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Age-Oriented Face Synthesis with Conditional
Discriminator Pool and Adversarial Triplet Loss

Haoyi Wang, Victor Sanchez, Member, IEEE, Chang-Tsun Li, Senior Member, IEEE

Abstract—The vanilla Generative Adversarial Networks
(GANs) are commonly used to generate realistic images depicting
aged and rejuvenated faces. However, the performance of such
vanilla GANs in the age-oriented face synthesis task is often
compromised by the mode collapse issue, which may produce
poorly synthesized faces with indistinguishable visual variations.
In addition, recent age-oriented face synthesis methods use the
L1 or L2 constraint to preserve the identity information on
synthesized faces, which implicitly limits the identity permanence
capabilities when these constraints are associated with a trivial
weighting factor. In this paper, we propose a method for the age-
oriented face synthesis task that achieves high synthesis accuracy
with strong identity permanence capabilities. Specifically, to
achieve high synthesis accuracy, our method tackles the mode
collapse issue with a novel Conditional Discriminator Pool, which
consists of multiple discriminators, each targeting one particular
age category. To achieve strong identity permanence capabilities,
our method uses a novel Adversarial Triplet loss. This loss,
which is based on the Triplet loss, adds a ranking operation
to further pull the positive embedding towards the anchor
embedding to significantly reduce intra-class variances in the
feature space. Through extensive experiments, we show that our
proposed method outperforms state-of-the-art methods in terms
of synthesis accuracy and identity permanence capabilities, both
qualitatively and quantitatively.

Index Terms—age-oriented face synthesis, generative adversar-
ial networks, mode collapse, triplet loss

I. INTRODUCTION

GE-ORIENTED face synthesis (AOFS) is a generative
task aiming to generate older and younger faces by
rendering facial images with natural aging and rejuvenating
effects. An efficient AOFS method can be integrated into
a wide range of forensic and commercial applications (e.g.,
tracking suspects or missing children over a long time span,
predicting the outcomes of cosmetic surgeries, and generating
special visual effects on characters of video games, films and
dramas [1], [2]). The synthesis in recent works [3]-[6] is
usually conducted among age categories (e.g., the 30s, 40s,
50s) rather than specific ages (e.g., 32, 35, 39) since there is no
noticeable visual change of a face over a few years. Recently,
this practical yet intriguing problem has gained more and more
attention from the research community.
The vanilla Generative Adversarial Network (GAN) [7] is
commonly used as the backbone of several state-of-the-art
AOFS methods [3], [8]-[11]. One of the biggest advantages
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of the vanilla GAN over other generative methods (e.g., the
Variational Autoencoder [12]) is that it can generate sharp
and realistic images by playing a minimax game between the
generator and the discriminator. However, the vanilla GAN
suffers from the mode collapse issue caused by a vanishing
gradient due to the negative log-likelihood loss [13]. Specif-
ically, once the discriminator converges, the loss does not
penalize the generator further [14]. This allows the generator to
find a specific mode (i.e., distribution) that can easily fool the
discriminator [15]. The mode collapse issue may also occur
in the AOFS task, where a mode is represented by an age
category. Within this context, the vanilla GAN may generate
faces with indistinguishable visual variations as exemplified in
Fig. 1. This results in poor synthesis accuracy.

On the other hand, recent AOFS methods use the L1 or L2
constraint to preserve the identity information on synthesized
faces. One disadvantage of these constraints is that they only
penalize mean values and yield sparse results (i.e., features
clusters with high intra-variances) [16]. Thus, the identity
permanence capabilities of recent AOFS methods are compro-
mised, especially when these constraints are associated with
trivial weighting factor.

To boost the state-of-the-art performance in the AOFS
task, this work proposes an AOFS method that includes two
novel components, a Conditional Discriminator Pool (CDP)
and an Adversarial Triplet Loss. The proposed CDP helps
to achieve high synthesis accuracy by alleviating the mode
collapse issue. Specifically, it allows learning multiple modes
(i.e., age categories) explicitly and independently to generate
realistic faces with a wide range of visual variations. Our CDP
comprises multiple feature-level discriminators that learn the
transformations from the source age category to the target
age category. For each transformation, only the feature-level
discriminator associated with the target age category is used.
As aresult, each feature-level discriminator only needs to learn
one age category throughout the entire training process. The
proposed Adversarial Triplet loss helps to preserve the identity
information in the synthesized faces. This loss, which extends
the Triplet loss [53], uses an additional ranking operation that
can further optimize the distances within a triplet of feature
embeddings comprising an anchor, a positive, and a negative.
Specifically, it helps to bring the positive much closer to the
anchor, while forcing the distance between the anchor and
the negative to be larger than that between the anchor and the
positive. The additional ranking operation forces the triplets
to a play zero-sum game [5] during training. As a result,
our Adversarial Triplet loss yields high-density clusters with
dramatically reduced intra-class variances in the feature space.
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Fig. 1. A demonstration of face aging. The top row depicts images generated
by a vanilla GAN suffering from the mode collapse issue. The bottom row
depicts images generated by the proposed AOFS method.

Our contributions can be summarized as follows.

o We study the mode collapse issue in the AOFS task. To
the best of our knowledge, our work is the first to tackle
the AOFS task from the aspect of mode learning.

¢ We address the mode collapse issue in the vanilla GAN
and attain high synthesis accuracy by proposing the CDP,
which allows our AOFS method to learn multiple modes
explicitly and independently.

o We propose the Adversarial Triplet loss to preserve the
identity information in the synthesized images. Smaller
intra-class variance can be achieved by forcing triplets to
play zero-sum games during training.

e We evaluate the proposed AOFS method on several
benchmark datasets to demonstrate its effectiveness in
synthesizing realistic face images and preserving the
identity information.

The rest of this paper is organized as follows. In Section
2, we review the related works on GANSs, especially those
tackling the mode collapse issue. In this Section, we also
review the Triplet loss and the state-of-the-art AOFS methods.
In Section 3, we present details of the proposed AOFS
method including the CDP and the Adversarial Triplet loss.
In Section 4, we explain the experimental settings and discuss
the performance on several AOFS benchmark datasets. Finally,
we conclude in Section 5.

II. RELATED WORK

To motivate of our work, we next discuss the mode collapse
issue of the vanilla GAN along with a number of previously
proposed solutions. Then, we review the Triplet loss and show
the main differences between the proposed Adversarial Triplet
loss and other variations. Finally, we discuss some state-of-the-
art AOFS methods.

A. Mode collapse in GANs

The vanilla GAN, introduced by Goodfellow et al. [7],
can learn to generate sharp and realistic images by playing a
minimax game between a generator and a discriminator. When
training a vanilla GAN, the generator and the discriminator try
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to reach a Nash equilibrium [17] by minimizing the negative
log-likelihood loss and the JS-divergence [18]. However, the
involvement of the negative log-likelihood loss may cause the
discriminator to converge faster than the generator [19]. Once
the discriminator converges, the loss function stops penalizing
the generator [14]. This is also known as the vanishing gradient
problem [13], [20], [21] and is the main cause for the mode
collapse issue. Since the parameters in the discriminator are
not further updated, the generator may then find a specific
mode that can easily fool the discriminator. When such an
issue occurs, such a vanilla GAN can only generate samples
of limited variation. Solving this mode collapse issue is a top
trending research topic on GANSs.

Since the mode collapse issue is caused by the vanishing
gradient problem due to the negative log-likelihood loss, one
strategy is to alleviate it by using an alternative loss function
that minimizes a different divergence. Nowozin er al. [22]
show that the optimization of GANs can be done by minimiz-
ing any f-divergence [23], which is a family of divergences
aiming to minimize the distance between two distributions.
Some commonly used members of the f-divergence family
are the JS-divergence, the Kullback-Leibler divergence (KL-
divergence) [24], the squared Hellinger divergence, and the
Pearson x? divergence [25]. The authors show that GANs
trained with other divergences, like the KL-divergence or the
squared Hellinger divergence, can generate images with more
noticeable visual variations compared to those generated by a
vanilla GAN. Although the work in [22] does not tackle the
mode collapse issue directly, it shows the possibility of using
other loss functions to optimize GANS.

Arjovsky et al. [26] propose the Wasserstein GAN
(WGAN), which uses the Earth-Mover (EM) distance to
calculate the distance between distributions of the real and
synthesized data. Intuitively, the EM distance computes the
cost of transforming one distribution to another, which is more
sensitive to the differences between two distributions [26].
Therefore, even if the discriminator is well-trained, it can still
keep rejecting the data synthesized by the generator. The Least
Square GAN (LSGAN) [27], on the other hand, replaces the
negative log-likelihood loss by the L1 loss. Minimizing the L1
loss is equivalent to minimizing the Pearson y? divergence,
which can produce overdispersed approximations and thus
makes the LSGAN less mode-seeking [28], [29].

Although the methods discussed before may alleviate the
mode collapse issue, the discriminator still learns from all
the modes. Therefore, recently proposed methods focus on
modifying the GAN structure. For example, Nguyen et al.
[30] propose the Dual Discriminator Generative Adversarial
Nets (D2GAN), where each discriminator favors data from
a different distribution. By using this strategy, the method
computes the KL and reverse KL divergences simultaneously,
which increases the variety of samples. Based on this idea,
Zhang et al. [31] propose a D2GAN variation with two
customized discriminators. Specifically, one discriminator con-
sists of residual blocks that increase the variety of generated
samples. The other discriminator uses the scaled exponential
linear unit (SELU) function [32] as the non-linear activation
function. Adopting the SELU function guarantees that the
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discriminator produces a non-zero value even if the distribu-
tions of the synthesized and real data are similar. The authors
further propose the D2PGGAN [33] to stabilize the training by
leveraging the idea of progressively increasing the complexity
of the generator [34]. Durugkar et al. [35] propose a GAN
with multiple discriminators. Their method alleviates the mode
collapse issue to an extent since the generator has to fool a
set of discriminators, which makes the generated samples more
diverse. It is important to note that by introducing additional
discriminators, in parallel, the aforementioned methods are
more computationally complex than their counterparts (i.e.,
a vanilla GAN). On the contrary, by selecting a particular
discriminator from a discriminator pool, our CDP only uses
one discriminator for each transformation, which does not
increase the computational complexity.

B. Triplet Loss

The Triplet loss [36] aims to learn feature embeddings by
optimizing the geometric relationship in the feature space with
a triplet of an anchor, a positive and a negative. In this context,
the anchor and positive represent feature embeddings of the
same class, while the negative of a different class. The goal is
to minimize the distance between the anchor and the positive
while simultaneously pushing the negative further away from
the anchor. Several variations to this loss have been proposed.
For instance, Chen et al. use an additional negative to form
a quadruplet [37]. Huang er al. implement three ranking
operations in total by using an anchor, a negative and three
positives [38]. Ye et al., on the other hand, adopt additional
samples from other modalities [39]. It is worth noting that all
of these variants leverage additional samples from the same
or different modalities. Therefore, these losses can no longer
help to optimize the geometric relationship within a triplet.
This is explained in detail in Section IIL.D.

We find that the original Triplet loss produces clusters
with large intra-class variances that can be further optimized.
To produce high-density clusters, we add another ranking
operation and propose an Adversarial Triplet loss to pull the
positive closer to the anchor. It is worth noting that, compared
to the aforementioned Triplet loss variants, our Adversarial
Triplet loss still focuses on optimizing distances within triplets
without added samples.

C. Age-Oriented Face Synthesis

The first AOFS methods can be traced back to [40]-[42]
which study craniofacial growth in young faces. In the early
stage, geometric-based methods were popular in research,
and one of the most representative methods is the Active
Shape Model (ASM) [43]. The authors model the shape of
faces by adjusting the position of a number of points. Each
point marks one part of the face, such as the position of the
eyes or the boundary of the face. Synthetic facial images of
different shapes and ages can then be obtained by adjusting
the position of these points. Another approach to render aging
or rejuvenating effects is to directly synthesize or remove
wrinkles on a given facial image [44]-[48]. Later, Ramanathan
and Chellappa [49] propose an aging-focused method called

the craniofacial growth model for synthesizing elderly faces by
leveraging facial landmark movements. Another early AOFS
method is [50], where the authors use dictionary-based learn-
ing to encapsulate a personalized aging process, and associate
a dictionary per subject to represent their aging characteristics.

With an increased popularity in deep learning, several
attempts have been made to tackle the AOFS problem with
a variety of network architectures. Wang et al. [4] and Zhang
et al. [6] use conditional adversarial learning [51] to synthesize
aged faces. Wang et al. further employ an age category classi-
fier to boost the synthesis accuracy and an L2 constraint on the
identity-specific features to preserve the identity information.
Yang et al. [5] propose a GAN framework by implementing a
customized discriminator with a pyramid architecture, which
leads to more realistic results than a conventional discriminator
as images can be discriminated based on multi-scale features.
They adopt a pre-trained identity classifier to further preserve
the identity in the synthesized images. Recently proposed
AOFS methods use the Wavelet transform to enhance the
texture information in the frequency domain so that richer
aging and rejuvenating effects can be synthesized [3], [52].
He et al. [53] implement a GAN model with a customized
generator, where a number of decoders are leveraged, one
per age category. All of the decoders are associated with
a weight factor to control the relative importance. Since all
of the decoders are trained simultaneously, the computational
complexity of these methods are proportional to the number
of age categories being learned.

Our work is different from the aforementioned deep
learning-based methods as it tackles the AOFS problem from
a different angle (i.e., mode learning). Our method can achieve
high synthesis accuracy by learning multiple modes explicitly
and independently. Additionally, compared to the L1 loss, the
L2 loss, and the simple classifiers used in those methods,
our AOFS method uses the proposed Adversarial Triplet loss
to keep the identity information unaltered in the synthesized
facial images.

III. PROPOSED AOFS METHOD

In this section, we explain the proposed method by for-
mulating the problem, and then explaining the pre-trained
Multi-Task Feature Extractor (MTFE) used to extract age- and
identity-specific features. We then present the proposed CDP
and the Adversarial Triplet loss. Finally, we explain the overall
loss used to train our method.

A. Problem Formulation

Since the transformation is conducted among age categories
rather than specific ages, like [3], [5], [52], we divide the data
into four age categories (i.e., 30~, 31 —40, 41 — 50, and 517).
Each category is denoted by {C;|i € [1,4]}.

To render aging and rejuvenating effects, the proposed
AOFS method accepts two faces, z € Cx and y € Cy, and
the age label of y, I% ., where X # Y. Specifically,  is the
face that is to be aged or rejuvenated, and y carries the target
age information. Our method then aims to generate an aged

or rejuvenated x, denoted by Z, where  is expected to belong
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Fig. 2. Architecture of the proposed AOFS method. It consists of a generator with residual blocks (red rectangles), an image-level discriminator, and a CDP
that contains several feature-level discriminators. The number of feature-level discriminators equals the number of age categories that the method should learn.
Two adversarial losses are used to synthesize realistic aged and rejuvenated faces. To further optimize the identity features in the synthesized image, &, we
leverage additional input images, {x’}, that are within the same age category as the source image, x. Image y carries the target age information for .

to the same age category as y. Moreover, to ensure that the
identity information is effectively preserved in Z, our method
also uses other images in the same batch, {«’}, to define the
Adversarial Triplet loss. It is worth noting that =’ and y do
not share the same identity information of z.

In summary, the proposed method achieves three goals,
simultaneously: 1) to generate realistic aged and rejuvenated
faces; 2) to force the synthesized faces to be within the target
age category; 3) to preserve the identity information in the
synthesized image. Our architecture is shown in Fig. 2.

B. Multi-Task Feature Extractor (MTFE)

The CDP and the Adversarial Triplet loss of the proposed
AOFS method use age- and identity-specific features from in-
put images and synthesized images. To extract and disentangle
these features, we use the decomposition method proposed in
[54]. Specifically, we use a ResNet-50 [55] as the backbone
for feature extractor (see Fig. 3). This model decomposes all of
the features extracted from a facial image into two components
based on a spherical coordinate system as

fsphere = {T;theta}; (1)

where fophere 18 the set of features after the decomposition in
which the angular component theta = {01, 05, ..., 0; } indicates

the identity-specific features for k identities, and the radial
component r encodes the age-specific features.

We replace the regression loss used to learn age-specific
features in [54] with an age regression model [56] to supervise
the age-specific learning process. This has been shown to
achieve better performance for the age estimation task [57].
We observe that feature extractors trained in this multi-tasking
manner can achieve higher accuracy on both the age and
identity classification tasks, opposed to single-task networks.
Additionally, we use our proposed Adversarial Triplet loss to
learn identity-specific features.

C. Conditional Discriminator Pool (CDP)

A vanilla GAN with a single image-level discriminator has
a loss function for face synthesis that is usually formulated as

Eadv :Ey [lOgD(y)}
+Ey[log(1 — D(G(2))],

where the generator GG tries to minimize the loss, and the
discriminator D tries to maximize the loss. As mentioned,
GANs based on this loss function suffer from the mode
collapse issue. To force the network to learn each mode
independently and, thus, alleviate this issue, one can directly
add more discriminators. However, such a strategy leads to
a higher computational complexity with redundancy during

2
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Fig. 3. Architecture of our MTFE. After the decomposition, we resize each
set of task-specific features to be used by the corresponding feature-level
discriminator of the CDP or the Adversarial Triplet loss.

training. Such complexity and redundancy arise because all the
discriminators are expected to back-propagate the loss during
each transformation. Therefore, we propose a mechanism to
select the corresponding discriminator for each transformation
based on the input label that represents the target age. Let us
recall that the proposed AOFS method treats each age category
as a mode, which results in four modes in total. We use the
input label, 1% ., to select the corresponding discriminator
that learns the target age category. Our proposed method
implements this mechanism on discriminators at the feature
level, which are used to synthesize aging and rejuvenating ef-
fects. Therefore, we assemble four feature-level discriminators
with an identical architecture to form our CDP. Each feature-
level discriminator targets one mode. Our method additionally
uses an image-level discriminator to remove artificial effects
from the synthesized faces. Our method leverages the selected
feature-level discriminator alongside the image-level discrim-
inator per transformation (Fig. 2).

An alternative way to select the feature-level discriminator is
to employ an additional classifier. However, within the context
of AOFS, the accuracy of classifying the age categories may
be very low, (i.e., from 25% to 60%). This depends on the
specific age category for different AOFS benchmark datasets
[4], [52]. Employing such a low-accuracy classifier results in
selecting a discriminator that learns an incorrect mode. Instead,
we directly use I} . to select discriminators to guarantee that
each transformation is associated with the target mode. We
then formulate the feature-level adversarial loss as follows:

Eadvfcaturc = Efi’ge [log(FDCz( }z/ge)‘lgge)]
G(2|lg4e)
+E s, [log(1 = (FDc,(fage “*)|lége))];

where F'Dc, is the selected feature-level discriminator trying

to maximize the loss, fY . denotes the age-specific features
extracted from the target image, y, and ff;(:“gge) denotes the
age-specific features extracted from the synthesized image 2.
Also, G(z|l},.) is the generator that produces & conditioned
on [Y .. Finally, I} . is a one-hot encoded vector indicating
the label for the target age category C;.

age

D. Adversarial Triplet Loss
The Triplet loss [36] with three feature embeddings is
formulated as

ﬁTriplet (a7p7 n) = Z [m + DiSta,p - DiSta,n]+a 4)

a,p,n

where Dist; . indicates the Euclidean distance between em-
beddings j and k in the feature space and a, p, n are the indices
of the anchor, the positive, and the negative, respectively. This
loss forces Dist, ,, to be larger than Dist,, by a minimal
margin m. However, once this criterion is satisfied, Dist, p
cannot be further minimized, which may lead to large intra-
class variances. To overcome this problem, we add another
ranking operation to Eq. (4) to force Dist, , to be larger than
the distance between n and p, (i.e., Dist, ;). This helps to
further bring p closer to a by forcing different triplets with
the same a and p, but different n, to play a zero-sum game.
The Adversarial Triplet loss is then formulated as

Lar(a,p,n) = Z [m + Dist,p, — Distgn]+
a,p,n &)
+ [Disty,p — Distg ).

Let us assume there are several triplets with the same a
and p, but different n, where each distinct n is denoted by
n;. Under this assumption, Eq. (4) (i.e., Triplet loss) can be
minimized provided that Dist, ,, > Dist, ,+m, which may
result in clusters with larger intra-class variances. To reduce
these variances, Dist, ,, should be larger than Dist,, ,. Let
us take the triplets a — p —ny and @ — p — n3 in Fig. 4 as an
example, with nj, no, ng, and ny from different classes. nq
and ng should then maintain their relative position with respect
to the a — p cluster to be farther from its neighboring clusters.
In other words, n; and ngz should not get near to either no
or ny. In this case, Lar(a,p,n1) tries to pull p towards n;
and minimize Disty, ,, While £4r(a,p,n3) tries to pull p
towards ns and minimize Dist,, ,. Therefore, Lar(a,p,n1)
and Lar(a,p,n3) play a zero-sum game as minimizing one
loss increases the other. This is also true for £ 47 (a,p, ng) and
Lar(a,p,n4). To minimize all of these losses (i.e., to have
a total loss equal to zero), p should be in the same position
as a so that Dist, ,, = Dist,, ,. In practice, however, our
Adversarial Triplet loss pulls p to a position very close to a
so that Dist, ,, =~ Dist,, ;.

Fig. 5 demonstrates the performance of the Adversarial
Triplet loss on a real dataset. In this example, the feature distri-
bution of the MNIST dataset for classification is presented. To
this end, we employ an Alexnet [58] as the deep network, but
replace all the fully-connected layers, except the output layer,
by a single linear layer with two neurons for visualization
purposes. From the figure, we can observe that the features
learned by the Adversarial Triplet loss dramatically reduce
the intra-class variances compared to the features learned by
the Triplet loss. The classification accuracy attained by each
loss is tabulated in Table I.

One of the most critical issues in the Triplet loss is that as
the number of triplets grows, many triplets can easily satisfy
the constraint in Eq. (4), which in turn may lead to poor
convergence [36]. To overcome this issue in the Adversarial
Triplet loss, we adopt a hard negative mining strategy [59].
Specifically, we use an online hard sample mining method
in which each batch consists of samples from 7' classes, and
each class has S samples within one batch, for a batch size
of B = TS. In this method, each sample in a batch acts as
the anchor for one triplet, thus, there are a total of B triplets
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Fig. 4. An example showing how the Adversarial Triplet loss works. The a (anchor) and p (positive) are feature embeddings representing the same class.
The negatives n1, na, n3, and n4 indicate feature embeddings from other classes, each one from a distinct class. (a) Original positions of these feature
embeddings. (b) By using the Triplet loss, p can move towards p’ when minimizing Eq. (4). (c) Our Adversarial Triplet loss guarantees that for each n;,

where ¢ € [1,2,3,4], Distan,
end up at a location that is extremely close to a, i.e., p’’.
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Fig. 5. Comparison of feature distribution of the MNIST dataset for
classification with the Triplet loss and the Adversarial Triplet loss.

within one batch. For each anchor, a hardest positive sample
with the largest distance and a hardest negative sample with
the smallest distance are selected to form a triplet. This method
does not require pre-defining the triplets and can generate
hard triplets in an online manner. After incorporating this hard
sample mining strategy, our Adversarial Triplet loss in Eq. (5)
is as follows:

T 8
Lar(a,p,n Z Z[m + max Distq p — min Distg )4
n
t=1s=1

+ [Dist,, , — min Dist, 4],

n
(6)
where ¢ is the class index and s is the image index for each
class in one batch.

Since we are trying to optimize the identity-specific features
on the synthesized faces when training our AOFS method, we
use the identity-specific features, f7;, from the source image
as the anchor and the identity-specific features, f7;, from the
synthesized image as the positive. In addition, we use all other
images in the same batch that do not share the same identity

~ Distp,p by adding an additional operation as formulated in Eq. (5). In this case, p’ may continue moving towards a and

TABLE I
CLASSIFICATION ACCURACY (%) ON THE MNIST DATASET.

Loss Triplet
Accuracy 99.43 99.67

Adversarial Triplet

with the source image as the negatives. The Adversarial Triplet
loss of our AOFS method with the hard sample mining strategy
is then formulated as
} T S
t=1 s=1
min  Dist ]
Ao RN S )

{ra s} olf fial

[Dzst{ TN AN A {frzun }Dzst o Ll g,

~ ’
Lar(fi Fin { £ 1}

[m + Distye ye —

where { ﬁzl } are the identity-specific features of images
within the same age category as the source image but car-
rying different identity information, and f;, are the identity-
specific features of images within the target age category. It is
worth noting that the above equation does not have the max
operation as in Eq. (6) since the positive in this case, fd, is
synthesized thus cannot be selected.

E. Overall Loss

The image-level adversarial loss in our AOFS method is
formulated as

=Ey[logD(y)]
+ Ez [lOg(l - D( (x‘lage))]

The overall loss function, L,yperqi, tO train our method
is a weighted summation of several losses, with Ludu,,,,,.
removing ghost artifacts, Ladv;.,,.,. synthesizing ageing and
rejuvenating effects and attaining high synthesis accuracy, and
L a4 preserving the identity information as follows:

Eadvmage

®)

Loverall :ﬁadvimage + )\advfeature£advfea,t'u,'re

9
+ AarLar,
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TABLE II
ARCHITECTURE OF THE GENERATOR.

TABLE III
ARCHITECTURE OF THE DISCRIMINATORS.

Encoder Feature-Level (x 4)
#Layer Convolution Normalization Non-linear #Layer Fully-Connected Normalization Non-linear
1 k=7, s=1, p=1 Instance ReLU 1 128 Instance LeakyReLU
2 k=3, s=2, p=1 Instance ReLU 2 64 Instance LeakyReLU
Residual Block (x 6) 3 32 Instance LeakyReLU
#Layer Convolution Normalization Non-linear 4 16 Instance LeakyReLU
1 k=3, s=2, p=1 Instance ReLU 5 1 -
2 k=3, s=2, p=1 Instance ReLU Image-Level
Decoder #Layer Convolution Normalization Non-linear
#Layer Deconvolution Normalization Non-linear 1 k=3, s=2, p=1 Instance LeakyReLU
1 k=3, s=2, p=1 Instance RelLLU 2 k=3, s=2, p=1 Instance LeakyReLU
2 k=3, s=2, p=1 Instance Tanh 3 k=3, s=2, p=1 Instance LeakyReLU
4 k=3, s=2, p=1 Instance LeakyReLU
5 k=3, s=1, p=1 -
where Audv,or,,.. @and Aar control the relative importance

among learning objectives.

IV. EXPERIMENTS

In this section, we first briefly describe the two AOFS
benchmark datasets used in our experiments followed by the
implementation details of our method. Then, we compare our
method with state-of-the-art methods and conduct ablation
studies, both qualitatively and quantitatively, to show that our
method can achieve high synthesis accuracy while preserving
the identity information on the synthesized facial images.

A. AOFS benchmark datasets

We use the MORPH 1II dataset [60] and the Cross-Age
Celebrity Dataset (CACD) [61] to train the MTFE and evaluate
our method. The MORPH 1I dataset contains about 55,000
facial images of individuals with ages ranging from 16 to
77. The CACD contains more than 160,000 facial images
of individuals with ages ranging from 16 to 62. Most of the
images in the MORPH II dataset are mugshots, while images
in the CACD contain Pose, Illumination, and Expression (PIE)
variations. Each image in both datasets is associated with an
age label and an identity label.

All images are cropped to 128x128 pixels and aligned
based on the location of the eyes. Since not all images can
be aligned by using this technique, in the end, 55,062 images
from the MORPH II dataset and 159,226 images from the
CACD are used in our experiments. For each dataset, we use
80% of the images for training and the remaining 20% for
testing. The number of training images for each age category
in the MORPH dataset is 19,949, 12,496, 8,982, and 2,622,
for the categories {307,31 — 40,41 — 50,517}, respectively.
For the CACD, the number of training images of each age
category is 39,416, 33,742, 30959, and 23,262, respectively.
There is no identity overlap between the training and test sets.

We conduct a five-fold cross validation for all our experi-
ments. For the MORPH 1I dataset, each fold has about 2,550
subjects with 3,989, 2,499, 1,796, and 524 images within each
age category, respectively. For the CACD, each fold contains
about 400 subjects with 7,883, 6,748, 6,191 and 4,652 images
within each age category, respectively.

B. AOFS quality criteria

There are two criteria commonly used to measure the quality
of synthesized images [5], [52] in the AOFS task. Under the
first criterion, synthesized images are fed into an age category
classifier to evaluate whether the depicted face has been
transformed to the target age category. The second criterion
measures identity permanence and relies on face verification
models to validate whether the synthesized image and the
source image depict the same person.

To evaluate our method and demonstrate its robustness,
we use another two benchmark datasets to train two separate
validation networks, one for each criterion. In particular, we
use the AgeDB dataset [62] to train a network that evaluates
the synthesis accuracy and a face recognition benchmark
dataset, the VGGFace2 dataset [63], to train a network that
evaluates the identity permanence capabilities. We use the
commonly used ResNet-50 as the backbone for both evaluation
networks.

C. Network architecture

The details of the architectures of the generator and dis-
criminators in our AOFS method are tabulated in Tables II and
III, respectively. We employ the architecture from [64] for our
generator and the patch discriminator from [65] for our image-
level discriminator. In both tables, for each convolutional and
deconvolutional layer, k£ indicates the kernel size, s indicates
the stride, and p indicates the padding size. In Table III, the
second column for the feature-level discriminators tabulates
the dimensions of the corresponding layer.

D. Data augmentation

When training the MTFE and validation networks, we use a
combination of rotation, flip, and crop operations to augment
the data. Specifically, we first randomly rotate each image by
a angle between +10 deg. and -10 deg., and then randomly
flip the rotated image with a probability of 0.5. Finally, we
pad the image on all sides with 10 pixels and crop the
padded image at a random location to the original image size
(i.e. 128 x 128 pixels). When training the proposed AOFS
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Fig. 6. Visual results for (a) the aging process and (b) the rejuvenating process. In each sub-figure, the top two rows show the synthesized results on the
MORPH 1I dataset, and the bottom two rows show the synthesized results on the CACD.

method, in order to increase the size of the training set without
introducing additional variance to the dataset, we only use the
flip operation.

E. Hyper-parameter setting

When training the MTFE, we set the batch size to 128 and
the initial learning rate to 0.002 for both datasets. We train
it for 500 epochs while decreasing the learning rate by 0.1
every 150 epochs. When training the AOFS method, we set
the batch size to 8 and the initial learning rate to 0.0002.
The learning rate decreases linearly after the first 25 epochs.
We empirically set Aadv;oy,. 0 1 and Aaz to 0.001. The
margin hyper-parameter, m in Eq. (7), is set to 0.3. We use
the PyTorch framework [66] for the implementation and run
each experiment for 50 epochs. All experiments are run on a
single NVIDIA GTX2080Ti GPU.

FE. Synthesis accuracy

We first qualitatively evaluate the synthesized facial images
based on their visual quality. We then present quantitative
results based on age classification accuracy, image quality and
the degree of mode collapse. We perform these evaluations for
our AOFS and several state-of-the-art methods.

1) Visual Quality: Fig. 6 shows some sample images
synthesized by our AOFS method. Fig. 6 (a) shows aging
results for 6 subjects from the MORPH II dataset and 6 from
the CACD using a source image from the youngest category
(307). We can see that our method turns hair gray or white,
introduces forehead wrinkles and nasolabial folds, and makes
the skin to appear rough. Fig. 6 (b) shows rejuvenating results
for 6 subjects from each dataset using a source image from
the oldest category (51F). We can see that for these cases, our
method removes wrinkles and gray/white hair.

We also evaluate six state-of-the-art methods, namely the
method by Antipov et al. [8], the Identity-Preserving Con-
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TABLE IV
AGE CLASSIFICATION ACCURACY (%) ON THE IMAGES SYNTHESIZED FOR MORPH II AND CACD FOR THE AGING PROCESS.

MORPH I CACD

Age Category 31-40 41-50 51+ 31-40 41-50 51t
Natural Faces 59.04 £ 2.42 58.68 + 2.18 58.83 £ 2.23 3791 £ 5.09 37.34 + 4.79 3446 + 4.92
Antipov et al. [8] 39.56 £ 2.28 39.79 £ 2.10 35.22 £ 2.50 20.29 £ 4.58 2049 £ 5.04 18.43 £ 5.40
IPCGAN [4] 44.67 £ 2.25 4470 £ 2.43 41.84 £ 1.77 24.90 £ 4.29 27.70 £ 4.25 28.49 £ 5.00
S2GAN [53] 52.97 £ 2.65 52.46 + 1.84 51.30 + 1.98 29.25 + 4.88 29.05 £ 4.62 26.33 + 4.81
Liu et al. [52] 52.12 £ 1.97 53.85 £ 1.92 54.82 + 145 29.31 £ 5.16 31.87 + 4.95 32.79 + 4.88
Li et al. [3] 51.22 £ 2.15 53.60 £ 1.74 54.61 £ 1.97 28.61 + 4.41 31.02 £ 4.19 3246 £ 4.75
Yang et al. [5] 53.24 £ 1.67 53.23 £ 2.86 53.20 £ 1.73 30.68 £ 4.12 30.85 £ 4.43 31.64 £ 4.38
w/o CDP 43.52 £ 1.73 41.53 £ 1.82 41.93 £ 145 25.01 £5.52 25.06 £ 4.89 25.55 £ 5.18
w/o ATL 56.49 £ 1.93 55.48 + 1.84 54.58 £ 1.97 33.63 £ 3.96 33.79 + 4.34 32.48 £ 4.61
Proposed 56.60 + 1.91 55.42 + 1.80 54.63 + 1.98 33.73 + 391 33.77 £ 432 32.54 + 4.61

TABLE V

AGE CLASSIFICATION ACCURACY (%) ON THE IMAGES SYNTHESIZED FOR MORPH II AND CACD FOR THE REJUVENATING PROCESS.

MORPH 1I CACD

Age Category 30~ 31-40 41-50 30~ 31-40 41-50
Natural Faces 63.08 £ 1.81 59.04 £ 2.42 58.68 £ 2.18 43.82 * 4.06 37.91 £ 5.09 37.34 £ 4.79
Antipov et al. [8] 50.55 £ 2.32 44.71 £ 2.45 4477 = 1.84 2841 £ 3.92 26.36 = 5.87 26.17 £ 4.71
IPCGAN [4] 57.33 £ 1.82 52.03 £ 1.79 5232 £221 32.67 * 4.43 31.89 £ 4.50 31.41 £ 5.08
S2GAN [53] 58.18 + 1.83 54.11 £ 2.04 54.24 + 143 33.36 £ 4.01 32.30 + 4.38 32.63 £ 3.89
Liu et al. [52] 59.06 £ 2.41 5533 £ 1.61 55.54 £ 2.01 36.65 + 4.31 3425 £ 434 34.26 £ 4.69
Li et al. [3] 58.87 £ 2.30 55.21 £ 2.18 55.06 £ 1.94 37.84 £ 4.66 34.95 £+ 4.86 34.30 £ 4.26
Yang et al. [5] 60.79 £ 2.21 56.99 £ 2.17 56.65 * 2.39 39.09 £ 4.72 35.62 £ 4.83 35.89 £ 4.61
w/o CDP 53.67 £2.35 51.41 £233 51.96 £ 2.45 29.17 £ 5.05 2842 £ 5.39 28.67 £ 5.31
w/o ATL 61.15 £+ 1.43 57.04 £ 1.33 56.57 £ 2.22 41.18 & 4.09 36.92 + 4.13 36.55 + 4.82
Proposed 61.20 = 1.41 57.12 + 1.36 56.55 £ 2.23 41.24 + 4.12 36.86 + 4.10 36.59 + 4.81

ditional Generative Adversarial Networks (IPCGAN) [4], the
S2GAN [53], and the methods by Liu et al. [52], Li et al. [3],
and Yang et al. [5]. To have a fair comparison, we replace
the feature extractors in these methods with our pre-trained
MTFE and use the same number of residual blocks in their
generator except for the method in [8], as there is no residual
block originally involved in this particular method.

Since the synthesis accuracy of our AOFS method depends
on the CDP, we also evaluate a baseline model without the
CDP (hereinafter called w/o CDP) as part of an ablation study.
The w/o CDP model replaces the CDP with a simple feature-
level discriminator, which makes this model similar to a vanilla
GAN but with two discriminators, one at the feature level and
the other at the image level. In addition, we include another
baseline model, namely w/o ATL in which the Adversarial
Triplet loss is deleted to see whether this loss affects the age
classification accuracy.

Fig. 7 depicts the visual results of these evaluations. Note
that it is visually evident that the results generated by the
w/o CDP model do not contain much aging and rejuvenating
effects as this model suffers from the mode collapse issue.
On the contrary, our proposed method can synthesize the

I Antipov IPCGAN S2GAN Liuetal Lietal Yang
ctal. [8] [4] [53] [52] 3] etal. [5]

w/o CDP  Proposed |

MORPH II

aﬁ‘ ' égal‘

Ll SN

CACD

Fig. 7. Visual comparison of the proposed and six state-of-the-art methods on
two benchmarks. The input image is in the youngest category and the results
are expected to be in the eldest category.

aging and rejuvenating effects realistically. Among all of these
evaluated state-of-the-art methods, Yang et al. [5] is able to
synthesize the most realistic effects due to the use of a multi-
level feature discriminator.

2) Age category classification accuracy: Table IV and V
tabulate the age category classification accuracies of various
methods on the synthesized images when images from the 30~
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TABLE VI
RESNET SCORE AND FRECHET RESNET DISTANCE ON MORPH II.

Model RS FRD
Antipov et al. [8] 27.83 £ 1.34 31.72 £ 0.60
IPCGAN [4] 36.70 + 1.18 28.08 + 0.44
S2GAN [53] 3892 + 1.14 25.64 + 0.32
Liu et al. [52] 39.14 £ 1.23 25.57 £ 042
Li et al. [3] 39.26 + 1.22 25.51 £ 041
Yang et al. [5] 4335 £ 1.36 22.30 £ 0.59
w/o CDP 30.19 + 1.26 28.62 £ 0.49
Proposed 44.04 + 1.25 21.93 + 0.46

TABLE VII

RESNET SCORE AND FRECHET RESNET DISTANCE ON CACD.

Model RS FRD
Antipov et al. [8] 2471 &+ 2.04 33.83 + 0.95
IPCGAN [4] 3321 £ 1.82 30.18 £ 0.79
S2GAN [53] 3424 + 1.75 27.01 £ 0.61
Liu et al. [52] 34.54 + 1.86 26.99 + 0.63
Li et al. [3] 35.00 + 1.91 26.91 + 0.67
Yang et al. [5] 37.39 + 2.09 24.62 + 0.87
w/o CDP 30.87 + 1.87 30.71 £+ 0.82
Proposed 38.55 £ 1.90 23.98 + 0.73

and 517 categories are used as source images, respectively.
In these tables, the Natural Faces row tabulates the accuracy
attained when using the original facial images. Since [8] uses
a relatively shallow generator compared to other works, its
performance is hence below others by a significant margin.
IPCGAN uses the age labels as conditions in the GAN learning
process and incorporates an age category classification loss.
However, due to the fact that the classification error is high
(the classifier is noisy), the gradient for the age information is
not accurate. As a result, although its performance is higher
than that of [8], it is still lower than the one attained on
the original facial images by a large margin. The recently
proposed S?GAN attains a higher accuracy by implementing
a customized generator where each age category is associated
with a decoder. The methods of Liu et al. [52] and Li et
al. [3] achieve similar accuracy since both use the Wavelet
transform. Among all the other evaluated methods, the one
proposed by Yang et al. [5] achieves the best performance by
using a multi-level feature discriminator. By adding a feature-
level discriminator to the vanilla GAN, the baseline w/o CDP
model achieves a comparable performance to that achieved by
IPCGAN. Additionally, we can see that the involvement of the
Adversarial Triplet loss affects the age category classification
accuracy subtly since our method uses disentangled features
for both CDP and this loss. Overall, our proposed AOFS
method outperforms all evaluated methods for the majority
of age categories.

3) Image Quality: The synthesis accuracy is also related
to the quality of the generated images [4]. The quality and
diversity of the synthesized images are usually measured in
terms of the Inception Score (IS) and the Fréchet Inception
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TABLE VIII
DEGREE OF MODE COLLAPSE AS MEASURED BY THE KL DIVERGENCE.

Model MORPH 11 CACD
Antipov et al. [8] 1.86 £ 0.10 1.93 £ 0.13
IPCGAN [4] 0.64 £+ 0.15 0.68 + 0.21
S2GAN [53] 0.59 + 0.08 0.62 + 0.11
Liu et al. [52] 0.55 £+ 0.09 0.57 £ 0.13
Li et al. [3] 0.55 £ 0.11 0.58 £ 0.14
Yang et al. [5] 0.49 £ 0.04 0.52 £ 0.05
w/o CDP 1.19 £ 0.09 1.30 £ 0.14
Proposed 0.37 = 0.04 0.42 £+ 0.07

Distance (FID). IS measures the image quality and diversity
by computing the KL divergence between the real and the
generated class distributions. On the other hand, FID uses a
multivariate Gaussian distribution to model the data distribu-
tion and the mean and the covariance from two distributions to
compute their distance. Since we use a ResNet-50 to evaluate
the identity permanence capabilities (see Section IV.G), we
rename these two metrics as the ResNet Score (RS) and
the Fréchet ResNet Distance (FRD). The RS and FRD are
tabulated in Table VI and Table VII, respectively, for our
AOFS method and several state-of-the-art methods. Since our
AOFS method can render more realistic aging and rejuvenating
effects than other evaluated methods and has stronger identity
permanence capabilities, it achieves the best performance for
both metrics, especially for the FRD, which is sensitive to the
mode collapse issue.

4) Degree of Mode Collapse: Since our method tackles the
AOFS task from the aspect of mode learning, we also measure
the degree of mode collapse by computing the KL divergence
between the distributions of the synthesized images and the
real images. We compute this divergence for all synthesized
images within each fold.

The proposed AOFS method significantly outperforms the
baseline model and the method in [8], which use the negative
log-likelihood loss from the vanilla GAN (Table VIII). By
using different discriminators to learn different modes, our
method yields a lower divergence value compared to other
methods that leverage the least square loss from the LSGAN.

G. Identity permanence

To evaluate the identity permanence on the synthesized im-
ages, we design a new baseline, the Triplet model. Specifically,
we replace the Adversarial Triplet loss with the original Triplet
loss to directly compare these two loss functions. Again, we
include the baseline model w/o CDP here to evaluate whether
the involvement of the CDP affects the identity permanence
capabilities. These capabilities are measured in terms of the
face verification accuracy, i.e., whether the synthesized image
and the original image depict the same person. To this end, we
define three input settings based on three different target age
categories for each synthesis process. Specifically, the query
images are the original facial images from the datasets, while
the gallery images are the synthesized images that are expected
to be within the target age category, as tabulated in Table
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TABLE IX
FACE VERIFICATION RESULTS IN TERMS OF ACCURACY (%) FOR MORPH II AND CACD. THE QUERY IMAGES ARE THE ORIGINAL FACIAL IMAGES, AND
THE GALLERY IMAGES ARE THE SYNTHESISED IMAGES GENERATED BY EACH CORRESPONDING MODEL.

Aging Rejuvenating
Gallery Image S31-40 S41-50 Ss1t+ S41-50 S31-40 S30—

. Antipov et al. [8] 94.46 + 0.16 93.57 + 0.12 91.24 + 0.20 9533 £ 0.16 93.54 + 0.13 92.48 + 0.27

I IPCGAN [4] 94.56 + 0.23 93.87 + 0.19 91.63 + 0.22 9491 + 0.28 93.83 + 0.20 92.21 + 0.27

: S2GAN [53] 94.88 + 0.09 93.65 + 0.17 91.44 £ 0.12 95.50 = 0.11 94.72 £ 0.19 92.54 £ 0.18

 Liu et al. [52] 9422 + 0.28 93.49 + 0.26 91.28 + 0.21 95.63 + 0.22 94.84 + 0.23 93.23 + 0.27

MORPH 1II | Li et al. [3] 95.08 + 0.11 93.99 + 0.14 91.87 + 0.15 95.40 + 0.14 94.05 + 0.16 92.52 + 0.17
! Yang et al. [5] 94.29 + 0.22 93.34 + 0.27 91.18 + 0.28 95.76 £ 0.21 94.40 + 0.22 93.76 + 0.29

: Triplet 97.87 + 0.07 97.01 + 0.09 94.86 + 0.17 98.14 + 0.06 98.23 + 0.11 97.71 £ 0.14

I w/o CDP 99.05 + 0.02 98.70 £+ 0.06 95.61 + 0.14 99.61 + 0.02 99.39 + 0.09 97.83 + 0.10

: Proposed 99.06 + 0.03 98.73 + 0.06 95.58 + 0.11 99.61 + 0.03 99.36 + 0.08 97.85 + 0.09

! Antipov et al. [8] 92.06 + 0.27 88.46 + 0.35 85.40 £+ 0.56 92.67 + 0.23 89.30 + 0.28 86.24 + 0.42

: IPCGAN [4] 92.29 + 0.30 88.77 + 0.33 85.22 + 0.57 93.93 + 0.25 89.32 + 0.32 85.35 + 0.50

I S2GAN [53] 92.39 + 0.35 88.94 £+ 0.55 85.87 + 0.59 9332 + 0.33 89.60 + 0.42 86.29 + 0.54

' Liu er al. [52] 92.25 £ 0.26 88.51 £ 0.32 85.46 + 0.48 93.21 £ 0.23 89.50 £ 0.32 85.02 £ 0.47

CACD : Li et al. [3] 93.33 + 0.24 89.04 £+ 0.38 85.91 + 045 94.52 + 0.21 89.47 + 0.36 85.31 + 0.39
I Yang et al. [5] 92.24 + 0.29 88.58 + 0.48 85.54 + 0.57 92.80 + 0.20 89.07 £+ 0.39 86.91 + 0.42

! Triplet 93.89 + 0.17 92.73 £ 0.21 89.15 + 0.24 94.79 + 0.15 93.46 + 0.17 90.31 + 0.23

: w/o CDP 94.97 + 0.12 94.14 + 0.11 90.74 + 0.15 95.05 + 0.13 94.58 + 0.12 91.66 + 0.19

I Proposed 94.98 + 0.10 94.16 + 0.14 90.77 £ 0.18 95.08 + 0.11 94.56 + 0.14 91.68 *+ 0.15

IX with the column headings S31-40, S41-50, and S517F for
the aging process and headings S41-50, S31-40, and S30~ for
the rejuvenating process. For example, S37/-40 refers to the
synthesized images expected to be within the 31 —40 category.
We use the cosine similarity to measure the distance of each
pair of query and gallery images.

All the state-of-the-art methods achieve a similar accuracy
since they all use a similar strategy, namely, minimizing the
distance between two identity-specific features using the L1
or L2 loss. Li ef al. [3] slightly outperforms other methods
as it uses a combination of these two losses (Table IX).
The similar performance achieved among these methods may
also be due to the quality of the images, since the identity
information may be distorted in images of poor quality. By
replacing the L1 or L2 loss with the Triplet loss, the identity
permanence capability can be remarkably boosted by about
3% on both datasets. Thanks to the disentangled features and
discriminative ability of the Adversarial Triplet loss, the effects
of the CDP on the identity permanence capabilities is subtle
(i.e., £0.03). As a result, this loss, which reduces intra-class
variances within each age category in the feature space and is
employed in the proposed AOFS method, achieves the highest
accuracy among all identity preserving methods.

V. CONCLUSION

In this paper, we tackle the Age-Oriented Face Synthesis
(AOFS) task via a mode-specific learning. Specifically, we
present an AOFS method that incorporates a novel Conditional
Discriminator Pool (CDP) to alleviate the mode collapse issue
in the vanilla GAN. We also incorporate a novel Adversarial
Triplet loss to attain strong identity permanence capabilities.

By using the proposed CDP, only the target feature-level
discriminator that learns the corresponding mode is deployed.
Note that our mode-specific learning method (e.g., CDP) does
not increase the computational complexity during training.
Hence, our CDP allows learning multiple modes explicitly
and independently. As a result, our AOFS method outper-
forms several state-of-the-art methods on AOFS benchmark
datasets. In the future, we will aim to improve the aging and
rejuvenating effects by including the synthesis and removal of
wrinkles and face shape manipulation. We hypothesize that by
improving these aspects of the synthesis process, synthesizing
more realistic younger and older face images can be achieved.
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