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Abstract

The Sun is the closest star to Earth and the bringer of life for all of us. Remove the
Sun and Earth is rendered a lifeless, icy rock floating in outer space. It stands to reason
that a thorough understanding of the workings of the Sun would be high priority in the
scientific world, and beyond. The outer-most layer of the interior of the Sun comprises of
what is known as the convection zone. This chaotic zone produces innumerable pressure
waves, which propagate through the Sun. These waves carry the energy of the Sun to its
atmosphere and beyond, and are thought to be responsible for the infamous ‘coronal heating
problem’. The magnetic nature of the Sun allows both acoustic and magnetic waves, or
various combinations of the two, to exist. This is where the complexity lies, with so many
different types of waves being produced and exchanging energy between themselves, it is
extremely difficult to pinpoint which waves are responsible for the observations we make.

Observations and mathematical/physical theories of ever improving quality are used to
understand the details of waves in the Sun, however they often lack a bridge to connect
them, which is where numerical simulations come in. The work presented here provides a
combination of 1.5, 2.5 and 3 dimensional simulations looking to explain how a variety of
waves propagate and carry energy through the internal and external layers of the Sun.

When a wave reaches a layer in the Sun’s atmosphere where the sound and Alfvén
speeds coincide, it splits into two ‘modes’, a fast and slow mode. Recent mathematical
findings suggested an incoming shock wave would not only split into its fast and slow
components, but that both wave modes would be smoothed as they exit this area. Nu-
merical simulations herein show that only the slow wave is smoothed, with the fast wave
propagating unhindered.

Within the Sun’s atmosphere, various steep gradients of its physical components are
found. These gradients have been proposed to act as barriers to incoming waves, which
can be partially reflected off them. Multiple reflection sites suggests cavities can be
created that acoustic waves can resonate within. Numerical simulations herein show a
stark increase in the velocity of frequencies proposed to be characteristic of a cavity within
the chromosphere. This suggests cavities can exist within the Sun’s atmosphere and the
amplitude of velocity observations from within these areas must be partially attributed to
the resonant effects of the cavities themselves.

v



Following the onset of some solar flares, ripples are observed on the Solar surface
emanating from the flare site. These ripples show strong anisotropies in their appearance, a
characteristic not well studied. Numerical simulations herein show that these anisotropies
can be attributed to both the strength and inclination of the magnetic field but even more
so by the nature of the impacting source. A source with motion perpendicular to the solar
surface causes constructive interference and higher amplitude ripples are created along the
axis of motion.
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CHAPTER 1
Introduction

This chapter aims to introduce the reader to the key topics, ideas and concepts needed to
appreciate the research contained within. This work traverses through areas of the solar
atmosphere that are significantly varied, not only in the physics that govern them but also in
the way they are observed and modelled by researchers alike. Consequently, the overview
provided in this chapter shall be kept brief and notably broad in scope. Owing to this, an
introductory section is provided for each chapter, individually developed to give a greater
insight into the particulars of each area of research. This chosen pathway aims to give the
reader an initial appreciation of the work as a whole, whilst allowing each chapter to be
viewed as individual pieces of work, if so desired. The numerical codes used to conduct
the research are also presented at the end of this chapter. Brief overviews of each code are
given, highlighting the main features and limitations imposed by each.
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1. INTRODUCTION

1.1 The Solar Atmosphere

The solar atmosphere has long been a key environment for studying the formation, evolution
and impact of not only solar but also stellar magnetic fields. Its main advantage as a stellar
atmosphere laboratory is its proximity to Earth, with the Sun being over 250 000 times
closer than our next nearest star. Owing to this, and recent advances in observational
technology, the solar surface and atmosphere are unique in being the only components of
any star that can be currently resolved. A vast array of observed and/or theorised physical
processes have long been linked to the solar magnetic field and thus its importance has
long been recognised. However, there still remains a long thread of unanswered questions.
What are the mechanisms which drive the solar dynamo thought to be responsible for
generating the solar magnetic field? Why do we observe the appearance of an 11-year
sunspot cycle? What causes the formation of various surface magnetic flux phenomena
such as intergranular lanes or knots? And perhaps the biggest question of all, what role do
magnetic fields play in heating the chromosphere and corona?

To answer some of these questions relies on an understanding of what is happen-
ing beneath the solar surface, beyond what even the highest resolution observations can
meaningfully provide. This is generally tackled through the study of solar oscillations, a
process known as helioseismology and similar to the more widely recognised geoseismol-
ogy. These oscillations are observed at the surface whilst having been excited by natural
convective motions in the outer layers of the solar interior. Helioseismology provides a
proven method for measuring solar structure, subsurface flows and solar convection. Solar
oscillations were first detected as far back as the early 1960s by Leighton et al. (1962) and
later confirmed by Evans and Michard (1962a,b), but it wasn’t until much later that these
oscillations were used to infer information about the workings and structure of the solar
interior (Stein and Leibacher, 1974; Deubner, 1975; Ulrich and Rhodes, 1977; Rhodes
et al., 1977). From this spawned the two persisting strands of helioseismology that we
know today - global helioseismology, which focuses on large scale global properties of
the Sun, and local helioseismology, where smaller features in more complex areas are
investigated.

The Sun oscillates in what are known as its three global modes. The acoustic p-modes,
which have pressure as their dominant restoring force, the g-modes, which have buoyancy
as their restoring force, and the f-modes, which are essentially surface gravity modes.
The analysis of these modes gives rise to global helioseismology, of which has proven
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1.1. The Solar Atmosphere

invaluable in the search to peer deep into the structure and dynamics of the Sun. Long,
uninterrupted observations of the Sun are needed to garner accurate estimates for the
Sun’s global eigenmode frequencies. A requirement which has seen the development of
ground-based observation networks such as the Birmingham Solar Oscillation Network
(BiSON) (Elsworth et al., 1991) and the Global Oscillation Network Group (GONG) (Hill
et al., 1996), as well as space-borne observatories such as the Solar and Heliospheric
Observatory (SoHO) (Domingo et al., 1995) and the Solar Dynamics Observatory (SDO)
(Pesnell et al., 2012). Analysis of the myriad of observations collected over the last fifty or
more years has led to the determination of sound-speed, density and adiabatic exponent
profiles (Dziembowski et al., 1990; Basu and Antia, 1997; Turck-Chièze et al., 1997),
the depth and elemental abundances of the convection zone (Christensen-Dalsgaard et al.,
1991; Basu, 1998; Basu and Antia, 2004; Serenelli and Basu, 2010), interior differential
rotation rates (Thompson et al., 2003), as well as shedding light on the infamous solar
neutrino problem (Elsworth et al., 1990; Bahcall et al., 1997).

Local helioseismology on the other hand, concentrates on phenomena observed at
much smaller scales and works in complement with global helioseismology. Its goal is
to use a variety of techniques to interpret the full wave field at the surface, not just the
eigenmode frequencies. It provides a three-dimensional viewpoint for the solar interior
and is crucial in understanding large-scale flows, magnetic structures, and their inherent
interactions. It is responsible for revealing the existence of meridional flows (Hathaway
et al., 1996), vertical flows (Komm et al., 2004) and sunspot flows (Duvall et al., 1996),
whilst also helping to reveal the source of solar quakes (Donea et al., 1999). It further
revealed variability in the solar tachocline (Howe et al., 2000), as well as forming the basis
for a host of solar dynamo models (Schuessler, 1981; Dikpati and Charbonneau, 1999;
Nandy and Choudhuri, 2002).

One local helioseismology technique is helioseismic holography, the basic concept of
which was first proposed by Roddier (1975) and derived much later in detail by Lindsey
and Braun (1990). The premise is that that any wavefield observed at the solar surface can
be used to infer the wavefield at any other location in the solar interior. This theory relies
on the assumption that the observed surface wavefield (pupil) is a composite entirely of
waves converging to (ingression) or diverging from (egression) the point of interest (focus
point). The mathematical formulation is described by Lindsey and Braun (2000) and is
formulated based on the Kirchoff integral solution to the wave equation (Jackson, 1975).

3



1. INTRODUCTION

The egression HP+ or ingression HP− is given by Gizon and Birch (2005) as

HP± (r, ω) =

∫
P
d2x′G±(x− x′, z, ω)Φ(x′, ω) (1.1)

where r = (x, z) is the focus point, x′ is the horizontal position within the pupil P , Φ is
the scalar wavefield, ω is the angular frequency and G is a Green’s function designed to
propagate the surface wavefield forwards (or backwards) in time into the solar interior. The
construction of the Green’s function has seen many forms and differs greatly depending on
the approach from a ray theory or wave theory perspective.

From this, stems the ability to estimate the amount of wave power emitted from a
specific point or region at a particular time or frequency. Formally, this estimate of acoustic
power at a particular time is given by

P (r, t) = |H+(r, t)|2, (1.2)

or at a particular frequency by

P (r, ω) = |H+(r, ω)|2. (1.3)

In practice, equations (1.2) and (1.3) are integrate over all time and frequency respectively,
and give the same total power by Parseval’s theorem. The implementation of egression
acoustic power maps by Donea et al. (1999) led to time series revealing the acoustic sources
of the newly discovered phenomena of solar quakes. Further implementation revealed a
whole catalogue of solar quakes, opening a fresh field of research. Solar quakes appear as
concentric surface ripples in Doppler difference images (see Figure 1.1), emanating from a
localised source, although significant anisotropies within these ripples are prominent for
most quakes observed to date. The acoustic source driving the quakes has been strongly
linked with the onset of solar flares, but the exact mechanism responsible for initiation is
still debated. Not all solar flares generate solar quakes and it is not clear why this is.

A further related technique is time-distance local helioseismology, its goal being to
measure and interpret travel times between two points on the solar surface (Duvall et al.,
1993). An anomaly in the predicted travel time indicates an inhomogeneity along the
ray path. Through filtering and inversion techniques, the properties and dynamics of the
sub-surface fluid then becomes apparent (Jensen, 2003). The differences in solar travel
times are generally inferred to be due to the influence of magnetic fields, flow perturbations
or thermodynamic effects. Defining accurate travel time inversion kernels required to

4



1.1. The Solar Atmosphere

Figure 1.1: Remapped and filtered MDI Dopplergrams showing the temporal and spatial
evolution of the first observed solar quake following the 9 July 1996 X-ray flare from
Kosovichev and Zharkova (1998).

complete the computations for magnetic fields has proven difficult and consequently, the
effects of the magnetic field were oft discounted. Strong observational evidence suggested
active region magnetic fields significantly modify the helioseismic signals (Schunker et al.,
2005) and as such, disregarding their influence would come at a cost.

Propagation of waves through magnetic fields have been theoretically modelled using
linear geometric ray path calculations, as is common in the optics field. The solutions are
based on the Wentzel-Kramers-Brillouin (WKB) approximation for small wavelengths
and are found by tracking a sound speed perturbation as an integration along a ray path.
However, this similarly has its failings in areas where the sound and Alfvén speeds coincide

5



1. INTRODUCTION

(a = c layer), which occurs in the solar atmosphere near its surface layers and is commonly
referred to as the equipartition level. Here, the eikonal assumption upon which standard
ray theory is based fails as it has no mechanism to allow tunnelling between the slow and
fast magnetoacoustic wave modes. Cally (2006); Schunker and Cally (2006) rectified this
by providing a description of a more generalised ray theory, which can be applied to waves
in complex magnetic field models.

The helioseismic waves driven internally (p-modes) and emerging in magnetically
active regions are effectively acoustic (fast) waves. Upon interaction with strong magnetic
fields, these waves see significant physical changes, leading to variations in their travel
times, which are in turn heavily relied upon in helioseismic inversions (Moradi and Cally,
2013): 1. Fast wave reflection near the height where the Alfvén speed matches the fast
wave horizontal phase speed (Melrose, 1977; Cally and Goossens, 2008; Khomenko and
Cally, 2012), 2. The ramp-effect, which reduces the effective magnetoacoustic cut-off
frequency dependent upon the magnetic field inclination (Bel and Leroy, 1977), 3. Fast to
Alfvén mode conversion near the fast wave reflection height (Cally and Hansen, 2011),
and 4. Fast to slow mode conversion at the equipartition layer (Cally, 2006).

Fast to slow mode conversion involving an exchange of energy occurs between the two
modes, an effect believed to be the primary cause of p-mode absorption in sunspots (Spruit
and Bogdan, 1992; Cally, 1995; Cally and Bogdan, 1997a; Crouch and Cally, 2003; Cally
et al., 2003; Crouch and Cally, 2005). The degree of transmission between the two modes
is moderated by a transmission coefficient, which is heavily dependent upon the attack
angle, the angle the wave vector makes with the magnetic field. A smaller attack angle
leads to greatest transmission between the two modes. A recent analysis by Núñez (2019)
suggested that magnetoacoustic waves that have developed into shocks by the time they
reach the equipartition layer not only split their energy into the two modes but that both
resulting waves are smoothed in the process.

Magnetohydrodynamic (MHD) waves have long been theorised as a possible mech-
anism for heating the outer atmosphere of the Sun (Narain and Ulmschneider, 1996),
although there is not a clear understanding of the energy transport and release mechanisms
involved (Kuperus, 1969; Hood, 2010). Figure 1.2 shows a model chromospheric temper-
ature distribution, highlighting the extreme drop in density and corresponding increase
in temperature at the top of the chromosphere, an area known as the transition region.
Without a thorough understanding of the processes which moderate what type and how
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1.1. The Solar Atmosphere

much of each wave mode is penetrating into the upper solar atmosphere, there is likely to
be little progression in deciphering the role MHD waves play in this scenario.

Figure 1.2: Temperature (red in K), turbulent velocity (green in km s−1), total hydrogen
density (blue dashed in cm−3), neutral hydrogen density (blue dot-dashed in cm−3), and
electron density (blue dot-dot-dashed in cm−3) distributions from photosphere to transition
region extracted from Avrett and Loeser (2008)

As magnetoacoustic waves propagate into the chromosphere, there is also the potential
for partial acoustic reflection off any acoustic impedances, most notably the transition
region temperature gradient. These reflection sites have the potential to create chromo-
spheric cavities with semi-permeable walls (Zhugzhda, 2007, 2008), providing a location
for trapped waves to resonate within them. This effect can further confound the results
of measuring oscillation amplitudes in the chromosphere as it is uncertain as to whether
they are the result of purely upward propagating waves as suggested by Banerjee et al.
(2002); Centeno et al. (2006); Afanasyev and Nakariakov (2015) or whether downward
propagating (Gurman, 1987) and standing waves complement them (Botha et al., 2011).

7



1. INTRODUCTION

1.2 Numerical Modelling of Magnetohydrodynamic

Waves

The discovery of the aforementioned solar phenomena can be predominantly attributed
to observations, whilst explaining their physical underpinnings is largely the domain of
theorists. However, the theory is generally limited to simplified analytical models, not
sufficient to explain the full workings of heavily complex environments such as the solar
atmosphere. Realistic solar magnetic field configurations are rarely amenable to analytic
solutions and in order to accurately model them and the physical processes within, the
implementation of forward modelling via numerical methods is required.

Numerical simulations have long been used as a link between observation and the-
ory. Their implementation has seen the investigation of a wealth of solar atmospheric
conditions and the waves being generated in and/or propagating through them. A far from
exhaustive list shows recent simulations covering MHD mode-conversion (Felipe et al.,
2010); subsurface flows (Bhattacharya and Hanasoge, 2016), coronal dynamics (Prasad
et al., 2017), the solar wind (Cameron and Jackel, 2019), turbulent convection (Jacoutot
et al., 2008) and shock formation/heating (Orta et al., 2003).

Historically, the well known Courant-Friedrichs-Lewy (CFL) timestep constraint
(Courant et al., 1928) on numerical simulations has proved heavily restrictive on sim-
ulations modelling the solar atmosphere. The need to resolve small spatial scales and
large characteristic Alfvén speeds reduces the allowable numerical time-step when using
explicit schemes. This problem has been somewhat alleviated by increases in computa-
tional power of the preceding decades and also with the introduction of Lorentz Force
reductions (Rempel et al., 2009) or Alfvén speed limiters such as that of Boris (1970).
Amongst others, the codes MANCHA (Felipe et al., 2010), VAC (Tóth, 1996), SLIM
(Cameron et al., 2007), SPARC (Hanasoge, 2011) and LareXd (Arber et al., 2001) have
all been instrumental in the progress of forward modelling of MHD waves. The intrinsic
complexity and the requirement for magnetic solenoidity in the numerical solutions leads
to each code approaching the task in a different mathematical manner, with their various
advantages and shortcomings discussed in a succinct fashion by Murawski (2011).
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1.2. Numerical Modelling of Magnetohydrodynamic Waves

1.2.1 MHD Equations

All MHD simulations inevitably require solving some form of the MHD equations, which
can be found using various methods, and at their core can be derived strictly from the
Boltzmann equations (Goedbloed and Poedts, 2004). A simplified version of the MHD
equations taken from Fitzpatrick (2014) are given below; these describe the motion of a
perfectly conducting (ideal) fluid and its interaction with a magnetic field in a uniform
atmosphere. They stem from the combination of Maxwell’s equations with the equations
of gas dynamics. It is assumed that the typical plasma velocities are much less than the
speed of light and the effect of gravity is also ignored. The MHD equations are thus given
here as

dρ

dt
+ ρ∇ · v = 0, (1.4)

ρ
dv

dt
+∇p− ρg − 1

µ0

(∇×B)×B = 0, (1.5)

− ∂B

∂t
+∇× (v ×B) = 0, (1.6)

d

dt

(
p

ργ

)
= 0. (1.7)

Here, ρ is the mass density, p is the scalar pressure, v is velocity, g is gravity, B is the
magnetic field strength, µ0 is the permeability of free space, and γ is the ratio of specific
heats. Owing to this description being of ideal MHD, several terms are absent, such
as those encompassing the effects of viscosity, resistivity, hall effects, etc. In any case,
these omitted non-ideal terms are considered negligible on the length scales considered
within this study. In order to utilise these equations to study the propagation of small
amplitude linear waves, we rewrite the system of equations (1.4) - (1.7) in terms of an initial
time-independent background equilibrium state (p0, ρ0,B0,v0) and small perturbations
(p1, ρ1,B1,v1) to that state, such that

ρ = ρ0 + ρ1, (1.8)

p = p0 + p1, (1.9)

B = B0 + B1, (1.10)

v = v0 + v1. (1.11)

9



1. INTRODUCTION

Given no equilibrium flow velocity, this implementation gives a new set of equations

dρ1
dt

+ ρ0∇ · v1 = 0, (1.12)

ρ0
dv1

dt
+∇p1 −

1

µ0

(∇×B1)×B0 = 0, (1.13)

− ∂B1

∂t
+∇× (v1 ×B0) = 0, (1.14)

d

dt

(
p1
p0
− γρ1

ρ0

)
= 0. (1.15)

The (∇×B0) terms have been omitted as all background magnetic field profiles utilised
in this study are either constant or potential in nature and thus ∇×B0 = 0. Assuming
wave like solutions of the form exp[i(k · r− ωt)], where k is the wave vector, r contains
the spatial coordinates, ω is the angular frequency, and t is time, it is seen that

− ωρ1 + ρ0k · v1 = 0, (1.16)

− ωρ0v1 + kp− 1

µ0

(k×B1)×B0 = 0, (1.17)

− ωB1 + k× (v1 ×B0) = 0, (1.18)

− ω
(
p1
p0
− γρ1

ρ0

)
= 0. (1.19)

Under the assumption that ω 6= 0, equations (1.16) - (1.19) yield the solutions

ρ1 = ρ0
k · v1

ω
(1.20)

p1 = γp0
k · v1

ω
, (1.21)

B1 =
(k · v1)B0 − (k ·B0)v1

ω
. (1.22)

Substituting equations (1.20) - (1.22) into the equation of motion given in (1.17) leads to[
ω2 − (k ·B0)2

µ0ρ0

]
v1 =

{[
γp0
ρ0

+
B2

0

µ0ρ0

]
k− (k ·B0)

µ0ρ0
B0

}
(k · v1)

− (k ·B0)(v1 ·B0)

µ0ρ0
k.

(1.23)

For a hydrodynamic case with no magnetic field (B0 = 0), the solution is simply

ω2 = c2k(k · v1), (1.24)

10



1.2. Numerical Modelling of Magnetohydrodynamic Waves

where

c =

√
γp0
ρ0

(1.25)

is the sound speed. This solution is a longitudinal sound wave with phase velocity
ω
|k|k = ±ck and group velocity ∂ω

∂k
= ck. In the case of a non-zero magnetic field and

without loss of generality, the equilibrium magnetic field B0 can be directed along the
z-axis with the wave vector k lying in the x − z plane. Then, equation (1.23) can be
reduced to the eigenvalue equationω

2 − k2a2 − k2c2 sin2 θ 0 −k2a2 sin θ cos θ

0 ω2 − k2a2 cos2 θ 0

−k2a2 sin θ cos θ 0 ω2 − k2a2 cos2 θ


vxvy
vz

 = 0. (1.26)

Here, the subscripts for the perturbation velocity have been dropped and replaced with
their respective cartesian coordinates, θ is defined as the angle between B0 and k, k = |k|,
and

a =

√
B2

0

µ0ρ0
(1.27)

is the Alfvén speed. Solutions to equation (1.26) exist only when the determinant of the
left hand square matrix is zero, which in turn provides the dispersion relation

(ω2 − k2a2 cos2 θ)[ω4 − ω2k2(a2 + c2) + k4a2c2 cos2 θ] = 0. (1.28)

There are three independent real roots of the above dispersion relation, which correspond
to the three different types of waves that can propagate through an MHD medium. Starting
with

ω = ka cos θ, (1.29)

which describes the shear Alfvén wave. This wave involves plasma motion strictly perpen-
dicular to the magnetic field, a fact which can be seen through equations (1.20) and (1.21),
which reveal zero perturbation to the density or pressure. The remaining two roots of the
dispersion relation are

ω2 =
k

2

[
a2 + c2 ±

√
(a2 + c2)2 − 4a2c2 cos2 θ

]
. (1.30)

Here, the fast magnetoacoustic wave mode (fast wave) corresponds to the (+) solution, and
the slow magnetoacoustic slow mode (slow wave) corresponds to the (-) solution. These
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1. INTRODUCTION

waves have non-zero perturbations to the density and pressure and involve plasma motion
both perpendicular and parallel to the magnetic field.

The fast vf and slow vs wave velocities will depend upon their propagation direc-
tion relative to the background magnetic field. A fast wave sees its maximum velocity
vf =

√
c2 + a2 occur when travelling perpendicular to the magnetic field, and conversely

its minimum velocity vf = max[a, c] when parallel. A slow wave on the other hand,
experiences its maximum velocity vs = min[a, c] when travelling parallel to the magnetic
field, and it is unable to propagate perpendicularly.

The nature of both the fast wave and slow wave depends upon the ratio of the plasma
pressure to magnetic pressure (the plasma beta β), which is in turn related to the ratio of
the sound and Alfvén velocities:

β ≡ 2µ0p0
B2

0

=
2

γ

c2

a2
. (1.31)

When γ = 5/3, equation (1.31) gives the relation β = 1.2(c2/a2). In a typical quiet solar
atmosphere, β finds unity in the layers near the photosphere and lower chromosphere.
When β � 1, such is common in the solar interior, the fast wave will be essentially
acoustic in nature and the slow wave magnetic. When β � 1, which is characteristic of the
solar corona, the opposite is true such that the fast wave is essentially magnetic in nature
and the slow wave acoustic. The Friedrichs diagrams shown in Figure 1.3 give a schematic
representation of the phase velocities associated with the Alfvén, fast and slow waves for
different values of β.

1.2.2 Stratified Atmosphere

Waves travelling through a stratified medium, such as the solar atmosphere, are altered by
the various parameters which govern that medium. These waves are influenced by three
restoring forces: compression, buoyancy and the magnetic field itself. Ignoring the effects
of the magnetic field, which is common when examining p-modes in the solar interior, an
acoustic dispersion relation can be found. Utilising the plane-parallel approximation, the
wave equation can be solved exactly (see equations 2.2 and 2.3 from Deubner and Gough
(1984)) and is given as

ω2 = ω2
c + c2k2z −

c2N2k2x
ω2

, (1.32)

where kz and kx are the vertical and horizontal wavenumbers respectively. Introduced here
are two important parameters, which will be looked at individually. The Brunt-Väisälä
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1.2. Numerical Modelling of Magnetohydrodynamic Waves

Figure 1.3: Friedrichs diagrams for c < a with β = 0.6 (top-left), c > a with β = 1.5
(top-right), and c = a with β = 1.2 (bottom). The phase speed perturbation of the slow
waves is illustrated in blue, the fast wave in red, and the Alfvén wave in orange. The
dotted lines correspond to the sound and Alfvén speed. The horizontal and vertical axes
(vph,‖ and vph,⊥ respectively) represent the velocity perturbation components parallel and
perpendicular to the background equilibrium magnetic field B0. Figure extracted from
Jess et al. (2015).
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1. INTRODUCTION

(or buoyancy) frequency N is a measure of the stability of a fluid particle to vertical
displacements and is given by

N =

√
g

H
− g2

c2
, (1.33)

where H(z) = −ρ(z)/ρ′(z) is the density scale height. When N2 > 0, the Brunt-Väisälä
frequency is real valued and a vertically displaced fluid particle will oscillate around
the height where the density of the particle matches the density of the surrounding air,
describing a convectively stable stratified environment. IfN2 = 0, a displaced fluid particle
will move no further. When N2 < 0, N is imaginary, and a vertically displaced fluid
particle will continue to propagate until N2 becomes zero or negative, a process known as
convection.

The isothermal cut-off frequency is always defined as

ωci =
c

2H
. (1.34)

However, the vertically stratified cut-off frequency is non-unique as it can take a variety of
forms depending upon the choice of dependent and independent variables for the wave
equation (Schmitz and Fleck, 2003). For a non-magnetic atmosphere, the most common
form for the cut-off frequency of a stratified atmosphere is

ωc =
c

2H

(
1− 2

dH

dz

)1/2

, (1.35)

as given by Deubner and Gough (1984). Waves with frequencies below the acoustic cut-off
will become evanescent. This process strongly influences which frequency waves survive
as they propagate through the temperature minimum (maximum acoustic cut-off frequency)
and into the upper chromosphere. The acoustic cut-off frequency effectively provides an
upper reflecting point for vertically propagating acoustic waves in the solar atmosphere.

Further inspection of the acoustic dispersion relation reveals the Lamb depth, which
occurs when

ω2 = c2k2x. (1.36)

This describes a lower reflecting point for vertically propagating acoustic waves, and when
coupled with acoustic cut-off effect, provides the boundaries for the well known p-mode
cavity for acoustic solar waves.

Having looked at the effects of stratification in an acoustic atmosphere, attention is
turned to the effect of a non-zero magnetic field, which provides an extra restoring force
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1.2. Numerical Modelling of Magnetohydrodynamic Waves

for MHD waves. The combined effects of both acoustic and magnetic restoring forces
were first studied by Ferraro and Plumpton (1958), who considered the case of a uniform
vertical magnetic field in an isothermal atmosphere. A dispersion relation for the special
case of constant wave parameters (sound speed, Alfvén speed, density scale height) was
then developed by Yu (1965). Not long after, McLellan and Winterberg (1968) produced a
complex dispersion relation for gravitationally stratified atmospheres, which was reworked
into a more amenable form by Thomas (1982).

Following these previous works, and by beginning with the self-adjoint formulation
of linear MHD (Goedbloed and Poedts, 2004), a dispersion relation for gravitationally
stratified MHD was given in Schunker and Cally (2006) as

ω4 = (a2 + c2)k2ω2 − a2c2k2k2‖
− c2N2k2x + (ω2 − a2k2 cos2 θ)ω2

c .
(1.37)

This dispersion relation reverts back to the classical magneto-acoustic dispersion function
for unstratified media given in the right hand parentheses of equation (1.28), and to the
acoustic dispersion relation for the non-magnetic case given in equation (1.32).

A dispersion relation of the form given in equation (1.37) is set out nicely to describe
the extra influences imparted by the introduction of the magnetic field. Firstly, in the
asymptotic regime a� c (high in the atmosphere), the acoustic slow wave is given as

ω2 = c2k2‖ + ω2
c cos2(θ), (1.38)

where θ is the angle of the magnetic field from vertical. From this, the modification to the
acoustic cut-off frequency due to the magnetic field inclination becomes apparent as

ωm = ωc cos θ. (1.39)

Hence, a strong more inclined field reduces the effective cut-off frequency and allows
lower frequency waves to propagate freely. It enables slow waves to reach higher into the
solar atmosphere, a feature known as the ‘ramp effect’ (De Pontieu et al., 2004), where they
are observed as ‘magnetic portals’ (Jefferies et al., 2006). The influence of the magnetic
field inclination on the cut-off frequency is also the main reason behind the dominant
frequency variation at a given height in sunspot atmospheres (Solanki, 2003).

Secondly, in the asymptotic regime c � a (deep in the interior), the magnetic slow
wave is given as

ω2 = a2k2

(
c2k2‖ + ω2

c cos2(θ)

c2k2 + ω2
c − c2N2k2c/ω

2

)
, (1.40)
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which shows that the slow wave becomes field aligned when density and pressure perturba-
tions are neglected, reminiscent of the shear Alfvén wave.

Lastly, the fast waves are given by

ω2 = a2k2 + c2k2⊥ + ω2
c sin2(θ)− c2N2k2x

ω2
(1.41)

in the asymptotic a� c regime, and

ω2 = c2k2 + ω2
c −

c2N2k2x
ω2

+ a2k2
c2k2⊥ + ω2

c sin2(θ)− c2N2k2cω
2

c2k2 + ω2
c − c2N2k2cω

2
(1.42)

in the asymptotic c� a regime. These representations show that the fast wave propagates
slightly faster across magnetic field lines.

Unfortunately, the dispersion relation based upon the WKB solution is unable to
distinguish between the slow and fast wave modes around the equipartition layer zeq,
which occurs when a = c. Here, mode conversion and transmission can occur, which
allows energy to pass between the two modes. Schunker and Cally (2006) showed that
transmission (energy moving from slow-fast or fast-slow) occurs preferentially for (i) small
attack angle, the angle between the wave vector and the magnetic field; (ii) low frequencies
(small wavenumber); and (iii) small equipartition layer depth.

Above the a = c layer, and near the fast wave reflection height, fast-Alfvén mode
conversion can take place. Unlike slow-fast mode conversion, which can occur in a 2D
geometry, fast-Alfvén mode conversion requires a 3D geometry as it only transpires when
the wavevector is at an angle to the plane of the magnetic field. Numerical modelling has
shown that the strongest Alfvén fluxes recorded high in the solar atmosphere occur when
the magnetic field is inclined 30◦ - 40◦ from vertical, and when the wave propagates at a
angle of 60◦ - 80◦ from the plane of the magnetic field (Cally and Goossens, 2008). Further
studies have shown that fast-Alfvén conversion occurs preferentially at high inclinations
with an angle between the wave vector and magnetic field of 50◦ - 120◦ (Felipe, 2012).

Alfvén waves have been detected in the interplanetary medium using data taken from
as far back as the Mariner 5 spacecraft voyage (Belcher and Davis, 1971). They have
been found to be ubiquitous in the outer solar atmosphere (Tomczyk et al., 2007) and
their absorption has been proposed as a possible mechanism for heating the solar corona
(Mishonov et al., 2007). The low ionisation fraction of the photosphere suggests it may not
be possible to generate Alfvén waves in this area (Vranjes et al., 2008), although this has
been disputed (Tsap et al., 2011; Soler et al., 2013). Alfvén waves may also suffer from
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near-total reflection at the transition region (Uchida and Sakurai, 1975). Hansen and Cally
(2012) sought to mitigate these problems by providing numerical simulations showing that
Alfvén waves may be generated high in the chromosphere by fast-Alfvén mode conversion
and that their reflection is greatly reduced if the fast wave reflection height is sufficiently
close to the transition region.

1.3 Numerical Codes

Two different numerical codes are used to perform the simulations described within, Lare2d
and SPARC. Both codes employ the use of Message Passing Interface (MPI) to parallelise
the computation and reduce computation time. Further to this, all plots were produced via
the Interactive Data Language (IDL) or Mathematica.

1.3.1 Lare2d

Lare2d is a subset of the codes described by Arber et al. (2001). It implements a non-ideal
Lagrangian remap code to solve the 2-D MHD equations. It utilises a staggered grid and is
second-order accurate in space and time. The code correctly handles shocks, whilst not
using the traditional approximate Riemann solver. The method instead is based on each
step taking a fully 3-D Lagrangian step via a second-order predictor corrector scheme
before being conservatively remapped onto the original grid. The technique becomes
viable when solving Euler’s equations through an appropriately staggered grid and Wilkins
artificial viscosity implementation, although it has been shown to be not as robust as
those using an approximate Riemann solver. It was designed to accurately include the
nonhyperbolic physics such as resistivity, viscosity, radiation, thermal conduction, and
gravity, which are common in the high solar atmosphere. The use of gradient limiters and
shock viscosities make the Lare2d code ideally suited to shock calculations and is hence
used in Chapter 2 to realise the smoothing effects of MHD shocks in mode conversion.
The code is also used in Chapter 3 to investigate chromospheric resonances in the umbrae
of sunspot atmospheres.
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1.3.2 SPARC

The Seismic Propagation through Active Regions and Convection (SPARC) was developed
progressively through the works of Hanasoge et al. (2006, 2007); Hanasoge (2008) and
eventually to its full 3-Dimensional form described in Hanasoge (2011). The code uses
an implicit compact sixth-order finite difference scheme, which is used to solve the linear
idealised MHD equations for waves in a stratified solar environment. Explicit filters
are also used to prevent numerical instabilities in the solutions. The option of Perfectly
Matched Layers (Hanasoge et al., 2010) for any or all boundaries is available, which
provides efficient absorption of outgoing waves. Further ‘sponge’ type absorbing layers
can also be implemented, which introduce a linear friction based term to the underlying
equations (Colonius, 2004). An Alfvén speed limiter can be invoked to avoid reduction
of the time-step and consequent unrealistic computational times. This process is based
primarily on the limitation of the Lorentz Force (Rempel et al., 2009) and the implications
on computational helioseismology for various atmospheres is discussed in detail by Moradi
and Cally (2014). The non-linear effects ignored by this code are primarily found at
great heights in the solar atmosphere, such as in the mid-upper chromosphere and corona.
Perturbations in sub-surface and photospheric layers are dominated by linear effects and
in line with this, SPARC will be utilised in Chapter 4 to study the sub-photospheric
propagation of waves known to produce ‘solar quakes’ at the solar surface.
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CHAPTER 2
Smoothing of MHD Shocks in Mode

Conversion

2.1 Introduction

2.1.1 Linear Mode Conversion

MHD waves have the propensity to change their nature whilst travelling through the various
physical conditions of the solar atmosphere. These conversions between fast, slow and
Alfvén wave types can occur multiple times and are well known throughout the recent
solar literature. Linear wave conversions from fast-slow (Schunker and Cally, 2006) and
fast-Alfvén (Cally and Goossens, 2008; Cally and Hansen, 2011) have been explored in
detail and reviewed by Cally et al. (2016). Linear fast-Alfvén conversion is realised in
the neighbourhood of the fast wave reflection height for stratified atmospheres (provided
there is some non-zero angle between the wave vector and the magnetic field) and linear
fast-slow conversion occurs where the Alfvén speed a roughly matches that of the local
sound speed c. It is this latter case we will introduce and explore in further detail.

Fast-Slow Conversion

Extensive observations of the quiet solar surface surrounding sunspots revealed that p-
modes are partially absorbed in magnetically active regions (Braun et al., 1987, 1988,
1992; Bogdan et al., 1993; Braun, 1995). A mechanism of fast-slow conversion was
proposed to be responsible by Spruit (1991). The mode description of this process was
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then significantly advanced and coupled with strong observational data to give credence
to this original description of fast-slow wave conversion. Following this, time-distance
helioseismology techniques such as those of D’Silva (1996); Kosovichev et al. (2000);
Gizon and Birch (2002), as well as a formulation based on acoustic holography given by
Braun and Lindsey (2000) were used to supplement the original modal description (Cally
and Bogdan, 1993, 1997b; Cally et al., 1994; Cally, 2000; Cally et al., 2003; Crouch and
Cally, 2005) (see also the review by Cally et al. (2016)).

However, it wasn’t until Cally (2005), that the introduction of a strong magnetic
field was implemented with any considerable rigour. This allowed a perturbation-based
approach to proceed, in which the perturbed quantity was that of the inclination of the
magnetic field; an important addition to the theory given active regions comprise of
magnetic fields which can be both strong and highly inclined to the vertical. The results of
this analysis led to an understanding of where and under what physical conditions fast-slow
or slow-fast conversion might take place in a solar-like context. It was discovered that slow
and fast magnetoacoustic waves couple within the neighbourhood of the Alfvén acoustic
equipartition layer zeq where the Alfvén and sound speeds coincide, a = c. This coupling
allows the transition from fast-slow wave types or equivalently, slow-fast. The degree of
transmission is moderated by a transmission coefficient T ; the most important constituent
of which is the attack angle, the angle the wave vector makes with the magnetic field.
Greater transmission between the two wave types is apparent with a smaller attack angle.

The perturbation method was then developed by Cally (2006) for a more generalised
ray theory approach, utilising dispersion relations based on the mathematical formulations
of Tracy et al. (2003). The implementation then allowed the potential for non-analytical
thermal and magnetic models to be explored, a vast improvement given the complexity of
both the solar and other various stellar atmospheres. Coupled with the matrix description
of standard MHD ray theory given by Weinberg (1962), Schunker and Cally (2006) utilised
and expanded upon these formalisms to give the most thorough and succinct description of
linear mode conversion we have today. It is chosen to look at both the development of the
theory given by this description, as well as some of its most important results below.

Beginning from the self-adjoint description of linear MHD by (Goedbloed and Poedts,
2004), and setting∇×B = j = 0 for a potential magnetic field, the equilibrium equation
is

−∇p+ ρg = 0,
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where p is pressure, ρ the density and g the acceleration due to gravity. Whilst the potential
energy of the system is given by

W = −1

2

∫
ξ∗ · F(ξ)dV

=
1

2

∫
ρc2|∇ · ξ|2 + |b|2 +

1

2
ρg · (ξ∇ · ξ∗ + ξ∗∇ · ξ)

+
1

2
g · (ξ∇ · ρξ∗ + ξ∗∇ · ρξ)dV,

(2.1)

where ξ = (ξ, 0, ζ) is the displacement vector (specialising to 2D for our purposes), F is
the force per unit volume, b = ∇× (ξ ×B) is the magnetic field perturbation and B is
the background magnetic field. By defining X = ρ1/2ξ and Y = ξ cos θ − ζ sin θ, along
with some algebraic manipulation, the Lagrangian density can be defined as

L =
1

2
|Ẋ|2 − 1

2
c2
∣∣∣∣∇ ·X +

Xz

2H

∣∣∣∣− 1

2
ρa2|∇ × (Yêy)|2

− 1

2
g · (X∇ ·X∗ + X∗∇ ·X),

(2.2)

The wave equations may be recovered by extremising the action,
∫
L dV dt.

Of particular interest is finding Wentzel-Kramers-Brillouin (WKB) type solutions to
equation (2.2). This technique is best laid out by Bender and Orszag (1978) and involves
assuming an eikonal solution coupled with an asymptotic series expansion. The small
parameter ε inherent in the process in this case is inverse frequency, suggesting that this
process is only valid for high frequencies. By assuming a plane wave like solution, the
following definitions can then be introduced,∇ ≡ ik, ∂/∂t ≡ −iω. A further introduction
will be χ = ∇ ·X = ikxρ

1/2ξ + ikzρ
1/2ζ . Solving for ξ and ζ in terms of χ and Y , gives

L = QHD̃Q, where Q = (χ, Y )T (superscript ‘H’ denotes the Hermitian transpose), and

D̃ =

(
D̃a η̃

η̃∗ D̃b

)
(2.3)

is the dispersion matrix, where

D̃a = ω2 − c2k2‖ − ω2
ci cos2 θ, (2.4)

D̃b = ω2 − a2k2‖ − ω2
ci

k2x
K2

(2.5)
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and

η̃ =
−ik⊥ω2 + ikxω

2
ci cos θ − gkxk‖ + 1

2
kxk‖c

2H(z)−1

K
, (2.6)

with k‖ = kx sin θ + kz cos θ and k⊥ = kx cos θ − kz sin θ being the components of the
wave vector parallel and perpendicular to the magnetic field respectively, and K = |k| =√
k2x + k2z . D̃a and D̃b are effectively the dispersion functions which relate to the distinct

acoustic and magnetic modes respectively when far from a conversion zone. Note also the
use of ωci (the isothermal acoustic cut-off frequency) as opposed to the conventional ωc.
The square of the acoustic cut-off frequency ωc is given by Balmforth and Gough (1990) as

ω2
c =

c2

4H2
(1− 2H ′), (2.7)

where H is the density scale height. This has been modified so as to reflect an
isothermal atmosphere where the derivative of the scale height is zero, giving an acoustic
cut-off frequency

ωci =
c

2Hρ

. (2.8)

This is an important simplification as the (now excluded) derivative term tends to cause
a sharp spike in ωc near the solar surface for empirical atmospheric models (Schmitz and
Fleck, 1998, 2003).

According to standard ray theory, solutions are found by solving the dispersion function
D = det D̃ = 0. It is then apparent that the solutions to D̃a = 0 and D̃b = 0 will give the
independent acoustic and magnetic wave solutions. For the dispersion matrix (2.3),

D = ω4 − (a2 + c2)K2ω2 + a2c2K2k2‖

+ c2N2k2x − (ω2 − a2K2 cos2 θ)ω2
ci,

(2.9)

where K2 = k2x + k2z , k‖ is the component of the wave vector along the magnetic field
direction, and the Brunt-Väisälä frequency N is defined by

N2 =
g

H
− g2

c2
. (2.10)

As discussed earlier, the solution to equation (2.2) is sought via a WKB type solution.
The eikonal method however fails in a variety of circumstances. Most importantly for this
discussion focusing on mode conversion, it contains no mathematical mechanism in which
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to couple the slow and fast wave types. The rigidity of the system distinguishes both the
fast mode and slow mode independently and relinquishes any connection between the two.
In regions where a� c, the fast wave is dictated by magnetic characteristics and the slow
wave by acoustic characteristics. Conversely, where c � a, the slow wave is magnetic
in nature and the fast wave, acoustic. Away from these distinct regions and around the
conversion zone, the region of interest, the fast and slow waves become mixed in their
nature and thus it would be erroneous to decouple them, as is inherent in the standard
WKB analysis. Even with attainable higher order approximations, the WKB expansion is
asymptotic in nature rather than convergent and hence increased accuracy in these solutions
is not guaranteed; this is shown numerically in Cally (2005) for appropriate horizontal
phase speeds.

The idea then is to construct a solution which is valid around the conversion region
and is further matched asymptotically to the incoming and outgoing solutions away from
that particular region. By utilising a local Taylor series expansion around the conversion
point and ignoring higher-order terms, the dispersion function can be arranged as D = det
D = D̃aD̃b − |η|2. This function is moderated by η, which will be from herein referred to
as the ‘coupling term’. Away from the conversion zone, η is small in comparison to D̃a

and D̃b, and can be ignored. However, near regions of conversion, η becomes comparable
in size and plays a crucial role in determining the degree of conversion between the two
wave types; in other words, it acts to quantify the amount of mode transmission in areas
where D̃a = D̃b = 0. A complex mathematical process is then prescribed by Tracy et al.
(2003) which sets out what is to be termed the transmission coefficient. In the current
MHD context, this describes the amount of energy transitioning from one WKB branch
(slow/fast) to the next (fast/slow) and is given by

T = exp
(
−2π|η|2

B

)
, (2.11)

where

B = {D̃a, D̃b} =
∂Da
∂kz

∂Db
∂z
− ∂Db
∂kz

∂Da
∂z

(2.12)

is the Poisson bracket of the uncoupled dispersion functions. Conversely, there is the
complex conversion co-efficient C, where |C| = 1 − T . The argument of this can be
associated with the wave’s change in phase. When T = 0, no transmission is recorded and
the fast and slow waves retain their nature throughout the conversion zone. Conversely,
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T = 1 corresponds to a complete change from fast-slow or slow-fast. It is appropriate to
restate that T was found via a local expansion around a conversion point. It provides a
coupling between the eikonal solutions, which are valid elsewhere.

At this point, a new function U is introduced into the equations for both D̃a and D̃b.
The form of this function is not unique and acts to match the two dispersion functions
with their corresponding acoustic and magnetic branches away from the conversion region.
Near the conversion region, this addition makes little practical difference and thus the
derivation is excluded.

In order to calculate T , the solution to D = det D = D̃aD̃b − |η|2 is sought. At
conversion points, D̃a = D̃b = 0, therefore

|η|2 = −D. (2.13)

Schunker and Cally (2006) chose to look at the demonstrative case where both the cut-
off ωci and Brunt-Väisälä N frequencies are identically zero. This leaves the conversion
points to occur at exactly a = c and K2 = ω2/c2, and gives

|η|2 = c4K2k2⊥. (2.14)

The transmission coefficient associated with the above scenario is

T = exp
[
− πhK2k2⊥
|kz|(K2 + k2⊥)

]
a=c

≈ exp
(
−πhk

2
⊥

|kz|

)
a=c

for |k⊥| � K

= exp[−πKhs sin2 α]a=c,

(2.15)

where α = arcsin (k⊥/K) is the attack angle, recalled as the angle the wave vector
makes with the magnetic field. Also introduced above is the equipartition scale height
h = [d(a2/c2)/dz]−1a=c, the measure of thickness of the layers in which a ≈ c, along
with hs = [d(a2/c2)/ds]−1a=c, the measure of thickness along the path traced out along the
direction of the phase velocity k̂.

Examination of equation (2.15) suggests that transmission from slow-fast or fast-slow
occurs preferentially for (i) small attack angle; (ii) low frequencies (small wavenumber);
and (iii) small equipartition layer depth. Conversely, large attack angle, high frequencies
and a wide interaction region enhances conversion, where energy is converted in form
from acoustic to magnetic but stays on its original fast or slow branch. This is illustrated in
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Figure 2.1, which depicts the ray paths on a (z, kz) phase diagram for a given horizontal
wavenumber kx, angle of magnetic field from vertical θ, and frequency f. The green
acoustic and purple magnetic curves are seen to align closely with their respective fast or
slow branches except in the region around a = c. In this region, they disassociate them-
selves and transition through one of the nominal star points upon which their respective
transmission coefficients T are calculated. The upper star point corresponds to a small
attack angle and higher T as predicted.

Figure 2.1: z− kz phase diagram taken from Cally (2007). The background magnetic field
is 2 kG and inclined at an angle θ = 30◦ to the vertical with further atmospheric values
based on the Model S version from Christensen-Dalsgaard et al. (1996). The horizontal
wavenumber kx = 1.372 Mm−1 is unchanged and determined by the lower turning point of
the fast branch, namely at z = −5 Mm. The frequency used is f = 5 mHz, and the vertical
grey line corresponds to the a = c equipartition depth zeq = −297 km. The points at
where transmission is predicted to occur are outlined as red star points and their associated
transmission values according to equation (2.15) are displayed.

The visualisation of the attack angle’s effect is borne out best through ray analysis in
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2. SMOOTHING OF MHD SHOCKS IN MODE CONVERSION

physical space, as is seen in Figure 2.2. When an incoming fast wave from below reaches
the a = c layer, the amount of transmission (conversion) realised is predicated heavily
upon the angle at which the fast ray makes with the magnetic field. The small attack angle
(middle panel) sees the majority of the energy transferring from the fast to slow branch.
The continuing fast wave containing the remaining energy then reflects and interacts again
with the a = c layer to split its energy again into further fast and slow branches.

It should be remembered that the formula for the transmission coefficient T (see equa-
tion (2.15)) used to calculate the values in Figure 2.2 was introduced as an approximation
based on setting the acoustic cut-off and Brunt-Väisälä frequencies to zero. Hansen and
Cally (2009) tested this approximation against the exact solutions for a two-dimensional,
isothermal, gravitationally stratified model with inclined magnetic field. Both were found
to perform well against the exact solutions set out in Cally (2008), with the original form
performing slightly better. The more condensed approximate form is consequently judged
to be suitable for this analysis.

2.1.2 Shocks in MHD

Physical processes within the Sun and its overlying atmosphere create a plethora of
disturbances, each producing their own sound waves. The vast majority of these will
begin as subsonic disturbances. Their accompanying sound waves will propagate ahead
of the disturbance, giving warning to the upcoming fluid of its arrival. This allows the
reaction of the fluid to the arrival of the disturbance to be predominantly smooth and
adiabatic. If on the other hand the initial disturbance is strong enough, the response will be
supersonic. The ability for the accompanying sound wave to carry such information ahead
of the local disturbance is then destroyed. This leads to a sharp and abrupt change of the
physical conditions at the interface between disturbed and undisturbed fluid particles and
the response is commonly referred to as a shock.

Some common major solar disturbances such as magnetic reconnection, prominence
eruptions, solar flares, coronal mass ejections and even on smaller scales, surges and
spicules, can be so powerful that shock waves can be produced almost instantaneously
following their onset. Even the constant granulation of the Sun, a comparatively mild
process compared to the aforementioned, can eventually produce shock waves. This
process occurs mainly because as the sound waves travel outward from the interior of the
Sun, they progress through a density profile which decreases significantly with height.
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2.1. Introduction

Figure 2.2: Physical space (x, z) ray path diagram from Schunker and Cally (2006) for
a model atmosphere with 2 kG magnetic field inclined 0◦ (top), +30◦ (middle), −30◦

(bottom) from the vertical, as represented by the grey background lines. An incoming 5
mHz fast ray is injected from the bottom left into the atmosphere; the colour bar represents
the energy remaining in each branch of the ray. The horizontal line represents the a = c
layer, the region where transmission takes place. The dots on each ray path represent 1-min
travel time intervals.
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2. SMOOTHING OF MHD SHOCKS IN MODE CONVERSION

The inverse relationship between density and the amplitude of the waves causes some
previously subsonic waves to become supersonic and a shock is formed.

The layer between the shocked and unshocked fluid is referred to as the shock front
and for MHD shocks, the thickness of the front is generally very narrow due to the balance
between convective and dissipative effects. The gradients of pressure, density, velocity
and temperature become so great at the front that dissipative processes such as viscosity
or thermal conduction now start to play an important role. The shock front is in fact so
narrow (a few mean free path lengths) that it is often modelled as a discontinuity of the
fluid, though of course this is not achievable computationally.

For simplicity, this scenario is viewed from the rest frame of a shock travelling in the y
direction with the shock-front lying in the (x, z) plane. The velocity and magnetic fields
also lie in this same plane. The regions upstream and downstream of the shock are denoted
by subscripts ’1’ and ’2’ respectively and are assumed to be non-varying in time and space.
Thus, the area of interest can be localised to the immediate vicinity around the shock. By
utilising the conservative form of the MHD equations along with Maxwell’s equations, a
further set of equations can be established to govern the shock as it travels through a chosen
medium. Integrating these equations across the discontinuity (shock-front) produces a
necessary set of conditions known as the jump or Rankine-Hugoniot conditions(

γ

γ − 1

p1
ρ1

+
v21
2

)
ρ1vy1 +

vy1B
2
x1

µ0

− By1(Bx1 · vx1)
µ0

=

(
γ

γ − 1

p2
ρ2

+
v22
2

)
ρ2vy2 +

vy2B
2
x2

µ0

− By2(Bx2 · vx2)
µ0

(2.16)

ρ1vy1 = ρ2vy2 (2.17)

By1 = By2 (2.18)

ρ1v
2
y1 + p1 +

B2
x1

2µ0

= ρ2v
2
y2 + p2 +

B2
x2

2µ0

(2.19)

ρ1vy1vx1 −
Bx1By1

µ0

= ρ2vy2vx2 −
Bx2By2

µ0

(2.20)

(v1 ×B1) = (v2 ×B2), (2.21)

which have been applied in this context from as far back as De Hoffmann and Teller (1950).
These equations allow for the solution of all six unknown quantities. Simplified cases
involve parallel and perpendicular shocks, whilst the more general case of an oblique shock
is further involved. Priest (1984) and Fitzpatrick (2014) both give concise descriptions of
all three different types of MHD shocks, which are summarised below.
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Parallel Shocks

A parallel shock is formed when the plasma flow direction is both parallel to the magnetic
field and perpendicular to the shock front

v1 = (0, v1, 0) v2 = (0, v2, 0)

B1 = (0, B1, 0) B2 = (0, B2, 0)
(2.22)

and the upstream plasma velocity exceeds that of the sound speed v1 ≥ c1. Or, by
invariance, the propagation velocity of the shock through a stationary plasma must be
supersonic. In this case, the magnetic field plays no role, B2 = B1 and the MHD shock
is analogous to a purely hydrodynamic shock. All of the shocks discussed herein are
compressive, in that the density of the shocked material is always greater than that of the
un-shocked material. By substituting equation (2.22) into our jump conditions, the density
ratio between the two,

X =
ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

(2.23)

where M1 = v1/c1 and c1 = (γp1/ρ1)
1/2, is always greater than unity. In fact, it can be

demonstrated through the imposition of the second law of thermodynamics (the entropy of
the closed system must never decrease) that 1 < X < γ+1

γ−1 . On the other hand, the pressure
ratio,

Y =
p2
p1

=
(γ + 1)X − (γ − 1)

(γ + 1)− (γ − 1)X
(2.24)

can increase without bound. Due to the limiting value of the compression ratio, as a shock
increases in strength, the increase in pressure must be predominantly associated with an
increase in temperature. The terms strong shock and weak shock are often used to refer to
when M1 � 1 and M1 − 1� 1 respectively.

Perpendicular Shocks

In the case of the perpendicular shock, the plasma flow direction must be both perpendicular
to the magnetic field and the shock front

v1 = (0, v1, 0) v2 = (0, v2, 0) (2.25)

B1 = (B1, 0, 0) B2 = (B2, 0, 0).

The shock will form when the upstream plasma velocity is greater than the upstream fast

magneto-acoustic speed v1 ≥ (c21 + a21)
1/2. In essence, the fast speed plays the same role
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2. SMOOTHING OF MHD SHOCKS IN MODE CONVERSION

as the sound speed in the case of the parallel shock. The perpendicular shock however,
will propagate across the magnetic field. Again, substituting equation (2.25) into the jump
conditions now produces a quadratic in X

2(2− γ)X2 + γ[2(1 + β1) + (γ − 1)β1M
2
1 ]X − γ(γ + 1)β1M

2
1 = 0, (2.26)

where β1 = 2µ0p1/B
2
1 is the plasma beta, the ratio between gas and magnetic pressures.

The solution is the real positive root of equation (2.26), and as a consequence, the limiting
range for the density compression is once again 1 < X < γ+1

γ−1 . In the limit β1 →∞, the
solution reverts back to that of the hydrodynamic scenario given by equation (2.23). Further
separating this case from the parallel shock, the magnetic field is now also compressed by
the same quantity X . The pressure ratio

Y = 1 + γM2
1 (1−X−1) + β1(1−X2) (2.27)

can again increase without limit.

Oblique Shocks

An oblique shock describes any situation not covered by the aforementioned scenarios,
specifically when the plasma flow direction is neither perpendicular nor parallel to the
magnetic field or the shock front. This leads to the introduction of the angle θ, which is
the angle subtended between the upstream plasma flow and the normal to the shock front,
such that v1y = v1 cos θ. Calculations show that it is possible, and in fact convenient to
transform into the de Hoffmann-Teller frame in which,

|v1 ×B1| = 0 (2.28)

and it follows from equation (2.21) that

|v2 ×B2| = 0. (2.29)

This frame is advantageous in that the upstream and downstream plasma flows are now
parallel to the local magnetic fields in their respective regions. Substituting equations
(2.28) and (2.29) into the original jump conditions, produces a new set of equations

p1

(
1 +

c21X

γv21(X − 1)
− Xa21[(γ + 1)v21 − 2Xa21 cos2 θ1]

2(v21 − γa21 cos2 θ1)2

)
= p2

c21X

γv21(X − 1)
(2.30)
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ρ1vy1 = ρ2vy2 (2.31)

By1 = By2 (2.32)

Bx1(v
2
1 − cos2 θ1a

2
1) = X−1Bx2(v

2
1 −X cos2 θ1a

2
1) (2.33)

vy1 = Xvy2 (2.34)

vx1(v
2
1 − cos2 θ1a

2
1) = vx2(v

2
1 −X cos2 θ1a

2
1) (2.35)

The solution in X is now a real root of the cubic equation commonly referred to as the
shock adiabatic

(v21 −X cos2 θ1a
2
1)

2
{

[(γ + 1)− (γ − 1)X] v21 − 2Xc21
}
−X sin2 θ1a

2
1{

[γ + (2− γ)X]− [(γ + 1)− (γ − 1)X]X cos2 θ1a
2
1

}
= 0. (2.36)

The density compression ratio is once again limited as per the above shock types, 1 <

X < γ+1
γ−1 . For a weak shock X → 1+, the real roots of equation (2.36) can be rearranged

for v21 to give

v21 =
a21 + c21 − [(a1 + c1)

2 − 4 cos2 θ1c
2
1a

2
1]

1/2

2
(2.37)

v21 = cos2 θ1a
2
1 (2.38)

v21 =
a21 + c21 + [(a1 + c1)

2 − 4 cos2 θ1c
2
1a

2
1]

1/2

2
. (2.39)

These should be familiar as they correspond to the velocities of the three linear MHD
waves: slow, Alfvén and fast, respectively. The non-linear versions of which are termed the
slow shock, intermediate shock and fast shock. The principal interest in this discussion lies
in that of the slow and fast shocks and it can be shown through some algebra that the fast
shock acts to refract the magnetic field away from the shock normal, whilst the slow shock
has the opposite effect. Turning attention to the strong shock X → γ+1

γ−1 , the presence of
multiple real roots to equation (2.36) is not always guaranteed. The fast shock solution is
always viable, whereas the slow and intermediate shock solutions can vanish under certain
scenarios. It is this crucial feature that will be revisited with further detail later in the
chapter when applied to realistic shock simulations in a typical solar like atmosphere.
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2. SMOOTHING OF MHD SHOCKS IN MODE CONVERSION

2.1.3 Motivation for Study

As described in Sections 2.1.1 and 2.1.2, both linear mode conversion as well as shock
development and propagation of MHD waves have been well studied. However, the mixing
of the two to give non-linear mode conversion of MHD shocks, is much less understood.
Recently, Núñez (2019) presented an analysis based on the generalised ray theory of
Cally (2008) and Schunker and Cally (2006) (see also Tracy et al. 2003) to argue that
magnetoacoustic shocks passing through the layer where a and c coincide (the Alfvén-
acoustic equipartition) not only split into fast and slow components as suggested by linear
theory, but also that both the resultant outgoing fast and slow shocks are smoothed in the
process. Núñez’s argument is predicated on an assumption which is stated and not fully
justified: ‘Assuming that the passage through the conversion zone acts linearly in the

waves, which is reasonable since they spend very little time there, we obtain the surprising

result that the shocks which may be present in the incident wave are smoothed out in the

outgoing ones, except for the single case of a pure transfer from a fast to a slow wave or

vice versa.’ (Núñez, 2019, Conclusions)

This phenomenon is explored through 1.5-dimensional (1.5D) numerical simulation
and accompanied theoretical discussion. The main questions addressed will be i) Does
mode conversion still operate at a = c, as for linear waves? ii) Is it similarly dependent on
the attack angle? iii) Are the transmitted and converted waves also shocks, or have they
been smoothed?

2.2 Model

In active regions, the spatial extent over which the magnetic field is considered dynamically
important is of the order of a few hundred kilometres, significantly smaller than a sunspot,
which can have a diameter of tens of megametres. This demotes the variation in strength
and inclination of the magnetic field to secondary importance and hence the field can
be represented as locally uniform but inclined at some angle to the vertical. Owing
to this, the simplest suitable model to explore the proposed phenomenon is adopted:
an isothermal gravitationally stratified 1.5D atmosphere with uniform magnetic field
B = B0(sin θ, 0, cos θ) inclined at angle θ to the vertical. The effect of gravity is balanced
by a decreasing density profile with height to achieve hydrostatic equilibrium. The
magnetic field is chosen such that the Alfvén speed a equals the sound speed c at a
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sufficient altitude that a fast (i.e. acoustic) wave injected at the bottom of the computational
domain has enough space to shock before reaching the equipartition level a = c.

The computational box stretches 2.0 Mm both above and below the z = 0 height.
The equilibrium density scale height is h = 175.731 km, the uniform sound speed is
c = 8.958 km s−1, the adiabatic index is γ = 5/3, and the magnetic field strength is
B0 = 0.9 kG oriented at angle θ to the vertical. The a = c equipartition level is situated at
height z0 = 125 km. The acoustic cutoff frequency is ωc = c/2h, or 4.0 mHz. There is
nothing particularly special about these values, though they are broadly characteristic of
the active solar chromosphere. Changing B0 simply moves the equipartition level up or
down. Similar results may be expected for other stellar atmospheric models.

The numerical code used to solve the non-linear MHD equations is Lare2d (Arber et al.,
2001). The grid is comprised of 8192 cells in the vertical direction, giving a resolution of
0.488 km.

A shock viscosity term is employed to avoid the Gibbs phenomenon whilst not artifi-
cially smoothing the shock front substantially. It can be seen that the shock fronts remain
sharp where predicted throughout the simulations. An artificial cooling term is applied to
avoid thermal runaway from shock heating, allowing the atmosphere to remain close to its
initial profile. This term has the form of an exponentially weighted moving average, where
the degree of weighting is set at αw = 0.05. When the cooling term is removed, the results
show a < 1% difference within a scale height either side of the a = c layer, the main area
of interest.

Well approximated solutions for mode conversion and transmission are given in equa-
tion (2.15) and exact solutions for the linear case can be described via 2F3 generalised
hypergeometric functions as given in Hansen et al. (2015). The degree of transmis-
sion/conversion is based primarily on three conditions, the most important being the attack
angle, the angle between the wave vector and the magnetic field. The smaller the attack
angle through the layers around a = c, the more transmission occurs. In the most simple
case with a vertically propagating wave through a vertical magnetic field, the attack angle
is identically zero. Núñez (2019) is in agreement that an incoming acoustic shock-wave
should remain unchanged except to transmit all its energy from the fast branch to the slow
or vice versa. However, orientating the magnetic field away from vertical such as to give
a non-zero attack angle should cause varying degrees of mode splitting. According to
Núñez’s analysis based on the averaging between Fourier modes of the outgoing waves,
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the resulting fast and slow ‘shocks’ should be smoothed in the process.

Disentangling the fast and slow waves for analysis as they exit the a = c layer requires
looking into their governing natures and becomes easiest when the acoustic and Alfvén
speeds are well separated. In the areas above a = c, the plasma beta β level decreases
dramatically towards zero, hence magnetic pressure is dominating in this environment. The
fast wave at this stage is predominantly magnetic in nature and its polarisation becomes
ever more perpendicular to the magnetic field with height. Classically, the fast wave
reflects at some stage in the chromosphere due to the ever-increasing Alfvén speed gradient
but this is only true in the case where the wave vector isn’t exactly vertical. In this case
of a vertical wave, the fast wave travels upwards unhindered. The slow also propagates
upwards unhindered but its travelling speed is significantly less than that of the fast wave.
The slow wave also becomes more and more aligned with the magnetic field with height.
These defining features allow for the two wave modes to be distinguished above a = c.

In accordance, both perpendicular and parallel-to-the-field plasma velocities v⊥ and
v‖ are analysed. It should be noted that the measurements of parallel and perpendicular
components are with respect to the actual (perturbed) magnetic field and not the original
equilibrium field. This is important as the propagating shock front acts to compress the
plasma by up to a factor of 4 and given that the field lines are tied to the plasma, the
magnetic field inclination can be greatly perturbed. In line with this, the density ρ scaled
by the equilibrium density ρ0(z) is tracked throughout the simulations and presented
accordingly.

2.3 Results

A wave driver is implemented at the bottom of the computational box z = −2.0 Mm and
acts to deliver an angular-frequency-ω0 half-period sinusoidal pulse of vertical velocity
with amplitude V0. This is essentially just adding a source term to the momentum equation
for MHD. The proposed driver creates a wave with purely vertical wave vector. The plasma
velocity disturbance is also initially vertical. It does not begin to deviate significantly from
vertical until such a height that the plasma beta has decreased enough to allow the pressure
imparted by the inclined magnetic field to have a non-negligible effect. The frequency
chosen is twice that of the acoustic cut-off value ω0 = 2ωci = 8.0 mHz. In frequency
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space, this corresponds to the broad frequency spectrum

F̃ (f) = −f0
[

cos(πf/2f0)

(f 2 − f 2
0 )π

]
, (2.40)

which is centred around zero, where f = ω/2π. It is important to note that the acoustic
cut-off phenomenon only allows frequencies above 4 mHz to propagate upwards in this
atmosphere. This is due to the acoustic cut-off providing an upper boundary to the p-mode
cavity; the lower boundary lies at a depth inside the Sun where the horizontal phase
speed of the wave equals that of the local sound speed. Waves with frequencies below
this value become evanescent and are spatially confined to this cavity (Jiménez et al.,
2011). A Fourier analysis of the frequency components confirm this numerically to be
the case. To confine the frequency spectrum more closely to a single frequency, a piston
like driver running over several wave periods can be implemented. However, this would
further introduce a variety of numerical complications. Each shock would act to perturb
the atmosphere in such a way that the following shock would be interacting with what
is essentially a different atmosphere, and most importantly one that would be notably
different to the initial equilibrium setup. Given the large amplitudes required to produce
shocks at these heights, reflection of waves off the top of the computational box becomes
prominent and difficult to alleviate numerically. Any returning waves are consequently
artificial and act to complicate the behaviour around the area of interest. For the most
succinct results, the half-period driver is found to perform the best. It can be seen from the
resulting figures that very clean shocks are created from a broad spectrum of frequencies
above fc.

Kalkofen et al. (1994) have discussed the evolution of linear and nonlinear waves in
non-magnetic 1D isothermal atmospheres. The wakes produced by the initial pulse follow
each other by typically one acoustic cut-off period f−1ci , supporting the theory that the
atmosphere rings at the acoustic cut-off frequency. The results obtained through these
simulations are restricted to tracking the initial pulse produced by the 8.0 mHz driver and
hence this effect should not interfere significantly. Kalkofen et al. also describe the various
non-linear effects associated with a piston like driver such as shock merging, another
reason why a single half-period pulse is implemented.

The velocity perturbation increases exponentially with height until a shock is formed
well below the a = c layer. When the magnetic field is vertical, the shock front remains
sharp throughout the entire simulation and travels unhindered through to the top of the
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Figure 2.3: θ = 0◦: The purple solid line, gold solid line (zero in this case) and green solid
line correspond to v‖, v⊥ and ρ/ρ0 − 1 respectively. The shock front is formed and travels
through the a = c layer unaltered. The solid vertical line is where a = c, which moves in
response to the incident wave. The black dotted horizontal line is the equilibrium sound
speed. The purple dot indicates the steepest point in the acoustic shock. The top-right
panel indicates that the shock reaches the conversion layer with almost-maximal density
contrast (X = 4).
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computational box, as expected (Figure 2.3). Increasing θ, the angle of the magnetic field
from vertical, produces a splitting of the wave into its slow and fast components around
the a = c layer. When a > c, the fast wave accelerates out in front of the slow wave and
the two wave types can be easily distinguished.

The choice is made to look separately at velocities both parallel and transverse to the
(actual) magnetic field. This separation allows an approximation of the two wave types,
however it is not precise. This can be seen by the fast wave appearing in the parallel
velocity for θ > 0, and vice versa for the slow wave.

Another important component is the in-place density compression ratio ρ/ρ0, where ρ
is the density value at the given time and ρ0 is the initial background density value at the
same spatial position. This is not the same as the classical shock-jump compression ratio
X = ρ2/ρ1 from the pre-shock to post-shock regions (‘1’ and ‘2’ respectively), though
they do correspond immediately after a shock front passes. For an oblique compressive
shock, where the magnetic field is not completely perpendicular to the shock front, the
limiting compression ratio when γ = 5/3 is 4 (Priest, 1984). For these simulations, this
remains true across the shock front as expected; however the values behind the front can
exceed this ratio due to the transport of fluid via the propagating shock. Deeper, higher
density fluid is carried upwards and is then related to the original density values of greater
heights giving the appearance of a much higher compression ratio. To eliminate this, the
movement of each fluid particle would need to be traced throughout the simulation and the
densities compared to those at their original equilibrium height, which is an unnecessary
complication.

A non-zero attack angle gives rise to the splitting of the fast and slow components
around a = c. However both the fast and slow shock remain sharp in the simulations when
θ is less than about 15◦. At angles increasingly larger than 15◦, it becomes easier to see
the smoothing of the slow component as it separates from the fast shock and traverses the
layers around a = c. As the slow wave exits the a = c layer, it begins to steepen again to
‘re-shock’, best seen in Figure 2.4. Conversely, the fast shock remains sharp throughout
and continues to propagate through the atmosphere unaltered in its form. Again, it does
not reflect off the Alfvén speed gradient because of its purely vertical wave vector.

Figures 2.4, 2.5, 2.6 and 2.7 show the evolution of the θ = 15◦, 30◦, 45◦, and 60◦ cases
respectively. It can be seen that the greater the value of θ, the more smoothing of the slow
component is realised. To quantify this, a measurement related to the steepness of the slow
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Figure 2.4: θ = 15◦: At the a = c layer, the slow shock is smoothed slightly, before
steepening again to produce another shock front. The fast shock remains sharp and
propagates unaltered. The purple dot shows the location of the steepest point in the slow
shock.

shock at its inflection point is introduced. The purple dot displayed on each ‘shock’ front
corresponds to the inflection point of v‖ at the given time and consequently delineates the
steepest part of the shock. At each of these points, the value of the ‘velocity scale height’
h‖

1 is given above each panel, defined as

h‖ =

∣∣∣∣v‖,max

/(
dv‖
dz

)∣∣∣∣ , (2.41)

1The values of h‖ given in Figures 2.3, 2.4, 2.5, 2.6 and 2.7 were calculated using a different algorithm
than that in Pennicott and Cally (2019) and consequently differ in value. The results are however, qualitatively
the same.
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Figure 2.5: θ = 30◦: At this stage, the increased magnetic field inclination produces an
easily identifiable smoothing of the slow shock around a = c before beginning to steepen
again. Again, the fast shock remains sharp and propagates freely.

which is a measure of shock steepness. A small h‖ corresponds to a steep shock front, the
value of which is limited numerically.

Figure 2.4 represents the case of the lowest angle of incidence in which smoothing of
the slow shock can be visualised, however smoothing is predicted to occur for any non-zero
angle of incidence. Figure 2.8 provides a visualisation of the velocity scale height for
incident angles as low as 5◦, showing that this is indeed the case.

Núñez (2019) makes the assumption that the passage through the conversion zone
around a = c acts linearly on the waves. This is supposedly owing to the fact that the waves
spend such little time in this area. However, as seen in Figure 2.9, the incoming shock
front is strong enough to drag the a = c layer along with it, which can increase in height
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Figure 2.6: θ = 45◦: With the magnetic field angle continually increasing, the smoothing
of the slow shock becomes quite evident. Having exited the a = c layer, the slow wave will
require more time before it is strong enough to steepen again into another shock. Again,
the fast shock remains unchanged in its form.

by up to 400 km for low θ. This means the shock front itself can spend multiple seconds in
close proximity to the mode conversion region. In fact, it takes quite a substantial amount
of time before the slow wave completely separates itself out from the area around a = c.

2.4 Discussion and Conclusion

1.5D simulations were conducted using a base-driven 8.0 mHz half-period sinusoidal
pulse injected into an isothermal, gravitationally stratified atmosphere with the angle the
magnetic field makes from vertical being varied from θ = 0◦ to 60◦. The driver produces
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Figure 2.7: θ = 60◦: Heavy smoothing of the slow shock through a = c. The transmitted
slow wave is subsonic and much too weak to re-shock before the fast shock reaches the
top of the computational box. The fast shock remains sharp and propagates freely again.

a broad frequency spectrum, however due to the acoustic cut-off effect, only frequencies
above 4 mHz progress into the area of interest. The perturbation is allowed to freely evolve
with the constantly decreasing density profile causing a shock to be formed well below
the Alfvén-acoustic equipartition (a = c) layer. When the attack angle α between the
(vertical) wave vector k and magnetic field is zero, a typical parallel shock is formed as
described by equations (2.22), (2.23) and (2.24). This shock continues to travel upwards
unimpeded, growing in amplitude with the decreasing density profile, as expected. When
α is non-zero, the shock splits into its slow and fast components around a = c. When
θ & 15◦, the passage of the slow shock through this layer is accompanied by an appreciable
smoothing. Angles less than this (but greater than zero) have been shown numerically
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Figure 2.8: Values of h‖ for magnetic field inclinations 5◦ (dotted line), 10◦ (dashed
line), and 15◦ (solid line) as the slow wave progresses through the layers around a = c.
Smoothing (increase in h‖) is apparent even at small angles of incidence.

to incur at least some degree of smoothing. As the smoothed slow wave leaves this area
and continues to propagate upwards, it begins to re-shock. The fast shock on the other
hand always continues to propagate freely through the atmosphere without any smoothing,
regardless of the value of θ. This is in only partial agreement with Núñez (2019), who
stated that both the fast and slow components of the shock should be smoothed.

One possible reason for this discrepancy is that the a = c layer is dragged along by
the shock. This causes the time over which transmission occurs to increase and makes the
interaction intrinsically non-linear. The Fourier series that Núñez uses to characterise the
transmitted waves is based on the linear conversion hypothesis.

Even without the above effect, a different mathematical approach suggests further
differences. Whilst no formulae (exact or otherwise) exist for non-linear transmission
calculations, looking to the exact linear transmission coefficients T as given by Cally
(2008) is insightful. Figure 2.10 shows these values for a vertical wave in an isothermal
atmosphere as a function of frequency measured relative to the acoustic cut-off frequency
for a range of representative field inclinations. All waves with frequencies below the
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Figure 2.9: Time-distance plot showing the evolution of the a = c layer (orange) along
with the ‘shock’ as seen in v‖ (gold curve) and v⊥ (purple curve) for the θ = 30◦ inclined
magnetic field. The a = c layer is seen to be advected along with the shock for several
seconds as it passes through. The slow component stays within close proximity to a = c
for a significant period of time.

acoustic cut-off are evanescent, which describes their absence. For the situation at hand,
the transmission coefficient T gives a measure of the fraction of energy transferring from
the fast wave into the slow wave around a = c. A shock wave discontinuity can be modelled
by a Fourier Series, which will be pointwise convergent as described by Chernoff (1980).
This series will be composed of high-order Fourier modes with amplitudes asymptotically
proportional to the inverse of the vertical wavenumber kz, where kz is proportional to ω
via a dispersion relation. It can be seen from Figure 2.10 that as the angle θ (equivalent
to the attack angle α for a vertical wave) increases, the individual wave components are
transmitted less and less. This is especially true for high frequencies and as a consequence,
it should come as no surprise that the resulting outgoing wave tied to the slow shock is
smoothed. Any high frequency Fourier modes not being transmitted are however not lost
and are in fact converted to the fast wave, allowing the fast shock to persist. Recall that due
to the conservation of energy, C = 1− T . This analysis fits consistently with the results
obtained via simulation. The advection of the a = c layer with the shock could only act to
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amplify this effect.

Figure 2.10: Exact linear transmission coefficients T for vertical waves in an isothermal
atmosphere as a function of frequency measured relative to the acoustic cut-off frequency.
The curves are for magnetic field inclinations θ = 0◦, 15◦, 30◦ and 60◦ from vertical (top
to bottom). An adiabatic index of γ = 5/3 is used.

The approximate WKB-based formula for transmission described previously is adjusted
for the current simulation parameters to give T ≈ exp[−πkhz sin2 θ]a=c, which lends
further support to the above conclusion. T → 0 exponentially with increasing |k| (or
equivalently, increasing ω), faster for greater values of θ. This is perfectly in line with the
above discussion and the simulation outputs. Whilst the size of the a = c conversion layer
remains unchanged, the advection of this layer would also effectively increase hz, which
is a measure of the thickness of the conversion layer, further dampening the transmission
values.

Further investigation can be explored in relation to the solutions available for the
aforementioned shock adiabatic (2.36). This is a bi-cubic polynomial describing the
evolution of an oblique shock in a uniform medium, pertinent to when 0◦ < θ < 90◦. The
atmosphere used in these simulations is stratified vertically, however the adiabatic should
give a good local description at the shock front. Figure 2.11 shows the solutions to the
shock adiabatic for the case when γ = 5/3, θ = 30◦, c = 8.958 km s−1 and four nominal
Alfvén speeds a, corresponding to results in Figure 2.5. In each case, the upper curve
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corresponds to the fast shock. The lower curve is split into two branches: the lower branch
represents the slow shock, whilst the upper branch represents the intermediate (Alfvén)
shock. The intermediate shock is not excited through these simulations and can be ignored.
Although the full solutions to the fast shock exceed the plotted domain, it occurs that
there is a solution for all 1 < X < 4, regardless of the local Alfvén speed. However, the
solution to the slow shock is absent whenever X is to the right of its loop. As the Alfvén
speed increases with height in the atmosphere, a wider range of X permits a solution and
consequently a slow shock can redevelop under these conditions.

Figure 2.11: Solutions to the shock adiabatic as a function of density compression ratio X
and shock speed v1 for γ = 5/3, θ = 30◦, c = 8.958 km s−1, and four nominal values of
Alfvén speed a: 6 km s−1 (full blue), c = 8.958 km s−1 (long-dashed orange), 12 km s−1

(short-dashed green), and 35 km s−1 (dot-dashed red).

Upon exiting the conversion layer, the Alfvén speed will begin to exceed that of the
sound speed, where a typical case could correspond to the dashed green curve in Figure
2.11, with a = 12 km s−1. At this point, if the density compression ratio of the fluid
X & 1.53, there is no available slow shock solution. This matches with what is seen in
the lower panels of Figure 2.5, in that a strong density compression is co-spatial with the
slow wave and no shock is present. The fast shock remains because the fast shock always
has a solution, regardless of the value of X . As the fast shock propagates higher into the
atmosphere, X becomes closer to 1 and thus it travels at a speed only just above that of the
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local Alfvén speed a.

The incident shock is primarily acoustic in nature within the deeper layers where
a < c. However, upon reaching the conversion layer, the injected wave splits into its fast
and slow components and the vast majority of the fluid’s density compression is seen
to be consistently associated with the slow wave, regardless of the value of θ. Above
a = c, the slow wave now exhibits strongly acoustic characteristics and separates out
spatially from the fast wave. The acoustically dominated slow wave travels ever more
parallel to the magnetic field with height and acts to compress the fluid, hence the slow
wave is primarily associated with the increase in X . Conversely, the fast wave is now
predominantly magnetic in nature, travelling more and more transverse to the magnetic
field and consequently becomes less capable of compressing the fluid, which is tied to the
field. In actuality, in the a� c limit, the fast wave becomes completely incompressive.

Irrespective of the above arguments, it is clear that the numerical results show the slow
wave in a > c being strongly aligned with the density compression of the fluid. There is
no corresponding solution to the shock adiabatic at such high density compression value
X for the slow wave until much higher in the atmosphere, such as that corresponding to
the 35 km s−1 lobe in Figure 2.11.

2.5 Implications and Further Research

The parameters for the simulations were broadly characteristic of the solar photospheric
and chromospheric layers, and in turn, related stellar atmospheres. The smoothing of the
acoustic shock necessitates a loss of higher order Fourier components and consequently, a
loss of energy. This occurs around the equipartition layer within the lower chromosphere
and may impact on the amount of energy being transferred to the upper chromosphere or
further into the corona. If these Fourier components are transmitted to the fast branch, the
fast shock will consequently carry more energy with it. Any extra energy has the potential
to enhance fast-Alfvén conversion at appropriate heights.

The most obvious avenue for further research is the extension of the setup into atmo-
spheres encompassing further spatial dimensions. Firstly, a 2-dimensional (2D) extension
will allow for a non-zero horizontal wavevector kx to be associated with the injected wave.
Transmission/conversion co-efficients are well known for all k =

√
k2x + k2z . For different

kx, the degree of smoothing can be predicted and then investigated in relation to the amount
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of transmission through the a = c layer. Further to this, the non-zero kx will bring with
it an associated fast wave turnover height. The purely vertical waves investigated here
travel upwards unhindered, however this introduction will cause fast waves of differing
frequencies to act independently at varying heights. The effect of this will be to redistribute
some of the wave energy, which is currently associated entirely with the vertical wave in
all the simulated cases.

A 2.5 or 3-dimensional atmosphere would further permit the production of intermediate
(Alfvén) shocks to be incited, a whole subtype of shock which was introduced briefly but
not investigated herein.

Most recently, a study by Snow and Hillier (2020) has already extended the work
presented here to investigate the role of two-fluid effects on shocks in a partially-ionised
isothermal gravitationally stratified atmosphere. An upwards propagating shock may travel
through the lower solar atmosphere where the fluid is predominantly neutral and enter
the upper solar atmosphere where the fluid is almost fully ionised. Neutral and ionised
species have different pressure scale heights, causing a 2-fluid wave to propagate slower
and steepen more than the MHD shocks investigated here. Their results show that the
mode-conversion point, shock width and shock transitions all depend on the collisionality
of the system, governed by the coupling strength between neutral and plasma species.
These identifying features provide the potential to observe two-fluid effects from within
the lower solar atmosphere and further progress the understanding of shock propagation
and conversion through this area.
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CHAPTER 3
Chromospheric Resonances in

Sunspot Umbrae

3.1 Introduction

3.1.1 MHD Waves and Oscillations in Sunspots

Sunspots and other magnetically active regions have long been an important area of interest
for studying magnetohydrodynamic (MHD) waves and oscillations in the solar atmosphere
due to their array of magnetic field geometries and strengths. Their presence in sunspots
has been known of for at least 50 years (Beckers and Tallant, 1969) and a vast amount of
data and ensuing interpretations are starting to pile up. MHD oscillations and waves within
sunspots have been the primary focus of a collection of reviews in the solar literature
(Moore, 1981; Staude, 1991; Bogdan, 2000; Khomenko and Collados, 2015; Sych, 2016).
The sunspot structures themselves are also home to their own assortment of reviews,
which encompass everything from observational points of view (Borrero and Ichimoto,
2011) through to the latest theoretical and numerical models being employed (Rempel and
Schlichenmaier, 2011; Rempel, 2012).

Measurements of wave properties are generally confined to spectroscopic or direct
imaging instruments, both of which can be ground or space-borne and a good review of the
observational trends is given by Banerjee et al. (2007). Many spectroscopic telescopes such
as The Solar Optical Telescope (SOT) on-board Hinode (Tsuneta et al., 2008) or the Triple
Etalon SOlar Spectrometer (TESOS) operated at the German Vacuum Tower Telescope
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(VTT) (Tritschler et al., 2002) are used to observe spectral lines simultaneously at different
heights above the solar surface, providing details of wave phase relations, amplitudes and
line-of-sight velocities spanning a wide distribution of frequencies. These observations
are based solely on time-series recordings of the variations of the four Stokes parameters
(also known collectively as the Stokes vector or profile), a set of values describing the
polarisation state of electromagnetic radiation. Any given spectral absorption line - of
which there are thousands in the solar atmosphere known as the Fruanhofer lines - can
have its Stokes parameters observed and recorded over time. These values describe the
absorbed radiation through intensity (Stokes I), linear polarisation (Stokes Q & Stokes
U) and circular polarisation (Stokes V). The various physical conditions of the solar
atmosphere, such as the fluid velocity, are then inferred through inversions of these line
profiles. This is done essentially through a best-fitting process of a synthesised line to that
of an observed line. Accurate measurements of temporal Doppler velocity fluctuations at
the photosphere have historically proven difficult to obtain because of their low amplitudes,
however, space-based missions have begun to offer reliable readings (Nagashima et al.,
2007). Conversely, moving upwards through the chromosphere, the fluctuations grow in
amplitude due to the decreasing atmospheric density and are readily observed at heights
up to and including the corona (Verwichte et al., 2010).

Due to the abundance of elements and simple molecules present in the solar atmosphere,
there exists a plethora of line profiles which can be read, corresponding to a range of
atmospheric temperatures (heights). Near the relatively cool photosphere it is common
to view OH, CO, CaH, Fe I, Ca I, K I, Mg I and Na I line profiles, whilst in the hotter
chromosphere, Hα , Hβ , He I, C, N, O, Ne, Mg, Si, Ca, Fe are frequently used, amongst
others (O’Shea et al., 2001; Banerjee et al., 2002; Rendtel et al., 2003). Simultaneous
measurements of different lines allow for measurements of spatial and temporal coherence
between oscillations at various heights.

Owing to extensive observation, radio waves with frequencies as low as a few mHz
(Gelfreikh et al., 1999) and as high as those associated with hard X-rays (Wang et al., 2002)
have been recorded in sunspots and active regions. The velocity spectra resulting from
these observational measurements contain peaks at distinct frequencies. The dominating
frequencies in and around sunspot atmospheres are generally measured to be between 1-8
mHz (Kolobov et al., 2016; Löhner-Böttcher and Bello González, 2015; Khomenko and
Collados, 2015; Sych and Nakariakov, 2014), the variation of which has been strongly
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linked with the orientation of the local magnetic field (Reznikova and Shibasaki, 2012;
Yuan et al., 2014). A particularly stark difference in measured frequencies of sunspot
umbrae is the dominating signals at the photosphere peaking around 3-3.5 mHz and those
through the chromosphere, which exhibit higher frequencies around 5.5-6.5 mHz (see
Figure 3.1). This pattern is also observed in the quiet Sun regions, the main difference
being the reduced overall power observed in sunspots, often by a factor of two or three
(Kumar et al., 2000; Finsterle et al., 2004).

Various analytical and numerical models and methods have been used to study the
propagation of MHD waves, all of which have been extensively discussed throughout the
available literature and can be seen for example in Murawski (2002). Current solar models
now encompass layers as deep as the sub-photosphere (Shelyag et al., 2009) and as high up
as the corona (Santamaria et al., 2015). Due to the myriad of magneto-acoustic waves that
can be imparted, a large discussion would need to ensue to discuss these individually with
any depth. The chromosphere is also home to the equipartition layer zeq where slow-fast
wave conversion/transmission takes place, along with fast-wave reflection and fast-Alfvén
wave conversion. These have all been introduced earlier and the reader is referred to the
introduction for further insight. This study looks to simulate only field-aligned acoustic
modes and as such, the discussion is limited to reflect this as much as possible.

3.1.2 Magneto-acoustic Cut-off Effect

As the production of waves being measured in sunspot atmospheres is heavily confined to
subsurface interactions, the fact that waves of different frequencies dominate in different
areas suggests a physical process exists whereby waves of different frequencies are prefer-
entially filtered out as they propagate through the layers above the solar surface. The notion
of an acoustic cut-off frequency as a fundamental property of stratified mediums was first
introduced by Horace (1909), who described the formula for an isothermal atmosphere as

ωci =
c

2H
, (3.1)

where c is the sound speed, H = c2/(γg) is the pressure scale height, γ is the co-efficient
of specific heats, and g is the acceleration due to gravity. Any waves with frequencies
ω < ωci will become evanescent in these regions and prolonged propagation through such
areas will lead to these waves being filtered out completely. It is this effect which can
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Figure 3.1: Normalised Fourier power from two different sunspots (top and bottom)
measured from two spectral lines: the photospheric Si I λ10827 line (dashed line) and
the chromospheric He I λ10830 multiplet (solid line). The Fourier power was calculated
from a full Stokes inversion of line-of-sight velocity perturbations from both lines and
averaged over their respective umbra. The difference in dominant frequencies between the
two atmospheric heights is clear to see. Figure extracted from Centeno et al. (2006).
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cause substantial variations in the frequency spectra taken from different areas of the solar
atmosphere.

The solar atmosphere is of course, non-isothermal and hence equation (3.1) is in general
not applicable. Various works have sought to derive an expression for the cut-off frequency
in non-isothermal atmospheres (Deubner and Gough, 1984; Schmitz and Fleck, 1998;
Musielak et al., 2006), however the choice of dependent and independent variables for the
wave equations leads to a variety of different formulae (Schmitz and Fleck, 2003). The
most widely used analytical form for a non-magnetic, vertically stratified atmosphere is

ωc =
c

2H

(
1− 2

dH

dz

)1/2

, (3.2)

as described in Roberts (2004).
Roberts (2006) went further in analysing the introduction of a vertical magnetic field

in a stratified medium. For slow magneto-acoustic waves, which are predominantly the
field aligned waves being produced in this study, the magneto-acoustic cut-off frequency is
given by

ωc = ct
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where
ct =

ac√
c2 + a2

(3.4)

is the tube (cusp) speed,

N2 = −g
(
g

c2
+

1

ρ

∂ρ

∂z

)
(3.5)

is the square of the buoyancy (Brunt-Väisaälä) frequency, and

a =
B

(4πρ)1/2
(3.6)

is the Alfvén velocity. Finally, all the aforementioned formulae don’t take into account the
effect of the inclination of the local magnetic field. The effect of the inclined magnetic
field on the acoustic cut-off frequency was first demonstrated by Bel and Leroy (1977) and
later by Jefferies et al. (2006). The greater the angle of the magnetic field from vertical, the
lower the acoustic cut-off frequency, owing to the reduced gravity along the magnetic field.
Thus, any choice of cut-off formula for ωc taken from above must be moderated such that

ωm = ωc cos θ, (3.7)
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where θ is the angle of the magnetic field from vertical.

Several other alternative radiative processes have also been proposed which would
further reduce the cut-off frequency (Roberts, 1983), however indications from numerical
simulations by Heggland et al. (2011) suggest these effects to be negligible for low
frequencies, such as those being discussed herein.

Most recently, (Felipe et al., 2018) analysed oscillations in the umbra of an active
region sunspot at various heights to produce a profile for the cut-off frequency against
height, which was then compared to the analytic formulae described by a variety of authors.
The results suggested an agreement in the overall trend of the cut-off frequency profile
and a good match in chromospheric values, whereas the photospheric values exposed
significant quantitative differences. This could be due to the neglect of the magnetic field,
such as in the models discussed above, or due to the use of the WKB approximation.
This commonly used approximation produces a sharp spike in the profile of the cut-off
frequency near the photosphere, which is inconsistent with the WKB formulation, as it
assumes the linear acoustic waves being studied have wavelengths much shorter than the
characteristic scales of the local atmosphere. This all implies care must be taken when
interpreting values of the cut-off frequency from analytic formulae.

Whilst the various formulae used to describe the acoustic cut-off frequency can take
many forms (Felipe et al., 2018), the general properties and their potential effects on
MHD waves are found to be common and are easily extracted. Higher sound speeds
(temperatures) result in a lower acoustic cut-off frequency and the deviation of the magnetic
field from vertical also acts to decrease the acoustic cut-off frequency. This lowering of
the cut-off frequency allows lower frequency waves to move unattenuated through parts of
the solar atmosphere where they would normally become evanescent. In a typical sunspot
atmosphere, these variations to the acoustic cut-off frequency manifest themselves most
noticeably in two areas. Firstly, through the temperature minimum region in the lower
chromosphere, which creates an extensive plateau of low cut-off values and ensures only
the higher frequency waves survive this stage before growing to dominate the spectrum
in the upper chromosphere. Secondly, the inclined nature of the sunspot magnetic field
geometry further lowers the cut-off frequency. This effect is increased with radial distance
from sunspot centre, where the magnetic field can bend up to 35◦ from vertical at the
penumbra/umbra boundary (Jurčák, 2011). At a given height in the solar atmosphere, the
increasing distance from sunspot centre therefore leads to overall lower frequencies being
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measured (Maurya, 2013; Sych and Nakariakov, 2014), an effect seen clearly in Figure
3.2.

Figure 3.2: Averaged Fourier power derived from time series measurements of the photo-
spheric Fe I λ6303 line (top row) and the chromospheric H line core (bottom row) for the
umbra (left column) and penumbra (right column). The decrease in frequency from umbra
to penumbra at a given height is readily apparent. The increase in power from photosphere
to chromosphere due to the decreasing density profile with height can also be seen. Figures
extracted from Thomas et al. (1984).

Further to this, some notably evanescent waves with frequencies below that of the local
cut-off value can tunnel through and reach atmospheric heights which would otherwise
not be accessible to them. This effect has been shown both numerically (Kráskiewicz, J.
et al., 2019) and analytically (Cally, 2001). Somewhat predictably, the efficacy of this
tunnelling is moderated by the distribution of the cut-off value with height. Tunnelling
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is predicted and seen most dramatically through only narrow regions of increased cut-off
frequency (Verwichte et al., 2006), such as the spike seen at the transition region in Figure
3.4. Most pertinent to this study, Fedun et al. (2011) presented 2D numerical modelling of
magneto-acoustic waves in a model quiet Sun flux tube, where a range of frequencies were
incited to show efficient tunnelling (leaking) of energy through the transition region and
into the corona.

It is also prudent to note that solar frequency distributions observed over time, such
as over the length of one or more solar cycles, have shown distinct variations (Jain et al.,
2012; Elsworth et al., 2015; Santos et al., 2017). These are large time-scale observations
and their effects are negligible for this discussion.

3.1.3 Sunspot Cavities

There are generally two competing theories describing the origin of the oscillations ob-
served in the chromosphere. Studies such as Banerjee et al. (2002), Brynildsen et al.
(2004), Centeno et al. (2006) and Afanasyev and Nakariakov (2015) suggest only upward
propagating waves from the photosphere to the lower corona exist, whilst Gurman (1987)
observed downward propagating waves by looking at line profiles of the Mg II k line. Fur-
ther studies by Christopoulou et al. (2000) and Botha et al. (2011) propose the additional
presence of standing acoustic waves which can leak into the corona. The idea of standing
waves is supported by the possibility of partial reflections from any acoustic impedances
within the atmosphere, characterised by any abrupt vertical change in the characteristic
specific acoustic impedance csρ (Kinsler et al., 2000). These sharp density or sound speed
(temperature) gradients can occur at the photosphere, the transition region and depending
on the atmospheric model employed, other locations within the chromosphere. These
reflection sites have the potential to create a chromospheric cavity with semi-permeable
walls as proposed in Zhugzhda (2007, 2008). Any acoustic cavity will provide a location
for trapped waves to resonate at their respective harmonic frequencies.

Each time these waves reach a site of potential reflection, there will be some trans-
mission and reflection. The components which are transmitted through the transition
region are observed as travelling waves in the corona, although it is still uncertain as to
how high these waves can travel (Sych, 2016). In particular there is evidence that those
waves can reach at least the heights of coronal reconnection sites, and modulate the flaring
energy releases (Sych et al., 2009). Moreover, those waves could be responsible for the
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quasi-periodic compressive perturbations detected at the heights about one solar radius
above the solar surface (Ofman et al., 1997). Further to the transition region acting as an
upper reflection site for any proposed cavity, it was found that the impact of the outgoing
waves interacting with this region can excite horizontally propagating surface waves, as
shown in 2D simulations by Fedun et al. (2011).

A recent study by Jess et al. (2019) provides strong observational evidence of a
resonating cavity above an active region sunspot. Spectropolarimetric inversions taken
from the centre of a large sunspot on 14 July 2016 were coupled with numerical simulations
to further predict the temperature stratifications along the diameter of the sunspot, leading
to a novel way of inferring the 3-dimensional structure of solar active regions.

3.1.4 Motivation for Study

The aim of this study is to identify the spatial extent of any resonant cavities caused
by acoustic impedances in the chromosphere. The fundamental frequency of any cavity
should show enhanced velocity signals in the component parallel to the magnetic field
and exhibit characteristics of standing waves. The 1D umbral model of Botha et al.
(2011) will be expanded to incorporate a full 2D potential magnetic field sunspot structure.
The 1D results should be readily reproduced along the sunspot axis and further results
owing to the introduction of a non-vertical magnetic field elucidated. The effect of the
chromospheric temperature gradients as semi-permeable barriers causing partial reflections
of slow magneto-acoustic waves can be demonstrated by looking at increased parallel
velocity amplitudes in spectra taken from within the photospheric and chromospheric
layers. Due to the importance of the cut-off effect, drivers with power both predominantly
above and below the maximum cut-off values should be utilised.

3.2 Numerical Methodology

The computational modelling is conducted via 2-dimensional (2D) simulations of various
model atmospheres and spectra of injected field-aligned (acoustic) magnetosonic waves.
The numerical code used to solve the non-linear MHD equations is Lare2d (Arber et al.,
2001). The computational domain is comprised of 256 x 256 grid cells, which is stretched
in both the horizontal and vertical directions. The horizontal boundaries extend ±15 Mm
from the centre of the domain and the bottom and top boundaries are situated at −0.5 Mm
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and 33.3 Mm, respectively. The grid stretching introduces variable grid spacing in both
directions. The maximum horizontal grid spacing between ±5 Mm is ∆x = 100 km and
the maximum vertical grid spacing between the bottom boundary and 2.5 Mm is ∆z = 25

km; this being the particular area of interest. The vertical magnetic field strength is initially
prescribed along the bottom boundary and given by

Bz = B0 exp
(
− x2

2σ2

)
, (3.8)

where B0 = 2 kG is the peak amplitude of the field and σ = 2.5 × 106 m. This initial
distribution is used to generate a potential magnetic field throughout the rest of the domain
as depicted in Figure 3.3.

Figure 3.3: Vertical magnetic field distribution for the potential sunspot atmosphere with
selected blue magnetic field lines superimposed.

The implementation of this particular model is supported by Schmelz et al. (1994),
who showed that field strengths obtained from microwave observations in active regions
are well reproduced by potential field extrapolations. The review by Borrero and Ichimoto
(2011) also concludes that the magnetic field in the layers above the photosphere in sunspot
umbrae is essentially potential in nature. The top and side boundaries of the domain

58



3.2. Numerical Methodology

have closed/reflective conditions implemented - the derivatives of density, velocity and
temperature are set to zero. In order to stop spurious reflections off these boundaries, a
velocity damping profile based on the computational time step is implemented outside the
area of interest. The magnetic field structure further acts to ensure no magnetic flux leaves
through the side boundaries - here Bz is non-zero and Bx → 0 to give a vertical field. The
model peak photospheric magnetic field strength is set at 2 kG, which lies in the typical
range for a smaller sunspot (Solanki, 2003).

The atmosphere is modelled by either an ideal, fully ionised gas, which ignores the
inclusion of neutral hydrogen ions, or by a partially ionised gas; the particular atmosphere
used for each result is clearly described herein. The reasoning behind not implementing
the partially ionised gas for all simulations is multi-faceted. Firstly, the work of Botha et al.
(2011) being compared to and extended in this study was conducted with a fully ionised
gas. Secondly, there exist computational resource problems. Namely, the decreased density
profile for the partially ionised atmosphere leads to a vast increase in the Alfvén speed and
consequent decrease in the viable time step. The Lare2D code is a one-fluid MHD code,
and as such, neutral-ion collisions would not be possible even in the partial ionisation
implementation. Neutrals would, however, change the scale height, leading to an overall
increase in the acoustic cut-off frequency as defined in equation (3.3). This is due to a
change in the partial pressures and consequently the equation of state. Limited results are
presented to show these assumptions to be valid in this particular case.

The temperature profile below the photosphere is prescribed by the polytrope

T = Tph −
b(γ − 1)zg

γ
, (3.9)

where Tph = 4040 K is the photospheric temperature, b = 2.0, z is the distance below the
photosphere, γ = 5/3 and g is the gravitational acceleration, set at a constant 274 ms−2.
The coronal temperature is given by the Avrett and Loeser (2008) model. As the area of
interest lies between the photosphere and the transition region, different chromospheric
temperature profiles are employed. Various models depict the distance between the
photosphere and their respective transition region temperature gradients as being in the
range of 1.0− 2.8 Mm in height (Staude, 1981; Lites and Skumanich, 1982; Avrett and
Loeser, 2008; Fontenla et al., 2009). The main model being used in this work is based
around the Maltby et al. (1986) Model M, which falls in the middle of this range with a
transition region height of 2.1 Mm above the photosphere. In addition to this, an isothermal
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chromospheric model is utilised and discussed in further detail later. In order to quantify
the effects of the transition region temperature gradient as a reflecting barrier, simulations
are performed with and without the inclusion of this region, depicted in Figure 3.4. Unless
stated otherwise, all results pertain to the main model as described above.

Figure 3.4: Three atmospheres were implemented: A modified Maltby Model M with
(solid line) and without (dashed line) the transition region temperature gradient, and an
isothermal chromospheric model (dotted line). Left-hand panel shows the cut-off frequency
calculated from Equation (3.3) for each atmosphere and the right-hand panel gives their
associated temperature distributions.

To drive the simulations, a frequency and space dependent Gaussian broadband source
is implemented along the bottom boundary. The driver is a piston-like driver with 200
equally spaced frequencies in a given range (as described individually in section 3.3) and
the perturbations are in vz, the vertical velocity, given by

vz = v0 exp
(
− x2

2σ2
x

)
exp

(
−(ω − ω0)

2

2σ2
ω

)
, (3.10)

where v0 is the amplitude of the source, σx = 2.5×106 m, σω = 1.0 mHz, ω are the evenly
spaced frequencies and ω0 is the chosen peak frequency. The amplitude v0, is chosen
such that shocks do not develop, whilst the propagating waves still mimic the typical
magnitudes of Doppler velocities measured at the solar surface (Thomas et al., 1997). As
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the atmospheres have differing density profiles, this value will be adjusted dependent on
the atmosphere chosen. In each case, the amplitude of the driver is slowly ramped up from
zero to the full v0 over the first 80 seconds of the simulation. After 3 hours of simulation
time, the opposite happens, where the driver amplitude is slowly decreased over the same
time period. The atmosphere is then allowed to oscillate/relax with no driver until a total
simulation time of 6 hours is achieved.

For all of the drivers, the vertical velocities vz are redistributed so they are parallel to
the magnetic field on the bottom boundary such that

v′z = vz cos θ (3.11)

v′x = vz sin θ, (3.12)

where θ is the angle between the magnetic field vector and vertical, and v′z and v′x are
the new vertical and horizontal velocities being imparted. As the driver is applied only
along the magnetic field on the lower boundary, there should be no direct input of Alfvén
or kink waves. The Alfvén acoustic equipartition layer zeq (discussed extensively in the
introduction to Chapter 2) lies near the level of the photosphere in this particular model.
The close proximity of this layer to the bottom driving boundary ensures that the attack
angle (the angle between the wave vector and the magnetic field) remains small. A small
attack angle results in almost near complete transmission from fast-slow. The waves retain
their acoustic characteristics and propagate almost entirely along the field lines. This is
supported by numerical results, which show that the velocities in the upper chromosphere
have negligible amplitudes in their components transverse to the magnetic field. High
in the chromosphere, the plasma beta level will have decreased significantly to the point
where field aligned and non-aligned velocities can give a good representation of the degree
of fast/slow (magnetic/acoustic) waves present in the atmosphere. This also negates the
need to examine the effects of fast wave reflection and fast-Alfvén conversion, both of
which occur in the area where the fast wave’s horizontal phase speed equals the Alfvén
speed (Cally and Khomenko, 2018), usually located within the chromosphere. Hence, the
following analysis is now concentrated purely on the component of the velocities parallel
to the magnetic field.

A selection of the simulations described above were run with a 512 x 512 cell domain
and no appreciable differences were found in any of them, suggesting the results have
converged.
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3.3 Results and Discussion

The results from the study below are separated into various sections dependent upon the
drivers and atmosphere being implemented. For all simulations, field aligned magneto-
acoustic waves are imparted into the domain via a bottom boundary driver which runs
for the first 3 hours in each 6 hour simulation, before having its amplitude reduced to
zero. The driven waves propagate upwards, guided by the magnetic field lines and are
simultaneously filtered by the magneto-acoustic cut-off frequency effect. This causes
a preferential attenuation of waves with frequencies below that of the local maximum
cut-off frequency. As discussed through the introduction of this chapter, there are various
forms used to describe the cut-off frequency. To best represent the effect of the inclined
magnetic field within the sunspot model, a simplified version of the cut-off frequency can
be visualised

ωc =
c

2H
cos θ, (3.13)

where c is the local sound speed, H = c2/(γg), γ = 5/3 is the ratio of specific heats, g is
the gravitational acceleration, z is the height and θ is the inclination of the magnetic field
from vertical. Due to the change in sound speed with height and the inclined structure of the
magnetic field, this cut-off frequency varies throughout the chromosphere and an example
from the main model atmosphere is given in Figure 3.5. This gives a good depiction of how
the magnetic field will act to decrease the cut-off frequency along inclined fields found
within sunspot umbrae. Further modifications to this formula will be implemented in the
appropriate sections to give a more detailed description.

From the Fourier velocity spectra of the various simulations, it can be determined
how this cut-off frequency has affected waves as they travelled along their respective
field lines. Frequencies above the cut-off frequency will survive the evanescent stage of
minimum temperature (equivalently maximum cut-off frequency) before continuing to
grow in amplitude as they travel higher into the increasingly less dense atmosphere, and
Figures 3.6 & 3.7 show clearly these effects playing out. As the waves travel along more
inclined fields further away from sunspot centre, more and more lower frequencies (present
in the original driver) are able to freely propagate into the upper chromosphere. This effect
is visible when using the driver centered around 3.3 mHz, a frequency well below the
maximum cut-off frequency. The frequency distributions at greater distances from sunspot
centre begin to resemble that of the driver itself, suggesting little filtering is occurring at
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Figure 3.5: Contour plot of the simplified acoustic cut-off frequency (mHz) (see equation
3.13) using an ideal gas from the region of interest with transition region height set at
2.1Mm. Select magnetic field lines have been superimposed in blue. Above the transition
region, the cut-off frequency falls off sharply.

these widths. The dominant frequencies along the sunspot axis in the upper chromosphere
are shifted to a minimum of 4.1 mHz. This demonstrates that it is possible to achieve a
velocity spectrum in the upper chromosphere containing dominant frequencies that are
comparatively only weakly represented in the initial driving source.

If there is a transition region temperature gradient imposed, the outgoing waves will
be partially reflected upon interaction with it. Although it can not be seen through any
plots, it is also apparent that upon impact with this gradient, travelling surface waves are
created, which propagate horizontally along the length of the computational box. This
effect was previously documented in numerical simulations of magneto-acoustic waves
in localised flux tubes by Fedun et al. (2011). These velocities transverse to the field are
found to remain negligible in amplitude when compared to the field aligned velocities. In
this case, the principal interest lies in the vertically reflected waves as they begin to set up
potential resonant cavities within the chromosphere.
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Figure 3.6: Normalised Fourier Power spectra taken from parallel velocity measurements
with ω0 = 3.3 mHz. All spectra were recorded at the widths and heights given above each
panel. The height of 2.0 Mm corresponds to a height just below the transition region. At
a distance of 4.5 Mm, the frequency distribution begins to resemble that of the driving
source.

3.3.1 Cavity Extent and Resonant Frequency

It is readily apparent that the transition region temperature gradient acts as the upper
reflecting point of any proposed chromospheric cavity. Although, it should be noted
that due to the amplitudes of the incoming waves, the transition region oscillates and
can vary in height by up to 0.1 Mm either side of its original position, so it should not
be considered a permanent hard boundary. What is less obvious is the site of the lower
reflection point, something obviously needed to create a closed cavity. Of course there is
already a well known p-mode cavity - any waves reflecting back through the photosphere
will be trapped in this cavity as they are eventually totally internally reflected back due to
the ever increasing sound speed of the solar interior. This occurs at a depth roughly given
by

z =
ω2

γ − 1
g k2h, (3.14)
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Figure 3.7: Log plots of parallel Fourier velocity (m/s) for the frequency bins defined
respectively above each panel. The top boundary of each panel corresponds to the height
of the transition region temperature gradient at z = 2.1Mm. The driving frequency is
centered around ω0 = 3.3 mHz.

where kh is the horizontal wavenumber (Foukal, 2004). It follows that the low frequency
waves being imparted here reflect at depths well below the photosphere and hence are
clearly outside the computational domain used here. By looking more locally, there are
distinct temperature gradients both at the photosphere and within the chromosphere. These
gradients can also produce peaks in the cut-off frequency distribution (see Figure 3.4) and
can act as potential reflecting sites. From the limited studies done on this topic, both of these
gradients have been proposed as possible reflection sites. Botha et al. (2011) conducted
1-dimensional numerical simulations in a collection of more simplified atmospheres than
that used here and proposed the photosphere as the lower extent of the cavity. Little
explanation or results are given to justify this conclusion past the notion that there is a
temperature gradient present at that particular height. More recently, a 1-dimensional
numerical study with constant magnetic field strengths was conducted by Felipe (2019),
where height of the transition region was varied, resulting in an increase in Fourier power in
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the upper chromosphere for different period waves. It is interesting to note that Snow et al.
(2015) found that the distance below the chromospheric temperature gradients influences
the Fourier power more than the distance above, although it is unclear as to why this is. The
periods identified by Felipe (2019) were used to extrapolate the distance of the wavelength
of the first harmonic via the equation

Pr ≈
2L

v̄cn
, (3.15)

where L is the length of the cavity, v̄c is the average sound speed and n = 1 for the first
harmonic (Freij et al., 2016). A worthwhile comparison can be drawn along the central axis
of the 2-dimensional simulations presented herein. To identify the resonating frequency
(period), the reader is referred to Figure 3.8. Here, two different driver frequencies were
used to drive the simulations, one below the maximum chromospheric cut-off frequency
and one above (the cut-off frequency distribution can be viewed in the left-hand panel of
Figure 3.4). The top panel shows the frequency spectrum of both the 3.3mHz and 6.7mHz
drivers being implemented along the bottom boundary. The extra peaks lying outside
the predicted Gaussian distributions are thought to be due to partial reflections off the
photospheric temperature gradient. The middle panel shows that after progressing through
the chromosphere to a height of 0.8 Mm, peaks at distinct frequencies become apparent.
The waves with frequencies below the local acoustic cut-off frequency produced by the
3.3mHz driver have been filtered out and the lowest surviving frequencies (these contain
the most power from the original driver) grow to dominate the spectrum at just over 4.0

mHz. The waves produced by the 6.7 mHz driver are unaffected by the comparatively
small cut-off values and propagate freely to dominate the spectrum. Moving higher into
the chromosphere to a height of 1.8 Mm, the lower panel now shows a clear frequency
peak of 4.7 mHz present in both spectra that was absent at lower heights. It is proposed
that this is the resonant cavity frequency for the given chromosphere. By utilising a similar
approach to that of Felipe (2019) - the actual sound speed at each point is used instead of
the average - a cavity length of ∼ 1.1 Mm is found. Subtracting this value off the height
of the transition region would place the lower reflection site at ∼ 1.0 Mm, which aligns
co-spatially with the peaks in the chromospheric cut-off frequency distribution as can be
seen in the left-hand panel of Figure 3.4.

To bolster this idea, further results can be drawn upon. Firstly, by utilising a completely
flat temperature profile in the chromosphere (see right-hand panel of Figure 3.4 for this
profile), what can be expected is travelling (and reflected) waves both at a frequency just
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Figure 3.8: Normalised Fourier power spectra measured along the sunspot axis for ω0 = 3.3
mHz (solid line) and 6.7 mHz (dotted line) at the heights z given above each panel. The
top panel coincides with the bottom boundary and represents the spectrum of the driving
sources. The middle panel shows the frequency peaks outside of the cavity in the middle
chromosphere. The bottom panel is at a height within the chromospheric cavity and
highlights the extra resonant cavity frequency peak at ∼ 4.7 mHz not seen in the middle
panel.
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above that of the local cut-off frequency will dominate the spectrum, and indeed this is
what is found. The comparison of frequency spectra with a flat chromospheric temperature
profile compared to the original atmosphere is displayed in Figure 3.9. This suggests
that the extra temperature gradient within the chromosphere is cause for the production
of the resonating frequency at 4.7 mHz. Of course there now exists the potential for a
cavity being created by a lower reflection point at the photospheric temperature gradient.
This is unremarkable as it would have a resonating frequency well below the local cut-off
frequencies experienced within the chromosphere and will be absent from the spectrum.

Figure 3.9: Normalised Fourier power spectra for the main model atmosphere (solid line)
and the isothermal chromosphere model (dotted line). The extra temperature gradient in
the Maltby model produces a further resonant frequency. The small shift in the dominant
peak can be associated with the variation in cut-off frequency between the two models.

In addition to this, a more direct approach to identify the spatial extent of any cavity
within the chromosphere is to make comparisons of velocity amplitudes between the
atmosphere with and without a transition region temperature gradient (see right-hand panel
of Figure 3.4 for these profiles). These measurements are established by taking the Fast
Fourier Transform (FFT) of the parallel velocity time series over the duration of the entire
simulation. The recorded Fourier velocities are summed together for the proposed resonant
cavity frequency range (4.4− 5.0 mHz) and compared between the simulations with and
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without the transition region. As is seen in Figure 3.10, the outgoing waves reflect off the
atmosphere with the transition region and produce a substantial increase in Fourier velocity
in the upper chromosphere of up to∼ 140% (over a 400% increase in Fourier power) when
compared to the atmosphere without a transition region. This increase in velocity is seen
to extend down to a height which is in good agreement with the proposed lower reflection
site of ∼ 1.0 Mm. The increase is most apparent along the sunspot axis and within 3 Mm
either side horizontally.

Figure 3.10: Log plots of parallel Fourier velocities summed over the proposed resonating
frequency range (4.4− 5.0 mHz) scaled by

√
ρ c for the main model with (left-hand panel)

and without (middle panel) transition region temperature gradient. The right-hand panel is
then a direct percentage increase comparison between the two, helping to elucidate the
spatial extent of the resonating chromospheric cavity.

3.3.2 Driver Frequency

Two different broadband drivers were implemented, centred around ω0 = 3.3 and 6.7 mHz
with a common standard deviation of σω = 1.0 mHz. For each case, the driver is 200
equally spaced frequencies from 0.5 - 10.0 mHz (for the 3.3 mHz driver) and 0.5 - 20.0
mHz (for the 6.7 mHz driver). These frequencies were chosen such as to represent ranges
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that are both predominantly lower and higher than the maximum cut-off frequency in the
chromosphere.

Time series for the parallel velocities recorded at probe points situated along the sunspot
axis at certain heights for both frequency drivers are shown in Figures 3.11 and 3.12. The
heights of the probe points were chosen to encompass areas both inside (1.6 and 2.0 Mm)
and outside (0.8 Mm) the proposed cavity. All velocities have been normalised to the
maximum velocity recorded at any of the probe points from each respective simulation.
To begin with, all velocity perturbations are clearly out of phase in both simulations and
must represent the initial travelling wave. Not long after, the perturbations measured
inside the cavity (1.6 and 2.0Mm) move to being in phase, suggesting a standing wave is
present in this area. This effect is seen most strongly when using the 3.3 mHz driver, as the
oscillations from within the cavity for the 6.7 mHz driver look to contain various amounts
of both the travelling and standing waves. From this observation, it becomes clear that
higher frequency components are more capable of tunnelling through the acoustic cut-off
spike at the transition region, a feature also noted in Santamaria et al. (2015).

For both simulations, the perturbations outside the proposed cavity (0.8 Mm) remain
out of phase with those inside the cavity at all time, suggesting the cavity does not extend
to this height. This area outside the cavity is dominated by travelling waves produced by
the bottom boundary driver. After the driver amplitude is reduced to zero in the short time
following 180 minutes, the cavity continues to resonate with the waves trapped within.
Although these waves are constantly being leaked out, as can be seen by the decrease
in velocity over time. The oscillations measured in the resonant cavity for the 6.7 mHz
driver decrease in amplitude much quicker than those of the 3.3 mHz driver, giving further
credence to the theory that the higher frequency components are more easily able to
penetrate the boundaries of the cavity and hence leak out to a greater degree.

Figure 3.13 depicts the same scenario described above with the 3.3 mHz driver, however
there is an absence of transition region temperature gradient. It is clear that in this case, all
measured perturbations remain out of phase and represent travelling waves, as expected.
No standing waves are recorded and the cavity ceases to exist.

3.3.3 Partial Ionisation

A partially ionised gas is now implemented for the modified Maltby Model M atmosphere.
When introducing partial ionisation, the change in density required to achieve hydrostatic
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Figure 3.11: Selected time series of the normalised vertical velocity perturbations along
the sunspot axis at various heights for driving frequency ω0 = 3.3 mHz. The gold line
represents a point outside the proposed cavity (z = 0.8 Mm), whilst the purple (z = 1.6
Mm) and green lines (z = 2.0) Mm are from within the cavity. The top panel shows the first
hour of simulation time. Here, all perturbations begin out of phase, which represents the
initial travelling waves being driven from the bottom boundary. It is less than 10 minutes
before the perturbations from within the cavity move to being in phase and represent a
standing wave, whilst the perturbations outside the cavity remain predominantly out of
phase and constitute a travelling wave. The bottom panel shows a further hour of simulation
time not long after the amplitude of the driving source has been reduced to zero.

equilibrium results in an overall decreased scale height. This change leads to an increase
in the cut-off frequency in the chromosphere by approximately 1 mHz. This effect is
visualised in Fourier power spectra shown in the top panels of Figure 3.14. The driver
implemented is centered around ω0 = 3.3mHz, whilst the amplitude of the source was
decreased compared to those used in the ideal gas atmosphere so as to again prevent
developing shocks or other non-linear effects. As the waves propagate upwards, all
frequencies below 5.2mHz are filtered out along the sunspot axis. Much like in the lower
chromosphere for the ideal case, it is then the lowest surviving frequency which begins to
dominate the spectrum. The difference in this case being that the resonant cavity frequency
of 4.7 mHz has also been filtered out, as is to be expected due to the higher maximum
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Figure 3.12: Same as Figure 3.11 with driving frequency ω0 = 6.7 mHz. The presence
of the standing wave is not as clear as with the lower frequency driver, suggesting a
combination of both standing and travelling waves. The amplitudes of the perturbations
after the driving has stopped (bottom panel) decrease much quicker than for the lower
frequency driver.

cut-off frequency. However, as the distance from sunspot centre is increased (bottom
panels), the increased inclination of the local magnetic field causes the cut-off frequency
to drop off as described by equations (3.3) & (3.7). This allows the cavity frequency to
survive this evanescent stage and eventually dominate the spectrum. This further supports
the idea that the resonant cavity frequency need not be strongly represented in the driving
spectrum but it must survive the effect of the cut-off frequency before reaching the cavity.
Note, the spectra shown have been taken from a reduced simulation time of 1.5 hours due
to computational limitations, however the aforementioned results are clear to see.

3.4 Conclusion

Field aligned magneto-acoustic waves of frequencies both predominantly above and
below the maximum cut-off frequency have been injected into a potential magnetic field
sunspot atmosphere with a chromospheric temperature distribution reflecting that of a
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Figure 3.13: Same as Figure 3.11 with the transition region removed. A travelling wave is
observed at all heights measured throughout the chromosphere for all time.

well referenced model. Through parallel velocity measurements, it is seen that a resonant
cavity is formed in the upper chromosphere. The bounds of the cavity are described by the
temperature gradients both at the transition region and within the chromosphere itself. A
resonant frequency of ∼ 4.7 mHz is found to exist in spectra taken from within the cavity
but is absent outside the cavity. This frequency is also absent from the spectra when the
chromospheric temperature gradients are removed. A standing wave is formed within the
cavity, whereas travelling waves are recorded outside the cavity. The cavity’s resonant
frequency must be present in the original driving source, though the power in this particular
frequency need not be initially strongly represented. The potential resonant frequency
waves must also survive the effect of the local cut-off frequency as they propagate through
the temperature minimum (maximum cut-off) region of the chromosphere. The velocity
amplitudes of the resonant frequency increase by well over 100% for the linear regime in
the upper chromosphere compared to when there is no cavity present. After the driving
amplitude is reduced to zero, the waves trapped in the cavity begin to leak into the
surrounding atmosphere and hence the cavity acts as a leaky resonator.
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Figure 3.14: Normalised Fourier power spectra for the partially ionised atmosphere with
transition region temperature gradient present recorded from a simulation spanning 1.5
hours. Top panels: Frequencies below the local cut-off frequency become evanescent, the
lowest surviving frequency then begins to dominate the spectra. The resonating frequency
of ∼ 4.7 mHz does not survive this process and is lost. Bottom panels: Moving away from
sunspot centre allows lower frequency waves to propagate freely, including that of the
resonant frequency. This frequency then begins to dominate the spectra at increasingly
larger horizontal distances.

3.5 Implications and Further Research

Strong magnetic fields, such as those found in active region sunspots play a fundamental
role in the dynamical processes in the solar atmosphere. Magnetic structures can act as a
wave-guide for magneto-acoustic waves, providing a link between the solar convection
zone and photosphere through the transition region and in to the solar corona. This process
is predicted to be the main energy supply for the outer solar atmosphere and understanding
this process is crucial in solving the coronal heating problem (De Pontieu et al., 2004, 2005).
Measurements of Doppler velocities only become tenable above the solar photosphere and
are commonly taken from within the chromosphere to infer the degree of energy being
transported into the corona. This study suggests that Doppler velocities measured from
within the upper chromosphere cannot be attributed solely to outwardly propagating waves.
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The existence of resonating chromospheric cavities must be taken into account as there can
exist a stark increase in the resonant frequency amplitudes, impacting on any inferences
drawn from them, most likely in terms of energy transport.

The following simulation parameters have either been ignored, or can be improved/expanded
upon:

• Partial Ionisation: The main atmosphere used in this study was modelled as a fully
ionised gas, yet the ionisation fraction at the photosphere can be as low as 10−4

(Vernazza et al., 1981). The reasons behind not including partial ionisation have
been discussed previously in detail.

• Sunspot Model: A potential sunspot atmosphere has been utilised, and whilst this
implementation is supported in the solar literature for the chosen atmospheric model,
it eliminates the possibility of modelling sub-photospheric layers. In turn, this model
does not support the implementation of deeper drivers, such as those stemming from
the convection zone. In order to retain the sunspot structure, a non-potential sunspot
model such as in Przybylski et al. (2015), which is an optimised version of the model
developed by Khomenko and Collados (2008) could be implemented, allowing more
realistic deeper sources to be used.

• Chromospheric models: A variety of different chromospheric temperature profiles
have been proposed from the myriad of observational data available. As the cav-
ity extent and its associated resonant frequency is dependent on this temperature
distribution, more models could be introduced for testing.

• Kink/Alfvén Waves: Non-field aligned waves can be injected into the atmosphere
to study how the effect of slow-fast and fast-Alfvén conversion plays a role in the
increased amplitudes measured in the chromospheric cavities. Fast wave reflection
within the chromosphere would also begin to play a role.

• Non-linear Effects: Magneto-acoustic waves have been reported to develop into
shocks in the mid-chromosphere (Vecchio et al., 2008). If these shocks develop in
the lower chromosphere, they are also known to split into their fast-slow components,
with the slow shock being smoothed through the equipartition layer as discussed ex-
tensively in Chapter 2. The driving amplitudes chosen in this study were sufficiently
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low so that non-linear effects aren’t experienced to any appreciable degree and are
hence ignored.

• Radiation: The numerical code used assumes an infinite radiative cooling time,
yet there has been convincing evidence for decades that temperature fluctuations
are moderated by radiative smoothing, an effect incorporated in the literature of
various problems involving stellar atmospheres as far back as Vitense (1953). The
need to include radiative effects will become more prominent with non field-aligned
velocities, increased amplitudes and the introduction of partial ionisation (Khomenko,
2015).

76



CHAPTER 4
Anisotropies of Solar Quakes

4.1 Introduction

The study of the interior of the Sun through observations of the solar surface is nothing
new in the realm of solar physics - a process known well as helioseismology. The constant
turbulence due to convective motions within the Sun sees the production of innumerable
pressure waves (p-waves). These waves propagate through and interact with the various
physical components of the solar interior. In doing so, they obtain information regarding
the composition and dynamics of the medium they have passed through, which can be
readily extracted through various observational techniques. The advent of helioseismology
has led to a host of improvements in solar models with calculations of the convection zone
depth (Christensen-Dalsgaard et al., 1991; Basu and Antia, 1997), rotation rates (Brown
and Morrow, 1987; García et al., 2007), elemental abundances (Vorontsov et al., 1991;
Richard et al., 1998), sound speed and density structures (Antia and Basu, 1994) becoming
much more accurate, as well as providing a fundamental role in resolving the solar neutrino
problem (Fukuda et al., 1999; McDonald et al., 2002). Similar helioseismic techniques
can further be employed to investigate relatively newly discovered phenomena known as
solar quakes.

Strong pressure waves are also generated by solar quakes, a direct energetic conse-
quence of solar flare production. During their impulsive phases, solar flares can, under
specific conditions deposit energy back into the Sun via spatially confined, high energy
impacts with the solar photosphere. The dynamics of solar flare generation and the mecha-
nisms involved is an area of active study and much is still unknown. It is proposed that the
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study of solar quakes can act as a tool to uncover more information regarding the dynamics
of the initial (impulsive) stages of solar flare production. Their highly localised and intense
nature, along with their location around sunspots can also act to provide more detailed
local analysis of magnetically active regions than global helioseismology could produce.

Despite the continual accruing of observational data, the physics behind the generation
of solar quakes, or seismic transients, is poorly understood and many theories have been
proposed to date. What is clear is that following the onset of some solar flares, only
a hundredth or even a thousandth of the flare’s energy is deposited back into the solar
interior. This is still a significant amount of energy, which causes a collection of pressure
waves to be sent into the solar interior. These waves will eventually return to the surface
due to the ever increasing sound speeds they encounter. The edge of the wave front
closer to the centre of the Sun will travel faster than that of the outer edge, causing it
to bend back to the surface. The returning pressure waves cause disturbances at the
photospheric level, which are the signatures of a solar quake. They consequently appear as
a set of concentric ripples emanating from the initial impacting site (see Figure 4.1). The
various magnetic field configurations found within active solar regions can act to alter the
traditional acoustic properties and trajectories of any travelling wave in this environment.
Therefore, understanding the physical parameters specific to such environments and their
individual effects on flare-generated waves throughout their journey into the solar interior
becomes important. It is these subsurface effects which act upon the waves before they
return to the surface and manifest themselves into the series of ripples that have been
observed following many solar flares.

This study looks to investigate the consistently observed but loosely studied feature
of most solar quakes, the anisotropy of their surface wave fronts. This is achieved by
analysing the primary effects of two components: Firstly, how do the properties of the local
solar atmosphere affect not only the propagation of the waves producing the wave fronts,
but also the amount of energy which is lost or returned to the solar surface? Secondly,
how prominent are the destructive/constructive effects on the wave fronts, owing to any
movement of the solar quake source itself?

A theoretical framework is provided, which underpins the main effects proposed to be
causing the wave front anisotropy. A variety of atmospheres and solar quake sources are
implemented through the use of supercomputers to achieve full 3D numerical simulations
of solar quakes. The results produced are linked to both the theory developed herein as
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well as with observations. Clear observations in the vicinity of the solar quake source have
proven difficult to obtain due to the complex nature of the environment and the processes
occurring within it. Away from the impacting site, the observations become much clearer
and the features of the surface wave fronts become more amenable to analysis, which is
the area this study focuses upon.

The mechanics behind solar flare generation is an ongoing field of study, with a variety
of researchers providing efforts to fully explain both when and where a flare may be
excited, as well as the process(es) which govern their onset. Flares have been associated
closely with the ejection of plasma and particles into outer space, which have the capacity
to reach Earth and may interrupt various important communication channels. Due to solar
quakes being a direct energetic consequence of the onset of solar flares, any information
regarding their morphology is greatly sought after.

Figure 4.1: Doppler difference image with arrows depicting the distinct circular ridge,
which appeared radially outward from the impact site of the 2005 January 15 X-class flare.
Doppler difference units displayed on the vertical axis are in ms−1. Image extracted from
Moradi et al. (2007).
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4.1.1 Observational Evidence

The first observation of a solar quake was made by Kosovichev and Zharkova (1998) using
Dopplergrams obtained from data provided by the Solar and Heliospheric Observatory
(SOHO). They used the Michelson Doppler Imager (MDI) to produce Dopplergrams to
discover conspicuous movement of mass flows of the order of 3-5 Mm across the solar
photosphere throughout the July 1996 X2 class flare impulsive stage. This allowed a
direct link between the mass movement of material triggered from a solar flare to the
production of a seismic transient. These Doppler images are now often remapped to
provide seismograms depicting the travel distances of a given surface wave front across
the solar surface (see Figure 4.2).

Figure 4.2: Helioseismograms showing the changing location of selected solar quake wave
fronts through time on the solar surface. The dark patches refer to negative velocities and
white to positive velocities. The images are from quakes associated with a 2004 (left panel)
and a 2005 (right panel) observed X-class flare. The yellow lines superimposed on the
images indicate the theoretical time distance arcs of propagating waves produced from a
standard solar model. Figure extracted from Kosovichev (2009).

The continual turbulence from within the convection zone of the Sun manifests itself
as oscillations of the solar photosphere with periods of approximately 5 mins (2-4 mHz
frequency range). Due to this constant granulation of the background atmosphere, it is
difficult to observe seismic ripples in the noisy solar background.

A dedicated technique to find seismic signatures is through the use of seismic emission
power maps (see bottom-right panel of Figure 4.3) and the computational helioseismic
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holography techniques introduced in Donea et al. (1999). These techniques have been
utilised and expanded upon to locate a whole host of further solar quakes (Donea, 2011;
Donea and Lindsey, 2005; Lindsey and Donea, 2008; Martínez-Oliveros et al., 2008;
Donea et al., 2006; Moradi et al., 2006). One interesting aspect of solar quakes that draws
attention is the anisotropy found in the acoustic amplitude of the surface wave fronts from
the vantage of the source (Kosovichev, 2006; Moradi et al., 2007). In simpler terms, the
acoustic emission is much stronger in some directions when compared to others. This
prominent feature, which has received little attention in the solar literature has triggered
the research presented within this chapter. Figure 4.3 shows Doppler images taken at the
onset of the January 15 2005 X1 flare onset, as well as from 40 minutes following. These
images clearly show the production of anisotropic wave fronts following a high energy
flaring event.

As of now, hundreds of quakes have been identified and can be cross-correlated with
flares having an energy classification as low as M-class (Sharykin and Kosovichev, 2019).
A summary of the survey data on solar quakes collected by Ionescu (2006) suggests
that only a small amount of a flare’s total energy is observed through egression power
calculations. Extrapolation of this data gives an estimation as to the resolution required
to continually identify quakes produced from less and less powerful flares. It is also
interesting to note that many high energy X-class flares predicted to produce solar quakes,
do not actually induce an observable seismic transient signature and the cause of this is
currently unknown. Before discussing the anisotropy of solar quakes, a discussion about
the details of solar quake triggering mechanisms is provided.

4.1.2 Triggering Mechanisms

There remains still no consensus as to the actual mechanism which connects the onset
of a solar flare to the production of a solar quake. Solar flares occur predominantly in
magnetically active regions of the Sun and are powered by an intense sudden release of
energy stored in the corona via the process of magnetic reconnection (also sometimes
described as magnetic recombination). There is plenty of history in the solar literature for
magnetic reconnection with theoretical work beginning as far back as Cowling (1945);
Sweet (1950); Parker (1957), whilst numerical simulations (Aulanier et al., 2010, 2012;
Kliem et al., 2013), plasma experiments (Ji et al., 1998), and space missions (Farrugia
et al., 2016) are becoming more and more prominent in recent years. The myriad of
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Figure 4.3: X1 flare of January 15 2005. Top-left: MDI Doppler image at flare onset.
The arrow points to the sudden compact red-shift at the acoustic source. This arrow is
reproduced in all other panels at the same spatial location. Top-right: MDI Doppler image
40 minutes after flare onset. The additional upper arrow points to the prominent surface
ripples. Bottom-left: Visible continuum emission observed by GONG co-temporal with
the top-left panel. Bottom-right: Egression power at flare onset in the 5-7 mHz spectrum
reconstructed from the surface ripples using a 15-45 Mm pupil centered on each pixel.
Figure extracted from Donea (2011).

processes involved in magnetic reconnection are well described and reviewed by Yamada
(2007); Zweibel and Yamada (2009); Yamada et al. (2010); Janvier (2017). The main
contribution from magnetic reconnection to this project is twofold: firstly, there is the
ability to convert magnetic energy into alternate forms of energy such as kinetic or heat
energy, and secondly, a redistribution of magnetic fluxes near the photosphere results in a
change to the local magnetic field topology (Somov, 2010). These phenomena can lead
to a variety of physical processes, each with their own capabilities of transferring energy
back into the solar interior. Garnered from the works listed above (except where otherwise
noted) and summarised below are the main proposed mechanisms resulting from solar flare
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onset thought to be capable of supplying enough energy to incite an observable seismic
transient.

Photospheric Backwarming

After the solar flare and magnetic reconnection occurs, plasma containing high energy
particles such as electrons and protons can flow along the field lines. The particles
streaming towards the solar surface will impact collisionally in the chromosphere, resulting
in the temperature of the associated plasma rising significantly. This is balanced by the
plasma releasing extreme ultraviolet (EUV) and ultraviolet (UV) line radiation as well
as the emission of free-bound continua from hydrogen and other ions. This radiation is
carried via photons and can penetrate into the photosphere, supplying enough energy to
cause a seismic transient. Co-spatial and co-temporal comparisons of continuum emission
and acoustic emission emanating from flare impact sites which were later found to produce
solar quakes is strong evidence for a causal relationship between the two (Donea and
Lindsey, 2005). Various theories spawning from works including Donea (2011); Lindsey
and Donea (2008); Moradi et al. (2007) have been developed to explain directly the link
between the continuum emission and consequent heating of the photospheric layers. This
heating would cause an increase in pressure, supplying the force needed to drive an acoustic
shock wave into the solar surface, which in turn produces the seismic transient. The bottom
left-hand panel of Figure 4.3 shows the signature of sudden visible continuum emission
observed by GONG during the flaring event of January 15 2005.

Despite the apparent spatial and temporal links between the acoustic and continuum
emissions, there appears to be a large discrepancy in the magnitude of these energies. A
crude estimate of the energy deposited into a seismic transient (see Lindsey and Donea
(2008) for full derivation) can be estimated as

∆W ∼ p20
32ρ0g

(δFrad)
2

F 2
rad0

, (4.1)

where p0, ρ0 and Frad0 are the pressure, density and continuum flux of the undisturbed
photosphere, and δFrad and ∆W are the changes in continuum flux and energy deposited
into the seismic transient. Utilising equation (4.1), Lindsey and Donea (2008) find a
reasonable agreement between energy outputs of the continuum and acoustic emissions.
However, uncertainties in the Global Oscillation Network Group (GONG) measurements,
the non-consideration of magnetic fields, small data sets and simple assumptions involved in
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the derivation of equation (4.1) need to be addressed in order for photospheric backwarming
to be considered a proven mechanism for quake generation.

Chromospheric Shocks

Recent studies have shown the lower chromosphere and photosphere to be a possible site of
sunquake excitation (Zharkova and Zharkov, 2015; Sharykin et al., 2017). The underlying
idea, which has been termed the ‘chromospheric shock’ theory describes a process whereby
the incoming energetic particles flowing along field lines collide with those in the lower
chromosphere. An intense evaporation of the surrounding material ensues, creating distinct
regions of high and low pressure. This process happens at such a rate that the plasma is now
capable of moving at speeds much greater than the local sound speed. This process causes
‘chromospheric shocks’, which may travel uninhibited into the photosphere with enough
energy to excite the acoustic waves needed to produce seismic transients (Kosovichev,
2015; Macrae et al., 2018). In response to this proposed mechanism, Allred et al. (2005)
produced a study using hydrodynamic modelling of chromospheric shocks. The results
of this study suggested that radiative losses inflicted throughout the photosphere are such
that the shocks could not account for the measured acoustic energy in seismic transients
observed to date.

Particle Triggers

Further to observations of high energy protons producing gamma ray emission associated
with the aforementioned photospheric backwarming, hard X-ray emissions are also found
in co-spatial and co-temporal regions, suggesting the additional presence of high energy
electrons (Zharkova and Zharkov, 2007). Due to the spatial and temporal alignment of
these two potential energy sources, it becomes difficult to distinguish whether protons or
electrons are responsible for transporting the energy to the seismic transient and to what
degree. Kosovichev (2007) presents Reuven Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) data from the July 23 2002 flare, which shows gamma ray emission
with no co-spatial seismic response, whilst a joint gamma ray/hard X-ray emission is
aligned with a seismic response. The gamma ray fluxes recorded at each particular site
were of similar magnitude, which lead the author to conclude that high energy electrons
are responsible for seismic transient production.
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Lorentz Forces

The sudden change in the magnetic field topology leads to an impulsive Lorentz force to
act upon the surrounding area, depositing energy which can be responsible for powering a
seismic transient. Fisher et al. (2012) proposed the change in Lorentz force per unit area
over time to be given as

∂Fz
∂t

=
1

8π

∫
A

dA
∂

∂t
(B2
⊥ −B2

z ) (4.2)

where B⊥ and Bz are the magnitudes of the magnetic field perpendicular and vertical
respectively and A is the area of the solar surface experiencing the changing magnetic field
- in this case the flare footprints. Sudol and Harvey (2005) found significant magnetic field
changes to the low photospheric levels upon all surveyed flare release sites, including the
2003 October 29 flare, which excited an acoustically active seismic transient. However,
specific values pertaining to this event have not been made available. Utilising equation
(4.2), Alvarado-Gómez et al. (2012) measured line-of-sight magnetic field variations of
the photosphere after the 2011 February 15 X-class flare impact to produce estimates
for the magnitude of the Lorentz force excited. Their results produced a lower limit
calculation describing a 6% contribution by the Lorentz force to the total acoustic energy
of the seismic transient. They further their analysis by extrapolating the data to suggest
that the line-of-sight measurements are underestimates to what could be a Lorentz force
contribution in the order of 20%. These values suggest the contribution to the energy of
seismic transients is non-negligible and cannot be discounted when accounting for the total
energy required to produce a solar quake.

The possible triggering mechanisms addressed above are all capable of providing
at least part of the acoustic source energy need to produce a solar quake. Due to the
nature of the sources, it is possible and perhaps common, that the sites of the impacts
are non-stationary and involve motion perpendicular to the solar surface. Owing to this,
the importance of source movement in understanding the morphology of solar quake
observations is now investigated.

4.1.3 Source Movement

Additional radio, hard X-ray and gamma-ray observations are being collected to study high
energy particles being accelerated following the onset of a solar flare (eg., Aschwanden
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et al. (2002); Hurford et al. (2003)). More specifically, particle motion transverse to the
solar surface has been observed, suggesting that any impacting source can be non-stationary.
One prominent theory to explain this behaviour is the contraction or relaxation of magnetic
loops following the recombination phase experienced after a solar flare (Russell et al.,
2015). This causes the foot-points containing the magnetic field lines to move either
closer to or away from each other, but most importantly, transverse to the solar surface.
Particles travelling along these moving field lines, thought to be responsible for solar quake
generation, should emit radiation. Kosovichev (2007) provided one such example (see
Figure 4.4), where transverse motion of up to 50 km/s is observed through hard X-ray
observations following the onset of the July 23 2002 solar flare, which produced a solar
quake.

4.1.4 Motivation for Study

The mechanism(s) of solar flare generation are an integral part in understanding the
workings of the Sun. Considering solar quakes are a direct energetic response to some high
energy flares, it is natural they become an important area of interest. Their appearance
on the solar surface as a series of anisotropic surface wave fronts (ripples) lends itself to
investigation. The reproduction of this feature through 3D numerical modelling should
help further the understanding around the mechanisms thought responsible for generating
the quakes. These mechanisms are closely involved with the processes of the propagation
and acceleration of electrons and ions, and may provide an insight into these phenomena.
Further to this, and due to their intense nature and location, solar quakes have the ability to
provide detailed local helioseismic data for magnetically active regions of the Sun. Thus, a
greater understanding of their photospheric responses (surface ripples) becomes integral.

4.2 Ray Path Tracing: Acoustic Waves in a Quiet

Sun Atmosphere

Regardless of the mechanism which leads to the production of a seismic transient, what
follows an energetic impact with the photosphere is the motion of pressure waves through
various sections of the Sun’s interior to eventually re-emerge at the surface. It is therefore
instructive to look at the path in which a typical wave would take as it propagates underneath
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Figure 4.4: Observations from the July 23 2002 flare, which produced a solar quake.
(a) Hard X-Ray source evolution. Increasing symbol size represents time progression
from 00:26:35 to 00:39:07 UT. (b) Hard X-Ray profiles along the flare ribbons showing
supersonic speeds - the grey dashed line depicts a speed of 25 km s−1 and the dotted line
similarly for 50 km s−1. (c) Doppler velocity profiles along the f1 ribbon, showing motion
with an average speed of ∼ 25 km s−1. Figure extracted from Kosovichev (2007).
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the photosphere. Standard MHD ray theory, as related by Moradi and Cally (2008) and
Newington and Cally (2010), is based on the dispersion function

D = ω2ω2
ca

2
⊥k

2
h + (ω2 − a2k2‖)×

[
ω4 − (a2 + c2)ω2k2

+ a2c2k2k2‖ + c2N2k2h − (ω2 − a2zk2)ω2
c

]
. (4.3)

Here, ω is the angular frequency, kh and k‖ are the horizontal and field-aligned components
of the wave vector respectively, a is the Alfvén speed, c is the sound speed, az is the
vertical component of the Alfvén velocity, and a⊥ is the component perpendicular to the
plane containing the wave vector ~k and gravitational acceleration ~g. N is the Brunt-Väisälä
frequency, defined as

N =

√
g

H
− g2

c2
, (4.4)

where H is the density scale height. The acoustic cut-off frequency, ωc can have a variety
of representations and this is discussed in detail through the introduction of Chapter 3. For
this analysis we restrict ourselves to the traditional isothermal form

ωc = ωci =
c

2H
. (4.5)

The associated ray equations are

d~x

dτ
=
∂D
∂~k

,
d~k

dτ
= −∂D

∂~x
,

dt

dτ
= −∂D

∂ω
,

dS

dτ
= ~k · dx

dτ
, (4.6)

where ~x = (x, y, z) is position, S is phase, t is time, and τ is the parameterisation of the
ray. The atmosphere is a smooth concatenation at the photosphere of two well known
models: the subsurface layers are based on the Model S by Christensen-Dalsgaard et al.
(1996) and the chromospheric layers are taken from the quiet Sun model listed in Avrett
et al. (2015).

By specifying a height z and a frequency ω, then by allowing kz = 0, equation (4.3)
where D = 0 will give a solution for kx using a root finding mechanism. Now that kx is
defined, equation (4.6) can be integrated numerically to solve for the path of the ray. This
method acts to ‘shoot’ the ray from its lower turning point at x = 0 in both horizontal
directions. The integration is continued until both rays either reach the surface at z = 0 or
their upper turn over height, i.e., when dz/dt = 0 is reached. By doing this, one full skip
of the ray can be visualised, such as those presented in Figure 4.5. This formulation allows
a time-distance analysis for injected rays to be investigated.
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Figure 4.5: Typical ray paths showing the first horizontal skip in x− z space with lower
turning points at z = −15,−8 and −2 Mm. No background magnetic field is present and
a frequency of 6 mHz is chosen.

4.2.1 Time-Distance Analysis

By utilising the above technique, injected rays may have their first skip distance and
associated travel times recovered from the ray equations. Seismic sources as triggers of
solar quakes have been detected at frequencies from 3-10 mHz (Zharkov et al., 2011).
Rays with typical solar frequency values of 5− 15 mHz and a collection of appropriate
lower turning point heights are chosen to be investigated. The heights were selected such
that the horizontal first skip distance of the rays spanned a range of approximately 6− 50

Mm, sufficient to fully encompass the area of interest (this point is explained in detail in
section 4.4.1). The time-distance relationships are shown in Figure 4.6.

The most striking feature of the time vs. skip distance plots is the non-linearity of the
relationship between the two. Increasingly less time is required for the rays to travel a
given distance as skip distance increases. As the rays travel deeper, they experience an
acceleration due to the increasing sound speed with depth. Therefore, we expect to see the
surface ripples accelerate with increasing distance from impact point, a feature noted as far
back as the first solar quake observation by Kosovichev and Zharkova (1998). An increase
in frequency also sees the rays travel slightly faster, more so at large skip distances. The
implementation of a non-zero magnetic field showed a small increase in skip distance at
later times for high magnitude strongly inclined fields. These types of atmospheres are
very rarely observed and therefore the effect of magnetic field can essentially be ignored
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Figure 4.6: First skip distance plotted against time for rays with typical solar frequency
values of 5− 15 mHz for an atmosphere with no background magnetic field. The dashed
line shows the travel distance and time for a particle moving along the surface (z = 0) at
the local sound speed c = 8.18 km/s.

for this purpose.

The main effect of using the isothermal acoustic cut off compared to alternate versions
is that the rays will reflect higher near the surface and hence will be more affected by the
magnetic field.

As these waves progress through the solar interior, they can lose or convert some of
their energy before returning to the surface. The most prominent mechanism for this in the
region of interest is mode transmission/conversion, the effects of which are now discussed
in some detail.

4.2.2 Transmission and Conversion

Due to the constant solar granulation, a weak signal at the surface is likely to be lost in
the background noise. Therefore, any loss of energy from the pressure waves between
their initial production and their return to the surface should be taken into account. The
most prominent form of energy loss when studying acoustic waves propagating through
the magnetic solar interior occurs around the equipartition layer, where the sound speed
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coincides with the Alfvén speed. At this point, the incoming acoustic ray splits its energy
into two modes, acoustic and magnetic, a process known as linear mode conversion
(Schunker and Cally, 2006). Only the formula will be introduced here as a full discussion
of this phenomenon is related in detail through the introduction section of Chapter 2. The
proportion of energy remaining on the prescribed ray path after interaction with the a = c

layer is described by the transmission coefficient

T = exp
[
− πhK2k2⊥
|kz|(K2 + k2⊥)

]
a=c

≈ exp
(
−πhk

2
⊥

|kz|

)
a=c

for |k⊥| � K

= exp[−πKhs sin2 α]a=c,

(4.7)

where K is the wave number, kz and k⊥ are the vertical and perpendicular components
of the wave vector respectively, a is the Alfvén speed, c is the sound speed, and α =

arcsin (k⊥/K) is the attack angle, the angle that the wave vector makes with the magnetic
field - the wave vector being tangent to the ray at any given point. Also implemented
above is the equipartition scale height h = [d(a2/c2)/dz]−1a=c, the measure of thickness of
the layers in which a ≈ c, along with hs = [d(a2/c2)/ds]−1a=c, the measure of thickness
along the path traced out along the direction of the phase velocity k̂. The first part of
equation (4.7) is the exact formula, which is used for any calculations herein, whereas the
final formula is an approximation used to help accentuate to the reader the effect of the
attack angle α. A small attack angle, the angle between the wave vector and the magnetic
field, leads to greater transmission from slow-fast or fast-slow modes. Figure 4.7 can be
used to visualise the effect of linear mode conversion on rays with differing lower turning
points and background magnetic field strengths - this image should be used for illustrative
purposes only.

As the wave reaches the a = c layer, its energy will be split into acoustic and magnetic
modes. A given amount of acoustic energy will remain on the depicted ray path (transmis-
sion), whilst the remaining magnetic energy is funnelled along the magnetic field lines
(conversion) into the solar interior and becomes lost for the purpose of this study. A large
attack angle at the a = c layer leads to less transmission and consequently less energy
staying on the ray path and being carried back to the surface.

For a vertical magnetic field, the attack angle is increased when a) the trajectory of the
ray is shallower and b) when the magnetic field is stronger. In fact, this is in general true
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for most constant non-vertical magnetic fields with typical solar active region strengths
and inclinations when looking at the first skip distances of importance. Figure 4.8 shows
the transmission coefficients for various magnetic field arrangements, which highlight the
points mentioned above. These values have been scaled by the inverse skip distance as
any energy contained along this path will decrease inversely proportional to r, where r
is the radial distance from the impact site. It can be seen that the magnetic field strength
plays a greater role than the field inclination when considering these transmission values,
especially at lower skip distances. This is an important result as both the magnitude and
inclination of the magnetic field can vary greatly in atmospheres where solar quakes are
commonly found, such as the magnetic canopy of a hosting sunspot. Sunspot magnetic
fields can vary in magnitude from 700 - 3700 G (Livingston, 2002; Solanki, 2003) and
their field lines can bend up to 35◦ from vertical at the penumbra/umbra boundary (Jurčák,
2011).

Any wave passing through the a = c layer will of course pass back through this layer
after reflecting at its lower turning point and before reaching the surface. At this point, a
further splitting of the energy into the acoustic and magnetic modes will occur. For an
upwards travelling wave, the proximity of the a = c layer to the height of measurement
(z = 0 surface) means these modes will be almost indistinguishable - this is especially true
for magnetic fields with small inclination from vertical, as is common in solar atmospheres.
It is not until higher up in the atmosphere where the plasma beta level drops significantly
that it is possible to meaningfully separate the different wave modes. Therefore, it becomes
difficult to draw meaningful conclusions from the mode conversion theory at this point
and the nuances are considered more theoretical than practical. Any further development
and application of the theory would be beyond the scope of the study at hand.

In line with the above considerations, it is important to reiterate that these findings and
representations are only characteristic of the processes involved and should be used purely
as a guide to assist in explaining any results forthcoming. The mode-conversion theory
was also developed in a 2-D environment. It is thought to extend consistently to further
dimensions but as of now, its results should only strictly be applied parallel to the plane of
the magnetic field, i.e. with no azimuthal angle.
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Figure 4.7: Illustrative image showing typical paths for shallow and deep rays (solid lines)
injected at the same point at the top of the box. The dashed lines refer to two different
potential a = c layers - the stronger the magnetic field the deeper the location of this layer.
The star points refer to the points where linear mode conversion will take place. The crucial
‘attack angle’ α is measured at these star points. The background orange lines depict the
vertical magnetic field lines. For a vertical magnetic field, a larger attack angle occurs
when the trajectory of the ray is shallower and when the magnetic field is stronger. The
rays will pass through the a = c layer again before returning to the surface (not shown).

4.3 2D Wave Equation

The analysis continued by looking at the solutions to the 2D wave equation for acoustic
waves, described here as

∂2u

∂t2
= c2∇2u+ v(x, y, t), (4.8)

where u is the change in position from equilibrium, c is the sound speed, v is the input
source function, t is time and (x, y) are the spatial positions. The solutions to this equation
help to visualise the potential effects of constructive and destructive interference at the
solar surface. It is important to note that this equation describes a two-dimensional set-up
whereby the waves are constrained to travel along a horizontal (x, y) plane at the sound
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Figure 4.8: Transmission Coefficient T1 vs first skip distance for a 6 mHz ray travelling
through various magnetic and non-magnetic atmospheres. The top image corresponds
to a vertical magnetic field with magnitudes listed appropriately and the bottom image
corresponds to a 2.5 kG magnetic field with inclinations from vertical listed appropriately.
All values have been scaled by the inverse skip distance. The plots are truncated for small
skip distance when a particular ray does not travel deep enough to intersect with the a = c
layer. Note: No a = c layer exists for a non-magnetic field, in this case, T1 = 1.
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speed. It was seen in subsection 4.2.1 that for increasing skip distance, the actual waves
travel ever deeper into the solar interior and propagate at speeds much greater than the
sound speed. The results presented should therefore be interpreted on a qualitatively
instructive basis only.

The initial condition is

u =
∂u

∂t
= 0, at t = 0

and the source function is given by

v = δ(x− bt) δ(y) e(−iωt−σt), when t > 0, (4.9)

where δ is the delta function, b is the source speed in the x direction, ω is the angular
frequency and σ is a source decay factor.

This is solved by taking the Laplace-Fourier Transform of equation (4.9), which gives
the solution in Laplace-Fourier space as

u(k, l, s) =
v(k, l, s)

s2 + c2(k2 + l2)
, (4.10)

where k and l are the x and y wavenumbers respectively, and s is the Laplace variable. By
inverting the Fourier transform in l and then the Laplace transform in s separately, along
with the application of the convolution theorem, gives

W (t) =

∫ t

0

F (k, y, t) G(k, t− τ)dτ. (4.11)

Here, τ is a time parameter,

G(k, t) =
exp [−t(−ibk + σ + iω)]

2c
√

2π
, (4.12)

and

F (k, y, t) = Jθ(ck
√
t2 − y2/c2) θ(t− |y|/c), (4.13)

where Jθ is the Bessel function of the first kind and θ is the Heaviside step function.

A final inverse Fourier Transform in k on the integrand F (k, y, t) G(k, t), and further
simplification produces the solution under these conditions as

u(x, y, t) =

∫ t

0

H(x, y, t, τ) dτ, (4.14)
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Figure 4.9: 2D wave equation results for a source moving at subsonic speed (b = c/2) with
full equation parameters listed above.

Figure 4.10: 2D wave equation results for a source moving at supersonic speed (b = 3c/2)
with full equation parameters listed above.
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Figure 4.11: 2D wave equation results for a source moving at highly supersonic speed
(b = 3c) with full equation parameters listed above.

where

H(x, y, t, τ) =


exp (−(t−τ)(σ+iω))

2cπ
√
c2τ2−(b(τ−t)+x)2−y2

, if c2τ 2 > (b(τ − t) + x)2 + y2

0 , otherwise.
(4.15)

Cases with a variety of source speeds (here, the variation of parameter b) are chosen for
investigation and selected examples are shown in Figures 4.9, 4.10 and 4.11. The values
corresponding to the equation parameters are stated above each plot. For all cases, the
sound speed c = 1, the frequency ω = π, the decay factor σ = 1/6 and the solution output
is the imaginary part (sine driver) given at time t = 8. These parameters have no real
significance other than the decay factor. This value was chosen so that a decay in energy is
affected, as predicted by the mode conversion theory, whilst not damping the signal too
much to render it unobservable.

The stationary source with no decay factor (not shown) produces a set of unremarkable
concentric rings as expected. This scenario represents seismic waves dispersing uniformly
in all directions, which is rarely observed in the solar photosphere. The introduction of
a moving source with subsonic velocity (Figure 4.9) shows the signal is preferentially
strongest along the direction of motion. If the decay factor is removed, the signal is even
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stronger on this side. A supersonic source (Figure 4.10) again shows the strongest signal
along the direction of motion, however the constructive interference is beginning to spread
across the envelope on this same side. When the source speed is highly supersonic (see
Figure 4.11) the interference along the envelope is even further enhanced.

In conclusion, a simple implementation of the 2D wave equation has shown the
strongest constructive interference to be found when using a moving source. This interfer-
ence is found predominantly on the side aligned with the direction of motion of the source,
although a change in the magnitude of the source speed (subsonic versus supersonic)
results in differing coherence patterns. Areas of most intense signal migrate to the envelope
as source speed is increased. Stronger signals are also found with zero decay factors, as
expected, but this is in general unrealistic.

These results are important for studying the anisotropy of seismic ripples observed in
the solar photosphere, where the constructive interference of waves can luckily render the
seismic signal visible within the noisy background granulation of the quiet Sun. Through
numerical modelling of waves imparted into model solar atmospheres, the effect of source
movement, mode conversion and wave destructive/constructive interference on the ensuing
surface wave fronts should be realised.

4.4 Numerical Model for Generating Solar Quakes

This section outlines the numerical procedure taken to produce solar quakes in model solar
atmospheres with a variety of source functions. The computational modelling is conducted
via the use of the SPARC MHD code, which solves the linearised 3D Euler equations
in Cartesian geometry (Hanasoge, 2011). The numerical domain consists of 512 cells in
both the x and y directions which span a length of 100 Mm in both directions. Perfectly
Matched Layers or PMLs (see Berenger (1994, 1996) for the theoretical background and
Hanasoge et al. (2010) for the implementation used here) over 10 grid cells are utilised
on all side boundaries, which restrict the horizontal grid spacing to 203 km. The PMLs
also require the use of a sponge, which calls into the question the notion of a ‘perfectly
matched’ layer, however it has been shown to perform well for a variety of models studying
linearised wave propagation (Felipe et al., 2010; Przybylski et al., 2015; Santamaria et al.,
2015). There are 600 cells in the z direction, covering a span of heights from -15 Mm
to 1.5 Mm and again, perfectly matched layers are implemented at the bottom (10 cells)
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and top (15 cells) boundaries. The vertical grid spacing is variable and based on the local
sound speed. At the temperature minimum, this spacing is as low as 10.3 km, and stretches
to 69.6 km at the bottom of the computational box.

The comparatively large horizontal grid spacing is still sufficient for the computations
at hand. We require kx∆x � 2π, where kx is the horizontal wave number, which is
constant for each individual ray due to the homegeneity in the atmopshere for horizontal
directions. By choosing an extreme case with a shallow lower turning point at z = −2.0

Mm - these will return to the surface at radii |x| ≥ 6.0 Mm - and a relatively high frequency
of 15 mHz, it can be seen that kx∆x = 1.44. Values for kx will decrease for all deeper
waves and also for those with lower frequencies - the bulk of the source driver’s energy
is imparted well below this value of 15 mHz (see Figure 4.12). Waves returning at radii
|x| < 6.0 Mm are of less importance to this study and the reader is again referred to section
4.4.1 for an explanation of this.

To produce the initial hydrodynamic equilibrium, the same smoothly joined atmosphere
as described previously in section 4.3 is implemented.

The driving source is the purely velocity based perturbation

vz(x, y, z, t) =

A exp
[
−
(
|~r−~r0|2
2 ~σr

)(
(t−t0)2
2σt1

)]
, when t < t0

A exp
[
−
(
|~r−~r0|2
2 ~σr

)(
(t−t0)2
2σt2

)]
, when t ≥ t0

(4.16)

where ~r = (x, y, z) are the spatial co-ordinates, σr = (500, 500, 50) km, ~r0 = (x0, y0, z0) =

(0, 0, 0), t is time, σt1 = 3.0 s, σt2 = 100.0 s and t0 = 10.0 s. If the moving pulse is
implemented, then

x0 = x0 + sxt, (4.17)

where sx is the horizontal speed responsible for shifting the site of the impacting source
function. The amplitude A is ascribed a negative value, whilst due to the linearity of
the numerical code, its actual magnitude is not important except to ensure numerical
rounding is never realised throughout the computations. This piece-wise source function is
implemented to best model the onset of the impacts based on observational results. The
impacting pulse should reach its maximum amplitude quickly before decaying at a much
slower rate. The Fourier transform for the source over its full driving time is displayed in
Figure 4.12 and shows a broad spectrum of frequencies are imparted into the domain.
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Figure 4.12: Normalised Fourier velocity spectrum for the driving source.

4.4.1 Restricted Signal Radius

There appears to be no information in the current literature that describes the minimum
distance from impact site at which solar quake wave fronts have been observed. By looking
through the various time-distance diagrams available in the literature, it is proposed that it
is rare to see a signal within much less than 10 Mm of the initial source. There could be any
number of reasons to explain this, one being due to the confounding effects imparted by the
magnetic fields present in the photosphere and shallow subphotospheres. These magnetic
fields suppress the photospheric signatures of acoustic waves from below and can shift
their phases significantly, an effect known as the acoustic showerglass effect (Schunker
et al., 2005; Lindsey and Braun, 2004, 2005a,b). At small radii, the waves responsible for
any observed solar quake traverse predominantly through these shallow depths and would
be most affected by such a phenomenon.

In any case, the presented results are often restricted to radii |x| ≥ 6.0 Mm from the
impacting site due to the observational evidence at present showing solar quake signatures
almost exclusively at these distances and greater. This restriction also importantly provides
the necessary leeway to conduct 3-D numerical modelling without the complicated set-ups
that would be necessary to achieve the required numerical precision over such a large span
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of horizontal distance.

4.5 Simulation Results

A variety of simple magnetic and non-magnetic atmospheres are chosen for investigation,
coupled with the implementation of both stationary and moving sources. Observations
have shown the existence of both source movement and anisotropic solar surface wave
fronts in magnetically active regions and the simulation parameters are chosen to best
investigate these phenomena. This leads to various surface measurements being presented
here, which best elucidate the anisotropy observed in the simulated wave fronts. Each
simulation is run for a total of 1.25 hours of simulated solar time.

4.5.1 Stationary Source

Initially, an acoustic (non-magnetic) atmosphere is used to develop a base line for com-
parison to further magnetic atmospheres. A general decrease in the amplitude of the
vertical velocity vz is observed moving radially out from the impacting site as would be
expected. Following this, a constant vertical magnetic field is introduced with magnitudes
of 1 kG and 2.5 kG, respectively. Figure 4.13 shows that as the magnetic field strength
is increased, the amplitudes of the vertical velocity vz in the surface wave fronts are
decreased. Furthermore, the increased magnetic field strength leads to the location of the
peak velocity being shifted to increasing spatial distances in the order of 10 − 20 Mm.
These observations match well with the theoretical work developed through subsection
4.2.2. The main argument is that the increased field strength leads to the a = c layer being
shifted deeper into the atmosphere. This causes the attack angle - at the first interaction
with the mode conversion region - to increase, which leads to a decrease in the amount of
energy eventually propagating back to the surface. This effect will be most prevalent for
waves with high ` values, as is common in spherical harmonic analysis. These are waves
which will return at small distances from the impacting site and it can be seen quite clearly
that the results bear this out.

It is now chosen to set a constant magnetic field strength, whilst the angle of the field
from vertical is varied from 0◦ - 30◦, a feature commonly found in magnetically active
regions. As shown in Figure 4.14, an increase in the magnetic field angle leads to a general
decrease in velocities measured at the surface. This can be explained with the same logic
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Figure 4.13: Vertical velocity vz snapshots at the surface z = 0 from time t = 27.5
mins for a variety of non-magnetic and magnetic atmospheres. Top-left: No magnetic
field. All surface plots have been normalised to the maximum value of this particular plot.
Top-right: 1 kG constant vertical magnetic field. Bottom-left: 2.5 kG vertical magnetic
field. Bottom-right: Vertical velocity magnitudes |vz| (normalised to the non-magnetic
case) along the y = 0 central axis at the surface z = 0 for the magnetic field strengths
listed, averaged over the entire duration of the simulation.
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as above, in that the increasing field angle leads to an increased attack angle around the
a = c layer. This lowers the amount of transmission through those areas and less energy
returns to the surface. The peak velocities for increasing inclination angle are shifted only
slightly to greater horizontal distances from the impact site.

Figure 4.14: Vertical velocity vz snapshots at the surface z = 0 from time t = 27.5 mins
for 1 kG magnitude background magnetic fields. Top-left: Vertical magnetic field. All
surface plots have been normalised to the maximum value of this particular plot. Top-right:
15◦ inclined field from vertical. Bottom-left: 30◦ inclined field from vertical. Bottom-right:
Vertical velocity magnitudes |vz| (normalised to the vertical field case) along the y = 0
central axis at the surface z = 0 for the magnetic field inclinations listed, averaged over
the entire duration of the simulation.

Also showing in the results for the non-vertical magnetic fields are slight anisotropies
in the shape of the surface wave fronts when viewing in the y-direction compared to the x-
direction, and also in the positive x-direction against the negative x-direction. Throughout
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the area of interest especially, these differences are considered small enough to warrant little
further investigation. This is to both limit the scope of the discussion and to concentrate on
those effects which are considerably more pronounced.

4.5.2 Moving Source

In line with observations, a moving source function is introduced. This will move the
impacting site towards the positive x-direction at a given speed sx, which is varied from
as low as a sub-sonic velocity up to greatly super-sonic velocities. The measurement of
the local sound speed to quantify these speeds as sub and supersonic is taken only at the
surface.

The sub-sonic source sx = cs
2

produces some enhancement of the signal along the
direction of motion, especially at early times and hence, smaller distances from impact
site (see Figure 4.15). By increasing the source speed to equal that of the sound speed,
this effect becomes much clearer and up to ∼22.5 mins after impact, the maximum
increase in signal compared to the stationary source is in excess of 100% (see Figure 4.16).
Continual increase of the source speed to 20 km s−1 only further enhances the constructive
interference. Here, the amplitude of the wave fronts can reach almost three times that
produced from the stationary source (see Figure 4.17). If the source speed is continually
increased, eventually the type of interference pattern is altered. Figure 4.18 shows a 50
km s−1 source speed, which depicts very different resulting wave fronts to those produced
from the other moving sources. Multiple envelopes of interference are created, which are
restricted to specific sectants of the surface. The strength of the signal centred directly
along the direction of motion may appear to be suppressed, however this is due to the
stark increase in amplitude of the signal in the developing envelopes. Hence, constructive
interference is still present along the direction of motion.

The results presented for the moving source are consistent with the calculations de-
veloped in section 4.3. They show dramatic increases in signal strength at the surface
through the effects of constructive and destructive interference. As predicted, the source
speeds required to produce the same types of coherence patterns seen through the 2-D
wave equation solutions become increasingly larger. This is due fundamentally to the
waves travelling in a 3-D space, as they encounter increased local sound speeds for heights
below the surface.
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Figure 4.15: Measurements of vz taken at the surface at times t = 17.5, 20.0, 22.5 and
25.0 mins from top-left to bottom-right, respectively. Horizontal velocity of the source
function is well below the sound speed at the surface sx = cs

2
= 4.1 km s−1. There is no

background magnetic field. The vz values have been normalised against the maximum
values recorded in the stationary source case for each corresponding time slice to highlight
the magnitude increase.
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Figure 4.16: Measurements of vz taken at the surface at times t = 17.5, 20.0, 22.5 and
25.0 mins from top-left to bottom-right, respectively. Horizontal velocity of the source
function is the sound speed at the surface sx = cs = 8.2 km s−1. There is no background
magnetic field. The vz values have been normalised against the maximum values recorded
in the stationary source case for each corresponding time slice to highlight the magnitude
increase. Note the anisotropy that builds up as the ripples expand.
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Figure 4.17: Measurements of vz taken at the surface at times t = 17.5, 20.0, 22.5 and 25.0
mins from top-left to bottom-right, respectively. Horizontal velocity of the source function
exceeds that of the sound speed at the surface sx = 20 km s−1. There is no background
magnetic field. The vz values have been normalised against the maximum values recorded
in the stationary source case for each corresponding time slice to highlight the magnitude
increase.
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Figure 4.18: Measurements of vz taken at the surface at times t = 17.5, 20.0, 22.5 and
25.0 mins from top-left to bottom-right, respectively. Horizontal velocity of the source
function greatly exceeds that of the sound speed at the surface sx = 50 km s−1. There is
no background magnetic field. The vz values have been normalised against the maximum
values recorded in the stationary source case for each corresponding time slice to highlight
the magnitude increase.
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4.5.3 Wave Propagation Discussion

By viewing time-distance outputs for the non-magnetic case, the propagation of the various
waves becomes apparent (see Figure 4.19). The most prominent waves are those involved
in the first-skip. These can be seen to accelerate with increasing distance from impact
site. In line with the above results, a general linear decrease in signal strength is also
apparent. At further times, consecutive skips are observed with continually reduced signal
strengths. Also faintly visible are the surface f-modes with dispersion relation ω2 = gk.
These are incompressive gravity waves propagating horizontally and are independent of
the sound speed. These form a minor component in the simulations and will be ignored for
the purpose of our results. Figure 4.20 shows the same time-distance depictions for the
variety of magnetic atmospheres used. The shifting of peak strength mentioned previously
is readily apparent and a general loss of strength is seen throughout all atmospheres and
especially for further skips. The f-modes have become negligible in strength and are not
observed.

All listed variations in magnetic field strength and inclination showed little difference
in the propagation speeds of the wave fronts. Figure 4.21 gives confirmation of this by
tracking the peak of the wave front with the strongest signal as it progresses out radially
from the impact site. The selection of this particular wave front is not significant - various
other wave fronts were tried and gave essentially the same results. All measurements
were transposed in space as to begin at x = 6.2 Mm from time t = 0. This is both
for consistency as the wave fronts themselves are not unique between simulations and
due also to the wave fronts not being clearly defined near the impact site. Tracking the
wave fronts in any direction radially outwards from the impact source showed very little
change in results. The wave fronts produced in the non-magnetic case show the slowest
propagation speed. All magnetic cases are found to travel at similar speeds, whilst not
being significantly faster than the non-magnetic case. This similarity in propagation speed
is due to the strongly acoustic nature of the returning waves below the a = c layer, which
is where they spend most of their travel time. The continual increase in velocity of the
wave fronts with distance from impact site is consistent with that found in subsection 4.2.1.
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Figure 4.19: Normalised plots of vz taken over the first hour of simulation in the positive x
direction for the stationary source sx = 0 with no background magnetic field.

4.6 Conclusion

Gaussian based perturbations in vertical velocity were introduced into a variety of simple
magnetic fields, characteristic of the conditions observed in solar atmospheres. Utilising
the mode-conversion theory, coupled with visualisations of the surface wave fronts, several
anisotropic features of the wave fronts owing to the various magnetic field configurations
were elucidated and discussed.

Due to the constant background solar granulation, only strongly enhanced signals are
currently detectable at the solar surface. This is thought to be the reason why only the
highly energetic M and X-class solar flares have been known to produce solar quakes.
However, even some of the strongest observed flares do not produce quakes. The results
presented herein depict the conditions under which a conceivable explanation for this
phenomenon can be reached. The theory must now meet with observations.

An increase in both magnetic field strength and inclination play little role in altering the
propagation speeds of the surface wave fronts, yet they do lead to weaker amplitudes being
observed. However, these effects are considered secondary in importance. It is concluded
that the cause of the greatest anisotropies in the surface wave fronts can be attributed to
the motion of the impacting source. Constructive and destructive interference occurs in
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Figure 4.20: Plots of vz taken over the first hour of simulation in the positive x direction
for the stationary source sx = 0. The background magnetic field strengths and inclinations
are from top-left to bottom-right: 1 kG 0◦, 2.5 kG 0◦, 1 kG 15◦, 1 kG 30◦. All plots have
been normalised to the non-magnetic case shown in Figure 4.19.

such a way as to enhance the acoustic signal along the direction of motion. There exists
different patterns and strength of interference, which can be explained by the variation
in source speed. Increasing the speed of the source generally acts to enhance the signal.
Increasing the source speed sufficiently (> 20 km s−1), eventually leads to the development
of envelopes of enhanced signal.
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Figure 4.21: Time distance plot taken from tracking the most prominent first-skip wave
front from each simulation. The black dotted line shows the travel distance and time for a
particle moving along the surface (z = 0) at the local sound speed cs = 8.18 km s−1.

4.7 Implications and Further Research

• The area of interest and that of most discussion was restricted to radii greater than
∼6 Mm from the impact site, which is outside the area proposed to be dominated by
the shower glass effect. Modelling the area closer to the impact site would take either
a) the implementation of an adaptive grid or b) separate higher resolution runs joined
smoothly to the current simulations, which at present only accurately model greater
radii. Observations from areas so close to the flare site are dominated by complex
magnetic structures of the host active region, with strong signatures of flares also
present. Investigation of this area is more relevant to studying the morphology of the
seismic source itself. Most solar quake ripples are observed sufficiently far from the
impact site and the study focuses on these areas.

• Recent research by Macrae et al. (2018); Stefan and Kosovichev (2019) has focused
on an electron beam triggering mechanism hypothesis. This theory, in part, could
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rely on both impulsive and gradual transfers of momentum depending at which
height in the solar atmosphere the energy is imparted. Zharkova and Zharkov (2015)
found that electron beams can penetrate as far as 5000 km below the photosphere.
With these points in mind, a whole host of possible source excitation depths and
structures can be envisaged for investigation, which extend beyond the scope of the
simulations conducted here.

• The mode-conversion theories presented herein have been derived strictly in 2-D.
Whilst only used as a guide to explain the results presented, further development of
the theory to incorporate the third spatial dimension could allow for greater insight
into the results.

• The code used only solved the linear equations of motion. Shocks have been reported
to exist within the chromosphere and would require non-linear modelling. It has
been reported on earlier in this study that shocks passing through the a=c layer can
have a variety of energetic consequences depending on the background magnetic
field structure. These structures are known to vary greatly within active regions.

• Now that we know the conditions that produce strongest signal enhancements
(anisotropies), the way has been paved to implement these sources into a realistic
active region atmosphere with background perturbations to mimic the solar gran-
ulation. This would enable a lower bound for the impulsive energy requirements
needed to produce a signal sufficiently strong enough to be detectable with current
instrumentation.
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Concluding Remarks
This work comprised of conducting a host of multi-dimensional numerical simulations

with the use of supercomputer facilities. Whilst the topics were varied, they all encom-
passed the modelling of MHD waves as they propagate through the layers of the solar
atmosphere. The results were able to partially confirm/reject a newly proposed mathemati-
cal formulation for MHD shock wave smoothing through the equipartition layer; provide
further evidence for the existence of resonating chromospheric cavities; and elucidate the
main parameters influencing the anisotropy of solar quake surface wave fronts.

It has been well studied that as MHD waves in the linear regime travel through the
layers where the sound and Alfvén speed coincide, they split their energy into two distinct
branches, the slow mode and the fast mode. Simulations of non-linear MHD shock waves
presented herein suggest that this splitting remains but is also accompanied by a smoothing
of the slow wave, whilst the fast wave continues to propagate unhindered. This is in only
partial agreement with a newly proposed mathematical formulation, which suggested both
wave modes should be smoothed. A smoothing of the slow wave suggests higher frequency
components are being lost or transferred to the fast wave, which has consequences for the
energy budget of each mode. More energy in the fast mode has the potential to lead to
enhanced fast-Alfvén conversion higher up in the solar atmosphere. Alfvén waves have
been proposed to carry some of the energy required to heat the outer solar atmosphere.

Doppler measurements taken from within the solar atmosphere provide a meaningful
way to measure and infer the velocities, amplitudes and energies of waves that are travelling
through respective regions. These velocities are attributed mainly to upwards travelling
waves, as one would expect due to their origins being internal to the Sun. However, it has
become apparent that the existence of standing or downwards travelling waves must not
be ignored. Physical sharp gradients in the solar atmosphere, especially at the transition
region, can provide impedance to acoustic waves and act as reflection sites for them.
Multiple reflection sites can create a cavity in which these waves can resonate. Simulations
show that in a model solar atmosphere, potential reflection sites can be identified and given
the local parameters, a cavity frequency can be inferred. The amplitudes of the waves of
this frequency from within the cavity are seen to grow significantly. This suggests any
measurements of wave amplitudes within these areas must take into account the resonating
effect of any cavities.
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Solar quakes are a recently discovered phenomena, their first appearance being noted
only as far back as 1998. The new field of research opened up by the discovery of the first
solar quake can be conferred to still be in its infancy. Due to their inherent connection to
the impulsive stages of solar flares, a heavily active topic of solar physics research, any
further understanding of solar quakes should prove invaluable. A striking feature of most
solar quakes observed to date has been the anisotropy of the wave fronts observed on the
solar surface through Doppler imaging. Simulations show that the ray paths of the majority
of the waves responsible for these surface wave fronts pass through the equipartition
layer. At this point, some energy is converted and lost to downward propagating waves,
weakening the amplitudes of the waves that will eventually return to the solar surface. This
effect is moderated by the ‘attack angle’, a prominent feature discussed throughout the
works presented here. A stronger and/or more inclined magnetic field will lead to a general
increase in the attack angle and more energy being lost to downward propagating waves.

However, it was found that this effect, whilst important, may often play a secondary
role in the appearance of anisotropy in the surface wave fronts. Simulations show that by
altering the speed of the source, constructive interference can act to amplify the signal
recorded along the axis of motion. Altering the source speed can lead to signal amplitudes
almost triple that of those produced by a stationary source. As the source speed continues
to increase well above the local sound speed, the interference patterns are altered and a
variety of anisotropies are discovered and presented. These results can hopefully prove
useful in back-tracing to prove or reject theories about the triggering mechanisms for solar
flares.

One of the greatest mysteries of the Sun to date has been the ‘coronal heating problem’,
which dates back over 50 years. All three of the topics explored herein, and the simulations
presented alongside them each provide, in their own way, another piece of the puzzle
needed to resolve this problem. MHD shock waves can pass their energy between slow
and fast modes, which carry and supply energy through different pathways; chromospheric
cavities can influence the amplitudes of certain frequency acoustic waves within them;
solar quake anisotropies can provide information about the flares that host them, which in
turn eject matter and energy into the outer solar atmosphere. Coupled with observations
and theoretical frameworks, many more numerical simulations are needed to solve not
only the coronal heating problem but a myriad of other unknown solar phenomena. This
work should act as but one small piece in the grand puzzle that is the working of Earth’s
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life-bringer, the Sun.
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