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Abstract

Campylobacter infections are the main bacterial cause of gastroenteritis in the
UK, causing an estimated 500 thousand cases per year. Health authorities investigate
outbreaks to identify the source, control the spread and understand the cause. Out-
break detection mechanisms are potentially improved by the increasing availability of
whole-genome sequence alongside other epidemiological data. However, techniques mix-
ing genomics and other epidemiological factors are still underdeveloped. This project
aims to develop and apply outbreak detection methods using surveillance data collected
from two regions in the UK. The approaches proposed in this thesis are based on an
existing spatial-temporal Bayesian hierarchical model, where cases are labelled as po-
tential outbreaks if they comprise an elevated number of cases compared to the expected
sporadic count. The model is adjusted to include genetic data using Gaussian random
fields, exploiting the capacity of whole-genome sequencing to discriminate closely related
isolates. Moreover, a Markov Chain Monte Carlo algorithm is implemented to obtain
the posterior distribution of the model parameters. In particular, a sampling strategy
is proposed to improve the convergence of the chain for the parameters describing the
Gaussian random field. The project dataset is analysed using a spatial-temporal, a
spatial-genetic and a temporal-genetic version of the model, where each version explores
different types of outbreaks. The proposed approach demonstrates how to organise ge-
netic sequences into a high-dimensional structure and incorporate them into a Bayesian
framework. Also, the MCMC sampling algorithm improves the mixing of the chain to
estimate the posterior distribution of the model parameters. Finally, all model versions
provide the probability that each reported infection is part of a potential outbreak.
Comparing the potential outbreaks found by each model provides insights to estimate
the real outbreaks. It also identifies cases that are potentially part of a diffuse real
outbreak hard to detect by existing approaches. Despite the capability of the model, it
requires predefined outbreak sizes and therefore is not flexible at capturing many shapes.
Autocorrelated models are a potential improvement to be explored.
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Chapter 1

Introduction

1.1 Topic background

Zoonotic illnesses are a consequence of the complex interactions between humans, an-

imals and their environment. Caused by those interactions, humans are exposed to

pathogens present in the products they consume, their contact with animals, and their

interaction with the environment. In particular, foodborne infections can be caused by

bacteria as Campylobacter genus, the main cause of bacterial gastroenteritis worldwide

[Kaakoush et al., 2015]. Infections are commonly induced by the ingestion of contami-

nated poultry, unpasteurised milk and contaminated water [Little et al., 2010; Kaakoush

et al., 2015]. Moreover, it causes an estimated 500 thousand infections and 80 thousand

general practitioner consultations per year in the UK [Tam et al., 2012]. Public health

authorities have a critical role in diminishing the burden of cases and reducing the impact

on human health and the global economy [Tauxe et al., 2010].

Understanding the biology of Campylobacter and the infections from source to

humans has a substantial impact on food-safety policies and the subsequent reduction

of the burden [Gerner-Smidt et al., 2017; Tauxe et al., 2010]. Besides the complexity of

food-human interaction, the detailed study of outbreaks provides insights into the sources

of contamination and supports the strengthening of public control measures [Gormley

et al., 2011]. Surveillance systems operate on a routine basis to collect data of reported

infections and to investigate potential outbreaks [Gormley et al., 2011]. However, the

number of identified outbreaks is low compared to the total burden [Gormley et al.,

2011; Frost et al., 2002; Pebody et al., 1997].

Outbreak detection can be improved with the inclusion of quantitative methods

into surveillance systems. For instance, Public Health England (PHE) and the Centers
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for Disease Control and Prevention (CDC) incorporate outbreak detection algorithms

into routine surveillance [Noufaily et al., 2019]. These approaches detect unexpected

increases in reported infections, based on daily counts. Similarly, several methodologies

have been developed to study the agglomerative nature of spatial reports [Ripley, 1976;

Diggle, 2013], or to identify spatial outbreaks [Kulldorff, 1997; Knorr-Held and Raßer,

2000]. Spatiotemporal approaches have also been proposed [Spencer et al., 2011; Kull-

dorff, 2001], demonstrating the impact of incorporating several data sources into these

systems.

The inclusion of genetics into surveillance systems potentially improves the de-

tection of outbreaks [McCarthy, 2017; Cody et al., 2013]. Previous studies have shown

how whole-genome sequencing (WGS) of bacteria can distinguish samples that are epi-

demiologically related [McCarthy, 2017]. For that purpose, a project between the Food

Standards Agency (FSA), PHE and the University of Oxford implemented a surveillance

system for human Campylobacter infections using WGS in a few areas of the UK. The

mix of genomic and other epidemiological data provides the means to test combined

algorithms for outbreak detection.

The goal of this project is to develop mathematical techniques for outbreak de-

tection, based on the integration of bacterial genomic and epidemiological routine data

(Chapter 2). For that purpose, an existing spatiotemporal approach was adapted to in-

corporate genetic data. First, the adaptation required an exhaustive exploration of the

mathematical properties of whole-genome sequences (Section 2.5.1). Then, a general

framework was established to provide different methods for different sources of data:

spatial, temporal or genetic. As described throughout this project, three Bayesian sta-

tistical models were analysed. First, the spatial-temporal model developed by Spencer

et al. [2011] was applied to the project dataset (Section 3.1). The genetic sequences

linked to the resulting outbreaks were studied to validate the results. Second, a spatial-

genetic was designed and implemented, incorporating a Gaussian process to include

genetic data into the model structure by Spencer et al. [2011] (Section 4.3). Also, a

sampling technique was proposed to improve the model implementation (Section 4.4).

Third, a temporal-genetic model was created and implemented (Section 5.2). Finally,

outbreaks obtained by each model were contrasted as well as the variations among each

model results (Section 6.1).

Methods for outbreak detection, health protocols and communication for the

general pubic require a clear definition of outbreaks. Definitions might vary from groups

of cases in which at least two infected people might have the same common exposure

[Pebody et al., 1997], to infections caused by genetically related pathogens [Robinson
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et al., 2013]. In this project, an outbreak is defined as the occurrence of more cases of

the infection than expected.

Previous knowledge of several fields is required for the development of this project.

First, an introduction to Campylobacter species and the epidemiology of the infection

is included (Section 1.1.1), as well as the overview of existing clustering methods for

outbreak detection using genomics (Section 1.2). Moreover, the construction of models

and the exploration of genetic sequences requires random fields theory (Section 1.3.1).

Since all methodologies are based on Bayesian modelling, the project requires the the-

ory of Bayesian statistics and inference (Section 1.3.2). Spatial analysis using point

processes is required to study genetic sequences (Section 1.3.3), as well as hierarchical

clustering algorithms (Section 1.3.4). Finally, a review of existing clustering methods

using mathematical modelling is included (Section 1.4).

The purpose of this chapter is to establish the goal of the project and provide the

background knowledge required to follow the models and arguments discussed through-

out the document. The current section, Section 1.1, provides an overview of the project

and the introduction to Campylobacter species and genetic sequencing. Section 1.2

reviews the current methodologies in outbreak detection in genomics. Section 1.3 sum-

marises the main fields required in the mathematical framework of this project. Finally,

Section 1.4 provides an overview of the mathematical models for outbreak detection and

disease modelling.

1.1.1 Campylobacter epidemiology

Campylobacter is the main bacterial cause of gastroenteritis in many industrialised coun-

tries, causing an estimate of 9.3 cases per 1000 person per year in the UK [Tam et al.,

2012]. Due to health care and productivity expenditure, legal costs and other expenses,

it produced an estimated annual cost of £50 million in the UK in 2008 [Tam and O’Brien,

2016]. The bacterium is found naturally in the intestinal tract of a wide range of warm-

blooded animals. Therefore, the slaughter process of poultry and other meat products

might be a cause of contamination of carcasses ready for distribution [Silva et al., 2011].

As a consequence, food products derived from poultry, cattle and other animals, unpas-

teurised milk and contaminated water are usually vehicles of Campylobacter poisoning

in humans [Silva et al., 2011], although differences in exposure have been found among

Campylobacter species [Gillespie et al., 2002]. Common symptoms are acute diarrhoea,

fever, and abdominal cramping, with a usual incubation period of 24 to 72 hours [Blaser,

1997].
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It is estimated that age, season, immunity, and demographic factors influence the

prevalence of campylobacteriosis cases [Silva et al., 2011]. Infections are more frequent

in children younger than four years old and young adults [Kaakoush et al., 2015; Nichols

et al., 2012]. Prevalence is higher in males of all age groups, except for a higher incidence

in females between twenty and thirty-six years old [Louis et al., 2005; Gillespie et al.,

2008]. Infection reports are lower on weekends, presumably caused by lower access to

health services [Nichols et al., 2012]. A 10-years study showed a consistent summer peak

of incidences starting in late-May with a maximum between mid-June and mid-July

[Louis et al., 2005; Nichols et al., 2012]. The summer peak was also observed during the

same weeks in ten different countries with seasonal weather [Nylen et al., 2002; Louis

et al., 2005]. In a two decades study, the seasonal trend is correlated with temperature

and farming environments [Louis et al., 2005; Nichols et al., 2012]. Incidence among

age also exhibits seasonality, with a higher seasonal trend in children younger than

four years old [Louis et al., 2005; Nichols et al., 2012]. Although trends are consistent

among countries, the number of reported cases between and within countries differ.

These differences are possibly due to surveillance methodologies, food practices and

environmental exposure [Kaakoush et al., 2015]. The incidence in the UK was positively

correlated with the number of rural wards and negatively correlated with population

density and deprivation [Louis et al., 2005; Nichols et al., 2012].

1.1.2 Sequence data for bacterial isolates

The sporadic nature of infections, the underreported incidences, the lack of representa-

tive samples and the high genetic diversity complicate the categorisation of the bacteria

[Dingle et al., 2002]. Therefore, understanding the dynamics and the epidemiology of

the disease requires the study of the genetic diversity and evolution of bacteria. Campy-

lobacter jejuni, the most common cause of reported campylobacteriosis infections, was

firstly sequenced in 2000, revealing 1.641.481 base pairs and 1.654 hypothetical proteins

[Parkhill et al., 2000]. Additionally, it has been shown that C. jejuni has a weakly clonal

population structure and that isolates with diverse origins share same alleles, implying

horizontal genetic exchange [Dingle et al., 2001]. Facing these conditions demands a sys-

tem that collects genetic information of isolates, compares and analyses them to identify

the association between reported cases.

Several typing techniques have been developed to classify and trace back isolates

of Campylobacter species, including phenotypic and genotypic procedures. Phenotypic

typing methods are usually based on serotyping. However, the large number of strains
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unable to be typed, and the expensive and time-consuming process have restricted the

use of these methods [Wassenaar and Newell, 2000]. In contrast, genotypic subtyping

such as ribotyping, pulsed-field electrophoresis PFGE, multilocus enzyme electrophore-

sis MLEE, and fla typing have been implemented [Wassenaar and Newell, 2000]. For

instance, systems based on the 16s ribosomal RNA gene sequence succeeded in identify-

ing and classifying species, but more resolution was necessary for closely related isolates

[Maiden et al., 2013]. Additionally, standardisation of these procedures is still needed,

in order to compare large amounts of isolates obtained from diverse locations. To solve

these drawbacks, the multilocus sequence typing MLST was proposed [Maiden et al.,

1998], providing higher resolution and performing comparisons based on alleles differ-

ences rather than the variations of single nucleotides (point mutations as in PFGE).

Particularly, a scheme for C. jejuni and Campylobacter coli was defined based on seven

housekeeping genes which provided sufficient diversity to discriminate among isolates

[Dingle et al., 2001]. Similarly, seven loci schemes for other Campylobacter species have

been introduced [Miller et al., 2005].

Isolate discrimination often requires different levels of resolution, depending on

the genetic closeness of the samples. This resolution requires the introduction of new

typing schemes; particularly, several modifications of the seven-loci MLST described

previously have been proposed [Maiden et al., 2013]. The number of loci included in

those schemes depends on the taxonomic discrimination required. For instance, whole-

genome MLST compares all loci of a set of closed genomes. If not all loci are shared,

a core-genome MLST is applied, comparing all available genes. Particularly, a scheme

based on the comparison of the 53 ribosomal protein subunit genes, ribosomal MLST,

has been proposed, since those genes are commonly founded in all bacteria but have the

variability to discriminate among samples [Jolley et al., 2012].

A new generation of sequencing methods has emerged with the development of

high-throughput sequencing technologies. Now, it is possible to produce genome reads

and obtain Whole Genome Sequencing (WGS) data of a bacteria in a single experiment

at a low cost. These technologies produce short or long raw sequencing reads, which

are subject to a process for the reconstruction of the whole genome. For instance, the

reads can be aligned and compared to a reference genome (read mapping approach) or

they can be divided into several pieces to construct an assembly graph and infer the

real genome (de novo approach) [Bakker et al., 2017; Loman et al., 2012]. Then, to

identify the location of genes in the obtained genome, it is aligned and compared to

a set of sequences of similar strains (a set of reference genomes). When aligned genes

show similarities, the annotation of the original sequences is transferred to the new one.
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Several algorithms are used to perform this task, such as BLAST or FASTA [Richardson

and Watson, 2013].

The opportunity to generate WGS data requires a mechanism to store and organ-

ise large amounts of data from different sources. The Bacterial Isolate Genome Sequence

Database BIGSdb provides a structured system to meet this requirement, extending pre-

vious MLST approaches [Jolley and Maiden, 2010]. It consists of two components: the

isolate database and the sequence-definition database [Maiden et al., 2013]. When a

new sequence is introduced, it is defined as a new allele and scanned in the definition

database using the BLAST algorithm. If the allele does not exist, it is created and the

sequence is stored in the isolate database. The system also provides flexibility in the

inclusion of new schemes (such as rMLST). Additionally, for a set of isolates, BIGSdb

calculates a distance matrix accounting the number of allelic differences between each

pair of isolates and generates a graph using an algorithm called NeighborNet [Bryant

and Moulton, 2004].

1.2 Application of genomics to outbreak detection

In Section 1.1.2, it has been discussed how the multilocus sequence typing of Campy-

lobacter species provides an effective means to characterise and discriminate among

isolates. In this section, it will be discussed how these approaches offer a new dimension

to understand the dynamics of the disease.

Several questions about the epidemiology of campylobacteriosis have been ex-

plored since the disease was discovered. However, the inclusion of genomic data pro-

vides these studies with novel perspectives. For instance, the distribution of subtypes

of Campylobacter could be analysed for different locations (i.e. separate countries) [Mc-

Carthy et al., 2012]; the incidence peak observed in summer could be explained by a

genotypic feature favored by the temperature [McCarthy et al., 2012; Cody et al., 2012];

and the observed differences in incidences as a function of age, gender, or symptomatic

reactions of infected patients could be examined [Dingle et al., 2008]. Similarly, it has

been demonstrated the contamination of flocks through the slaughter process could be a

route of transmission of Campylobacter [Colles et al., 2010]. Two additional issues have

been especially addressed: source attribution and outbreak detection. This project is

focussed fundamentally on outbreak detection.

Outbreak investigations are focussed on the study of abrupt or unanticipated

changes in the number of cases of campylobacteriosis. Although definitions vary among

studies, they are mainly centered on finding two or more cases with a common exposure,
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or observing a higher than expected number of incidences in a period of time, a limited

geographical area or a group with similar characteristics1. Identifying such outbreaks

allow researchers to design intervention strategies and understand the pathways and

sources of infections [Little et al., 2010]. Between 2008 and 2015, 143 outbreaks were

reported in the UK, with an average size of 26 cases and having poultry as the most

common source [Kaakoush et al., 2015; Little et al., 2010]: however, registered outbreaks

comprise less than 1% of the reported cases [McCarthy, 2017], a low percentage consid-

ering the properties of the Campylobacter genus. Slow growing speed and the ability

to survive in food products raise the question if apparently sporadic cases are also part

of diffuse outbreaks, generated early in the food chain; therefore, being hard to detect

[McCarthy, 2017].

Typing methods potentially provide tools to differentiate and compare among

strains collected in hospitals, study the diversity of already detected outbreaks, and find

possible outbreaks not identified by epidemiological means. In particular, WGS can

provide higher resolution in the detection of outbreaks for different types of pathogens;

for instance, for bacteria with low levels of recombination, WGS can identify strains and

study the evolution of bacteria as in an outbreak of Mycobacterium tuberculosis [Roetzer

et al., 2013]. Similarly, WGS and novel schemes of MLST are suitable for understanding

the diversity and structure of Campylobacter, assessing the relatedness among isolates

within a potential outbreak [Llarena et al., 2017]. Nevertheless, the frequent horizontal

transference of Campylobacter hinders the design of such procedures.

Understanding the nature of campylobacteriosis outbreaks requires the retrospec-

tive analysis of already reported ones. Those investigations elucidate the genomic di-

versity within epidemiologically linked isolates and the existence of possible undetected

diffuse outbreaks. Consequently, several studies have retrospectively applied WGS to

collected isolates from outbreaks, using, for instance, MLST schemes, the PubMLST

databases, and the NeighborNet algorithms. First, a comparison between isolates from

a milk-borne outbreak and the background population showed the low genetic varia-

tion of isolates contaminated from a common source [Fernandes et al., 2015]. Also,

it suggested the existence of diffusely distributed outbreaks and the difficulty of their

detection by epidemiological means. Similarly, based on a hierarchical approach as pro-

posed previously ([Maiden et al., 2013; Cody et al., 2013]), the isolates collected on a

summer peak in Finland revealed the occurrence of genetically identical isolates spread

in different districts of the country [Kovanen et al., 2014]. Subsequently, patient and

animal samples of that peak were examined to determine possible sources [Kovanen

1http://www.who.int/foodsafety/publications/foodborne disease/outbreak guidelines.pdf
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et al., 2016]. A similar source analysis was performed for isolates in a milk-borne out-

break, comparing sequences from patients, cattle and contaminated milk [Revez et al.,

2014]. Although retrospective investigations improve the understanding of outbreaks,

they are limited to the collected epidemiological information [Gerner-Smidt et al., 2017].

Real-time would solve this drawback, guiding the surveillance system and driving the

collection of epidemiological data.

Although WGS has been mostly applied to retrospective analysis [Gerner-Smidt

et al., 2017], the inclusion of WGS into the surveillance system is required for the early

detection of outbreaks. Recently, a hierarchical gene-by-gene approach has been pro-

posed to demonstrate how WGS could be valuable in the real-time characterisation of

C. jejuni and C. coli [Cody et al., 2013]. For the analysis of isolates collected in Oxford-

shire, the following steps were applied. First, the BIGSdb autotagger assigned alleles,

sequence types and clonal complexes to the collected samples and compared them with

the distribution of a control population. Second, phylogenetic trees were generated ac-

cording to an initial MLST scheme to differentiate within clonal complexes. Finally,

the number of loci included in the scheme was increased to improve resolution inside

the clusters founded on the phylogenies. For instance, rMLST profiles can be identi-

fied and subsequently wgMLST comparisons can be performed. PubMLST repositories

and the online tools provided by the BIGSdb genome comparator module facilitate the

implementation of this approach in real time. For the Oxfordshire data, locus differ-

ences among all isolates were compared against samples taken repeatedly from patients,

suggesting a cutoff value to determine if isolates are clustered or not (20 loci or fewer).

Also it showed that, despite the complex structure and evolution of Campylobacter, it is

possible to determine if two isolates are part of the same transmission route. Application

of this procedure is gaining acceptance and has been applied in other studies [Kovanen

et al., 2014, 2016; Llarena et al., 2017].

1.3 Mathematical background

1.3.1 Random fields

A stochastic process f over an index space S is a set of random variables {f(s) : s ∈ S}
where f takes values on a state space. The process f is a random field if the state

space is a subset of a Euclidean space. Random fields are commonly used in time series

analysis, where S is a subset of R, and in spatial analysis, where S is a subset of R2. A

random field is a real-valued Gaussian random field or Gaussian process if for every finite
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subset {s1, ..., sn} of S of size n ∈ Z+, the vector (f(s1), ..., f(sn)) follows a multivariate

normal distribution with mean µ and covariance matrix Σ = [c(si, sj)]ij , where c(., .) is

a function or kernel that maps any pair (si, sj) into the covariance of f(si) and f(sj).

For the Σ to be a valid covariance matrix, it must be positive semi-definite. The function

c is called a covariance function if the matrix [c(., .)] is positive semi-definite.

Covariance matrices encode key properties of the process f , like the continuity

or the smoothness. A special type of covariance functions are defined when S is a

subset of a d-dimensional Euclidean space. The covariance c(s, t) is isotropic if it can be

written as a function of |s− t|, and it is expressed as a single-valued function k(r) on the

non-negative real numbers. Isotropic covariance functions are characterised as Fourier

transforms [Rasmussen and Williams, 2005; Stein, 1999], where the power spectrum

provides information about the smoothness of the process. The most common type of

isotropic functions is the Square Exponential. It is given by:

k(r) ∝ exp

(
− r

2

2l2

)
, (1.1)

with a real-valued length-scale parameter l, l > 0. The main property of the Squared

Exponential is that processes drawn by this kernel are infinitely differentiable. The

unrealistic smoothness property of this function is improved by the Matérn class of

covariance functions [Stein, 1999]. Based on the modified Bassel functions B, it is

defined as:

kν(r) ∝ 21−ν

Γ(ν)

(√
2νr

l

)ν
Bν

(√
2νr

l

)
, (1.2)

where the positive real-valued parameters ν and l. Two simplified versions of this Matérn

classes are given by ν = 1/2 and ν = 3/2. These covariance functions are implemented

in Section 4.2.3 for the analysis of genetic sequences.

Other types of Gaussian random fields are defined according to the structure of

S. In particular, Markov Gaussian Random Fields (GMRFs) are studied when S is finite

and has a neighbouring structure. Formally, let (S,E) be a graph with vertices S and

edges E. Any two elements s, t in S are called neighbours if there is an edge connecting

them: (s, t) ∈ E. A random field f is a GMRF if the following condition holds for every

s, t in S: f(s) and f(t) are conditionally independent given all the other values of f , if

and only if s and t are not neighbours. This condition is equivalent to:

P ({f(t)|t ∈ S\s}) = P ({f(t)|t ∈ N(s)})
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for all s in S, where N(s) is the set of neighbours of s.

1.3.2 Bayesian modelling and inference

Bayesian statistics provides a mathematical framework for learning from data. Bayesian

modelling employs probability theory to construct and parameterise a model that could

explain the data. Also, it can incorporate prior beliefs and expert knowledge and can be

used to compare hypotheses given the data. The fundamentals of Bayesian modelling

rely on Bayes’ theorem. Let P (D|θ) be the likelihood function describing the data D
given a vector of parameters θ. The uncertainty of the parameters is learned from the

data P (θ|D) subject to prior assumptions P (θ). That is,

P (θ|D) =
P (D|θ)P (θ)∫

θ′ P (D|θ′)P (θ′)dθ′
, (1.3)

where P (θ|D) is the posterior distribution of θ, P (D|θ) is the likelihood of the model,

P (θ) is the prior of θ, and the integral in the denominator is the marginal probability

of the data.

Some models exhibit hierarchical structures organised in sub-models, known as

Bayesian hierarchical models (BHM). BHMs are organised in conditionally independent

layers. The simplest hierarchical structure can be described as follows:

P (θ,λ|D) ∝ P (D|λ)P (λ|θ)P (θ). (1.4)

Therefore, the uncertainties in the model are propagated through the hierarchical struc-

ture. The intermediate layer P (λ|θ) or latent field is formed of latent parameters λ. This

structure explains data produced by complex interactions and captures the uncertainty

of those interactions.

GMRFs are frequently used as priors for latent fields [Banerjee et al., 2004]. To

incorporate a GMRF into a hierarchical structure as in (1.4), let λ = (λ1, . . . , λL) be a

vector of L real-valued latent variables. The vector λ can be modelled as the realisation

of a GMRF. That is, there is a finite space S such that for each i in {1, . . . , L} there

exits an s in S such that λi = f(s). The prior of the latent parameters can be written

as a function of a penalty matrix Q(θ) (or equivalently, Q):

P (λ|θ) ∝ exp

(
−1

2
λTQλ

)
.

In the context of time series and spatial statistics, GMRFs are commonly used as latent
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fields in hierarchical models [Rue and Martino, 2007; Blangiardo et al., 2013], as in

[Besag et al., 1991; Knorr-Held and Richardson, 2003; Beneš et al., 2005; Spencer et al.,

2011].

Bayesian inference

The exact computation of the posterior distribution in (1.3) requires the calculation of

the marginal probability, usually involving intractable integrals. Instead, many sam-

pling methods aim to draw from the posterior distribution P (θ|D). For instance,

Markov Chain Monte Carlo methods (MCMC) collect simulated samples from the de-

sired distribution by drawing a Markov Chain (θt)
∞
t=1 in the parameter space Θ. Each

θt is sampled from a transition distribution q(θ∗;θt−1). If the chain fulfils the de-

tailed balance condition P (θ′|D)q(θ′;θ) = P (θ|D)q(θ;θ′), the chain is ergodic; that is,

limt→∞ P (θt|D) = P (θ|D).

Examples of MCMC methods are Gibbs sampling and the Metropolis-Hastings

algorithm. Both methods are described in Algorithm 1 and Algorithm 2, respectively.

Let θ = (θ1, ..., θn) be a vector of parameters and P (θ|D) the desired function. The

Gibbs sampling requires to sample analytically from the conditional probability distri-

butions pi = P (θi|θj , j = 1, ..., i − 1, i + 1, ..., n). At each iteration t, a sample θ∗i is

taken from pi while the other parameters are fixed. The Metropolis-Hastings algorithm

collect samples using the following steps. At iteration t, a proposal value θ∗ for θ is

drawn from a transition distribution q(θ|θt−1). The sample is accepted with probability

α(θ∗|θt−1)) or rejected with probability 1− α(θ∗|θt−1)), as in Algorithm 2.

Algorithm 1: Gibbs sampling

Result: (θ(1), ...,θ(T ))
initialise θ(0) ∼ q0;
for iteration t = 1, ..., T do

for parameters i = 1, ..., n do

sample from conditional θ
(t)
i ∼ P (θ|θ(t)1 , . . . , θ

(t)
i−1, θ

(t−1)
i+1 , . . . , θ

(t−1)
n );

end

end

Bayesian inference is typically performed by alternating MCMC techniques, de-

pending on the properties of each parameter. Proposals can be obtained using single-site

updates, where parameters are updated one at a time. Conversely, updating can also

be implemented using block strategies where sets of parameters are updated simultane-

ously. This approach is relevant when parameters are highly correlated since single-site
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Algorithm 2: Metropolis-Hastings algorithm

Result: (θ(1), ...,θ(T ))
initialise θ(0) ∼ q0;
for iteration t = 1, ..., T do

sample from proposal θ∗ ∼ q(θ|θ(t−1));
compute acceptance probability:

α(θ∗|θ(t−1)) = min
{

1, P (θ∗|D)q(θ(t−1)|θ∗)
P (θ(t−1)|D)q(θ∗|θ(t−1))

}
;

sample u ∼ Unif(0, 1);

if α(θ∗|θ(t−1)) > u then

θ(t) ← θ∗;
else

θ(t) ← θ(t−1);
end

end

updates might have slow convergence. For instance, latent parameters on a GMRF typ-

ically are highly correlated [Rue, 2001; Knorr-Held and Rue, 2002; Fahrmeir and Lang,

2001]. Other strategies to improve the efficiency of MCMC samples are the adaptive

models, proposed improved jumping rules based on the history of the chain [Gelman

et al., 2013].

In particular, Knorr-Held [1999] proposed a block algorithm to overcome the slow

convergence for GMRF models and was extended to more general models by Fahrmeir

and Lang [2001]. Let f be a GMRF with latent parameters λi, i ∈ I. At each iteration,

the latent parameters are partitioned in blocks of a given size m, except for one block.

For a given block J ⊆ I, the proposed jumps for λJ are sampled from a normal

distribution with mean µ and covariance matrix Ξ that depend on the penalty matrix

Q of the GMRF and the values of the resting parameters λ−J . This block strategy is

extended to Gaussian processes in the analysis of genetic sequences in Section 4.4.2.

1.3.3 Point Processes

Intuitively, a point process N on a space S is a mechanism for allocating points ran-

domly on the underlying space S. Given the applicability of point processes, the space

S is usually the one, two or three-dimensional Euclidean space. Point processes are

the fundamental structure for several spatial and spatial-temporal models [Illian et al.,

2007b; Daley and Vere-Jones, 2003] as in disease mapping [Diggle et al., 2005; Brix and

Diggle, 2001; Beneš et al., 2005], image analysis [Descombes, 2013] and ecology [Illian
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and Burslem, 2017].

Formally, let S be a complete separable metric space equipped with a distance d

and a σ-algebra B. Then, N is a point process on S if N is a measurable mapping from

a probability space (Ω,F ,P) into the measurable space (M,M). The set M contains

all subsets A ⊆ S such that |A ∩ B| < ∞ for all bounded sets B ⊆ S, and M is the

smallest σ-algebra generated by the subsets A ⊆ S such that |A ∩ B| = m for a given

bounded B ∈ B and m ∈ Z∗ [Moller et al., 2003]. For a subset A of S, N(A) denotes

the number of events falling in A.

The Poisson point process is the most common types of point processes, with the

assumption that points drawn by the process are not in interaction. Formally, a point

process is Poisson if there exists an intensity measure µ such that µ(B) < ∞ for all

bounded subsets B ⊆ S and, for every collection A1, ..., Ak of disjoint Borel sets, the

following holds [Daley and Vere-Jones, 2003]:

P (N(A1) = m1, ..., N(Ak) = mk) =
k∏
i=1

µ(Ai)
mi

mi!
e−µ(Ai).

1.3.4 Agglomerative hierarchical clustering

In data analysis, clustering is a technique that groups points based on similarity. It

covers a wide range of applications including the analysis of genetic sequences and the

study of disease locations in a city. Agglomerative hierarchical clustering is one type

of clustering algorithm that does not require a predefined number of clusters [Hastie

et al., 2009]. The model constructs a hierarchical structure as follows. Suppose points

are in a space S equipped with a distance d. Initially, every point is assigned into a

single cluster. Iteratively, the two most similar clusters are merged, forming a single

cluster. In the last iteration, all points are part of the same cluster. Each iteration

results in one level of the hierarchy, characterised by the maximum distance between the

resulting clusters, or height h. This strategy is detailed in Algorithm 3, for a finite set

S = {p1, ..., pn}. Hierarchical clustering requires a notion of similarity between points

and between clusters. For the first case, the distance d measures the similarity between

points. For clusters, several measures of dissimilarity l are used. In particular, the

unweighted average linkage between clusters A, B is:

l(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b), (1.5)
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and the complete linkage between clusters A, B, given by:

l(A,B) = max
a∈A,b∈B

d(a, b). (1.6)

The hierarchy structure obtained is summarised by the heights h1, ..., hT and cluster

sets C1, ..., CT and is represented by dendrograms. This clustering approach is applied

to genetic sequences in Section 4.4.1.

Algorithm 3: Agglomereative hierarchical clustering

Result: Heights h1, ..., hT , cluster sets C1, ..., CT
initialise h0 = 0, C0 = {{p1}, . . . , {pn}}, i = 1;
while |Ci−1| > 1 do

find A,B ∈ Ci−1 with minimum distance l(A,B);
Ci = Ci−1\{A,B} ∪ {A ∪B} (remove A,B and add A ∪B);
update height hi = l(A,B);
increase step i = i+ 1

end

1.4 Spatial and temporal methods for outbreak detection

Spatial analysis literature refers to cluster detection to methods studying unusual clusters

in disease patterns. In this section, the term is adopted as equivalent to outbreak

detection. A range of definitions for clustering has been proposed, grouped into two

types [Besag et al., 1991; Lawson and Lawson, 2006]. General clustering determines if

the disease cases have a clustering tendency. In contrast, specific clustering investigates

the potential location of clusters. Although this classification was introduced for spatial

analysis, it can be extended to temporal and spatial-temporal methods. Some methods

currently implemented by public authorities such as PHE are classified as non-Bayesian

specific methods and are included in Section 1.4.1. Section 1.4.2 reviews spatial methods

aimed to study general clustering. Sections 1.4.3 and 1.4.4 review methods for specific

clustering from two perspectives: non-Bayesian and Bayesian modelling, respectively.

1.4.1 Temporal approaches in current surveillance systems

Public health authorities monitor the incidences of diseases to detect outbreaks or trends

of potential emerging infections [Lawson, 2005; Noufaily et al., 2019]. Many statistical

methods have been developed to monitor surveillance time-series. In particular, PHE
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implemented methods like the Rising Activity, Multi-level Mixed Effects - Indicator

Emphasis (RAMMIE) [Morbey et al., 2015], Farrington [Farrington et al., 1996] and

Farrington Flexible [Noufaily et al., 2013] based on daily reports on the number of cases

of notifiable diseases. Similarly, the CDC implemented the Early Aberration Reporting

System (EARS) [Hutwagner et al., 2003] based on Shewhart control charts, where an

alarm is activated if the counts exceed a given threshold [Shewhart, 1930].

RAMMIE, Farrington and Farrington Flexible apply time-series regression. Each

approach model the count of cases yt on a week t using a log-linear model. The parame-

ters of the model and the expected incidence values are estimated. The observed counts

are compared to confidence limits to trigger alarms, where thresholds systems are chosen

according to the disease characteristics or other criteria [Lawson, 2005]. In particular,

RAMMIE fits the counts yt into a negative binomial regression where the mean µt is

given by:

log(µt) = log(Nt) +
∑
i

βiXit.

The index i indicates the day of the year, the βi are regression parameters, and each Xit

is a 0-1 random variable equal to 1 depending on the day of the year. Comparatively,

Farrington assumes that the counts yt are distributed with mean µt and variance φµt,

where φ is a dispersion parameter. The parameter µt follows a log-linear model as:

log(µt) = α+ βt, (1.7)

where α and β are regression parameters. An alarm is triggered if the observed counts

exceed a threshold based on the counts from related weeks in previous years, capturing

seasonal effects. Alternatively, a new version of Farrington, denoted as Farrington Flex-

ible, includes an extra term δj(t) into the model in (1.7), where j(t) is a seasonal factor

level for the week t.

Other systems are based on control charts, where counts of the disease are a

realisation of a stochastic process Y = (Yt)
T
t=1. For instance, EARS is a reporting

system formed of several variants. In EARS, each count follows a normal distribution

as yt ∼ N(µt, σt). All variants are designed based on the statistic:

st = max{0, st−1 +

(
yt − µt
σt

− k
)
},

where k is a positive real-valued parameter. Finally, temporal surveillance methods can

be modified to include spatial information. For instance, Rogerson and Yamada [2004]
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proposed a multiregional surveillance system that implemented CUSUM simultaneously

in several regions.

1.4.2 Hypothesis testing for general clustering

To understand the patterns of a disease in a geographical area S ⊆ R2, many authors have

modelled the incidence of cases as a point process N on S [Møller and Waagepetersen,

2007]. As a consequence, analysing the behaviour of such mathematical structures helps

to comprehend and predict the dynamics of a disease. Analogous to a real-valued func-

tion, a notion of mean is defined [Diggle, 2013; Daley and Vere-Jones, 2003]. It is known

as the intensity λ of the process and is defined as:

λ(x) := lim
|dx|→0

E(N (x))

|dx|
,

quantifying the expected number of observations in x. Higher-order quantities can be

defined as a second-order intensity λ2 or a covariance density [Diggle, 2013]. Similarly, a

Ripley function K, introduced by Ripley [1976], quantifies the expected number of events

around a randomly selected one as a function of the distance between them. That is,

K(r) := E(r)

=
1

λ
E(# events at a distance r of another event), (1.8)

definition valid only for isotropic and stationary processes. Since K counts events within

a fixed distance, it evaluates the homogeneity of the process; that is, how much it

differs from a homogeneous process. K can be analytically calculated for cases as the

homogeneous point process: KPoisson(r) = πr2 [Illian et al., 2007a]. Complementing

the information provided by Ripley’s function, other second-order quantities have been

defined [Diggle, 2013]. For instance, the function F (r) quantifies the distribution of the

distance between a random point in S and its nearest event, and G(r) quantifies the

distribution of the distance between an arbitrary event and its nearest other event. This

characterisation of spatial processes can be applied to clustering detection problems,

to determine if there exist agglomerated, regular or random patterns in the studied

processes. A hypothesis test can be defined to investigate how the process differs from

a random one.

Before making inferences about the patterns in the process, an estimator of the

function K(s) is calculated. According to (1.8), K(s) can be estimated if λ and E(r)
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are estimated as well. An estimator Ê(s) is calculated by averaging the number of

events within a distance r of any randomly chosen event [Illian et al., 2007c; Diggle,

2013]. That is, let x1, . . . , xn be the events happening in G. For each xi, the quantity∑
j 6=i I(|xi − xj | ≤ s) is calculated. Then, the estimator is computed as:

Ê(s) =

n∑
i=1

∑
j 6=i

I(|xi − xj | ≤ s).

The estimator of λ̂ is calculated using the ratio of the total number of events N (G) and

total area |S|.
The estimation of E(s) requires a boundary correction. Even though the count of

events is correct for inner points, the density is potentially underestimated if analysed

near the boundaries. Ripley [1976] proposed a correction on the estimation of Ê(s). For

a pair of events in x, y the quantity I(|x− y| ≤ s) can be weighted by wij , representing

the proportion of events located at a distance |x−y| of x that lies in the area S. Applying

this correction the following estimator is obtained:

Ê(s) =

n∑
i=1

∑
j 6=i

1

wij
I(|xi − xj | ≤ s).

The estimation of the second-order function K can be applied to clustering using

hypothesis testing. The test consists of comparing the observed K̂ with its value K0 if

the process were random based on the null-hypothesis. For example, if the process is

Poisson, K0 can be computed: K0(s) = πs2. Additionally, the variance of K0 can also

be calculated to test the model. Although some processes have a known var(K) as the

homogeneous Poisson Process, the variance cannot be calculated analytically in some

cases. Then the variance is estimated using Monte Carlo simulations at each location in

S. Then, the observed K̂ is compared to the simulated version.

In most applications, including epidemiological analysis, there is a population at

risk underlying the process [Diggle, 2013], as in [Gatrell et al., 1996; Kelsall and Diggle,

1995b, 1998]. The previous hypothesis testing is generalised as follows. Suppose that in

S there are two different processes. The first one associated with the observed cases and

the second one accounting some control individuals. K is estimated for each process,

obtaining K̂cases and K̂control, respectively. For the null-hypothesis, it is assumed that

both processes follow the population at risk distribution, and therefore D := Kcases −
Kcontrol will be 0 [Diggle and Chetwynd, 1991]. The variance of D̂ under the null-

hypothesis can be estimated using Monte Carlo simulations. At each realisation, the
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labels between cases and controls are randomly interchanged.

1.4.3 Non-Bayesian modelling for specific clustering

Spatial approaches using kernels

The incidence of a disease in a geographical area S is related to the population at risk

underlying the region. Then, any model should consider both the distribution of cases in

S as well as the population for each area in S, generating two different point processes.

The goal is to quantify the differences between both processes and to test if they follow

the same distribution; that is, measuring where the population has a higher risk. A risk

surface is defined to quantify these differences, assuming that the distribution of cases

P1 and the distribution of population at risk P2 are Poisson processes with parameters

λ1(x) and λ2(x), respectively. Then the risk surface is defined as the ratio λ1(x)/λ2(x)

or similarly, the log risk surface as ρ(x) = log(λ1(x)/λ2(x)). Based on previous studies

Kelsall and Diggle [1995b] developed a methodology for estimating ρ(x) using non-

parametrical kernels. Later, they approached the problem using regressions [Kelsall

and Diggle, 1998]. The goal of estimating ρ(x) is to test if the risk surface is constant

ρ(x) = ρ0, i.e. the relative risk of having a disease is constant in the whole area.

According to Kelsall and Diggle [1995b], estimating ρ(x) is equivalent to find-

ing an estimator for r(x) = log(f(x)/g(x)), where f(x) and g(x) are the distribution

functions of cases and the population at risk, respectively. The goal is to estimate r(x),

test if r(x) = 0, and determine whether there are regions in G with higher risk. Then

the estimation of the surface at risk will be expressed in terms of f̂(x) and ĝ(x), the

estimators of the distributions. The authors proposed to use non-parametric kernels for

f̂(x) and ĝ(x):

f̂(x) =
1

n1

n∑
i=1

1

h21
K

(
x− xi
h1

)
,

where xi, i : 1, ..., n1 are the locations of observed cases, h1 is a smoothing parameter or

bandwidth, and K is a kernel function. Likewise, ĝ(x) is defined in terms of h2 and the

location of individuals at risk yi, i : 1, ..., n2.

Before calculating the kernel for each function f̂h1(x) and ĝh2(x), a bandwidth

should be carefully selected. Kelsall and Diggle [1995b] performed cross-validation to

find the optimal h1, h2 that minimises the difference between r̂(x) and r(x). They showed

empirically that the optimum scenario is applying the same h for both cases. However,

if the region S has boundaries, the kernel will count cases outside S and overestimate f̂

near the edges. Therefore, once f̂h(x) and ĝh(x) are calculated, a boundary correction
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is applied. The authors proposed to divide f̂(x) by a quantity that approximates the

proportion of points around x that lies in the region S. Several circles are drawn around

x such that they uniformly cover the surroundings. Then for each circle, the proportion

of points that lies inside S is calculated. Finally, once r̂(x) is computed, a surface

evaluating the significance of the estimation is calculated; that is, a p-value surface is

obtained through Monte Carlo simulations. For each replicate, the labels among cases

and controls are randomly reassigned, and the value of r̂(x) is computed under the

null-hypothesis.

The risk surface approach developed by Kelsall and Diggle [1995b] was based on

previous studies [Bithell, 1990]. Later, Kelsall and Diggle [1995a] explored the effect

of bandwidth choices and included covariates into a regression model [Kelsall and Dig-

gle, 1998]. Kernel smoothing has been applied in point source clustering [Lawson and

Williams, 1993] and spatial-temporal analysis in epidemiological applications [Han et al.,

2005].

Spatial approaches using hypothesis testing

For cluster analysis on a geographical area S, a hypothesis test can be designed to

check if the number of cases in a subregion of S is due to chance. The process can

be repeated for several subregions and the relevant areas marked as possible clusters.

To this end, a set of subregions or windows and a statistical test should be defined.

The first of these approaches was introduced by Openshaw et al. [1987] and is known as

Geographical Analysis Machine (GAM). Besag and Newell [1991] improved this approach

by minimising the number of windows as well as reducing computational time. These

methods and other attempts to test possible clusters were generalised by Kulldorff [1997],

as described later in this section. For all these approaches, assume that the observations

on S are drawn from a point process N .

For GAM, Openshaw et al. [1987] proposed to construct a grid over S such that

each intersection of lines in the grid is a potential window location. Each window is a

circle of radius r, centred at one intersection of the grid. Additionally, the raduis r is

modified to cover a wide range of sizes, ensuring that different window sizes are tested.

For each window, a hypothesis test is performed. Openshaw et al. [1987] suggested that,

under the null hypothesis H0, N can be a Poisson process, but emphasized that any H0

can be used. Finally, a Monte Carlo simulation is performed to calculate the significance

of the test. The GAM approach has been criticised since it performs an exhaustive scan

that could be simplified [Besag and Newell, 1991]. Also, GAM performs one test per
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circle, which leads to a multiple testing problem. Despite the problems of the GAM

machine, it was the initial point of several scan procedures as for [Besag and Newell,

1991; Kulldorff, 1997, 2001].

Besag and Newell [1991] modified the GAM to decrease computational cost by

reducing the scan and calculating a test analytically. First, the area S is partitioned

into regions. Windows are circles of radius r located at each region’s centre. For a fixed

circle, the radius is incremented such that the area of the circle intersects more regions.

That is, at step i, the circle intersects regions that cover a total area Si. Additionally, the

statistics Di and Pi store the observed number of cases and the underlying population in

Si, respectively. At iteration N , the studied area S is covered by the circle SN . Finally,

the method defines a hypothesis test that evaluates the statistic T = min {i : Di ≥ k},
where k is the minimum cluster expected size. If the process is Poisson under the null

hypothesis, then:

P(T ≤ t) = 1−
k−1∑
s=0

e−λλs

s!
,

where λ is an estimation of the intensity of the process, approximated as λ ≈ PtDN/PN .

Compared to GAM, this procedure reduces the number of circles to be drawn in the

scan. However, the model requires aggregated data and needs a value of k.

A general approach known as scan statistic aims to generalise previous attempts

to detect clusters as well as to solve computational problems. It was introduced by

Naus [1965] in a one-dimensional case and adapted to geographical cluster detection by

Kulldorff [1997]. Naus [1965] method is interpreted as follows. For the interval [0, 1]

and fixed population size of N , the method aims to find a cluster of length p. If the

null-hypothesis assumes that points are uniformly random, the probability PN,p(n) of

having a cluster with at least n > N/2 cases is computed analytically. Then the observed

value is compared to obtain the significance of the test. Kulldorff [1997] stated that this

analytical result would not be possible for higher-dimensional cases, suggesting a Monte

Carlo simulation instead. Moreover, a likelihood ratio test is proposed since the size of

the cluster is not fixed as in Naus [1965] model. Then, the scan is performed in three

steps. First, determine a set Z of subsets of S to be tested. Second, calculate the

likelihood ratio Λ for the observed cases. Third, calculate Λ under the null-hypothesis

using a Monte Carlo simulation. A subset Z in Z is called window.

In Kulldorff [1997] method, individuals are located in a studied area S equipped

with a measure µ. The quantity µ(A) counts the number of individuals in every subset

A of S. Each individual can have or not an illness, and individuals having the illness
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are drawn by a point process N . For the null-hypothesis, Kulldorff [1997] studied the

Bernoulli and Poisson processes as the underlying process N . The model states that for

a fixed pair p, q ∈ (0, 1) there exists a unique window Z such that individuals in Z are

ill with probability p and individuals in Zc are ill with probability q. For the Bernoulli

case that is, N (A) ∼ Bin(µ(A), p) if A ⊆ Z and N (A) ∼ Bin(µ(A), q) if A ⊆ Zc. The

alternative hypothesis Ha states that it is more likely to be ill inside Z; that is, p > q.

Conversely, the null-hypothesis H0 states that p = q. Similarly, for a Poisson process

N (A) ∼ Po(µ(A ∩ Z)p+ µ(A ∩ Zc)q) for all A ⊆ G and H0 : p = q while Ha : p > q.

Finally, the likelihood ratio Λ is computed. First, the likelihood of a given window

Z is calculated as

L(Z) = sup
p>q

L(Z, p, q),

where L(Z, p, q) is the likelihood of Z following Ha. Likewise, L0(Z), the likelihood

under H0, is calculated as

L0(Z) = sup
p=q

L(Z, p, q) =: L0,

a result that does not depend on Z. For both Bernoulli and Poisson cases, L(Z) and L0

can be formulated in terms of µ and N , simplifying the computation. Then, the ratio Λ

is defined as:

Λ =
∑
Z∈Z

L(Z)

L0
. (1.9)

The set that maximises Λ is Ẑ = {Z ∈ Z|L(Ẑ) ≥ L(Z), Z ∈ Z}. A Monte Carlo

simulation is implemented to calculate the significance of the test. Each replica samples

N (S) events in S, according to the population at risk µ(S). Then the ratio Λ is computed

for each replica.

The scan statistic is commonly applied cluster detection in epidemiological stud-

ies. Subsequent modifications of the statistic have been proposed to cover windows with

more flexible shapes. Duczmal and Assunção [2004] proposed a simulated annealing al-

gorithm to find optimal windows. Kulldorff et al. [2006] adapted the windows to include

elliptical shapes. Tango and Takahashi [2005] created FlexScan, choosing windows of

various shapes but with limited size. Similarly, other algorithms have been proposed

covering different shapes, as in [Patil and Taillie, 2004] and [Yao et al., 2011].
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Spatial-temporal approaches

The scan statistic has been extensively used in retrospective analysis [Auchincloss et al.,

2012]. However, some applications require a routine search for emerging clusters when

new data is analysed, refered as prospective analysis. Kulldorff [2001] proposed an

extension of the scan statistic to a spatio-temporal space; that is, a subset of S × R.

Le Tc be the time when the analysis is performed. The following modifications were

considered:

1. The scanned subsets are cylinders; that is, windows of shape Cr × [s, t], where Cr

is a circle of radius r.

2. The maximum time t within a cylinder has to be the current time Tc; that is,

t = Tc. This condition ensures that only current potential clusters are considered.

3. For computing the likelihood ratio Λ under H0, only the cylinders Cr × [s, t] with

Ts ≤ t will be included in the Monte Carlo simulation, where Ts is the last time

when historical surveillances were analysed using the scan statistics. This condition

ensures that clusters tested in the previous historical analysis are included in the

significance calculation, avoiding a multiple testing problem.

The approach of Kulldorff [2001] has been extensively used in disease surveillance

[Unkel et al., 2012], although further modifications have been proposed to improve the

scan. Kleinman et al. [2005] incorporated geographical and temporal trends into the

scan, such that seasonality patterns, for instance, are considered. Kulldorff et al. [2005]

removed the requirement of using the population-at-risk data for applications where

the information is scarce. Sonesson [2007] fitted the scan statistic into the CUSUM

framework described in Section 1.4.1. Takahashi et al. [2008] adapted the method to

include irregular shapes in the spatial component of the windows, while Costa and

Kulldorff [2014] used a graph structure with the same purpose. Several applications in

disease cluster detection have been implemented using scan statistics. For instance, it

has been implemented in a surveillance analysis in health systems [Kulldorff et al., 2005],

the study of daily syndromic surveillance [Takahashi et al., 2008], the study of influenza

cases [Costa and Kulldorff, 2014], and the detection of Covid-19 clusters [Desjardins

et al., 2020].
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1.4.4 Bayesian modelling for specific clustering

Spatial approaches

Several methods have been developed to analyse the incidences of rare diseases in spatial

and spatial-temporal frameworks. Bayesian methods have given much attention to this

topic, and the computational development of MCMC procedures has let statisticians

focus on more accurate formulations instead of searching analytically solvable functions.

Some of these initial approaches were proposed in other fields, like ecology or image

processing ([Besag et al., 1991] as an example). Initially, these methodologies focussed

on disease mapping, inferring the risk of having a disease in a geographical area using

the registered incidence count. Usually, the obtained risk surface suffers a shrinkage

compared to the observed count since the data collected is incomplete, the population is

small, or the disease is rare. However, for clustering detection, these smooth maps are

not desirable since the risk in areas with potential outbreaks could have been diminished.

Some variation to the disease mapping approaches has been developed as in [Knorr-Held

and Raßer, 2000; Green and Richardson, 2002; Denison and Holmes, 2001; Gangnon and

Clayton, 2000], as described later in this section.

Although there are fundamental differences, the methods explained in this sec-

tion have some characteristics in common. First, the goal is to find spatial clusters of

significantly elevated risk in a geographical area S, as defined by Lawson [2008]. Sec-

ond, all models are BHM with a GMRF as a prior as in (1.4). For that purpose, S

is partitioned into n disjoint regions Ai using post-codes areas or other appropriate di-

visions. The quantities yi and Ei represent the observed and the expected number of

cases, respectively, estimated using the population of Ai or other covariates. For each

i = 1, ..., n, the latent parameter λi (or log(λi)) captures the underlying relative (log-)

risk of incidence on Ai. Therefore, estimating λ = (λ1, . . . , λn) is the main purpose of

the mapping. For the likelihood of the model, the counts yi are independent given λ

and yi|λ ∼ Poi(λiEi). Then the likelihood will be given by:

P (y|λ) =

n∏
i=1

P (yi|λi) ∝
n∏
i=1

(λiEi)
yi exp (−λiEi). (1.10)

Although the likelihood is the same for all models, the latent parameters and hyperpriors

vary depending on each model assumptions.

Disease mapping The Besag-York-Molĺıe model, known as the BYM model [Besag

et al., 1991], was proposed for image restoration and extended to spatial analysis in
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epidemiology and disease analysis [Richardson et al., 2004]. The goal of the methodology

is to compute the posterior distribution of the log-risk, denoted as xi = log(λi). Then,

the likelihood in (1.10) can be rewritten as P (y|x). To build a prior for x = (x1, . . . , xn),

Besag et al. [1991] assumed that risk values in a region i are similar to the risk of its

neighbours (as in a Markov Random Field). To capture this spatial structure, x is

decomposed in a spatially structured field u = (u1, . . . , un) and an spatially unstructured

field v = (v1, . . . , vn) such that x = u + v. For the first case, if two regions i, j are

contiguous, denoted as i ∼ j, the model will favour cases where ui − uj is small. That

is, P (u) ∝ exp [−
∑

i<j wijφ(ui − uj)], where φ(z) is an increasing function for |z|. For

instance, if φ(z) = z2/κ and wij = 1 if i ∼ j, the distribution P (u|κ), known as Gaussian

intrinsic autoregression, is:

P (u|κ) ∝ 1

κn/2
exp

− 1

2κ

∑
i∼j

(ui − uj)2
.

On the contrary, the unstructured field P (v) is defined as

p(v|ι) ∝ 1

ιn/2
exp

{
−1

ι

n∑
i=1

v2i

}
,

such that v does not have a spatial structure. Therefore, the posterior distribution of

the model is given by

P (x, κ, ι|y) ∝ P (y|x)P (u|κ)P (v|ι)P (κ)P (ι).

Gibbs sampling is applied to compute the P (x, κ, ι|y), where the conditional probabilities

are given by:

P (xi|x1, . . . , xi−1, xi+1, . . . , xn, κ) ∝ 1

κn/2
exp

{
− 1

2κ
(ui − uj)2

}
.

As the BYM model, several methods have been proposed to estimate the risk

surface of a disease within a Bayesian framework. Clayton and Kaldor introduced a pre-

liminary version of the BYM model, estimating the surface based on the spatial structure

of the data [Clayton and Kaldor, 1987]. In general, Bayesian hierarchical models have

been the natural framework for disease mapping in geographical epidemiology [Best et al.,

2005]. In this context, Green and Richardson [2002] and Knorr-Held and Raßer [2000]

proposed alternative versions of the BYM model that incorporate spatial heterogeneity.
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Best et al. [2005] compared the main types of models in disease mapping, including the

BYM model, Green and Richardson [2002] and Knorr-Held and Raßer [2000], showing

that all models are flexible in capturing features of the risk surface based on their neigh-

bouring structure. Also, Green and Richardson [2002] and Knorr-Held and Raßer [2000]

models are suitable for cluster detection, as explained in the next section.

Cluster detection Although the BYM model has received much attention in epi-

demiology applications, the underlying risk surface obtained has two main drawbacks

for clustering detection. First, the model smoothes discontinuities in the risk surface

since it averages the information of the neighbourhood, as in equation (1.4.4). Sec-

ond, it underestimates high-risk values when the surface is smoothed, losing information

about possible clusters. To adapt these approaches to cluster detection, several studies

have introduced a partition of S such that every element of the partition, or cluster, has

a constant risk. For instance, the models of Knorr-Held and Raßer [2000] and Green

and Richardson [2002].

Suppose S is partitioned into n regions that are subsequently merged into k

clusters. Knorr-Held and Raßer [2000] constructed a model such that the number of

clusters, their location and the underlying risk are unknown. Let Z denotes the partition

of clusters and λj the risk of the cluster j. One region in each cluster j is chosen as

the centre of the cluster and is denoted as gj . The prior of k is proportional to (1− c)k

for a fixed constant parameter c ∈ [0, 1); that is, p(k) ∝ (1 − c)k. If c = 1, k has a

flat prior. Also, the prior of all partitions is flat; therefore, P (Z|k) = 1
n!/(n−k)! . Finally,

the risk values λ1, . . . , λk are independent and follow a log-normal distribution with

hyperparameters µ and σ2. That is, log(λj) ∼ N(µ, σ2) and for λ = (λ1, . . . , λk):

P (λ|κ, µ, σ) =

k∏
i=1

1√
2πσλj

exp

{
− 1

2σ2
(log (λj)− µ)2

}
.

Therefore, the prior of the model can be written as:

P (k, Z,λ, µ, σ) = P (k)P (Z|k)P (λ|k, µ, σ)P (µ)P (σ2).

The parameter c and the hyperpriors p(µ) and p(σ) are chosen according to the perfor-

mance of the simulations.

The core of the model relies on the reversible jump MCMC implementation since

it performs a predefined search in the space of all possible parameters (k, gj , λj , µ, σ
2)

to find the most probable set. Note that the partition is completely determined by the
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location of the centres. That is, let Ai be a region of S and let g1, . . . , gk be the centres

of the partition. Ai will be part of the cluster whose centre is closer to Ai, where closer

could be defined in several ways, e.g. the minimum number of borders to be crossed to

reach one region from the other. The MCMC is based on the Reversible-Jump MCMC

(RJMCMC) introduced by Green [1995], as described below. Suppose that the algorithm

starts in the initial state st. First, it has to find a new possible new state st+1. Three

types of jumps are defined:

• The parameters k and gj change, since one cluster center is removed or added.

Then, the corresponding λj is inserted (drawn from a proposal distribution) or

removed.

• One of the λj ’s changes.

• The parameters µ and σ2 change.

Then, the ratio between the posterior probability of the new state and the previous one,

and the acceptance probability are calculated. After several simulations, the posterior

distribution of the parameters is estimated. Finally, the output of this model is an

underlying risk surface as in the BYM model, but it includes discontinuities and the risk

within clusters is constant. The term cluster in this model does not coincide with the

definition proposed for this project. However, the elements in the obtained partition

should be analysed to determine if there are possible clusters (regions with significantly

elevated risk).

Green and Richardson [2002] proposed a similar model to the Knorr-Held and

Raßer [2000] approach, where the area S is partitioned, and the risk within each element

of the partition is constant. However, Green and Richardson [2002] employed a Potts

model to quantify spatial correlations favouring partitions where neighbouring regions

tend to be aggregated. The likelihood is defined as in previous approaches, following

(1.10), and the partition and underlying risks are denoted as Z and λj , j = 1, ..., k,

respectively. Also, the number of clusters ranges from 1 to kmax. There are two choices

for the prior of k: it is constant for all values in {1, ..., kmax} or follows a truncated Poisson

distribution, where kmax should be fixed. The prior of each λj is independent and follows

a Gamma distribution with parameters a, b, chosen such that a/b =
∑

i yi/
∑

j Ei.

Finally, the prior of the partition Z is defined, using a Potts model with interaction

parameter ψ. That is,

P (Z|ψ) ∝ exp

(
ψ
∑
i∼i′

I(zi = zi′)

)
,
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where zi is the cluster of the region i. The term in the exponential favours partitions such

that regions within a cluster are neighbours. Also, the parameter ψ quantifies the level

of interaction between neighbours. If the parameter is close to 0, the interaction is weak,

and the spatial correlation is low. For the hyperparameter ψ, the prior is constant for all

values in {0,∆ψ, 2∆ψ, ..., ψmax}, for some ψmax and ∆ψ. Finally, the prior distribution

of the model is given by:

P (k, Z,λ, ψ) = P (k)P (Z|k, ψ)P (λ|k, a, b)P (ψ).

To calculate the posterior distribution of the parameters, a RJMCMC is per-

formed, where the jumping rules are similar to the ones defined in Knorr-Held and Raßer

[2000]. Given the current state st in the space of all possible parameters (k, ψ, z, λ), a

probability distribution of the possible next move st+1 is defined. Two types of jumps

are defined:

• Fixed-dimension jump: the value of ψ, the location of clusters in Z, or the risk λj

change.

• Variable-dimension jump: the value of k changes. In that case, two clusters will

be merged, or a cluster will be divided into two parts.

Spatial-temporal approaches

For spatial-temporal analysis, spatial models have been easily adapted to include a tem-

poral dimension. However, the optimal structure depends on the type of data obtained

through surveillance. In disease mapping, if the geographical location of cases is known

as well as the infection onset time, then point processes provide a suitable framework to

formulate disease mappings. Otherwise, statistical analysis is conducted using models

based on aggregated data.

When locations are known, incidences are modelled as a realisation of a point

process N in a spatial-temporal space S × T , where the process is characterised by a

spatial-temporal intensity λ(s, t). If the intensity is not constant, the process is called

inhomogeneous. Moreover, if the intensity is drawn from a stochastic process, N is

referred to as a Cox process [Cox, 1955]. A general form for the intensity in S × T is

given by:

λ(s, t) = ρg(s, t)f1(s)f2(t)f3(s, t)

[Lawson, 2013]. The intensity is determined by a constant rate ρ, a background inten-

sity g(s, t), and functions f1, f2 and f3 describing the spatial, temporal and spatial-
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temporal terms, respectively. In particular, if the intensity is written as λ(s, t) =

ρg(s, t) expQ(s, t), the model is known as a Log-Gaussian Cox Process [Møller et al.,

1998], where Q(s, t) is a Gaussian process. Several studies have employed LGCP in

spatial-temporal disease modelling and surveillance, as in [Diggle, 2005], [Beneš et al.,

2005], and [Diggle et al., 2013]. For instance, Diggle [2005] incorporated a point pro-

cess methodology developed by Brix and Diggle [2001] into surveillance systems. In

their model, the intensity is given by λ(s, t) = λ0(s)µ0(t)R(s, t), where λ0 is a smooth

spatial surface, µ0 is the temporal variation, and R(s, t) = exp (Q(s, t)) is a spatial-

temporal stochastic process. Diggle [2005] used this framework to define potential out-

breaks in spatial-temporal cases. The authors defined an anomaly as a spatial-temporal

neighbourhood if every location within the neighbourhood fulfils the following condition

R(s, t) > c, where c is a threshold. Further applications of LGCP into disease modelling

approach are explained in Diggle et al. [2013]. Although there is extensive research on the

formulation of spatial-temporal models using Gaussian processes, LGCP is not always

employed since the available data format is not always suitable. In many applications,

the exact location of the incidences is not always provided, or the disease is rare, and

therefore the data is aggregated.

BHM models are a suitable framework for aggregated data, similar to the BYM

model presented earlier in this section. First, the space S × T is partitioned into N

regions in S and K intervals in T . Also, the counts on a region i and an interval t

are denoted by yti. In general, counts yti follow a Poisson distribution where the rate

parameter depends on the relative risk λti. In general, the model has the following

structure:

log λti = α+Rt + Ui +Wti,

where Rt is a term associated with time, Ui is related to space, and Wti is an interaction

term between space and time. For spatial-temporal clustering, the model is adapted

such that the interactive term Wti captures the clustering. For instance, Knorr-Held

and Richardson [2003] proposed a model where Wti = Xtiz
Tβ, where the parameter Xti

is a 0-1 random variable indicating when there is a cluster, z is a term that depends on

the counts in t − 1, and β is a regression parameter vector. The model also includes a

temporal and a seasonal trend such that Rt = rt + st, and a spatial component in Ui.

Also, priors for each term have a GMRF structure. Spencer et al. [2011] proposed a

similar approach, where Wti = Xtiβi, βi is an outbreak size parameter, and Xti is a 0-1

outbreak indicator. Moreover, the temporal term and spatial terms are described using

GMRF. This model is described in detail in Section 3.1.
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1.5 Outline of the thesis

This chapter has established the purpose of this project, described the background

knowledge required for the following chapters, and provided an overview of the cur-

rent methodologies in outbreak detection. The rest of the document is structured as

follows. Chapter 2 provides an overview of the dataset studied in this project. The

structure of the data is explained in Section 2.1, the properties of its spatial, temporal

and genetic variables are described in Sections 2.2, 2.3 and 2.4, respectively. Also, an

exploratory data analysis is performed in Section 2.5.

A Bayesian hierarchical model is presented and adapted to this project, using the

spatial-temporal outbreak detection model in Spencer et al. [2011]. Chapter 3 describes

the original spatial-temporal model and how to apply it to the project dataset. The

model and its implementation are explained in Section 3.1 and Section 3.3, respectively.

The results are explained in detail in Section 3.4, including a validation strategy using

genetic sequences.

In Chapter 4, a spatial-genetic model is proposed, adapted from the spatial-

temporal version in Spencer et al. [2011]. The model incorporates a Gaussian Random

Field into the Bayesian structure to include genetic sequences in the detector, as ex-

plained in Section 4.3. Also, a sampling strategy is proposed to improve the speed of

the sampling algorithm, as described in Section 4.4.

Chapter 5 describes a temporal-genetic approach using the model structure in

previous chapters. Two versions of the model are proposed such that the seasonality

of genetic sequences is taken into account. Finally, outbreaks found by each model are

compared in Chapter 6, including a criterium to choose potential outbreaks. The output

of this project, its novelty and its limitations are discussed in Section 6.3 and 6.4.
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Chapter 2

Reported Campylobacter

infections dataset

2.1 Overview of the dataset

Campylobacter species are a notifiable organism, as stated by the UK government, mean-

ing that laboratories and medical practitioners are required by law to report suspected

cases of infection. This project had access to sentinel surveillance data provided by

Public Health England (PHE) and the Food Standards Agency (FSA). As part of a

PHE project, the dataset included cases of Campylobacter infections reported in the

Oxfordshire and Newcastle upon Tyne clinical laboratories between October 2015 and

August 2018, inclusive. The database contained a total of 3901 reports and 4207 bac-

terial samples, where one or more faecal samples are collected per patient. When a

patient’s sample tested positive for Campylobacter species, epidemiological information

was collected from the public health data or requested directly from the patient. It

might include information about the residence location, time of symptom onset, and

other demographic and behavioural questions. As part of the PHE project, samples

of the bacteria were taken and the genome sequence data processed, assembled and

stored in the PubMLST databases. Whole-genome sequences are publicly available in

pubmlst.org/campylobacter, stored as the FS-FS101013 project, where the last up-

date of the dataset was obtained in July 2019.

The main variables related to this project are the patient residence location, the

date when the sample was received by the laboratory and the whole-genome sequence

of the sampled bacteria, as detailed in Table 2.1. Other temporal variables as the

isolation or symptom onset time were incomplete and not considered in the analysis.
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Variable Type of data Details Availability

Location Output Area1 Residencial location of the patient 99.2%
Received date Date format Submission date on the laboratory 100%

(07 Oct 2015 - 30 Aug 2018)
Whole-genome Allelic profile List of tagged loci with their 100%
sequence corresponding allele(s)

Table 2.1: Variables relevant to this project, including the type of data and the percent-
age of data available.

The spatial, temporal and genetic data are summarised in this chapter since they are

the core variables of the models described in this project. Section 2.2 describes the spatial

data, Section 2.3 displays the structure of temporal data, Section 2.4 shows details of

the genetic data, and Section 2.5 performs some preliminary data analysis on the genetic

sequences data.

2.2 Spatial data

The actual location where a food poisoning occurred is hard to track. For the dataset

in this project, the patient residence address provides an approximation of the location

of the event. Although this information is always accessible and the availability is high,

it provides only an estimate. Moreover, the location of infection and residence might

differ due to people’s movements. For instance, some cases reported in Newcastle Upon

Tyne had a residence address in Wales.

Most patients residences are located in Oxfordshire and Northamptonshire in

the south-east and Tyne and Wear and Northumberland in the north-east, as shown in

Figure 2.1. Each location is registered based on the Lower-Layer Output Areas or LSOAs,

geography defined by the Office of National Statistics or ONS. LSOAs are constructed

to be socially homogeneous and have a population between 1000 and 3000 inhabitants.

If further aggregation is required, the ONS merges contiguous LSOAs into Middle-Layer

Output Areas or MSOAs, covering a population between 5000 and 15000. Demographic

information for LSOAs and MSOAs can be obtained through the Office for National

Statistics at www.ons.gov.uk, such as the rural-urban classification of the territory and

population estimates.

For this project, the list of reported cases was divided into two datasets. First,

the OX dataset includes cases in Oxfordshire and six MSOA in Northamptonshire, as

1Output Areas are defined by the Office of National Statistics as geospatial units for England.
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Figure 2.1: Residence location of reported patients in two regions of England, registered
as LSOAs. (left) Location of cases registered in the Newcastle upon Tyne (triangles)
and Oxfordshire clinical laboratories (circles). (top-right) Location of cases comprising
the NE database. (bottom-right) Location of cases comprising the OX database.

shown in Figure 2.2. Second, the NE dataset includes cases located in two metropolitan

boroughs of Tyne and Wear (Newcastle upon Tyne and North Tyneside) and Northum-

berland, as shown in Figure 2.3. In summary, 1440 of the 3901 patients were included in

OX, 2247 were included in NE, 186 were not located in the areas mentioned, and 30 did

not report location, as shown in Figure 2.4. Table 2.2 details the amount of LSOA and

MSOA comprising the areas covered by OX and NE. Areas covered by both datasets

have a balanced amount of rural and urban areas, as shown in Figure 2.5.

Dataset Number of patients Number of LSOA Number of MSOA

OX 1440 431 92
NE 2247 503 99

Table 2.2: Number of patients, LSOAs and MSOAs comprising the OX and NE datasets.
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OXFORDSHIRE

NORTHAMPTONSHIRE

OXFORD

number of cases
per 10 000 inhabitants

(37.7,90]

(26.8,37.7]

(19.5,26.8]

(12.7,19.5]

(0,12.7]

No cases

Figure 2.2: Number of cases per 10 000 inhabitants in the Lower Layer Super Output
Areas (LSOA) included in the OX dataset, comprising all areas in Oxfordshire and six
Middle-Layer Output Areas (MSOA) in Northamptonshire. The augmentation in Oxford
is shown on the middle-right side of the figure. The intervals displayed in the colour
scheme are the percentiles of the number of cases such that a similar amount of regions
correspond to each colour.
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NORTHUMBERLAND

TYNE AND WEAR

NEWCASTLE UPON TYNE

number of cases
per 10 000 inhabitants

(37.7,90]

(26.8,37.7]

(19.5,26.8]

(12.7,19.5]

(0,12.7]

No cases

Figure 2.3: Number of cases per 10 000 inhabitants in the Lower-Layer Output Areas
(LSOAs) included in the NE dataset, comprising all areas in Newcastle upon Tyne,
North Tyneside and Northumberland. The augmentation in Newcastle upon Tyne is
shown on the top-left side of the figure The intervals displayed in the colour scheme are
the percentiles of the number of cases such that a similar amount of regions correspond
to each colour.
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3 901 
patients

1 541 registered 
in OX laboratory

2 516 registered 
in NW laboratory

1 518 with 
location

2 353 with 
location

23 without OA

7 without OA

1 440 in Oxfordshire 
and Northamptonshire

2 247 in Newcastle, 
North Tyneside and 

Northumberland

1 440 
patients

2 247 
patients

OX

NE

80 outside

106 outside

Figure 2.4: Distribution of the 3 901 cases reported in the Oxfordshire and Newcastle
laboratories: 1 440 in the OX dataset, 2 247 in the NE dataset, 30 without location, and
186 located outside the chosen MSOA.

rural/urban
classification

urban
rural

rural/urban
classification
urban
rural

Figure 2.5: The figure shows the rural/urban classification of the Lower-Layer Output
Areas of (left) Oxfordshire and selected regions in Northamptonshire, and (right) New-
castle upon Tyne, North Tyneside and Northumberland. The classification is defined by
the Office of National Statistics.

35



2.3 Temporal data

The actual time when the exposure to infection occurred is not available, nor the time

when the symptoms started, usually occurring a few days after exposure. Instead, the

OX and NE datasets include the date when the isolate was reported to the laboratory,

covering cases from the 7th of October 2015 to the 30th of August 2018. Reports occurred

only between Monday and Friday with a peak on Tuesday and Wednesday, as shown in

Figure 2.6. Therefore, dates were merged into weeks and labelled with the Friday date,

covering a total of 152 weeks.

0%

10%

20%

30%

40%

50%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day of week

pe
rc

en
ta

ge
 o

f r
ep

or
ts

OX
NE

Figure 2.6: Proportion of reported isolates per weekday for the OX and NE datasets.

Cases varied from 0 to 31 counts per week. Peaks of cases occurred between

spring and summer each year, for both datasets OX and NE, as shown in Figure 2.7.

The background colour of each plot represents the temperature (red scheme) and rainfall

(blue scheme) registered in each week and region. The figure provides a visual compar-

ison between meteorological variables and the count of cases, as observed in previous

Campylobacter studies [Louis et al., 2005]. Weather information was obtained from the

Met Office’s Weather and Climate records2.

For both databases, observations at a given week are correlated to the number of

cases at contiguous weeks, as shown in the autocorrelation plots in Figure 2.8. Weekly

counts are significantly correlated with observations at four and five weeks of lag for the

OX and NE datasets, respectively. The autocorrelation plot also exhibits seasonality

patterns, clearly marked for the NE case. Periodogram for OX and NE are shown in

Figure 2.9 to estimate the length of the seasonality cycles. The periodogram displays

the estimated spectral density of the time series for a range of frequencies. Peaks for

2https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series,
visited on January 2019.
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Figure 2.7: The registered date corresponds to the week of submission at the clinical lab-
oratory for the OX database (top) and the NE database (bottom). The plot background
colour (left) shows the monthly mean temperature in Celsius registered in the region,
interpolated to obtain week values (left). Similarly, the rainfall in each region is repre-
sented by the background colour in the plot (right), measured in mm. Meteorological
data were obtained from the Met Office’s Weather and Climate records.

both datasets occurred at a frequency corresponding to a year cycle. NE showed an

additional six months cycle that was not exhibited for OX.
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Figure 2.8: Autocorrelation function for OX (top) and NE (bottom). The horizontal
axis represents the lag, and the vertical axis indicates the autocorrelation at the given
lag. The horizontal dotted lines indicate the 95% bound interval under the hypothesis
that the series is not autocorrelated. If the autocorrelation value at lag k is outside the
confidence interval, the hypothesis that there is no autocorrelation at any lag greater
than k is rejected at a significance level of 95%.
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Figure 2.9: Spectral density estimation for OX (top) and NE (bottom). The horizontal
axis displays the frequency at which the density is estimated. The periodogram shown
corresponds to a non-smooth estimation of the spectral density.
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Scheme Length Description

MLST 7 Multiple housekeeping gene loci [Maiden et al., 1998].
rMLST 53 53 ribosomal protein loci [Jolley et al., 2012].
cgMLST 1 287 Loci present in at least 95% of the isolates in this project.
wgMLST 1 643 Loci identified and re-annotated in Gundogdu et al. [2007].

Table 2.3: Description of the main schemes defined for the genus Campylobacter. The
MLST, rMLST and wgMLST are obtained through the PubMLST. The cgMLST scheme
is defined for this project based on the loci available for the OX and NE databases.

2.4 Genetic data

To obtain genetic sequences, one or more clinical specimens were sequenced from each

patient sample. Whole-Genome Sequences data were assembled de novo and annotated

by the PubMLST tools. The dataset contains 378 C. coli and 3 776 C. jejuni sequences

with a mean length of 1 694 029 base pairs. A total of 156 patients had more than one

sample linked, marked in the dataset as duplicates. The amount of data conveyed by

the WGS can be summarised and organised by different typing methods, as described

in Section 1.1.2. Several schemes are available through the PubMLST tools, as detailed

in Section 1.2. The main schemes for Campylobacter species are seven-locus MLST

(MLST), ribosomal MLST (rMLST), and whole-genome MLST (wgMLST), as described

in Table 2.3. A core-genome MLST scheme (cgMLST) was defined for the joined OX and

NE databases, based on the 1 643 loci in wgMLST. A total of 1 287 loci were selected,

such that only loci present in at least 95% of isolates were included, as shown in Figure

2.10.

2.5 Exploratory data analysis

2.5.1 Study of the genetic space

Before designing statistical methods, each variable in the data should be embedded in a

metric space. For instance, spatial points can be seen as a subset of R2 with a Euclidean

distance, whereas time counts can be seen as subsets of R or Z+ with the absolute

distance. However, it is unclear how to embed the WGS into a suitable metric space.

For a fixed typing scheme of length L, a genetic sequence can be written as a vector

g = (g1, ..., gL) where each gi takes values from an arbitrary set Gi. In some cases, gi

can be reported as missing or incomplete. The set G of all possible sequences can be

structured as a metric space with distance d, denoted as genetic space. Here, the distance
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Figure 2.10: Presence of each wgMLST locus in the OX and NE databases, measured
as the percentage of isolates in the database with present locus (vertical axis). The
horizontal axis corresponds to each of the 1 643 wgMLST loci sorted such that the
plot is decreasing. The vertical dotted line indicates the threshold chosen to define the
cgMLST.

used in the PubMLST is adopted. It is defined as the number of loci that differ between

every pair of isolates. That is, for g, h ∈ G,

d(g, h) =
L∑
i=1

1(gi 6= hi). (2.1)

If both gi and hi are missing or incomplete, the term 1 is excluded from the sum. Note

that this condition does not apply if only one of the alleles is missing, in which case the

term is still included. For the subsequent analysis in this chapter, any sequence will be

a sample of the metric space (G, d) with d as the distance measure.

Outbreak detection based on genetic sequences requires a deep understanding

of the data and the underlying space G. Any method aimed to detect unusually close

sequences must take into account whether points in G look random or exhibit a clustered

pattern. Moreover, if points are not random, some regions in the genetic space will have

denser regions than others, and therefore the notion of closeness will differ. For instance,

in the project database, the distance between an ST-21 isolate and its closest sequence

is 22.6 on average while for an ST-1034 isolate is 320.9 (using the 1643 loci in the

wgMLST scheme). In that case, the notion of proximity relies on the abundance of each

type. Therefore, it is crucial to understand the pattern of the observed sequences in G.

To visualise the structure of the genome data, Figure 2.11 shows the pairwise distance

distribution of the 4207 isolates, using the cgMLST loci. Also, Figure 2.12 displays a

Minimum Spanning Tree of the sequences, coloured by the dataset.
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Figure 2.11: Empirical distribution of pairwise distances of all isolates using the cgMLST
scheme, where distances range between 0 and 1 287. The top plot shows the histogram
for the whole range. The bottom plot displays the histogram of distances below 1 000.

Since a variety of techniques have been used in the analysis of spatial-temporal

point patterns, these ideas can be adapted to study the structure of the genetic space.

In particular, spatial-temporal data can be modelled as a point process, and its basic

features can be analysed through preliminary testing. For instance, several summary

statistics have been developed to test randomness, like the distribution of interpoint

distances [Diggle, 2013; Møller and Waagepetersen, 2007] (Section 1.4). Most methods

in point processes assume that the underlying space has the orderly property, property

fulfilled by Euclidean spaces, for instance, [Daley and Vere-Jones, 2008]. However, given

the discrete and high-dimensional nature of G, these assumptions are not satisfied, and

the point processes theory cannot be applied. Instead, it is easy to estimate the distri-

bution of interpoint distances, assuming that every new observed sequence is a random

event. That is, for an arbitrary sequence type g ∈ G, we estimate the distribution of

observing s events at a distance r. First, assume that N(g), the number of sequences of

type g ∈ G, follows a Poisson distribution with parameter λ and is independent of N(h)

for any other sequence h ∈ G. Moreover, let Cr be the number of sequence types around

g at a distance r. Then, the probability of having a total of s events at a distance r of
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Figure 2.12: Minimum Spanning tree of the genetic sequences in the OX (purple) and
the NE dataset (blue), indicated by colour. Labels indicate the clonal complex and are
localised in the centre of the clonal complex node locations.
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g follows a Poisson distribution with parameter λ times Cr, following that the sum of

Poisson-distributed random variables is Poisson. That is,

s events at distance r ∼ Poi(Crλ).

If we assume that each locus can take values from a set of length X, then Cr =
(
L
r

)
(X −

1)r, where L is the length of the scheme. Analogous to Ripley’s function for point

processes, a summary function is defined as K(r) = λ−1E[events at a distance r]. Note

that K(r) = Cr under the homogeneous scenario (λ constant). Empirically it can be

estimated as

K̂(r) = λ̂−1
n∑
i=1

n∑
j=1,j 6=i

1[d(gi, gj) = r],

where n is the total number of observations, and 1 is the indicator function. The

parameter can be estimated as λ̂ = n/
∑

r Cr.
For the project database, K̂(r) is calculated assuming that X = n since n is the

maximum number of alleles that can be observed per locus. The estimated log(K̂(r)) is

shown in Figure 2.13a, and its compared to the theoretical value log(K(r)) plus or minus

one standard deviation in Figure 2.13b. The extreme behaviour exhibited by K̂(r) is a

consequence of the high-dimensionality of the space: all neighbours tend to be as far as

possible. The non-randomness of the data observed is a consequence of the nature of

the genetic evolution since it does not behave randomly.

2.5.2 Analysis of in-patient samples

It is often difficult to construct and validate models for outbreak detection since not all

real outbreaks are detected. PubMLST sometimes provides more than one isolate for

one patient, providing a set of isolates with a common source of infection. The dataset

analysed in this project had 142 patients with repeated samples, a total of 292 isolates

marked as duplicates and 158 pairs of isolates coming from the same patient. Figure

2.14 shows the distance distribution of pairs of isolates from the same patient, using the

core-genome scheme cgMLST introduced before. Since most of the pairs (79%) had a

distance less or equal than 25, Figure 2.15 shows the distribution for pairs with small

distances. Also, distant isolates might represent patients simultaneously infected with

multiple strains. Understanding the cause of the differences between the remaining pairs

of isolates is useful for understanding the features of a real outbreak. For that reason,

the loci responsible for each distance greater than 0 are analysed further. In total, 47

loci were identified, and 3 of them were distinct in at least four pairs of isolates from at

least three patients, as reviewed in Table 2.4.
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Figure 2.13: Comparison between the empirical and theoretical values of the function
K(r). For small distances, K̂(r) � K(r), proving the non-randomness of the collected
data.

Locus Pairs Name of locus Function Entropy

CAMP1178 7 Major outer membrane protein
Macromolecule
metabolism
Cell envelope

4.75

CAMP1159 4 Putative periplasmic protein Unknown 2.85
CAMP0751 4 Hypothetical protein Cj0816 Unknown 3.65

Table 2.4: Description of the loci responsible for in-patient variations of at least three
different patients, including the name of the locus, entropy and the functionality, if
known.

To examine the variability of a locus, the entropy is introduced as a measure

of the average information contained in a locus, and it is calculated using the entire

dataset. Let l be a locus in the cgMLST scheme, Il the number of alleles of l, oi the

number of isolates with allele i, and nl the number of sequences in the database where

locus l is present. Then, the entropy of l is defined as:

Ĥ(l) = −
Al∑
a=1

oa
nl

log
oa
nl
.

If a locus has many types of infrequent alleles the entropy will be high. On the other

hand, if a locus has a stable allele found in almost all isolates, the entropy will be low.
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Figure 2.14: Distribution of pairwise distances between isolates taken from the same
patient.
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Figure 2.15: Distribution of pairwise dis-
tances between isolates taken from the
same patient. Pairs with a distance
larger than 100 were omitted.
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Figure 2.16: Estimated distribution of
the entropy of cgMLST loci. Stars in-
dicate the entropy value of the top loci
shown in Table 2.4.

Figure 2.16 illustrates the estimated distribution of entropy for the 1287 cgMLST loci.

The horizontal line at the bottom shows the entropy of the loci in Table 2.4, responsible

for in-patient variations. The cgMLST locus with the highest entropy is CAMP1178,

causing variations within seven pairs of in-patient isolates. Entropy potentially is a

measure to explain why some loci are responsible for in-patient variation.

2.6 Summary

The purpose of this chapter was to overview the dataset available for this project, review

the main variables used throughout the thesis, and perform data analysis to explore

some properties of the genetic sequences. Section 2.1 reviewed the content of the data.
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The spatial variable in the database was described in Section 2.2. Similarly, Section

2.3 reviewed the temporal variable, and Section 2.4 examined the characteristics of the

genetic sequences. Finally, Section 2.5 contained the exploratory data analysis.
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Chapter 3

Spatiotemporal model for

outbreak detection

The dataset described in Chapter 2 contains three main attributes: a spatial, a temporal

and a genetic component. An algorithm to detect outbreaks could combine the informa-

tion provided by these attributes. For instance, many models suggested in the literature

analyse spatial or temporal data, and few of them combine both dimensions, as described

in Section 1.1. In this chapter, the spatial-temporal model presented by Spencer et al.

[2011] is described and applied to the dataset, where a Bayesian hierarchical model iden-

tifies relative peaks of Campylobacter incidences and labels them as potential outbreaks.

Several versions of the model are studied to capture different types of outbreaks. Also,

a mechanism to validate the model is proposed using the genetic component of the data.

Finally, the output of the model is compared to the spatial-temporal scan statistics de-

scribed in Section 1.4.3. The content of this chapter is divided as follows. The structure

of the model is described in Section 3.1. In Section 3.2, the whole-genome sequences

are used as a measure to validate the model. The model implementation is described in

Section 3.3 and the results obtained are analysed in Section 3.4. Finally, the discussion

about the model and the results is included in Section 3.5.

3.1 Model for outbreak detection

The spatial-temporal outbreak detection model proposed by Spencer et al. [2011] studies

the disease in a particular region and a fixed period of time. It assumes that the count of

cases is characterised by a temporal pattern constant in space, a spatial pattern constant

in time, and a spatial-temporal term that captures potential outbreaks. To define the
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model, the region is divided into I non-overlapping areas labelled as i = 1, ..., I and

the time period into T intervals t = 1, ..., T . Further, the data is aggregated into the

spatial-temporal blocks it, and the counts are stored in yit. Therefore, the incidences

can be described by a spatial effect Ui, a temporal effect Rt and a non-negative term Wit

capturing localised periods of increased risk, or outbreaks. Since outbreaks may have

various sizes, the studied areas are combined into larger areas or outbreak areas σ(i),

where σ is a function defined on the set of indices i = 1, .., I. Similarly, the intervals t are

combined into larger intervals or outbreak intervals φ(t), where φ is defined on the set

of interval indices k = 1, ...,K. This partition gives the model the flexibility to capture

potential outbreaks in blocks of different sizes, identified with the index σφ. Also, it

constrains the model to be identifiable. The term capturing outbreaks is rewritten as

Wσ(i)φ(t) or equivalently as Wσφ.

According to the model, the observed data yit follows a Poisson distribution with

mean niµit. The parameter µit describes the risk of an individual becoming infected in

the block it, and the offset ni is the population in area i. The effects Ui, Rt and Wσ(i)φ(t)

are included as latent variables as follows,

yit|µit, Ui, Rt,Wσ(i)φ(t) ∼ Poisson(niµit),

logµit = α+ Ui +Rt +Wσ(i)φ(t). (3.1)

Additionally, the intercept α captures the average incidence rate per person per time

unit in the studied region.

The parameters Ui quantify the risk at area i, caused by characteristics of the

spatial location. The model assumes the value of ui should be similar to its neighbours,

such that the spatial risk is smooth across the studied region. In this case, two areas are

neighbouring if they share a border. Therefore, the prior distribution for the terms Ui

are formulated as a Gaussian Markov Random Field (GMRF). In particular, each Ui is

centred on the mean of its set of neighbours Ni,

Ui|τU , U−i ∼ N

 1

|Ni|
∑
i′∈Ni

Ui′ ,
τ−1U
|Ni|

 ,

where U−i indicates all elements in the vector U = (U1, ..., UI) except Ui.

Similarly, the model smoothes the temporal terms R1, ..., RT such that the in-

crease in the value from Rt to Rt+1, Rt+1 −Rt, behaves similarly to the previous incre-

ment Rt − Rt−1. That is, the prior distribution for the terms Rt is that they follow a
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second-order random walk such that:

(Rt+1 −Rt)|τR, R1:t ∼ N (Rt −Rt−1, τ−1R ),

for t greater than 1, where R1:t = (R1, ..., Rt). The priors for the precision hyperpa-

rameters τU and τR follow Gamma distributions such that τU ∼ Gamma(aU , bU ) and

τR ∼ Gamma(aR, bR), controlling how smoothly the spatial and temporal risk should

change. The parameters R1 and R2 follow improper flat priors. To enable the identi-

fiability of the intercept parameter α, an additional sum-to-zero constraint is imposed

such that
∑

i Ui = 0 and
∑

tRt = 0.

Finally, the outbreak term Wσφ captures any risk not described by the spatial or

temporal terms. The model assumes that if there is a potential outbreak in the block σφ,

the size of the outbreak will depend only on its location σ. If no outbreak is detected,

the term takes the value of 0. Formally, Wσφ is defined as Wσφ = BσXσφ, where Bσ is

the typical size of an outbreak in the area σ and Xσφ is an outbreak indicator that can

be 0 or 1. The parameter Bσ follows a Gamma distribution such that,

Bσ|aB, bB ∼ Gamma(aB, bB).

The outbreak indicators Xσφ are 0-1 random variables. If Xσφ is 1, the model

captures the existence of an outbreak of size Bσ in the block σφ. If the model does

not detect an increased number of cases in the block σφ, the indicator Xσφ takes the

value of 0. Furthermore, the posterior distribution of Xσφ provides the probability of

observing an outbreak. Real outbreaks could last more than the length of an interval σ

or cover larger regions than the size of the area φ. To allow the model to approximate

realistic outbreaks, the Xσφ could be temporarily independent or dependent on each

other. Spencer et al. [2011] proposed two approaches. In the first case, referred as the

independent model or IM, the Xσφ are independent and identically distributed as follows:

Xσφ|p
iid∼ Bernoulli(p),

where the prior of the hyperparameter p follows a Beta distribution p ∼ Beta(ap, bp).

Since E(Xσφ) = p for all σ and φ, the hyperparameter p captures the expected number

of outbreaks that occurred in each interval and outbreak area σφ. In the second case,

referred as the correlated model or CM, the Xσφ are correlated in time. That is, the

probability of having an outbreak at σφ(t) depends on the presence of an outbreak at

σφ(t − 1). Formally, for a fixed outbreak area σ, the chain Xσφ(1), . . . , Xσφ(T ) form
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a Markov Chain with transition probabilities P(Xσφ(t) = 1|Xσφ(t−1) = 0) = p01 and

P(Xσφ(t) = 1|Xσφ(t−1) = 1) = p11, leading to the following prior:

Xσφ(t)|p01, p11, Xσφ(t−1) ∼ Bernoulli(1{Xσφ(t−1)=0}p01 + 1{Xσφ(t−1)=1}p11).

Additionally, p01, p11 have beta prior distributions with parameters (ap01, bp01) and

(ap11, bp11), respectively. Also, the prior distribution of the first position in the chain

Xσφ(1) is given by the stationary distribution of the Markov chain. That distribution

can be calculated analytically given the transition probabilities p00 and p01. That is,

Xσφ(1) ∼ Bernoulli

(
p01

p01 + 1− p11

)
This approach using correlated indicator terms allows the model to capture outbreaks

with variable duration.

The hierarchical conditional independence structure of the model is displayed in

a Directed Acyclic Diagram in Figure 3.1. Circle nodes represent the parameters of the

model and square nodes denote constants. Also, the red squares show the two possible

priors for the Xσφ terms.

3.2 Validation strategy

The spatial-temporal model described in Section 3.1 provides the probability that a

block is a potential outbreak. However, validating the accuracy of the model output is

not possible since real outbreaks are unknown. Two validation processes are proposed.

First, the validation is performed using genetic sequences as described below. Second,

the model is compared to an existing spatial-temporal outbreak detection model, such

as the scan statistics.

Genetic sequences validation

An approximate validation can be performed based on genetic sequences, since genetic

closeness has been observed between in-patient isolates (Section 2.5), and epidemiolog-

ically related isolates [McCarthy, 2017; Cody et al., 2013]. A block σφ is labelled as a

genetically-linked block if there exists at least one pair of patients such that the genetic

distance between their bacterial samples is less or equal than 20, using the genetic dis-

tance in equation (2.1) (Section 2.5). Finally, the potential outbreaks detected by the

model are defined. Let ρσφ the probability of having an outbreak at block σφ, defined
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Figure 3.1: Directed Acyclic Graph describing the hierarchical conditional independence
structure of the model, the parameters α, Rt, Ui, Bσ, Xσφ and the hyperparameters τR,
τU , p, p01, p11. The red squares are the two possible priors for the Xσφ terms.

Parameter
description

Prior
distribution

Sampling
algorithm

α Intercept Normal M-H (normal proposal)
Rt
ttt

Risk on the interval t
ttt

Second order
random walk

M-H (normal proposal)
M-H (block updates)

τR Temporal term precision Gamma Gibbs
Ui Risk on the spatial region i GMRF M-H single updates (normal,

conditional prior proposal)

τU Spatial term precision Gamma Gibbs

Bσ
ttt

Typical size of outbreak on the
block σ

Gamma
ttt

M-H single update
(truncated normal proposal)

Xσφ Outbreak indicator on the block σφ Bernoulli Gibbs
p

ttt
Probability that a block σφ is an
outbreak (IM)

Beta
ttt

Gibbs
ttt

p01
ttt

Probability that σφ(t) is an outbreak
if σφ(t− 1) is not an outbreak (CM)

Beta
ttt

M-H
ttt

p11
ttt

Probability that σφ(t) is an outbreak
if σφ(t− 1) is an outbreak (CM)

Beta
ttt

M-H
ttt

Table 3.1: Description of the parameters of the model, including the prior distribution
and the sampling algorithm used in the implementation.
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as the expected value of Xσφ. Then, a block is labelled as a potential outbreak if ρσφ is

greater than the threshold θ.

To assess the accuracy of the model, genetically-linked blocks are compared to the

potential outbreaks detected by the model. A Receiver Operating Characteristic (ROC)

curve provides a diagnostic of the performance of a classifier for various thresholds. The

ROC curve compares the rate of true positives (TPR) in the horizontal axis against the

rate of false positives (FPR) in the vertical axis. The area under the ROC curve (AUC)

evaluates the accuracy of the classifier. In particular, a perfect classifier has a TPR of

1, an FPR of 0 for every threshold, and an AUC of 1. For the spatial-temporal model,

the detected outbreaks are the output of the classifier while the genetically-linked blocks

are an approximation of the real outbreaks. Note that the terms true positives, false

positives and perfect classifier arise from a comparison between models rather than a

validation; therefore, they can be misleading.

Scan statistic comparison

Comparing the output to an existing model does not provide validation, but it highlights

the properties of outbreaks detected by both models. Therefore, the model is compared

to the retrospective version of the spatial-temporal scan statistics described in Section

1.4.3, using the SatScanTM software1. The retrospective version of the spatial-temporal

statistic is chosen since the geographical region, the study period is fixed, and the model

search for historical clusters.

3.3 Implementation

The implementation of the model is available in the R package epiclustR2 for the

independent model. The package estimates the posterior distribution of the parameters

using a Markov Chain Monte Carlo algorithm. At each iteration, new values for each

parameter are proposed. For the spatial component Ui, the new values are suggested

alternately by single Gaussian Random Walk proposals and conditional prior proposals

[Knorr-Held, 1999]. For the temporal component Rt, block updates are proposed to

control the high correlation between the parameters [Knorr-Held, 1999]. Additionally,

the new values of Bσ are suggested using single site Gaussian Random Walk proposals.

1SaTScanTM is a trademark of Martin Kulldorff. The SaTScanTM software was developed under the
joint auspices of (i) Martin Kulldorff, (ii) the National Cancer Institute, and (iii) Farzad Mostashari at
the New York City Department of Health and Mental Hygiene.

2Available at https://github.com/jmarshallnz/epiclustR. Visited in July 2019.
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Finally, for the independent model, the outbreak indicators Xσφ are updated using the

Gibbs sampler. Since the package only includes the independent model, it was adapted to

include the correlated model. The indicators Xσφ are updated using a Forward Filtering

Backward Sampling algorithm (FFBS) [Shephard, 1994].

The package uses parallel computing so that several chains are run at the same

time, saving computational time. This method allows the user to assess if different

starting locations for the Markov chain result in similar posterior distributions for the

parameters.

3.3.1 Model specifications

Before applying the model, the areas i are defined for the covered regions in the OX

and NE datasets. Both regions are aggregated using the LSOA since they are the most

granular segregation available. To define the intervals t, the reported dates are segregated

by week (Monday to Sunday), as described in Section 2.3. Additionally, the model is run

separately for the OX and NE datasets since both regions presents different temporal

pattern, as shown in Section 2.3.

Outbreaks areas and intervals are also defined. Time intervals are aggregated to

form outbreaks intervals. Three possible levels of temporal aggregation are proposed

with lengths of 1, 3, and 5 weeks, as shown in Table 3.2. Similarly, the spatial areas i

are aggregated to form outbreak areas. The first proposed aggregation uses the MSOA.

For the other aggregations, a clustering algorithm is applied to the areas i. A distance

matrix is defined using the great-circle distance of the LSOA population centroids3.

Next, the agglomerative hierarchical clustering (AHC) is applied using the complete

linkage algorithm as in (1.6). The resulting dendrogram can then be cut to produce

the number of areas required. Table 3.3 shows all outbreak area configurations and

their sizes, and Figure 3.2 shows the outbreak areas in the OX and the NE map. The

combination of outbreak areas and intervals gives the model the flexibility to capture

diverse types of outbreaks: spatial-temporally localised ones and outbreaks covering

large areas, which are known to exist for Campylobacter [McCarthy, 2017].

3LSOA population centroids obtained through the Office of National Statistics for the 2011 UK census.
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Configuration
number

Number of
outbreak intervals

Length of
interval

I 152 1 week
II 50 3 weeks
III 30 5 weeks

Table 3.2: Possible configurations for the outbreak intervals.

Configuration
number

Number of
outbreak areas

Source

A 92 (OX) / 99 (TW) MSOA
B 60 AHC
C 40 AHC
D 20 AHC

Table 3.3: Possible configurations for the outbreak areas.

A (20 areas)
OX

A (20 areas)
NE

B (40 areas)
OX

B (40 areas)
NE

C (60 areas)
OX

C (60 areas)
NE

D (92 areas)
OX

D (99 areas)
NE

Figure 3.2: Possible configurations for the outbreak areas displayed in the OX and the
NE map. The first row corresponds to OX and the second row to NE. Columns from
left to right correspond to the configurations A, B, C and D, respectively.

The prior distributions of the hyperparameters are equally defined for both

datasets. The spatial parameters Ui are allowed to have higher variance compared to
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the temporal parameters Rt, capturing the heterogeneity of the spatial risk surface:

τR ∼ Gamma(5, 0.1),

τU ∼ Gamma(1, 0.5),

Also, the outbreak typical size Bσ is chosen as:

βσ ∼ Gamma(1, 1).

For the outbreak indicators Xσφ, the independent and the correlated models are imple-

mented. For the independent case, the prior distribution of p is chosen according to

the expected number of outbreaks observed in the studied area. As published by Public

Health England, there were 9 outbreaks detected in England and Wales in 2017 PHE

[2017], although it could under-represent the actual number of outbreaks. As suggested

by Spencer et al. [2011], the mean of the parameter p is chosen such that one outbreak

is expected per year and per area. Then, p is fixed to 1/52, 3/52, and 5/52 for the con-

figurations I, II and III in Table 3.2, respectively. Also, the prior distribution is chosen

to have large variance. Therefore, the distribution is chosen as:

p ∼ Beta(1, 52l − 1),

where l is 1, 3, and 5 for the configurations I, II and III, respectively. For the correlated

case, the prior distribution for p01 is chosen as in the independent case. That is:

p01 ∼ Beta(1, 52l − 1).

For p11, the prior distribution is given by:

p11 ∼ Beta(2, 2).

The MCMC is run for combinations of outbreak area configurations (A, B, C, D), out-

break interval configurations (I, II, III), outbreak indicator cases (independent, corre-

lated model), and dataset (OX, NE). For each combination, results are obtained running

three chains in parallel with different starting locations, with 650 iterations each. Trace

plots of the parameters are examined to assess the convergence of the chain.
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3.3.2 SatScanTM specifications

The retrospective spatial-temporal scan statistic is computed using the SatScanTM soft-

ware, separately for the OX and the NE database. A Poisson probability model is chosen

for the space-time retrospective analysis. Dates are aggregated by week and the length

of the clusters is limited to a maximum of five weeks. The studied area is divided into

LSOA. The size of the clusters is limited to cover a maximum of 5% of the population.

The software provides a list of clusters and the resulting p-values.

3.4 Results

In this section, the results of the spatial-temporal model are reviewed, following the

implementation described in Section 3.3. In Section 3.4.1, the MCMC output, intercept,

and the spatial and temporal terms are analysed using the independent model in OX,

with outbreak intervals as in I and outbreak areas as in A. In Section 3.4.2, the inde-

pendent and correlated models are compared, using all interval and area configurations.

Also, the section includes the list of most probable outbreaks using all configurations.

Finally, the most probable potential outbreaks are compared to the clusters found by

the spatial-temporal scan statistic.

3.4.1 Model general results

Figure 3.3 shows a typical set of traces for the OX dataset, including the hyperparameters

τU , τR, p, and randomly chosen spatial, temporal and outbreak size parameters Ui,

Rt and Bσ, respectively. The colours represent the chains starting at different values.

Additionally, Table 3.4 compares the Effective Sample Size ESS and the acceptance rate

of each parameter for the OX dataset.

Parameter Rt Ui Bσ
ESS 337-650 312-650 286-350

Mean acceptance rate (%) 23.1% 54.5% 47.9%

Table 3.4: Effective Sample Size ESS and mean acceptance rate of samples produced by
the MCMC, for the parameters Rt, Ui and Bσ.
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Figure 3.3: A typical set of traces obtained after running the model for the OX dataset,
using the independent model, with outbreak intervals in I and outbreak areas in A. It
includes traces of the hyperparameters τU , τR, p, and one sample of the spatial, temporal
and the outbreak size parameters Ui, Rt and Bσ, respectively.

The exponential of the intercept α captures the probability of infection of an

individual in an area with geometric mean spatial risk during a week with geometric

mean temporal risk. For OX, the mean of the posterior distribution of α was -11.47

with a 95% confidence interval of (-11.57,-11.39). Also, for NE, the mean was -11.02

with a 95% confidence interval of (-11.07,-10.97). Figure 3.4 shows the expected number

of sporadic and total cases per week, for OX and NE. For both datasets, there was

a similar trend per year with the highest peak occurring during summer. However, a

different pattern was observed in 2016 in OX, where the peak is not clear. Moreover,

some peaks of observed cases were not fully covered by the outbreak indicators, and,

therefore, the total and the sporadic number of cases followed a similar trend.

For the OX case, Figure 3.5 shows the spatial relative risk of sporadic cases,
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Figure 3.4: Comparison of the observed number of cases with the expected number of
sporadic and total cases per week for OX (top) and NE (bottom). Yellow vertical lines
denote the week when a new season started.

expUi, which values are relative to the geometric mean of expα. Regions at south-east

had the lowest risk in the region. Also, rural areas showed a higher risk than urban

regions, on average. That is, the ratio of the geometric mean of expUi for urban areas

compared to rural areas was 0.87. Figure 3.7a shows the histogram of relative risk for

both urban and rural areas. Similarly, results for the NE dataset are shown in Figure

3.6. Urban areas had a lower risk compared to rural areas, with a ratio of 0.88. The

histogram of spatial relative risk is shown in Figure 3.7b.
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OXFORDSHIRE

NORTHAMPTONSHIRE

Oxford

Relative risk of
sporadic cases

(1.31,2.6]

(1.16,1.31]

(1.05,1.16]

(0.95,1.05]

(0.86,0.95]

(0.76,0.86]

(0,0.76]

Figure 3.5: Map of the relative risk of sporadic cases per Lower-Layer Output Area in
the areas covered by the OX dataset (left) and the augmentation in Oxford (top-right).
The intervals displayed in the colour scheme are based on the deciles of the absolute
value of the risk, such that a similar amount of regions correspond to each colour.
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Figure 3.6: Map of the relative risk of sporadic cases per Lower-Layer Output Area in
the areas covered by the NE dataset (left) and the augmentation in Newcastle upon
Tyne and North Tyneside (top-rigth). The intervals displayed in the colour scheme are
based on the deciles of the absolute value of the risk, such that a similar amount of
regions correspond to each colour.

60



Rural

Urban

40

30

20

10

0

10

0.0 0.5 1.0 1.5 2.0 2.5

relative risk of sporadic cases

fr
eq

ue
nc

y 
of

 L
S

O
A

OX

(a) Histogram for the OX dataset.
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(b) Histogram for the NE dataset.

Figure 3.7: Histogram of the geometric mean of relative risk for urban and rural areas.
The horizontal axis shows the geometric mean spatial risk. The height of the bars
represents the number of LSOA that falls in each range of spatial risk.

3.4.2 Model validation

The model was run for the different intervals and areas described in Table 3.2 and Table

3.3, respectively. Also, it was run for OX and NE separately, and the independent (IM)

and correlated model (CM). Figure 3.8 shows the area under the ROC curve (AUC)

using IM for both datasets, whereas Figure 3.9 shows the AUC using CM. Both figures

visualise the performance of both models and all configurations. In general, IM and
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CM perform similarly. Also, OX registered higher AUC than NE, with better results

at medium size areas and short intervals. Maximum performance was obtained for the

configuration B-I. The results for NE were lower, where the highest scores occurred

for the MSOA and long intervals, with a maximum AUC for the configuration A-III.

Finally, potential outbreaks in one or more configurations are detailed in Table 3.5 for

OX and Table 3.6 for NE. Potential outbreaks are defined as blocks with a probability

higher than 60% for OX and 50% for NE. For the OX data, there were eight potential

outbreaks. Potential outbreaks with label i., v. and vi. occurred in the same MSOA

area. Moreover, isolates from three patients in v. were genetically-linked to the isolate

from one patient in vi. Note that potential outbreaks might include isolates that would

not be part of the real outbreak.
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Figure 3.8: Area under the ROC curve for each interval and area configuration for IM.
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Figure 3.9: Area under the ROC curve for each interval and area configuration for CM.
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Number of
cases

Probability of
outbreak (%)

(Received)
date range

Location
type

Genetic distance
within sequences

i 11 93.6 16 Oct 2015 Urban 2 (+9)
ii 4 86.0 29 Jul - 5 Aug 2016 Rural 4 (+2)
iii 6 81.4 20 Jul - 17 Aug 2018 Rural 678-1255
iv 4 73.4 17 Nov - 8 Dec 2017 Rural 0 (+2)
v 6 73.2 3 Feb 2017 Urban 697-1192
vi 6 68.9 27 May 2016 Urban 3-5 (+3)
vii 5 66.6 20 Jul 2018 Urban 908-1287

Table 3.5: List of probable outbreaks in OX detected by all configurations, using a thresh-
old of 60%. It includes the number of cases, probability of being an outbreak, dates when
the isolates were received in the laboratory, rural/urban classification of the spatial block
and range of genetic distances within the block. (+N) indicates there are N isolates
genetically distant from the other isolates in the group. The list is ordered by probability
(in decreasing order).

Number of
cases

Probability of
outbreak (%)

(Received)
date range

Location
type

Genetic distance
within sequences

i 4 92.4 21 Jul 2017 Urban 1093-1282
ii 4 59.2 29 Apr 2016 Urban 27 (+2)
iii 4 52.2 10 Aug 2018 Urban 1030-1259

Table 3.6: List of probable outbreaks in NE detected by all configurations, using a thresh-
old of 50%. It includes the number of cases, probability of being an outbreak, dates when
the isolates were received in the laboratory, rural/urban classification of the spatial block
and range of genetic distances within the block. (+N) indicates there are N isolates
genetically distant from the other isolates in the group. The list is ordered by probability
(in decreasing order)

3.4.3 SatScanTM comparison

SatScanTM provides a list of clusters detected by the model and their assigned p-value.

The model was run for both datasets separately, following the specifications in Section

3.3.2. For OX, fourteen clusters were detected. Table 3.7 shows the top clusters with a p-

value of less than 0.5. The total number of cases, duration in weeks and genetic distance

within the cluster are included in the table. Clusters are compared to the output of the

Bayesian independent model. Cases involved in each cluster are compared to the output

of the Bayesian model of all configurations. The maximum outbreak probability found

among all cases and configuration is listed in the table, as well as the model configuration

that provided the maximum probability. For OX, two of five clusters were detected by
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P-value
Number of

cases
Duration
(weeks)

Genetic distance
within sequences

Max. outbreak
probability (%)

Model
configuration

i 0.042 11 5 84-1258 19.6 C-II
ii 0.051 4 2 4-1251 86.0 A-II
iii 0.082 6 5 776-1260 17.8 C-I
iv 0.286 5 2 955-1285 34.1 A-II
v 0.304 12 5 0-1286 93.6 D-I

Table 3.7: Comparison of the ST model and SatScanTM in OX. The table shows SatScan
clusters with a p-value less than 0.50, including the number of cases, duration in weeks,
and range of genetic distances within the cluster. Each cluster is compared to the
output of all spatial-temporal model configurations. The configuration with the highest
probability is shown in the table.

the Bayesian model. That is, clusters with label ii. and v. corresponded to potential

outbreaks with label ii. and i., respectively. Also, the two clusters contained cases with

a genetic distance of less than 4. Similarly, results for the NE are shown in Table 3.8,

where two clusters were identified with a p-value of less than 0.5. Cluster with label ii.

corresponded to the potential outbreak with label iii.

p-value
Number of

cases
Duration
(weeks)

Genetic distance
within sequences

Max. outbreak
probability (%)

Model
configuration

i 0.050 10 5 7-1263 40.2 A-III
ii 0.115 10 2 478-1285 52.2 A-I

Table 3.8: Comparison of the ST model and SatScanTM in NE. The table shows SatScan
clusters with a p-value less than 0.50, including the number of cases, duration in weeks,
and range of genetic distances within the cluster. Each cluster is compared to the
output of all spatial-temporal model configurations. The configuration with the highest
probability is shown in the table.

3.5 Discussion

The chapter focussed on detecting outbreaks based on the spatial and temporal data

of reported cases. The Bayesian hierarchical model proposed in Spencer et al. [2011]

was described and applied to the Oxfordshire (OX) and Tyne and Wear (NE) datasets

presented in Chapter 2. The model divides the spatial-temporal space into blocks,

estimates the risk of sporadic cases, and labels any localised increase in risk as a potential

outbreak. Therefore, the model provides a list of potential outbreaks with an associated

probability as well as the posterior distribution of the parameters describing the risk of
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sporadic infections.

The risk of sporadic cases was described by three terms: the average infection

rate, the temporal effect and the spatial effect. The posterior distribution of each term

displayed the spatial and temporal patterns of sporadic cases and served as a reference

point to compare the epidemiology of the disease in both datasets. For instance, the

exponential of the intercept quantifies the average risk of one person becoming infected as

a sporadic case, and it was higher for NE compared to OX. Similarly, the spatial terms for

OX showed higher fluctuations than the terms for NE, as shown in Figure 3.5 and Figure

3.6. These differences can be caused by variations in the geography: travel distances to

food suppliers and water sources that might be highly exposed to contamination. Also,

the distribution of the land could affect the risk factors. For instance, 12% of the area

of OX is urban, where 65% of the population lives, whereas the urban area is 7% for NE

containing 80% of the population. Additionally, rural regions exhibit a larger risk on

average than urban areas for both datasets. These variations might be caused by higher

exposure to farm animals sources or preferences in the consumption of local sources of

food. However, some bordering regions exhibited low values in risk, in particular, the

south-east and south-west of Oxfordshire as well as the south of Newcastle-upon-Tyne.

This effect is possibly caused by a decrease in reports since patients’ samples could be

sent to hospitals outside the study region. For instance, cities as Reading and Swindon

are closer to the south of Oxfordshire, as well as Gateshead to Newcastle-upon-Tyne.

Figure 3.4 shows the reported number of cases (grey) and the expected number

of sporadic cases (black) per week. The variations of the former were smoothed by

the trend of sporadic cases. Although both datasets have been analysed separately, they

exhibited similar patterns. Major peaks occurred in July, August and September, similar

to summer peaks found in England and Wales in a previous study [Louis et al., 2005].

Figure 3.4 also shows the expected number of cases including outbreaks (red). High

peaks in the reported cases were not completely captured by the outbreak detection

since the increase in incidences was not localised in a single outbreak region.

The accuracy of the outbreak detection was studied for different configurations,

changing the duration and the size of the outbreak regions. Moreover, two versions of the

model were applied, according to the correlation between the outbreak indicators: the

independent model (IM) and the correlated model (CM). Detected outbreaks were vali-

dated using a genetically-linked measure, although highlighting that this is a comparison

rather than a validation . Then, the accuracy of the detection was analysed using a ROC

curve. Figures 3.8 and 3.9 show the area under the ROC curve for both models using all

configuration proposed. Results were similar for both approaches, also showing that the
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model performed better in detecting genetically-linked outbreaks for the OX data. For

the NE data, the AUC was close to 0.5, suggesting that the model was unable to detect

genetically-linked outbreaks. The poor performance of the model might be caused by a

low incidence of localised outbreaks in NE. For instance, if a widely distributed food is

infected early on the food chain, it could result in a spatially or temporally dispersed

outbreak McCarthy [2017], difficult to be detected by the model. Also, the number of

real outbreaks is unknown, and this measure relies on the genetic proximity of isolates.

A threshold of 60% for OX and 50% for NE were chosen to analyse the detected

outbreaks in detail. Three of the eight outbreaks in OX occurred in the same area in

Oxfordshire. Further inspection showed that two of these outbreaks were genetically

linked even when they were separated by nine months. This event might be a persistent

outbreak spread in time that was not captured by the sporadic risk. These results

suggest the benefits of mixing genetic data with epidemiological data. The spatial-

temporal model presented in this chapter could incorporate genetic distances to detect

outbreaks that are not localised in space and time.

Finally, the spatial-temporal model discussed in this chapter was compared to

a common existing outbreak detection mechanism known as the scan statistics. The

model scans spatial-temporal cylinders of different sizes and compares the number of

the observed and expected number of cases in the cylinder. If there are more cases

than expected, the cylinder is labelled as a cluster. Table 3.7 and Table 3.8 displays

the clusters found by the scan. Both approaches captured three clusters in common out

of seven found by the scan. The spatial-temporal Bayesian model had several advan-

tages over the scan. First, it provided the probability of being a potential outbreak, a

flexible measure to evaluate the detection mechanism. Second, the model considers the

seasonality pattern. However, the scan does not require to run several configurations to

evaluate several regions and outbreak lengths. This comparison between the Bayesian

model and the scan statistic is not a validation since real outbreaks are unknown.
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Chapter 4

Spatial-genetic model for

outbreak detection

The model in Chapter 3 aimed to identify localised spatial-temporal outbreaks, where

the dynamics of the sporadic cases were captured by a spatial and a temporal smooth

surface. The inclusion of genetic data to this type of model provides information to

detect other types of outbreaks, such as localised ones in space but dispersed in time

[McCarthy, 2017]. In this chapter, the spatial-temporal model is adapted to detect

spatial-genetic outbreaks that may not necessarily be localised in time. To incorporate

genetic information, the model includes a smooth surface describing the risk of sporadic

cases for each genetic type using a Gaussian process. Any unexpected increase in cases

is labelled as a possible outbreak. The model is applied to the OX dataset described

in Chapter 2. The spatial and genetic risk distributions are analysed, and the poten-

tial outbreaks are compared to the results in the spatial-temporal model in Chapter

3. Although a spatial-temporal-genetic model could be studied, outbreaks localised in

time, space and genetics would not be more informative than the results in Chapter 3.

Therefore, the main goal of this chapter is to describe the mathematical aspects of the

spatial-genetic model, as well as to present the results for the OX dataset. The model

applied to the NE dataset is studied in Chapter 6.3.

The chapter is organised as follows. Section 4.1 explains the motivation to pro-

pose a spatial-genetic model and Section 4.2 formulates a model for sporadic cases, using

a Bayesian hierarchical model. The model for spatial-genetic outbreak detection is pre-

sented in Section 4.3 and the details of the implementation are explained in Section

4.4. Section 4.5 presents the results of applying the model on the data available for this

project. Finally, the analysis of the results, limitations and further work are discussed
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in Section 4.6.

4.1 Motivation

The goal of this chapter is to produce a method for outbreak detection using epidemio-

logical and genetic information of reported cases in some regions in the UK. The data

available for this purpose were presented in Chapter 2. It contains three main sources

of information: space, time, and the whole genome sequences of sampled bacteria. The

method described in this chapter analyses only spatial and genetic data, intending to

find outbreaks localised in space and with similar genetic sequences. However, this ap-

proach requires a notion of proximity between genome sequences. With this notion, it

is possible to understand which genetic types are causing sporadic cases, and allows the

model to determine when there is an outbreak. That is, if the sporadic cases are studied,

it is possible to label outbreaks when there is a striking increase in the number of cases.

This approach was used in the spatial-temporal model presented in Chapter 3, using a

Bayesian hierarchical model. In this chapter, the spatial-temporal model is adjusted to

use the spatial data and whole-genome sequences.

The spatial-temporal model decomposed the log-risk of sporadic cases into purely

spatial and temporal components, where the priors of each component produced a

smooth spatial and temporal surface, respectively. To include a genetic term into a

similar model, a smooth surface of the log-risk of genetic types should be proposed. Be-

fore presenting a formulation for the problem, the space of genetic sequences is explored

to understand what a sporadic surface will capture and how to smooth it.

In Section 2.5.1, a space of all possible sequences was defined and denoted by G
with a distance measure d given by (4.1):

d(g, h) =

L∑
i=1

1(gi 6= hi).

for g, h ∈ G, and where the pair (G, d) forms a metric space. L indicates the length of

the typing scheme, and it is chosen to be cgMLST for the following chapters. In Section

2.5.1 it was also shown that the sequences collected in the dataset are not uniformly

distributed in G. For instance, if a ball of radius 20 is drawn around an observed ST-21

sequence, the ball will contain an average of 82 other sequences from the dataset. That

is, on average there exist 82 sequences that differ in less than or equal to 20 alleles to an

ST-21 sequence. Conversely, a ball around an ST-464 sequence will contain an average
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of 33.

There are certain genetic types such as ST-21 that have a higher risk of being

observed, while types as the ST-464 are less common. Observing a high number of

uncommon sequences could be suggestive of an outbreak. To build a model to understand

the behaviour of the sequences of sporadic cases, a smooth surface describing the risk of

genetic sequences should be constructed.

4.2 Sporadic cases in the genetic space

4.2.1 Formulation of a smooth risk surface

A smooth surface should capture the non-uniformity of the observed sequences on the

space G, similar to the formulation for the spatial-temporal model (Section 3.1). For

the spatial case, a Gaussian Markov Random Field (GMRF) was used to compute the

log-risk associated with the space, where a Gaussian field was defined over the discrete

domain of regions with a notion of a neighbourhood. The idea of the GMRF could be

extended but instead of using a precision matrix encoding the notion of neighbourhood,

a kernel can be used. The kernel is described by a covariance function, as detailed in

Section 1.3.2. In that sense, the risk of every type of sequence is described as a Gaussian

process over the space (G, d). That is, the log-relative risk of the vector of observed

sequences G = (gs)s∈S , with indexes in S, follows a multivariate normal distribution:

G|Σ ∼ MVN(0,Σ), (4.1)

with mean 0, and covariance matrix Σ given by the covariance function: Cw : G×G → R:

[Σ]ss′ = Cw(gs, gs′),

where s, s′ ∈ S and with parameters w. The formulation of the prior in (4.1) will be

updated in Section 4.3.1, to resolve some identifiability issues with the outbreak detection

model.

4.2.2 Model for sporadic cases

The prior defined in (4.1) is used to extend the spatial-temporal model to include genetic

data. In particular, a spatial-genetic model is proposed to study possible localised out-

breaks in space that are persistent for a long period. Similarly to the spatial-temporal

case, the count of cases is defined as yis, for a region i and a genetic sequence s, and
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follows a Poisson distribution yis ∼ Poisson(niµis), where ni is the population in the

region i. Before studying an outbreak detection mechanism, a model estimating the risk

of sporadic cases is described. Therefore, the log-risk of sporadic cases is given by:

logµis = α+ Ui +Gs, (4.2)

where Ui is the logarithm of the spatial risk of a region i and Gs is the logarithm of

the genetic risk of a sequence s. However, the model in (4.2) might fail at capturing

the heterogeneity of the risk in the genetic space. That is, in the current dataset, 82%

of the observed sequences are unique. The respective terms Gs for these sequences will

behave similarly, regardless of the density of cases in the neighbourhood. To overcome

this issue, the genetic space is partitioned into regions or clusters of similar size. Then

the model can estimate the risk per cluster instead of the risk per sequence. That is, the

set of observed sequences S is partitioned into clusters ck, k ∈ K, and the genetic risk

is labeled by the cluster index k instead of the sequence index s. This also reduces the

computational cost of calculating the inverse and the determinant of Σ, both of which

are required for the estimation of parameters, as described in Section 4.4. To extend the

notion of cluster proximity, a distance between clusters is defined as follows:

dc(k, k
′) =

1

|ck||ck′ |
∑
s∈ck

∑
s′∈ck′

d(s, s′),

equivalent to the unweighted average linkage dissimilarity in (1.5). For notation, K is

introduced as the number of clusters: K = |K|. Now, the terms Gs are rewritten as Gk

and are given by a multivariate Normal distribution as in equation (4.1). The notion of

similarity between neighbouring clusters and the smoothness of the surface are given by

a covariance matrix, as explained in Section 4.2.3. Additionally, details on the partition

into the clusters ck is described in Section 4.4.1.

4.2.3 Covariance functions

Two types of covariance functions are used. First, the Squared Exponential covariance

or SE is given by

[Σ]kk′ = τ−1G exp

(
−dc(k, k′)2

2ρ2

)
,

with two parameters: a precision parameter τG, and a length-scale ρ controlling the

notion of closeness. Second, the Matérn kernel with parameters ν, ρ and τG, as in (1.2).

Note that the Matérn function is equivalent to the Squared Exponential when ν → ∞.

70



Two Matérn functions with parameters ν = 1/2 and ν = 3/2 are used, given by:

[Σ]kk′ = τ−1G exp

(
−dc(k, k′)

ρ

)
,

[Σ]kk′ = τ−1G

(
1 +

√
3dc(k, k

′)

ρ

)
exp

(
−
√

3dc(k, k
′)

ρ

)
,

respectively, also written as M1/2 and M3/2. The shape of each covariance function

is shown in Figure 4.1 for distances between 0 and 50 and a length-scale of 10. For

each case, τG is a non-negative parameter controlling the precision of the values of Gk,

and it is the maximum covariance that can be obtained. The length-scale ρ controls

the distance at which two sequences are close enough to have a similar risk. In the SE

and the M1/2 case, ρ is the distance where the covariance between two sequences is

1/e ≈ 0.37 times the maximum possible variance τG. The three covariance functions

applied here share the same property: [Σ]kk′ strictly decreases when dc(k, k
′) increases.

However, the SE is infinitely differentiable and therefore it is strongly smooth compared

to the Matérn cases.
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Figure 4.1: Covariance functions studied for the model: Squared Exponential (SE),
Matérn function with ν = 3/2 (M3/2), and Matérn function with ν = 1/2 (M1/2), with
ρ = 10. The functions are strictly decreasing.

4.3 Model for outbreak detection

In this section, the model in 4.2 is modified to include a term to study spatial-genetic

outbreaks. Similarly, the counts of cases in a region i and a genetic cluster k are given
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by:

yik|ni, µik ∼ Poisson(niµik),

where the risk µik is given by

logµik = α+ Ui +Gk +Xσ(i)ξ(k)Bξ(k),

with an extra term Xσ(i)ξ(k)Bξ(k) capturing outbreaks in the block σ(i)ξ(k). As in the

previous model, the regions i are grouped into larger spatial blocks σ(i), where the

function σ gives the index of the block containing the region i. Similarly, the genetic

clusters k are grouped into genetic blocks ξ(k) in G. The function ξ gives the index of the

block containing the cluster k. The existence of blocks gives flexibility to the outbreak

coverage and also avoids identifiability problems.

The term Xσ(i)ξ(k) is a 0-1 random variable capturing outbreaks, where 1 means

the block σ(i)ξ(k) is an outbreak, and 0 otherwise. X follows a Bernoulli distribution as

before, with parameter p ∈ [0, 1]. The term Bξ(k) captures the typical size of an outbreak

having values in the genetic cluster ξ(k), and it is given by,

Bξ(k)|aB, bB ∼ Gamma(aB, bB), (4.3)

Finally, the terms α and Ui are given by:

α|ma, sa ∼ N (ma, sa)

Ui|τU , U−i ∼ N

 1

|Ni|
∑
i′∈Ni

Ui′ ,
τ−1U
|Ni|

 ,

(4.4)

A review of the model structure and the detail of each parameters is shown in Figure

4.2 and in Table 4.1. Details on the algorithm tuning are included in Section 4.4.
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Figure 4.2: Directed Acyclic Graph describing the hierarchical conditional independence
structure of the model, including the parameters α, Ui, Gk, Bξ, Xσ(i)ξ(k) and the hyper-
parameters τU , τG and p.

Parameter

description

Prior

distribution

Sampling

algorithm

α Intercept Normal M-H (normal proposal)

Gk Risk of the genetic type in cluster k Multivariate

normal

M-H single updates

(normal proposal)

ρ Length-scale of covariance function Gamma M-H (truncated normal

proposal)

τG Precision of covariance function Gamma Gibbs (in block with ρ)

Ui Risk on the spatial region i GMRF M-H single updates (normal,

conditional prior proposal)

τU Spatial term precision Gamma Gibbs

Xσξ Outbreak indicator on the block σξ Binomial Gibbs

Bξ Typical size of outbreak on the

cluster σ

Gamma M-H single update

(truncated normal proposal)

p Probability that a block σξ is

an outbreak

Beta Gibbs

Table 4.1: Description of the parameters of the model, including the prior distribution
and the sampling algorithm using in the implementation.
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4.3.1 Constraints

Additional identifiability constraints are imposed on the model. Since the terms α, Ui

and Gk can take values in R and thus, there are several assignments to the parameter

values that result in the same likelihood. For instance, α+Ui +Gk = 0 can be obtained

with infinitely many configurations of each term. Therefore, a constraint can be applied

to the spatial and genetic terms to solve this restriction. In the first case, the spatial

terms are subject to
∑

i Ui = 0. In the second case, a similar linear constraint can be

applied to the genetic terms. However, imposing
∑

kGk = 0 alters the original prior

shown in (4.1). Therefore, the prior is modified such that the vector G = (Gk)k∈K is

centred in the mean Ḡ. That is,

G− Ḡ|Σ ∼ MVN(0,Σ).

This distribution can be rewritten as AG ∼ MVN(0,Σ), where A is a K ×K matrix

such that:

A = IK −
1

K
JK , (4.5)

where IK is the K ×K identity matrix and JK is the K ×K matrix of ones. Following

the linear properties of the multivariate Normal distribution, the prior can be rewritten

as:

P(G|P ) ∝ exp

(
−1

2
GTPG

)
, (4.6)

where P = AΣ−1AT = AΣ−1A is the precision matrix. Then, the constrain
∑

kGk = 0

is applied to the genetic terms.

4.4 Implementation

The posterior distribution of the parameters of the model is estimated using a Markov

Chain Monte Carlo algorithm. At each iteration, a new value of each parameter is

proposed using different sampling algorithms, as described in Table 4.1. The parameter

α is sampled using univariate Gaussian Random Walk proposals. As in the spatial-

temporal model, the update of Ui is alternated between single Gaussian Random Walk

proposals and conditional proposals [Knorr-Held, 1999], explained in Section 1.3.2. The

proposed ρ and Bσξ are sampled from a truncated Gaussian distribution on R+. The

remaining parameters τG, τU , Xσξ and p are updated using Gibbs sampling. Values

of τG and ρ are proposed and accepted jointly to allow a good mixing between both

parameters. Finally, the sampling algorithm for updating Gk is described in Section
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4.4.2.

The model was implemented in R and is available on a public GitHub repository

[Guzmán-Rincón, 2021]. The results in Section 4.5 were obtained using the dataset from

Oxfordshire. Three parallel MCMC were run with different starting points, with 5000

iterations each. Additionally, the prior distribution of the hyperparameters was set as

follows:

τU ∼ Gamma(1, 0.1),

τG ∼ Gamma(1, 0.01),

Bσξ ∼ Gamma(2, 1),

p ∼ Beta(1, 611).

For the parameter p, the distribution was chosen such that the mean is ap/(ap + bp) =

1/612 and the variance is large, where 612 is the number of genetic blocks ξ(k). That

is, the expected number of outbreaks per block cluster during the studied period is

expected to be 1. The priors for the precision parameters τU and τG were chosen such

that more variation is expected in the spatial component than in the genetic component.

Also, two changes were made compared to the prior choices for the ST model. First,

the prior for τU was modified to allow higher precision values. Second, the prior of

the parameters Bσξ was modified such that the mean size of a typical outbreak was 2.

These changes enabled the spatial component to be smoother and imposed the model

to capture larger outbreaks. Otherwise, the model did not capture potential outbreaks.

Finally, the construction of the spatial and genetic blocks σ(i) and ξ(k) is explained in

Section 4.4.1.

4.4.1 Blocks construction

For the implementation of the model, the following specifications are considered:

• The spatial area was divided into the regions i, which in turn were grouped into

spatial blocks σ(i). The choice for spatial regions and blocks are the LSOA (431

areas) and the MSOA (92 areas) in Oxfordshire, respectively (Section 2.2).

• The set of observed sequences {gs, s ∈ S} was grouped into the clusters ck, k ∈
K, which in turn were grouped into the genetic blocks ξ(k). Consequently, an

agglomerative hierarchical clustering algorithm was applied to {gs, s ∈ S} using

the genetic distance d and the unweighted average linkage (Section 1.3.4). The
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obtained dendrogram, denoted as D, was cut twice to obtain clusters and genetic

blocks. For the former case, the dendrogram was cut such that the average linkage

distance within clusters is less than or equal to 10; the distances between the

resulting clusters are shown in the histogram in Figure 4.3. For the genetic blocks,

the dendrogram is cut such that the average linkage distance within genetic blocks

is 50 or less. Figure 4.4 shows the dendrogram D, where the two blue horizontal

lines represent the two cutting heights: 10 and 50.
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Figure 4.3: Histogram of distances between the clusters ck, applying a hierarchical clus-
tering with unweighted average linkage (only distances smaller than 1000 are shown).
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Figure 4.4: Dendrogram of a hierarchical clustering applied to the set of observed genome
sequences gs, based on the distance d in (4.1). The yellow lines are the cut heights to
define the clusters ck and the genetic blocks ξ(k). The red band represents the range of
heights chosen to update the parameters Gk for the MCMC implementation.
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4.4.2 Sampling algorithm for the genetic risk parameters

This section provides a detailed explanation of the sampling algorithm used to update the

genetic risk parameters Gk. Initially, single random walk jumps (RW) are proposed, such

that for each k the proposedG′k is obtained from a normal distribution around the current

value Gk: G
′
k ∼ N (Gk, .). The RW jumps are accepted or rejected using an adaptive

Metropolis-Hastings algorithm, where the variance of the jumps is automatically scaled

to achieve an acceptance rate of approximately 44% [Garthwaite et al., 2016]. Samples

of the posterior distributions of the model are obtained using an MCMC and the RW

proposals for Gk to obtain preliminary results. Traces of three chains for one randomly

chosen Gk are shown in Figure 4.6. Each chain is exploring different regions of the space

of possible values of the Gk, showing low convergence of the RW sampling algorithm.

The slow convergence is due to the high correlations between the parameters

Gk. Inspection of the covariance matrix shows that parameters are highly correlated for

any value of ρ. Similar difficulties with sampling algorithms occur with other type of

models (as the Generalised Additive Mixed Models or GAMM), where the parameters

are highly correlated, and therefore the univariate RW sampling has slow convergence

[Knorr-Held, 1999; Fahrmeir and Lang, 2001]. To overcome the issue, Fahrmeir and Lang

[2001] proposed a generalised block update algorithm for problems similar to GAMM.

Fahrmeir and Lang [2001] describe an updating mechanism for a vector G that

follows a distribution as in (4.6). Let G = (Gk)k∈K. Instead of updating each Gk

individually, the updates are done in blocks. At each MCMC iteration, K is partitioned

into groups of size m. For a group S ⊂ K, GS denotes the subvector (Gk)k∈S , Sc is

the set of indices of K not in S, and ΣSSc denotes the submatrix of Σ with rows in S

and columns in Sc. The proposal value for GS is sampled from the conditional Normal

distribution of GS given GSc and Σ. That is, G∗S |GSc ,Σ ∼ N (µS ,ΞS) with mean and

covariance matrix given by:

µS = −Σ−1SSΣSScGSc , (4.7)

ΞS = Σ−1SS , (4.8)

respectively. Since the proposal distribution of GS is its conditional prior, the proposal

is accepted with probability

min

{
1,
L(G∗S |·)
L(GS |·)

}
, (4.9)

where L is the likelihood of GS . Finally, the set of indices K is partitioned into groups.

At each iteration, a random integer m is drawn such that the indices are partitioned
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into groups of size m. Large values of m improve convergence while random values of m

improve the mixing of parameters. This updating scheme was applied in Section 3.3 to

improve the mixing of the temporal parameters Rt.

The method proposed by Fahrmeir is adapted to update the genetic risk pa-

rameters Gk. For a subset S of K, the proposal for GS follows a Normal distribution

with mean and covariance as in (4.7) and (4.8) respectively. Additionally, a strategy

for partitioning the set of indices K into groups is proposed. Groups are constructed

such that parameters within each group are highly correlated. Therefore, the partition is

performed by cutting the dendrogram D introduced in Section 4.4.1 for different cutting

heights. To vary the group sizes and avoid correlation problems between groups, random

cuts of the dendrogram are proposed at each MCMC iteration, as detailed in Algorithm

4. This updating strategy is equivalent to the blocking strategy of Knorr-Held and Rue

[2002], proved to be a valid MCMC technique, and then it produces an ergodic chain.

Therefore this algorithm converges to a unique stationary distribution.

Algorithm 4: Updating strategy for G

Result: (G(1), ...,G(T ))
initialise G(0);
for iteration t = 1, ..., T do

choose a random height h from [10, 130] to cut the dendrogram;
partition K into nh groups a1, ..., anh by cutting the dendrogram;
for l = 1, ..., nh do

compute µal ,Ξal as in (4.7) and (4.8);

sample from proposal G∗al
|G(t−1),Σ ∼ N (µal ,Ξal);

compute acceptance probability: α(G∗al
;G

(t−1)
al ) = min

{
1,
L(G∗al |·)
L(Gal |·)

}
;

sample u ∼ Unif(0, 1);

if α(G∗al
;G

(t−1)
al ) > u then

G
(t)
al ← G∗al

;
else

G
(t)
al ← G

(t−1)
al ;

end

end

end

The cutting height at each iteration should target an optimal acceptance rate

to improve mixing. Fahrmeir suggests varying the size of groups between 1 and 40

to keep acceptance rates between 30% and 80%. Figure 4.5 shows the range of group

sizes obtained for different dendrogram heights. Also, preliminary results were run to
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Figure 4.5: Range of group sizes of clusters obtained for each dendrogram cut-off height.

determine the optimal cuts for obtaining acceptance rates between 30% and 80%, as

shown in Figure 4.8 (Section 4.5). Cuts from 1 to 1000 were considered to verify the

behaviour between acceptance rates and group sizes. Cutting heights are chosen from a

range between 10 and 130: 10 is chosen to ensure that groups are not smaller than the

clusters ck, and 130 is chosen such that group sizes do not exceed 40. In Figure 4.4, the

red band corresponds to the range of heights chosen for cutting the dendrogram.

4.5 Results

In this section, the results of the model are presented, following the implementation

details in Section 4.4. First, the convergence and correct mixing of the MCMC was

assessed by examining the traces of each parameter. Initially, the parameters Gk were

updated using single RW updates. Figure 4.6 shows the traces of a randomly chosen

Gk. The slow convergence in the RW case is compared to the conditional updates

proposed in Section 4.4.2. For the second case, Figure 4.7 shows the traces of τU , τg and

p and random choices of Gk, Ui, Bξ. Additionally, the Effective Sample Size ESS was

computed to determine the number of effective samples the MCMC has produced, as

shown in Table 4.2. The acceptance rate of each parameter is also shown in Table 4.2.

The results displayed correspond to the kernel M1/2 since this function was chosen for

the analysis, as explained later in Section 4.6.
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Figure 4.6: Traces of a randomly chosen Gk obtained after running the model, using
single Random Walk (RW) updates on three chains with different starting points. Chains
display poor mixing and convergence.
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Figure 4.7: A typical set of traces obtained after running the model, including the traces
of the hyperparameters τU , τG, p, and one sample of the spatial, genetic and outbreak
size parameters Ui, Gk and Bξ, respectively. Gk traces are obtained using the block
updating strategy. Mixing is greatly improved in comparison to single RW updates, as
shown in Figure 4.6 using the same value of k. The model required approximately 90
minutes of CPU time to run 5000 iterations.
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Parameter ρ τG Gk Ui Bξ

ESS 182 313 648-8700 486-6289 825-2972

Acceptance rate (%) 44.0 44.0 43.8-44.1 43.8-44.0 44.0-44.1

Table 4.2: Effective Sample Size ESS and acceptance rate of samples produced by the
MCMC, for the parameters ρ, τG, Gk, Ui and Bξ.
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Figure 4.8: Mean of the acceptance rate in groups of different sizes. For the preliminary
results, groups were obtained using random dendrogram cuts with heights between 10
and 1000. For the model results, the dendrogram cuts were obtained for heights between
10 and 130.

The mean of the posterior distribution of α was -12.96. Figure 4.9 displays the

mean of log-risk per LSOA in Oxfordshire and selected areas in Northamptonshire. Some

of the areas are classified as urban and some as rural. Figure 4.10 shows the histogram

of mean log-risk for urban and rural areas.

For the genetic terms, the posterior distribution of each kernel parameter ρ and

τG is shown in Figure 4.11 (bottom), for three types of the kernel. In the same figure

(top), kernel functions are displayed as a function of distance. To explore the mean

log-risk of the genetic terms in the genetic space, a Minimum Spanning Tree for the

observed sequences is displayed in Figure 4.12. The colour of nodes represent the mean

value of the log-risk, the black and white labels display the MLST of the nodes, and the

blue and white labels indicate the number of the outbreak, as defined later in Table 4.3.

81



OXFORDSHIRE

NORTHAMPTONSHIRE

Oxford

Relative risk of
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Figure 4.9: Map of the relative risk of sporadic cases per Lower-Layer Output Area in
Oxfordshire and some areas in Northamptonshire (left) and the augmentation in Oxford
(right). The intervals displayed in the colour scheme are based on the quantiles of the
absolute value of the risk, such that a similar amount of regions correspond to each
colour.

Additionally, the model output contains the list of blocks σξ and the correspond-

ing posterior distribution of Xσξ yielding a posterior outbreak probability. Only blocks

containing at least 2 cases are considered in the model analysis. The probability pσξ

that a block σ(i)ξ(k) is an outbreak is defined as the mean of the posterior distribution

of Xσξ. The list of more probable outbreaks is listed in Table 4.3; that is, blocks with

probability greater than θ = 0.15. It includes the number of cases involved, the regis-

tered date intervals, the clonal complex to which the bacteria belong (if any), and the

location area. The temporal span of each of block σξ is shown in Figure 4.13, compared
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Figure 4.10: Histogram of the geometric mean of relative risk for urban and rural areas.
The horizontal axis shows the geometric mean spatial risk. The height of the bars
represents the number of LSOA that falls in each range of spatial risk.

Number of
cases

Probability of
outbreak

(Received)
date range

Clonal
complex

Location

I 3 0.49 05-12 Sep 2017 ST-21 West Oxfordshire
II 2 0.25 07 Sep 2016 ST-48 Oxford
III 2 0.19 21 Mar 2018 ST-464 South Oxfordshire

Table 4.3: List of outbreaks for a threshold of θ = 0.15, including the number of cases,
probability of being an outbreak, dates when the isolates were received in the laboratory,
clonal complex of the isolate and location reported by the patient.

to the posterior probability of being an outbreak. Similarly, a comparison between the

spatial-genetic model and the spatial-temporal model in Chapter 3 is shown in Figure

4.14. In the figure, each point corresponds to an isolate, the horizontal axis displays

the probability that the isolate is labelled as an outbreak by the spatial-temporal model,

and the vertical axis shows the probability for the spatial-genetic model. Note that some

isolates were part of a block in one model and not in the other. For instance, the top left

points in Figure 4.14 were not part of the same spatial-genetic block since they occurred

in different weeks.
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Figure 4.11: (Top) Covariance function according to the posterior distribution of the
kernel parameters ρ and τG. The distances in the horizontal axis are greater than 10,
since the distance between any pair of clusters is greater than or equal to 10, by definition.
(Bottom) Posterior distribution of the kernel parameters ρ and τG, for three types of
kernel. Left to right: Matérn covariance with ν = 1/2, Matérn covariance with ν = 3/2,
squared exponential.

4.6 Discussion

The main goal of this project is to find outbreaks of campylobacteriosis, analysing the

reported cases in some regions of the UK for a time frame of 3 years. In this Chapter,

a method mixing the spatial and the genetic data is proposed, as an extension of the

spatial-temporal model in Chapter 3 [Spencer et al., 2011]. The model aims to find

spatial and genetic localised outbreaks that might be spread in time. For this purpose,

the spatial and genetic parameters are obtained, describing the sporadic cases. Conse-

quently, any unexpected increase in the observed number of sporadic cases is labelled as

an outbreak. The spatial region is divided into small areas and aggregates all genetic

sequences into clusters. Then, the risk of observing the disease in each area and genetic

cluster is obtained. With these results, the probability that a localised set of cases is an

outbreak is calculated.

This model has a similar spatial structure than the model presented in Chapter

3, and the log-risk per spatial region is similar in both cases (Figure 4.9). Some regions

in the south of Oxfordshire had the lowest risk in the studied area. This border effect
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could be explained by the location of hospitals in the area. Patients could receive clinical

attention in other counties and report the infection elsewhere. Based on the Rural/Urban

classification of the area, the relative risk of having the disease is compared for both

categories in Figure 4.10. The areas with the highest risk were found in rural areas and,

in general, urban areas had a lower risk than rural ones. This pattern shows a slightly

higher trend of registering an infection in rural areas.

In comparison to the spatial-temporal case, the model in this chapter constructs

a surface describing the risk of observing sporadic cases as a function of the genetic type

of the bacteria. First, the set of genetic sequences is clustered in small balls. Second, the

risk surface defined over the set of clusters follows a multivariate normal distribution.

The kernel function associated with the covariance matrix determines the shape and

smooth quality of the surface. Three kernels were chosen as well as the parameters, such

as the length-scale ρ and the precision τG. The inspection of the covariance function

explains how smooth is the surface, and it is calculated based on the posterior of the

parameters ρ and τG, as shown in Figure 4.11. The three kernels obtained similar

results. The mean of the posterior of the length-scale is approximately 13.2, 10.1 and

8.7 for M1/2, M3/2 and SE respectively. Although the values differ, the shape of the

covariance functions is similar and has most of their weight for values lower than 50.

These length-scale values agree with the notion of similarity observed in the isolates

extracted from same patients (Figure 2.15), and also agrees with the assumptions made

about ‘close isolates’ in previous work with Campylobacter [Cody et al., 2013]. However,

the covariance function for the squared exponential (Figure 4.11) is small for distances

greater than 30 compared to the Matérn covariances. Functions generated by the squared

exponential kernel are characterised by a strong smoothness and its ineffectiveness to

describe natural phenomena Stein [1999]. In this case, the length-scale decreased to

allow the risk surface to change quickly and overcome the strong smoothness.

The minimum spanning tree in Figure 4.12 shows the genetic smooth surface

of the relative risk of genetic sequences. Denser regions have a higher risk than the

less concentrated regions, as expected since the surface describes the risk of observing

a sequence. The outbreaks listed in Table 4.3 are also displayed in the tree. Although

the model is not restricting the outbreaks to occur in a short period, the cases obtained

appeared in a lapse of less than a week. Moreover, Figure 4.13 compares the span of each

block with the probability of being an outbreak. This result confirms that the model did

not find extended outbreaks that could stay hidden from detection even if they occurred

in a localised area. Also, although all detected outbreaks were spatially and temporally

localised, the spatial-temporal model did not capture them, as shown in Figure 4.14.
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This suggests that outbreaks might remain hidden if analysed from the spatial-temporal

perspective. Also, peaks on the number of cases in certain times of the year could be

caused by a single strain.

Comparison between spatial-temporal and spatial-genetic models suggests the

potential of mixing sources of information to detect outbreaks. Detailed analysis of the

results obtained by both methods can also elucidate the existence of hidden outbreaks

and suggests the creation of models that handle all sources of information at once.

However, the capacity of the model to detect that an isolate is part of an outbreak

is dependant on the choice of blocks (for instance, the top left points in Figure 4.14,

captured by the spatial-temporal but not by the spatial-genetic model). Moreover, the

model is dependant on the distance metric used in the genetic space and its ability

to describe proximity. The model can be adapted to overcome those shortcomings by

incorporating a comprehensive study of the genetic evolution of sequences.

Models incorporating spatial and genetic data have not previously been studied

and therefore the model presented here is not compared to alternative approaches.
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Figure 4.12: Minimum Spanning tree of the genetic sequences used in the model for the
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Figure 4.13: Probability that a block is an outbreak, compared to the maximum temporal
distance within cases in the block (in weeks).
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Figure 4.14: Comparison between the outbreak probability of each isolate for the spatial-
temporal model in Chapter 3 and the spatial-genetic model in this chapter.
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Chapter 5

Temporal-genetic model for

outbreak detection

In previous chapters, a spatiotemporal and a spatial-genetic model were developed to

find potential outbreaks of campylobacteriosis in some regions in the UK. Both models

have a similar structure based on Bayesian hierarchical models, and each model has

been adapted to process different combinations of data: spatial, temporal and genetic.

In this chapter, an alternative version of the model is proposed, processing temporal

and genetic data. It is referred to as the temporal-genetic model. The main goal is to

detect potential outbreaks localised in time and caused by bacteria with similar genetic

sequences, disregarding the spatial location where the infection occurred.

The explanation and motives to construct a temporal-genetic model are described

in Section 5.1. Details of the model constructions are presented in Section 5.2.1. A

modified version of this approach aims to analyse the temporal seasonality of different

genotypes. The modified version is described in Section 5.2.2. Implementation aspects

are described in Section 5.3 and employed to produce the results in Section 5.4. Finally,

the discussion about the model and results is presented in Section 5.5.

5.1 Motivation

Although Campylobacter is the main pathogen causing foodborne illnesses in the UK,

few outbreaks are detected, comprising only 0.1% of reported cases [Pebody et al., 1997].

Several studies have suggested that sporadic cases might be part of outbreaks dispersed

in large regions and that these diffused outbreaks are not detected by epidemiological

means [Fernandes et al., 2015]. For instance, outbreaks could be caused by contamination
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in the early stages of the food chain [McCarthy, 2017]. However, it has been suggested

that spatially diffused outbreaks are potentially observed when analysing genetic data

[Besser et al., 2018; McCarthy, 2017], as seen in other pathogens outbreaks [Fittipaldi

et al., 2013; Butcher et al., 2016].

The spatiotemporal and the spatial-genetic model proposed in this project aimed

to detect two different types of potential outbreaks: spatiotemporal localised outbreaks,

and genetically related outbreaks closely localised in space. However, both approaches

are not able to capture diffuse outbreaks. In this chapter, a temporal-genetic model is

proposed based on the hierarchical structure used for previous models, and it is denoted

by global model. When applied to the UK dataset, genetically related outbreaks could

be identified, with cases close in time. Moreover, the model can be adapted to detect

potential outbreaks that last several weeks, since diffuse outbreaks could be longlasting.

Although the temporal-genetic approach estimates the pattern caused by sporadic

cases, it assumes that all sporadic cases follow a similar temporal trend, regardless

of the genotype of the bacteria. Previous studies have shown how different types of

Campylobacter genotypes produce different temporal trends in the reported cases [Cody

et al., 2012]. The authors showed how some strains as the ST-45 has some peaks during

summer compared to other strains, like the ST-353, that have a peak during winter.

Based on this observation, the global model is adapted to identify temporal patterns per

genotype and it is denoted by genotype-based model, as described in Section 5.2.2.

Both proposed models, the global and the genotype-based model, are aimed to

label outbreaks if certain selected sets of cases are unexpectedly large compared to the

sporadic trend. However, the potential outbreaks captured by both models might differ.

For instance, an outbreak produced by a genotype with peak cases in summer could

remain hidden within the global summer pattern. Similarly, some cases could mistakenly

be labelled as outbreaks if they appear in an off-peak part of the year, produced by a

genotype with a typical increase in that period. The genotypes to be included in the

alternative model should be large enough such that the sporadic trend of the genotype

does not confuse potential outbreaks with seasonal trends.

5.2 Model for outbreak detection

5.2.1 Global model

The count of cases is modelled using a Bayesian hierarchical model. The span of the data

is divided into T intervals of a fixed number of weeks. The week index is denoted with
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the subscript t = 1, .., T . The genetic space G is partitioned into clusters as described in

Section 4.4.1, for the spatial-genetic model. Subindices k = 1, ...,K denotes the cluster

index, where K is the number of clusters in the partition. Therefore, the count of cases

within the interval t and with genetic type in k is denoted by ytk and follows a Poisson

distribution with rate µtk. The logarithm of the rate µtk is written as:

logµtk = α+Rt +Gk +Xφ(t)ξ(k)Bξ(k), (5.1)

where α is the intercept. The term Rt describes the logarithm of the temporal risk of

sporadic cases for the interval t. The term Gk denotes the logarithm of the genetic risk

of sporadic cases associated with the cluster k. The function φ(t) denotes the partition

of intervals into larger temporal blocks and ξ(k) denotes the partition of genetic clusters

into the larger genetic blocks, similar to the approach in previous models. In the last

term, the term Bφ(t)ξ(k) denotes the typical size of an outbreak with a genetic sequence in

the genetic block φ(t)ξ(k). Finally, the term Xφ(t)ξ(k) is a 0-1 random variable capturing

if there is an outbreak in the genetic interval and genetic block φ(t)ξ(k).

The prior for the temporal terms Rt is copied from the spatiotemporal model and

is given by:

Rt+1 −Rt|τR, R1:t ∼ N (Rt −Rt−1, τ−1R ),

where R1 and R2 have flat priors [Spencer et al., 2011]. Similarly, the prior of the genetic

terms Gk is given by

P(G|P ) ∝ exp

(
−1

2
GTPG

)
,

as described in Section 4.3. P = AΣ−1A is the precision matrix, Σ is the covariance

matrix and A is given in (4.5).

The remaining parameters follow the same priors as in previous models. That is,

the α follows a Normal distribution with mean ma and variance sa. The Bφ(t)ξ(k) terms

follow a Gamma distribution with shape aB and rate bB. Finally, the indicators Xφ(t)ξ(k)

follow a Bernoulli distribution with parameter p. The structure of the genotype-based

model is shown in Figure 5.1, and the parameters are described in Table 5.1.
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Figure 5.1: Directed Acyclic Graph describing the hierarchical conditional independence
structure of the global model, including the parameters α, Gk, Rt, Bξ, Xφ(t)ξ(k) and the
hyperparameters ρ, τG, τR, τG and p.

Parameter

description

Prior

distribution

Sampling

algorithm

α Intercept Normal M-H (normal proposal)

Gk

ttt

Risk of the genetic type k

ttt

Multivariate

normal

M-H (normal proposal)

M-H (block updates)

ρ Lengthscale of covariance function Gamma Gibbs (in block with τG)

τG

ttt

Precision of covariance function

ttt

Gamma

ttt

M-H (truncated normal

proposal)

Rt

ttt

Risk on the interval t

ttt

Second order

random walk

M-H (normal proposal)

M-H (block updates)

τR Temporal term precision Gamma Gibbs

Xφξ Outbreak indicator on the block φξ Binomial Gibbs

Bξ

ttt

Typical size of outbreak on the

block σξ

Gamma

ttt

M-H single update

(truncated normal proposal)

p

ttt

Probability that a block φξ is

an outbreak

Beta

ttt

Gibbs

ttt

Table 5.1: Description of the parameters of the global model, including the prior distri-
bution and the sampling algorithm using in the implementation.
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5.2.2 Genotype-based model

The model proposed in (5.1) is adapted to capture temporal patterns based on genotype.

The parameters Rt are rewritten as R
ω(k)
t or equivalently as Rωt , where ω(k) is a function

that assigns a cluster k to a genotype ω = ω(k). The set of parameters Rω1 , ..., R
ω
t denotes

the temporal risk linked to the genotype ω. Therefore, the Poisson parameters µtk can

be rewritten as:

logµtk = α+Rωt +Gk +Xφ(t)ξ(k)Bξ(k).

For each ω, the Rωt parameters follow a second-order Random Walk as follows:

Rωt+1 −Rωt |τR, Rω1:t ∼ N (Rωt −Rωt−1, τ−1R ).

The parameters Rω1 and Rω2 are given flat priors. To avoid identifiability problems, a

constraint is applied such that
∑

t

∑
ω R

ω
t = 0.

5.3 Implementation

The posterior sampling of the Bayesian hierarchical models proposed in Section 5.2 is

estimated using MCMC techniques. The intercept α, the length-scale of the covariance

function ρ, and the typical size of outbreaks Bφ(t)ξ(k) are updated using Metropolis-

Hastings sampling, as described in Table 5.1. The precision of the covariance matrix τG,

the temporal precision τR, the parameter p and the indicators Xφ(t)ξ(k) are updated using

Gibbs sampling. The genetic terms Gk are sampled alternating single site Gaussian ran-

dom walk proposals and block updates with conditional prior proposals, as described in

Section 4.4.2. Similarly, the temporal terms Rt are updated by alternating two different

methods: single site Gaussian random walk proposals and block updates, as described by

Knorr-Held [1999]. For the genotype-based model, the proposed value of Rωt is obtained

using block updates. The updating procedure is run independently for each ω.

The model is run with two different settings or scenarios to study and compare

the global and the genotype-based model. The scenarios are described as follows:

i. The first scenario applies the global model to the combination of the OX and NE

datasets. Therefore, a unique temporal trend is produced for both regions. The

length of the temporal blocks is one week. Clusters are obtained as in Section 4.4

with cutting heights of 10 for the clusters and 50 for the genetic blocks. Thus the

number of clusters is K = 2228, and the number of genetic blocks is 1143. The

number of clusters is larger than in Section 4.4 since both datasets are merged.
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ii. The second scenario studies the genotype-based model applied to the combination

of the OX and NE datasets. The length of the intervals, the number of clusters and

the number of genetic blocks are set as in scenario i. The K clusters are grouped into

four sets ω1, ..., ω4 based on their clonal complex designation based on MLST. Three

clonal complexes are chosen to define the ω-groups: ST-21, ST-353 and ST-45. The

ST-21 type is chosen since it is the most abundant clonal complex in the dataset. The

ST-353 and ST-45 are also abundant clonal complexes that have a strong seasonal

pattern [Cody et al., 2012]. The last group ω4 consists of the remaining sequences

not included in the selected clonal complexes.

In an alternative third scenario, the model could be adapted to have different

temporal trends for OX and NE (as it does for different genetic sets). However, this

scenario is not included in the analysis. For both the global and the genotype-based

model, the prior of the hyperparameters are chosen as:

τR ∼ Gamma(5, 0.1),

τG ∼ Gamma(1, 0.01),

βσξ ∼ Gamma(2, 1),

p ∼ Beta(1, 1142).

The prior of p has a mean of 1/(1 + 1142) such that the expected number of outbreaks

per genetic block per week is 1. The kernel employed for the covariance matrix is the

Matérn kernel with parameter ν = 1/2. The algorithm is run for 5 000 iterations with

different starting points. A burn-in period of 500 iterations is implemented. The results

obtained are detailed in Section 5.4.

5.4 Results

The output of the model is described in two sections. Section 5.4.1 displays the results

of the global and the genotype-based model. Section 5.4.2 shows the potential outbreaks

found by both models.

5.4.1 Model results

For the global model, a set of traces of the MCMC output is shown in Figure 5.2. Visual

inspection confirms the convergence of the MCMC chain. Also, Table 5.2 shows the

Effective Sample Size and the acceptance rate of each parameter. The time-series of
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cases is shown at the top of Figure 5.3. The grey line represents the number of observed

cases, the black line shows the expected number of sporadic cases, and the red line shows

the expected number of total cases including outbreaks. Equivalent plots are shown at

the top of Figure 5.4 and Figure 5.5, showing cases associated with genotype ST-353

and ST-45 respectively.

Parameter ρ τG τR Gk Rt Bξ

ESS 190 173 89 109-2463 57-396 188-953

Acceptance rate (%) 44.0 44.0 - 22.0-66.1 28.6-48.1 43.9-44.1

Table 5.2: Effective Sample Size ESS and acceptance rate of samples produced by the
MCMC, for the parameters ρ, τG, τR, Gk, Rt and Bξ, and 4500 iterations.
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Figure 5.2: A typical set of traces obtained after running the global model applied to OX
and NE datasets, including the traces of the hyperparameters τG, τR, p, and one sample
of the genetic, temporal and outbreak size parameters Gk, Rt and Bξ, respectively.
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Figure 5.3: Comparison of the observed number of cases with the expected number of
sporadic and total cases per week for Scenario i. with the global model (top) and ii.
with the genotype-based model (bottom). Yellow vertical lines denote the week when a
new season started.

For the genotype-based model, the time-series of cases is shown at the bottom

of Figure 5.3. Similarly, time-series of selected genotypes are shown at the bottom of

Figure 5.4 for ST-353, and at the bottom of Figure 5.4 for ST-45. Each plot displays the

number of observed cases, the expected number of sporadic and total cases per genotype.

5.4.2 Potential outbreaks

Each model provides a list of blocks and the probability that they are part of an outbreak.

A block is labelled as probable outbreak if it fulfils the following criterium: the probability

that it is an outbreak is greater than 90%. Also, if the probability is greater than 50%

but less than 90%, it is labelled as a probable outbreak if occurred immediately before

or after a block with probability greater than 90%. Figure 5.6 shows a comparison of
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Figure 5.4: Comparison of the observed number of cases with the expected number of
sporadic and total cases per week for the genotype ST-353: i. global model (top) and ii.
genotype-based model. Yellow vertical lines denote the week when a new season started.

the probabilities provided by both models. The blocks that had the largest difference

between both models are marked in red: two correspond to cases belonging to the ST-

353 clonal complex, while one corresponds to the ST-45. Black diamonds in Figure 5.4

and Figure 5.5 indicate the time when these cases happened and are marked with a star.

Table 5.3 details the most probable outbreaks obtained by the global model, including

the number of cases involved, the probability of being an outbreak, the dates when it

occurred and the clonal complex of the sequences involved. Similarly, Table 5.4 shows

the most probable outbreaks obtained by the genotype-based model, not shown in Table

5.3.
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Figure 5.5: Comparison of the observed number of cases with the expected number of
sporadic and total cases per week for the genotype ST-45: i. global model (top) and ii.
genotype-based model. Yellow vertical lines denote the week when a new season started.

5.5 Discussion

In this chapter, a temporal-genetic model for the detection of outbreaks was presented,

following a similar structure as the models in previous chapters. The proposed Bayesian

model studied the sporadic trend of cases per time and also analysed the incidences of

sporadic cases per genotype. The cases not explained by the sporadic trend are labelled

as outbreaks. Finally, the construction of the model was based on MCMC techniques

similar to the previous models, using the same mixing strategies. Since the spatial

component is not part of the analysis, the model was applied to the combination of

the OX and the NE dataset. It allowed the model to study cases that might be part

of outbreaks spread in Oxfordshire and Tyne and Wear or subsets of large national

outbreaks.
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Number of
cases

Probability of
outbreak (%)

(Received)
date range

Clonal
complex

Genetic distance
within sequences

I 3 94.0 16-23 Oct 2015 ST-21 0-40
II 5 (NE) 52.3-93.7 8-22 Apr 2016 ST-2274 0-14
III 6 97.0 25 Nov - 2 Dec 2016 ST-257 0-5
IV 6 99.8 31 Mar - 7 Apr 2017 ST-257 0-48
V 3 98.3 8-15 Sep 2017 ST-21 1-7
VI 3 (NE) 100 16-23 Feb 2018 ST-206 2-19
VII 5 91.2 11-18 May 2018 ST-353 1-9
VIII 6 98.0 15-22 Jun 2018 ST-353 0-35

Table 5.3: List of probable outbreaks, defined as blocks with probability greater than
90% using the global model. It includes the number of cases (and database of origin),
probability of being an outbreak (a range if it consists of more than one block), dates
when the isolates were received in the laboratory, clonal complex of the isolate and range
of genetic distances within the block.

Number of
cases

Probability of
outbreak (%)

(genotype)

Probability of
outbreak (%)

(global)

(Received)
date range

Clonal
complex

Genetic
distance

I 3 91.4 84.7 04 Nov 2016 ST-206 1-18
II 3 90.1 74.9 17 Feb 2017 ST-206 2-25

Table 5.4: List of probable outbreaks detected by the genotype-based model and not by
the global model, defined as blocks with probability greater than 90% using the genotype-
based model not included in Table 5.3. It includes the number of cases (and database of
origin), probability of being an outbreak by both models (a range if it consists of more
than one block), dates when the isolates were received in the laboratory, clonal complex
of the isolate and range of genetic distances within the block.

For the global model, the output estimated the temporal trend of sporadic cases,

showing a seasonal pattern during the years covered in the study. In each year, there

were two large peaks of reported cases at the beginning and the end of each summer.

Conversely, winter peaks were only observed in 2016 and 2017 and not seen in 2018. For

the genotype-based model, the temporal pattern had similar characteristics to the global

model, as shown in Figure 5.3. Additionally, the genotype model provided the temporal

pattern of the clonal complexes ST-21, ST-353 and ST-45. It showed that the ST-45

had distinct peaks in every summer. For the ST-353, it showed peaks in every winter

period and also a large summer peak in 2018. The ST-21, the largest clonal complex in

the database, showed a similar general trend as the global pattern with a larger peak at

the beginning of winter 2017.
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Figure 5.6: Comparison between the probability that a block φ(t)ξ(k) is an outbreak
according to each model. The horizontal axis corresponds to the probabilities for the
global model. The vertical axis shows the probabilities for the genotype-based model.
The red dots represent the blocks that differed the most when comparing both models.

Both models provided a list of cases and the probability that they were part of an

outbreak. In general, the probabilities are consistent between the two models, except for

three potential outbreaks which probability was reduced when using the genotype-based

model (Figure 5.6). Each of these cases was part of a seasonal peak of the genotypes ST-

353 and ST-45, a peak not detected by the global model. For instance, the clonal complex

ST-45 showed a summer seasonality not captured by the global model. Therefore, it

detected a potential outbreak that could be part of the seasonal trend. These contrasting

outputs raise the question of which model is providing the most accurate results.

The main difference between both models relies on the mechanism they use to

define the sporadic trend. That is, each model proposed an alternative version of how the

sporadic cases are understood. For instance, the global model based the temporal trend

on the total number of cases. By contrast, the genotype-based model used seasonality to

understand the sporadic pattern. The genotype-based model can be applied when the

genotypes used as input are abundant and have a strong seasonal pattern. Otherwise,

it would serve as a complication of the model that will not improve the results. That

is, the global model should be favoured unless there are abundant genotypes that have

strong seasonal patterns.
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Based on the global model, the top potential outbreaks were explored in Table

5.3, including cases with probabilities larger than 90%. Most of the potential outbreaks

persisted one week, while six of them were found jointly in the datasets OX and NE.

Further analysis of these outbreaks is presented in Chapter 6.
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Chapter 6

Summary and comparison of

previous results

The main goal of this project is to develop mathematical techniques for the detection of

outbreaks of Campylobacter infections. In previous chapters, three models were intro-

duced to achieve this goal, based on Bayesian models. The structure and assumptions of

each model have been described previously, including an output summary. The analysis

in this chapter aims to compare the potential outbreaks reported by each model, guiding

conclusions about the actual outbreaks that might have happened in the regions studied.

Each model provided a list of cases and their associated probability of being part

of an outbreak. If a threshold is chosen, a final set of the potential outbreaks is listed.

However, it produces independent lists per model. Here a new criterion is designed

to choose potential outbreaks, by combining the output of more than one model. The

resulting potential outbreaks are described in detail; in particular, the one with the

largest amount of cases. The spatial-temporal model is abbreviated throughout the

chapter as ST. Similarly, the spatial-genetic model is denoted as SG and the global

temporal-genetic model as TG.

The chapter is organised as follows. First, a brief review of the models’ assump-

tions is listed in Section 6.1, describing the basic configuration used to run the model.

Also, the top outbreaks produced by each model is shown. A new criterion to simul-

taneously analyse all models is described, including the list of the potential outbreaks.

Section 6.2 discusses the results obtained in the chapter and provides a final review

comprising the similarities and differences between each model results. A summary of

the thesis is described in Section 6.3 and potential areas of further research in Section

6.4.
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6.1 Outbreak selection

Each model was run independently using the data described in Section 2.1, covering

cases reported in the period October 2015-August 2018. The spatial-temporal model

(Section 3.1) was run independently for the OX and NE databases, respectively. The

spatial-genetic model (Section 4.3) was run independently for the OX and NE databases.

The global version of the temporal-genetic model (Section 5.2) was run for the whole

dataset since it does not have a spatial distinction. The details of the priors used for

each model is in Table 6.1. For all of the models, the region was partitioned in MSOA

and time was partitioned into intervals of 1-week length (if applies). The genetic space

was partitioned with a cut-off of 10 using a hierarchical clustering method, as described

in Section 3.2. The spatial blocks were defined using LSOA. Temporal blocks were set to

have one-week length, and the genetic blocks were defined with a cut of 50, as described

in Section 3.2. Since the SG model did not capture many outbreaks, we considered

alternative parameters for the prior distribution on the spatial terms Ui compared to

the ST model.

A list of blocks and their probability of being an outbreak is provided by each

model. The posterior distribution of p, the probability that a block is an outbreak, is

shown in Figure 6.1. A block is named as top probable outbreak if it is part of the blocks

with the highest probabilities. To define which blocks are top, a threshold must be

defined. Figure 6.2 shows the percentage of cases that will be labelled as an outbreak if

a given threshold were chosen. For the ST model and the SG model, a threshold of 90%

is chosen. Since the highest probability in the SG model is 29% for the OX database

and 49% for the NE database, 90% is not adequate. Therefore, a threshold of 25% is

set for this model. The list of all potential outbreaks obtained by these five models is

shown in Table 6.2.

Although all potential outbreaks in Table 6.2 had a probability greater than 90%,

none of them was chosen by two or more models. That is, the blocks with high probability

for one model are marked with low probabilities by the other two models. In Figure 6.3,

the ST and TG global model probabilities are contrasted (left) as well as the SG against

the TG model (right). In both figures, each dot corresponds to a reported case. This

comparison might seem to suggest that the models are not consistent. However, these

differences are a consequence of the diverse data and different assumptions handled by

each model, as will be discussed in Section 6.2. To study these variations, a new criterion

can be developed to label outbreaks using the output of two or more models. Although

models are not consistent, a new criterion can be developed to label outbreaks using the
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output of two or more models. In particular, four sets of cases are scored at least 50%

of probability by the ST and TG models. Note that some potential outbreaks might

include isolates that are not part of the outbreak.

Model-

Region

Spatial

partition

Prior

τR

Γ( , )

τU

Γ( , )

τG

Γ( , )

B∗

Γ( , )

p

B( , )

p01

B( , )

p10

B( , )

ST-OX MSOA (5, 0.1) (1, 0.5) - (1,1) - (1, 51) (2,2)

ST-NE MSOA (5, 0.1) (1, 0.5) - (1,1) - (1, 51) (2,2)

SG-OX MSOA - (1, 0.1) (1, 0.01) (2,1) (1, 611) - -

SG-NE MSOA - (1, 0.1) (1, 0.01) (2,1) (1, 758) - -

TG - (5, 0.1) - (1, 0.01) (2,1) (1, 1142) - -

Table 6.1: List of each model configuration used to reproduce the results explained in
this chapter, including parameter priors.

0
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900

0.00 0.01 0.02 0.03

posterior distribution of p (or p01 if ST)

de
ns

ity

model − database

ST model − OX
ST model − TW
SG model − OX
SG model − TW
TG model

Figure 6.1: For SG and TG model, the figure shows the posterior distribution of the
probability that a block is a potential outbreak p. For the ST model, the figure shows
the posterior distribution of the probability that an outbreak starts at each block p01.
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Figure 6.2: Percentage of cases labelled as potential outbreaks, as a function of the
threshold chosen to define potential outbreaks. Each curve corresponds to different
models and databases.

Model
Number of

cases
Database

Probability of

outbreak (%)

Clonal

complex

Genetic distance

within sequences

ST 4 NE 92.4 - 1093-1282

ST 3 OX 90.6 ST-45 (+1) 4 (+1)

SG 3 OX 49.2 ST-21 0

SG 3 NE 29.7 ST-45 7-12

SG 2 NE 27.6 ST-828 0

SG 2 OX 25.1 ST-48 2

TG 3 NE 100 ST-206 2-19

TG 6 OX-NE 99.8 ST-257 0-48

TG 3 OX-NE 98.3 ST-21 1-7

TG 6 OX-NE 98.0 ST-353 0-8 (+1)

TG 6 OX-NE 97.0 ST-257 0-5

TG 3 OX-NE 94.0 ST-21 0 (+1)

TG 3 NE 93.7 ST-2274 0

TG 5 OX-NE 91.2 ST-353 0-9

Table 6.2: List of most probable outbreaks per model, using a threshold of 90% for ST
and TG, and 25% for SG. It includes the number of cases, database of origin, probability
of being an outbreak, clonal complexes of the isolates and range of genetic distances
within the block. (+1) indicates there is an isolate genetically distant from the other
isolates in the group. The list is ordered by model and probability (in decreasing order).
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Figure 6.3: Comparison between the outbreak probability of each isolate for the ST
model and the TG global model (top-left), comparison between the SG model and the TG
model (top-right), and comparison between the ST model and the SG model (bottom).

Based on Figure 6.3, a new criterion for choosing top outbreaks is proposed. Any

block with probability greater than 50% in the TG model is labelled as a top outbreak if

it contains cases being part of a top ST outbreak; that is, a block with probability greater

than 50% in the ST model. This new criterion aims to capture potential outbreaks that

are not highly scored by one model but have considerably high scores in at least two

models. It might capture outbreaks that are diffuse in space but with spatial-temporal

localised sub-outbreaks. For instance, the largest potential outbreak in Table 6.3 consists

of 7 cases, 2 of them contained in an ST outbreak. Figure 6.4 shows the location of these

cases, where the red dot indicates the location of cases involved in the ST outbreak.
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TG global model ST model

Number
of cases

Database
Probability of
outbreak (%)

Clonal
complex

Genetic
distances

Number
of cases

Probability of
outbreak (%)

7 OX-NE 70.6 ST-21 0-7 2 55.5
2 OX 66.1 ST-2274 2 2 50.6
2 OX 56.1 ST-42 2 2 52.3
2 NE 52.0 ST-48 27 2 53.9

Table 6.3: Temporal-genetic potential outbreaks with probability greater than 50%,
comprising a spatial-temporal outbreak with probability greater than 50 %. It includes
the number of cases in the TG-outbreak, the database of origin, probability of being a
TG-outbreak, clonal complexes of the isolates and range of genetic distances within the
block, number of cases in the ST-outbreak, probability of being an ST-outbreak.

6.2 Discussion

In previous chapters, outbreak detection models have been introduced and implemented

using three data sources: temporal, spatial and genetics. In this chapter, potential out-

breaks found by each model were compared, aiming to determine if there were outbreaks

detected simultaneously by the three models and why there are differences among them.

First, the most probable outbreaks were listed and compared, showing that all of them

were detected by only one model. Second, a smoother criterion was designed to label

potential outbreaks, where a set of cases was chosen if had at least 50% of probability

in two models.

Different model outputs are a consequence of the different assumptions in each

model design. First, each model examines different data dimensions and aims to capture

outbreaks potentially caused by different types of contamination sources. Contamination

in a local event is more likely to be captured by a spatial-temporal model since it will

be localised in space and time. Conversely, contamination occurred high up in the food

chain would be more likely to be detected by a temporal genetic model since the spatial

localisation is unlikely. Furthermore, each model has different assumptions about how

sporadic cases are explained. Spatial-temporal model, for instance, assumes that the

sporadic trend is caused by a temporal trend independently combined with a spatial

trend. As a consequence of these different assumptions, the posterior distribution of

a case being part of an outbreak behaves differently for each model (Figure 6.1). For

instance, under the temporal-genetic case, p is almost surely away from 0, confirming

the existence of outbreaks in this scenario. In contrast, under the spatial-temporal case,

there is high posterior uncertainty, and therefore potential outbreaks, if any, would have
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Figure 6.4: Map of the areas covered in the study, showing the location of the cases
involved in the largest outbreak in Table 6.3. All cases shown were captured by the TG
model. The cases captured by the ST model are shown in red.

larger probabilities (as for the ST model in OX).

Besides the differences between the model assumptions, the number of labelled

potential outbreaks also differ. The threshold chosen to mark potential outbreaks was

compared to the percentage of cases involved in outbreaks if the threshold was chosen

(Figure 6.2). Almost every case in the spatial-genetic model had a probability lower than

25%, showing that potential outbreaks are unlikely under the spatial-genetic assump-

tions. On the contrary, the temporal-genetic model assigned higher probabilities in most

cases. Those differences might rely on how certain types of outbreaks are harder to be

seen or are uncommon. For instance, in the spatial-temporal case, each block contains

all cases that occurred in a given region and period, including cases that are potentially

not part of a real outbreak. It might reduce the specificity of the model and obscures

real spatial-temporal outbreaks.

Comparing the probabilities shown by the spatial-genetic model and the temporal-

genetic outbreak opens the discussion of the importance of including time into these

models. For a fixed genetic type, the time dimension was able to capture unexpected

peaks marked as potential outbreaks. On the contrary, understanding the distribution

of cases using the spatial dimension did not provide a clear distinction between outbreak

cases and sporadic cases.

Although there are many differences between the findings of each model, 94.7%

of cases were consistently labelled as non-outbreaks. This result substantially limits the

108



number of cases that must be investigated to clarify the sources of outbreaks. Moreover,

it shows the potential of integrating the output of the three models.

Top outbreaks per model were chosen using thresholds based on the probabilities

in Figure 6.2. However, an alternative criterion for labelling potential outbreaks can

be based on the results of the three model outputs simultaneously. Figure 6.3 (left)

shows a comparison between the probabilities provided by the spatio-temporal and the

temporal-genetic model. The new criterion chose cases with probabilities greater than

50% in both models (Table 6.3). This new criterion reveals the existence of potential

outbreaks in the spatio-temporal model that might be a subset of a larger outbreak in

the temporal genetic model. For instance, there is a potentially diffuse outbreak shown

in Figure 6.4. Two of the seven cases involved were located in the same region and were

simultaneously detected by the spatial-temporal outbreak.

In conclusion, potential outbreaks occurring in two regions of the UK were anal-

ysed, based on three models. Each model was based on diverse assumptions and provided

different sets of potential outbreaks. Moreover, the potential of integrating the analysis

of the three models may improve the detection of diffuse and other types of outbreaks.

6.3 Summary of the thesis

The main goal of this project is to create mathematical models for Campylobacter out-

break detection using a variety of data sources. Mathematical frameworks facing this

problem should consider the complexity of the transmission of the disease, the appar-

ent randomness of sporadic cases, and the infection spread dynamics. Therefore, models

should identify potential outbreaks out of a set of apparently sporadic cases. This project

studied data of reported infections collected in two regions of the UK for three years,

covering Oxfordshire, Northhamptonshire, Newcastle upon Tyne, North Tyneside and

Northumberland.

Since Campylobacter infections are a notifiable disease, data collection is con-

trolled by health authorities. Records of cases provide rich datasets, including informa-

tion of the patient, residence location, approximate infection time and the whole-genome

sequences of a bacteria sampled from the patient. This variety of data sources requires

models that handle the structures provided by each data type. Outbreak detection

mechanisms have been developed in multiple studies, mainly focussed on temporal and

spatial analysis. Moreover, some researches have also incorporated spatial-temporal

models. Most of the spatial and temporal approaches treat the problem as point pro-

cesses or aggregated data depending on the nature of the reports. Bayesian statistics
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has been a common framework to face aggregated data problems, like the outbreak de-

tection approach proposed in Spencer et al. [2011], where a Bayesian hierarchical model

(BHM) detects potential outbreaks of Campylobacter infections using spatial-temporal

data. In addition to space and time approaches, the recent whole-genome sequencing

techniques have shown the potential of genomics data to discriminate closely related

isolates. Comparison of genetic sequences is a potentially powerful tool to understand

when two cases are epidemiologically related. Answering the open question in outbreak

detection relies on how to mix these varieties of data structures, as the model proposed

in this thesis.

In the model studied in this project, outbreaks are defined as unexpected peaks

in the number of cases compared to a sporadic trend. The model incorporates whole-

genome sequencing data into the spatial-temporal approach in Spencer et al. [2011]. In

this spatial-temporal model, sporadic cases are described as an independent combination

of a temporal and a spatial trend. First, the spatial trend is described using a Gaussian

Markov Random Field (GMRF) while the temporal trend is described using a Random

Walk (RW). Genetic sequences can be incorporated in this model if they are embedded

in a mathematical structure. A metric space for the genetic sequences is proposed, where

the distance between two sequences depends on the similarity of the core genes present in

each pair of sequences. This metric space also referred to as the genetic space, provides

the notion of neighbourhood required to generalise the GMRF structure. Intuitively, the

risk of observing a genetic sequence is similar to the risk of the neighbouring sequences.

Therefore, a Gaussian Random Field (GRF) is applied using different kernels to capture

the neighbouring structures. That is, the BHM can have an extra latent space linked to

the GRF, where the kernel and the distance control the structure of the genetic space

and the notion of proximity.

The BHM proposed has the flexibility to incorporate spatial, temporal and genetic

data. However, the structure can be adjusted depending on the types of outbreaks

investigated. For instance, if only spatial and temporal sporadic surfaces are included

in the model, it would search for localised spatial-temporal outbreaks. Therefore, three

types of structures are studied further: a spatial-temporal, spatial-genetic and temporal-

genetic model. For each of the proposed models, a Monte Carlo Markov Chain (MCMC)

is run to estimate the posterior distribution of the parameters involved. However, there

are approximately a thousand latent parameters involved in the genetic surface, and they

are highly correlated. That causes the MCMC to have a low convergence and therefore

requires an update strategy to improve the convergence. In this project, a new MCMC

strategy is proposed, where latent parameters in the GRF are updated using blocks, as
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a generalisation of the block strategy described in Fahrmeir and Lang [2001].

The models provide the structure of the sporadic trend and the probability that

each case is part of a potential outbreak. If the model includes time, the temporal trend

of sporadic cases can be examined, including the seasonal patterns of different regions.

Similarly, if the model includes spatial data, it provides the risk of observing sporadic

cases per region. It allows the comparison of risk for different areas and its comparison to

other covariates as the rural-urban classification. Finally, if the model includes genomic

data, the genetic trend of sporadic cases provides the risk of observing a sequence as

part of the genetic space. This output offers an overview of which genetic types are more

common to be observed and quantifies the risk associated with each genetic type.

The output for the spatial-temporal, spatial-genetic and temporal-genetic models

can be compared to investigate potential outbreaks. It provides a list of the cases that

are potentially involved in outbreaks in each of these models. Therefore, other strategies

can be proposed to understand the properties of potential outbreaks. For instance, a

national outbreak partially detected by the spatial-temporal model and fully detected

by the temporal-genetic model would be hard to observe by local authorities.

In summary, the proposed model gives a flexible approach to study different types

of outbreaks. It provides a list of potential outbreaks, the probability associated with

each reported case, and the trend of the sporadic cases, including the risk of genetic

sequences. It successfully generalises the current spatial-temporal approach, defined in a

Bayesian framework that is common at solving outbreak detection. Also, it shows how it

can incorporate complex structure data using GRFs. However, the proposed approach

has some limitations. First, in an outbreak investigation, several models have to be

run with different configurations, such that enough information is obtained. Then, the

computational time and effort increases. Also, the time period, region and genetic space

should be partitioned to capture different outbreak structures, and the choices might

affect the model output. Finally, one-dimensional outbreaks can be harder to detect. For

instance, long-lived genetic clusters spread by a farm producing contaminated chickens

persistently.

6.4 Further work

The model proposed in this thesis aims to detect outbreaks using spatial-temporal and

genetic data. However, this approach has several limitations that can be addressed in

future research.

First, the model requires a partition of the studied area, period and genetic space
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such that outbreak blocks can be defined. Indicators are linked to each block, specifying

if they are potential outbreaks. Therefore, the model is sensitive to the partition of

each space, while real outbreaks have unknown shapes. Spencer et al. [2011] provided

a correlated version of the model to cover outbreaks of different duration, as described

in Section 3.1. Alternative models could be designed, applying the correlated version to

spatial and genetic parameters.

Second, some parameters of the model were defined using generic structures. For

instance, the kernels used for the GRF were the squared exponential and the Matérn

kernel, functions that are originally defined for continuous Euclidean spaces. Alternative

kernels have been proposed for discrete spaces with similar properties than the genetic

space [Rasmussen and Williams, 2005]. These functions could improve the performance

of the model.

Also, the model has been structured to analyse outbreaks retrospectively. How-

ever, the Bayesian structure of the model and the properties of the GRF provide flex-

ibility to detect outbreaks on a routine basis. For instance, initially, the posterior dis-

tribution of the model parameters can be obtained as described in this project. Then,

the probability of every new case can be computed based on the posterior distributions

obtained.

Besides these limitations, this thesis has started to explore a new and important

area making initial progress that is only going to develop through future developments.
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