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Abstract

Few solar system asteroids and comets are found in high-eccentricity orbits (e> 0.9), but in the primordial
planetesimal disks and in exoplanet systems around dying stars such objects are believed to be common. For 2006
HY51, the main belt asteroid with the highest known eccentricity 0.9684, we investigate the probable rotational
states today using our computer-efficient chaotic process simulation method. Starting with random initial
conditions, we find that this asteroid is inevitably captured into stable spin–orbit resonances typically within tens to
a hundred megayears. The resonances are confirmed by direct integration of the equation of motion in the vicinity
of endpoints. Most resonances are located at high spin values above 960 times the mean motion (such as 964:1 or
4169:4), corresponding to rotation periods of a few days. We discover three types of resonance in the high-
eccentricity regime: (1) regular circulation with weakly librating aphelion velocities and integer-number spin–orbit
commensurabilities, (2) switching resonances of higher order with orientation alternating between aligned (0 or π)
and sidewise (π/2) angles at aphelia and perihelia, (3) jumping resonances with aphelion spin alternating between
two quantum states in the absence of spin–orbit commensurability. The islands of equilibrium are numerous at high
spin rates but small in parameter space area, so that it takes millions of orbits of chaotic wandering to accidentally
entrap in one of them. We discuss the implications of this discovery for the origins and destiny of high-eccentricity
objects and the prospects of extending this analysis to the full 3D treatment.

Unified Astronomy Thesaurus concepts: Eccentricity (441); Asteroids (72); Orbital resonances (1181)

1. Introduction

Some asteroids in the solar system have eccentricities above
0.95. Their origin and destiny are not clear. They may be
remnants of the primordial asteroid belt, results of relatively
recent interaction with planets, or even captured interstellar
objects. At such high eccentricities, triaxial celestial bodies can
acquire very high prorate spin rates over billions of years of
chaotic evolution (Makarov & Veras 2019), resulting in a
rotational breakup and destruction. The most notable high-
eccentricity object in the JPL Horizons database is 2006 HY51
with an eccentricity of 0.9684,6 but a few other objects with
slightly smaller eccentricity have been detected. These Apollo-
class asteroids are near-Earth objects. Similar objects were
involved in the bombardment of inner planets and accretion of
primordial terrestrial planets. Around white dwarf planetary
systems, highly eccentric asteroids are thought to be the
primary progenitor of debris disks (Jura 2003; Debes et al.
2012; Veras et al. 2014, 2020; Malamud & Perets 2020a,
2020b) and observed metallic pollution in the photospheres of
host stars (Zuckerman et al. 2010; Koester et al. 2014).

Minor planets are markedly nonspherical, and many of them,
especially the larger ones, can be well approximated with triaxial
ellipsoids. This idealized model is dynamically represented by
three unequal, mutually orthogonal moments of inertia A, B, and

C, in increasing order. The values are not readily available from
observations or remote measurements but can be estimated from
the shape elongation parameters assuming uniform mass density
or a certain density profile. There is a tendency for the
dimensionless degree of triaxiality σ= (B− A)/C to increase
with decreasing size and mass as we move from terrestrial
planets to moons, minor planets, and comets. Potato-like shapes
become prevalent in the domain of comets and asteroids, with σ
becoming of the order of 0.1 and larger. The prolate shape and
the gradient of gravitational potential from the central body give
rise to a time-variable torque, which depends on the orientation
of the asteroid with respect to the perturber. The corresponding
equations of motion (Euler’s equations) comprise a set of three
second-order nonlinear differential equations, which include the
instantaneous direction cosines of the longest axis and the
instantaneous spin rates about all three principal axes
(Danby 1962). A 1D analog of this system is obtained for the
planar case of zero obliquity when the principal axis of inertia
(corresponding to the moment C) is always orthogonal to the
orbital plane (e.g., Goldreich & Peale 1966).
In this paper, we investigate the rotational states of high-

eccentricity triaxial objects in the basic 1D model (i.e.,
regarding only the spin about the principal axis of inertia) on
the example of 2006 HY51, the most eccentric asteroid on a
closed orbit in the solar system. With a period of 4.17 yr and
semimajor axis of 2.59 au, this asteroid spends most of the time
at great distances from the Sun, experiencing vanishingly small
external torque and, hence, rotating practically at a constant
rate. The situation changes dramatically when it flashes through
the perihelion at the closest separation 0.082 au, where a short
but powerful burst of interaction changes its spin in a shock-
like manner. The direction of this pulse depends mostly on the
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orientation angle at the point of closest approach, but the
amplitude of impulse also depends on the current spin rate. The
result is a strongly chaotic process, which was theoretically
deduced even for much lower eccentricities (Wisdom et al.
1984; Wisdom 1987).

The chaotic 1D spin evolution was investigated in Makarov
& Veras (2019) by direct integration with stiffness switching.
In that paper, however, evolution was limited to a timescale
that is roughly six orders of magnitude shorter than the current
age of the solar system due to the slow and sequential
integration, which cannot be parallelized. A computer-efficient
and fast alternative technique is described in Makarov et al.
(2020), which allows running parallel simulation trials
spanning gigayears. This method takes advantage of the
deterministic mapping between the two phase-space parameters
on the scale of a single orbit, the orientation angle θ at the time
of aphelion, and the update of rotation velocity resulting from
the perihelion impulse. We used the higher-fidelity version of
the method, which is computationally more demanding,
involving double interpolation mapping of the aphelion
parameter space.

This paper is organized as follows. In Section 2, we briefly
describe the computation for 2006 HY51 that led us to the
discovery of multiple stable spin–orbit resonances. These
resonances are confirmed by numerical integration with initial
parameters in the vicinity of selected points of equilibrium in
Section 3, and parameter space cross sections are mapped for
some of them. Three different kinds of high-spin resonances
are described in Section 4, one of which is not spin–orbit
commensurate. Conclusions are drawn and possible directions
of future research are discussed in Section 6.

2. Long-term Simulations of Rotation

We made use of the more computer-intensive version of the
fast-tuple generation method described in Makarov et al.
(2020).7 The basic idea is to replace the costly ODE integration
with generation of {dω,i, θi+1} tuples for perihelion and
aphelion times from precomputed 2D interpolation functions,
which turn out to be smooth and well behaved in the domain of
interest. In this paper, θ is the orientation angle of the
ellipsoidal asteroid’s longest axis in the orbital plane, i.e., the
angle between the axis of the smallest moment of inertia  and
the fixed line of apses. Its time derivative, w q=  , is the sidereal
rotation velocity, and dω is the change of ω between two
consecutive aphelia. As in the original paper, the motion is
confined to the orbital plane, the gravitational torque is always
orthogonal to the orbital plane, and only the force from the Sun
is considered, neglecting small perturbations from the planets
or the YORP effect. Possible effects of YORP and external
perturbations are briefly discussed in Section 3. Our main
computation included 512 separate and independent random-
seeded trials for 2.5× 108 orbits each, i.e., each was longer
than 1 Gyr, assuming a triaxiality parameter σ= (B− A)/
C= 0.2. It confirmed that 2006 HY51 could not come close to
the rate of several thousand n required for rotational breakup,
by roughly an order of magnitude. The unexpected result was
that all 512 simulations ended up in equilibrium states
(resonances) within the simulation time span. A long-term or
indefinitely long equilibrium state characterized by an aphelion

spin rate varying within a finite range despite the powerful
perturbations at perihelion passages, as opposed to rapidly
changing chaotic rotation, is called a spin–orbit resonance in
this paper. As we will see in the following, this equilibrium
rotation state can be achieved even without an integer-number
commensurability of the spin rate and orbital frequency.
Numerically, once a state of this kind was achieved, our fast-
tuple-generating simulation stopped behaving chaotically and
remained within certain narrow ranges of phase-space
parameters. Figure 1 shows the aphelion spin of a small
segment of one such simulation. It depicts the peculiar
character of spin evolution, when the random process appears
to be bounded to a certain wide range of prograde velocities
(approximately between 12n and 1100n), transversing it
relatively rapidly from one end to the other, and stalling for
extended periods of time at the low end. These features are
related to the remarkable distribution of impulses in the
parameter space (see Figure 4 in Makarov & Veras 2019).
Vanishingly small changes of velocity are possible when the
process is cornered at the low bound adjacent to the separatrix.
Likewise, although there is no fixed upper bound, the velocity
updates become so small at high prograde velocities that the
process may linger there for longer times. Returning to
Figure 1, in one of such episodes, the asteroid suddenly
stopped behaving chaotically and continued to rotate at a nearly
constant aphelion rate.
Although the overall character and statistics of these long-

term simulations are in excellent agreement with direct
integration trials, the latter did not reveal the existence of
resonances. The reason is that we performed only relatively
short (105 orbits) integrations, which are computationally
heavy. Because of the rapid and powerful variation of the
integrated parameters θ and ω within a small segment of the
orbit around the perihelion, which takes only several days to
cross, sufficiently accurate numerical results can be obtained
with stiffness-switching methods, which automatically adjust
the time step to the local gradient of the integrand. The process
should be run for much longer time spans to see resonance
captures. This means that the probability of random capture is
low and it takes millions of orbits to accidentally hit one of the
“stability islands.” Compared to the situation found by Wisdom
et al. (1984) for solar system moons, we have a vast sea of

Figure 1. Simulated chaotic evolution of the rotation velocity of 2006 HY51
followed by a spontaneous capture into a commensurate spin–orbit resonance
after 7.92 × 106 orbits. A small segment of a simulation of 2.5 × 108 orbits
produced by the fast mapping method is shown.

7 A Julia script implementing this simulation is openly available at https://
github.com/agoldin/2006HY51.
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chaos with tiny islands of equilibrium interspersed in it at high
eccentricity.

We can estimate the characteristic time of capture into
resonance by counting the quantiles of the chaotic phase
durations. Of the entire set of 512 simulations with random
initial conditions, 25% were captured within 2.5× 106 orbits,
and 50% within 6.5× 106 orbits. Thus, a significant fraction of
trials show resonance capture within 20–50 million years. The
resonance endpoints in ωap/n are quantized with the lowest
frequency around 963.5 (i.e., a 1927:2 resonance), except for a
small fraction of trials that became stuck at the lower end of the
ω range. The resonance velocities of the majority high-spin
endpoints are shown in Figure 2. We surmise that the
characteristic time of capture into a specific resonance depends
on the footprint in the parameter space.

3. Mapping Resonances of 2006 HY51

To verify the high-spin resonances discovered with the
fast-tuple generation method, we performed exact numerical
integration using some of the endpoints as initial conditions. One
such deeper investigated resonance corresponds to a peak at the
lower end of the distribution in Figure 2. The spin rate in this
particular resonance displays a regular circulation behavior
varying within a narrow range around ω= 966.5n. The aphelion
orientation angle modulo π circulates about 0, i.e., the asteroid is
aligned with its longest axis with the direction to the Sun. The
width of variation depends on the initial perturbation but is
limited to the width of the resonance. The resonances that are
seen as peaks in Figure 2 represent semi-integer spin–orbit
commensurabilities, i.e., κ: 1 and κ: 2. A total of 90% of our
trials that ended in one of the fixed-ω resonances did this in less
than 11× 106 orbits, with a median duration of 3.4× 106 orbits.

Once we have identified the approximate location of high-
spin resonances in the parameter space {θaphelion, ωaphelion}
using extensive simulations with the fast-tuple generation
method, these tiny zones of equilibrium can be mapped in
greater detail by direct numerical integration. Figure 3 shows a
parameter space cross section (similar to a Poincaré map) at
aphelion obtained from 20 integration trials of 200 orbits each
with random initial parameters in the vicinity of the 964:1
resonance. It shows the actual half-width of the circulation
island, which is 0.21 rad in θ and 0.17n in ω.

The islands of stable equilibrium are lined up in the {θaphelion,
ωaphelion} parameter space as beads on a string. Multiple
resonances are found with θ modulo π close to π/2, i.e.,

oriented sidewise at aphelia. This is not a new type of spin–orbit
resonance since a sidewise capture into resonance has been
discussed and deemed possible for the Moon, for example.
These fixed-ω resonances, which we call regular in this paper,
are characterized by a nearly zero net velocity update dω,
because the asteroid enters the periapse with a θ modulo π close
to either 0 (aligned) or π/2 (sidewise). A chain of half-integer
resonances is mapped in Figure 4. Note that there are multiple
resonances on both sides of this sequence outside of the plot.
The cross section and the very existence of a regular

circulation resonance depend on the physical parameters
σ= (B− A)/C and eccentricity e. We conducted a series of
numerical experiments for the stable and well-defined 964: 1
resonance (with the initial spin rate in close vicinity to
ω= 964 n). In the example shown in Figure 5, we start at the
point of resonance with an initial aphelion angle θ= π. To
distinguish chaotic trajectories from stable resonance trajec-
tories, we employ the chaos detection software implemented in
Julia by Datseris (2018). The ODE of motion is integrated with
two tangent perturbation vectors pointing from the original
point to two random points ò away for 100 orbits. The method
uses the GALI(2) alignment index (Skokos et al. 2007), which
in this 2D case computes the separation between the two
perturbation vectors.8 As chaotic behavior sets in, the initially

Figure 2. Histogram of end spin states of regular circulation resonances.
Figure 3. Aphelion parameter section of the 964:1 regular spin–orbit
resonance of 2006 HY51 obtained by direct integration of motion.

Figure 4. Aphelion parameter section of three adjacent spin–orbit resonances
of 2006 HY51 with sidewise orientation of the asteroid and half-integer
commensurabilities, obtained by direct integration of motion.

8 Some explanations of how this method works can be found in https://
juliadynamics.github.io/DynamicalSystems.jl/latest/chaos/chaos_detection/.
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orthogonal vectors become increasingly aligned approaching
the direction of the strongest Lyapunov eigenvector. The decay
of the area (or distance in this case) between the vectors is
exponential for chaotic trajectories, but it follows a power law
for deterministic trajectories. We empirically set the GALI(2)
index threshold at 10−12. The contour plot shows the number of
orbits required for the alignment of tangent vectors to drop
below the threshold. The power-law decay for resonance
trajectories is too slow to reach the threshold within the 100
orbits; hence, such trials end up in the saturated yellow-colored
area of the graph. Figure 5 shows that the boundary between
chaotic and resonance states in the σ–e space is very sharp, and
this commensurate spin–orbit resonance exists only if the
triaxiality and eccentricity are sufficiently low. With σ= 0.2
assumed for our fast-tuple generation numerical simulations,
2006 HY51 is located close to the boundary on the left-hand
side, just enough for the stable 964: 1 circulation resonance to
emerge.

In the solar system, as well as in other stellar configurations,
asteroids are subject to external variable forces, or perturba-
tions, apart from the gravitational attraction from the star. The
width of resonances depicted in Figures 3 and 4 defines the
level of perturbation required to remove the object from an
equilibrium state. For example, an external acceleration that
changes the spin rate by more than 0.17 n on the timescale of
one orbit would probably be sufficient to drive 2006 HY51 out
of the 964:1 spin–orbit resonance. The distribution of main belt
asteroid rotation periods is fairly wide and limited on the high
end by approximately 2.4 hr (Hestroffer et al. 2019) for radii
greater than approximately 0.1 km, with most of the objects
spinning quite fast. The high rates of rotation are commonly
attributed to the secular YORP acceleration, which is caused by
irregularities in the asteroid’s shape, solar irradiation of the
surface, and thermal radiation from the surface. Extrapolating
YORP acceleration timescales estimated by Rubincam (2000),
the expected value for 2006 HY51 is∼106 yr. Analytical
approximations of the YORP effect as a function of orbital
parameters, mass, shape, and stellar luminosity (Scheeres 2007;
Veras & Scheeres 2020), within the great uncertainty of many
parameters, provide estimates of the order of 0.1–1.0 n per
year, which should be enough to remove the asteroid out of a

high-spin resonance. Observationally, however, only much
lower accelerations have been detected not exceeding 7× 10−6

rad day−1 yr−1 for the Cacus asteroid (Ďurech et al. 2018).
These estimates refer to objects in smaller orbits with lower
eccentricity (up to 0.5). The YORP effect for extremely high
eccentricity is an absolutely unexplored area of research. The
solar irradiation is better approximated with impulse-like bursts
at perihelia, and a monotonic acceleration model (spin-up or
spin-down) is not obvious. Furthermore, once the asteroid is
captured in a spin–orbit resonance, its orientation is not random
at perihelia, where most of the energy deposition takes place.
Depending on the specific free libration pattern, one side of the
asteroid may be heated more than the other as long as the
resonance lasts. This violates the starting assumption (which is
probably valid for the chaotic stage) that the asteroid absorbs
energy equally from all sides. The condition of anisotropic
irradiation may have far-reaching consequences, which are
difficult to guess without detailed modeling and simulation.
A state of resonance may be relatively short-lived for other

reasons besides YORP acceleration. Gravitational interactions
with major planets, even of limited magnitude, can change the
orbital parameters (eccentricity and pericenter distance, most
importantly) and violate the conditions of resonance. It is
reasonable to assume that a sudden change of the eccentricity,
for example, can make a specific resonance at the high end of
spin rates unstable, and the object embarks on another extended
chaotic journey. Even more likely, landslides, micrometeorite
impacts, and other stochastic physical processes conspire to
regulate the spin, up and down, throughout the evolution.

4. Three Kinds of High-spin Resonances

Regular circulation resonances constitute approximately 2/3
of our trials and are characterized by the same apoastron and
periastron θ modulo π, which can be close to 0 or π (aligned) or
π/2 (sidewise), and a stable, weakly librating aphelion rotation
velocity.9 It is noted that in the aligned apoastron orientation,
the geometrically longest axis of the asteroid is aligned with the
direction to the primary attractor, while a sidewise orientation
is reached when the shortest equatorial axis is aligned with that
direction. The best known example of the latter in the solar
system is Mercury, which is sidewise aligned at aphelia. The
amplitude of free libration is limited by the width of a particular
resonance. The remaining 1/3 of cases represent two new kinds
of spin–orbit resonance, which may not have been described in
the literature.
The first new kind, called switching resonance, is character-

ized by a nearly constant aphelion velocity ω, which is in a
higher order of commensurability f with the mean motion n,
and aphelion orientation cycling through integer multiples of
π/f. One example is the resonance at ω= 1042.25n (i.e.,
4169:4, f= 4). The spin rate appears to chaotically vary within
a very narrow range of 0.0006n around the mean value, while
θaphelion modulo π switches between π/4 and 3π/4 between
each consecutive orbit; see Figure 6. The blue circles show the
aphelion normalized orientation angles, while the red circles
show the perihelion angles. The dashed lines do not represent
the actual behavior of θ between the apses but serve only to
help the eye to see the switching behavior. Obviously, this

Figure 5. Areas of chaos (red colors) and stable spin–orbit resonance (yellow)
of 2006 HY51 rotation in the σ–e parameter space for initial aphelion
conditions θ(0) = π, ω(0) = 964 n. To distinguish chaotic and resonance
trajectories, the number of orbits is computed (exponentially color-coded in this
graph) for the GALI(2) index to fall below 10−12; see text. Each integration
was limited to 100 orbits.

9 We call it circulation resonance to emphasize the continuously high
prograde spin, which is only perturbed with high-amplitude pulses at perihelion
passages. The closest well-known example of circulation resonance is Mercury,
albeit with a much slower rotation at 3: 2 commensurability.
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resonance is only possible when the numerator of the spin–
orbit commensurability is an odd integer. The aphelion tilt of
45° with respect to the Sun’s direction compensates the
fractional part of the relative spin, to the effect that the
perihelion orientation angle switches between π/2 (sidewise)
and π (aligned) in increments of integer multiple of π/2. Our
simulations indicate that this resonance is rarely achieved
through chaotic evolution, probably due to its narrowness.
Although this switching of orientation may be considered to be
a high-order case of the general spin–orbit commensurability,
no analogs exist in the low-eccentricity solar system, with
Mercury having the highest order of commensurability 3:2
(Noyelles et al. 2014), but still not switching its orientation.
High-order resonances ( f> 2) may be common in known
tightly packed exoplanet systems where a planet’s eccentricity
may be excited by gravitational interaction with other planets
(e.g., Makarov et al. 2012). Surviving exoplanets orbiting white
dwarfs may also be captured into this kind of resonance, but its
condition in the σ–e space remains to be investigated.

The second new kind, called jumping resonance, is
characterized by a nearly constant aphelion orientation θ
modulo π, which is close to π/2 (sidewise), and aphelion
velocity jumping between two quantum states for each pair of
orbits, separated from an exact commensurability by a finite
value. The possibility of a stable spin–orbit resonance with
noncommensurate spin rate has never been proposed, even
theoretically. One example is the resonance at ω= 958.57923n
alternating with 958.42041n, shown in Figure 7. As in the
previous graph, the stepwise broken line is shown only to help
the eye to visualize the alternating aphelion spin rate. The
actual integrated curve is close to this broken line everywhere
except the short time spans of a few days around perihelion
passages, where the spin rate undergoes powerful variations
much greater in amplitude than the range of this plot. The
aphelion orientation angle (not presented for brevity) shows a
random process-like variation within a very narrow range
without any signs of a periodic libration-like modulation. From
our massive simulations of chaotic trajectories with random
initial conditions, this noncommensurate resonance appears to
be rarer (i.e., has a lower probability of capture) than the
regular circulation resonance possibly because of the narrow
range in θ. The offset of ω from the commensurate fraction
causes the asteroid to enter the perihelion at a slight tilt of its
longest axis to the direction to the Sun. The tilt causes an
asymmetric impulse driving ω to the other quantum state,

resulting in a tilt with the opposite sign at the next perihelion
passage. Amazingly, this jumping equilibrium is stable, in that
a small perturbation in either parameter does not result in a
larger change of aphelion parameters.

5. Inroads into the Full 3D Case

Full 3D simulations of Euler’s equations are in order to
check the stability of high-spin resonances in the presence of
obliquity wobble. The challenges are more daunting in 3D
because of the immense parameter space that has to be mapped
to locate and measure the resonances. Besides the six initial
condition parameters (orientation angle and spin rate for each
axis), the results are quite sensitive to eccentricity, orbital
frequency, and relative distribution of the moments of inertia.
The three Euler’s equations of rotation including Coriolis
accelerations should be solved simultaneously as a single
system of ODEs. This dramatically raises the computing cost of
simulations. Our fast chaotic trajectory simulation method
cannot be used, and other numerical methods have to be
exploited to distinguish chaotic trajectories from deterministic
states.
We performed limited 3D simulations to verify some of the

resonances described in this paper. Figure 8 shows the results of
a full-scale numerical integration for 2006 HY51 with stiffness
switching for 300 orbits (1251 yr). The initial conditions for the
starting point at aphelion are y1=−0.01 rad, y2=−0.01 rad,
y3= π rad, ω1= 0.01 n, ω2=−0.005 n, ω3= 964 n. The triaxial
inertia coefficients are (B−A)/C= 0.1611, (C−A)/B= 0.3423,
(C−B)/A= 0.1918. The left panel displays the evolution of
normalized spin rate around the principal axis of the largest inertia
moment at aphelia. The right panel shows the evolution of one of
the orientation angles (pitch) also at aphelia. Both functions
display a complex pattern of free libration with amplitudes of up

Figure 6. Aphelion (blue) and perihelion (red) orientation angles θ modulo π in
the 4169:4 switching spin–orbit resonance of 2006 HY51.

Figure 7. Aphelion rotation velocity in the (958.5 ± 0.079)n jumping spin–
orbit resonance of 2006 HY51 obtained from high-accuracy numerical
integration of the ODE of motion.

Figure 8. Aphelion rotation velocity (left) and pitch angle (right) in the 964: 1
spin–orbit resonance of 2006 HY51 obtained from high-accuracy numerical
integration of the 3D Euler’s equations of motion.
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to 0.024 n and 0.02 rad, respectively. The important conclusion is
that the 964: 1 spin–orbit resonance is real and long-term stable in
the absence of external perturbations. However, if we try to
significantly increase the initial deviations of spin rates from these
values, we obtain trajectories that show initially small perturba-
tions, which exponentially grow in amplitude as the object
literally begins to spin out of control in about 200 orbits. This
implies that the investigated resonance is rather narrow in terms of
initial orientation angles and spin. Consequently, the characteristic
times of capture and chaotic evolution may become longer in 3D,
and the life expectation inside the resonance may become shorter.
It remains to be seen if other equilibria exist at ω3= 964 n and
nonzero commensurate spin rates in the other two dimensions.

6. Conclusions

By simulating chaotic rotation of high-eccentricity asteroids
with our fast-tuple-generating method for 1 Gyr time intervals,
we discovered the existence of high spin–orbit resonances.
These stable resonances may serve as protection against
rotational breakup at higher eccentricity, which needs to be
investigated separately. Apart from the regular circulation
resonances maintaining nearly constant aphelion velocity and
orientation angle, we discovered two new kinds of spin–orbit
resonances: a switching resonance alternating the orientation
angle, and a noncommensurate jumping resonance alternating
the aphelion velocity between two quantum states. All three
kinds are intrinsically stable, but the disposition of specific
commensurabilities and the width of spin–orbit resonances are
both eccentricity and triaxiality dependent, which is demon-
strated for the regular 964:1 resonance using a chaos detection
method.

The characteristic times of capture with 2006 HY51
parameters are well below 100Myr. Therefore, 2006 HY51
may be captured in one of such resonances, which would be
interesting to verify by observation. Rotation period can be
inferred from systematic photometric observations, and two
campaigns bracketing a perihelion conjunction could reveal
whether the asteroid maintained a resonance velocity and its
value. On the other hand, if 2006 HY51 happens to be in the
chaotic state of rotation, a significant and measurable update

could be observed. Because of the narrowness of these
equilibrium states, a moderate external perturbation (from an
inner planet, for example) may extract the asteroid and trigger
another chaotic walk for millions of years.

D.V. gratefully acknowledges the support of the STFC via
an Ernest Rutherford Fellowship (grant ST/P003850/1). We
used Julia (Rackauckas & Nie 2017) to implement our chaotic
rotation simulation method, which is available as open-source
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