in the strongest EGF overexpression pertur-

bation (mutant JU2092), P4.p was positioned close to the right of the intersection between the

cusp mid-line and the fold line, giving a mix of tertiary and secondary fates, as observed in the

data (Fig 6A).

Finally, we simulated EGF hypomorph mutants. Interestingly, these perturbations show

that a strong decrease of EGF signals gives a mix of primary and tertiary fated P6.p cells while

not affecting the WT pattern of the rest of VPCs. Moreover, a cross with a mutant with mild

ectopic Notch activity, such as the one considered above, promotes primary fated P6.p,

Table 2. Comparison between experimental and simulated data for the validated experimental conditions.

Experiment VPC fates

P4.p P5.p P6.p

% 1˚ 2˚ 3˚ 1˚ 2˚ 3˚ 1˚ 2˚ 3˚

Excess EGF

JU1107 (2.75 × WT EGF) 2 15 83 19 81 0 100 0 0

3±5 25±18 72±19 25±18 75±18 0±0 99±3 1±1 0±0

Reduced Notch

JU2039 (WT EGF, reduced Notch) 0 0 100 1 89 10 100 0 0

0±0 0±1 99±1 16±8 80±10 4±4 99±1 1±1 0±0

JU2113 (1.25 × WT EGF, reduced Notch) 4 6 90 18 70 12 100 0 0

1±1 3±3 98±3 25±12 76±12 0±1 100±1 0±1 0±0

Excess EGF & ectopic Notch

JU2091 (1.25 × WT EGF, ectopic Notch) 0 0 100 0 100 10 100 0 0

0±1 5±7 95±7 1±1 99±1 0±0 99±1 1±1 0±0

JU2095 (1.79 × WT EGF, ectopic Notch) 0 6 94 1 99 0 100 0 0

1±1 8±10 91±10 2±2 98±2 0±0 99±1 1±1 0±0

JU2092 (2.75 × WT EGF, ectopic Notch) 5 24 71 0 100 0 100 0 0

4±5 34±20 62±21 20±16 80±16 0±0 99±2 1±1 0±0

Reduced EGF

CB1417 (EGF hypomorph) 0 0 100 1 99 0 54 0 46

0±0 1±1 99±1 2±2 44±20 54±21 55±20 10±7 35±22

JU2095 (EGF hypomorph, ectopic Notch) 0 1 99 0 15 85 72 0 28

0±1 3±5 97±5 1±2 65±16 34±16 61±16 34±15 5±9

For each mutant, the experimental percentages (top) and simulated percentages (mean ± SD, bottom) for each VPC becoming each fate are shown. In the experimental

data, fates for P4.p and P8.p (or P5.p and P7.p) have been averaged, since we assume that the pattern is symmetrical around the anchor cell.

https://doi.org/10.1371/journal.pcbi.1009034.t002
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showing again epistasis between the signals. To simulate these perturbations, we fitted a multi-

plicative downregulation of EGF signal to the EGF hypomorph data, CB1417. With a reduc-

tion of 0.36 × WT EGF, our model can reproduce the mix of tertiary and primary fated P6.p

observed in the EGF hypomorph mutant (CB1417) (Fig 6C). This is achieved because a reduc-

tion in EGF positions the signaling profile of P6.p close to the fold line while still being to the

left of the cusp-midline (Fig 6B). Simulating the cross of this perturbation with ectopic Notch

(mutant JU2095) moves P6.p signaling profile further from the fold line, promoting vulval

fates. However, it also positions it closer to the cusp mid-line and therefore, also promotes sec-

ondary fates in P6.p in our simulations (Fig 6B). The model is also not able to reproduce the

high probability of P5.p staying in tertiary fate. We believe that the differences between simula-

tions and experiments observed in P6.p could be fixed by adding the perturbations to the

training data set. Reproducing the differences observed in P5.p would likely require a non-lin-

ear mapping of the fold into the signal space.

Model predictions

Having reproduced a large set of data, we explored whether the model could predict interest-

ing outcomes.

We tested whether crossing two silent perturbations in the training data could show a new

epistatic event. Halving EGF ligand or Notch receptors does not affect the wild type phenotype

(Table 1 (3–4)). In our model, this is because making either of these two perturbations leaves

cells within the same stability regions of the fate map. However, our model suggests that, if

both perturbations are crossed, we observe epistasis, where induction of P5.p to secondary

fates is strongly reduced by almost half (Fig 7A). This is consistent with predictions shown in

[3]. Biologically, this prediction suggests that EGF promotes secondary fates which, at first,

could seem counterintuitive.

AC ablation experiments are very insightful, as they are the only experiments that provide

information about the trajectory of the cells in the landscape. However, AC ablation data is

only available under a WT signaling profile. As we mentioned earlier, a wild type pattern is

achieved even under either half dose lin-3 or lin-12. However, it is not known whether the pat-

tern is dynamically formed in the same way as under WT signaling. We used our model to test

this and observed an interesting effect.

Simulating AC ablation under a half dose of lin-3, the EGF ligand, showed that the process

followed the same order as under WT signal, but proceeded more slowly (Fig 7B). Under this

condition, our model predicts (1/3, 1/3, 1/3) probabilities for P6.p becoming one of the three

fates if AC is ablated at a time between 3˚ divided stage and 2-cell stage. However, under a half

dose of lin-12, a Notch receptor, our model predicted that there is very low probability of P6.p

becoming a secondary fate under any ablation time, as observed in the WT and lin-3mutant

(Fig 7C). Instead, there is a direct transition from tertiary to primary fate. This is also consis-

tent with the effect observed in [3].

Finally, we explored whether there was a prediction that could highlight the differences

between the model presented here and that proposed in [3, 5]. An important difference

between the two models is the fact that the binary flip with cusp model is not symmetric, in

that once cells have sufficiently left the basin of attraction of the tertiary fate they cannot go

back for any value of the external signals. For example, if isolated cells (with no autocrine or

paracrine Notch signaling) are exposed to a short EGF pulse of the same WT strength (from

time t1 = 0 to t2 = 0.4), our model predicts that most of them would leave the basin of attrac-

tion of tertiary fate and commit to either the primary or secondary fate (S3(A) Fig). More-

over, due to the directions of the flow lines, there is no signaling profile that would be able to
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return cells back to tertiary fate. For example, if this short EGF pulse is followed by a very

short Notch signaling pulse (t2 = 0.4 to t3 = 0.62), cells remain outside the basin of attraction

of the tertiary fate and would differentiate into the secondary fate (S3(A) Fig). However, this

is not the case in the model proposed by [3, 5]. As in our model, isolated cells exposed to the

same short EGF pulse leave the tertiary fate and commit to primary fate, resulting in 90% of

primary-fated cells (S3(B) Fig). Strikingly, if this is followed by the short Notch signaling

pulse, the cells return to the basin of attraction corresponding to the tertiary fate, resulting in

71% now differentiating to the tertiary fate and only 19% differentiating to the primary fate

(S3(B) Fig). Performing this or a similar experiment would be able to differentiate between

the two models.

Fig 7. Model’s predictions. (A) Predicted epistasis under the cross of reduced EGF ligand and Notch receptors perturbations. Top: Simulated

proportions under the corresponding signaling profiles. Bottom: Schematics of the simulated positions of P5.p in the signal space under the different

signaling profiles. (B) Predicted pattern proportions for different AC ablation times under a reduced EGF ligand perturbation. t� is a predicted time

between 3˚ divided and 2-cell stages. The stages for which simulations are not shown are colored in gray. (C) Predicted pattern proportions for different

AC ablation times under a reduced Notch receptors perturbation. The names of the stages for which simulations are not shown are colored in gray.

https://doi.org/10.1371/journal.pcbi.1009034.g007
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Discussion

Here we have presented a method to build simple landscapes starting from qualitative observa-

tions, which can then be fitted to a large amount of quantitative data. With this method we

have shown that a very simple three-way landscape is able to reproduce the complex vulval pat-

terning process in C. elegans. Given the number of stable cell fates observed in the data, CT is a

powerful theory to classify and build landscapes with the desired characteristics. By coupling it

with an efficient parameter fitting method, such as the one presented based on ABC SMC, one

can check which proposed models are consistent with the data and choose the simplest one.

An important difference between our model and the one developed in [3, 5] is that while in

their model all states are equivalent, giving a three-fold symmetric potential, in our model, the

cells go through two cell state transitions: a first decision between vulval and non-vulval fates,

and then, for cells that adopt vulval fates, a decision between primary and secondary. This may

be a general landscape which can be used whenever a cell first decides whether to leave a pre-

cursor state or not, and then, once leaving that state, decides between a pair of options.

Here we have taken advantage of vulval development in C. elegans to illustrate this new

mathematical framework, however, this is a very complex problem involving patterning of sev-

eral cells that interact through both external and paracrine signals, and therefore, the state of

each cell depends upon that of its neighbors. Moreover, we lacked detailed information about

cell fate and signal dynamics in time, as data is only available on the final phenotypes. The only

data available on dynamic perturbations were those in which the AC was ablated and even in

this case, again the only available phenotype was the final one and the specific ablation times

were not available. This resulted in relatively large number of unknowns and corresponding

simplifying assumptions, such as the model for EGF increase in time, which complicated the

model and the analysis. This approach, however, is ideal for modeling single cell data for

which one is able to observe cell transitions along the protocol time as well as controlling sig-

naling in time, as we show in [36].

An advantage of using this approach, where the model is built from basic transitions, is that

the system can be easily evolved. Here we have postulated that the mapping between signals

and control parameters was linear, and we were able to reproduce a great amount of data.

However, we also showed that the model struggled to reproduce some details observed in the

EGF hypomorph perturbation. This could suggest that a more sophisticated mapping would

be needed in this case, and with our approach, it would be possible to locally modify the map-

ping in the low EGF region without changing the remainder of the model.

With the fast development of experimental techniques to observe single cells, such as single

cell RNA-seq together with live signaling and cell fate reporters, vast amounts of data are

becoming available. Building gene regulatory networks that account for all the subtleties

observed in the data proves to be challenging. In fact, there is work trying to connect GRNs

and evolution to quasi-potential landscape models [37–43], and [44] shows that looking at the

GRN through the lens of landscape models can be a useful way to classify standard behaviors.

Moreover, we can expect that the dynamics of any GRN will be largely described by the normal

forms that Catastrophe Theory and Dynamical Systems Theory provide, as they develop by

successive transitions among a small panel of fates [25, 45–47]. Therefore, the framework pro-

posed here, that centers on the essence of the process without the complicating molecular

details, can alleviate these challenges and, in fact, could benefit from this new information.

This approach to building landscape models has several advantages in comparison to GRN

models. First, as mentioned before, since it focuses on the essence of the process rather than

on the mechanistic details, one can build a landscape model from simple qualitative data about

the state transitions. Secondly, while there are many network structures that can reproduce
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similar observations, there are only a few distinct landscape topologies with a given number of

attractors. We believe there are many exciting applications of this framework to more cell dif-

ferentiation processes.

Supporting information

S1 Appendix. Supporting information. In this note we introduce concepts from Dynamical

Systems and Catastrophe Theory, give further details about the mathematical underpinnings

of the methodology to create the landscape model as well as about the implementation of the

ABC SMC algorithm and fitting results discussed in the main paper.

(PDF)

S1 Fig. Evolution of the distributions of the parameters in the fitting of the training data.

Histograms and two dimensional scatter plots of the N = 2 × 104 particles sampled from the

approximated posterior distribution given the training data in Table 1 at the first (blue) and

last (red) steps of the algorithm.

(TIF)

S2 Fig. Further analysis of the posterior distributions of the parameters. (A) Evolution of

the variance of the parameters at each step of the ABC algorithm, normalised by the variance

of the prior. (B) Correlation matrix of the parameters at the last step of the algorithm. (C)

Approximated posterior distributions of the parameters defining the linear transformation of

the signal space into the control space.

(TIF)

S3 Fig. The trajectories of isolated cells show differences between the binary flip with cusp

landscape model and the model proposed in [3, 5]. (A) Simulations of the differentiation of

isolated VPCs exposed to EGF from time t1 = 0 to t2 = 0.4 followed by Notch from t2 = 0.4 to t3
= 1 following the binary flip with cusp model, plotted on the landscape corresponding to the

absence of signaling. The mean trajectory of VPCs is represented as a white line. The distribu-

tion of cell states at time t = 0.4 is shown as gray dots. The distribution of cell states at time

t = 0.62 is shown as white dots. (B) Simulations of the differentiation of isolated VPCs exposed

to EGF from time t1 = 0 to t2 = 0.4 followed by Notch from t2 = 0.4 to t3 = 1 following the

model proposed in [3, 5], plotted on the landscape corresponding to the absence of signaling.

The mean trajectory of VPCs is represented as a white line. The distribution of cell states at

time t = 0.4 is shown as gray dots. The distribution of cell states at time t = 0.62 is shown as

white dots. Attractors and saddles are represented by black dots and triangles, respectively.

Basins of attraction are colored blue, green or red if they represent tertiary, secondary or pri-

mary fates, respectively.

(TIF)

S1 Video. Model dynamics of a simulated WT pattern. Trajectories of 150 simulated P4–6.p

in the phase space (top) and their signaling profiles in the signal space (bottom). The trajecto-

ries of each of the 150 simulations are shown as faded gray dots, and we choose one of them

(in darker gray and white boundary line) to show its corresponding landscape changes accord-

ing to its signaling profiles. Basins of attraction are colored blue, green or red if they represent

tertiary, secondary or primary fates, respectively.

(MP4)

S2 Video. Model dynamics of a simulated let −23 mosaic mutant. Trajectories of 150 simu-

lated P4–6.p in the phase space (top) and their signaling profiles in the signal space (bottom).

The trajectories of each of the 150 simulations are shown as faded gray dots, and we choose
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one of them (in darker gray and white boundary line) to show its corresponding landscape

changes according to its signaling profiles. Basins of attraction are colored blue, green or red if

they represent tertiary, secondary or primary fates, respectively.

(MP4)

S3 Video. Model dynamics of a simulated half dose lin −3 mutant. Trajectories of 150 simu-

lated P4–6.p in the phase space (top) and their signaling profiles in the signal space (bottom).

The trajectories of each of the 150 simulations are shown as faded gray dots, and we choose

one of them (in darker gray and white boundary line) to show its corresponding landscape

changes according to its signaling profiles. Basins of attraction are colored blue, green or red if

they represent tertiary, secondary or primary fates, respectively.

(MP4)

S4 Video. Model dynamics of a simulated half dose lin −12 mutant. Trajectories of 150 sim-

ulated P4–6.p in the phase space (top) and their signaling profiles in the signal space (bottom).

The trajectories of each of the 150 simulations are shown as faded gray dots, and we choose

one of them (in darker gray and white boundary line) to show its corresponding landscape

changes according to its signaling profiles. Basins of attraction are colored blue, green or red if

they represent tertiary, secondary or primary fates, respectively.

(MP4)

S5 Video. Model dynamics of a simulated Notch null, 2ACs mutant. Trajectories of 150 sim-

ulated P4–6.p in the phase space (top) and their signaling profiles in the signal space (bottom).

The trajectories of each of the 150 simulations are shown as faded gray dots, and we choose

one of them (in darker gray and white boundary line) to show its corresponding landscape

changes according to its signaling profiles. Basins of attraction are colored blue, green or red if

they represent tertiary, secondary or primary fates, respectively.

(MP4)

S6 Video. Model dynamics of a simulated mutant with no Notch signaling and WT EGF.

Trajectories of 150 simulated P4–6.p in the phase space (top) and their signaling profiles in

the signal space (bottom). The trajectories of each of the 150 simulations are shown as

faded gray dots, and we choose one of them (in darker gray and white boundary line) to

show its corresponding landscape changes according to its signaling profiles. Basins of

attraction are colored blue, green or red if they represent tertiary, secondary or primary

fates, respectively.

(MP4)

S7 Video. Model dynamics of a simulated EGF overexpression mutant. Trajectories of 150

simulated P4–6.p in the phase space (top) and their signaling profiles in the signal space (bot-

tom). The trajectories of each of the 150 simulations are shown as faded gray dots, and we

choose one of them (in darker gray and white boundary line) to show its corresponding land-

scape changes according to its signaling profiles. Basins of attraction are colored blue, green or

red if they represent tertiary, secondary or primary fates, respectively.

(MP4)

S8 Video. Model dynamics of a simulated mutant where the AC was ablated at the L2

lethargus stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signal-

ing profiles in the signal space (bottom). The trajectories of each of the 150 simulations are

shown as faded gray dots, and we choose one of them (in darker gray and white boundary
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line) to show its corresponding landscape changes according to its signaling profiles. Basins of

attraction are colored blue, green or red if they represent tertiary, secondary or primary fates,

respectively.

(MP4)

S9 Video. Model dynamics of a simulated mutant where the AC was ablated at the early L3

stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signaling profiles

in the signal space (bottom). The trajectories of each of the 150 simulations are shown as faded

gray dots, and we choose one of them (in darker gray and white boundary line) to show its cor-

responding landscape changes according to its signaling profiles. Basins of attraction are col-

ored blue, green or red if they represent tertiary, secondary or primary fates, respectively.

(MP4)

S10 Video. Model dynamics of a simulated mutant where the AC was ablated at the DU

divided stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signaling

profiles in the signal space (bottom). The trajectories of each of the 150 simulations are shown

as faded gray dots, and we choose one of them (in darker gray and white boundary line) to show

its corresponding landscape changes according to its signaling profiles. Basins of attraction are

colored blue, green or red if they represent tertiary, secondary or primary fates, respectively.

(MP4)

S11 Video. Model dynamics of a simulated mutant where the AC was ablated at the VU

divided stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signaling

profiles in the signal space (bottom). The trajectories of each of the 150 simulations are shown

as faded gray dots, and we choose one of them (in darker gray and white boundary line) to

show its corresponding landscape changes according to its signaling profiles. Basins of attrac-

tion are colored blue, green or red if they represent tertiary, secondary or primary fates, respec-

tively.

(MP4)

S12 Video. Model dynamics of a simulated mutant where the AC was ablated at the 3˚

divided stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signal-

ling profiles in the signal space (bottom). The trajectories of each of the 150 simulations are

shown as faded gray dots, and we choose one of them (in darker gray and white boundary

line) to show its corresponding landscape changes according to its signaling profiles. Basins of

attraction are colored blue, green or red if they represent tertiary, secondary or primary fates,

respectively.

(MP4)

S13 Video. Model dynamics of a simulated mutant where the AC was ablated at the 2-cell

stage. Trajectories of 150 simulated P4–6.p in the phase space (top) and their signalling profiles

in the signal space (bottom). The trajectories of each of the 150 simulations are shown as faded

gray dots, and we choose one of them (in darker gray and white boundary line) to show its cor-

responding landscape changes according to its signalling profiles. Basins of attraction are col-

ored blue, green or red if they represent tertiary, secondary or primary fates, respectively.

(MP4)
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