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ABSTRACT. Let (X,H) be a polarized K3 surface with Pic(X) = ZH , and let C ∈ |H| be
a smooth curve of genus g. We give an upper bound on the dimension of global sections of a
semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C
with high genus. In particular, when g ≥ r2 ≥ 4, the rank r Clifford index of C can be computed
by the restriction of Lazarsfeld-Mukai bundles on X corresponding to line bundles on the curve C.
This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher
rank vector bundles. We also apply the same method to the projective plane and show that the rank
r Clifford index of a degree d(≥ 5) smooth plane curve is d − 4, which is the same as the Clifford
index of the curve.
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1. INTRODUCTION

Let UC(r, d) be the set of semistable rank r-vector bundles of degree d on a smooth curve C.
For E ∈ UC(r, d), its Clifford index is defined as

Cliff(E) =
d

r
− 2

r
h0(C,E) + 2.

By the higher rank Clifford Theorem ([BPGN95, Theorem 2.1]), when 0 ≤ d ≤ r(g − 1), the
index Cliff(E) is non-negative. The rank r Clifford index of C, first introduce in [LN10] where it
was denoted γ′r, is defined as:

Cliffr(C) := min{Cliff(E)|E ∈ UC(r, d), d ≤ r(g − 1), h0(C,E) ≥ 2r}.

Our main result is as follows.
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Theorem 1.1. Let (X,H) be a smooth polarized K3 surface satisfying Assumption (*), and let C
be a smooth curve of genus g in the linear system |H|. Let E be a slope semistable rank r-vector
bundle of degree d on the curve C such that d ≤ r(g − 1). Then we have the bound for the
dimension of the global sections of E:

h0(C,E) < r +
g

4r(g − 1)2
d2 +

r

g
.(1)

When r ≥ 2 and g ≥ r2, the rank r Clifford index of C

Cliffr(C) =
2

r
(g − 1)− 2

r

⌊g
r

⌋
.

Assumption (*): H2 divides H.D for all curve classes D on X .1

The upper bound for h0(C,E) in Theorem 1.1 is much stronger than the higher rank Clifford
Theorem, which says h0(C,E) ≤ r + d

2 . The bound is not far from the sharp bound, see Remark
3.5. For a smooth curve C of genus g, several upper bounds for the dimension of global sections
of vector bundles of low slope µ = d/r have been introduced in [BPGN95, Mer99, Mer01], which
are also included in [LN15]. Sharp bounds for the case g ≤ 6 and µ < 2 have been determined in
[BPGN95, Mer99, Mer01, LN15, LN16, LN18]. The upper bound (1) is in general stronger than
the bounds in these previous papers unless g ≤ 6 or µ ≤ 2.

For r = 2, the second statement of Theorem 1.1 gives

Cliff2(C) = Cliff(C) =

⌊
g − 1

2

⌋
,

so we re-obtain the result [BF15, Theorem 1.3]. Also for r ≥ 3 and g 6= 10, we have

Cliffr(C) < Cliff(C) =

⌊
g − 1

2

⌋
.

This indicates the failure of the Mercat’s conjecture in [Mer02] for C which states the higher ranks
Clifford indices of the curve C are equal to Cliff(C). Meanwhile, when r = 3 and g = 10, we
have Cliff3(C) = 4 = Cliff(C) for a general curve.

When r = 3 and g = 9, the fact that a general curve has Cliff3(C) = 10
3 was known according

to the results in [LN13]. When r = 3 and g = 11, our result implies that a general curve has
Cliff3(C) = 14

3 , which improves the result 11
3 ≤ Cliff3(C) ≤ 14

3 in [LMN12, Theorem 3.6].

Let A be a globally generated line bundle on the curve C ⊂ X , the Lazarsfeld–Mukai bundle
EC,A on X is defined via the exact sequence

0→ E∨C,A → H0(C,A)⊗OX
ev−→ A→ 0.

1In particular,X satisfies Assumption (*) if Pic(X) = ZH . By the surjectivity of the period map, there are polarized
K3 surfaces with higher Picard rank satisfying this assumption as well. To simplify the presentation, we explain our
entire argument in the case of Picard rank one and then explain in Section 4.2 why the argument works for all polarized
K3 surfaces satisfying Assumption (*).



HIGHER RANK CLIFFORD INDICES OF CURVES ON A K3 SURFACE 3

In all cases in the second part of Theorem 1.1, there exists a line bundle A on the curve C such that
the rank r-Clifford index is computed by the restriction of the corresponding Lazarsfeld–Mukai
bundle on the K3 surface X . We expect this result holds without the assumption on the Picard
group of X . This can be viewed as a generalization for the result of Green and Lazarsfeld in
[GL87] which says that for a curve C on a smooth K3 surface with Cliff(C) <

⌊
g−1

2

⌋
, the Clifford

index can be computed by the restriction of a line bundle on the K3 surface.
Our argument can be generalized to curves on other surfaces, especially when the surface admits

a stronger Bogomolov–Gieseker type inequality. Examples of such surfaces include the projective
plane, del Pezzo surfaces and quintic surfaces. We explain more details for smooth plane curves
in Section 5. In particular, we show that the first part of the Mercat’s conjecture [Mer02] holds for
smooth plane curves:

Theorem 1.2 (Corollary 5.6). Let C be a degree l(≥ 5) smooth irreducible plane curve, then

Cliffr(C) = l − 4,

for any positive integer r.

The result Cliff2(C) = l− 4 for plane curves first appeared in [LN10, Proposition 8.1]. Further
discussions for the rank 3 case appeared in [LN13]. In particular, the result Cliff3(C) = l − 4 was
known for l ≤ 6. As Professor Peter Newstead pointed out, it seems to us that all other Clifford
indices for smooth plane curves have not been known. In particular, Theorem 1.2 excludes the
possibility that Cliff3(C) < l − 4 in the assumption in [LN13, Theorem 5.6].

Another concrete example for curves on degree four del Pezzo surfaces is computed in [Li19].
The Clifford type inequality for such curves is the key ingredient in proving the existence of Bridge-
land stability conditions on smooth quintic threefolds.

1.1. Approach. The main tool in this paper is the notion of stability condition introduced by
Bridgeland [Bri07]. In general, such a stability condition σ = (A, Z) is defined on a C-linear tri-
angulated category T , and is consisting of a heart structureA and a central charge Z : K(T )→ C,
which is a group homomorphism from the Grothendieck group to complex numbers. The space
of stability conditions on T forms a complex manifold which admits a wall and chamber decom-
position for any fixed object E ∈ T . In this paper, the triangulated category T will always be the
bounded derived category Db(X) of coherent sheaves on a surface X . We will only make use of a
real two-dimensional subspace of stability conditions on Db(X).

Let ι : C ↪→ X be the embedding of a smooth curve C into the surface X , and let E be a
semistable vector bundle on the curve C. In [Fey17], a new upper bound for the dimension of
global sections of objects in Db(X) has been introduced. This states the dimension of global
sections of ι∗E can be bounded by the length of the Harder–Narasimhan polygon at a limit point
σ0 where Z(OX) → 0. The Harder–Narasimhan polygon geometrically represents the slopes and
degrees of the Harder–Narasimhan factors of ι∗E with respect to σ0. One of the key parts of the
paper is to describe the position of the wall for ι∗E that bounds the large volume limit chamber
at where ι∗E is stable. Describing the wall that bounds the large volume limit will enable us to
control the length of this Harder–Narasimhan polygon at σ0 effectively and get the bound for the
dimension of global sections of the vector bundle E.
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2. REVIEW: STABILITY CONDITIONS, WALL-CROSSINGS

Let (X,H) be a smooth polarized K3 surface over C with Pic(X) = ZH . In this section, we
review the description of a slice of the space of stability conditions Stab(X) on Db(X) given in
[Bri08, Section 1-7].

Given an object E ∈ Db(X), we write ch(E) = (rk(E), ch1(E), ch2(E)) ∈ H∗(X,Z) for its
Chern characters. We write H∗alg(X,Z) for its algebraic part, in other words, the image of ch(−).
The slope of a coherent sheaf E ∈ CohX is defined by

µH(E) :=

{
H. ch1(E)
H2 rk(E)

if rk(E) > 0

+∞ if rk(E) = 0.

This leads to the usual notion of µH -stability. For any β ∈ R, we have the following torsion pair
in CohX

T β := 〈E : E is µH -semistable with µH(E) > β 〉,

Fβ := 〈E : E is µH -semistable with µH(E) ≤ β〉,
where 〈−〉 denotes the extension-closure. Following [HRS96, Bri08], this lets us define a new heart
of a bounded t-structure in Db(X) as follows:

Cohβ X := 〈Fβ[1], T β〉 =
{
E : H−1(E) ∈ Fβ,H0(E) ∈ T β,Hi(E) = 0 for i 6= 0,−1

}
.

For any pair (β, α) ∈ R2, we define the central charge Zβ,α : K(X)→ C by

(2) Zβ,α(E) := − ch2(E) + α rk(E) + i

(
H ch1(E)

H2
− β rk(E)

)
.

Note that the function Zβ,α, up to the action of GL+(2;R), is the same as the stability function
defined in [Bri08, section 6]. The function Zβ,α factors via the Chern character

(3) ch: K(X)→ H∗alg(X,Z) ∼= Z3 , ch(E) =
(

rk(E), ch1(E), ch2(E)
)
.

The kernel of Zβ,α in H∗alg(X,R) under the basis {rk, ch1, ch2} is spanned by (1, βH, α).

Definition 2.1. Let γ : R→ R be a 1-periodic function such that for x ∈ [−1
2 ,

1
2 ] is defined as

γ(x) :=

{
(1− x2) if x 6= 0

0 if x = 0.

Let Γ(x) := H2

2 x
2 − γ(x). By abuse of notations, we also denote the graph of Γ by curve Γ (see

Figure 1).
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FIGURE 1. The Gamma curve.

We first state Bridgeland’s result describing stability conditions on Db(X), and then expand
upon the statements.

Theorem 2.2 ([Bri08, Section 1]). For any pair (β, α) ∈ R2 such that α > Γ(β), the pair σβ,α :=(
Cohβ X,Zβ,α

)
defines a stability condition on Db(X). Moreover, the map from Γ+ := {(β, α) ∈

R× R|α > Γ(β)} → Stab(X) is continuous.

We first explain the notion of σβ,α-stability and the associated Harder–Narasimhan filtration.
Consider the slope function

νβ,α : Cohβ X → R ∪ {+∞}, νβ,α(E) :=

{
−ReZβ,α(E)

ImZβ,α(E) if ImZβ,α(E) > 0

+∞ if ImZβ,α(E) = 0.

This defines a notion of stability in Cohβ X: an object E ∈ Cohβ X is σβ,α-(semi)stable if and
and only if it is (semi)stable with respect to the the slope function νβ,α. Every object E ∈ Cohβ X

admits a Harder–Narasimhan filtration which is a finite sequence of objects in Cohβ X ,

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = E

whose factors Ei := Fi/Fi−1 are σβ,α-semistable and νβ,α(E1) > νβ,α(E2) > · · · > νβ,α(Ek).
We denote ν+

β,α(E) := νβ,α(E1) and ν−β,α(E) := νβ,α(Ek). The second part of Theorem 2.2
implies that the two-dimensional family of stability conditions σβ,α satisfies wall-crossing as α
and β vary. Consider the projection

pr : H∗alg(X,Z) \ {rk = 0} → R2 , pr(ch(E)) =

(
H ch1(E)

H2 rk(E)
,
ch2(E)

rk(E)

)
.

By abuse of notations, we use the same plane for the image of the projection pr and the (β, α)-
plane. Note that the point (β, α) is equal to the projection pr(kerZβ,α) of the kernel of the central
charge Zβ,α in H∗alg(X,Z). We will also write pr(E) instead of pr(ch(E)).
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Remark 2.3. (a) For a stable object E with respect to any stability condition σβ,α, the point
pr(E) is not in Γ+ = {(x, y) ∈ R2 : y > Γ(x)}. To see this, note that

2 = hom(E,E) + hom(E,E[2]) ≥ χ(E,E) = 2 rk(E) ch2(E)− (ch1(E))2 + 2(rk(E))2.

Thus by Hodge index Theorem, we have

(4)
H2

2

(
H ch1(E)

H2 rk(E)

)2

≥ ch1(E)2

2 rk(E)2
≥ ch2(E)

rk(E)
+ 1− 1

rk(E)2
.

By the definition of γ and Assumption (*), we have

γ

(
H ch1(E)

H2 rk(E)

)
≤ 1− 1

rk(E)2
.

Together with (4), we have

Γ

(
H ch1(E)

H2 rk(E)

)
≥ H2

2

(
H ch1(E)

H2 rk(E)

)2

− 1 +
1

rk(E)2
≥ ch2(E)

rk(E)
.

(b) The slope νβ,α(E) is just the slope of the line crossing points (β, α) and pr(E).

pr(H∗alg(X,R))

•
pr(F )

W i
F

Wj
F

the chamber that F is semistable

the stability condition σ0,0+

Curve Γ

FIGURE 2. Describing walls via KerZβ,α ⊂ H∗(X,R).

Proposition 2.4 ([Bri08, Proposition 9.3]). Fix an object F ∈ Db(X). There exists a collection of
line segments (walls)W i

F in Γ+ with the following properties:
• the extension of each line segment passes through pr(F ) if rk(F ) 6= 0; otherwise it has

slope ch2(F )H2/H ch1(F );
• an endpoint of the segments is either on the curve Γ or on the line segment through

(n, H
2

2 n
2) to (n, H

2

2 n
2 − 1) for some n ∈ Z (see the remark below for more details);
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• the σβ,α-(semi)stability or instability of F does not change when σβ,α changes between
two consecutive walls.
• the object F is strictly σβ,α-semistable if (β, α) is contained in one of the walls.
• if F is σβ,α-semistable in one of the adjacent chambers to a wall, then it is unstable in the

other adjacent chamber.

See Figure 2 for a picture and [Fey17] for more details.

Remark 2.5. In this paper, we will only apply Proposition 2.4 to an object F = ι∗E where E is a
slope semistable vector bundle on a curve C ∈ |H|. More precise descriptions for the walls of ι∗E
are as follows.

• All walls of ι∗E are parallel segments with the same slope ch2(ι∗E)
H ch1(ι∗E) .

• ι∗E is σ0,a-semistable for a� 0.
• There is at most one wall W intersecting the line {(0, y)|y > 0}. Indeed, if the wall

contains passes through (0, α0) for some α0 > 0, then the destabilizing subobject in
Coh0(S) will destabilize ι∗E for every α < α0. So there is at most one α0 > 0 such that
ι∗E is strictly semistable with respect to σ0,α0 .
• Suppose there is a wall W of ι∗E intersecting the line {(0, y)|y > 0}. We will see

in Lemma 3.1 below that the x-coordinates β1 and β2 of the endpoints of W satisfies
0 < β2 − β1 < 1. In particular, both endpoints are on the curve Γ.
• There are also several walls irrelevant to our study. For each negative integer n < 0 small

enough, there is a ‘tiny wall’ with its ‘right endpoint’ at (n, H
2

2 n
2) and ‘left endpoint’ on

curve Γ. These walls will never intersect the line {(0, y)|y > 0}. So they are irrelevant
to the the HN factors of ι∗E at all. They are the only reason why we give several extra
descriptions for the possible endpoints of walls.

3. BOUNDS FOR THE DIMENSION OF GLOBAL SECTIONS

In this section, we prove the first part of Theorem 1.1 which introduces a new upper bound for
the dimension of global sections of vector bundles on a curve over a K3 surface. We always assume
X is a K3 surface with Pic(X) = ZH and C ∈ |H| is a smooth curve of genus g. We denote by
ι : C ↪→ X the embedding of the curve C into X .

3.1. The destabilizing wall for a stable vector bundle on the curveC. LetE be a slope semistable
vector bundle on the curve C of rank r ≥ 2 and degree d ∈ [0, r(g − 1)]. By [Mac14, Theorem
3.11], the push-forward ι∗E is σβ,α-semistable for any β ∈ R and α sufficiently large. By Propo-
sition 2.4, the walls for ι∗E are line segments of slope d

r + 1− g. By Remark 2.5, there is at most
one α > 0 such that ι∗E is ‘destabilized’ at σ0,α, in other words, ι∗E is strictly σ0,α-semistable
and not σ0,α′-semistable for every 0 < α′ < α. Suppose this is the case, in other words ι∗E
becomes strictly semistable at the wallW which passes through σ0,α for some α > 0. Denote the
x-coordinates of the endpoints of the wallW as β1 and β2 for some β1 < 0 < β2.

Lemma 3.1. Adopt notations as above, we have

−1 +
d

rH2
≤ β1 and β2 ≤

d

rH2
.



8 SOHEYLA FEYZBAKHSH AND CHUNYI LI

βmin
1

•

βmax
2

•
•

•

β2
β1

W

•

•

slope= d
r + 1− g

(
d1−a
s ,− ch2(F1)

s

)
= pr(F1)

pr(F2) =
(
d2
s ,

ch2(F2)
s

) β, H ch1
H2 rk

−1 1

α, ch2
rk curve Γ

•(1, H
2

2 − 1)•(−1, H
2

2 − 1)

βmax
2 − βmin

1 = 1

d1
s ≤

d1−a
s ≤ β1 < β2 ≤ d2−t

s ≤ d2
s .

FIGURE 3. Cartoon for the destabilizing wallW of ι∗E.

Proof. Let 0 → F2 → ι∗E → F1 → 0 in Coh0X be the destabilizing sequence at the wall W ,
then there is an exact sequence in CohX:

0 H−1(F1) F2 ι∗E H0(F1) 0.

rank s s 0 0

ch1 d1H d2H rH aH

If s = 0, then since F2 and ι∗E have the same phase with respect to σ0,α, it follows that

ch(ι∗E) =
(
r
d2

)
ch(F2), so that F2 cannot make a wall for ι∗E. Thus, we may assume s > 0.

Let T (F2) be the maximal torsion subsheaf of F2 and ch1(T (F2)) = tH . Since E is of rank r, to
make the sequence exact at the term ι∗E, we must have

r − a ≤ rank
(
ι∗T (F2)

)
+ rank

(
ι∗F2/T (F2)

)
= s+ t.

Therefore,

(5)
H ch1

(
F2/T (F2)

)
sH2

−
H ch1

(
H−1(F1)

)
sH2

=
d2 − t− d1

s
=
r − a− t

s
≤ 1.
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By Proposition 2.4, the object F1 is semistable of the same phase as ι∗E along the line segment
W , in particular if −1 < β1, it is in the heart Cohβ1+εX where ε→ 0+. Thus by definition of the
tilting heart,

(6)
H ch1(H−1(F1))

H2s
=
d1

s
≤ β1.

By similar reasoning for F2/T (F2), it follows from the definition of the tilting heart that

(7)
H ch1(F2/T (F2))

H2s
≥ β2.

Therefore inequality (5) and definition of imply that

(8) 0 < β2 ≤
H ch1(F2/T (F2))

H2s
≤ 1 + β1 < 1.

In particular, β1 > −1, β2 < 1, and β2 − β1 ≤ 1.
By the second property of Proposition 2.4, the slope ofW as a line in the projection pr(H∗alg(X,R))

is

(9)
Γ(β2)− Γ(β1)

β2 − β1
=
H2 ch2(ι∗E)

H ch1(ι∗E)
= −H

2

2
+
d

r
.

It is not hard to see that β2 (respectively β1) reaches its maximum βmax
2 (respectively minimum

βmin
1 ) when β2 − β1 = 1. Substitute this to (9), we get

(10) Γ(βmax
2 )− Γ(βmax

2 − 1) = −H
2

2
+
d

r
.

Since 0 ≤ d ≤ r(g − 1), slope ofW is not positive, thus 0 < βmax
2 ≤ 1

2 and by Definition (2.1),

Γ(βmax
2 ) =

H2

2
(βmax

2 )2 − (1− (βmax
2 )2) , Γ(βmax

2 − 1) =
H2

2
(βmax

2 − 1)2 − (1− (βmax
2 )2)

Substituting back into the equation (10) gives βmax
2 = d

rH2 and βmin
1 = d

rH2 − 1. �

We need the following description for the first wall in details.

Lemma 3.2. Adopt notations from Lemma 3.1.
(a) If r ≤ s = rk(F2) and ch1(F2/T (F2)) = H , we have −1 + 1

r ≤ β1. Otherwise
−1 + 1

r−1 ≤ β1.
(b) When 0 ≤ d ≤ min{2g − 2 + r, r(g − 1)} and g ≥ r2, we have β2 ≤ 1

r .
(c) When r = 3, we either have the Chern characters ch(F2) = (3, H,−) or β1 ≥ −1

2 .

Proof. Adopt the notations as in the proof of Lemma 3.1.
(a): By inequality (7), we know

(11)
H ch1(F2/T (F2))

H2
≥ sβ2 > 0.

Recall that H ch1(F2/T (F2))
H2 ∈ N by Assumption (*).
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• If s = rk(F2) < r, then H ch1(F2/T (F2))
H2s

≥ 1
r−1 . Thus (8) gives

1

r − 1
≤ H ch1(F2/T (F2))

H2s
≤ 1 + β1,

comparing the first and the last sentences implies the claim.
• If r ≤ s, inequality (6) gives

(12)
H ch1(H−1(F1))

H2r
≤ H ch1(H−1(F1))

H2s
≤ β1 < 0.

Taking ch1 from the destabilizing sequence gives

(13)
H ch1(H−1(F1))

H2
= −r +

H ch1(F2/T (F2))

H2
+
H ch1(T (F2))

H2
+
H ch1(H0(F1))

H2
.

Since H0(F2) is a torsion sheaf H ch1(H0(F1)) ≥ 0. Also by (11), H ch1(F2/T (F2))
H2 ≥ 1.

If H ch1(F2/T (F2))
H2 ≥ 2, then H ch1(H−1(F1))

H2 ≥ −r + 2 and by (12)

−1 +
1

r − 1
≤ −r + 2

r
≤ H ch1(H−1(F1))

H2r
≤ β1

as claimed. If H ch1(F2/T (F2))
H2 = 1, then H ch1(H−1(F1))

H2 ≥ −r + 1 and by (12)

−r + 1

r
≤ H ch1(H−1(F1))

H2r
≤ β1

This finishes the proof of part (a).

(b): If r ≤ s = rk(F2) and ch1(F2/T (F2)) = H , then by (11), β2 ≤ H ch1(F2/T (F2))
H2s

≤ 1
r and

the claim follows. Thus we may assume otherwise, so part (a) gives β1 ≥ 2−r
r−1 .

When r ≤ 2, d ≤ 2(g − 1) = H2. By Lemma 3.1, β2 ≤ d
rH2 ≤ 1

r . So the statement holds.
We may assume r ≥ 3. Suppose for a contradiction that β2 >

1
r , then by definition Γ, the slope

of the line connecting
(

1
r , Γ(1

r )
)

and
(

2−r
r−1 , Γ(2−r

r−1)
)

is less than slope of the line connecting
(β2,Γ(β2)) and (β1Γ(β1)), in other words,

(14)
Γ
(

1
r

)
− Γ

(
2−r
r−1

)
1
r −

2−r
r−1

<
Γ (β2)− Γ (β1)

β2 − β1
= the slope ofW = −H

2

2
+
d

r
.

Since 0 < 1
r−1 ≤

1
2 , we have −1 < −1 + 1

r−1 ≤ −
1
2 , the definition (2.1) of Γ gives

Γ

(
1

r

)
=
H2

2
.

1

r2
− 1 +

1

r2
, Γ

(
2− r
r − 1

)
=
H2

2

(
2− r
r − 1

)2

− 1 +
1

(r − 1)2
.
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Substitute them into the left hand side of (14):

Γ
(

1
r

)
− Γ

(
2−r
r−1

)
1
r −

2−r
r−1

=
H2

2

(
1

r
+

2− r
r − 1

)
+

1
r2
− 1

(r−1)2

1
r −

2−r
r−1

=
H2

2

(
−1 +

2

r
+

1

r(r − 1)

)
− 2r − 1

r(r − 1)(r2 − r − 1)

= − H2

2
+
H2

r
+

1

r(r − 1)

(
H2

2
− 2r − 1

r2 − r − 1

)
.(15)

Since g ≥ r2, we get g > r(r− 1) + 1 + 2r−1
r2−r−1

because r > 1 + 2r−1
r2−r−1

for r ≥ 3. This implies

H2

2
− 2r − 1

r2 − r − 1
> r(r − 1).

Therefore (15) gives

Γ
(

1
r

)
− Γ

(
2−r
r−1

)
1
r −

2−r
r−1

> −H
2

2
+
H2

r
+ 1 ≥ −H

2

2
+
d

r

with the last inequality is given by the assumption d ≤ H2 + r. So this contradicts (14).
(c): By part (a), we may assume r = 3 ≤ s = rk(F2) and ch1(F2/T (F2)) = H . Substituting

r = 3 and ch1(F2/T (F2)) = H in (13) implies that −2 ≤ H ch1(H−1(F1))
H2 . On the other hand, (12)

gives H ch1(H−1(F1)) < 0. If ch1(H−1(F1)) = −H , or ch1(H−1(F1)) = −2H and s ≥ 4, then
(12) gives −1

2 ≤ β1 as claimed. Hence we can assume ch1(H−1(F1)) = −2H and s = 3. Thus
(13) gives ch1(T (F2)) = 0, so ch1(F2) = H as required. �

3.2. An upper bound on the dimension of global sections. We first recall the result in [Fey17,
Section 3]. Define the function Z : K(X)→ C as

Z(F ) = ch2(F ) + i
ch1(F ).H

H2
.

We also define the following non-standard norm on C:

‖x+ iy‖ =
√
x2 + (2H2 + 4)y2.

The next proposition bounds the dimension of global sections of objects in terms of the length of a
polygon.

Proposition 3.3 ([Fey17, Proposition 3.4]). Let F ∈ Coh0X be an object which has no subobject
F ′ ⊂ F with ch1(F ′) = 0.

(a) There exists ε > 0 such that the Harder-Narasimhan filtration of F is a fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ .... ⊂ Ẽn−1 ⊂ Ẽn = F,

for all stability conditions σ0,α where 0 < α < ε.
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(b) Let pi := Z(Ẽi) for 0 ≤ i ≤ n, then

h0(X,F ) ≤ χ(F )

2
+

1

2

n∑
i=1

b‖pipi−1‖c

where b‖pipi−1‖c is the integer part of the length of the line segment pipi−1 and χ(F ) is
the Euler characteristic of F .

Proof. In the notations of [Fey17], H
2

2 w
2 − 1 is equal to our α, so part (a) follows from [Fey17,

Propsotion 3.3 (a)]. By [Fey17, Lemma 3.2],

h0(Ẽi/Ẽi−1) ≤

⌊
χ(Ẽi/Ẽi−1)

2
+
‖pipi−1‖

2

⌋

=

⌊
χ(Ẽi/Ẽi−1)

2
+
b‖pipi−1‖c

2
+
‖pipi−1‖ − b‖pipi−1‖c

2

⌋

≤ χ(Ẽi/Ẽi−1)

2
+
b‖pipi−1‖c

2

where the last inequality following from the following two cases:

(a) If both χ(Ẽi/Ẽi−1) and b‖pipi−1‖c are even or odd, the claim is trivial because ‖pipi−1‖−
b‖pipi−1‖c < 1.

(b) If either χ(Ẽi/Ẽi−1) or b‖pipi−1‖c is odd, then since 1
2 + ‖pipi−1‖−b‖pipi−1‖c

2 < 1 the
claim follows.

Finally by summing up over all stable factors one gets

h0(F ) ≤
n∑
i=1

h0(Ẽi/Ẽi−1) ≤ 1

2

n∑
i=1

χ(Ẽi/Ẽi−1) +
1

2

n∑
i=1

b‖pipi−1‖c =
χ(F )

2
+

1

2

n∑
i=1

b‖pipi−1‖c .

�

We denote by PF the polygon with the extremal points {p0, p1, ..., pn} which is a convex poly-
gon.

Let E be a slope semistable rank r-vector bundle on the curve C of degree d.
Proposition 3.3 implies that there exists ε > 0 such that the Harder–Narasimhan filtration of ι∗E

with respect to the stability condition σ0,α for positive α < ε is a fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ .... ⊂ Ẽn−1 ⊂ Ẽn = ι∗E.

Consider the triangle opq where o is the origin, q = Z(ι∗E), the slope of op is equal to β2/Γ(β2)
and the slope of pq is β1/Γ(β1), where the real numbers β1 and β2 are defined as in Lemma 3.1.

Lemma 3.4. The polygon Pι∗E is contained in the triangle opq.

Proof. If ι∗E is σ0,α-semistable where α→ 0+, then the polygon Pι∗E is just the line segment oq
and the claim follows. Thus, we may assume ι∗E is not σ0,α-semistable where α→ 0+. Since the
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o
ch2(−)

ch1(−).H

H2

p

q = Z(ι∗E)

p1

p2

FIGURE 4. The polygon Pι∗E is inside the triangle opq

polygon Pι∗E is convex, it suffices to show that

H2 ch2(Ẽ1)

H ch1(Ẽ1)
≤ Γ(β2)

β2
and

Γ(β1)

β1
≤ H2 ch2(ι∗E/Ẽn−1)

H ch1(ι∗E/Ẽn−1)
.

The phase of the subobject Ẽ1 in the Harder–Narasimhan filtration is bigger than phase of ι∗E at
the stability condition σ0,α where α → 0+. Therefore there are stability condition between large
volume limit (σβ,α where α → ∞) and the stability conditions σ0,α where α → 0+ such that Ẽ1

and ι∗E have the same phase. Proposition 2.4 implies that these stability conditions are on a line
segment L whose extension passes through the point pr(Ẽ1). Note that rk(Ẽ1) 6= 0 by the same
argument as that in the beginning of the proof of Lemma 3.1. The line L is lower than the wallW
for ι∗E since otherwise ι∗E will already become strictly semistable on L, see Figure 5.

(β1,Γ(β1))
•

(β2,Γ(β2))
•
•

•

•
pr(Ẽ1) slope = H2 ch2(Ẽ1)

H ch1(Ẽ1)

slope = Γ(β2)
β2L

W

β, H ch1
H2 rk

−1 1

O

α, ch2
rk

0.4H2

curve Γ

FIGURE 5. Comparing slopes
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Since Ẽ1 is σ0,α-semistable for some α > 0, the point pr(Ẽ1) is not in Γ+ by Remark 2.3.
Therefore, pr(Ẽ1) is on the dashed part of the line L and the first claim follows. By a similar
argument one can show the second claim for ι∗E/Ẽn−1. �

We are now ready to prove the bound for the dimension of global sections of the semistable
vector bundle E.

Proof for the first part of Theorem 1.1. Consider the triangle op′q where the slope of op′ is
d

rH2

Γ
(

d
rH2

) =
d

rH2

d2

2r2H2 − 1 + d2

r2(H2)2

,

and the slope of p′q is
d

rH2 − 1

Γ
(

d
rH2 − 1

) =
d

rH2 − 1

H2

2

(
d

rH2 − 1
)2 − 1 + d2

r2(H2)2

.

Lemma 3.1 implies that the triangle opq is inside the triangle op′q, so by Lemma 3.4 the polygon
Pι∗E is also inside the triangle op′q. By a direct computation, one can show that the point

p′ =

(
d2g

(H2)2r
− r, d

H2

)
.

Now Proposition 3.3, part (b) gives

h0(X, ι∗E) ≤ χ(ι∗E)

2
+

1

2

n∑
i=1

‖pipi−1‖

≤ χ(ι∗E)

2
+

1

2

(
‖op′‖+ ‖p′q‖

)
=

1

2
(r(1− g) + d) +

1

2

√(
d2g

(H2)2r
− r
)2

+ 4g

(
d

H2

)2

+
1

2

√(
r(g − 1)− d+

d2g

(H2)2r
− r
)2

+ 4g

(
r − d

H2

)2

=
1

2
(r(1− g) + d) +

1

2

(
d2g

(H2)2r
+ r

)
+

1

2

(
r(g − 1)− d+

d2g

(H2)2r
+ r + δ

)
,(16)

where the last equality holds for the non-negative solution δ to the following equation.

(r+δ)2+2(r+δ)

(
r(g − 1)− d+

d2g

(H2)2r

)
= r2−2r

(
r(g − 1)− d+

d2g

(H2)2r

)
+4g

(
r − d

H2

)2

.

This is equivalent to

(17) δ2 + 2rδ + 2δ

(
r(g − 1)− d+

d2g

(H2)2r

)
= 4r2 − 4dr

g − 1
.
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Now we will show that δ < 2r
g . Since 0 ≤ r(g − 1) − d, the function f(x) := x2 + 2rx +

2x
(
r(g − 1)− d+ d2g

(H2)2r

)
is increasing for x > 0. Moreover,

f

(
2r

g

)
=

4r2

g2
+

4r2

g
+

4r

g

(
r(g − 1)− d+

d2g

(H2)2r

)
= 4r2 +

4r2

g2
− 4rd

g
+

d2

(g − 1)2

= 4r2 − 4dr

g − 1
+

(
2r

g
+

d

g − 1

)2

> 4r2 − 4dr

g − 1
.

Hence (17) shows f(δ) < f
(

2r
g

)
which gives δ < 2r

g . Applying this back into (16) implies

h0(C,E) <
1

2
(r(1− g) + d) +

1

2

(
d2g

(H2)2r
+ r

)
+

1

2

(
r(g − 1)− d+

d2g

(H2)2r
+ r +

2r

g

)
= r +

g

4r(g − 1)2
d2 +

r

g
.

�

Remark 3.5. The bound for h0(C,E) in Theorem 1.1 is not far from the sharp bound. Let k be an
integer in [1, r], denote t = gcd(r, k). When d = 2k(g − 1) such that g ≥

(
r
t

)2
+ 2, there exists a

stable vector bundle F on X with Chern characters:

(rk(F ), ch1(F ), ch2(F )) =

(
r

t
,
k

t
H,

⌊
t

r
+
k2

rt
(g − 1)

⌋
− r

t

)
.

When k = r, F is a line bundle, so the restriction F⊕t|C is semistable.
When k < r, the rank of F is greater than 1. Since Pic(X) = Z.H , [Fey21, Proposition 4.6]

implies F |C is semistable if

(18) rk(F )(rk(F )− 1)∆̃(F ) +
1

rk(F )(rk(F )− 1)
≤ 1 ,

where

∆̃(F ) =
(ch1(F )H)2 − 2H2 rk(F ) ch2(F )

(H2 rk(F ))2
=
k2

r2
− t

r(g − 1)
ch2(F ).
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We have

∆̃(F ) <
k2

r2
− t

r(g − 1)

(
t

r
+
k2

rt
(g − 1)− 1− r

t

)
≤

t
r(

r
t

)2
+ 1

(
1 +

r

t
− t

r

)
=

1

rk(F )(rk(F )2 + 1)

(
1 + rk(F )− 1

rk(F )

)
.

Thus (18) clearly holds and the restriction F⊕t|C is semistable with rank r, degree 2k(g − 1) and
dimension of global sections

h0(C,F⊕t|C) = h0(X,F⊕t) = t

⌊
t

r
+
k2

rt
(g − 1)

⌋
+ r.

If the b·c function can be dropped for free, the formula can be simplified as

r +
g

4r(g − 1)2
d2 +

t2 − k2

r
.

Corollary 3.6. Let (X,H) be a smooth polarized K3 surface satisfying Assumption (*), and let C
be a smooth curve of genus g in the linear system |H|. Let E be a slope semistable rank r-vector
bundle of degree d on the curve C such that d ≤ r(g − 1). Then Cliff(E) > d

r −
d2g

2r2(g−1)2
− 2

g .
When g ≥ 7, we have

Cliffr(C) > 2
√
g − 1− 2− 2

√
g − 1

g
.

Proof. The bound for Cliff(E) is by substituting the bounds of h0(C,E) into the formula of Clif-
ford index. By the first part of Theorem 1.1, if h0(C,E) ≥ 2r, then

r +
g

4r(g − 1)2
d2 +

r

g
> h0(C,E) ≥ 2r .

This implies g
4r(g−1)2

d2 > r g−1
g which is equivalent to d > 2r(g−1)

3
2

g . Consider the function

f(d) = d
r −

d2g
2r2(g−1)2

− 2
g , it reaches the maximum when d = r(g−1)2

g . When g ≥ 7, the value

r(g−1)2

g is in the range of d ∈
[

2r(g−1)
3
2

g , r(g − 1)

]
. To know at which boundary f(d) reaches its

minimum, we compare the distances from the two boundaries to r(g−1)2

g .

r(g − 1)2

g
− 2r(g − 1)

3
2

g
≥ r(g − 1)− r(g − 1)2

g

⇐⇒g − 1− 2
√
g − 1 ≥ 1⇐⇒ g ≥ 7.
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Therefore, the function f(d) reaches its minimum at the left boundary. In particular,

Cliffr(C) > f

(
2r(g − 1)

3
2

g

)
=

2r(g − 1)
3
2

gr
− 4r2(g − 1)3

2r2g(g − 1)2
− 2

g
= 2
√
g − 1− 2− 2

√
g − 1

g

for any r. �

4. HIGHER RANK CLIFFORD INDICES

In this section, we compute higher rank Clifford indices of curves over K3 surfaces and prove
the second part of Theorem 1.1.

4.1. Picard number one case. We assume X is a K3 surface with Pic(X) = ZH and C ∈ |H| is
a smooth curve of genus g. Denote by ι : C ↪→ X the embedding of the curve C into X . We first
briefly recall the result in [Fey21], which constructs semistable vector bundles on C by restricting
vector bundles on X with low discriminant. By [BM14, Theorem 2.15], there exists a slope stable
sheaf Ẽr on X with Chern character (r,H,

⌊g
r

⌋
− r). Define Er := Ẽr|C .

Theorem 4.1 ([Fey21, Theorem 1.2]). Assume g ≥ max{r2, 6} and r ≥ 2, then the sheaf Er is a
semistable vector bundle on C with h0(C,Er) ≥ 2r and

Cliff(Er) ≤
2

r
(g − 1)− 2

r

⌊g
r

⌋
.(19)

Proof. The stable sheaf Ẽr is locally-free, otherwise, the double dual F = Ẽ∨∨r is slope stable
with Chern characters (r,H,

⌊g
r

⌋
− s) for some integer s ≤ r − 1. Yet −χ(F, F ) = H2 −

2r
(⌊g

r

⌋
− s
)
− 2r2 < −2. This contradicts [BM14, Theorem 2.15]. Thus by the assumption on

r and g, [Fey21, Theorem 1.2] implies that Er is slope semistable on C and h0(C,E) ≥ 2r. As
deg(Er) = c1(Ẽr)H = 2(g − 1), by a direct computation, Cliff(Er) ≤ 2

r (g − 1)− 2
r

⌊g
r

⌋
. �

We now prove the Clifford index ofEr is indeed the minimum of Clifford index of any semistable
vector bundle E with rank r, degree d and h0(E) ≥ 2r. This will involve several different cases.

Proof of the second part of Theorem 1.1 for r ≥ 4. Let E be a semistable rank r-vector bundle of
degree d ≤ r(g − 1) on the curve C. By Theorem 4.1, it suffices to show that either h0(E) < 2r
or Cliff(E) ≥ 2

r (g − 1)− 2
r

⌊g
r

⌋
.

Step 1. We show Cliff(E) > 2
r (g − 1)− 2

r

⌊g
r

⌋
if 2g + 2 < d ≤ r(g − 1).

Denote t := d− 2(g − 1). The first part of Theorem 1.1 implies that

Cliff(E)− 2

r
(g − 1) +

2

r

⌊g
r

⌋
>
t

r
− 2

r

r +

(
2 + t

g−1

)2

4r
g +

r

g

+ 2 +
2

r

⌊g
r

⌋
=: Q(t).

Then Q(t) is a quadratic function with respect to t with negative leading coefficient. Thus it suf-
fices to show that Q(t = 5) > 0 and Q(t = (r − 2)(g − 1)) > 0 which can be easily checked by
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direct computations.

Step 2. We show Cliff(E) ≥ 2
r (g − 1)− 2

r

⌊g
r

⌋
if −2

( ⌊g
r

⌋
− r
)
≤ d− 2(g − 1) ≤ 4.

Applying Proposition 3.3 for the push-forward ι∗E implies that there exists ε > 0 such that its
Harder-Narasimhan filtration with respect to σ0,α for positive α < ε is a fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ ... ⊂ Ẽn−1 ⊂ Ẽn = ι∗E,

and

(20) Cliff(E) ≥ g + 1− l(E)

r
,

where l(E) :=
∑n

i=1b‖pipi−1‖c and pi = Z(Ẽi). Thus it is suffices to show that

(21) l(E) ≤ g(r − 2) + 2
⌊g
r

⌋
+ r + 2.

Since Ẽ1 is a sheaf supported in dimension≥ 1 and Ẽ1 ∈ T 0, we get H ch1(Ẽ1)
H2 is a positive integer.

We first treat with the case that H ch1(Ẽ1)
H2 ≥ 2. By Lemma 3.2, β1 ≥ −1 + 1/r. Applying the same

argument as in Lemma 3.4 implies that the polygon Pι∗E is contained in the triangle op′q where
the slope of qp′ is −1+1/r

Γ(−1+1/r) and the vertical coordinate of the point p′ is equal to 2, see Figure 6.

•
O

1 •

2•
p′

•q r

d− r(g − 1)
ch2

H ch1
H2

p̃•
p1

slope of qp̃ =
1−r
r

Γ( 1−r
r )

FIGURE 6. The polygon pι∗E is inside the polygon op1p
′q.

Denote by p̃ the point along the line p′q with the vertical coordinate equal to 1. The coordinates
of two points p′ and p̃ are

p′ =

(
d− 2(g − 1)− r − 2

r
(g + r) , 2

)
and p̃ =

(
d− 2(g − 1) +

g

r
− r , 1

)
.
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Note that the length ‖qp̃‖ does not depend on d,

‖p′q‖ =
r − 2

r − 1
‖p̃q‖ =

r − 2

r − 1

√(
(r − 2)(g − 1) +

g

r
− r
)2

+ 4g(r − 1)2(22)

<
r − 2

r − 1

(
(r − 2)(g − 1) +

g

r
+ r +

2r

g

)
(23)

The horizontal coordinate of p′ is negative and is bigger than −g + r + 2. Thus if r ≥ 4, we have

‖op′‖ ≤
√

16g + (g − r − 2)2 ≤ g + r +
1

r
− 6

5
.

This implies l(E) ≤ b‖op′‖+ ‖p′q‖c ≤ g(r − 2) + 2
⌊g
r

⌋
+ r + 2, so inequality (21) holds.

Now assume ch1(Ẽ1) = H . By Lemma 3.2.(b), we have β2 ≤ 1
r . Therefore ch2(Ẽ1) ≤

bΓ(β2)
β2
c =

⌊g
r

⌋
− r. We consider three different cases:

Case I. | ch2(Ẽ1)| ≤
⌊g
r

⌋
− r

Case II. λ := −
⌊g
r

⌋
+ r − g

2r ≤ ch2(Ẽ1) ≤ −
⌊g
r

⌋
+ r − 1

Case III. ch2(Ẽ1) ≤ λ
We first assume r ≥ 5, then the point λ̃ := (λ, 1) lies on the right hand side of the line segment
op′. In Case I, we have

(24) ‖op1‖ ≤
√

4g +
(⌊g
r

⌋
− r
)2

<
⌊g
r

⌋
+ r + 1 ,

which implies b‖op1‖c ≤
⌊g
r

⌋
+ r. For Case II, write s := − ch2(Ẽ1)−

⌊g
r

⌋
+ r, then 1 ≤ s ≤ g

2r
and

‖op1‖ =

√
4g +

(⌊g
r

⌋
+ s− r

)2
<
⌊g
r

⌋
+ s+ r.(25)

Thus b‖op1‖c ≤
⌊g
r

⌋
+ s+ r − 1. For s = g

2r , we indeed have

(26) ‖oλ̃‖ =

√
4g +

(⌊g
r

⌋
+

g

2r
− r
)2

<
⌊g
r

⌋
+

g

2r
+ r − 1 .

To provide an upper bound for the length ‖p1p
′‖, we define the function

(27) f(x) :=

√
4g +

(
g
r − 2

r
+
⌊g
r

⌋
− x− 2

)2

.

If 0 ≤ x ≤ g

2r
, one can easily show that

(28) f(x) < g
r − 2

r
+
⌊g
r

⌋
− x+

2

r − 1
− r − 2

r − 1

2r

g
+ δ,

where δ = 1 if x ∈
[
0,
g

r2

]
and δ = 2 if x ∈

(
g

r2
,
g

2r

]
.
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In Case I, we know the point p1 lies on the right hand side of op′, so the length of p1p
′ is

maximum when the horizontal coordinate of p1 is maximum. But the horizontal coordinate of p1

is less than or equal to d− 2(g− 1) +
⌊g
r

⌋
− r because p1 lies on the left hand side of p̃, see Figure

6, thus

(29) ‖p1p
′‖ ≤ f(0).

In Case II, the length of p1p
′ is maximum when the horizontal coordinate of p′ is minimum, i.e. d

is minimum, hence

‖p1p
′‖ ≤

√
4g +

(
−2
(⌊g
r

⌋
− r
)
− r − 2

r
(g + r)− ch2(Ẽ1)

)2

= f(s).(30)

Here s = − ch2(Ẽ1) −
⌊g
r

⌋
+ r as before. Similarly, the length of λ̃p′ is maximum when d is

minimum, so

(31) ‖λ̃p′‖ ≤ f(
g

2r
).

Now we apply the above upper bounds to prove inequality (21). In Case I, inequalities (23), (28)
and (29) imply that

‖p1p
′‖+ ‖p′q‖ < g(r − 2) +

⌊g
r

⌋
+ 3

Thus inequality (24) implies

l(E) ≤ b‖op1‖c+ b‖p1p
′‖+ ‖p′q‖c ≤

⌊g
r

⌋
+ r + g(r − 2) +

⌊g
r

⌋
+ 2 ,

so inequality (21) holds. Similarly, in Case II, inequalities (23), (28) and (30) imply that

‖p1p
′‖+ ‖p′q‖ < g(r − 2) +

⌊g
r

⌋
− s+ 4 .

Therefore inequality (25) implies that

l(E) ≤ b‖op1‖c+ b‖p1p
′‖+ ‖p′q‖c ≤

⌊g
r

⌋
+ s+ r − 1 + (r − 2)g +

⌊g
r

⌋
− s+ 3 ,

thus again inequality (21) holds. Finally in Case III, we have

`(E) ≤ b‖oλ̃‖+ ‖λ̃p′‖+ ‖p′q‖c.
Summing up inequalities (23), (26), (28) and (31) show that inequality (21) is satisfied.

Finally, we consider the case r = 4. If | ch2(Ẽ1)| ≤
⌊g

4

⌋
− 4, then p1 lies to the right of op′ and

the same argument as in the Case I above implies the claim. Otherwise, `(E) ≤ b‖oλ̃‖+ ‖λ̃p′‖+

‖p′q‖c where λ̃ = (λ, 1) for λ = −
⌊g

4

⌋
+ 3. Note that λ̃ lies to the right of op′. We know that the

length of λ̃p′ will be maximum when d is minimum so

‖oλ̃‖+ ‖λ̃p′‖ ≤
√

4g +
(
−
⌊g

4

⌋
+ 3
)2

+

√
4g +

(⌊g
4

⌋
+
g

2
− 3
)2

<
⌊g

4

⌋
+ 5 + g

1

2
+
⌊g

4

⌋
− 1 +

2

3
− 16

3g
+ 1 .
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The second inequality follows from (28) for x = 1. Summing up the above inequality with (23)
proves our claim (21).

Step 3. We show h0(C,E) < 2r if d < 2(g − 1)− 2
(⌊g

r

⌋
− r
)
.

By using the same notations as in Step 2, we first consider the case ch1(Ẽ1) 6= H . By Proposition
3.3, it suffices to show that

(32) k(d) := d+ r(1− g) + ‖op′‖+ ‖p′q‖ < 4r.

One can easily check that the function

k(d) = d+ r(1− g) +

√
16g +

(
d− 2(g − 1)− r − 2

r
(g + r)

)2

+ ‖p′q‖

is increasing with respect to d, so

k(d) ≤ k
(
2(g − 1)− 2

( ⌊g
r

⌋
− r
)
− 1
)
< 4r.

The last inequality comes from inequality (23) and some direct computations.
Thus we may assume ch1(Ẽ1) = H . If p1 is to the left of the line segment op′, then the total

sum of ‖pipi−1‖ is also bounded by ‖op′‖+ ‖p′q‖. So we may always assume the polygon op1p
′q

is convex.
Define t := p̃(x) − ch2(Ẽ1)− g

r +
⌊g
r

⌋
, where p̃(x) = d− 2(g − 1) + g/r − r is the horizontal

coordinate of the point p̃. We consider two different cases:

Case I. when 0 ≤ t < g
2r ,

(33) ‖op1‖ =

√
4g +

(
− d+ 2(g − 1)−

⌊g
r

⌋
+ t+ r

)2
< −d+ 2(g − 1)−

⌊g
r

⌋
+ t+ 3r

In particular, if t ∈
[ g
r2
, g2r
)
, we can improve the bound by 1;

(34)
√

4g +
(
− d+ 2(g − 1)−

⌊g
r

⌋
+ t+ r

)2
< −d+ 2(g − 1)−

⌊g
r

⌋
+ t+ 3r − 1

Note that ‖p1p
′‖ = f(t) as that defined in (27).

Thus combining inequality (28) for t ∈ [0,
g

2r
] and inequality (23), we get

l(E) ≤ b‖op1‖c+
⌊
‖p1p

′‖+ ‖p′q‖
⌋
≤ 4r + r(g − 1)− d− 1.

Hence the claim follows by Proposition 3.3.

Case II. Suppose g
2r ≤ t. If p1 lies on the left hand side of op′, the polygon Pι∗E is inside the

triangle op′q and the claim follows from (32). Otherwise, the polygon op1p
′q is convex and the

summation of the length ‖op1‖+ ‖p1p
′‖+ ‖p′q‖ is maximum when t = g

2r .
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Substituting t = g
2r into the formulas of ‖op1‖ and ‖p1p

′‖, we have:

‖op1‖ =

√
4g +

(
−d+ 2(g − 1)−

⌊g
r

⌋
+

g

2r
+ r
)2

< −d+ 2(g − 1)−
⌊g
r

⌋
+

g

2r
+ 3r − 2.

‖p1p
′‖ = f

( g
2r

)
< g

r − 2

r
+
⌊g
r

⌋
− g

2r
+

2

r − 1
− r − 2

r − 1

2r

g
+ 2, by (28).

Together with (23) for ‖p′q‖, it follows that

l(E) ≤
⌊
‖op1‖+ ‖p1p

′‖+ ‖p′q‖
⌋
≤ 4r + r(g − 1)− d− 1,

so the claim follows. �

Proof of the second part of Theorem 1.1 for r = 3. Let E be a rank 3-semistable vector bundle on
the curve C of degree d. By Lemma 3.2, either β1 ≥ −1

2 or ch(F2) = (3, H,−).
Case I: If β1 ≥ −1

2 , since ch2(ι∗E) ≤ 0, the slope of the wallW for ι∗E is negative. Therefore,
|β2| < |β1| ≤ 1

2 . Lemma 3.4 implies that for each of the semistable factors Ẽi/Ẽi−1 in the
Harder–Narasimhan filtration of ι∗E with respect to σ0,α for positive α < ε, we have∣∣∣∣∣H2 ch2(Ẽi/Ẽi−1)

H ch1(Ẽi/Ẽi−1)

∣∣∣∣∣ ≤ Γ(1/2)

1/2
.

Therefore l(E) ≤
⌊
3
√

4g + (g/2− 2)2
⌋

= b3(g/2 + 2)c. Note that g ≥ 32 = 9, Proposition 3.3
implies that

Cliff(E) ≥ g + 1− l(E)

3
= g − 1

3

⌊
3g

2

⌋
− 1 ≥ 2

3
(g − 1)− 2

3

⌊g
3

⌋
.

Case II: If ch(F2) = (3, H,−), then β2 ≤ ch1(F2/T (F2)).H
3H2 ≤ 1

3 . When d ≥ 2(g− 1)− 2
( ⌊g

3

⌋
−

3
)
, define s := − ch2(Ẽ1) −

⌊g
3

⌋
+ 3, then using the same argument as in Step 2 for r ≥ 4, if

ch1(Ẽ1) 6= H , then for g ≥ 9 and g 6= 11, we have

l(E) =b‖op′‖+ ‖p′q‖c =

2

√(
g

3
− 1

)2

+ g +

√
(d− 7

3
g + 1)2 + 16g

(35)

≤

2

√(
g

3
− 1

)2

+ g +
√

(g − 5)2 + 16g

 ≤ g + 2
⌊g

3

⌋
+ 5,

which shows inequality (21) holds for r = 3. The only remaining case that the last inequality does
not hold is when g = 11, but the formula (35) is less than or equal to 22. Therefore, we may
assume ch1(Ẽ1) = H . Now the arguments in Step 2, Case I, II, and III in the proof of Theorem
1.1 for r ≥ 4, are valid for r = 3, thus Cliff3(E) ≥ 2

3(g − 1)− 2
3

⌊g
3

⌋
.

When d < 2(g−1)−2
( ⌊g

3

⌋
−3
)
, define t = p̃(x)−ch2(Ẽ1)− g

3
+
⌊g

3

⌋
, then again the computations
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in Step 3, Case I, II are valid for r = 3, hence h0(F ) < 6. Therefore, the second part of Theorem
1.1 for r = 3 and g ≥ 9 follows by Theorem 4.1. �

Proof of the second part of Theorem 1.1 for r = 2. Let E be a semistable rank 2-vector bundle on
the curve C. Assume there exists a wall W for ι∗E and 0 → F1 → ι∗E → F2 → 0 is the
destabilizing sequence as that in Lemma 3.1. As H ch1(F1), H ch1(F2) > 0, we may assume
ch1(F1) = cha(F2) = H . By Lemma 3.2, we may assume ch(F1) = (2, H, s) and ch(F2) =
(−2, H, 2(1 − g) + d − s). Since H ch1(Fi)/H

2 = 1 is minimal, both objects F1 and F2 are
σ0,α-stable for any α > 0. Therefore, F1 and F2 are the Harder–Narasimhan factors of ι∗E with
respect to σ0,α where 0 < α� 1. By [BM14, Theorem 2.15],

−χ(F2, F2) = H2 + 4(2(1− g) + d− s)− 8 ≥ −2 =⇒ s ≤ d− 3g

2
.

Since F1 destabilizes ι∗E, we have

s

H2
>

ch2(ι∗E)

H ch1(ι∗E)
=⇒ s >

d

2
− g + 1.

Combining the two inequalities, we get

d

2
− g + 1 < s ≤ d− 3g

2
=⇒ d > g + 2.

Note that d ≤ 2g− 2, we have s ≤ g
2 − 2. We also have s > d

2 − g+ 1 > −g
2 + 2. In particular,

|s| ≤ g
2 − 2. Proposition 3.3 implies that

h0(C,E) ≤ −g + 1 +
d

2
+

1

2

⌊√
4g + s2 +

√
4g + (2(g − 1)− d+ s)2

⌋
(36)

Note that √
4g + s2 +

√
4g + (2(g − 1)− d+ s)2(37)

≤
√

4g +
(g

2
− 2
)2

+

√
4g +

(
2(g − 1)− d+ d− 3g

2

)2

= g + 4.(38)

As for the ‘≤’, equality can hold only if |s| = g
2 − 2 and s = d − 3g

2 . Since d > g + 2, we must
have d = 2(g − 1) and s = d− 3g

2 . Since s is an integer, g must be even in this case.

Hence when g is odd, we have
⌊√

4g + s2 +
√

4g + (2(g − 1)− d+ s)2
⌋
≤ g + 3. Together

with (36), we have h0(C,E) ≤ −
⌊
g+1

2

⌋
+ 3 + d

2 .

When g is even, by (36) and (38), we directly have h0(C,E) ≤ −
⌊
g+1

2

⌋
+ 3 + d

2 as well.
Hence when there exists a wall for ι∗E, we have

Cliff(E) ≥ d

2
+

⌊
g + 1

2

⌋
− 3− d

2
+ 2 = g − 1−

⌊g
2

⌋
.
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Now assume there is no wall W for ι∗E and it is σ0,α-semistable where α → 0. Denote x =

d− 2(g − 1) and p1 = Z(ι∗E), so ‖op1‖ =
√
x2 + 16g. Proposition 3.3 implies that

Cliff(E) ≥ g + 1− 1

2

⌊√
x2 + 16g

⌋
.

Thus for−g+4 < x ≤ 0, we have Cliff(E) ≥ g−1−
⌊g

2

⌋
. If x ≤ −g+4, then again Proposition

3.3 gives

2h0(C,E) ≤ x+
√
x2 + 16g =

16g√
x2 + 16g − x

≤ 16g√
(g − 4)2 + 16g + g − 4

= 8.

Therefore the second part of Theorem 1.1 for r = 2 follows by the fact that Cliff2(C) ≤ Cliff1(C) =
g − 1−

⌊g
2

⌋
. �

4.2. Higher Picard number case. Theorem 1.1 still holds when the ample divisor H satisfies
Assumption (*).
Assumption (*): H2 divides H.D for all curve classes D on X .
We explain how to adapt all our arguments from Picard rank one to this more general case.

Let ΛH ∼= Z3 denote the image of the map

vH : K(X)→ R3, E 7→ (rk(E), H ch1(E), ch2(E)) .

Consider stability conditions for which the central charge factors via vH , and denote the space
of such stability conditions by StabH(X). The pair σβ,α :=

(
Cohβ X,Zβ,α

)
defines a stability

condition on Db(X) and there is a continuous map from Γ+ → StabH(X). The slope function
νβ,α is defined in the same way. All the propositions in Section 2 hold for the higher Picard rank
case. The Chern characters in part (a) in Lemma 3.2 should be modified to H. ch(F1) = H2. All
the other statements do not rely on the Picard rank.

5. SMOOTH PLANE CURVES

Our method to control the dimension of global sections of semistable vector bundles (first part of
Theorem 1.1) can be generalized to curves on more general surfaces, especially for Fano surfaces.
As a case study, we follow the argument for curves on K3 surfaces to set up a bound for smooth
projective plane curves and finally compute their Clifford indices. We first review Bridgeland
stability conditions on the projective plane.

5.1. Review: space of geometric stability conditions onDb(P2). The space of geometric stabil-
ity conditions on the projective plane P2 is similar but slightly different with that of a K3 surface
with Picard number one. In the projective plane case, the curve Γ is replaced by the Le Potier curve
(see [DLP85, CHW14, Li17, LZ16]). Since the definition of Le Potier curve is rather involved, we
will only use a simpler version Γ̃ which is enough for our purpose.

Definition 5.1. Let γ̃ : R→ R be a 1-periodic function. When x ∈ [−1
2 ,

1
2 ],

γ̃(x) :=

{
1
2x

2 − 3
2 |x|+ 1 if x 6= 0

0 if x = 0.
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Let Γ̃(x) := 1
2x

2 − γ̃(x). By abuse of notations, we also denote the graph of Γ̃ by the curve Γ̃.

For β ∈ R and α > Γ̃(β), we define the central charge Zβ,α : K(P2)→ C as

(39) Zβ,α(E) := − ch2(E) + α rk(E) + i(ch1(E).H − β rk(E)).

By [Li17, Proposition 1.10], we get a slice of stability conditions σβ,α = (Cohβ P2, Zβ,α) param-
eterized by Γ̃+. Results of stability condition and wall-crossings (Theorem 2.2, Remark 2.3 and
Proposition 2.4) all hold without any change. One should be cautious that the end points of the first
wall may not be on the curve Γ̃.

5.2. Upper bound on the dimension of global sections. Let C be a degree l smooth irreducible
curve in the projective plane P2. Denote ι : C ↪→ P2 the embedding morphism andH := OP2(1).
We recollect lemmas from the case of K3 surfaces. The next lemma generalizes [Fey17, Lemma
3.2] to objects in Db(P2).

Lemma 5.2. Fix an object F ∈ Coh0 P2 which is σ0,α-semistable for any positive real number
α� 1 and ch1(F ) 6= 0. Then

hom(OP2 , F )

{
= rk(F ) + 3

2H ch1(F ) + ch2(F ) when ch2(F )
H. ch1(F ) > −

3
2 ,

≤ rk(F )− ch1(F )2

2 ch2(F ) when ch2(F ) < 0.

Proof. We first assume ch2(F )
H ch1(F ) > −

3
2 . The objectOP2(−3)[1] ∈ Coh0 P2 is σ0,α-semistable and

ν0,α(OP2(−3)[1]) = −3
2 < ν0,α(F ), thus Hom(F,OP2(−3)[i]) = 0, for i ≤ 1. By Serre duality,

we have Hom(OP2 , F [2− i]) = 0 for i ≤ 1. Since both F and OP2 are in the heart Coh0 P2, we
have Hom(OP2 , F [i]) = 0, for i ≤ −1. Therefore,

Hom(OP2 , F ) = χ(OP2 , F ) = rk(F ) +
3

2
H ch1(F ) + ch2(F ).

Now assume ch2(F ) < 0. Define the object K ∈ Db(P2) as the canonical extension

0→ F → K → OP2 [1]⊗ (Ext1(OP2 [1], F )→)∗0

in CohεP2 for sufficiently small ε > 0. We have ch(K) = (rk(F ) − h, ch1(F ), ch2(F )), where
h denotes dim Ext1(OP2 [1], F ) = hom(OP2 , F ). The object K is semistable on the wall that the
objects F and OP2 [1] have the same phase, in particular, ∆(K) ≥ 0:

0 ≤(H ch1(K))2 − 2 ch2(K)(rk(F )− h)

=⇒ h ≤ rk(F )− (H ch1(K))2

2 ch2(K)
= rk(F )− (H ch1(F ))2

2 ch2(F )
.

�

Note that when ch2(F )
H ch1(F ) ∈ (−1,−1

2), we always have

rk(F ) +
3

2
H ch1(F ) + ch2(F ) > rk(F )− ch1(F )2

2 ch2(F )
.

By the lemma, there is no σ0,α-semistable object with ch2(F )
H ch1(F ) ∈ (−1,−1

2).
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Define the function L : (a, b) ∈ H = R× R>0 → R>0 such that

L(a, b) =


3

2
b+ a, if

a

b
∈ I := [−1,+∞);

− b
2

2a
, if

a

b
∈ J := (−∞,−1].

Note that L(a, b) > 0 for any pair (a, b) ∈ H.

Lemma 5.3. The function L satisfies the triangle inequality in H, in other words, for any two
vectors v1 = (a1, b1) and v2 = (a2, b2) in H, we have L(v1 + v2) ≤ L(v1) + L(v2). Moreover,
L(kv) =kL(v) for any v ∈ H and k > 0.

Proof. The second claim follows clearly by definition. To prove the first claim, we consider four
different cases.

(a) If both a1/b1 and a2/b2 are in I = [−1,+∞), then L(v1 + v2) = L(v1) + L(v2).
(b) If both a1/b1 and a2/b2 are in J = (−∞,−1], then

0 ≤ −1

a1 + a2

(
b21

(
a2

a1

)
+ b22

(
a1

a2

)
− 2b1b2

)
.

This implies

0 ≤ b21
(

1

a1 + a2
− 1

a1

)
+ b22

(
1

a1 + a2
− 1

a2

)
+

2b1b2
a1 + a2

= −2L(v1 + v2) + 2L(v1) + 2L(v2).

(c) If a1/b1 ∈ I , a2/b2 ∈ J and (a1 + a2)/(b1 + b2) ∈ I , then since a2/b2 ≤ −1, we have

3

2
b2 + a2 ≤ −

b22
2a2

which implies

L(v1 + v2) =
3

2
(b1 + b2) + a1 + a2 ≤

3

2
b1 + a1 +− b22

2a2
= L(v1) + L(v2)

(d) If a1/b1 ∈ I , a2/b2 ∈ J and (a1 + a2)/(b1 + b2) ∈ J , then there is a non-negative real
number k < 1 such that (a1 + ka2)/(b1 + kb2) = −1, then case (c) implies that

L(v1 + kv2) ≤ L(v1) + kL(v2).

Therefore, case (b) gives

L(v1 + v2) ≤ L
(
(1− k)v2

)
+ L(v1 + kv2) ≤ (1− k)L(v2) + kL(v2) + L(v1),

which proves the claim. �

Notation: We will write
−−→
PQ for the vector from P to Q.

Fix a semistable rank r-vector bundle E of degree d on the curve C. The same argument as in
[Fey17, Proposition 3.4] implies that there exists ε > 0 such that the Harder–Narasimhan filtration
of ι∗E is a fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ ... ⊂ Ẽn−1 ⊂ Ẽn = ι∗E
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for all stability conditions σ0,α where 0 < α < ε. Let Pι∗E be the polygon with the extremal points
pi :=

(
ch2(Ẽi), ch1(Ẽi)

)
∈ R2 for i = 0, ..., n. Then Lemma 5.2 implies that

(40) h0(X, ι∗E) ≤ rk(E) +
n∑
i=1

L(−−−→pipi−1).

Note that by definition, the curve with the equation y = x2/2 is above the curve Γ̃. Also when
0 ≤ x < 1, the function Γ̃(x) ≤ −1

2x. Therefore, any point (β, α) in the gray area in Figure 7
gives a Bridgeland stability condition σβ,α.

•
β′2

•
β′1

H ch1
rk

•
O

ch2
rk

W
y = x2

2

y = −x
2

.5

−.5 •
p

FIGURE 7. First wall for ι∗E.

Lemma 5.4 (Lemma 3.4). For any semistable factor Ei := Ẽi/Ẽi−1 in the Harder–Narasimhan
filtration of ι∗E, we have the slope ch2(Ei)

H ch1(Ei)
∈
[
d

2rl −
l
2 ,

d
2rl

]
. When d < rl, the slope is either in

the range
[
d

2rl −
l
2 ,−

1
2

]
or
[
− l−1

2 , dr − l + 1
2

]
.

Proof. Let 0→ F2 → ι∗E → F1 → 0 be the destabilizing sequence at the wallW for ι∗E which
passes a stability condition of form σ0,α. We have ch1(ι∗E) = rlH and ch1(H0(F1)) = alH for
some integer a ≥ 0. Denote rk(H−1(F1)) = rk(F2) = s, ch1(H−1(F1)) = d1H and ch1(F2) =
d2H . Let T (F2) be the maximal torsion subsheaf of F2, then ch1(T (F2)) = tlH for some integer
t ≥ 0. The same argument as in the first part of Lemma 3.1 implies that

rl − al ≤ sl + tl.

Therefore,

(41)
H ch1

(
F2/T (F2)

)
sH2

−
H ch1

(
H−1(F1)

)
sH2

=
d2 − tl − d1

s
=
rl − al − tl

s
≤ l.
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Now assume the wallW intersects the parabola with the equation y = x2/2 at two points (β′2, β
′2
2 /2)

and (β′1, β
′2
1 /2) where β′1 < 0 < β′2. By applying the same argument as in Lemma 3.1, the in-

equality (41) gives β′2 − β′1 ≤ l. Proposition 2.4 implies that the slope of the wallW is

1
2(β′2)2 − 1

2(β′1)2

β′2 − β′1
=
β′2 + β′1

2
=

ch2(ι∗E)

H ch1(ι∗E)
=
d− r l22
rl

=
d

rl
− l

2
.

Therefore, β′2 ≤
d

rl
and β′1 ≥

d

rl
− l. By a similar argument as in Lemma 3.4, one can show that

for each of the Harder–Narasimhan factors Ei,

β′1
2

=
β′21 /2

β′1
≤ ch2(Ei)

H ch1(Ei)
≤ β′22 /2

β′2
=
β′2
2
.

Thus the first claim follows.
Now assume d < rl, so β′2 < 1. If the wallW intersects the line with the equation x = 1 at a point
(1, y) for −1/2 < y < 1/2, then the same argument as in Lemma 3.1 implies that

1 ≤
H ch1

(
F2/T (F2)

)
sH2

and inequality (41) implies that

1− l ≤
H ch1

(
H−1(F1)

)
sH2

≤ β1.

Therefore the wallW is below the line L which has the same slope asW and passes through the
point (1− l, (l−1)2

2 ). The line L intersects the line x = 1 at the point (1, dr − l+
1
2). Thus the same

argument as that in Lemma 3.4 shows that each slope ch2(Ei)
H ch1(Ei)

is in the range [−1−l
2 , dr − l + 1

2 ].
If we have y < −1/2, then the wall intersects the line segment op which has slope −1/2, see
Figure 7. Thus the same argument as in Lemma 3.4 implies that ch2(Ei)

H ch1(Ei)
≤ −1

2 and the second
claim follows.

�

Theorem 5.5. Let C be a degree l(≥ 5) smooth irreducible curve on the projective plane. Let E
be a semistable vector bundle with rank r and degree d such that 0 ≤ d ≤ rl(l − 3)/2. Then

dimH0(C,E) ≤

{
r +

(
3
2l + d

2rl2

)
d if d ≥ rl

max{3r + d− rl, r + rl+r
rl2−dd} if d < rl

Proof. When d ≥ rl, Lemma 5.4 implies that the polygon Pι∗E is inside the triangle op̃q where
p̃ = ( d2

2rl2
, dl ) and q = (− rl2

2 + d, rl). Then Lemma 5.3 and convexity of the polygon Pι∗E imply
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that

h0(C,E) = hom(OP2 , ι∗E) ≤
n∑
i=1

L(−−−→pipi−1)

≤ L(
−→
op̃) + L(

−→̃
pq) =

3d

2l
+

d2

2rl2
+

(rl − d
l )

2

rl2 − 2d+ d2

rl2

=
3d

2l
+

d2

2rl2
+ r.

When d < rl, if the range of the slopes in Lemma 5.4 is given by
[
d

2rl −
l
2 ,−

1
2

]
, then we may let

p̃ be at
(

−rdl
2rl2−2rl−2d

, rdl
rl2−rl−d

)
. Therefore,

h0(C,E) ≤ L(
−→
op̃) + L(

−→̃
pq) =

rdl

rl2 − rl − d
+

(
rl − rdl

rl2−rl−d

)2

rl2 − 2d− rdl
rl2−rl−d

=
rdl

rl2 − rl − d
+

rl

rl2 − d

(
rl − rdl

rl2 − rl − d

)
= r + d

rl + r

rl2 − d
.

Also if the range of the slopes in Lemma 5.4 is given by
[
− l−1

2 , dr − l + 1
2

]
, then we may let p̃ be

at
(
d− rl + r

2 , r
)
. Therefore,

h0(C,E) ≤ L(
−→
op̃) + L(

−→̃
pq) =

3

2
r + d− rl +

r

2
+

r2(l − 1)2

rl2 − 2rl + r
= 3r + d− rl,

which completes the proof. �

As an interesting consequence, part i) of Mercat conjecture ([Mer02]) holds for smooth plane
curves.

Corollary 5.6. Let C be a degree l(≥ 5) smooth irreducible plane curve, then

Cliffr(C) = l − 4,

for any r.

Proof. Let E be a semistable vector bundle with rank r and degree l, when d ≥ rl, by Theorem
5.5

Cliff(E) ≥ d

r
− 2

r

(
3

2l
+

d

2rl2

)
d ≥ mind=rl,d=rl(l−3)/2

{
d

r
− 2

r

(
3

2l
+

d

2rl2

)
d

}
= min

{
l − 2l

(
3

2l
+

rl

2rl2

)
,
l(l − 3)

2
−
(

3

2l
+
l − 3

4l

)
l(l − 3)

}
= min

{
l − 4,

l2 − 6l + 9

4

}
= l − 4.
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When l2−l
l+1 r ≤ d < rl and the upper bound for H0(C,E) is given by 3r + d− rl in Theorem 5.5,

then

Cliffr(E) ≥ d

r
− 2

r
(2r + d− rl) = l − 4 + l − d

r
> l − 4.

When l2−l
l+1 r ≤ d < rl and the upper bound for H0(C,E) is given by r + rl+r

rl2−dd in Theorem 5.5,
then

Cliffr(E) ≥ d

r
− 2(l + 1)

r(l2 − l)
d =

d

r
(1− 2l + 2

l2 − l
) ≥ l2 − l

l + 1
(1− 2l + 2

l2 − l
) > l − 2− 2.

When d < l2−l
l+1 r, by Theorem 5.5, dimH0(C,E) < r+ rl+r

rl2−rld < 2r. On the other side, one may
take E = OC(1)⊕r, then Cliff(E) = l − 4. Therefore, we have Cliffr(C) = l − 4. �
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