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Abstract
In this article we consider the infinite-horizon Mer-
ton investment-consumption problem in a constant-
parameter Black–Scholes–Merton market for an agent
with constant relative risk aversion 𝑅. The classical pri-
mal approach is to write down a candidate value func-
tion and to use a verification argument to prove that this
is the solution to the problem. However, features of the
problem take it outside the standard settings of stochas-
tic control, and the existing primal verification proofs
rely on parameter restrictions (especially, but not only,
𝑅 < 1), restrictions on the space of admissible strategies,
or intricate approximation arguments. The purpose of
this paper is to show that these complications can be
overcome using a simple and elegant argument involv-
ing a stochastic perturbation of the utility function.
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1 INTRODUCTION AND OVERVIEW

In the Merton investment-consumption problem (Merton, 1969, 1971) an agent seeks to maximize
the expected integrated discounted utility of consumption over the infinite horizon in a model
with a risky asset and a riskless bond. When parameters are constant and the utility function is of
power type, it is straightforward to write down the candidate value function. However, it is more
difficult to give a complete verification argument. For general strategies the wealth process may
hit zero at which point the application of Itô’s formula to the candidate value function breaks
down; the local martingale which arises from the application of Itô’s formula may fail to be a
martingale; even for constant proportional strategies transversality may fail.
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For all these reasons, it is difficult to give a concise, rigorous verification proof via analysis of
the value function, and many textbooks either finesse the issues or restrict attention to a subclass
of admissible strategies, and/or restrict attention to a subset of parameter combinations (espe-
cially 𝑅 < 1, but even then there can be substantive points which are often overlooked). The need
for such a verification argument has been obviated by the development of proofs using the dual
method,which provides a powerful and intuitive alternative approach, see Biagini (2010) for a sur-
vey (and also Karatzas, 1989; Karatzas et al., 1991; Karatzas & Shreve, 1998; Rogers, 2013). Nonethe-
less, it would be nice to provide a short proof based on the primal approach.1 The goal of this paper
is didactic—to give a simple, brief proof that the candidate value function is the value function via
the primal approach, and moreover, to give a proof which is valid for all parameter combinations
for which the Merton problem is well-posed.
The first full verification of the solution to the Merton problem of which we are aware (under

an assumption of positive discounting and strictly positive interest rates) is Karatzas et al. (1986),
which built on the previouswork of Lehoczky et al. (1983). There, the idea is to solve a perturbation
of the original problem inwhich the agentmay go bankrupt, at which point they receive a residual
value 𝑃. (Part of their motivation was to better understand the results of Merton (1971) on HARA
utilities, see also Sethi andTaksar (1988).) The solution to the perturbed problem is very clever, and
is developed in the case of a general utility function, but it is also very intricate and takes many
pages of calculation. Moreover, when specialized to the case of CRRA utilities, it places some
assumptions on the parameter values beyond the necessary assumption of well-posedness of the
Merton problem. The problem with bankruptcy is of independent interest, but more important
for our purposes is the fact that, given the solution to the problem with bankruptcy for a CRRA
utility, by letting 𝑃 ↓ 0 (𝑅 < 1) or 𝑃 ↓ −∞ (𝑅 > 1) Karatzas et al. (1986) recover the solution to the
original Merton problem.
In their seminal paper on transaction costs, Davis and Norman Davis and Norman (1990, Sec-

tion 2) briefly consider the Merton problem without transaction costs. They assume that the pro-
portion of wealth invested in the risky asset is bounded, and for 𝑅 < 1 they go on to prove a ver-
ification theorem for strategies restricted to this class. Further, in the case 𝑅 > 1 they propose a
different perturbation, this time a deterministic perturbation of the candidate value function. The
key point is that in the perturbed problem the candidate value function has a finite lower bound,
and this allows Davis and Norman (1990) to re-apply arguments from the 𝑅 < 1 case, although
the restriction to “regular” investment strategies remains. The candidate value for the perturbed
problem can be used to give an upper bound on the true value function, which converges to the
candidate solution to the Merton problem as the perturbation disappears. Unlike the argument
in Karatzas et al. (1986), the proof is quite short, but again it only works for certain parameter
combinations, and more importantly it restricts attention to a subclass of admissible strategies.
Our goal is to give a complete, simple verification argument via primalmethods.At its heart, our

idea is amodification of the approach inDavis andNorman (1990).We perturb the utility function,
which leads to a perturbed value function. However, rather than perturbing by the addition of a
deterministic constant, we perturb by adding a multiple of the optimal wealth process. The great
benefit is that the optimal consumption and the optimal investment are unchanged under the
perturbation, which means that mathematical calculations remain strikingly simple. Moreover,
these arguments are valid whenever the Merton problem is well-posed.
This paper is structured as follows. In the next section we introduce the problem, and in Sec-

tion 3 we give the candidate value function. In Section 4 we give a proof of the main result under
a set of clearly-stated assumptions which are designed precisely to make the proof work. Often,
proofs in the stochastic control literature (see, for example,Davis andNorman (1990), Fleming and
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Soner (2006, Example 5.2) and Pham (2009)) artificially impose restrictions on the set of admissi-
ble strategies or on the parameter values to ensure that these assumptions are satisfied by default.
In Section 5 we give our proof, which works for all parameter combinations and allows for all
admissible strategies. Finally, in a series of appendices we: first, give an example which illustrates
how one of the clearly-stated assumptions may easily fail; second, give a small amount of detail
on the Karatzas et al. (1986) and Davis and Norman (1990) approaches to the verification prob-
lem; third, discuss the case of logarithmic utility; fourth, consider the Merton problem under a
change of numéraire and discuss the role of the parameter 𝛿; and fifth, for completeness, give a
brief discussion of duality methods for the Merton problem.
Our proof is an improvement on the existing primal results in at least three important ways.

First, it places no restrictions on the class of admissible strategies: for example, unlike much of
the stochastic control literature, it does not require the fraction of wealth invested in the risky
asset to be bounded. (The argument in Karatzas et al. (1986) also applies to general investment
strategies.) Second, the proof covers all parameter combinations for which the Merton problem
is well-posed (and does not assume that interest rates and discounting are positive—as we shall
argue these quantities depend on the choice of accounting units, and therefore are not absolutes
in themselves). Third, our proof is simple, elegant and concise and not counting the derivation
of the candidate solution and candidate value function can be written up in just over one page
(Theorem 5.1 and Corollary 5.4).

2 THEMERTON PROBLEM

Throughout this paper we will work on a filtered probability space (Ω, , ℙ, 𝔽 = (𝑡)𝑡>0) satis-
fying the usual conditions and supporting a Brownian motion 𝑊 = (𝑊𝑡)𝑡≥0. We will assume a
Black–Scholes–Merton financial market consisting of a risk-free asset with interest rate 𝑟 ∈ ℝ
whose price process 𝑆0 = (𝑆0𝑡 )𝑡≥0 is given by 𝑆0𝑡 = exp(𝑟𝑡) and a risky asset whose price process
𝑆 = (𝑆𝑡)𝑡≥0 follows a geometric Brownian motion with drift 𝜇 ∈ ℝ and volatility 𝜎 > 0:

𝑑𝑆𝑡
𝑆𝑡

= 𝜇 d𝑡 + 𝜎 d𝑊𝑡, 𝑆0 = 𝑠 > 0.

An agent operating with this investment opportunity set and initial wealth 𝑥 > 0 chooses an
admissible investment-consumption strategy (𝜗0, 𝜗, 𝐶) = (𝜗0𝑡 , 𝜗𝑡, 𝐶𝑡)𝑡≥0, where 𝜗0𝑡 ∈ ℝ denotes the
number of riskless assets held at time 𝑡, 𝜗𝑡 ∈ ℝ denotes the number of shares held at time 𝑡, and
𝐶𝑡 ∈ ℝ+ represents the rate of consumption at time 𝑡. We require that 𝜗0, 𝜗, 𝐶 are progressively
measurable processes, 𝜗0 is integrable with respect to 𝑆0, 𝜗1 is integrable with respect to 𝑆, 𝐶 is
integrable with respect to the identity process2, the wealth process 𝑋 = (𝑋𝑡)𝑡≥0 defined by

𝑋𝑡 ∶= 𝜗
0
𝑡 𝑆
0
𝑡 + 𝜗𝑡𝑆𝑡 (1)

is ℙ-a.s. nonnegative and the self-financing condition,

𝑋𝑡 = 𝑥 + ∫
𝑡

0

𝜗0𝑠 d𝑆
0
𝑠 + ∫

𝑡

0

𝜗𝑠 d𝑆𝑠 − ∫
𝑡

0

𝐶𝑠 d𝑠, 𝑡 ≥ 0,
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is satisfied. We then denote by Π0𝑡 ∶=
𝜗0𝑡 𝑆

0
𝑡

𝑋𝑡
and Π𝑡 ∶=

𝜗𝑡𝑆𝑡

𝑋𝑡
the fraction of wealth invested in the

riskless and risky asset at time 𝑡, respectively.3 Noting that Π0𝑡 + Π𝑡 = 1 by (1), it follows that 𝑋
satisfies the SDE

d𝑋𝑡 = 𝜗0𝑡 d𝑆
0
𝑡 + 𝜗𝑡 d𝑆𝑡 − 𝐶𝑡 d𝑡

= 𝑋𝑡Π
0
𝑡 𝑟 d𝑡 + 𝑋𝑡Π𝑡(𝜇 d𝑡 + 𝜎 d𝑊𝑡) − 𝐶𝑡 d𝑡

= 𝑋𝑡Π𝑡𝜎 d𝑊𝑡 + (𝑋𝑡(𝑟 + Π𝑡(𝜇 − 𝑟)) − 𝐶𝑡) d𝑡,

(2)

subject to 𝑋0 = 𝑥. This means that we can describe an admissible investment-consumption strat-
egy for initial wealth 𝑥 > 0more succinctly by a pair (Π, 𝐶) = (Π𝑡, 𝐶𝑡)𝑡≥0 of progressively measur-
able processes, where Π is real-valued and 𝐶 is nonnegative, such that the SDE (2) has a unique
strong solution 𝑋𝑥,Π,𝐶 that is ℙ-a.s. nonnegative. We denote the set of admissible investment-
consumption strategies for 𝑥 > 0 by𝒜(𝑥). A consumption stream 𝐶 is called attainable for initial
wealth 𝑥 > 0 if there exists an investment process Π such that (Π, 𝐶) ∈ 𝒜(𝑥), and we denote the
set of attainable consumption streams for 𝑥 > 0 by 𝒞(𝑥).
The objective of the agent is to maximize the expected discounted utility of consumption over

an infinite time horizon for a given initial wealth 𝑥 > 0. To any attainable consumption stream
𝐶 ∈ 𝒞(𝑥), they associate a value 𝐽(𝐶) ∈ [−∞,∞], where

𝐽(𝐶) ∶= 𝔼

[
∫
∞

0

𝑒−𝛿𝑡𝑈(𝐶𝑡) d𝑡

]
.

Here, 𝛿 ∈ ℝ can be seen as a discount or impatience parameter; see Appendix D for a discussion
on the economic interpretation of 𝛿, which also explains why, unlike much of the literature, we
include the possibility 𝛿 ≤ 0. We assume that the agent has constant relative risk aversion (CRRA)
or equivalently that 𝑈 ∶ [0,∞) → [−∞,∞) takes the form 𝑈(𝑐) = 𝑐1−𝑅

1−𝑅
, where 𝑅 ∈ (0,∞) ⧵ {1} is

the coefficient of relative risk aversion;4 𝑅 = 1 is the case of logarithmic utility 𝑈(𝑐) = log(𝑐) and
is discussed in Appendix C. Note that since 𝑅 ≠ 1, the sign of𝑈(𝑐) is uniquely determined. Thus,
if ∫ ∞

0
𝑒−𝛿𝑡𝑈(𝐶𝑡) d𝑡 is not integrable, we can define 𝐽(𝐶) ∶= +∞ when 𝑅 < 1 and 𝐽(𝐶) ∶= −∞

when 𝑅 > 1.
In summary, the problem facing the agent is to determine

𝑉(𝑥) ∶= sup
𝐶∈𝒞(𝑥)

𝐽(𝐶) = sup
𝐶∈𝒞(𝑥)

𝔼

[
∫
∞

0

𝑒−𝛿𝑡
𝐶1−𝑅𝑡

1 − 𝑅
d𝑡

]
.

3 THE CANDIDATE VALUE FUNCTION

From the homogeneous structure of the problem we expect (see for example, Rogers, 2013,
Proposition 1.2) that 𝑉(𝜅𝑥) = 𝜅1−𝑅𝑉(𝑥) and that if (Π̂, �̂�) is an optimal strategy in 𝒜(𝑥) then
(Π̂𝜅 = Π̂, �̂�𝜅 = 𝜅�̂�) is optimal in 𝒜(𝜅𝑥) for 𝜅 > 0. For this reason, we may guess that it is opti-
mal to invest a constant fraction of wealth in the risky asset, and to consume a constant fraction
of wealth. (Of course, this will be verified later.) So, consider an investment-consumption strat-
egy that at each time 𝑡, invests a constant proportion of wealth Π𝑡 = 𝜋 into the risky asset and
consumes a constant fraction 𝜉 > 0 of wealth per unit time, that is, 𝐶𝑡 = 𝜉𝑋𝑡.
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Then the agent’s wealth process 𝑋 = 𝑋𝑥,𝜋,𝜉𝑋 is given by

𝑋𝑡 = 𝑥 exp

(
𝜋𝜎𝑊𝑡 +

(
𝑟 + 𝜋(𝜇 − 𝑟) − 𝜉 −

𝜋2𝜎2

2

)
𝑡

)
.

Denoting the market price of risk or Sharpe ratio by 𝜆 ∶= 𝜇−𝑟

𝜎
, we obtain

𝐶1−𝑅𝑡

1 − 𝑅
=
(𝜉𝑋𝑡)

1−𝑅

1 − 𝑅
=
𝑥1−𝑅𝜉1−𝑅

1 − 𝑅
exp

(
𝜋𝜎(1 − 𝑅)𝑊𝑡 + (1 − 𝑅)

(
𝑟 + 𝜆𝜎𝜋 − 𝜉 −

𝜋2𝜎2

2

)
𝑡

)
.

Multiplying this by 𝑒−𝛿𝑡 and taking expectations gives

𝔼

[
𝑒−𝛿𝑡

𝐶1−𝑅𝑡

1 − 𝑅

]
= 𝑥1−𝑅

𝜉1−𝑅

1 − 𝑅
𝑒−𝐹(𝜋,𝜉)𝑡, (3)

where

𝐹(𝜋, 𝜉) = 𝐹(𝜋, 𝜉; 𝑅, 𝛿, 𝜆, 𝑟, 𝜎) ∶= 𝛿 − (1 − 𝑅)

(
𝑟 + 𝜆𝜎𝜋 −

𝜋2𝜎2

2
𝑅 − 𝜉

)
.

Provided that 𝐹(𝜋, 𝜉) > 0, we find that

𝐽(𝜉𝑋) = 𝔼

[
∫
∞

0

𝑒−𝛿𝑡
𝜉1−𝑅𝑋1−𝑅𝑡

1 − 𝑅
d𝑡

]
=
𝑥1−𝑅

1 − 𝑅

𝜉1−𝑅

𝐹(𝜋, 𝜉)
. (4)

Wewant tomaximize this expression considered as a function of𝜋 and 𝜉, where themaximization
is restricted to pairs (𝜉, 𝜋) for which 𝐹(𝜋, 𝜉) > 0.
Let 𝜂 be defined by

𝜂 ∶=
1

𝑅

[
𝛿 − (1 − 𝑅)

(
𝑟 +

𝜆2

2𝑅

)]
, (5)

and suppose 𝜂 > 0. Set �̂� = 𝜆

𝜎𝑅
and �̂� = 𝜂. Then it is easily seen that the right-hand-side of (4) has

a turning point at (𝜋, 𝜉) = (�̂�, �̂�), and that this turning point is in the region where 𝐹(𝜋, 𝜉) > 0
and gives the maximum in (4).
Therefore, when 𝜂 > 0, the agent’s optimal behavior (at least over constant proportional strate-

gies) and corresponding value function are given by

�̂� =
𝜇 − 𝑟

𝜎2𝑅
, �̂� = 𝜂, �̂�(𝑥) ∶= 𝐽(�̂�𝑋) =

𝜂−𝑅𝑥1−𝑅

1 − 𝑅
. (6)

When 𝜂 ≤ 0, the problem is ill-posed. Indeed, if𝑅 < 1, then𝐹(�̂�, 𝜉) ↓ 0 as 𝜉 ↓ − 𝜂𝑅

(1−𝑅)
and hence

𝐽(𝜉𝑋) ↑ ∞ by (4). If 𝑅 > 1, then 𝐹(𝜋, 𝜉) ≤ 𝐹(�̂�, 𝜉) = 𝑅𝜂 + (1 − 𝑅)𝜉 ≤ 𝑅𝜂 ≤ 0 for every 𝜋 ∈ ℝ and
𝜉 ≥ 0. Hence, at least for constant proportional strategies 𝐽(𝜉𝑋) = −∞.Wewill see inCorollary 5.5
that 𝐽(𝐶) = −∞ for every admissible consumption stream 𝐶 ∈ 𝒞(𝑥).
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4 THE VERIFICATION ARGUMENT UNDER FIAT CONDITIONS

In this section, we prove that our candidate optimal strategy (�̂�, �̂�𝑋) from (6) is optimal in a subset
of the class of all admissible strategies. Since the conditions defining that class are chosen precisely
in such a way that the proof works, we call them fiat conditions.

Definition 4.1. Fix 𝑥 > 0. An investment-consumption strategy (Π, 𝐶) ∈ 𝒜(𝑥) is called fiat
admissible if the following three conditions are satisfied:

(P) The wealth process 𝑋𝑥,Π,𝐶 is ℙ-a.s. positive.
(M) The local martingale ∫ ⋅

0
𝑒−𝛿𝑡𝜎Π𝑡(𝑋

𝑥,Π,𝐶
𝑡 )1−𝑅 d𝑊𝑡 is a supermartingale.

(T) The transversality condition lim inf 𝑡→∞ 𝔼[𝑒−𝛿𝑡
(𝑋
𝑥,Π,𝐶
𝑡 )1−𝑅

1−𝑅
] ≥ 0 is satisfied.

We denote the set of all fiat admissible investment-consumption strategies for 𝑥 > 0 by𝒜∗(𝑥). A
consumption stream 𝐶 ∈ 𝒞(𝑥) is called fiat attainable for 𝑥 > 0 if there is an investment process
Π such that (Π, 𝐶) ∈ 𝒜∗(𝑥). We denote the set of fiat attainable consumption streams by 𝒞∗(𝑥).

Remark 4.2. As far as we are aware, the above notion of fiat admissible strategies has not been
explicitly used in the literature before. However, the conditions (P), (M), and (T) or stronger ver-
sions thereof have been used explicitly or implicitly throughout the stochastic control literature
on the Merton problem:

1. Condition (P) is (implicitly) assumed throughout most of the stochastic control literature deal-
ing with the Merton problem; a notable exception is Karatzas et al. (1986). However, for 𝑅 > 1,
(P) can be assumed without loss of generality because any admissible strategy (Π, 𝐶) ∈ 𝒜(𝑥)
violating (P) has 𝐽(𝐶) = −∞.

2. Condition (M) is implied by the stronger condition
(M1) The local martingale ∫ ⋅

0
𝜎Π𝑡(𝑋

𝑥,Π,𝐶
𝑡 )1−𝑅𝑒−𝛿𝑡 d𝑊𝑡 is a martingale. It is not difficult to

check that for 𝑅 < 1, (M1) is implied by the even stronger condition
(B) Π is uniformly bounded.
A common approach in the stochastic control literature is to assume (B), see for example,
Davis and Norman (1990, Equation (2.1)(B)), Fleming and Soner (2006, Equation IV.5.2),
or (Pham, 2009, Equation (3.2)), and then prove (M1) for 𝑅 < 1.5

3. Condition (T) is implied by the stronger standard transversality condition6

(T1) lim𝑡→∞ 𝔼[𝑒−𝛿𝑡
(𝑋
𝑥,Π,𝐶
𝑡 )1−𝑅

1−𝑅
] = 0.When𝑅 < 1, Davis andNorman (1990, page 682) prove that

(T1) is satisfied for any admissible strategy satisfying (B). Pham (2009, Equation (3.39))
and Fleming and Soner (2006, Equation IV.5.11) require (T1), and prove that the candidate
optimal strategy has this property.

It is clear that 𝒞∗(𝑥) ⊂ 𝒞(𝑥). The following result shows that the candidate optimal strategy
(�̂�, �̂�𝑋) from (6) is optimal in the class of fiat admissible strategies.
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Theorem4.3. Suppose 𝜂 ∶= 1

𝑅
[𝛿 − (1 − 𝑅)(𝑟 +

𝜆2

2𝑅
)] > 0. Let the function �̂� ∶ (0,∞) → ℝ be given

by �̂�(𝑥) = 𝑥1−𝑅

1−𝑅
𝜂−𝑅 . Then for 𝑥 > 0,

𝑉∗(𝑥) ∶= sup
𝐶∈𝒞∗(𝑥)

𝐽(𝐶) = 𝐽(�̂�) = �̂�(𝑥),

where the corresponding optimal investment-consumption strategy is given by (Π, 𝐶) = (Π̂, �̂�), where

Π̂ =
𝜆

𝜎𝑅
, �̂� = 𝜂𝑋𝑥,Π̂,�̂� . (7)

Proof. First, we show that𝑉∗(𝑥) ≥ �̂�(𝑥) = 𝐽(�̂�). By the arguments in Section 3, it only remains to
show that �̂� is fiat attainable. It follows from the construction of �̂�, that the wealth process𝑋𝑥,Π̂,�̂�
is ℙ-a.s. positive. Next, a similar calculation as in (3) shows that for each 𝑇 > 0,

𝔼

[
∫
𝑇

0

𝑒−2𝛿𝑡𝜎2�̂�2
(
𝑋𝑥,Π̂,�̂�𝑡

)2−2𝑅
d𝑡

]
= 𝜎2�̂�2 ∫

𝑇

0

exp

((
𝜆2(1 − 𝑅)2

𝑅2
− 2𝜂

)
𝑡

)
d𝑡 < ∞.

This implies that the local martingale ∫ ⋅
0
exp(−𝛿𝑡)𝜎Π̂𝑡(𝑋

𝑥,Π̂,𝐶
𝑡 )1−𝑅 d𝑊𝑡 is a (square-integrable)

martingale and hence a supermartingale. Finally, (3) together with the fact that 𝐹(�̂�, 𝜂) = 𝜂 > 0,
implies that (Π̂, �̂�) satisfies the transversality condition (T1).
Next, we show that𝑉∗(𝑥) ≤ �̂�(𝑥). Let (Π, 𝐶) ∈ 𝒜∗(𝑥) be arbitrary. If 𝑅 > 1, wemay in addition

assume without loss of generality that 𝐶1−𝑅 is integrable with respect to the identity process; for
otherwise 𝐽(𝐶) = −∞. It suffices to argue that 𝐽(𝐶) ≤ �̂�(𝑥).
Set 𝑋 ∶= 𝑋𝑥,Π,𝐶 for brevity and define the process𝑀 = (𝑀𝑡)𝑡≥0 by

𝑀𝑡 = ∫
𝑡

0

𝑒−𝛿𝑠𝑈(𝐶𝑠) d𝑠 + 𝑒
−𝛿𝑡�̂�(𝑋𝑡).

We want to apply Itô’s formula to𝑀. This is indeed possible as �̂� is in 𝐶2(0,∞) and 𝑋 is positive
by fiat admissibility of (Π, 𝐶). Note that �̂�𝑥(𝑋𝑡) is positive and �̂�𝑥𝑥(𝑋𝑡) is negative. Then, noting
that the argument of �̂� and its derivatives is 𝑋𝑡 throughout, we obtain

𝑑𝑀𝑡 = 𝜎Π𝑡𝑋𝑡𝑒
−𝛿𝑡�̂�𝑥 d𝑊𝑡 + 𝑒

−𝛿𝑡

[
𝐶1−𝑅𝑡

1 − 𝑅
− 𝛿�̂� + (𝑋𝑡(𝑟 + 𝜎𝜆Π𝑡) − 𝐶𝑡)�̂�𝑥 +

𝜎2

2
Π2𝑡 𝑋

2
𝑡 �̂�𝑥𝑥

]
d𝑡

= d𝑁𝑡 + 𝑒
−𝛿𝑡𝐿(Π𝑡, 𝐶𝑡; 𝑋𝑡, �̂�) d𝑡.

where 𝑁𝑡 = ∫ 𝑡
0
𝜎Π𝑠𝑋𝑠𝑒

−𝛿𝑠�̂�𝑥 d𝑊𝑠 = ∫ 𝑡
0
𝜂−𝑅𝜎Π𝑠𝑋

1−𝑅
𝑠 𝑒−𝛿𝑠 d𝑊𝑠 is a local martingale and

𝐿(𝜋, 𝑐; 𝑥, 𝑣 = 𝑣(𝑥)) =
𝑐1−𝑅

1 − 𝑅
− 𝛿𝑣 + (𝑥(𝑟 + 𝜎𝜆𝜋) − 𝑐)𝑣𝑥 +

𝜎2

2
𝜋2𝑥2𝑣𝑥𝑥. (8)
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Maximizing (8) over 𝜋 ∈ ℝ and 𝑐 ≥ 0, shows that the optimizers are attained at �̂� = 𝜆

𝜎

−𝑣𝑥

𝑥𝑣𝑥𝑥
and

𝑐 = 𝑣
−1∕𝑅
𝑥 . Plugging in �̂� shows that 𝐿(𝑐, �̂�; 𝑥, �̂�) = 0, which implies that �̂� solves the Hamilton-

Jacobi-Bellman equation

sup
𝜋∈ℝ,𝑐≥0

𝐿(𝜋, 𝑐; 𝑥, 𝑣) = 0. (9)

It follows that

𝑀𝑡 ≤ �̂�(𝑥) + 𝑁𝑡, 𝑡 ≥ 0. (10)

Taking expectations and using fiat admissibility of (Π, 𝐶) to ensure that 𝑁 is a supermartingale,
we find for each 𝑡 ≥ 0,

𝔼[𝑀𝑡] ≤ 𝔼[�̂�(𝑥) + 𝑁𝑡] ≤ �̂�(𝑥).
Taking the limit as 𝑡 goes to infinity, and using the monotone convergence theorem as well as the
transversality condition, we obtain

𝐽(𝐶) = lim
𝑡→∞

𝔼
[∫ 𝑡
0
𝑒−𝛿𝑠

𝐶1−𝑅𝑠

1−𝑅
𝑑𝑠

]
= lim
𝑡→∞

𝔼
[
𝑀𝑡 − 𝑒

−𝛿𝑡�̂�
(
𝑋𝑥,Π,𝐶𝑡

)]
≤ lim sup

𝑡→∞
𝔼[𝑀𝑡] − lim inf 𝑡→∞ 𝔼

[
𝑒−𝛿𝑡�̂�

(
𝑋𝑥,Π,𝐶𝑡

)] ≤ lim sup
𝑡→∞

𝔼[𝑀𝑡] ≤ �̂�(𝑥). (11)

This establishes the claim. □

Remark 4.4. A close inspection of the proof of Theorem 4.3 shows that for the optimal strategy
(Π̂, �̂�), the process �̂� = (�̂�𝑡)𝑡≥0 given by �̂�𝑡 ∶= ∫ 𝑡

0
𝑒−𝛿𝑠𝑈(�̂�𝑠) d𝑠 + 𝑒

−𝛿𝑡�̂�(𝑋𝑥,Π̂,�̂�) is a uniformly
integrable martingale. Indeed, in this case �̂� is a martingale and �̂� = �̂�(𝑥) + �̂�. Hence, �̂� is a
martingale. It is uniformly integrable because, by the transversality condition (T1) and monotone
convergence, equation (11) implies that �̂�𝑡 converges in 𝐿1 to �̂�∞ ∶= ∫ ∞

0
𝑒−𝛿𝑠𝑈(�̂�𝑠) d𝑠.

For 𝑅 < 1, the above fiat verification theorem can be easily generalised to a general verification
theorem.

Corollary 4.5. Suppose 𝑅 < 1 and 𝜂 > 0. Then 𝑉(𝑥) = �̂�(𝑥).

Proof. It is sufficient to show that (P), (M) and (T) are satisfied for general strategies, or to find
a way of bypassing the relevant part of the argument. First, (T) is automatically satisfied by the
fact that 𝑋1−𝑅∕(1 − 𝑅) is nonnegative. Next,𝑀 is nonnegative and hence 𝑁 is bounded below by
−�̂�(𝑥) by (10). Therefore, 𝑁 is always a supermartingale and (M) is automatically satisfied.
Finally, to avoid imposing (P), one has to refine the argument in Theorem 4.3 by a stopping

argument. To wit, fix an admissible strategy (Π, 𝐶) ∈ 𝒜(𝑥). Then for 𝑛 ∈ 𝑁, set 𝜏𝑛 ∶= inf {𝑡 ≥ 0 ∶
𝑋𝑥,Π,𝐶 ≤ 1

𝑛
} and let 𝜏∞ ∶= lim𝑛→∞ 𝜏𝑛. Then it is not difficult to check that𝑋𝑡 = 𝑋

𝑥,Π,𝐶
𝑡 ≥ 1∕𝑛 > 0

if 𝑡 ≤ 𝜏𝑛 and 𝑋𝑡 = 0 = 𝐶𝑡 if 𝑡 ≥ 𝜏∞.7 Moreover, for each 𝑛, we get
𝔼
[
𝑀
𝜏𝑛
𝑡

] ≤ 𝔼[�̂�(𝑥) + 𝑁𝜏𝑛𝑡 ] ≤ �̂�(𝑥).
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Now first taking the limit 𝑡 → ∞, we obtain

𝔼

[
∫
𝜏𝑛

0

𝑒−𝛿𝑠
𝐶1−𝑅𝑠

1 − 𝑅
𝑑𝑠

]
≤ lim sup

𝑡→∞
𝔼
[
𝑀
𝜏𝑛
𝑡

] ≤ �̂�(𝑥).
Next, taking the limit 𝑛 → ∞, the result follows from themonotone convergence theorem and the
fact that ∫ ∞

𝜏∞
𝐶𝑠 d𝑠 = 0 ℙ-a.s. □

Remark 4.6. The above approach of avoiding (P) is taken in Karatzas et al. (1986, Theorem 4.1).
Note, however, that there the stopping argument is slightly more involved as it also requires stop-
ping when the wealth process 𝑋𝑥,Π,𝐶 or the quadratic variation of ∫ ⋅

0
𝜎Πd𝑊 gets too large. But

this additional stopping rather obfuscates the argument.

Remark 4.7. If 𝑅 > 1, extending Theorem 4.3 to general admissible strategies is far more involved.
While condition (P) can be assumedwithout loss of generality (recall Part 1 of Remark 4.2), condi-
tion (M) is in general not satisfied as there are investment strategiesΠ and consumption strategies
𝐶 such that 𝑁 fails to be a supermartingale, see Appendix A. Note that these strategies are sub-
optimal because 𝐿(Π𝑡, 𝐶𝑡; 𝑋𝑡, �̂�) is (very) negative. Finally, we have no reason to expect that the
transversality condition (T) is satisfied. Indeed, (T) even fails for constant proportional strategies:
If 𝜉 > 𝜂𝑅

𝑅−1
, then 𝐹(�̂�, 𝜉) < 0, and it follows from (3) that lim𝑡→∞ 𝔼[

𝑒−𝛿𝑡

1−𝑅
𝑋
𝑥,�̂�,𝜉𝑋
𝑡 ] = −∞.

5 THE GENERAL VERIFICATION ARGUMENT

In this section, we present our general verification argument. It is inspired by the perturbation
argument of Davis and Norman, see Appendix B.2. The key idea is to use the candidate optimal
consumption strategy as a stochastic perturbation of the utility function. This yields a very elegant
and simple argument that has the trio of advantages that it is no more difficult than the fiat verifi-
cation argument in Theorem 4.3, it does not need to distinguish between the case 𝑅 > 1 and 𝑅 < 1
and it does not involve any stopping argument.
The following theorem contains the solution to the stochastically perturbed Merton problem.

The subsequent corollary then lets this perturbation disappear. Recall the notations of Theo-
rem 4.3: 𝜂 = 1

𝑅
[𝛿 − (1 − 𝑅)(𝑟 +

𝜆2

2𝑅
)], Π̂ = 𝜆

𝜎𝑅
and �̂�(𝑥) = 𝑥1−𝑅

1−𝑅
𝜂−𝑅.

Theorem 5.1. Suppose 𝜂 > 0. Denote by 𝑌 = (𝑌𝑡)𝑡≥0 the candidate optimal wealth process started
from unit initial wealth 1, that is,𝑌𝑡 ∶= 𝑋

1,Π̂,𝜂𝑋
𝑡 , and by𝐺 = (𝐺𝑡)𝑡≥0, the corresponding optimal con-

sumption stream, that is, 𝐺𝑡 = 𝜂𝑌𝑡 . Fix 𝜀 > 0, define the function𝑈𝜀 ∶ [0,∞) × (0,∞) → (−∞,∞)

by𝑈𝜀(𝑐, 𝑔) =
(𝑐+𝜀𝑔)1−𝑅

1−𝑅
, and for an attainable consumption stream 𝐶 consider

𝐽𝜀(𝐶) ∶= 𝔼

[
∫
∞

0

𝑒−𝛿𝑡𝑈𝜀(𝐶𝑡, 𝐺𝑡) d𝑡

]
= 𝐽(𝐶 + 𝜀𝐺).

Then for 𝑥 > 0,

𝑉𝜀(𝑥) ∶= sup
𝐶∈𝒞(𝑥)

𝐽𝜀(𝐶) = �̂�(𝑥 + 𝜀).
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Moreover, the supremum is attained whenΠ = Π̂ and 𝐶 = �̂� where �̂� = 𝜂𝑋𝑥,Π̂,�̂� .

Proof. First, from the SDE for the wealth process (2) we have that 𝑋𝑥,Π̂,𝜂𝑋 + 𝜀𝑌 = 𝑋𝑥+𝜀,Π̂,𝜂𝑋 .
It follows that �̂� + 𝜀𝐺 = 𝜂𝑋𝑥+𝜀,Π̂,𝜂𝑋 ∈ 𝒞(𝑥 + 𝜀), which together with Theorem 4.3 implies that
𝐽𝜀(�̂�) = 𝐽(�̂� + 𝜀𝐺) = �̂�(𝑥 + 𝜀).
It remains to show that 𝑉𝜀(𝑥) ≤ �̂�(𝑥 + 𝜀). The argument is very similar to the one in the proof

of Theorem 4.3. Let (Π, 𝐶) ∈ 𝒜(𝑥) be arbitrary and set 𝑋 ∶= 𝑋𝑥,Π,𝐶 for brevity. The dynamics of
𝑋 + 𝜀𝑌 are given by

d(𝑋𝑡 + 𝜀𝑌𝑡) =

(
𝜎Π𝑡𝑋𝑡 +

𝜆

𝑅
𝜀𝑌𝑡

)
d𝑊𝑡 +

(
𝑋𝑡(𝑟 + Π𝑡𝜎𝜆) − 𝐶𝑡 +

(
𝑟 +

𝜆2

𝑅
− 𝜂

)
𝜀𝑌𝑡

)
d𝑡.

Define the process𝑀𝜀 = (𝑀𝜀
𝑡 )𝑡≥0 by

𝑀𝜀
𝑡 = ∫

𝑡

0

𝑒−𝛿𝑠𝑈𝜀(𝐶𝑠, 𝐺𝑠) d𝑠 + 𝑒
−𝛿𝑡�̂�(𝑋𝑡 + 𝜀𝑌𝑡).

We proceed to apply Itô’s formula to 𝑀𝜀. Noting that the argument of �̂� and its derivatives is
(𝑋𝑡 + 𝜀𝑌𝑡) throughout, we obtain

d𝑀𝜀
𝑡 = 𝑒

−𝛿𝑡 (𝐶𝑡 + 𝜀𝜂𝑌𝑡)
1−𝑅

1 − 𝑅
d𝑡 + 𝑒−𝛿𝑡

[
−𝛿�̂� d𝑡 + �̂�𝑥 d(𝑋𝑡 + 𝜀𝑌𝑡) +

1

2
�̂�𝑥𝑥 d[𝑋 + 𝜀𝑌]𝑡

]
= d𝑁𝜀𝑡 + 𝑒

−𝛿𝑡𝐿𝜀(Π𝑡, 𝐶𝑡; 𝑋𝑡, 𝑌𝑡, �̂�) d𝑡

where 𝑁𝜀𝑡 = ∫ 𝑡
0
𝑒−𝛿𝑠𝜂−𝑅(𝑋𝑠 + 𝜀𝑌𝑠)

−𝑅(𝜎Π𝑠𝑋𝑠 +
𝜆𝜀

𝑅
𝑌𝑠) d𝑊𝑠 and, with 𝑧 = 𝑥 + 𝜀𝑦,

𝐿𝜀(𝜋, 𝑐; 𝑥, 𝑦, 𝑣 = 𝑣(𝑧))

=
(𝑐 + 𝜀𝜂𝑦)1−𝑅

1 − 𝑅
− 𝛿𝑣 +

[
𝑥(𝑟 + 𝜋𝜎𝜆) − 𝑐 +

(
𝑟 +

𝜆2

2
− 𝜂

)
𝜀𝑦

]
𝑣𝑧 +

1

2

(
𝜎𝜋𝑥 +

𝜆𝜀𝑦

𝑅

)2
𝑣𝑧𝑧

= 𝐿

(
𝜋𝑥

𝑧
+
𝜆𝜀𝑦

𝜎𝑅𝑧
, 𝑐 + 𝜀𝜂𝑦; 𝑧, 𝑣 = 𝑣(𝑧)

)
.

Here 𝐿 is the operator defined in (8). Then8

sup
𝜋∈ℝ,𝑐≥0

𝐿𝜀(𝜋, 𝑐; 𝑥, 𝑦, �̂� = �̂�(𝑧)) = sup
𝜋∈ℝ,𝑐≥0

𝐿
(
𝜋𝑥

𝑧
+

𝜆𝜀𝑦

𝜎𝑅𝑧
, 𝑐 + 𝜀𝜂𝑦; 𝑧, �̂� = �̂�(𝑧)

)
= sup
�̃�∈ℝ,𝑐≥𝜀𝜂𝑦

𝐿(�̃�, 𝑐, 𝑧, �̂� = �̂�(𝑧)) ≤ sup
�̃�∈ℝ,𝑐≥0

𝐿(�̃�, 𝑐; 𝑧, �̂� = �̂�(𝑧)) = 0

where the final equality follows from (9). This gives

𝑀𝜀
𝑡 ≤ �̂�(𝑥 + 𝜀) + 𝑁𝜀𝑡 , 𝑡 ≥ 0. (12)
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Next, define the process Λ𝜀 = (Λ𝜀𝑡)𝑡≥0 by

Λ𝜀𝑡 ∶= ∫
𝑡

0

𝑒−𝛿𝑠𝑈𝜀(0, 𝐺𝑠) d𝑠 + 𝑒
−𝛿𝑡�̂�(0 + 𝜀𝑌𝑡) = ∫

𝑡

0

𝑒−𝛿𝑠𝑈(𝜀𝐺𝑠)𝑑𝑠 + 𝑒
−𝛿𝑡�̂�(𝜀𝑌𝑡).

Then Λ𝜀 ≤ 𝑀𝜀 by monotonicity of 𝑈 and �̂�. Using that Λ𝜀 is a (UI) martingale by Remark 4.4,
it follows that 𝑁𝜀 is bounded below by the (UI) martingale −�̂�(𝑥 + 𝜀) − Λ𝜀 and hence a super-
martingale.
Taking expectation in (12), we find for each 𝑡 ≥ 0,

𝔼
[
𝑀𝜀
𝑡

] ≤ 𝔼[�̂�(𝑥 + 𝜀) + 𝑁𝜀𝑡 ] ≤ �̂�(𝑥 + 𝜀). (13)

Next, note that 𝑋 + 𝜀𝑌 satisfies the transversality condition (T) since

lim inf
𝑡→∞

𝔼

[
𝑒−𝛿𝑡

(𝑋𝑡 + 𝜀𝑌𝑡)
1−𝑅

1 − 𝑅

]
≥ 𝜀1−𝑅 lim inf

𝑡→∞
𝔼

[
𝑒−𝛿𝑡

𝑌1−𝑅𝑡

1 − 𝑅

]
= 0. (14)

Taking the limit in (13) as 𝑡 goes to infinity and using (14), we may conclude that for any 𝐶 ∈
𝒞(𝑥),

𝐽𝜀(𝐶) = lim
𝑡→∞

𝔼
[∫ 𝑡
0
𝑒−𝛿𝑠

(𝐶𝑠+𝜀𝐺𝑠)
1−𝑅

1−𝑅
𝑑𝑠

]
= lim
𝑡→∞

𝔼
[
𝑀𝜀
𝑡 − 𝑒

−𝛿𝑡�̂�(𝑋𝑡 + 𝜀𝑌𝑡)
]

≤ lim sup
𝑡→∞

𝔼
[
𝑀𝜀
𝑡

]
− lim inf

𝑡→∞
𝔼
[
𝑒−𝛿𝑡𝜂−𝑅

(𝑋𝑡+𝜀𝑌𝑡)
1−𝑅

1−𝑅

]
≤ lim sup

𝑡→∞
𝔼
[
𝑀𝜀
𝑡

] ≤ �̂�(𝑥 + 𝜀).
□

Remark 5.2. The perturbation of the problem by the additional consumption of 𝜀𝐺 elegantly and
simply transforms the problem to one in which the fiat conditions (P), (M) and (T) are satisfied.
Since𝑌 is positiveℙ-a.s., the same is trivially true for𝑋 + 𝜀𝑌. Moreover, 𝐽(𝜀𝐺) = 𝜀1−𝑅𝐽(𝐺) > −∞
and this allows us to easily find an integrable lower bound on𝑁𝜀 and hence conclude it is a super-
martingale. Again 𝑌 satisfies a transversality condition (T) and so the same is trivially true for
𝑋 + 𝜀𝑌.

Remark 5.3. One interpretation of the theorem is that a financially-savvy benefactor gives the
agent an additional consumption stream based on an initial wealth 𝜀 which is invested optimally
by the benefactor. Then, if the agent behaves optimally with their own wealth, the two consump-
tion streams and investment strategies remain perfectly aligned to each other, and the derivation
and valuation of the candidate optimal strategy is simple and immediate.

Corollary 5.4. Suppose 𝜂 > 0. Then for 𝑥 > 0,

𝑉(𝑥) ∶= sup
𝐶∈𝒞(𝑥)

𝐽(𝐶) = 𝐽(�̂�) = �̂�(𝑥).
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Proof. The equality 𝐽(�̂�) = �̂�(𝑥) follows from Theorem 4.3. It remains to establish that 𝑉(𝑥) ≤
�̂�(𝑥). Using the notation of Theorem 5.1, for any 𝐶 ∈ 𝒞(𝑥), we get 𝐽(𝐶) ≤ 𝐽𝜀(𝐶) ≤ 𝑉𝜀(𝑥) = �̂�(𝑥 +
𝜀). Letting 𝜀 ↓ 0, we conclude that 𝑉(𝑥) ≤ �̂�(𝑥). □

We finish this section by showing that in the case𝑅 > 1 if 𝜂 ≤ 0, every𝐶 ∈ 𝒞(𝑥)has 𝐽(𝐶) = −∞.

Corollary 5.5. Suppose that 𝑅 > 1 and 𝜂 ≤ 0. Then
𝑉(𝑥) = sup

𝐶∈𝒞(𝑥)
𝐽(𝐶) = −∞.

Proof. Fix 𝐶 ∈ 𝒞(𝑥). It suffices to show that 𝐽(𝐶) = −∞. We use an approximation argument.
For𝑛 ∈ ℕ set 𝛿𝑛 ∶= 𝛿 + 𝑅(

1

𝑛
− 𝜂). Then 𝛿𝑛 > 𝛿 and 𝜂𝑛 ∶=

1

𝑅
[𝛿𝑛 − (1 − 𝑅)(𝑟 +

𝜆2

2𝑅
)] =

1

𝑛
> 0. Then

using that 𝑈(𝑐) < 0 for 𝑐 ≥ 0, it follows from Theorem 5.1

𝐽(𝐶) = 𝔼

[
∫
∞

0

𝑒−𝛿𝑠𝑈(𝐶𝑠) d𝑠

]
≤ 𝔼

[
∫
∞

0

𝑒−𝛿𝑛𝑠𝑈(𝐶𝑠) d𝑠

]
≤ 𝑥1−𝑅

1 − 𝑅
(𝜂𝑛)

−𝑅, 𝑛 ∈ ℕ.

Taking the limit on the right hand side as 𝑛 goes to∞, it follows that 𝐽(𝐶) = −∞. □
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ENDNOTES
1 Our original motivation for returning to the Merton problem arose from consideration of a problem involving
stochastic differential utility. There, dual approaches are more involved and do not cover all parameter combi-
nations, so that the primal method is not redundant, and indeed may provide a more direct approach.

2 By saying that a process 𝑋 is integrable with respect to the identity process we mean that ∫ 𝑡
0
|𝑋𝑠|𝑑𝑠 < ∞ ℙ-a.s.

for each 𝑡 > 0.
3 Strictly speaking,Π0𝑡 andΠ

1
𝑡 are not defined for𝑋𝑡 = 0, but this does not matter. We can for example setΠ

0
𝑡 ∶= 0

and Π𝑡 ∶= 1 for 𝑋𝑡 = 0.
4 We follow the convention that 01−𝑅 ∶= ∞ for 𝑅 > 1.
5 Davis and Norman (1990, Proof of Theorem 2.1) argue that (B) implies (M1) also in the case 𝑅 > 1 but this is not
the case. See Example A.1.

6 Note, however, that if 𝑅 > 1, (T) and (T1) are equivalent.
7 More precisely, we have ∫ ∞

𝜏∞
𝐶𝑠 d𝑠 = 0 ℙ-a.s.

8 The inequality is in fact an equality since the maximum over 𝑐 is attained at �̂�−1∕𝑅(𝑧) = 𝜂𝑧 = 𝜂(𝑥 + 𝜀𝑦) ≥ 𝜀𝜂𝑦.
9 There are other ways 𝔼[∫ ∞

0
𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡]might be defined. For example, one could make the subtly different

definition 𝔼[∫ ∞
0
𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡] ∶= 𝔼[∫ ∞0 𝑒−𝛿𝑡 log(𝐶𝑡)

+ d𝑡] − 𝔼[∫ ∞
0
𝑒−𝛿𝑡 log(𝐶𝑡)

− d𝑡], with the convention ∞−

∞ ∶= −∞. The advantage of our definition is that in the case 𝛿 ≤ 0 it leads to a much cleaner final statement

https://orcid.org/0000-0002-2092-7167
https://orcid.org/0000-0002-2092-7167
https://orcid.org/0000-0002-4686-5793
https://orcid.org/0000-0002-4686-5793
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of results. In the case 𝛿 > 0, the two definitions are equivalent because then 𝔼[∫ ∞
0
𝑒−𝛿𝑡 log(𝐶𝑡)

+ d𝑡] < ∞ for all
admissible consumption streams 𝐶.

10 This applies not only to deterministic changes of accounting units, but also to stochastic changes of numéraire.
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APPENDIX A: AN EXAMPLE FORWHICH𝑵 FAILS TO BE A SUPERMARTINGALE
For 𝑅 > 1, the process𝑁 in the proof Theorem 4.3 can fail to be supermartingale. We first give an
abstract version of an example and then two concrete specifications.
Example A.1. Let (Π, 𝐶) ∈ 𝒜(𝑥) be such that 𝑋 = 𝑋𝑥,Π,𝐶 has ℙ-a.s. positive paths. Define the
stopping time

𝜏 ∶= inf

{
𝑡 ≥ 0 ∶ ∫

𝑡

0

𝜂−𝑅𝜎Π𝑠𝑋
1−𝑅
𝑠 𝑒−𝛿𝑠 d𝑊𝑠 = 1

}
.

If 𝜏 is bounded, then 𝑁 fails to be a supermartingale because 𝔼[𝑁𝜏] = 1 > 0 = 𝔼[𝑁0].

https://doi.org/10.1111/mafi.12311
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The above abstract situation can be achieved either by “wild” investment or by “too fast” con-
sumption, or a combination of the two.
For an example of a “wild” investment strategy Π, assume that 𝜇 ≥ 𝑟 > 0 and define the stop-

ping time

�̃� ∶= inf

{
𝑡 ≥ 0 ∶ ∫

𝑡

0

𝜂−𝑅𝜎𝑒−𝛿𝑠

1 − 𝑠
d𝑊𝑠 = 1

}
.

Note that �̃� < 1 ℙ-a.s. since ∫ 1
0
(
𝜂−𝑅𝜎𝑒−𝛿𝑠

1−𝑠
)2 d𝑠 = ∞. Then define (Π, 𝐶) ∈ 𝒜(𝑥) by

Π𝑡 =
1

1 − 𝑡
𝑋𝑅−1𝑡 𝟏{𝑡≤�̃�}, 𝐶𝑡 ∶= 𝑟𝑋𝑡 + Π𝑡𝑋𝑡(𝜇 − 𝑟).

Then the corresponding wealth process 𝑋 is a stopped and time changed CEV process:

d𝑋𝑡 = 𝑋
𝑅
𝑡

𝜎

1 − 𝑡
𝟏{𝑡≤�̃�} d𝑊𝑡, 𝑋0 = 𝑥.

Since 𝑅 > 1, 𝑋 remains positive. Since 𝜏 = �̃� ℙ-a.s. we have 𝜏 < 1 ℙ-a.s. and𝑁 fails to be a super-
martingale.
For an example of a “too fast” consumption strategy 𝐶 (with bounded investment strategy Π),

assume that 𝜇 ≥ 𝑟 > 0 and define the stopping time

�̄� ∶= inf

⎧⎪⎨⎪⎩𝑡 ≥ 0 ∶ ∫
𝑡

0

𝑥1−𝑅𝜂−𝑅𝜎𝑒
𝜎(1−𝑅)𝑊𝑠−(𝛿+

(1−𝑅)

2
𝜎2)𝑠

1 − 𝑠
d𝑊𝑠 = 1

⎫⎪⎬⎪⎭.

Note that �̄� < 1 ℙ-a.s. since ∫ 1
0
(
𝑥1−𝑅𝜂−𝑅𝜎𝑒

𝜎(1−𝑅)𝑊𝑠−(𝛿+
(1−𝑅)
2

𝜎2)𝑠

1−𝑠
)2 d𝑠 ℙ-a.s. Then define (Π, 𝐶) ∈ 𝒜(𝑥)

by

Π𝑡 = 𝟏{𝑡≤�̄�}, 𝐶𝑡 ∶=
1

𝑅 − 1

𝑋𝑡
1 − 𝑡

𝟏{𝑡≤�̄�} + 𝑟𝑋𝑡 + Π𝑡𝑋𝑡(𝜇 − 𝑟).

Then the corresponding wealth process satisfies the SDE

d𝑋𝑡 = 𝜎𝑋𝑡𝟏{𝑡≤�̄�} d𝑊𝑡 −
1

𝑅 − 1

𝑋𝑡
1 − 𝑡

𝟏{𝑡≤�̄�} d𝑡, 𝑋0 = 𝑥.

It is not difficult to check that this has the solution

𝑋𝑡 = 𝑥(1 − 𝑡 ∧ �̄�)
1

𝑅−1 𝑒
𝜎𝑊𝑡∧�̄�−

1

2
𝜎2(𝑡∧�̄�)

which is well-defined and positive by the fact that �̄� < 1 ℙ-a.s. Since 𝜏 = �̄� ℙ-a.s., we have 𝜏 < 1
ℙ-a.s. and 𝑁 fails to be a supermartingale.
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APPENDIX B: VERIFICATION APPROACHES FOR 𝑹 > 𝟏
As we have explained in Remark 4.7, a verification argument for general admissible strategies
requires some additional ideas for the case 𝑅 > 1. In this section, we discuss the twomost general
approaches in the extant stochastic control literature. Both approaches first consider a perturba-
tion of the problem (or the candidate solution) and then let the perturbation disappear.

B.1 Perturbation with finite bankruptcy
The first perturbation approach is by Karatzas et al. (1986) who study an optimal investment-
consumption problemwith bankruptcy for a general utility functionwhich is of interest in its own
right, building on earlier work Lehoczky et al. (1983) by a subset of the authors. In the following,
we only describe their contribution towards the solution of theMerton problem forCRRAutilities.
We assume 𝑅 > 1, and we use our notation.
Assume that 𝛿 > 0 and 𝑟 > 0. For an admissible strategy (Π, 𝐶) ∈ 𝒜(𝑥), denote the bankruptcy

time 𝜏0 = 𝜏
𝑥,Π,𝐶
0 = inf {𝑡 ∶ 𝑋𝑥,Π,𝐶𝑡 = 0}. Then choose a finite bankruptcy value 𝑃 ∈ (−∞, 0) and

consider the problem with bankruptcy:

𝑉𝑃(𝑥) ∶= sup
𝐶∈𝒞(𝑥)

𝐽𝑃(𝐶) = sup
𝐶∈𝒞(𝑥)

𝔼
⎡⎢⎢⎣∫

𝜏
𝑥,Π,𝐶
0

0

𝑒−𝛿𝑡𝑈(𝐶𝑡) d𝑡 + 𝑒
−𝛿𝜏

𝑥,Π,𝐶
0 𝑃

⎤⎥⎥⎦. (B.1)

Note that the classical Merton problem corresponds to the limiting case 𝑃 = −∞.
Karatzas et al. (1986) show the following:

(A) Suppose that a 𝐶2-function �̂�𝑃 ∶ (0,∞) → (𝑃, 0) solves the HJB equation corresponding to
the optimization problem (B.1) given by

𝛿�̃�(𝑥) = sup
𝑐≥0,𝜋

[
�̃�′(𝑥)((𝜇 − 𝑟)𝜋𝑥 + (𝑟𝑥 − 𝑐)) +

1

2
𝜋2𝜎2𝑥2�̃�′′(𝑥) + 𝑈(𝑐)

]
, 𝑥 > 0. (B.2)

subject to lim𝑥↓0 �̃�(𝑥) = 𝑃.
Then �̂�𝑃(𝑥) = 𝑉𝑃(𝑥) for all 𝑥 ∈ [0,∞).

(B) For each 𝑃 ∈ (−∞, 0), there exists a 𝐶2-function �̂�𝑃 ∶ (0,∞) → (𝑃,∞) that solves the HJB
equation (B.2) with lim𝑥↓0 �̂�𝑃(𝑥) = 𝑃.

(C) 𝑉(𝑥) ≤ lim𝑃↓−∞ �̂�𝑃(𝑥) = �̂�(𝑥), which together with �̂�(𝑥) ≤ 𝑉(𝑥) establishes the claim.
Here, the argument for (A) is relatively straightforward; see Karatzas et al. (1986, Theorem 4.1)
and not more difficult than the proof of our Theorem 4.3. Similarly, the argument for (C) is easy:
the first inequality follows from the fact that 𝑉(𝑥) ≤ 𝑉𝑃(𝑥) ≤ �̂�𝑃(𝑥) for each 𝑥 > 0 and 𝑃 ∈ ℝ−
by the definition of 𝑉𝑃 and (A); the second inequality is straightforward using the explicit form
for �̂�𝑃.
But the main difficulty—and great ingenuity—of the argument in Karatzas et al. (1986) is (B).

Indeed, a direct calculation for 𝑟 > 0 case takes at least two pages and yields the answer:

�̂�𝑃(𝑥) =
𝜈

𝜂(𝑅 − 𝜈)

(
𝜂

𝑅

𝑅 − 𝜈

1 − 𝜈
(1 − 𝑅)𝑃

) 1−𝜈

1−𝑅

(�̂�𝑃(𝑥))𝜈−𝑅 + 𝜂−1
(�̂�𝑃(𝑥))1−𝑅

1 − 𝑅
,
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where the function �̂�𝑃(𝑥) describing the optimal consumption is the inverse of the function

𝐼𝑃(𝑐) = −𝜂−1
(
𝜂

𝑅

𝜈 − 𝑅

𝜈 − 1
(1 − 𝑅)𝑃

) 1−𝜈

1−𝑅

𝑐𝜈 +
𝑐

𝜂
,

and 𝜈 is the negative root of the equation 𝜆2

2
𝜁2 + (𝑟 − 𝛿 −

𝜆2

2
)𝑅𝜁 − 𝑟𝑅2 = 0.

B.2 Perturbation of the value function
The second perturbation approach is by Davis and Norman (1990) who study theMerton problem
with transaction costs; the perturbation argument for 𝑅 > 1 in the frictionless case is a fortunate
by-product, and not themain contribution of the paper. Againwewill use our notation to describe
their approach.
Assume that 𝛿 > 0 and 𝑟 > 0. Denote by 𝒜𝑏(𝑥) the set of all admissible strategies (Π, 𝐶) for

which Π is uniformly bounded, write 𝒞𝑏(𝑥) for the corresponding set of attainable consump-
tion strategies and set 𝑉𝑏(𝑥) ∶= sup𝐶∈𝒞𝑏(𝑥) 𝐽(𝐶). For 𝜁 > 0, consider the perturbed value func-
tion �̂�𝜁(𝑥) = �̂�(𝑥 + 𝜁) and for (Π, 𝐶) ∈ 𝒜𝑏(𝑋) (such that 𝐶1−𝑅 is integrable with respect to the
identity process), consider the process𝑀𝜁 defined by

𝑀𝜁 = ∫
𝑡

0

𝑒−𝛿𝑡𝑈(𝐶𝑠) d𝑠 + 𝑒
−𝛿𝑡�̂�𝜁(𝑋𝑡).

Then the same argument as in the proof of Theorem 4.3 but with �̂� replaced by �̂�𝜁 yields

d𝑀
𝜁
𝑡 = d𝑁

𝜁
𝑡 + 𝐿(Π𝑡, 𝐶𝑡; 𝑋𝑡, �̂�

𝜁) d𝑡

Using that �̂�𝜁(𝑥) = �̂�(𝑥 + 𝜁), it is straightforward to check that sup𝜋∈ℝ,𝑐≥0 𝐿(𝜋, 𝑐; 𝑥, �̂�𝜁) =
−𝑟𝜁�̂�

𝜁
𝑥(𝑋𝑡)𝑒

−𝛿𝑡 ≤ 0. It follows that, under the crucial assumption that 𝑟 ≥ 0, we have
𝐿(Π𝑡, 𝐶𝑡; 𝑋𝑡, �̂�

𝜁) ≤ 0. Finally, using that Π and �̂�𝜁𝑥 are bounded, it is not difficult to check that
𝑁𝜁 is a square integrable martingale. Now following the proof of Theorem 4.3, and using that|�̂�𝜁| is bounded and 𝛿 > 0 it follows that

𝐽(𝐶) ≤ lim sup𝔼[𝑀𝜁
𝑡

]
− lim inf 𝔼

[
𝑒−𝛿𝑡�̂�𝜁

(
𝑋𝑥,Π,𝐶𝑡

)] ≤ lim sup𝔼[𝑀𝜁
𝑡

] ≤ �̂�𝜁(𝑥).

We may conclude that 𝑉𝑏(𝑥) ≤ �̂�𝜁(𝑥) and taking the limit as 𝜁 ↓ 0, it follows that 𝑉𝑏(𝑥) = �̂�(𝑥).
APPENDIX C: THEMERTON PROBLEMWITH LOGARITHMIC UTILITY
The case of logarithmic utility𝑈(𝑐) = log(𝑐) corresponds to the case of unit coefficient of relative
risk-aversion. The function log differs from the other CRRA utility functions in that it may take
both signs but much of the analysis goes through in exactly the same way.
Under logarithmic utility, the problem facing the agent is to choose an admissible strategy

(Π, 𝐶) ∈ 𝒜(𝑥) so as to find

𝑉(𝑥) ∶= sup
𝐶∈𝒞(𝑥)

𝐽(𝐶) ∶= sup
𝐶∈𝒞(𝑥)

𝔼

[
∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡

]
.
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Since log takes both positive and negative values, we make the definition9

𝔼

[
∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡

]
∶= 𝔼

[(
∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡

)+]
− 𝔼

[(
∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡

)−]
,

where for each 𝜔,

∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡 ∶= ∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡)
+ d𝑡 − ∫

∞

0

𝑒−𝛿𝑡 log(𝐶𝑡)
− d𝑡,

with the standard convention that∞−∞ ∶= −∞.
As before, we postulate a constant proportion of wealth for both our optimal investment and

our optimal consumption, Π𝑡 = 𝜋 and 𝐶𝑡 = 𝜉𝑋𝑡. In this case, our wealth process is given by (1).
Taking logarithms we find that

log(𝐶𝑡) = log(𝜉𝑥) + 𝜋𝜎𝑊𝑡 +

(
𝑟 + 𝜆𝜎𝜋 − 𝜉 −

𝜋2𝜎2

2

)
𝑡. (C.1)

This implies that

𝔼
[
𝑒−𝛿𝑡 log(𝜉𝑋𝑡)

]
= 𝑒−𝛿𝑡 log(𝜉𝑥) + 𝑒−𝛿𝑡

(
𝑟 + 𝜆𝜎𝜋 − 𝜉 −

𝜋2𝜎2

2

)
𝑡.

Thewell-posedness condition 𝜂 > 0 for𝑅 = 1 is equivalent to 𝛿 > 0. So, suppose first that 𝛿 > 0.
Then

𝐽(𝜉𝑋) =
1

𝛿2

(
𝛿 log(𝜉) + 𝛿 log(𝑥) +

(
𝑟 + 𝜆𝜎𝜋 − 𝜉 −

𝜋2𝜎2

2

))
.

By taking derivatives with respect to 𝜋 and 𝜉, we find that this is maximized at 𝜋 = �̂� ∶= 𝜆

𝜎
and

𝜉 = �̂� ∶= 𝛿. Note that this corresponds to the candidate optimal strategy given in (7) for 𝑅 = 1.
Then, the candidate value function is given by

�̂�(𝑥) ∶= 𝐽(�̂�𝑋) =
1

𝛿2

(
𝛿 log(𝛿𝑥) + 𝑟 +

𝜆2

2
− 𝛿

)
.

To prove optimality, one considers the stochastically perturbedMerton problem corresponding
to the aggregator𝑈𝜀(𝑐, 𝑔) = log(𝑐 + 𝜀𝑔) and 𝐺 = 𝛿𝑌 for 𝑌 the wealth process under the candidate
optimal strategy. The corresponding version of Theorem 5.1 then goes through exactly as when
𝑅 ∈ (0,∞) ⧵ {1}.
When 𝛿 ≤ 0 the problem becomes delicate. Set 𝜅 ∶= 𝑟 + 𝜆2

2
.

If 𝜅 > 0 choose Π𝑡 ∶= �̂� =
𝜆

𝜎
and 𝐶𝑡 ∶=

𝜅

2
𝑋𝑡. Then (C.1) gives

log(𝐶𝑡) = log
(𝜅
2
𝑥
)
+ 𝜆𝑊𝑡 +

𝜅

2
𝑡.
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It follows from the strong law of large numbers, that for ℙ-a.e. 𝜔, log(𝐶𝑡(𝜔)) ≥ 1 for all 𝑡 suffi-
ciently large. Hence

∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡) d𝑡 = +∞ ℙ-a.s.

whence 𝐽(𝐶) = +∞.
If 𝜅 ≤ 0, we show that for every admissible consumption stream

∫
∞

0

𝑒−𝛿𝑡(log(𝐶𝑡))
−
d𝑡 = +∞ ℙ-a.s.,

and hence 𝐽(𝐶) = −∞. Here we only consider the case that 𝑟 < 0; the case 𝑟 = 0 (which implies
that 𝜆 = 0) is similar but easier.
First, we show that for any (Π, 𝐶) ∈ 𝒜(𝑥), there exists (Π̃, 0) ∈ 𝒜(𝑥) such that

𝑒𝑟𝑡 ∫
𝑡

0

𝑒−𝑟𝑢 𝐶𝑢 d𝑢 ≤ 𝑋𝑥,Π̃,0𝑡 ℙ-a.s., 𝑡 ≥ 0. (C.2)

Let 𝜗𝑡 ∶=
Π𝑡𝑋

𝑥,Π,𝐶
𝑡

𝑆𝑡
and define the process 𝐺 = (𝐺𝑡)𝑡≥0 by 𝐺𝑡 = 𝑥0 + ∫ 𝑡

0
𝜗𝑢𝑆𝑢(𝜎 d𝑊𝑢 + (𝜇 − 𝑟) d𝑢).

Then using the product formula and the dynamics of 𝑋𝑥,Π,𝐶 , we obtain

0 ≤ 𝑒−𝑟𝑡𝑋𝑥,Π,𝐶𝑡 = 𝑥0 + ∫
𝑡

0

𝜗𝑢𝑆𝑢𝜎( d𝑊𝑢 + 𝜆 d𝑢) − ∫
𝑡

0

𝑒−𝑟𝑢𝐶𝑢 d𝑢

= 𝐺𝑡 − ∫
𝑡

0

𝑒−𝑟𝑢𝐶𝑢 d𝑢 = 𝑒
−𝑟𝑡𝑋𝑥,Π̃,0𝑡 − ∫

𝑡

0

𝑒−𝑟𝑢𝐶𝑢 d𝑢,

where Π̃𝑡 ∶=
𝜗𝑡𝑆𝑡

𝐺𝑡
𝟏{𝐺𝑡>0}. Rearranging gives (C.2).

Next, we show that

lim inf
𝑡→∞

𝑋𝑥,Π̃,0 = 0ℙ-a.s. (C.3)

Itô’s formula and the fact that 𝜅 ≤ 0 gives

log(𝑋𝑥,Π̃,0) = log(𝑥0) + ∫
𝑡

0

Π̃𝑢𝜎 d𝑊𝑢 + ∫
𝑡

0

(
𝜅 −

(Π̃𝑢𝜎 − 𝜆)
2

2

)
d𝑢 ≤ log(𝑥0) + ∫

𝑡

0

Π̃𝑢𝜎 d𝑊𝑢.

There are two cases: On {∫ ∞
0
Π̃2𝑢 d𝑢 < ∞}, ∫ ∞0 (𝜅 − (Π̃𝑢𝜎−𝜆)

2

2
) d𝑢 = −∞ and lim𝑡→∞ ∫ 𝑡

0
Π̃𝑢𝜎 d𝑊𝑢

exists in ℝ, whence lim𝑡→∞ log(𝑋𝑡) = −∞. On {∫ ∞
0
Π̃2𝑢 d𝑢 = ∞}, lim inf 𝑡→∞ ∫ 𝑡

0
Π̃𝑢𝜎 d𝑊𝑢 = −∞

by the law of iterated logarithm, whence lim inf 𝑡→∞ log(𝑋𝑡) = −∞. So we have (C.3).
Finally, combining (C.3) with (C.2) yields

lim inf
𝑡→∞

𝑒𝑟𝑡 ∫
𝑡

0

𝑒−𝑟𝑢𝐶𝑢 d𝑢 = 0ℙ-a.s.
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This implies that the random set 𝐴 ∶= {𝑢 ∈ [0,∞) ∶ 𝐶𝑢 < 1∕2} has ℙ-a.s. infinite Lebesgue-
measure. But this implies that

∫
∞

0

𝑒−𝛿𝑡 log(𝐶𝑡)
− d𝑡 ≥ ∫

∞

0

log(𝐶𝑡)
− d𝑡 ≥ ∫

𝐴

log(2) d𝑡 = +∞ℙ-a.s.

Putting the results together we have the following result for logarithmic utility:

Theorem C.1. Suppose 𝛿 > 0. Then for 𝑥 > 0,

𝑉∗(𝑥) ∶= sup
𝐶∈𝒞∗(𝑥)

𝐽(𝐶) = 𝐽(�̂�) =
1

𝛿2

(
𝛿 log(𝛿𝑥) + 𝑟 +

𝜆2

2
− 𝛿

)
,

where the corresponding optimal investment-consumption strategy is given by (Π, 𝐶) = (Π̂, �̂�),
where

Π̂ =
𝜆

𝜎𝑅
, �̂� = 𝛿𝑋𝑥,Π̂,�̂� .

Suppose 𝛿 ≤ 0. Then the problem is ill-posed. For 𝜅 ∶= 𝑟 + 𝜆2

2
> 0 we have 𝑉∗(𝑥) = +∞, whereas

for 𝜅 ≤ 0 we have 𝑉∗(𝑥) = −∞.

APPENDIX D: CHANGE OF NUMÉRAIRE ARGUMENTS AND THE ROLE OF 𝜹
It is interesting to study how the Merton problem behaves under a change of numéraire. As we
have seen in Appendix B, using the perturbation arguments of Karatzas et al. (1986) or Davis and
Norman (1990), we get verification arguments for the case 𝑅 > 1 under the parameter restrictions
𝛿 > 0 and 𝑟 > 0. The goal of this section is to showusing a change of numéraire that this parameter
restriction can be weakened, although not to the extent that it covers all the parameter combina-
tions for which 𝜂 > 0. We then discuss how these arguments shed some light on the interpretation
of the parameter 𝛿.
A pair (𝑆0, 𝑆) = (𝑆0𝑡 , 𝑆𝑡)𝑡≥0 of semimartingales is said to be economically equivalent to (𝑆0, 𝑆) if

there exists a positive continuous semimartingale 𝐷 = (𝐷𝑡)𝑡≥0 such that 𝑆0 = 𝐷𝑆0 and 𝑆 = 𝐷𝑆.
Here, the interpretation of 𝐷 is an exchange rate process and (𝑆0, 𝑆) describes the financial mar-
ket in a different currency unit; see Herdegen (2017, Section 2.1) for more details. We will restrict
attention to deterministic processes 𝐷 in which case 𝐷 is better described as a change in account-
ing units.
Next, recall that if (𝜗0, 𝜗, 𝐶) is a admissible investment-consumption strategy for initial wealth

𝑥 > 0, (where 𝜗0 and 𝜗1 denote the number of shares held in the riskless and risky asset, respec-
tively), then the corresponding wealth process 𝑋 = 𝜗0𝑡 𝑆

0
𝑡 + 𝜗𝑡𝑆 satisfies the SDE

d𝑋𝑡 = 𝜗
0
𝑡 d𝑆

0
𝑡 + 𝜗𝑡 d𝑆𝑡 − 𝐶𝑡 d𝑡.

Now if (𝑆0, 𝑆) is economically equivalent to (𝑆0, 𝑆) with corresponding exchange rate process 𝐷,
it is not difficult to check that the corresponding wealth process �̃� ∶= 𝜗0𝑆0 + 𝜗𝑆 = 𝐷𝑋 satisfies
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the SDE

d�̃�𝑡 = 𝜗
0
𝑡 d𝑆

0 + 𝜗𝑡 d𝑆 − �̃�𝑡 d𝑡,

where �̃� = 𝐷𝐶. This means that if 𝐶 describes an attainable consumption strategy in units corre-
sponding to (𝑆0, 𝑆), then �̃� = 𝐷𝐶 describes the same consumption strategy in units corresponding
to (𝑆0, 𝑆) (which is also attainable for those units).
Consider now the case that 𝐷𝑡 = 𝑒𝛾𝑡 for some 𝛾 ∈ ℝ. Then (𝑆0, 𝑆) is again a Black-Scholes-

Mertonmodel with interest rate 𝑟 = 𝑟 + 𝛾, drift �̃� = 𝜇 + 𝛾 and volatility �̃� = 𝜎. Let 𝐶 be an attain-
able consumption strategy in units corresponding to (𝑆0, 𝑆) and �̃� = 𝐷𝐶 the corresponding attain-
able consumption strategy in units corresponding to (𝑆0, 𝑆). Then �̃�∕𝑆0 = 𝐷𝐶∕𝐷𝑆0 = 𝐶∕𝑆0 and

𝐽(𝐶; 𝛿) ∶= 𝔼
[∫ ∞
0

𝑒−𝛿𝑡

1−𝑅
𝐶1−𝑅𝑡 d𝑡

]
= 𝔼

[
∫ ∞
0

𝑒−(𝛿+𝑟(𝑅−1))𝑡

1−𝑅

(
𝐶𝑡

𝑆0𝑡

)1−𝑅
d𝑡

]
= 𝐽(𝐶∕𝑆0; 𝛿 + 𝑟(𝑅 − 1)) = 𝐽(�̃�∕𝑆0; 𝛿 + (𝑟 − 𝛾)(𝑅 − 1))

= 𝔼

[
∫ ∞
0

𝑒−(𝛿−(𝑅−1)𝛾+𝑟(𝑅−1))𝑡

1−𝑅

(
�̃�𝑡

𝑆0𝑡

)1−𝑅
d𝑡

]
= 𝔼

[
∫ ∞
0

𝑒−(𝛿−(𝑅−1)𝛾)𝑡

1−𝑅
�̃�1−𝑅𝑡 d𝑡

]
= 𝐽(�̃�; 𝛿 − (𝑅 − 1)𝛾).

(D.1)

It follows from the above calculation that the Merton problem for 𝑅, 𝑟, 𝜇, 𝜎, 𝛿 is equivalent to
the Merton problem for 𝑅, 𝑟 + 𝛾, 𝜇 + 𝛾, 𝜎, 𝛿 − (𝑅 − 1)𝛾 for each 𝛾 ∈ ℝ. Note in particular, that
the well-posedness parameter 𝜂 from (5) is independent of the choice of accounting units. This
means that if we have a verification argument for the parameters 𝑅, 𝑟 + 𝛾, 𝜇 + 𝛾, 𝜎, 𝛿 − (𝑅 − 1)𝛾,
we also have verification argument for the parameters 𝑅, 𝑟, 𝜇, 𝜎, 𝛿. Hence, if 𝛿 + 𝑟(𝑅 − 1) > 0 we
can choose 𝛾 = 𝛿−𝑟(𝑅−1)

2(𝑅−1)
so that �̃� = 𝑟 = 𝛿+𝑟(𝑅−1)

2
> 0 and thenwe can extend the verification argu-

ments of Karatzas et al. (1986) or Davis and Norman (1990) to this case. It follows that instead of
needing to assume 𝛿 > 0 and 𝑟 > 0 as in Karatzas et al. (1986) and Davis and Norman (1990) it is
sufficient to assume only that 𝛿 + 𝑟(𝑅 − 1) > 0.
Nonetheless, the condition 𝛿 + 𝑟(𝑅 − 1) > 0 is stronger than the condition for a well-posed

problem (namely 𝜂 > 0) and there are parameter values which we would like to consider (and
which are covered by Theorem 5.1) for which the verification arguments of Karatzas et al. (1986)
and Davis and Norman (1990) do not apply, even after the change of numéraire arguments of
this section.
The above ideas also shed some light on the interpretation of the parameter 𝛿. To this end,

consider an alternative formulation of the Merton problem and associate to an attainable con-
sumption stream 𝐶 the expected utility

𝐾(𝐶; 𝜙) = 𝔼
⎡⎢⎢⎣∫

∞

0

𝑒−𝜙𝑡

1 − 𝑅

(
𝐶𝑡

𝑆0𝑡

)1−𝑅
d𝑡

⎤⎥⎥⎦, (D.2)

where 𝜙 ∶= 𝛿 + 𝑟(𝑅 − 1) is the impatience rate. Then 𝐾(𝐶; 𝜙) = 𝐽(𝐶, 𝜙 − 𝑟(𝑅 − 1)). In order to
emphasize the dependence of the problem on the accounting units which are being usedwemight
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expand the notation to write 𝐽(𝐶; 𝑆0, 𝑆; 𝛿) and 𝐾(𝐶; 𝑆0, 𝑆; 𝜙) and then (D.1) becomes

𝐽(𝐶; 𝑆0, 𝑆; 𝛿) = 𝐽(�̃�; 𝑆0, 𝑆; 𝛿 − (𝑅 − 1)𝛾),

whilst, for 𝐾(𝐶, 𝜙) = 𝐾(𝐶; 𝑆0, 𝑆, 𝜙) we find

𝐾(�̃�; 𝑆0, 𝑆, 𝜙) = 𝔼
⎡⎢⎢⎣∫

∞

0

𝑒−𝜙𝑡

1 − 𝑅

(
𝐷𝑡𝐶𝑡

𝐷𝑡𝑆
0
𝑡

)1−𝑅
d𝑡

⎤⎥⎥⎦ = 𝐾(𝐶; 𝑆0, 𝑆, 𝜙).
In particular, 𝐾 defined via (D.2) has the advantage that (unlike 𝐽) it is numéraire-independent
in the sense that a change of accounting unit leaves the problem value unchanged.10 With this in
mind it makes sense to focus on the impatience rate 𝜙 rather than the discount rate 𝛿. Note that
𝜂 =

1

𝑅
𝜙 +

(𝑅−1)

𝑅

𝜆2

2𝑅
so that the optimal consumption rate is a linear (convex if 𝑅 > 1) combination

of the impatience rate and (half of) the squared Sharpe ratio per unit of risk aversion, with the
weights depending on the risk aversion.

APPENDIX E: THE DUAL APPROACH
For completeness, we include a brief description of the dual approach to theMerton problem. This
is a static argument in the sense that we replace the dynamic admissibility condition—that the
wealth process is negative at all times—with a static budget feasibility condition. As before, we only
deal with a Black–Scholes–Merton financial market, and in this case the argument is particular
simple since themarket is complete andhence there is exactly one equivalentmartingalemeasure.
Define the state-price density process 𝜁 = (𝜁𝑡)𝑡≥0 by

𝜁𝑡 = 𝑒
−𝑟𝑡(𝜆𝑊)𝑡 = exp

(
𝜆𝑊𝑡 −

(
𝑟 +

𝜆2

2

)
𝑡

)
. (E.1)

The following proposition gives a neat equivalent criterion for a consumption process to be admis-
sible in terms of the state price density.

Proposition E.1. A non-negative progressively measurable process 𝐶 is in 𝒞(𝑥) if and only if the
budget feasibility condition holds:

𝔼

[
∫
∞

0

𝜁𝑠𝐶𝑠 d𝑠

]
≤ 𝑥. (E.2)

Proof. We only prove necessity of (E.2) since that is all that we require for our subsequent argu-
ments. Sufficiency can be proved using the the Brownian martingale representation theorem.
Suppose that 𝐶 ∈ 𝒞(𝑥). Let Π be the corresponding investment process such that (Π, 𝐶) ∈

𝒜(𝑥). Denote the corresponding wealth process by 𝑋 = 𝑋𝑥,Π,𝐶 and define the nonnegative pro-
cess 𝑌 = (𝑌𝑡)𝑡≥0 by 𝑌𝑡 = 𝜉𝑡𝑋𝑡 + ∫ 𝑡

0
𝜁𝑠𝐶𝑠 d𝑠. The product rule, the definition of 𝜁 in (E.1) and the

dynamics of 𝑋 from (2) give

d𝑌𝑡 = 𝜁𝑡 d𝑋𝑡 + 𝑋𝑡 d𝜁𝑡 + d⟨𝜁, 𝑋⟩𝑡 + 𝜁𝑡𝐶𝑡 d𝑡 = 𝜁𝑡𝑋𝑡(Π𝑡𝜎 − 𝜆) d𝑊𝑡.
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Hence, 𝑌 is a nonnegative local martingale and therefore a supermartingale. Using 𝜁𝑡𝑋𝑡 ≥ 0 and
Fatou’s lemma we conclude that

𝑥 = 𝑌0 ≥ lim inf
𝑡→∞

𝔼[𝑌𝑡] ≥ 𝔼
[
∫
∞

0

𝜁𝑠𝐶𝑠 d𝑠

]
.

This ends the proof. □

The verification argument then goes as follows. First, the candidate consumption process �̂�
from (7) satisfies

𝑒−𝛿𝑡𝑈′(�̂�𝑡) = �̂�𝑥(𝑥)𝜁𝑡, (E.3)

as well as

𝔼

[
∫
∞

0

𝜁𝑠�̂�𝑠 d𝑠

]
= 𝑥. (E.4)

Then for an admissible 𝐶 ∈ 𝒞(𝑥), using the budget condition (E.2) for 𝐶 and as well as the bud-
get condition (E.4) for �̂�, together with (E.3) and the simple fact that the concave function 𝑈 is
bounded above by its tangent, that is, 𝑈(𝑎) ≤ 𝑈(𝑎) + (𝑏 − 𝑎)𝑈′(𝑎) for 𝑎 > 0, 𝑏 ≥ 0, we obtain

𝔼
[∫ ∞
0
𝑒−𝛿𝑡𝑈(𝐶𝑡) d𝑡

] ≤ 𝔼
[∫ ∞
0

(
𝑒−𝛿𝑡𝑈(�̂�𝑡) + 𝑒

−𝛿𝑡𝑈′(�̂�𝑡)(𝐶𝑡 − �̂�𝑡)
)
d𝑡

]
= 𝔼

[∫ ∞
0
𝑒−𝛿𝑡𝑈(�̂�𝑡) d𝑡

]
+ �̂�𝑥(𝑥)𝔼

[∫ ∞
0
𝜁𝑡(𝐶𝑡 − �̂�𝑡) d𝑡

]
≤ 𝔼

[∫ ∞
0
𝑒−𝛿𝑡𝑈(�̂�𝑡) d𝑡

]
= �̂�(𝑥).

This proves optimality of �̂�.


	An elementary approach to the Merton problem
	Abstract
	1 | INTRODUCTION AND OVERVIEW
	2 | THE MERTON PROBLEM
	3 | THE CANDIDATE VALUE FUNCTION
	4 | THE VERIFICATION ARGUMENT UNDER FIAT CONDITIONS
	5 | THE GENERAL VERIFICATION ARGUMENT
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	ENDNOTES
	REFERENCES
	APPENDIX A: AN EXAMPLE FOR WHICH FAILS TO BE A SUPERMARTINGALE
	APPENDIX B: VERIFICATION APPROACHES FOR 
	B.1 | Perturbation with finite bankruptcy
	B.2 | Perturbation of the value function


	APPENDIX C: THE MERTON PROBLEM WITH LOGARITHMIC UTILITY
	APPENDIX D: CHANGE OF NUMÉRAIRE ARGUMENTS AND THE ROLE OF 
	APPENDIX E: THE DUAL APPROACH


