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Abstract

We study a set of optimal stopping problems arising from three branches

from within the field of Behavioural Finance. We first consider a problem of an

investor having S-shaped reference-dependent preferences who wishes to liquidate a

divisible asset position at times of their choosing. We prove that it may be optimal

for the investor to partially liquidate the asset at distinct price thresholds above the

reference level rather than liquidate all the position in one block sale.

In the second part of our study we consider problems describing the behaviour

of an investor who experiences realisation utility whenever they realise gains or losses

after liquidating an asset. We build upon the work of Barberis and Xiong [2012] and

propose two problems, which we solve by applying the methodology of Dayanik and

Karatzas [2003]. The first part considers an agent whose preferences are described by

the classical Cumulative Prospect Theory S-shaped Utility proposed by Tversky and

Kahneman [1992]. The second problem extends upon the first, and we propose a new

utility function under which the agent does not only compare their gains relative to

the reference level linearly but also proportionally. As part of the solutions presented

for these two problems, we provide explicit conditions differentiating between the

optimal strategies arising under different parameter cases.

In the final part of our study, we consider models of optimal stopping with

regret. We provide a continuous time re-formulation and extension to the dynamic

model presented in Strack and Viefers [2015]. This model describes an agent whose

preference structure incorporates a Regret term, where Regret is defined in the

context of the work of Loomes and Sugden [1982].
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Chapter 1

Introduction

Expected utility Theory remains a very common hypothesis when studying investor

preferences. Whilst this hypothesis is at the basis of some prominent works in the

field of Mathematical Finance, it is very well known that this theory fails to explain

various behavioral phenomena which are observable when one considers real world

data. Various theories have been proposed in recent decades with the motivation

of explaining some of these behavioral anomalies. Our work in this thesis considers

problems motivated by ideas proposed in two such theories; specifically Prospect

Theory and Regret Theory. The problems we study as part of our work take the

form of optimal stopping problems; where the aim is to find an optimal time to

maximise an expected reward or minimise an expected cost. Such problems are well

studied in the literature and there are various methods of solution which can be

applied, depending on the problem. Peskir and Shiryaev [2006] brings together a

number of these classical approaches previously described in literature.

The stochastic process at the base of each of the problems we consider is a

one-dimensional time-homogeneous diffusion. In view of this, our solution approach

for the problems described in Chapters 3 and 4 follows the methodology outlined

in Dayanik and Karatzas [2003]. This approach extends the ideas of Dynkin and

Yushkevich [1969] for solving optimal stopping problems driven by a Brownian Mo-

tion to cover the case of one-dimensional diffusion processes. The value of this

solution method is predominantly the fact that the solution can be explained and

derived geometrically in terms of concave majorants. An overview of the work pre-

sented in Dayanik and Karatzas [2003] is outlined in Chapter 2.

In Chapter 3 we consider the problem of an investor with S-shaped reference-

dependent preferences who wants to sell a divisible asset at times of their choosing in

the future. Utility is derived from gains and losses relative to a reference level. Our
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main finding in this chapter is that under a certain model specification; specifically

the assumptions considered by Kyle et al. [2006], the investor’s optimal strategy

takes the form of partial sales at different time points. This result is derived by

applying a result discussed at the start of the chapter which allows for a multiple

optimal stopping problem to be viewed as a sequence of standard optimal stopping

problems. A version of the work presented in Chapter 3 has been published in the

journal of Finance and Stochastics (see Henderson and Muscat [2020]).

Reference dependent preferences are also at the basis of the problems con-

sidered in Chapter 4. In this chapter we extend upon the framework first described

in Barberis and Xiong [2012], where they propose the concept of Realisation Utility.

This concept stems from the observation that investors do not solely derive utility

from consumption or final wealth but also from the act of realising gains and losses

when selling assets, where the amount of utility derived depends on the magnitude

of the realised gain or loss. The model proposed by Barberis and Xiong [2012] con-

siders an investor who invests all their wealth in a risky asset whose price dynamics

are modelled by a Geometric Brownian Motion. The investor’s objective is to decide

when to sell the underlying, thus receiving realisation utility at the moment of sale.

The agent then instantaneously re-invests all the proceeds after transaction costs in

a risky asset with price dynamics equivalent to the asset they invested in a priori,

thus essentially restarting the game. Whilst Barberis and Xiong [2012] assume that

the investor’s underlying S-shaped utility function to be a piecewise linear func-

tion, in Section 4.2 we consider a similar problem as the one discussed above for

an investor whose preferences are described by the classical Cumulative Prospect

Theory S-shaped Utility proposed in Tversky and Kahneman [1992]. In Section 4.3

we propose a new extension of the model described in Section 4.2. A new utility

function is proposed in which gains and losses are compared to the reference level

not only linearly but also proportionally. This utility was inspired by the structure

of the optimal strategy obtained in Section 4.2.

Finally, in Chapter 5 we present a continuous time model inspired by the

framework discussed in Strack and Viefers [2015]. The problem we consider describes

an optimal liquidation problem for an investor whose preferences incorporate a regret

term. Regret is formulated as a penalisation to the agent’s utility which depends on

the ex-post maximum of the risky asset’s price process. In solving the arising optimal

stopping problem, We adopt a different solution approach than that considered in

Chapters 3 and 4. We start by proposing the structure of the optimal stopping

time, inspired by the solution in discrete time and then verify the optimality of this

stopping time.
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For each of the chapters mentioned above, a review of the relevant literature

is first discussed. A concise formulation of the problem is then described and the

solution is then presented and analysed.
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Chapter 2

Optimal Stopping for

One-Dimensional Diffusions

2.1 Introduction

In this chapter we will review the methodology in Dayanik and Karatzas [2003] for

solving optimal stopping problems for one dimensional diffusion processes. Dayanik

and Karatzas [2003] characterize the value function geometrically in terms of concave

majorants of an aptly defined transformation of the corresponding reward function.

This characterization of the value function is primarily due to Dynkin and

Yushkevich [1969] where a framework is discussed to solve optimal stopping problems

where the underlying process is a Brownian Motion. This work is extended by

Dayanik and Karatzas [2003] to cover one-dimensional regular diffusion processes.

The connection between one-dimensional regular diffusions and a Brownian

Motion through the diffusion’s scale function is standard. This equivalence is in

fact used by Dayanik and Karatzas [2003] to provide an alternative characterisation

of the value function to the well-known one in terms of excessive (or harmonic)

functions. This is then used to determine the value function in terms of a non-

negative concave majorant of an aptly defined function. This result is very useful

since concave-majorants are in general, geometrically easy to find.

Given that our work will consist of optimal stopping problems which are

discounted, we will omit the authors’ discussion of non-discounted problems. How-

ever we will briefly discuss how every discounted optimal stopping problem of a

one-dimensional diffusion process can be re-formulated in terms of a non-discounted

optimal stopping problem in terms of a Brownian Motion.

This approach is different from the Boundary-Value approach discussed in
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detail in Peskir and Shiryaev [2006], where the value function is characterised as a

solution to a system of differential equations.

2.2 Set-up and Some Important Results

Consider a complete probability space (Ω,F ,P) supporting a Brownian Motion (Wt :

t ≥ 0), and consider a one dimensional diffusion process X with state space I ⊆ R
and dynamics:

dXt = µ(Xt)dt+ σ(Xt)dWt (2.1)

for some Borel functions µ : I → R and σ : I → R+. We assume that I is an

interval with endpoints −∞ ≤ a < b ≤ +∞, and that (2.1) satisfies X0 = x and has

a weak solution which is unique in the sense of the probability law. As discussed in

Dayanik and Karatzas [2003], this is guaranteed if µ(·) and σ(·) satisfy:∫
(x−ε,x+ε)

1 + |µ(y)|
σ2(y)

dy <∞

for some ε > 0, at every x ∈ int(I). The existence of a weak solution to the SDE

in (2.1) guarantees that X is regular in (a, b); that is, given any x, y ∈ I, X hits y

with positive probability when starting at x.

Let F = (Ft)t≥0 denote the natural filtration of X, ρ ∈ R+ be a constant

and let h(·) be a Borel function such that Ex[e−ρτh(Xτ )] is well-defined for every F-

stopping time τ and x ∈ F. We will refer to the function h(·) as the reward function

and ρ ≥ 0 as the discount factor. By convention we let f(Xτ (ω)) = 0 over the set

{τ =∞}, for any Borel function f .

In this chapter we provide an overview of the approach studied in Dayanik

and Karatzas [2003] for solving optimal stopping problems of one-dimensional reg-

ular diffusions of the form:

V (x) = sup
τ∈S

Ex
[
e−ρτh(Xτ )

]
, x ∈ I (2.2)

where S is the class of all F-measurable stopping times. The function V (·)
is referred to as the value function. We start by giving some important results and

definitions and then discuss a general framework to solve (2.2) in Sections 2.3.1 and

2.3.2.

Let Hr = inf{t ≥ 0 : Xt = r} be the first hitting time of a level r ∈ I by

X. The regularity property of X has a few important consequences. Firstly, given

D = (l, r) ⊂ I, let τD be the first exit time of X from D. If x 6∈ D, then τD = 0
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Px-almost surely. If x ∈ D, then τD = Hl ∧ Hr Px-almost surely. We have the

following two results:

Proposition 2.2.1. If D is bounded, then mD(x) = Ex[τD] is bounded over D. In

particular τD is a.s. finite.

Proposition 2.2.2. There exists a continuous, strictly increasing function S(·) on

I such that for any l, r, x ∈ I with a ≤ l < x < r ≤ b, we have:

Px(τr < τl) =
S(x)− S(l)

S(r)− S(l)
, and Px(τl < τr) =

S(r)− S(x)

S(r)− S(l)
.

Any other function S̃ with these properties is an affine transformation of S. The

function S is unique in this sense and is called the ”scale function” of X.

The scale function also satisfies AS(·) ≡ 0 where the second-order differential

operator:

Af(·) =
1

2
σ2(·)d

2f

dx2
(·) + µ(·) df

dx
(·) = 0 over I (2.3)

is the infinitesimal generator of X. The ordinary differential equation Af = ρf has

two linearly independent, positive solutions. These are uniquely determined up to

multiplication by a scalar, if we require one of them to be strictly increasing and the

other strictly decreasing. The increasing solution shall be denoted by ψ(·) and the

corresponding decreasing solution shall be denoted by φ(·). The respective boundary

conditions are ψ(a) = φ(b) = 0 (See Borodin and Salminen [2012] Chapter 2). We

also define the function F (·) by:

F (x) =
ψ(x)

φ(x)
(2.4)

for x ∈ I. Note that F (·) is strictly increasing over I. Furthermore, note that the

case ρ = 0; that is the non-discounted case, implies φ(x) = 1 and F (x) = S(x) =

ψ(x) for all x ∈ I.

In the general theory of optimal stopping, a well known characterisation of

the value function V (·) is given in terms of ρ-excessive functions of X; that is, the

non-negative functions f(·) satisfying:

f(x) ≥ Ex[e−ρτf(Xτ )], ∀τ ∈ S,∀x ∈ I

The idea of excessive functions is closely related to the concept of G-Concavity

which is defined as follows; let G : [c, d] → R be a strictly increasing function. A

6



real-valued function u is called G-concave on [c, d] if, for any a ≤ l < r ≤ b and

x ∈ [l, r], we have:

u(x) ≥ u(l)
G(r)−G(x)

G(r)−G(l)
+ u(r)

G(x)−G(l)

G(r)−G(l)
(2.5)

Lastly given the function F (·) defined in (2.4) we provide a definition of F-

differentiability which is essential in the discussion of the smooth-fit principle in

Section 2.3.3.

Definition 2.2.1. Let g : [c, d]→ R be any function. Define:

D+
F g(x) =

d+g

dF
= lim

y↓x

g(x)− g(y)

F (x)− F (y)

and

D−F g(x) =
d−g

dF
= lim

y↑x

g(x)− g(y)

F (x)− F (y)

provided that they exist. If D±F exist and are equal, then g(·) is said to be F -

differentiable at x.

2.3 Discounted Optimal Stopping

In this section we will consider Dayanik and Karatzas [2003]’s approach for problems

of the form described in (2.2) with ρ > 0. A similar characterisation follows for the

case when ρ = 0, also described in Dayanik and Karatzas [2003]. We also omit the

proofs of all results outlined in this section as the aim of the section is to serve as a

review of the methodology used in subsequent chapters.

In Section 2.3.1, we start by discussing Dayanik and Karatzas [2003]’s results

for the problem in (2.2) when defined over a closed and compact subset of I. In

Section 2.3.2 this is generalised further to cover problems defined over subsets of I
which have natural boundaries.

2.3.1 Problems defined over a closed and bounded subset of R

Suppose we start the diffusion X defined in (2.1) in a closed and bounded interval

[c, d] ⊂ I, and stop X as soon as it reaches one of the boundaries c or d. Let the

reward function h : [c, d] → R be a Borel-measurable, bounded function. In this

section we discuss the general method of solution outlined in Dayanik and Karatzas
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[2003] for the problem:

V (x) = sup
τ∈S

Ex
[
e−ρτh(Xτ )

]
, x ∈ [c, d] (2.6)

If h ≤ 0 over [c, d], then trivially V = 0 and τ∗ = ∞. Hence we shall

assume throughout that supx∈[c,d] h(x) > 0. It is well known in the general optimal

stopping theory, that the value function V (·) is the smallest ρ-excessive function

dominating h(·) (See Peskir and Shiryaev [2006]). Thus in order to characterise

V (·) in terms of a concave majorant of a transformation of h(·), the first natural

step is to characterise ρ-excessive functions as F -concave functions. This equivalence

is presented in Proposition 2.3.1 below and then used to specify V (·) in terms of

F -concave functions in Proposition 2.3.2.

Proposition 2.3.1 (Characterisation of ρ-excessive functions). For a given function

U : [c, d]→ [0,∞), the quotient U(·)/φ(·) is an F -concave function if and only if U(·)
is ρ-excessive.

Proposition 2.3.2 (Characterisation of the Value function). The value function

V (·) of the problem described in (2.6) is the smallest non-negative majorant of h(·)
such that V (·)/φ(·) is F -concave on [c, d].

Proposition 2.3.2 fully characterizes the value function V (·) and if non-

negative F -concave majorants of h were geometrically easy to find, this result would

be enough. However this is not the case in general and hence further conditions

are necessary. Note that the definition of F -concavity (see (2.5)) implies that the

connection between F -concavity and concavity follows by changing the underlying

space from I to F (I). This provides a way of determining V (·) geometrically, since

concave majorants can be determined easily as seen in Figure 2.1.

Proposition 2.3.3. Let W (·) be the smallest non-negative concave majorant of

H := (h/φ)◦F−1 on [F (c), F (d)], where F−1 is the inverse of the strictly increasing

function F (·) defined in (2.4). Then V (x) = φ(x)W (F (x)), for every x ∈ [c, d].

Note that if h(·) is continuous on [c,d], then V (·) is also continuous on [c, d]

since ψ(·), φ(·) and F (·) are continuous on I. Furthermore it is worth noting that

since H := (h/φ) ◦ F−1 is well defined everywhere over the closed and bounded

set [F (c), F (d)], the smallest non-negative concave majorant W (·) is well-defined.

Define the stopping region Γ and the corresponding stopping time τ∗ by:

Γ := {x ∈ [c, d] : V (x) = h(x)} and τ∗ := inf{t ≥ 0 : Xt ∈ Γ}.

8



H(y)
H(y)

yȳB y
B

Figure 2.1: Stylized representation of the function H(y) described in Proposition 2.3.3 as
a function of y = F (x). The corresponding non-negative concave majorant W is

determined by the dashed chord joining H(ȳB) to H(y
B

).

The following proposition gives conditions verifying optimality.

Proposition 2.3.4. If h is continuous on [c, d], then τ∗ is an optimal stopping rule.

We have given an outline of the main results discussed in Dayanik and

Karatzas [2003] for discounted optimal stopping problems of one-dimensional diffu-

sions over sets of the form [c, d] ⊂ I. It is worth noting however that even though

we omit to include non-discounted optimal stopping here, a discounted problem for

one dimensional diffusions can always be re-written as a non-discounted optimal

stopping problem. Consider a standard Brownian Motion B on [F (c), F (d)] and let

W and H be defined as in Proposition 2.3.3. It can be shown that in fact we have:

W (y) = sup
τ≥0

Ey[H(Bτ )] y ∈ [F (c), F (d)], (2.7)

and if h is continuous over [c, d], then H is also continuous over [F (c), F (d)]. A

similar result to Proposition 2.3.4 gives us that the problem in (2.7) also has an

optimal stopping time τ̃∗ and a corresponding optimal stopping region Γ̃. In fact

Γ̃ = {y ∈ [F (c), F (d)] : W (y) = H(y)} giving Γ = F−1(Γ̃).

2.3.2 Problems with Natural boundaries

In this section we provide an overview of how the results in Section 2.3.1 can be ex-

tended to cover problems over subsets (a, b) ⊆ I with natural boundaries. Consider
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a reward function h : (a, b)→ R which is bounded on every compact subset of (a, b)

and consider the optimal stopping problem:

V (x) = sup
τ∈S

Ex
[
e−ρτh(Xτ )

]
, x ∈ (a, b). (2.8)

A similar result as to the one discussed in Proposition 2.3.1 can be proved under

this framework.

Proposition 2.3.5. For a function U : (a, b) → [0,∞), U(·)/φ(·) is F -concave on

(a, b), if and only if U(x) ≥ Ex[e−ρτU(Xτ )] for every x ∈ (a, b) and τ ∈ S.

By moving away from the assumptions of a problem defined over a closed

and bounded set and the boundedness of h, further conditions that establish the

well-posedness of V (·) are required. These are given in Proposition 2.3.6.

Proposition 2.3.6. We have either V = ∞ on (a, b), or V (x) < ∞ for all x ∈
(a, b). Moreover, V (x) <∞ for every x ∈ (a, b), if and only if

la := lim sup
x↓a

h+(x)

φ(x)
and lb := lim sup

x↑b

h+(x)

ψ(x)
(2.9)

are both finite.

We assume in the remainder of the subsection that the quantities la and lb

are both finite. This implies that limx↓a V (x)/φ(x) = la and limx↑b V (x)/φ(x) = lb.

Under these assumptions, similar results to those discussed in Section 2.3.1 can be

stated.

Proposition 2.3.7. The value function V (·) is the smallest non-negative majorant

of h(·) on (a, b) such that V (·)/φ(·) is F -concave on (a, b).

Proposition 2.3.8. Let W : [0,∞) → R be the smallest non-negative concave

majorant of:

H(y) =


h(F−1(y))
φ(F−1(y))

, if y > 0

la if y = 0
(2.10)

Then V (x) = φ(x)W (F (x)) for every x ∈ (a, b). Furthermore W (0) = 0 and W (·)
is continuous at 0.

Define again:

Γ := {x ∈ (a, b) : V (x) = h(x)} and τ∗ := inf{t ≥ 0 : Xt ∈ Γ} (2.11)
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Theorem 2.3.9. The value function V (·) is continuous on (a, b). If h : (a, b)→ R
is continuous, and la = lb = 0, then τ∗ of (2.11) is an optimal stopping time.

The conditions necessary for Theorem 2.3.9 will be prevalent throughout our

work. These conditions allow us to further characterise the optimal stopping time

as a hitting time as discussed in the following result. The proof of this result is

not part of the discussion in Dayanik and Karatzas [2003] and is relegated to the

Appendix.

Corollary 2.3.10. If h : (a, b)→ R is continuous, and la = lb = 0, then the optimal

stopping time τ∗ is a hitting time.

2.3.3 The Smooth-Fit Principle

In the previous sections we have characterized the stopping region Γ to be the subset

of I where V = h, and the continuation region C as the region in I where V majorizes

h. A well known result in the general theory of optimal stopping characterizes the

value function over the the boundary δC; and is known as the smooth-fit principle. As

the name implies this notion defines properties relating to the smoothness properties

of V on δC. Dayanik and Karatzas [2003] present an alternative but equivalent

specification of this result using the idea of F -differentiation outlined in Definition

2.2.1. The main result discussed in Dayanik and Karatzas [2003] is stated below.

The result is stated in-line with the framework of Section 2.3.2. However this can

easily be re-stated for optimal stopping problems defined over closed and bounded

subsets of I.

Proposition 2.3.11. At every x ∈ Γ where h(·)/φ(·) is F -differentiable we have

V (·)/φ(·) is also F -differentiable. Furthermore the F -derivatives of both functions

agree at x:
d

dF

h

φ
(x) =

d

dF

V

φ
(x)

Note that Proposition 2.3.11 requires further assumptions on h than those re-

quired in Sections 2.3.1 and 2.3.2. Since the reward functions we consider throughout

our work are smooth enough over I, we do not need to discuss further generalisations

of this result here. However it is worth noting that Dayanik and Karatzas [2003]

give further conditions for the case when h is continuous but not differentiable (See

Section 7 ).
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Chapter 3

Partial Liquidation under

Reference Dependent

Preferences

3.1 Introduction

Prospect theory was proposed by Kahneman and Tversky [1979] and extended

by Tversky and Kahneman [1992]. Under prospect theory, utility is reference-

dependent so is defined over gains and losses relative to a reference level, rather

than over final wealth. The utility function exhibits concavity in the domain of

gains and convexity in the domain of losses, and so is S-shaped. It is steeper for

losses than for gains, a feature known as loss aversion. Prospect theory was orig-

inally developed to better fit decision making behavior observed in experimental

studies.

In recent years, optimal stopping models employing reference-dependent pref-

erences have been developed in order to understand dynamic behavior of individuals

with such preferences and to see to what extent the theory can be used to explain

both experimental and empirically observed behavior. A strand of this literature,

beginning with Kyle et al. [2006], has considered problems of optimal sale timing of

risky assets under reference-dependent preferences. In this chapter we will extend

the model of Kyle et al. [2006] to consider the question of partial liquidation of

assets. Indeed Kyle et al. [2006] remark “ ...it would be of interest to incorporate

partial liquidation in our model” (p284).

We propose an infinite horizon optimal stopping model whereby an investor

with S-shaped reference-dependent preferences can sell their divisible asset position
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at times of their choosing in the future. They derive utility from gains and losses

relative to a reference level and utility is realized at the time when they sell their

last tranche of asset.

We first give a general result which allows for a multiple stopping problem

(where stopping times are allowed to coincide) to be viewed as a sequence of standard

optimal stopping problems. This result is then applied to a model where utility is

given by piece-wise exponential functions, steeper for losses than for gains, and the

asset price follows a Brownian motion with drift. These explicit calculations enable

us to compare to the paper of Kyle et al. [2006] who solve the block-sale case under

similar modeling assumptions.

Our main finding is in showing that in the extended Kyle et al. [2006] model,

the investor engages in partial sales. This represents the first time it has been

shown that partial liquidation can occur under an S-shaped utility function. It is in

contrast to the finding in Henderson [2012] where under the Kahneman-Tversky S-

shaped utility function and exponential Brownian motion, the agent did not choose

to partially sell an asset. Under our framework, if the agent sells, they will always

sell at two distinct thresholds, thus partaking in partial liquidation. This is shown

to be true under the assumption that the agent holds two units of claim of the same

asset, but the result can be extended easily to a more general case with N > 0 units

of claim. The agent’s decisions on where to sell depend on the the price dynamics of

the underlying asset and the value of the parameters determining the agent’s utility

function, particularly risk aversion.

By adopting a version of the model presented in Kyle et al. [2006] with the

inclusion of a discount factor with respect to time, we recover tractable solutions

for both the block sale problem and the partial liquidation problem.

Researchers are interested in modeling investor trading behavior under S-

shaped reference-dependent preferences (of prospect theory) to see if it can bet-

ter explain stylized facts in the empirical and experimental data. In particular,

reference-dependence is a long standing explanation of why individual investors tend

to sell winners too early and ride losers too long, a behavior called the disposition

effect (Shefrin and Statman (1985)). In this vein, Kyle et al. [2006], Henderson

[2012], Barberis and Xiong [2012] and Ingersoll and Jin [2013] contribute optimal

stopping models for an investor with reference-dependent preferences under differing

assumptions. Kyle et al. [2006] and Henderson [2012] treat one-shot or block sale op-

timal stopping problems under alternative assumptions on the S shaped utility and

price processes. In particular, Henderson [2012] contributed a model whereby the

investor sells at a loss voluntarily. This provided a better match to the disposition
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effect (the tendency to sell more readily at a gain than at a loss, see Odean [1998]).

Henderson [2012] also considers partial liquidation but finds under the Kahneman-

Tversky S-shaped value function and exponential Brownian motion, the agent did

not choose to partially sell.

Recent laboratory experiments of Magnani [2017] (also Lien and Zheng

[2015], Magnani [2015]) have been designed to test predictions of S-shaped reference

dependent preferences in a dynamic setting - that decision makers delay realizing

disappointing outcomes but rush to realize outcomes that are better than expected.

In their experiment, subjects choose when to stop an exogenous stochastic process

and most tend to stop at a lower level than the risk-neutral upper threshold and de-

lay capitulating until the process reaches a point significantly below the risk-neutral

lower threshold. Imas [2016] studies how realized and paper losses affect behavior

in an experiment where subjects make a sequence of investment decisions. In one of

the treatments of this experiment, subjects decide whether to realize the outcome

of the investment in the middle of the sequence and are found to be more likely to

realize gains than losses.

Barberis and Xiong [2012], Ingersoll and Jin [2013] (and also He and Yang

[2019]) consider realization utility models whereby investors treat their investing

experience as a series of investment episodes, and receive utility from each individual

sale at the time of sale. Mathematically, they sum up the utility of each individual

sale and use a discount factor to model investors’ tendency to realize gains early and

losses late. Barberis and Xiong [2012] assume a piece-wise linear utility function and

they find that the investors never voluntarily sell a stock at a loss. Ingersoll and Jin

[2013] extend the model by assuming an S-shaped utility function and find that the

investors voluntarily sell a stock both at a gain and at a loss. Recently, He and Yang

[2019] extend to include an adaptive reference point which adapts to the stock’s prior

gain or loss. However, each of these models is separable, in that multiple identical

units of assets would be sold simultaneously at the same threshold. None address

the question of partial liquidation.

Our aim in this chapter is to give a simple, tractable optimal stopping model

with S-shape reference-dependent preferences where partial sales do arise as an op-

timal solution. We employ the constructive potential-theoretic solution methods

developed by Dayanik and Karatzas [2003] for optimal stopping of linear diffusions.

This approach will be particularly useful for our problem as the smooth-fit prin-

ciple does not apply everywhere because of the non-differentiability of the utility

function, making the usual variational approach more challenging to apply. One-

dimensional optimal stopping problems have been analysed by exploiting the rela-
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tionship between functional concavity and r-excessivity (Dynkin [1965], Dynkin and

Yushkevich [1969]) which has been applied by Dayanik and Karatzas [2003]. See

also Alvarez [2001] and Alvarez et al. [2003] for related techniques. Carmona and

Dayanik [2008] extend the methodology to consider an optimal multiple stopping

problem for a regular diffusion process posed in the context of American options

when the holder has a number of exercise rights. To make the problem non-trivial

it is assumed that the holder chooses the consecutive stopping times with a strictly

positive break period (otherwise the holder would use all his rights at the same

time). It is difficult to explicitly determine the solution and Carmona and Dayanik

[2008] describe a recursive algorithm. In contrast, here in our problem we do not

wish to impose any breaks between stopping times, but rather, formulate a model

setting where it may be optimal to have such breaks. Finally, direct methods for

optimal stopping have also been used in stochastic switching problems (Bayraktar

and Egami [2010]) and similar ideas are employed by Henderson and Hobson [2011]

to solve a problem involving a perfectly divisible tranche of options on an asset with

diffusion price process.

One strand of the recent literature has concerned itself with portfolio opti-

mization (optimal control) under prospect theory and examples of this work include

Jin and Yu Zhou [2008] and Carassus and Rasonyi [2015]. Another focus of the

recent literature is on the probability weighting of prospect theory. However, prob-

ability weighting leads to a time-inconsistency and thus a difference in behaviour of

naive and sophisticated agents, see Barberis [2012]. Henderson et al. [2017] (building

on seminal work of Xu et al. [2013]) study agents who can pre-commit to a strategy

and show that under some assumptions (satisfied by the models of interest including

the Kahneman and Tversky [1979] and Tversky and Kahneman [1992] specification)

it consists of a stop-loss threshold together with a continuous distribution on gains.

However, recent results (Ebert and Strack [2015], also Henderson et al. [2017]) have

shown that naive prospect theory agents never stop gambling. We focus in this

chapter on reference-dependent S shaped preferences in the absence of probability

weighting and extend the literature in the direction of holding a quantity of asset

rather than just one unit.

3.2 General Framework

3.2.1 The Partial Liquidation Problem

Consider an investor who is holding N ≥ 1 units of claim on an asset with current

price Yt. The investor is able to liquidate or sell the position in the asset at any
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time in the future. They can choose times τi; i = 1, ..., N at which to liquidate

their N units of the claim, and hence is able to partially liquidate their divisible

position. We will write τ1 ≥ ... ≥ τN so τi denotes the sale time when there are i

units remaining in the portfolio. It is worth noting that this formulation allows for

units i and i+ 1 to be liquidated at the same time point by setting τN−i = τN−i−1.

It is however assumed that there is no terminal time to this problem; that is, the

problem is formulated over an infinite time horizon1.

For each unit i, the investor receives payoff hi(Yτi) where the hi(·) are non-

decreasing functions, and compares this amount to a corresponding reference level

hiR. As is often the case in the literature, an interpretation of hiR is the break-even

level or the amount paid for the claim on the asset itself, and we will later specialize

to this choice. hiR can be assumed to be given constants since by definition they are

known a priori.

We would like a formulation in which the potential partial sales are not inde-

pendent (so delaying a partial sale will impact on future sales) and so our investor

considers their position as an investment episode which is closed and valued once the

final partial sale takes place. This might be appropriate for institutional investors

who are more likely to view investments in terms of overall portfolio position. Under

this interpretation, the investor’s problem can be written as:

VN (y, 0) = sup
τ1≥···≥τN

E

[
e−ρτ1U

(
N∑
i=1

(hi(Yτi)− hiR)

)
|Y0 = y

]
(3.1)

where utility function U is an increasing function. Later we will specialize to the

reference-dependent S-shaped U given in the next section. Note that the formulation

in (3.1) assumes that the investor receives no interest for cash flow i between the time

of liquidation τN−i and the time of the last liquidation τ1. Whilst this is a possible

improvement to the current formulation, in the spirit of being able to compare our

results with those presented in Kyle et al. [2006] this extension is omitted.

Whilst later we will assume a linear payoff function for each partial sale i.e.

hi(y) = y for all i, the methodology can be used to treat more complex payoffs. For

example, take N = 2, and call option payoffs h1(y) = (y − k1)+, h2(y) = (y − k2)+

with strikes k1 > k2. Denote by h1
R, h

2
R two different reference levels, with one

interpretation being the price paid for each option. Using a general ordering result

in Henderson et al. [2014], we know the options are exercised in increasing strike

1While it is possible to introduce a terminal time to a similar setting, the problem will need
to be approached differently since the methodology in Dayanik and Karatzas [2003] assumes an
infinite time horizon.
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order, and hence our solution method applies.

Whilst the inclusion of the discount term makes the one-dimensional problem

slightly different than that described in Kyle et al. [2006], this specification will only

make the solution of the multiple optimal stopping problem described in Section

3.3.1 more comprehensible. In fact, it is worth noting that similar results can also

be derived in the absence of discounting. The discounting with respect to τ1 also

captures the idea that there is an inter-dependency between the N partial sales.

This dependency between liquidations is emphasised by the fact that the agent will

consider the game to be terminated only once all liquidations have occurred, hence

the discounting with respect to τ1. Contrastingly, as shown in Henderson [2012] and

Barberis and Xiong [2012], if the investor instead considered each partial sale as an

independent investment episode then she would optimize:

sup
τ1≥···≥τN

E

[
N∑
i=1

e−ρτiU
(
hi(Yτi)− hiR

)
|Y0 = y

]
(3.2)

Whilst this captures the spirit of realization utility in Barberis and Xiong [2012],

whereby investors consider a series of investing “episodes”, mathematically, this

formulation splits into N independent stopping problems and thus does not capture

the inter-dependency we desire.

3.2.2 Reference-Dependent Preferences

When we present results for a specific model, we shall take the two-piece exponential

utility function used by Kyle et al. [2006]:

U(y) =

φ1(1− e−γ1y), if y ≥ 0

φ2(eγ2y − 1), if y < 0
(3.3)

where φ1, φ2, γ1, γ2 > 0. Above the reference point, the agent’s utility function is

a concave exponential function, with γ1 measuring the local absolute risk aversion.

Below the reference point, the value function is a convex exponential function, with

γ2 measuring the local absolute risk loving level. In addition, we assume φ1γ1 < φ2γ2

to ensure that the agent is loss averse, that is, more sensitive to losses than to gains

around the reference point, i.e. U ′(0−) > U ′(0+).
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3.2.3 The Price Process

Consider a complete probability space (Ω,F ,F,P) supporting a Brownian Motion

W = (Wt)t>0 and let Y = (Yt)t≥0 be a one dimensional time-homogeneous diffusion

process solving:

dYt = µ(Yt)dt+ σ(Yt)dWt (3.4)

for Borel functions2 µ : I → R and σ : I → R+ where I = (aI , bI) ⊆ R is the

state space of Yt with endpoints −∞ ≤ aI < bI ≤ ∞. Consider the infinitesimal

generator of Y on I, given by the second-order differential operator:

Lf(y) =
1

2
σ2(y)

d2f

dy2
(y) + µ(y)

df

dy
(y) = 0 y ∈ I (3.5)

Then as discussed in Itô et al. [2012] and Dayanik and Karatzas [2003], given ρ > 0,

the second order differential equation Lf = ρf has two linearly independent positive

solutions ψ(·) and φ(·) on I. These are uniquely determined up to multiplication

by a scalar factor, if we require one of them to be strictly increasing and the other

to be strictly decreasing. We will denote the increasing solution by ψ(·) and the

decreasing solution by φ(·). We shall also define the function F (·) by:

F (y) =
ψ(y)

φ(y)
(3.6)

which is well-defined and strictly increasing on I. The function F (·) is essential for

solving (3.1) as outlined in Proposition 2.3.8.

Specifically we specialize to the model used in Kyle et al. [2006] and hence

take:

dYt = µdt+ σdWt (3.7)

where µ and σ > 0 are constants and I = (−∞,∞). Given that Yt can be negative,

it is possible to think of Yt as a log-price process. Note that a similar problem

considering different price dynamics than the above is outlined in Henderson [2012],

where the Yt is assumed to be given by a Geometric Brownian Motion.

Given that the state space I has natural boundaries, the linearly independent

solutions to the differential equation Lf = ρf assume the boundary conditions

discussed in Section 2.3.2. They are given by ψ(y) = eβ1y and φ(y) = eβ2y with

2We assume that µ(·) and σ(·) are sufficiently regular so there exists a weak solution to the SDE.
See Revuz and Yor [2013].
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β2 < 0 < β1 given by:

β1 =
−µ+

√
µ2 + 2σ2ρ

σ2
and β2 =

−µ−
√
µ2 + 2σ2ρ

σ2
(3.8)

This gives F (y) = eβy with β = β1 − β2 =
2
√
µ2+2σ2ρ

σ2 > 0.

3.3 Solution to the Partial Liquidation Problem

3.3.1 The General Problem

An approach towards solving the optimal stopping problem outlined in (3.1) is

outlined in Kobylanski et al. [2011]. This approach breaks down the original optimal

stopping problem into N sub-problems. In Proposition 3.3.1 below we provide an

alternative construction and proof of how such a decomposition can be achieved. It

is worth noting that the result is in the same spirit of the discussion presented in

Kobylanski et al. [2011], particularly Theorem 3.1.

Denote by x the total gains or losses from previous sales, if any; sales which

are considered by the investor to persist in the current investment episode. Define:

VN (y, x) = sup
τ1≥···≥τN

E

[
e−ρτ1U

(
x+

N∑
i=1

(hi(Yτi)− hiR)

)
|Y0 = y

]

= sup
τ1≥···≥τN

E

[
e−ρτNE

[
e−ρ(τ1−τN )U

(
x+

N∑
i=1

(hi(Yτi)− hiR)

)
|FτN

]
|Y0 = y

]
(3.9)

We are primarily interested in (3.1), i.e. x = 0. The following result will facilitate

the decomposition of (3.9) into N sub-problems.

In order to be able to solve the problem in (3.9) we assume that the problem

satisfies the usual integrability condition3:

E

[
sup

0≤tN≤···≤t1<∞
|U

(
x+

N∑
i=1

(hi(Yti)− hiR)

)
|

]
<∞ (3.10)

Proposition 3.3.1. Let (Ω,F ,P) be a probability space and let Y be an Ito diffusion

process adapted to {Ft}t≥0 and f(·) is a strictly increasing continuous function.

3Note that in our case this is obvious since U(·) is bounded.
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Given:

E

[
sup

0≤tn≤···≤t1<∞
|f

(
n∑
i=1

hi(Yti)

)
|

]
<∞ (3.11)

then it follows that:

sup
τn≤···≤τ1

E

[
e−ρτ1f

(
n∑
i=1

hi(Yτi)

)
|Y0 = y

]

= sup
τn

E

e−ρτn( ess sup
τn−1≤···≤τ1
τn−1≥τn

E

[
e−ρ(τ1−τn)f

(
n∑
i=1

hi(Yτi)

)
|Fτn

])
|Y0 = y


Proof. The result follows if we show:

sup
τn≤···≤τ1

E

[
e−ρτ1f

(
n∑
i=1

hi(Yτi)

)
|Y0 = y

]

≥ sup
τn

E

e−ρτn( ess sup
τn−1≤···≤τ1
τn−1≥τn

E

[
e−ρ(τ1−τn)f

(
n∑
i=1

hi(Yτi)

)
|Fτn

])
|Y0 = y

 (3.12)

since the reverse inequality is trivial. Given an arbitrary stopping time τn consider

the random variable:

Z(τn−1,...,τ1) = E

[
e−ρ(τ1−τn)f

(
n∑
i=1

hi(Yτi)

)
|Fτn

]

and consider the family Γ = {Zα : α ∈ I} where I is the set of all (n − 1)

tuples of {Ft}-measurable stopping times (ξn−1, . . . , ξ1) satisfying τn ≤ ξn−1 ≤ · · · ≤
ξ1 almost surely. As shown in Lemma B.1.1 in Appendix B.1, the family Γ has the

lattice property and hence there exists a countable subset J ⊆ I where J = {αj :

j ∈ N} and:

Z∗ = ess sup
α∈I

Zα = lim
j→∞

Zαj with |Zα1 | ≤ |Zα2 | ≤ . . . P− a.s.

Using (3.11) and Jensen’s inequality we get E [|Z∗|] < ∞ and hence by the
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Dominated Convergence Theorem the right hand side of (3.12) becomes:

sup
τn

E
[
e−ρτn

(
ess sup
α∈I

Zα
)]

= sup
τn

lim
j↑∞

E
[
e−ρτnZαj

]
≤ sup

τn
sup

τn−1≤···≤τ1 : τn−1≥τn
E
[
e−ρτnZ(τn−1,...,τ1)

]

Assuming the condition in (3.10) applies, from Proposition 3.3.1 it follows

that for 1 ≤ n ≤ N :

Vn(y, x) = sup
τn≤···≤τ1

E

[
e−ρτ1U

(
x+

n∑
i=1

(hi(Yτi)− hiR)

)
|Y0 = y

]

= sup
τn

E

[
sup

τn−1≤···≤τ1 : τn−1≥τn
E

[
e−ρτ1U

(
x+

n∑
i=1

(hi(Yτi)− hiR)

)
|Fτn

]
|Y0 = y

]

= sup
τn

E
[
e−ρτnVn−1(Yτn , x+ hn(Yτn)− hnR)|Y0 = y

]
(3.13)

where V0(y, x) = U(x).

As discussed in Dayanik and Karatzas [2003], given the time-homogeneity of

the problem, the structure of the solution must be to stop when the price process

Y exits some sub-interval of I. Thus, the approach is to consider stopping times of

this form and choose the “best” such interval. We employ the theory in Dayanik and

Karatzas [2003], which is summarised and discussed in Chapter 2. In fact by using

the transformation of the reward function described in (2.10) and letting θ = F (y),

we can define:

gn(θ, x) =
Vn−1

(
F−1(θ), x+ hn(F−1(θ))− hnR

)
φ(F−1(θ))

. (3.14)

The solution of (3.13) is obtained by applying the following Proposition,

which is in the spirit of the methodology of Dayanik and Karatzas [2003], specifically

Proposition 2.3.8.

Proposition 3.3.2. Let θ = S(y) where y ∈ (aI , bI) and let gn(θ, x) be defined as

in (3.14) with:

ln−1
aI = lim sup

y↓αI

Vn−1(y, x+ hn(y)− hnR)

φ(y)
= 0

and

ln−1
βI

= lim sup
y↑βI

Vn−1(y, x+ hn(y)− hnR)

ψ(y)
= 0.
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Furthermore let ḡn(θ, x) be the smallest non-negative concave majorant of:

G(θ, x) =

gn(θ, x), for θ > 0

ln−1
aI , for θ = 0

Then Vn(y, x) = φ(y)ḡn(F (y), x) for y ∈ (aI , bI). Furthermore, defining

Γ = {y ∈ (aI , bI) : Vn(y, x) = Vn−1(y, x + hn(y) − hR)}, the corresponding optimal

stopping time is given by τ∗n = inf{t ≥ 0 : Yt ∈ Γ}.

Note that by Propositions 2.3.6 and 2.3.8, the assumption ln−1
αI = ln−1

βI
= 0

in Proposition 3.3.2, yields that a minimal non-negative concave majorant ḡn(θ, x)

of gn(θ, x) exists. This means that as θ ↑ ∞, gn(θ, x) cannot be convex.

3.3.2 Piece-wise exponential utility and drifting Brownian motion

Having obtained such a characterization for the value function under partial liqui-

dation, we shall apply the above methodology to the price process and preference

function defined in Sections 3.2.2 and 3.2.3 respectively. We shall limit our discus-

sion to the case when N = 2. The solutions for N > 2 can then be obtained through

the same approach but become slightly more unwieldy. Since our aim is to show

that the investor may partially liquidate, we only need consider N = 2 to show this.

We specialize to the case when the investor is selling or liquidating the asset

itself, so consider hi(y) = y for i = 1, . . . , N , with the common reference price

hiR = yR for i = 1, . . . , N . We also interpret the reference price yR as the price at

which the asset was purchased in the past.

Before stating the main result described above, we shall first re-state a version

of the results obtained by Kyle et al. [2006] and Henderson [2012] for the case of

N = 1 where we have included discounting; that is, when only block sales are

allowed.

Proposition 3.3.3. Consider the optimal liquidation problem in (3.1) with N = 1,

h1(y) = y and h1
R = yR and suppose that the price process (Yt)t≥0 is given by a

Brownian Motion with drift dYt = µdt+σdWt (see (3.7)) and the utility function U

is the S-shaped piece-wise exponential given by (3.3). If the agent stops, the stopping

level is ȳ1 > yR; defined by:

ȳ1 = yR +
1

γ1
ln

(
γ1 + β1

β1

)
. (3.15)

The proof is given in Section B.2 of the Appendix. We see from the above

Proposition for the block sale problem that, if the agent sells, they will always sell
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at a gain relative to the reference level. When one compares this solution to that

of the equivalent non-discounted problem discussed in Henderson [2012], apart from

the exclusion of the degenerate4 cases mentioned earlier, we also see that under our

framework the agent also never liquidates at break-even. The selling threshold ȳ1

in (3.15), still depends on the parameters determining the price dynamics of the

underlying asset and the agent’s preference structure, particularly risk aversion. As

expected, from (3.15), we see that ȳ1 decreases with an increase in γ1. An increase

in the expected rate of return µ or the volatility parameter σ pushes the selling

threshold higher. The selling threshold ȳ1 however decreases in ρ. This is because

with a higher discount rate, the agent becomes less interested in long term gains as

it is more advantageous to sell sooner. This is in fact the same reason why under our

formulation with discounting as opposed to Kyle et al. [2006] and Henderson [2012]

we do not obtain the degenerate case of never stopping, even when µ is very large.

Note that the aforementioned observations about ȳ1 follow from the fact that β1 as

defined in (3.8) is positive, decreasing in µ and σ and increasing in ρ. Discounting

is also the reason why there is no reason where the agent ”sells immediately” at all

prices, even when µ is large and negative.

Note that in their approach, Kyle et al. [2006] use a variational approach

which is challenging due to the S-shaped utility function. In fact, in their solution

they omit the case where the agent stops above break-even and only give solutions

to the parameter combinations leading to other, simpler cases.

We now consider the partial liquidation problem for an agent with the same

preference structure and holding a divisible asset with the same price dynamics as

the one considered in the block sale problem described in Proposition 3.3.3.

Proposition 3.3.4. Consider the optimal partial liquidation problem in (3.1) with

N = 2, h2(y) = h1(y) = y and h2
R = h1

R = yR and suppose that the price process

(Yt)t≥0 is given by a Brownian Motion with drift dYt = µdt+ σdWt (see (3.7)) and

the utility function U is the S-shaped piece-wise exponential given by (3.3). If the

agent stops, they will first sell at ȳ2 and then at ȳ1 where ȳ2 < ȳ1 and:

ȳ1 =yR +
1

γ1
ln

(
γ1 + β1

β1

)
(3.16)

ȳ2 =yR +
1

2γ1
ln

(
2γ1 + β1

β1

)
(3.17)

The proof is given in Section B.2 of the Appendix. Similar to the case when

4By degenerate cases we mean, scenarios when it is optimal for the agent to either never sell or
stop right away; that is, τ∗ =∞ or τ∗ = 0.
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only block sales are allowed (Proposition 3.3.3), the above proposition shows that

under partial liquidation, the behaviour of the investor still depends on the value of

β1; which could be viewed as an adjusted Sharpe ratio for the underlying risky asset,

and the agent’s risk aversion parameter γ1. Since ȳ2 < ȳ1, if the price reaches ȳ2, one

unit of asset is sold. If the price then reaches ȳ1, th final unit of asset will be sold.

Both ȳ1 and ȳ2 are decreasing with γ1; and via β1, increasing in µ and σ. As seen

in the proof of Proposition 3.3.4, the thresholds ȳ1 and ȳ2 are determined from the

transformed reward functions g1(θ) and g2(θ) and the corresponding non-negative

concave majorants ḡ1(θ) and ḡ2(θ), depicted in Figures 3.1a, 3.1b and 3.1c.
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(a) Plot of g1(θ) and ḡ1(θ)
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(b) Plot of ḡ1(θ) and g2(θ)
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(c) Plot of g2(θ) and ḡ2(θ).

Figure 3.1: Plots depicting the functions g1(θ), ḡ1(θ), g2(θ) and ḡ2(θ). (Parameter
Values: yR = 0.5, β1 = 0.67, β2 = −1.67, γ1 = 3, γ2=2, φ1 = 0.5 and φ2 = 0.9.)

It is also evident from (3.16) and (3.17) that after the agent sells the first

unit of asset at ȳ2, as either µ or σ increases, they are willing to wait further to sell

the second unit of asset. This is because as either of these parameters increases, the
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distance between the two price thresholds ȳ1 and ȳ2 increases. The opposite is true

for the discount rate ρ, and while the agent still chooses to liquidate at distinct prices

even for very large values of ρ, the distance between the two thresholds decreases

to 0.

Somewhat surprisingly, we see that for a fixed value of β1, the distance

between the two thresholds does not always decrease with a higher value of γ1; that

is, after selling the first unit of claim at ȳ2(γ1), an agent with a higher risk aversion

might choose to sell their second unit at a price which is much further away from

ȳ2(γ1) than an agent with lower risk aversion. This means that after selling the first

unit of claim, the allowance for partial liquidation can make an agent with higher

risk aversion employ more risk than an agent with lower risk aversion, even when

the expected rate of return µ is negative. This relation can be seen more clearly in

Figure 3.2 below.
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Figure 3.2: The distance between the two thresholds ȳ1 − ȳ2 for γ1 ∈ (0, 1) and
β1 = 0.2

Whilst the inclusion of the discount factor does change the overall structure of

the solution when compared to that given in Kyle et al. [2006] and Henderson [2012]

for the case of N = 1, the solution still captures the same essence of the solution

given in Kyle et al. [2006] and Henderson [2012] for the cases that matter. In fact,

the inclusion of the discount factor removes from the solution the degenerate cases

where the agent either sells right away or never sells; both present in the solution

of the equivalent non-discounted problem.

Unlike the result obtained in Henderson [2012] for liquidation with a divisible

asset under a Cumulative Prospect Theory S-shaped utility function and exponen-
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tial Brownian motion, our solution does not split into several cases depending on

where the underlying parameters lie relative to each other. In fact as described in

Proposition 3.3.4, under our framework, the agent will always choose to split their

asset and liquidate first at price level ȳ2 and then at ȳ1.

3.4 Discussion and Conclusions

Researchers have studied multiple optimal stopping problems under standard con-

cave utility functions in other settings. For example, Grasselli and Henderson [2009],

Leung and Sircar [2009] and Henderson and Hobson [2011] consider the exercise of

American options under concave utilities and demonstrate that the optimal solution

involves exercising a tranche of (identical) options over different asset price thresh-

olds. Intuitively, a risk averse investor wants to spread the risk of continuing to

hold the options by exercising them separately. Similarly, intuition would tell us

that an investor who is risk seeking with convex utility, would prefer to engage in

a block sale. What might we expect from an S-shaped reference dependent utility?

Since there are concave and convex parts to the utility, we could reasonably expect

that either might be dominant, depending on parameters. Somewhat surprisingly,

Henderson [2012] showed that under Tversky and Kahneman [1992] S shaped func-

tion and exponential Brownian motion, the investor’s optimal strategy, when not

degenerate, always involved selling both units of asset together. In this chapter we

demonstrate that it is indeed possible to obtain a situation whereby the investor

chooses to sell her asset gradually rather than in a block.

Our results suggest that it would be worthwhile for experimental tests of opti-

mal stopping under reference-dependent preferences to extend their focus to consider

the question of how individuals sell a divisible quantity of asset. For example, in

the context of Magnani [2017]’s laboratory test, do subjects with a quantity of asset

still stop once (before the risk neutral upper threshold B∗) or do they sometimes

stop more than once (and where in relation to B∗)?

Potential further theoretical work may examine the additional feature of an

exogenous end-of-game whereby the asset is liquidated upon arrival of the first jump

of a Poisson process (see Kyle et al. [2006], Barberis and Xiong [2012] for examples).

Whilst injecting realism, this addition would be at the expense of the tractability

of the solution method and for this reason, we do not pursue it here.
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Chapter 4

Realisation Utility

4.1 Introduction

The concept of utility is classically related to the ideas of consumption or final

wealth. However a recent strand of literature, formalised primarily in Barberis and

Xiong [2012] suggests that investors also derive utility from realising gains and losses

when selling assets, where the amount of utility derived depends on the magnitude of

the realised gain and loss. They argue that realisation utility is principally the result

of two cognitive processes. Firstly, some investors tend to think of their investments

as a series of investment episodes wherein the purchase price and selling price play

a very principal role in how they think of each individual investment distinctively.

Secondly, they argue that some investors are predominantly driven to think of their

investments by a very simple idea: Selling each individual investment at a gain is

good whilst selling at a loss is bad. They argue that these ideas suggest that some

investors experience bursts in utility when realising gains and losses. Furthermore it

is worth noting that these ideas tend to naturally be more pronounced in individual

investors than in institutional (more sophisticated) investors since the latter tend

to view their investments in terms of the overall portfolio performance rather than

separate investment episodes.

Barberis and Xiong [2012] argue that realisation utility together with another

key ingredient provide an explanation to why various behavioural phenomena occur

when dealing with risk. One such anomaly is the Disposition effect which describes

the tendency of some investors to sell well-performing assets too early and sell under-

performing assets too late. They argue that the missing ingredient which ensures

that an agent realises a gain today instead of tomorrow and a loss tomorrow rather

than today, is an S-shaped utility function.
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In order to better understand the idea behind realisation utility, Barberis

and Xiong [2012] formulate a model where an investor invests all their wealth in a

risky asset whose price dynamics are modelled by a Geometric Brownian Motion

and has to decide when to sell the underlying, thus receiving realisation utility at

the moment of sale. The agent then instantaneously re-invests their proceeds after

transaction costs in a risky asset with price dynamics equivalent to the asset they

invested in a priori, thus essentially restarting the game. They approximate the

investor’s underlying S-shaped utility function with a piece-wise linear function and

find that under this framework, the investor never sells at a loss unless forced by a

market shock modelled by an exponential random time.

This model has been revisited and expanded upon primarily by Ingersoll

and Jin [2013] and He and Yang [2019]. In Ingersoll and Jin [2013] the authors

consider a very similar framework to that considered by Barberis and Xiong [2012]

whilst generalising the underlying utility function to a more general S-shaped utility

function. By making use of the homogeneity of the underlying reward function

and the Dynamic Programming Principle, the multiple optimal stopping problem

is re-written as a one-dimensional optimal stopping problem which they solve by

employing a PDE approach.

This framework is further generalised in He and Yang [2019]. The first differ-

ence from the aforementioned works is that besides realisation utility, He and Yang

[2019] suppose that the agent also derives utility from consuming their terminal

wealth. The agent’s reference level is also assumed to be non-constant in that it

adapts to the stock’s prior gains and losses. Thirdly, they consider a general func-

tional form for the agent’s realisation utility. Finally, they also assume that between

investment episodes, the investor is allowed to put all their wealth in a bank account

and then re-invest in the risky asset at some other time (i.e. the time between sale

and re-purchase of the risky asset is allowed to be not instantaneous). The solution

of this problem is expressed as a solution in the viscosity sense to the underlying

variational inequality. He and Yang [2019] show that two cases arise depending on

the value of the underlying parameters: it is either optimal for the agent to ignore

the bank account completely and re-invest in the risky asset instantaneously after

each investment episode, or to always only invest their wealth in the bank account.

Note that the problem described in He and Yang [2019] is not a portfolio alloca-

tion problem similar to the classic Merton portfolio allocation problem. This is

because under this formulation, at every time point all of the agent’s wealth has to

be invested solely in one of the two assets.

In this chapter, we revisit the problem first proposed in Barberis and Xiong
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[2012]. In Section 4.2 we first return to a model similar to that described in Ingersoll

and Jin [2013] and solve the problem for an agent whose preferences are described by

the classical Cumulative Prospect Theory S-shaped Utility proposed in Tversky and

Kahneman [1992] as opposed to a scaled version of this utility function considered in

Ingersoll and Jin [2013]. We solve this problem by utilising a different approach to

that in Ingersoll and Jin [2013]. We show that whilst under this set of assumptions,

the agent either waits and always sells at a profit, or they adopt a strategy where

besides selling at a profit they also can sell at a loss. The optimality of one strategy

over the other is shown to depend on the agent’s loss aversion.

In Section 4.3, we propose a new extension to the model described in Sec-

tion 4.2. We propose a new utility function in which the agent does not compare

their gains relative to the reference level only linearly, but also proportionally. The

inclusion of the proportional term was inspired by the structure of the optimal strat-

egy obtained in Section 4.2 which depends entirely on the value of the proportional

gains or losses made by the agent. The newly introduced proportional term also im-

poses an additional property in the agent’s preferences. We see that the closer the

agent gets to losing everything, the utility starts decreasing drastically and hence

the agent is penalised for big losses much more than under any other preference

function previously mentioned.

The two problems in this chapter are both multiple optimal stopping prob-

lems. This is also the case for the model considered in Chapter 3 and it is worth

mentioning here the key differences between these two optimal stopping formula-

tions. In this chapter we address the idea of realisation utility under the framework

introduced in Barberis and Xiong [2012]. For this model to make sense, the agent

adopts a ’narrow-framing’ viewpoint, since otherwise they would not consider real-

isation utility derived from each asset independently. In Chapter 3 we address the

problem of partial liquidation for an agent with reference dependent preferences,

and thus the agent is assumed to adapt a ’non-narrow-framing’ strategy. This is

the case since otherwise each partial sale would be considered as an independent

investment episode resulting in the agent never partaking in partial liquidation.

Decision framing was introduced by Tversky and Kahneman [1981] and refers

to the idea that how a person subjectively frames a transaction in their mind will

determine the utility they expect to receive. Narrow framing (see Barberis et al.

[2006]) occurs when an agent who is offered a new gamble evaluates it in isolation,

separately to their other risks.

While the models for realisation utility discussed in Barberis and Xiong

[2012], Ingersoll and Jin [2013], He and Yang [2019] and Sections 4.2 and 4.3 below
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provide good insights into the optimal behaviour of an investor experiencing a burst

in utility when realising gains and losses, they have some shortcomings. One of

the main drawbacks is the idea that after each investment episode the investor re-

invests all their wealth in an asset with the same price dynamics. This assumption

is used because it allows the underlying multiple optimal stopping problem to be

re-written as a one dimensional optimal stopping problem. However Barberis and

Xiong [2012] argue that this is also a reasonable assumption for an investor who

thinks of each individual investment independently, since for such investors utility

is derived separately from the gains and losses of each individual stock.

Another shortcoming of this model is the idea that at the start of each

investment episode the investor has to invest all their wealth in the risky asset (or the

riskless asset, when considering the formulation of He and Yang [2019]) and cannot

opt to allocate their holdings optimally between the two assets. While this idea

makes sense when one compares this model with the classical Merton-style portfolio

allocation problem, careful consideration must be made when treating realisation

utility. If one allows the investor to re-balance their portfolio infinitesimally often

as is the case under the assumptions of Merton [1969], then the idea of realisation

utility does not make much sense as the agent is then also possibly realising gains

and losses infinitesimally often. Furthermore, in order to integrate the bank account

as part of the model one has to integrate into the model some form of consumption

or final wealth term similar to the formulation in He and Yang [2019]. This problem

can be expressed in terms of a stochastic impulse control problem and is currently

a work in progress.

4.2 Realisation Utility and Cumulative Prospect The-

ory

Consider an agent who starts at t = 0 with initial wealth W0 = w, which they invest

into a risky asset with price process (Xt)t≥0 following a geometric Brownian Motion

with constant parameters µ and σ:

dXt = µXtdt+ σXtdBt (4.1)

where (Bt)t≥0 is a Brownian Motion adapted to the underlying filtration (Ft)t≥0.

Assume that the investor is constrained to invest all their wealth in the risky as-

set and their first objective is to choose a stopping time τ1 at which to liquidate

their position. Upon liquidation the agent derives realisation utility U(Wτ1−, Rτ1−)
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(suitably discounted). Their burst of realisation utility depends on their wealth at

the liquidation time; whose dynamics are described by the process (Wt)t≥0, and an

appropriate reference level described by the process (Rt)t≥0 which will be defined

further on. The agent then re-invests their wealth in the same risky asset. Upon

purchasing the risky asset the agent incurs a transaction cost proportional to their

total wealth and the game essentially restarts at τ1 with suitably defined wealth Wτ1

and reference level Rτ1 .

Given that the agent invests all their wealth in the underlying risky asset,

the agent’s wealth process (Wt)t≥0 satisfies:

Wt =


wXt
X0

for t ∈ [0, τ1)

Wτn
Xt
Xτn

for t ∈ [τn, τn+1) and n ≥ 1

KWτn− for t = τn, n ≥ 1

(4.2)

where Wt− = lims↑tWs and K ∈ (0, 1] is the proportion of wealth remaining after

transaction cost. As discussed in both Ingersoll and Jin [2013] and He and Yang

[2019], one interpretation of the constant K can be K = (1 − ks)/(1 + kp) where

ks ∈ [0, 1) is a proportional transaction cost the agent pays when selling the asset

and kp ∈ [0, 1) determines another proportional transaction cost paid by the investor

when re-purchasing the asset.

Furthermore by definition, the reference level (Rt)t≥0 captures the price level

against which the agent compares upon liquidation in order to calculate whether they

made a gain or loss. Thus it makes sense for (Rt)t≥0 to be a piece-wise constant,

right-continuous stochastic process since the agent will only change their reference

point every time they re-purchase the risky asset, and will keep it constant until their

next liquidation time. Hence a reasonable choice for the reference level Rt would

be the wealth level at the previous stopping time chosen by the agent, defined as

follows:

Rt =

Wτn , for t ∈ (τn, τn+1) and n ≥ 1

r, for t ∈ [0, τ1)
(4.3)

and let Rt− = lims↑tRs. Alternative formulations of the reference level are also

discussed in He and Yang [2019] where they consider a reference level which changes

continuously depending on the value of Wt.

The agent’s objective is to choose stopping times 0 ≤ τ1 ≤ τ2 ≤ ... at which

to realize gains and losses in order to maximize the value of the game described
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above1. This can be described by the following Optimal Stopping Problem:

Z(w, r) = sup
0≤τ1≤τ2≤...

Ew,r
[ ∞∑
n=1

e−ρτnU(Wτn−, Rτn−)I{τn<∞}
]

(4.4)

where we include discounting with respect to time through a constant discount rate

ρ > 0. For ease of notation, we write Ew,r[·] instead of the conditional expectation

E[ · |W0 = w,R0 = r].

Note that each time the agent liquidates their asset, they derive realisation

utility by comparing the gross value from sales to their reference level. In this

section, the S-shaped utility function U(w, r) centred around the reference level r,

which was first proposed by Tversky and Kahneman [1992], is imposed:

U(w, r) =

−λ(r − w)γ1 , for w ≤ r

(w − r)γ2 , for w > r
(4.5)

with 0 < γ1 < 1, 0 < γ2 < 1, λ ≥ 1 and Uw(r−, r) = Uw(r+, r) = ∞. The

parameters γ1 and γ2 capture relative risk aversion over losses and gains respectively

and λ captures the agent’s level of loss aversion. Barberis and Xiong [2012] use a

piece-wise linear function which is the special case with γ1 = γ2 = 1. A scaled version

of this utility function is considered in Ingersoll and Jin [2013] where preferences are

described by the function UIJ(w, r) defined by:

UIJ(w, r) =

−λrζ(1− w
r )aL , for w ≤ r

rζ(wr − 1)aG for w > r
(4.6)

where 0 < aG, aL < 1 and 0 < ζ ≤ min{aG, aL}. (4.5) is equivalent to (4.6) under

the case when γ1 = γ2 = aG = aL = ζ. In this section we will solve the problem

described in (4.4) by using a different methodology to that adopted in Ingersoll and

Jin [2013]; specifically the methodology outlined in Dayanik and Karatzas [2003]

summarised in Chapter 2. By focusing solely on the classical Cumulative Prospect

Theory utility function in (4.5) we are also able to distinguish some features unique

to this problem.

We take γ1 = γ2 = γ where γ ∈ (0, 1). This assumption is essential for our

solution as this implies that U(w, r) is homogeneous in w and r of degree γ. It

is also worth noting that through an experiment, Kahneman and Tversky [2013]

1Note that we assume that the agent records utility solely from the act of realising gains or
losses. In Section 4.4 we briefly describe an extension of this problem whereby an extra term is
added for utility derived from final wealth

32



estimated the value of the parameters γ1, γ2 and λ as γ1 = γ2 = 0.88 and λ = 2.25.

Thus this assumption on the parameter γ is still in line with the original findings in

Kahneman and Tversky [2013].

4.2.1 Well-Posedness Conditions and the Dynamic Programming

Principle

In solving the problem formulated in (4.4) we first provide a necessary and sufficient

condition for Z(w, r) to be finite in Proposition 4.2.2 below.

Remark 4.2.1. In proving the well-posedness conditions and the dynamic Program-

ming principle for (4.4), we assume that the family of stopping times {τn : n ∈ N}
is such that for every n ∈ N there exists a constant cn ∈ R+ giving |Wt∧τn | ≤ cn

almost surely. It is shown later on as part of our work in Section 4.2.2 that the

optimal stopping times {τn : n ∈ N} are in fact hitting times of Wt, and hence this

assumption is satisfied.

Proposition 4.2.2. Consider the problem defined in (4.4). Then Z(w, r) < ∞
⇐⇒ ρ ≥ γµ+ 1

2γ(γ − 1)σ2.

The proof of this result is relegated to Appendix C.2. Note that γµ+ 1
2γ(γ−

1)σ2 can be understood as the agent’s expected growth rate of realisation utility.

The condition in the above Proposition hence restricts this growth rate to be less

than the underlying discount rate, ρ. Otherwise, as we see in the second part of the

proof, it would always be optimal for the agent to postpone selling their asset.

Remark 4.2.3. Assume ρ ≥ γµ+ 1
2γ(γ − 1)σ2.

An important implication which follows from the homogeneity property of the

underlying S-shaped Utility function in (4.5) is that the value function of the problem

defined in (4.4) is also homogeneous in r of degree γ, as stated in Lemma 4.2.4 below.

The proof is omitted since this result follows directly from the homogeneity of U.

Lemma 4.2.4. Z(w,r) is homogeneous in r of degree γ.

Given the above well-posedness conditions we can show that the dynamic

programming principle holds for Z(w, r) as defined in (4.4).

Proposition 4.2.5. The following Dynamic Programming Principle holds:

Z(w, r) = sup
τ

Ew,r
[
e−ρτ

(
U(Wτ−, Rτ−) + Z(KWτ−, KWτ−)

)
I{τ<∞}

]
(4.7)
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A proof is given in Appendix C.2. The above dynamic programming principle

captures the idea laid out in the description of the problem, that the agent essentially

restarts the same game at every liquidation point.

4.2.2 Solution

Having established the conditions outlined in Propositions 4.2.2 and 4.2.5 above, in

this section we will approach the problem described in (4.7) following the method-

ology outlined in Dayanik and Karatzas [2003], summarised in Chapter 2.

For a general C2 function f : R+ → R, consider the infinitesimal generator

of geometric Brownian Motion in (4.1) described by the second order differential

operator:

Af(x) =
1

2
σ2x2 d2f

dx2
(x) + µx

df

dx
(x)

Given the underlying state space I = (0,∞), the discussion in Chapter 2 outlines

that the ordinary differential equation Au = ρu on I has two linearly independent

solutions ψ(·) (increasing) and φ(·) (decreasing) which are uniquely determined up

to multiplication by a scalar and satisfy the boundary conditions limx↑∞ φ(x) =

ψ(0) = 0. this gives ψ(x) = xβ and φ(x) = xα, where α < 0 < β satisfy:

α = σ−2

[
− (µ− 1

2
σ2)−

√
(µ− 1

2
σ2)2 + 2ρσ2

]
(4.8)

β = σ−2

[
− (µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2ρσ2

]
(4.9)

Note that for x ∈ I, ψ(x) is monotonically increasing and φ(x) is monotonically

decreasing. Lastly define the function F (x) = ψ(x)/φ(x) = xβ−α. The function F (·)
is increasing over I. We hence let y = F (x) for x ∈ I with inverse x = F−1(y) =

y
1

β−α for y ∈ (0,∞). As seen in our discussion in Chapter 2, these functions will

play an important role in solving the optimal stopping problem in (4.7). At this

point, we observe that the condition in Proposition 4.2.2, ρ ≥ γµ+ 1
2γ(γ− 1)σ2 can

equivalently be expressed in terms of β as: γ ≤ β.

Define V (w) = Z(w,w) to be the value of the game when both initial wealth

and reference level are equal to w. Then:

V (w) = sup
τ

Ew
[
e−ρτ

(
U(Wτ−, w) + V (Wτ )

)
I{τ<∞}

]
. (4.10)

We will first solve the optimal stopping problem in (4.10) above. The solution of

(4.7) will follow from the solution of this problem. By the homogeneity property of
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the value function given in Lemma 4.2.4 above, we have:

wγV (1) = sup
τ

Ew
[
e−ρτ

(
wγU(Wτ−/w, 1) + (KWτ−)γV (1)

))
I{τ<∞}

]
(4.11)

and hence the constant V (1) solves:

V (1) = sup
τ

Ew
[
e−ρτ

(
U(Wτ−/w, 1) + (KWτ−/w)γV (1)

)
I{τ<∞}

]
. (4.12)

Substituting for the asset price Xt we get:

V (1) = sup
τ

E
[
e−ρτ

(
U(Xτ , 1) + (KXτ )γV (1)

)
I{τ<∞}|X0 = 1

]
. (4.13)

Temporarily fix V (1) = v. This gives the following optimal stopping problem:

H(v, τ) = E
[
e−ρτ

(
U(Xτ , 1) + (KXτ )γv

)
I{τ<∞}|X0 = 1

]
(4.14)

H(v) = sup
τ
H(v, τ) (4.15)

By solving the optimal stopping problem in (4.15) for fixed v, we can then determine

the solution of (4.13) by determining v∗ satisfying H(v∗) = v∗. A uniqueness result

to this fixed point problem is provided in the following Lemma.

Lemma 4.2.6. Let H(v) be as defined in (4.14) and (4.15). The optimal stopping

time τ∗ is a hitting time. Furthermore if a solution to the fixed point problem

H(v∗) = v∗ exists, then it is unique.

The proof of Lemma 4.2.6 is relegated to Appendix C.2. Some time was

dedicated to try and obtain a result on the existence of a solution the fixed point

problem H(v∗) = v∗. While numerically we could not determine cases when such a

solution doesn’t exist, we were unsuccessful in deriving a general result at this stage.

However as part of our work we will later discuss a result (Proposition 4.2.12) which

is closely related to the characterisation of the solution of the fixed point problem

H(v∗) = v∗.

Remark 4.2.7. Suppose that the optimal stopping strategy of (4.15) is a one thresh-

old strategy; that is, a = 0 where a is as defined in the proof of Lemma 4.2.6. Then

a solution to the fixed point problem H(v∗) = v∗ always exists. This follows from

the proof of Lemma 4.2.6 by noting that this yields:

H(v) = H(0) + C̃v
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and when τ∗ = Hb with b ≥ 1, we have H(0) > 0 and C̃ = E1

[
e−ρHb(KXHb)

γ
]
< 1.

In solving the problem described in (4.14) and (4.15) above, we shall consider

the same problem with a non-fixed starting value X0. The solution of the above

problem will then follow as a special case of this problem with X0 = 1. Thus for

x ∈ (0,∞), consider the following complimentary problem:

H(v, x, τ) = E
[
e−ρτ

(
U(Xτ , 1) + (KXτ )γv

)
I{τ<∞}|X0 = x

]
(4.16)

H(v, x) = sup
τ
H(v, x, τ) (4.17)

Denote the corresponding reward function of the problem in (4.16) and (4.17)

by hv(x), given by:

hv(x) = Kγvxγ + U(x, 1) (4.18)

where hv : (0,∞) → R is bounded on every compact subset of R+/{0}. Let-

ting y = F (x) we define the corresponding transformed reward function gv(y) =

hv(F
−1(y))/φ(F−1(y)), given by:

gv(y) =

Kγvy
γ−α
β−α +

(
y

1
β−α − 1

)γ
y
−α
β−α for y ≥ 1

Kγvy
γ−α
β−α − λ

(
1− y

1
β−α
)γ
y
−α
β−α for y < 1

This will allow us to follow the methodology outlined in Chapter 2 to solve the

above problem.

The discussion of the geometric structure of the function gv(y) over R+ in

Appendix C.1 infers that the solution to the optimal stopping problem described in

(4.16) and (4.17) can take two general forms. The first class of solutions contains

strategies wherein the agent only sells at a profit. We will refer to this type of

solution as a one threshold strategy. The second class of solutions contains strategies

where the continuation region is comprised of two disconnected neighbourhoods; one

containing 0 and another neighbourhood containing the break-even point 1. This

means that the agent will either continue if they start at a deep loss or if they start

at a relatively small gain or loss. However since the starting value of X in (4.14)

and (4.15) is always 1, the neighbourhood around 0 is of no interest to us. Thus we

refer to the strategies contained in this class as two-threshold strategies.

In Proposition 4.2.8 below, the characterisation of the optimal stopping time,

the value function and the selling threshold for the case when the one-threshold

strategy is optimal is given. A similar characterisation is also given for the two

threshold strategy in Proposition 4.2.10. The proof of Proposition 4.2.10 is omitted
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as it relies on similar arguments to that used in Proposition 4.2.8.

Proposition 4.2.8. Consider the problem defined in (4.16) and (4.17) and let v ∈
R+ be fixed. Suppose that the one-threshold strategy is optimal. Then the optimal

stopping rule τ∗v takes the form τ∗v = inf{t ≥ 0 : Xt 6∈ C1} where C1 = (0, x̄v) and

x̄v > 1 solves:

Kγvx̄v =

((
β

β − γ

)
− x̄v

)
(x̄v − 1)γ−1. (4.19)

Furthermore we have:

H(v, x) =

Kγvxγ + (x− 1)γ for x ≥ x̄v(
Kγvx̄γ−βv + (x̄v − 1)γ x̄−βv

)
xβ for x < x̄v

(4.20)

The proof is given in Appendix C.2. The following corollary follows from the

above Proposition and offers a characterisation of the constant V (1) = v when the

one-threshold strategy is optimal. This result follows directly follows from the fact

that v satisfies v = H(v), where H(v) = H(v, 1).

Corollary 4.2.9. Under the assumptions of Proposition 4.2.8, V (1) = v satisfying

(4.13) solves:

V (1) =
x̄−βv (x̄v − 1)γ(
1−Kγ x̄γ−βv

) (4.21)

Proposition 4.2.10. Consider the problem defined in (4.16) and (4.17) and fix

v ∈ R+. Suppose the two threshold strategy is optimal. Then the optimal stopping

rule τ∗v takes the form τ∗v = inf{t ≥ 0 : Xt 6∈ C2} with C2 = (0, x̂v) ∪ (xv, x̄v), where

xv < 1 < x̄v satisfy the following system of equations:

Kγv
(
x̄γ−αv − xγ−αv

)
+
(
x̄v − 1

)γ
x̄−α +

(
1− xv

)γ
x−αv

x̄β−αv − xβ−αv

(4.22)

=
1

β − α

[
(γ − α)Kγvxγ−βv + γλ(1− xv)γ−1x1−β

v + αλx−βv (1− xv)γ
]

(4.23)

=
1

β − α

[
(γ − α)Kγvx̄γ−βv + γ(x̄v − 1)γ−1x̄1−β

v − αx̄−βv (x̄v − 1)γ
]

(4.24)

whereas x̂v satisfies:

Kγ(β − γ)vx̂γv = λ(1− x̂v)γ−1
(
(γ − β)x̂v + β

)
.
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Furthermore:

H(v, x) =



Kγvxγ + (x− 1)γ for x > x̄v

A(2)xβ +B(2)xα for xv ≤ x ≤ x̄v
Kγvxγ − λ(1− x)γ for x̂v < x < xv(
Kγvx̂γ−βv − λ(1− x̂v)γ x̂−βv

)
xβ for x ≤ x̂v

(4.25)

with

A(2)
v =

[
Kγv

(
x̄γ−αv − xγ−αv

)
+
(
x̄v − 1

)γ
x̄−α + λ

(
1− xv

)γ
x−αv

x̄β−αv − xβ−αv

]

B(2)
v =

[
Kγvxγv − λ(1− xv)γ

xαv
−(

xβ−αv

(
Kγv

(
x̄γ−αv − xγ−αv

)
+
(
x̄v − 1

)γ
x̄−αv + λ

(
1− xv

)γ
x−αv

)
x̄β−αv − xβ−αv

)]

Given that the variable v satisfies v = H(v, 1), for the case outlined in Propo-

sition 4.2.10, using (4.25), it follows that v satisfies v = A
(2)
v +B

(2)
v .

Shortly we will discuss how the above characterisations can be used to deter-

mine the optimality of the two strategies; that is, under which parameter regimes

would the agent optimally choose one strategy over the other. Before moving to-

wards this step, recall that in (4.13) we substituted the underlying process of the

problem from the wealth process Wt to the asset price process Xt. We hence note

that the optimal stopping rules arising from the assumptions of Propositions 4.2.8

and 4.2.10 can be re-written in terms of the wealth process by using (4.2). Since

by definition Ru = w over [0, τ∗v ) and since the game essentially restarts at every

liquidation point, we observe that under both scenarios τ∗v can be re-written as

τ∗v = inf{t ≥ 0 : Wt
Rt
6∈ C} where C = (0, x̄v) or C = (0, x̂v) ∪ (xv, x̄v) depending on

which of the two strategies described above is optimal. Thus the agent stops and

derives realisation utility only when the ratio of their wealth to current reference

level exits the continuation region C.
Given this characterisation of the optimal stopping rule τ∗v , the homogeneity

property allows us to also derive the solution of the original problem in (4.7). Recall
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that:

Z(w, r) = sup
τ

Ew,r
[
e−ρτ

(
U(Wτ−, Rτ−) + Z(KWτ−, KWτ−)

)
I{τ<∞}

]
= sup

τ
Ew,r

[
e−ρτ

(
Rγτ−U

(
Wτ−
Rτ−

, 1

)
+
(
KWτ−

)γ
Z(1, 1)

)
I{τ<∞}

]
= sup

τ
rγEw,r

[
e−ρτ

(
U

(
Wτ−
Rτ−

, 1

)
+

(
K
Wτ−
Rτ−

)γ
Z(1, 1)

)
I{τ<∞}

]
(4.26)

Given that Rt is constant between liquidation times, and noting that Z(1, 1) =

V (1) = v, we can re-write (4.26) as:

Z(w, r) = sup
τ
rγE

[
e−ρτ

(
U

(
Wτ−
r

, 1

)
+

(
K
Wτ−
r

)γ
V (1)

)
I{τ<∞}

∣∣∣∣ W0

R0
=
w

r

]
= sup

τ
rγE

[
e−ρτ

(
U

(
Xτ−, 1

)
+

(
KXτ−

)γ
V (1)

)
I{τ<∞}

∣∣∣∣ X0 =
w

r

]
(4.27)

The solution of this problem is a special case to the problem described in Propo-

sitions 4.2.8 and 4.2.10 above and the solution of (4.26) is outlined in Proposition

4.2.11 below for completeness.

Proposition 4.2.11. Consider the problem defined in (4.27) above. The optimal

stopping time is given by τ∗v = inf{t ≥ 0 : Wt
Rt
6∈ C} where C = (0, x̄v) if the one

threshold strategy is optimal or C = (xv, x̄v) otherwise. The characterisation of the

selling thresholds xv, x̄v is as given in Proposition 4.2.8 for the one threshold case

and Proposition 4.2.10 for the two threshold case. If the one threshold strategy is

optimal, Z(w, r) is given by:

Z(w, r) =

rγ
(
Kγv

(
w
r

)γ
+
(
(wr )− 1

)γ)
for w

r ≥ x̄v
rγ
(
Kγvx̄γ−βv + (x̄v − 1)γ x̄−βv

)(
w
r

)β
for w

r < x̄v
(4.28)

where v = V (1) is specified in (4.21). Otherwise,

Z(w, r) =



rγ
(
Kγv

(
w
r

)γ
+
(
(wr )− 1

)γ)
for x̄v ≤ w

r

rγA
(2)
v

(
w
r

)β
+ rγB

(2)
v

(
w
r

)α
for xv <

w
r < x̄v

rγ
(
Kγv

(
w
r

)γ − λ(1− (wr )
)γ)

for x̂v ≤w
r ≤ xv

rγ
(
Kγvx̂γ−βv − λ

(
1− x̂v

)γ
x̂−βv

)(
w
r

)β
for w

r < x̂v

(4.29)

where the constants A
(2)
v and B

(2)
v are as given in Proposition 4.2.10 and v = A

(2)
v +

39



B
(2)
v .

From (4.28) and (4.29), we note that the value function Z(w, r) is always

positive and hence it is always optimal for the agent to invest in the risky asset at

time 0 and subsequently to re-invest at all liquidation times. This is due to the fact

that the agent’s marginal utility is infinite at the reference level r and so it always

advantageous for the agent to enter and re-enter the game. In contrast, in Barberis

and Xiong [2012], the authors first assume that the value function is positive and

then exhibit a range of parameter values for which this holds. This is because under

their framework, it is not always optimal for the agent to enter (or re-enter) the

game, which is due to the fact that utility defined by a piece-wise linear function

provides finite marginal utility at the reference level.

Having completely characterised the two possible optimal solutions arising

for this particular problem, it is now possible to determine conditions on the un-

derlying parameters which distinguish between the two solutions. In fact by using

the characterisations of the value function under each of the two cases described in

Propositions 4.2.8 and 4.2.10, we show that there exists a critical value for the loss

aversion parameter λ which differentiates between the two solutions and determines

which of the two strategies is optimal. This result is outlined in Proposition 4.2.12

below and the idea behind it is borrowed from Proposition 1 in Ingersoll and Jin

[2013] which describes a similar condition for their specification.

Proposition 4.2.12. The problem described in (4.27) has a two threshold strategy

if and only if λ satisfies λ < λ∗ where:

λ∗ =
(x̄∗ − 1)γ−1x̄−β∗

(1− x∗)γ−1x−β∗
(4.30)

where the lower and upper thresholds 0 < x∗ < 1 < x̄∗ solve:

(γ − β)x+ β = γKγxγ−β (4.31)

The proof is given in Appendix C.2. Note that since the variables γ ∈ (0, 1),

β > γ and K ∈ (0, 1] are fixed, 4.31 has two solutions in (0,∞). This is because the

LHS is linear in x and the RHS is decreasing and convex in x.

Proposition 4.2.12 describes how the agent’s choice of strategy varies with

the parameters determining their preference structure; specifically λ and γ, and the

value of β which is determined by the underlying market dynamics. As discussed

within the proof of Proposition 4.2.12, this result follows from the observation that

when λ = λ∗, the value function determined by the one-threshold strategy described
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in (4.20) is equivalent to the value function determined by the two-threshold strategy

described in (4.25). Geometrically this coincides with the idea that when λ = λ∗,

the tangent line determining the smallest non-negative concave majorant of gv(y)

passes through the point (0, 0) and touches gv(y) tangentially at two points (y, gv(y))

and (ȳ, gv(ȳ)) with 0 < y < 1 < ȳ. An example of such a case is depicted in Figure

4.1 below.

0 0.2 0.4 0.6 0.8 1 1.2

y

-1

0

1

2
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g

v(y
)

g
v
(y)

Tangent line determining smallest non-negative concave majorant

Figure 4.1: The transformed reward function gv(y) and it’s tangent determining
the smallest non-negative concave majorant. (Parameter values: α = −1.5, β = 5,

K = 0.9, γ = 0.3, λ = 3.9025)

The definition of the threshold λ∗ described in (4.30) or equivalently (C.25)

offer some insight on how the agent’s strategy will change with the underlying pa-

rameters. In fact, as γ increases, given that x∗ < 1 < x̄∗, we see from (C.25) that

λ∗ will decrease towards 0. By definition the agent’s utility function U(·) becomes

steeper close to 0 on both the gains side and the losses side as γ decreases to 0.

This implies that the agent’s risk aversion on both the losses side and the gains side

increases as γ decreases and thus the agent is forced to realise their losses earlier.

Since we require λ > 1 for the problem to be economically feasible, this

means that for large enough γ close to β, we expect that the two-threshold strategy

will not be optimal. This effect is clearly visible in Figure 4.2 where as γ increases

towards β, the set of values of λ for which the agent adopts a two threshold strategy

shrinks rapidly. Note that if β is sufficiently close to γ this implies that the agent’s

growth rate for realisation utility γµ + 1
2γ(γ − 1)σ2 described in Proposition 4.2.2

is sufficiently close to the discount rate ρ. Under such scenarios, the agent is more

likely to wait since the effect of discounting is felt less.

In Figure 4.2 we also see that as λ changes, whilst the upper boundary is
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relatively stable close to 1, the lower threshold decreases until λ = λ∗, at which point

the lower threshold x∗ jumps downwards to 0. This discontinuity at λ∗ can also be

observed in the arguments used in the proof of Proposition 4.2.12. The existence of

the critical value λ∗ relies on the fact that the value function for the two-threshold

strategy decreases in λ whereas the value function of the one threshold strategy does

not depend on λ. Furthermore for λ = λ∗, the two value functions are equal and we

can still find a lower threshold x∗ which solves (4.31), implying that x∗ > 0. But

for λ > λ∗ the one-threshold strategy is optimal implying the discontinuity of x∗ at

λ∗.
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Figure 4.2: Plot illustrating how the optimal strategy changes as λ and γ are
varied. (Parameter values: α = −1.667, β = 0.667 and K=0.9.)

Figure 4.2 captures an important difference to the results obtained by In-

gersoll and Jin [2013] with preferences described by UIJ(w, r) as defined in (4.6).

From Figure 2 in Ingersoll and Jin [2013] (Page 732), one notices that under their

framework the agent is more likely to sell at a loss as the parameters αG and αL

increase; where αG and αL play a very similar role to γ in our model. Thus under

their framework as αG and αL decrease and the S-shape becomes more pronounced,

the loss threshold decreases. However this is contrary to what one expects when

dealing with S-shaped preferences since a more pronounced S-shape means that the

agent is more loss-averse. As shown in Figure 4.2, this relationship is captured by

our model, since the lower threshold increases as γ decreases.

Proposition 4.2.12 also captures the special case considered in Barberis and

Xiong [2012], when γ = 1, giving a piece-wise linear utility function. In fact plugging

γ = 1 in (4.30) and (4.31), we get λ∗ = xβ

x̄β
, and since β > 1, it is never optimal for

the agent to liquidate at a loss since λ∗ < 1.
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It is worth noting that in Figure 4.2 we also depict the deep-loss threshold

described in Propositions 4.2.10 and 4.2.11. The analytical characterisation of this

threshold as given in these Proposition is essential for completeness of the results

obtained. However it is worth mentioning that this threshold offers little insight as

it is relatively very close to 0 in value. In fact while a similar threshold exists for

the problem in Ingersoll and Jin [2013], they completely omit it from their analysis.

To conclude this section, by applying the methodology for optimal stopping

in Dayanik and Karatzas [2003], we have solved a liquidation problem for the Cumu-

lative Prospect Theory S-shaped Utility function, first introduced in Tversky and

Kahneman [1992]. Our model contains the model of Barberis and Xiong [2012] as a

special case. While comparing our solution to a similar problem derived in Ingersoll

and Jin [2013], we have also shown that even when considering the classical Cumu-

lative Prospect Theory utility in the realisation utility model devised in Barberis

and Xiong [2012], it might be optimal for the agent to sell at a loss. In the next

section we will provide a different new framework under which it is again optimal

for the agent to sell at a loss.
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4.3 Realisation Utility - An Alternative Model

In this section we extend the problem described in Section 4.2 and consider a new

utility specification inspired by the solution from the previous section which will

allow us to again obtain solutions which include both an upper (profitable) and a

lower (loss) selling boundary. Consider again the set-up described in Section 4.2

whilst considering the utility function defined by:

Ũ(w, r) =

−λ(r − w)γ1
(
w
r

)−η1 , for w ≤ r

(w − r)γ2
(
w
r

)−η2 , for w > r
(4.32)

with 0 < γ1, γ2 < 1, η1, η2 ≥ 0, λ ≥ 1, η2 < γ2 and Uw(r−, r) = Uw(r+, r) =

∞. Again the parameters γ1 and γ2 capture relative risk aversion over losses and

gains respectively and λ captures loss aversion.

The key difference from the S-shaped utility function defined in (4.5) in

Section 4.2 is the application of the multiplicative factors (wr )−η1 and (wr )−η2 on the

gains side and losses side respectively.

Note that all utility models considered thus far in the context of realisation

utility for a setting inspired by the work of Barberis and Xiong [2012] resulted in

optimal strategies which depend on the value of the agent’s proportion of wealth to

reference level. This means that the agent values the proportion w
r in these kind

of set-ups, thus inspiring us to include it as part of the agent’s preference charac-

terisation. Note that the inclusion of the scaling factors
(
w
r

)−η1 and
(
w
r

)−η2 on the

losses and gains sides respectively, take the form of scaling factors to the Cumula-

tive Prospect Theory specification considered in Section 4.2. These factors however

play a very different role from the scaling factors considered in the specification by

Ingersoll and Jin [2013] as they alter the shape of the utility function, particularly

on the losses side. This difference is due to the fact the scaling factors they consider

depend solely on the agent’s reference level which is constant between liquidations.

This has the effect of decreasing the agent’s loss aversion between liquidations when

compared to the classical Prospect Theory utility considered in Section 4.2, thus

making loss taking more probable.

The effects of the factors
(
w
r

)−η1 and
(
w
r

)−η2 in our model are two-fold and

can be observed in Figure 4.3 below. Firstly, whilst Ũ(w, r) is still concave on the

gains side, larger values of η2 ∈ (0, 1) contribute to a faster decrease in marginal

utility over the gains side. On the losses side, for η1 ∈ (0, 1), the utility is not

bounded below any more and the function Ũ(w, r) decreases to −∞ the closer we

get to 0, with the gradient getting steeper with larger values of η1. This means
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that the agent is highly penalised the closer they get to 0 or equivalently from

experiencing very big losses.

It is worth noting in fact, that this assumption in essence captures the inter-

play between two general ideas in utility theory:

1. The use of reference dependent preferences for realisation utility as proposed

by Barberis and Xiong [2012].

2. The idea that the agent experiences infinite marginal utility close to zero.

In fact, the main difference from the Cumulative Prospect Theory utility

function defined in (4.5) is that under the usual definition of reference dependent

preferences, the agent experiences decreasing marginal utility the closer they get to

losing everything, which is not the case any more in the model described in (4.32).

In developing a solution similar to the one discussed in Section 4.2, we again

impose the assumption that the parameters γ1, γ2 in (4.32) above satisfy γ1 = γ2 =

γ. This implies that the utility function defined in (4.32) is again homogeneous in

r of degree γ. We also impose the assumption η1 = η2 = η > 0, with η < γ; which

ensures that U is monotonically increasing. Whilst the assumption γ1 = γ2 = γ is

necessary for the discussion that follows, the second assumption; η1 = η2 = η does

not affect the general structure of the solution of the problem.
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Figure 4.3: Comparison of the KT-Utility defined in (4.5) and the generalised
KT-Utility defined in (4.32). (Parameter values: γ1 = γ2 = 0.5 and λ = 1.5.)

We again study the problem of an agent who has a position in a risky asset

who wishes to liquidate their position whilst optimising their expected realisation
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utility. The agent then reinvests their proceeds in the same asset and the game

essentially restarts. This leads us to characterise the agent’s problem as:

Z̄(w, r) = sup
0≤τ1≤τ2≤...

Ew,r
[ ∞∑
n=1

e−ρτnŨ(Wτn−, Rτn−)I{τn<∞}
]

(4.33)

where Wt is defined in (4.2), Rt is defined in (4.3), the underlying risky-asset price

process Xt defined in (4.1), U(w, r) defined in (4.32) and ρ > 0. The following

Proposition implies that the same well-posedness conditions to those imposed for

the problem discussed in Section 4.2 follow for this problem:

Proposition 4.3.1. Z̄(w, r) < ∞ ⇐⇒ ρ ≥ γµ + 1
2γ(γ − 1)σ2 (or equivalently

γ ≤ β).

A proof is given in Appendix C.4. In the remaining part of this Section we

will hence assume that the condition ρ ≥ γµ+ 1
2γ(γ − 1)σ2 or equivalently β ≥ γ is

satisfied. Notice that it follows that the value function of the problem described in

(4.33) is again homogeneous in r of degree γ; which follows from the homogeneity of

the underlying reward function. Furthermore the same argument developed in the

proof of Proposition 4.2.5 for the Dynamic Programming Principle would still hold.

Thus we state without proof the following Lemma and Proposition:

Lemma 4.3.2. Z̄(w, r) is homogeneous in r of degree γ.

Proposition 4.3.3. The following Dynamic Programming Principle holds:

Z̄(w, r) = sup
τ

Ew,r
[
e−ρτ

(
Ũ(Wτ−, Rτ−) + Z̄(KWτ−,KWτ−)

)
I{τ<∞}

]
. (4.34)

Let V̄ (w) = Z̄(w,w). Then applying Lemma 4.3.2, we can show that:

V̄ (1) = sup
τ

E
[
e−ρτ

(
Ũ(Xτ , 1) + (KXτ )γ V̄ (1)

)
I{τ<∞}|X0 = 1

]
(4.35)

and by temporarily fixing V̄ (1) = v̄, we can define the following complimentary

optimal stopping problem:

H̄(v̄, x, τ) = E
[
e−ρτ

(
Ũ(Xτ , 1) + (KXτ )γ v̄

)
I{τ<∞}|X0 = x

]
(4.36)

H̄(v̄, x) = sup
τ
H(v̄, x, τ). (4.37)

Thus the value function of the problem in (4.35) is the solution of the fixed-point

problem v̄ = H̄(v̄, 1). A uniqueness result to this fixed point problem is discussed
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in the following Lemma:

Lemma 4.3.4. Let H̄(v̄, x) be as defined in (4.36) and (4.37). The optimal stopping

time τ∗ is a hitting time. Furthermore if a solution to the fixed point problem

v̄ = H̄(v̄, 1) exists, then it is unique.

The proof of this result follows from identical arguments to those discussed

in the proof of Lemma 4.2.6. Define the reward function of the problem in (4.36)

and (4.37) by hv̄(x):

hv̄(x) = Kγ v̄xγ + Ũ(x, 1) (4.38)

and note hv̄ is bounded on every compact subset of R+/{0}. Also note that the un-

derlying one-dimensional diffusion describing the underlying price process is equiv-

alent to the one considered in Section 4.2. Thus the functions ψ(·), φ(·) and F (·)
used to transform the reward function so as to apply the methodology outlined by

Dayanik and Karatzas [2003] are defined as in Section 4.2. With this in mind, de-

fine the corresponding transformed reward function gv̄(y) = hv̄(F
−1(y))/φ(F−1(y)).

Thus we have:

gv̄(y) =

Kγ v̄y
γ−α
β−α − λ(1− y

1
β−α )γy

−η−α
β−α , for y ≤ 1

Kγ v̄y
γ−α
β−α + (y

1
β−α − 1)γy

−η−α
β−α , for y > 1

(4.39)

The application of the methodology outlined in Chapter 2 to solve this prob-

lem, requires us to first analyse the geometry of the function gv̄(y). A discussion of

the structure of gv̄(y) is provided in Appendix C.3.

As discussed in Section C.3.1, the types of solutions arising from this problem

can be characterised into two cases; namely:

1. The agent will only stop and sell at a gain;

2. The holding region is disconnected and it consists of a neighbourhood of 0 and

a neighbourhood of 1. Thus the agent holds the risky asset only if they start

at a very deep loss or if the stock’s initial gain or loss are relatively small.

Given that in the specification of the problem in (4.35) the starting value of X

always takes the value 1, the threshold characterising the neighbourhood around 0

will not affect the behaviour of the agent whatsoever. In view of this, hereinafter we

shall refer to the case with a disconnected continuation region as a ”two threshold

strategy”. Similarly we shall refer to the case with just an upper threshold as a ”one

threshold strategy”.
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In Proposition 4.3.5 we characterise V̄ (1) and the corresponding stopping

threshold for when the one threshold strategy is optimal. A characterisation for the

two threshold strategy follows in Proposition 4.3.6. The proof of Proposition 4.3.5

is outlined in Appendix C.4. The proof of Proposition 4.3.6 is omitted as it relies

on very similar arguments.

Proposition 4.3.5. Let v̄ ∈ R+ be fixed. When the optimal strategy is a one-

threshold strategy, the optimal stopping rule τ∗v̄ of the problem defined in (4.36) and

(4.37) takes the form τ∗v̄ = inf{t ≥ 0 : Xt 6∈ (0, x̄v̄)} where x̄v̄ > 1 solves the

following non-linear equation:

Kγ v̄x̄γ−α(β − γ) = x̄−η−α(x̄− 1)γ−1(γx̄− (β + η)(x̄− 1)) (4.40)

Furthermore, we have:

H̄(v̄, x) =

Kγ v̄xγ + (x− 1)γx−η, for x > x̄v̄
Kγ v̄x̄γ−α+(x̄−1)γ x̄−η−α

x̄β−α
xβ, for x ≤ x̄v̄

and V̄ (1) = v̄ as defined in (4.35) solves:

V̄ (1) =
x̄−η(x̄− 1)γ(
x̄β −Kγ x̄γ

) (4.41)

Proposition 4.3.6. Let v̄ ∈ R+ be fixed. Suppose the optimal strategy is a two-

threshold strategy. Then the optimal stopping rule τ∗v̄ of the problem defined in (4.36)

and (4.37) takes the form τ∗v̄ = inf{t ≥ 0 : Xt 6∈ A} with A = (0, x̂v̄) ∪ (xv̄, x̄v̄) with

x̂v̄ < xv̄ < 1 < x̄v̄. The thresholds xv̄ and x̄v̄ solve the following system of non-linear

equations:

Kγ v̄(x̄γ−αv̄ − xγ−αv̄ ) + (x̄v̄ − 1)γ x̄−η−αv̄ + λ(1− xv̄)γx
−η−α
v̄

x̄β−αv̄ − xβ−αv̄

=

(
γ − α
β − α

)
Kγ v̄x̄γ−βv̄ +

(
γ

β − α

)
(x̄v̄ − 1)γ−1x̄1−η−β

v̄ −
(
η + α

β − α

)
(x̄v̄ − 1)γ x̄−η−βv̄

=

(
γ − α
β − α

)
Kγ v̄xγ−βv̄ +

(
γλ

β − α

)
(1− xv̄)γ−1x1−η−β

v̄ +

(
η + α

β − α

)
λ(1− xv̄)γx

−η−β
v̄

(4.42)

whereas x̂v̄ satisfies:

Kγ v̄x̂γ(β − γ) = λx̂−η(1− x̂)γ−1(γx̂+ (β + η)(1− x̂)) (4.43)
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Furthermore we have:

H̄(v̄, x) =



Kγ v̄xγ + (x− 1)γx−η, for x > x̄v̄

Av̄x
α +Bv̄x

β, for xv̄ ≤ x ≤ x̄v̄
Kγ v̄xγ − λ(1− x)γx−η, for x̂v̄ < x < xv̄
Kγ v̄x̂γ−αv̄ −λ(1−x̂v̄)γ x̂−η−αv̄

x̂β−αv̄

xβ, for x ≤ x̂v̄

where:

v̄ =

(
(x̄v̄ − 1)γ x̄−η−αv̄ + λ(1− xv̄)γx

−η−α
v̄

)(
1− xβ−αv̄

)
(x̄β−αv̄ − xβ−αv̄ )−Kγ x̄γ−αv̄ (1− xβ−αv̄ )−Kγxγ−αv̄ (x̄β−αv̄ − 1)

− λ(1− xv̄)γx
−η−α
v̄ (x̄β−αv̄ − xβ−αv̄ )

(x̄β−αv̄ − xβ−αv̄ )−Kγ x̄γ−αv̄ (1− xβ−αv̄ )−Kγxγ−αv̄ (x̄β−αv̄ − 1)

(4.44)

and the constants Av and Bv are given by:

Av =
Kγ v̄(x̄γ−αv̄ − xγ−αv̄ ) + (x̄v̄ − 1)γ x̄−η−αv̄ + λ(1− xv̄)γx

−η−α
v̄

x̄β−αv̄ − xβ−αv̄

Bv =

(
Kγvxγ−αv̄ − λ(1− xv̄)γx

−η−α
v̄

)
x̄β−αv̄ −

(
Kγvx̄γ−αv̄ + (x̄v̄ − 1)γ x̄−η−αv̄

)
xβ−αv̄

x̄β−αv̄ − xβ−αv̄

Having characterized the possible solutions for the problem described in

(4.36) and (4.37), we note that the solution of the problem we defined in (4.34)

follows directly from the solution of the aforementioned problem. In fact, the ho-

mogeneity property of the value function Z̄(w, r) and the fact that Rt is constant

between liquidations allows us to write:

Z̄(w, r) = sup
τ
rγE

[
e−ρτ

(
Ũ

(
Xτ−, 1

)
+
(
KXτ−

)γ
V̄ (1)

)
I{τ<∞}

∣∣∣∣ X0 =
w

r

]
(4.45)

By comparing (4.45) to (4.36) and (4.37) it is obvious that the optimal strategies

for the problem in (4.45) are identical to those described in Propositions 4.3.5 and

4.3.6.

The characterisations of the selling thresholds and the constant v̄ for both

strategies are essential for us to develop an approach to differentiate between the two

cases under different parameter regimes. This is discussed in Section 4.3.1 below.

We defer the discussion outlining the key differences between Propositions 4.3.5 and

4.3.6 until after we get the necessary conditions to distinguish when each of the two
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solutions is optimal.

4.3.1 Distinguishing between the two strategies

Having characterised the possible solutions arising from this problem, in this section

we work on determining when either of the two possible solutions is optimal. In the

first part of this section we will use the characterisations of the reward function and

the corresponding value function to obtain a condition which determines whether

the two threshold strategy is optimal. This is presented in Proposition 4.3.8. For

completeness, we then use a similar methodology to that employed in Proposition

4.2.12 of Section 4.2 to obtain another condition on λ which determines which of

the two solutions is optimal. We then end the section by showing that these two

conditions are equivalent.

In what follows we will refer to a solution for the one threshold strategy as

a pair (x̄, v̄) ∈ R2 where x̄ > 1, v̄ > 0 and the pair is a solution to the system

of equations described in (4.40) and (4.41). Furthermore, a solution for the two

threshold case is given by (x̂, x̄l, x̄u, v̄) ∈ R4
+ where x̂ < x̄l < 1 < x̄u and v̄ > 0 are

a solution to the system of equations described in (4.42), (4.43) and (4.44).

We first note that a solution for the system of equations described in (4.40)

and (4.41) can always be found. This is due to the fact that given β ≥ γ, gv̄(y)

as described in (4.39) is concave, positive and limy↓1 g
′
v̄(y) = ∞ for any y > 1 and

v̄ > 0. Thus we can always construct a line passing through the points (0, 0) and

(ȳ, gv̄(ȳ)) satisfying:
gv(ȳ)

ȳ
=

dgv
dy

∣∣∣∣
y=ȳ

However it is important to note that this solution is not necessarily the solution

we are after as it might not define a majorant of the function gv̄(y), let alone the

smallest non-negative concave majorant. An example of this can be seen in Figure

4.4 below.

We also note that a solution to the system of equations describing the two

threshold case; that is (4.42), (4.43) and (4.44) does not always exist (for example

the case described in Figure C.6a). If however, we can find a real-valued solution to

both systems of equations, our aim is to obtain a condition with which to determine

which of the two solutions is optimal. Before discussing this problem we discuss

briefly the uniqueness of solutions.

Suppose that we solve the system of equations in (4.40) and (4.41) giving

(x̄, v̄1) and also solve (4.42), (4.43) and (4.44) giving (x̂, x̄l, x̄u, v̄2). Coupled with

both v̄1 and v̄2 we have the corresponding reward functions gv̄1(y) and gv̄2(y) re-
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Figure 4.4: Plot of the transformed reward function gv(y) outlining that the
solution obtained from (4.40) and (4.41) is not always optimal. (Parameter values:

γ = 0.32, α = −0.2, β = 7.3, η = 0.3, λ = 1.6, v=2.4 and K=0.9.)

spectively. Note that v̄1 and v̄2 are in general not equal and hence the functions

gv̄1(y) and gv̄2(y) are different. Is it possible that the solution (x̄, v̄1) defines the

smallest non-negative concave majorant with respect to gv̄1(y) while (x̂, x̄l, x̄u, v̄2)

also defines another smallest non-negative concave majorant with respect to gv̄2(y)?

This question is closely tied to the idea that the problem in (4.35) has a unique

solution. We address this question in Lemma 4.3.7 below and show that the answer

is no.

Lemma 4.3.7. Consider the optimal stopping problem described in (4.36) and

(4.37). Let z1 = (x̄, v̄1) be a solution to (4.40) and (4.41). If it exists, also let

z2 = (x̂, x̄l, x̄u, v̄2) be the solution corresponding to the system described in (4.42),

(4.43) and (4.44). Consider the transformed gain functions gv̄1 and gv̄2 correspond-

ing with each of these sets of solutions respectively. Then only one of z1 and z2

defines a non-negative concave majorant with respect to gv̄1 or gv̄2 respectively.

A proof is provided in Appendix C.4. Lemma 4.3.7 above guarantees that

if both systems of equations have a solution, then only one of them defines a non-

negative concave majorant with respect to gv(y).

In solving the system of equations describing the two threshold strategies

numerically we notice that more often than not, the solution for x̂ is numerically

indistinguishable from 0. Note however that the problem defined in (4.35) imposes

the requirement X0 = 1 and the parameter v̄ satisfies v̄ = H̄(v̄, 1) and hence v̄ is

uniquely determined by the thresholds characterising the neighbourhood of 1. Thus

for the problem in (4.35), the threshold x̂ is insignificant. It however is an essential
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part of the solution for the problem in (4.34), since w and r are allowed to take any

value in R.

In Proposition 4.3.8 below, we provide a first result to distinguish between

the two strategies in Propositions 4.3.5 and 4.3.6.

Proposition 4.3.8. Consider the pair of systems of equations described in (4.40),

(4.41) and (4.42), (4.44) above. The following cases arise:

1. If the system described in (4.42) and (4.44) has no real-valued, positive solution

then the one threshold strategy described by (4.40) and (4.41) is optimal.

2. If both systems of equations allow for a solution to be found, then the two

threshold strategy is optimal if and only if

F (x̄u)

F (x̄l)
≥ gv(F (x̄u))

gv(F (x̄l))
(4.46)

A proof is provided in Appendix C.4. The above result allows us to numer-

ically characterise the optimal behaviour of the agent by adopting the condition

described in (4.46) as part of our numerical procedure. This condition is fairly

simple to check since all parameters are either known a priori or are found when

solving the aforementioned systems of equations. Note that when we have equality

in the condition in (4.46), this implies that the concave majorant defined by the

two-threshold strategy is identical to that defined by the one-threshold strategy.

Thus at equality the value functions of the two strategies are equal. This case arises

only when x̂v = xv where x̂v and xv are as defined in Proposition 4.3.6 and hence

the two threshold strategy applies at equality.

By using an argument similar to the one used in Proposition 4.2.12 in Sec-

tion 4.2 we can obtain a similar condition for the loss aversion parameter λ which

determines which of the potential solutions is optimal.

Proposition 4.3.9. The problem described in (4.33) has a two threshold strategy if

and only if λ satisfies λ < λ∗ where:

λ∗ =
(x̄∗ − 1)γ−1xη+γ

∗
(
(β + η − γ)x̄∗ − (β + η)

)
(1− x∗)γ−1x̄η+γ

∗
(
(β + η − γ)x∗ − (β + η)

) (4.47)

where 0 < x∗ < 1 < x̄∗ solve:

(β + η − γ)x− (β + η) = Kγxγ−β
(
η(x− 1)− γ

)
(4.48)
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A proof is provided in Appendix C.4. In Propositions 4.3.8 and 4.3.9 we

have given two alternative conditions determining when the two threshold strategy

is optimal. Before discussing the results obtained in this section in more detail, we

prove in Proposition 4.3.10 that these two conditions are in fact equivalent. The

proof is relegated to Appendix C.4.

Proposition 4.3.10. The conditions described in Propositions 4.3.8 and 4.3.9 are

identical.

4.3.2 Discussion of Results

Having fully characterized the solution of the problem in (4.36) and (4.37), we are

now able to comment on how the agent’s behaviour changes with the underlying

parameters.

Proposition 4.3.9 distinguishes between the two possible solutions on the

basis of the parameter λ and hence offers further insight on how the behaviour of

the agent changes with changes in the underlying parameters. As seen in Figure 4.5a

below, when the parameter γ is decreased, the loss threshold increases significantly.

This is because the underlying utility function becomes steeper close to the reference

level with lower values of γ.

The lower threshold also marginally increases as η decreases. This is due to

the fact as seen in Figure 4.3, higher values of η push the utility function U lower

on the losses side, thus making taking a loss less attractive for the agent. This

relation between η and the lower threshold x is visible in Figure 4.5b. Figures 4.5a

and 4.5b also clearly show that the loss threshold decreases with an increase in λ.

This follows from the definition of λ as the agent’s loss aversion parameter. In fact

the lower (loss) threshold decreases as λ increases to λ∗ at which point the lower

threshold jumps downwards to 0. Note further from Figures 4.5a and 4.5b that the

critical value λ∗ defined in (4.47) decreases with an increase in both γ and η, for

the same reasons mentioned above.

The upper (profitable) threshold on the other hand is relatively unchanged

under changes of both γ and λ. The reason why the upper threshold is always very

close to 1 in these kind of problems is mainly due to the concavity of the utility

function on the gains side and the fact that the underlying utility function has

infinite marginal utility at 1 which decreases significantly fast.

Figures 4.6a and 4.6b depict how the selling thresholds change as the ex-

pected rate of return µ changes. The lower threshold decreases with an increase in

µ. The upper-threshold increases marginally as µ increases over (−1, 0). However
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Figure 4.5: Plots describing how the optimal strategy varies with different
parameters

as µ increases on the positive side, the upper threshold increases drastically towards

+∞. This is because as µ increases, β decreases towards γ. As shown in the proof

of Proposition 4.3.1, the case β < γ implies that it is never optimal for the agent to

sell. This is due to the fact that under this case we have ρ < γµ+ 1
2γ(γ− 1)σ2, and

thus the effect of the discount term ρ is overpowered by the growth of the agent’s

realisation utility pushing them towards the case when it never optimal to sell.

Whilst in Figure 4.6a it might seem that it is always possible for the agent to

realise losses when −α > η, Figure 4.6b indicates another case when this is clearly

not true.

Note that while the condition obtained in Proposition 4.3.9 describes a crit-

ical value λ∗ for the loss aversion λ, this condition could theoretically be re-written

to give critical values for all the other parameters in this model. As an example,

the critical value of µ and how it changes as we vary λ can clearly be observed in

Figure 4.6a.
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Figure 4.6: Plots describing how the optimal strategy varies with the parameter µ.

The behaviour of the selling thresholds in relation to changes in the volatility

parameter σ depends heavily on the values of the drift parameter µ and the discount

factor ρ. This change in behaviour can be clearly observed in Figures 4.7a and 4.7b

below. It is mainly due to the fact that as we vary σ, the parameter β changes very

differently depending on the values of the other parameters. In Figure 4.7a we see

that when the agent observes a negative expected return µ, a higher value of σ will

make them wait longer before realising a loss. This is because as σ increases, even

though µ is negative, a higher value of σ is more likely to push the price upwards

towards the upper selling threshold, where they can sell at a profit.

On the other hand if µ is big enough such that the condition β > γ is

still satisfied (Figure 4.7b), the behaviour of the agent relative to the parameter

σ appears to be somewhat inverted when compared to the aforementioned case

depicted in Figure 4.7a. For small enough σ the agent employs a one-threshold

strategy under this case. This is because they expect the price process to drift

strongly upwards. As σ increases the interplay between the three parameters σ, µ

and ρ can be observed. While the agent expects the price process to drift upwards,

higher values of σ increase the chance of experiencing deep losses in the shorter

term. This together with the discount factor ρ drive the agent to cut their losses

rather than waiting when σ increases, which is why we have a two threshold strategy

as σ increases. The same reasoning applies as to why the lower threshold strategy

increases as σ increases.
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(a) Plot of the selling thresholds as the

volatility parameter σ varies. Parameter

values: µ = −0.2, ρ = 0.05, η = 0.15, γ = 0.32,

K = 0.9, λ = 1.5.
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(b) Plot of the selling thresholds as the

volatility parameter σ varies. Parameter

values: µ = 0.1, ρ = 0.05, η = 0.15, γ = 0.32,

K = 0.9, λ = 1.5.

Figure 4.7: Plots describing how the optimal strategy varies with the parameter σ

4.4 Concluding Remarks

In this chapter, we have formulated two optimal stopping problems which portray

an agent who derives realisation utility when selling an asset. We build on the work

primarily done by Barberis and Xiong [2012]. In Section 4.2 we extend upon the

model described in Ingersoll and Jin [2013] and by adopting a different methodology

we specialise for an agent whose utility function is given by the standard Cumulative

Prospect Theory S-shaped utility defined in Tversky and Kahneman [1992]. By

using the methodology outlined in Chapter 2, we show that under this framework

the agent can adopt two different strategies and we distinguish between the two.

The solution of the problem described in Section 4.2 then motivates us to

extend this problem and consider a new preference structure. The utility function we

consider is again reference dependent and it includes additional multiplicative factors

which depend on the ratio of current wealth to reference level. This problem is again

approached by adopting the methodology described in Dayanik and Karatzas [2003].

We show that again the agent can adopt two different threshold strategies. In Section

4.3.1 we provide two equivalent conditions with which to distinguish which and when

each strategy is optimal.

To date, all models considered in literature in relation to realisation utility

have a common assumption. This is that after each liquidation, the agent has to

re-invest all their wealth in the risky asset. A natural extension to this model is to
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extend the framework to a portfolio optimisation problem in the spirit of Merton

[1969]. This problem takes the form of an impulse control problem and it is currently

a work in progress.
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Chapter 5

Regret Theory in a Dynamic

Setting

5.1 The Regret Problem - An Introduction

The original aim of this chapter was to present our study of models in the literature

wherein Regret Theory is applied in a dynamic setting and then branch out and

extend upon them in two principal directions. Firstly, our aim was to extend these

models; primarily the one described in Strack and Viefers [2015] from a discrete

time setting into a continuous time framework. Whilst in various other areas of

behavioural finance this extension to continuous time is very prevalent in the lit-

erature, there is little to no research done in this context within Regret Theory.

Secondly, our aim was to propose and solve for another problem which incorporates

regret-rejoice functions R(·) which are truer to the original formulation of Loomes

and Sugden [1982]; as discussed in Section 5.1.1.

The main contribution described in this chapter is the re-formulation and

extension of the dynamic model presented in Strack and Viefers [2015]. Their model

presents a discrete-time optimal liquidation problem for an agent whose preferences

incorporate a regret term. The model and some of its underlying assumptions are

summarised in Section 5.1.2. Subsequently in Section 5.2, a new dynamic model for

Regret Theory in continuous time is presented and solved, extending upon the work

of Strack and Viefers [2015]. A brief discussion of some directions for extensions of

our work is included in the final part of this chapter.
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5.1.1 A Brief Overview of the Theory

Although Expected Utility Theory is still widely used to describe preferences made

by individuals under uncertainty it is well accepted that this theory fails to capture

various behavioural anomalies which individuals seem to possess when presented

with risk. This was already well documented prior to the introduction of theories

like Prospect Theory and Regret Theory but as argued by Bleichrodt and Wakker

[2015], it was widely accepted that irrational behaviour was actually too chaotic and

noisy to model appropriately.

The introduction of Regret Theory as a cornerstone theory in Behavioural

Economics came in three independent papers in 1982, each approaching the idea

of regret from a slightly different angle. Bell [1982]; one of the three aforemen-

tioned papers, focused on discussing how regret could be incorporated into a utility

model as an additional attribute to the already existing model. Fishburn [1982]

discusses in detail how the Theory can be formulated rigorously in a mathematical

setting whereas Loomes and Sugden [1982] enforced the theory through an empirical

approach.

In their paper, Bell [1982] theorises that most of the anomalies to Expected

Utility Theory stem from the desire of an individual to circumvent the possibility

that in the future they will seem to have made a bad decision even if at the time the

decision was the ’best’ given all the information available. This argument is used by

Bell [1982] to support this proposal that utility derived from the result of a decision

should incorporate both monetary satisfaction and minimal prospective regret. The

mathematical model capturing this idea shall be briefly discussed below.

The Formulation of Regret Theory

Suppose our Sample Space Ω is the set {ω1, . . . , ωn} where each ωi represents some

state of the world, and we consider a probability measure P s.t. P(ωi) = pi ∈ (0, 1].

An individual faces the problem of choosing from a set of actions {A1, . . . Am},
and associated with each action Ai we have a random variable Xi whose range

(xi1, . . . , xin) represents the consequences of action Ai over each state1.

Loomes and Sugden [1982] assume that associated with every individual is

a ”choice-less utility function” C(·). Given x ∈ R, C(x) represents the amount of

utility an individual derives from some consequence x if experienced without actually

choosing it. This implies that C takes the form of a Bernoullian utility function and

hence restricted over R+, C is concave and strictly increasing.

1In our discussion we restrict xij to represent increases or decreases in wealth relative to some
level but this can be taken in a more general economical context as well.

59



Assuming only two actions A1, A2 are available if the individual chooses

action A1 given the jth state of the world occurs, an individual will experience

regret if x1j < x2j and rejoice if x1j > x2j . Hence writing cij for C(xij), Loomes

and Sugden [1982] propose modified utility mk
ij to be defined by:

mk
ij = M(cij , ckj) (5.1)

representing the utility in state j of an individual who initially chose Action Ai

over Ak (The value mk
ij − cij represents the additional or deduction of utility due to

regret/rejoice). From the above discussion a few assumptions can be made on mk
ij ,

mainly that if cij = ckj then mk
ij = cij and also that:

δmk
ij

δckj
≤ 0 and

δmk
ij

δcij
≥ 0 (5.2)

In view of the formulation in (5.1) Loomes and Sugden [1982] propose two

assumptions. Firstly that preferences between actions are made on maximizing ex-

pected modified utility over all possible actions and also that the degree of one’s

regret depends on the difference of the choice less utility under the realized ac-

tion and the choice-less utility of another unrealized action. This leads to the the

following formulation:

mk
ij = cij +R(cij − ckj) (5.3)

where R is referred to as the ”regret-rejoice function”. It clearly follows that R is null

at 0 and strictly increasing. Given that preferences between actions are established

by maximal expected modified utility, then a weak preference of action Ai over Ak

is established if and only if:

n∑
j=1

pjQ(cij − cik) ≥ 0 (5.4)

where Q(·) is given by:

Q(ξ) = ξ +R(ξ)−R(−ξ) (5.5)

Loomes and Sugden [1982] also give the following three alternative assumptions to

characterise the function Q(·):

1. Q(·) is linear (∀ξ ∈ R R′′(ξ) = R′′(−ξ)). This implies that individuals will

be maximizing expected choice-less utility.
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2. Q(·) is concave (∀ξ ∈ R R′′(ξ) ≤ R′′(−ξ)).

3. Q(·) is convex (∀ξ ∈ R R′′(ξ) ≥ R′′(−ξ)).

While they argue that that the choice of Q depend on the underlying assumptions

related to human psychology, their experimental results were consistent with the

third assumption.

Some Properties of Regret Theory

An important property which contributed to the popularity of Regret Theory is

that under this theory, the assumption of preference transitivity is dismissed. Al-

though this was initially considered as highly unorthodox, through the dismissal of

this assumption, the theory manages to capture the notion of preference reversal.

This phenomenon in economics is a behavioural anomaly occurring when the indi-

vidual’s preferences for objects changes when these preferences are evaluated either

separately or jointly.

As discussed in both Bell [1982] and Loomes and Sugden [1982], another

concept distinguishing this theory from others is the notion of Dominance (or the

dismissal of the Equivalence Axiom)2. This manages to provide a perspective in

choosing between two equally attractive prospects when viewed from a behavioural

perspective. Suppose for an example that we are on the eve of an election between

A and B and you own a portfolio which you expect to either go up by 5% if A

wins or decline by 3% if B wins with equal probability. Suppose that we look for

alternative portfolios to invest in and the two available alternatives are:

• Investment 1: If A wins asset appreciates by 6% or depreciates by 2% if B

wins.

• Investment 2: If A wins asset depreciates by 2% or appreciates by 6% if B

wins.

Although the two investments seem equally attractive, when viewed in comparison

to the portfolio we currently own, Investment 1 might seem more desirable relative

to the current portfolio. This is because Investment 2 presents a possible perceived

loss of 7% if A wins and a 9% increase if B wins (due to regret).

After the introduction of Regret Theory in 1982, as discussed in Bleichrodt

and Wakker [2015], there has been a large body of new literature with empirical

studies most of which substantiating predictions made under this theory. Some

2This is also referred to in literature as the juxtaposition effect
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such studies supporting this theory are Loomes and Sugden [1987], Starmer and

Sugden [1989] and Starmer [1992].

To this day, the theory remains very strongly ascribed to when explaining

real world behavioural anomalies in a range of topics, in particular those relating

to finance. Muermann et al. [2006] for example show that anticipated regret has a

strong effect on the amount of stock an investor holds. Muermann and Volkman

[2007] on the other hand show that the well documented disposition effect; that is,

the reluctance of investors to realise losses and eagerness to realise gains, can also

be explained through Regret averseness.

5.1.2 Regret in a Dynamic Setting

Strack and Viefers [2015] propose a discrete time model describing an agent ob-

serving a series of pay-offs Xt; whose dynamics are described by a multiplicative

binomial random walk; that is, given X0 = x > 0 then:

Xt+1 =

hXt with probability p

1
hXt with probability 1− p

(5.6)

where h > 1 and p ∈ (1
2 , 1). At each time t ∈ Z+ the agent decides whether to

continue observing or stop and receive the pay-off Xt−K where K > 0 is some fixed

reference level. Further to the above dynamics, Strack and Viefers [2015] assume

that the game can also come to an end at any time point with some fixed probability

1 − δ ∈ (0, 1) which in turn gives a null pay-off. Denote this random termination

time of the game by T . The aim of the agent is to choose a stopping strategy which

maximises their expected modified utility. Utility in this context does not solely

capture the idea of consumption but also incorporates an additional term capturing

the agent’s regret which depends on the value of the ex-post maximum level reached

by the price process. These ideas are captured in Strack and Viefers [2015]’s work

through a linear preference function which is very similar to the one proposed by

Loomes and Sugden [1982] described in (5.3). Let the maximum process of Xt be

denoted by St = maxu≤tXu∨s where S0 = s ≥ x. Strack and Viefers [2015] assume

that the relationship explaining the penalty from regret when the agent decides to

sell at time τ > 0 at the price level Xτ is given by:

G = I{τ≤T}
(
u(Sτ −K)− u(Xτ −K)

)
where u(·) is a concave, increasing utility function which also plays the same
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role as the choice-less utility function described in Section 5.1.1. In view of this, the

total utility derived from selling at time τ is then captured through a weighted sum

of choice-less utility and regret-penalty; that is,

(1− λ)I{τ<T}
(
u(Xτ −K)

)
− λG = I{τ<T}

(
u(Xτ −K)− λu(Sτ −K)

)
(5.7)

where λ ∈ [0, 1) represents the intensity of regret. It is natural for the agent’s

objective to be defined as maximizing their expected modified utility, giving the

following value function V (x, s):

V (x, s) = sup
τ>0

Ex,s
[
I{τ<T}

(
u(Xτ −K)− λu(Sτ −K)

)]
. (5.8)

where Ex,s[·] is shorthand for E[·|X0 = x, S0 = s]. An important remark to make

here is that although this formulation resembles the formulation originally defined by

Loomes and Sugden [1982], this does not capture the notion of rejoice. Furthermore

under (5.7) if the agent stops exactly when a new maximum is reached, they will

still incur a penalty when compared to pure choice-less utility, through the scaling

factor (1− λ).

Strack and Viefers [2015] show that the optimal stopping rule τ∗ for the

above problem is decomposed into three parts, depending on the initial value of the

maximum process St. They show that there exist constants c, C ∈ R, 0 ≤ c ≤ C

which determine the optimal stopping time τ∗ as follows:

τ∗ =


inf{t > 0 : Xt = c} if S0 < c

inf{t > 0 : Xt = St} if S0 ∈ [c, C)

inf{t > 0 : Xt = C} if S0 ≥ C

(5.9)

Note that the existence of the level c under this formulation can be justified

by the fact that under this set-up, if the agent never stops then they will have null

returns which is still higher than stopping Xt at a level lower than the fixed reference

level K. The upper level C is justified by the fact that under this problem the agent

will always stop at or before the stopping level obtained under the assumptions of

the complementary Expected Utility formulation without regret penalisation.

5.2 The Regret Problem in Continuous Time

In the remainder of this chapter we provide a description of our work on the extension

of the model summarised in Section 5.1.2 to a continuous time framework. The first
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part of this section will provide a general framework on which the corresponding

problem can be appropriately defined. A candidate stopping time is then proposed,

inspired from the solution in Strack and Viefers [2015]. The main arguments and

proofs to demonstrate the optimality of the proposed stopping time are outlined in

the remainder of this chapter.

5.2.1 General Framework

Consider a complete probability space (Ω,F , {Ft}t≥0,P) supporting a Brownian

Motion W = {Wt; t ≥ 0} and let X = {Xt; t ≥ 0} be geometric Brownian Motion

characterised by the stochastic differential equation:

dXt = µXtdt+ σXtdWt (5.10)

where the parameters µ ∈ R and σ ∈ R+ are constant and X0 = x. Let f(·) be

the corresponding scale function defining the analogous local martingale Yt = f(Xt)

where f(·) is defined by:

f(z) =


zη η > 0

−(zη) η < 0

ln(z) η = 0

(5.11)

with η = 1− 2µ
σ2 . Consider also the corresponding maximum process of Xt denoted

by
(
SXt
)
t≥0

and defined by:

SXt = max
u≤t

Xu ∨ s with SX0 = s. (5.12)

where we assume X0 = x < s. The maximum process SYt corresponding to the local

martingale Yt is defined analogously by SYt = maxu≤t Yu ∨ f(s) .

Consider an agent whose choice-less utility function is given by a monotoni-

cally increasing concave function u ∈ C2(R+). They wish to liquidate an asset whose

price dynamics follow (5.10) and at each time point they have to decide whether to

continue and forego selling to a later time or sell at the current price. Their utility

upon liquidation depends on two factors. Firstly, the agent derives choice-less util-

ity from consuming the returns from the liquidation. Secondly, the agent admits a

penalisation due to regret which depends on the ex-post optimal strategy; that is

not having sold at the ex-post maximum of the price trajectory. In the same spirit

of Strack and Viefers [2015], this regret term is defined by the difference in util-
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ity derived from the agent’s strategy and the ex-post optimal strategy. Assuming

that the agent’s final reward is given by a weighted sum of these two factors, the

underlying optimisation problem can be formulated by:

V (x, s) = sup
τ>0

Ex,s[(1− κ)u(Xτ )− κ(u(SXτ )− u(Xτ ))]

= sup
τ>0

Ex,s[u(Xτ )− κu(SXτ )] (5.13)

where κ ∈ [0, 1) describes the investor’s intensity of the penalisation admitted due

to regret when compared with the complimentary EU-agent and has a similar role

as the parameter λ in Strack and Viefers [2015]’s discrete time model. Note that

in this model we do not include the fixed reference level K > 0 used by Strack and

Viefers [2015] as in (5.8). However this can easily be included as part of this problem,

which would require the definition of the utility function u(·) to be extended over

[−K,∞). It is also worth noting that the model in (5.13) assumes an infinite horizon

framework under which no random termination of the game is considered.

Note that while the reward function in (5.13) does not capture the notion of

rejoice, we can still recover the general form of (5.3) by scaling the choice-less utility

function u(·). In fact by denoting (1− κ)u(·) by ū(·), we have:

u(x)− κu(s) = ū(x) +
κ

(1− κ)

(
ū(x)− ū(s)

)
givingR(x) = κ

1−κx if choice-less utility is measured by ū(·). Furthermore the reward

function in (5.13) also captures the ideas of the conditions in (5.2). In fact the total

reward received by the agent increases as the underlying’s price increases; that is,

the agent’s utility increases by considering a more favourable outcome. Secondly

the agent’s total utility decreases as the value of St increases; that is that the agent

admits a bigger penalisation the further away they sell from the best observed price.

It is then obvious that the second point only applies when Xt < St.

For the remainder of this chapter we assume that the agent admits an expo-

nential choice-less utility function:

u(x) =
1− exp(−γx)

γ
(5.14)

where γ > 0 denotes the agent’s level of absolute risk aversion. Later on as part of

this chapter, a discussion on possible generalisations of u(·) will also follow. In what

follows we provide our solution to the problem described in (5.13). A candidate

optimal stopping rule is first proposed; inspired from the work of Strack and Viefers
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[2015]. The value function corresponding to this stopping rule is derived first. A

verification theorem showing that this is indeed the optimal stopping rule then

follows. This result heavily depends on two key characteristics of V (x, s); firstly that

the process V (Xt, St) defines a continuous super-martingale and that the stopped

process V (Xt∧τ∗ , St∧τ∗) is in fact a continuous martingale with:

Ex,s
[

lim
t→∞

V (Xt∧τ∗ , St∧τ∗)

]
= V (x, s).

5.2.2 Candidate Stopping Rule and the Characterisation of the

Value Function

Consider the stopping problem defined in (5.13) and let Ha = inf{t ≥ 0 : Xt ≥ a} =

inf{t ≥ 0 : Yt ≥ f(a)}3 be the first hitting time for Xt of the level a ∈ R+. We

propose the candidate stopping rule τ̃ by:

τ̃ = Hs∨b ∧HB (5.15)

where b, B ∈ R+ are some constants satisfying 0 ≤ b < B < ∞ and s > 0 is the

starting value of the maximum process S as defined in (5.12). Thus the stopping

rule in (5.15) can be decomposed into three cases depending on the initial value of

S0 = s:

– If s ≤ b then stop the first time Xt hits b,

– If s ∈ (b, B) then stop the first time Xt hits s,

– If s ≥ B then stop as soon as Xt ≥ B is satisfied.

A representation of τ̃ is presented in Figure 5.1 where the stopping region

is described over the domain of (Xt, St)t≥0. Note that by definition, for all t > 0,

Xt ≤ St a.s. and hence the pair can only take values in {(x, s) ∈ R2 : 0 ≤ x ≤ s}4.

As we will now describe, this stopping rule will only be optimal under certain

values of η. This follows from the fact that under certain extreme parameter cases, it

is optimal for the agent to never stop (if for example µ� 0) or to stop immediately

(if for example µ� 0).

Consider a complimentary liquidation problem for an expected utility agent:

V̂ (x) = sup
τ

Ex[u(Xτ )]. (5.16)

3This equality follows from the fact that f(·) is strictly increasing over (0,∞).
4The way to think about this representation of (X,S) is that as Xt diffuses, given Xt < St is

satisfied, the change in value of Xt is the represented as a vertical move upwards or downwards.
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Figure 5.1: Proposed Stopping Rule

Note that the regret agent would always optimally stop either before or with the

EU agent as they have less incentive to continue and thus the value function V (·)
defined in (5.13) is majorised everywhere by V̂ (·). The following result uses the

solution of the problem in (5.16) to determine the degenerate solutions of (5.13)5.

Proposition 5.2.1. Consider the optimal stopping problem described in (5.13). If

η ≥ 1 then the optimal stopping time is given by τ∗ = 0. Furthermore if η ≤ 0 then

it is optimal for the agent to never stop; that is, τ∗ =∞.

The proof of Proposition 5.2.1 is relegated to Appendix D.

Remark 5.2.2. Note that by adopting the methodology outlined in Dayanik and

Karatzas [2003] it is very straightforward to show that for η ∈ (0, 1) the expected

utility agent maximising (5.16) adopts a reservation level B > 0 and stops the first

time the price process Xt is at or above B.

In order to restrict our analysis to cases when the solutions are non degen-

erate, the following assumption is imposed:

Remark 5.2.3. Assume η ∈ (0, 1).

Given the candidate stopping time τ̃ defined in (5.15), the value function

Ṽ corresponding to τ̃ is derived in the following result. Given the structure of τ̃

discussed above, the proof of the following result is split into three parts considering

the following sub-regions of R2 respectively: {(x, s) ∈ R2 : 0 < x ≤ s < b},
{(x, s) ∈ R2 : 0 < x ≤ s & s ∈ (b, B)} and {(x, s) ∈ R2 : 0 < x ≤ s & s ≥ B}.

5Degenerate solutions are solutions which satisfy τ∗ = 0 or τ∗ =∞ almost surely.
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Proposition 5.2.4. Consider the optimal stopping problem described in (5.13). The

value function Ṽ (x, s) corresponding with the stopping time τ̃ defined in (5.15) is:

Ṽ (x, s) =

I{s<b}
[
u(b)

f(b)
f(x)(1− κ)− κ

(
u(s)

(
1− f(x)

f(s)

)
+

∫ f(b)

f(s)
u(f−1(ω))

f(x)

ω2
dω

)]
+ I{s≥B}

[(
f(x)

u(B)

f(B)
− κu(s)

)
I{x≤B} +

(
u(x)− κu(s)

)
I{x>B}

]
+ I{b≤s<B}

[
u(s)

f(x)

f(s)
− κu(s)

]
. (5.17)

The proof of Proposition 5.2.4 is relegated to Appendix D. bNote that in

the above Proposition an assumption is made on the differentiability of Ṽ with

respect to x and s on the regions {s = b}, {s = B}, {x = b} and {x = B}.
In determining the optimality of τ̃ , two functions used throughout the rest of the

proofs are g : R+ → R+ defined by g(x) = u(f−1(x)) and h : R+ → R+ defined by:

h(x) =
g(x)

xg′(x)
. (5.18)

It can be easily shown that under exponential utility, h(·) is monotonically increas-

ing.

Having obtained an analytical characterisation of Ṽ (x, s), it is essential to

note that the constants b and B constituting the proposed stopping time τ̃ are

still arbitrary. Following the derivation of Ṽ (x, s) it is now possible to determine

what values these constants must take for τ̃ to be considered as a candidate optimal

stopping time.

Corollary 5.2.5. The constant B̃ = f(B) satisfies:

h(B̃) = 1. (5.19)

If η ≥ (1− κ) then b̃ = f(b) = 0. Otherwise b̃ satisfies:

h(b̃) = 1− κ. (5.20)

The proof of Corollary 5.2.5 is relegated to Appendix D. Note that the value

of reservation price B for the Expected Utility problem (discussed in Remark 5.2.2)

matches the level B satisfying (5.19) under the strategy τ̃ . Given that the Regret-

agent will by definition always stop at or before the EU agent, it makes sense that

68



the two agents stop at the same reservation level B when s ≥ B since under this

scenario the maximum process will remain constant at s = S0 throughout.

For s < B, one expects that the behaviour of an agent adopting the strategy

τ̃ of (5.15) will be different from that of the EU-agent, since the maximum process

St, which directly affects the agent’s preference structure, will change value before

Xt reaches the Expected Utility reservation price B. Corollary 5.2.5 states that as

κ increases, the optimal behaviour of the Regret-agent differs more than that of the

EU-agent as the lower reservation level b decreases to 0.

Furthermore, Corollary 5.2.5 also captures another another key intuition of

how the behaviour of the agent is affected by the underlying price dynamics of

Xt. In fact if the ratio 2µ
σ2 is small enough that it satisfies 2µ

σ2 ≤ κ (or equivalently

η ≥ 1− κ), then the lower reservation level b is equal to 0 and whenever s < B, the

agent will always stop as soon as Xt reaches the current value of St. Note that when

Xt = St, at t+δt the agent’s utility will increase if Xt moves upwards realising a new

maximum or they will instantaneously experience a decrease in utility if the price

drops again below St. As 2µ
σ2 decreases the probability that the agent experiences

an instantaneous decrease in Xt increases, which is why for small enough 2µ
σ2 , the

Regret-agent will never choose to continue after Xt reaches the maximum St.

From Corollary 5.2.5 it is also clear how the Expected Utility problem in

(5.16) is a special case of the regret problem in (5.13). In fact κ = 0 gives b = B

whereas the value of B is unaffected by κ, giving the results discussed above.

5.2.3 Verification of Optimality

Given the characterisation of the value function Ṽ (x, s) described in Proposition

5.2.4, this can now be used to determine whether the corresponding stopping time

τ̃ is optimal. In order to prove the main result; that is, Theorem 5.2.9, a few results

characterising Ṽ (x, s) are first discussed below.

Proposition 5.2.6. Consider the value function Ṽ (x, s) defined in (5.17). The

process Ṽ (Xt, S
X
t ); with Xt and St as defined in Section 5.2.1, defines a continuous

super-martingale.

The proof of Proposition 5.2.6 is relegated to Appendix D. In the proof of the

above Proposition we note that for s ∈ [b, B], the condition Ṽs(s, x) ≤ 0 is satisfied

over the region δC = {(x, s) : x = s} as expected. The idea behind this condition

is that since it is optimal to stop over this region then Ṽ (x, s) would decrease if Xt

were allowed to diffuse further.
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The next proposition outlines another important property of Ṽ (x, s); that

is, that corresponding stopped process Ṽ (Xt∧τ̃ , St∧τ̃ ) is a uniformly integrable con-

tinuous martingale.

Proposition 5.2.7. Consider the stopped process Ṽ (Xt∧τ̃ , St∧τ̃ ), where Ṽ (x, s) is

as defined in (5.17). This defines a uniformly integrable martingale and thus,

Ex,s
[

lim
t→∞

Ṽ (Xt∧τ̃ , St∧τ̃ )

]
= lim

t→∞
Ex,s

[
Ṽ (Xt∧τ̃ , St∧τ̃ )

]
= Ṽ (x, s)

The proof of Proposition 5.2.7 is relegated to Appendix D. Lastly, before

proving the main result of this section stated in Theorem 5.2.9 the following lemma

captures another important property of the value function Ṽ (x, s). The proofs of

Lemma 5.2.8 and Theorem 5.2.9 are outlined in Appendix D:

Lemma 5.2.8. For every (x, s) ∈ {(x, s) ∈ R2 : 0 < x ≤ s}, the value function

Ṽ (x, s) as characterised in (5.17) majorises the reward function u(x)− κu(s); that

is

Ṽ (x, s) ≥ u(x)− κu(s). (5.21)

Theorem 5.2.9. The proposed stopping time τ̃ is the optimal stopping time for the

problem defined in (5.13); that is,

Ex,s
[
u(Xτ̃ )− κu(Sτ̃ )

]
= sup

τ
Ex,s

[
u(Xτ )− κu(Sτ )

]
5.2.4 Concluding Remarks

This chapter provides a first study of modelling Regret preferences in a dynamic,

continuous-time setting. The role of regret is captured through a penalisation to util-

ity admitted by the Regret agent when compared with the complimentary EU-agent

and is highlighted by showing how it alters their optimal liquidation strategy. In fact

we have shown that the strategy depends on two price thresholds 0 ≤ b ≤ B and the

value of the maximum process St relative to these constants. The higher threshold

B is equivalent to that obtained under the Expected Utility Problem, whereas the

threshold b depends on the agent’s intensity of regret κ and the underlying price

dynamics.

Several direct and indirect extensions of this work were attempted throughout

our study of the above which unfortunately had to be set aside for the time being

mainly due to time restrictions. Firstly an attempt was made in trying to generalise

the result to any standard strictly increasing, concave utility function. Most of the

results presented here would follow for a general u(·) satisfying:
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– u(0) = 0,

– u′(0) <∞,

– u(x) and u′(x)x are bounded ∀x ∈ R+.

However it is worth noting that the proof of Lemma 5.2.8 directly utilises the defi-

nition of u(·) in (5.14) and more work would be required to generalise the proof of

this result.

Another line of work which was pursued in relation to Regret Theory was

to try and define alternative reward functions to the one used in (5.13) which are

closer to the general definition of regret-rejoice functions introduced by Loomes and

Sugden [1982] (see (5.3)). In line with this, one of the problems we considered was:

V (x, s) = sup
τ

Ex,s
[
u(Xt)− κ

(
u(St)− u(Xt)

)α]
where κ ∈ [0, 1) and α > 0. A considerable amount of time was spent in trying to

characterise the optimal stopping time of this problem, mainly through Excursion

Theory and by solution methods similar to the one presented in Egami and Oryu

[2017], however this line of work had to be set aside due to time restrictions.
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Appendix A

Appendix for Chapter 2

Proof of Corollary 2.3.10. Suppose h : (a, b) → R is continuous, and la = lb = 0.

Then from (2.11) we know that τ∗ := inf{t ≥ 0 : Xt ∈ Γ}, where

Γ := {x ∈ (a, b) : V (x) = h(x)} = F−1
(

Γ̂
)

and

Γ̂ =

{
y ∈ (F (a), F (b)) : W (y) =

h(F−1(y))

φ(F−1(y))

}
.

Proposition 2.3.8 gives us that W (y) : [0,∞) → R is the smallest non-negative

concave majorant of

H(y) =


h(F−1(y))
φ(F−1(y))

, if y > 0

la if y = 0.

Note that the continuity of h(·) implies that H(·) is also a continuous function. This

implies that W (·) is constructed through chords expanding between points over the

graph of H. In other words, we can find 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ ∞ such that

Γ̂ = [b1, b2]∪ [b3, b4]∪ . . . [bn−1, bn] if bn <∞ or Γ̂ = [b1, b2]∪ [b3, b4]∪ . . . [bn−1, ∞)

if bn =∞. Since F is bijective then Γ also admits a similar characterisation. Since

τ∗ := inf{t ≥ 0 : Xt ∈ Γ}, it follows that τ∗ is a hitting time of X.
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Appendix B

Appendix for Chapter 3

B.1 Additional Results

Lemma B.1.1. Let τn be an {Ft} measurable stopping time and f a monotonic-

increasing continuous-function satisfying f(0) = 0. Then the family of Fτn measur-

able random variables Γ = {Zα : α ∈ I} as defined in the Proof of Proposition 3.3.1

has the lattice property.

Proof. Let α, ξ ∈ I, where α = (αn−1, . . . , α1) and ξ = (ξn−1, . . . , ξ1) satisfying:

τn ≤ αn−1 ≤ · · · ≤ α1 and τn ≤ ξn−1 ≤ · · · ≤ ξ1

respectively. Furthermore define:

Zα = E
[
e−ρ(α1−τn)f

(
Yτn +

n−1∑
i=1

Yαi
)
|Fτn

]
Zξ = E

[
e−ρ(ζ1−τn)f

(
Yτn +

n−1∑
i=1

Yξi
)
|Fτn

]
Consider υ = (υn−1, . . . , υ1) ∈ I, defined by1:

υi = αiI{Zα≥Zξ} + ξiI{Zα<Zξ}
1The fact each υi is a stopping time follows from the fact that Zα and Zξ are Fτn measurable.
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Defining Zυ analogously to Zα and Zξ it follows that:

Zυ = E
[
e−ρ(α1−τn)f

(
Yτn +

n−1∑
i=1

Yαi
)
I{Zα≥Zξ}

+ e−ρ(ζ1−τn)f
(
Yτn +

n−1∑
i=1

Yξi
)
I{Zα<Zξ}|Fτn

]
≥ E

[
e−ρ(α1−τn)f

(
Yτn +

n−1∑
i=1

Yαi
)
|Fτn

]
= Zα

and similarly Zυ ≥ Zξ.

B.2 Proofs of Results in Chapter 3

Proof of Proposition 3.3.3. The problem in Proposition 3.3.3 can be expressed as

the following optimal stopping problem:

V1(y) = sup
τ1

Ey
[
e−ρτ1U(Yτ1 − yR)

]
(B.1)

and thus the corresponding reward function is given by h(y) = U(y − hR) where

U(·) is as defined in (3.3). From Proposition 2.3.6 we first need to check whether

the limits l1−∞ and l1∞ are finite. We have:

l1−∞ = lim
y↓−∞

h+(y)

φ(y)
= 0 and l1∞ = lim

y↑∞

h+(y)

ψ(y)
= 0

and hence the problem is always well-defined. Now from Proposition 2.3.8, the

solution involves finding the smallest positive concave majorant of

g1(θ) =

θ
−β2
β φ1

[
1−Aθ−

γ1
β ] for θ ≥ θR

θ
−β2
β φ2

[
Bθ

γ2
β − 1] for θ < θR

where the constants A,B and θR are given by A = exp(γ1yR), B = exp(−γ2yR) and

θR = exp(βyR) respectively and θ = F (y).

By differentiating g1(·) twice, we note that g1 is negative and convex for

θ ∈ (0, θR) and that g1 is non-negative and increasing over [θR,∞). We also note

that for θ > θR, the behaviour of d2g1

dθ2 (θ) can take two general forms. It is either
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always negative; when−β2−β1−γ1 ≤ 0, or, is non-negative for θ ∈ (θR,∞)∩B̄(θR, ε)

for some ε > 0 then changes to negative for θ ∈ (θR + ε,∞); which is the case when

−β2 − β1 − γ1 > 0.

The two cases both imply that under all parameter combinations, there exists

θ̂ ∈ [θR,∞) such that g1(θ) is concave over (θ̂,∞). Thus the smallest concave

majorant of g1(θ) can always be characterised as follows: Find the point θ̄1 > θR

satisfying
g1(θ̄1)

θ̄1
=

dg

dθ
(θ)|θ=θ̄1

The smallest non-negative concave majorant ḡ1(θ) of g1(θ) is then given by the

straight line joining (0, 0) and (θ̄1, g1(θ̄1)) for θ ≤ θ̄1 and g1(θ) for θ ≥ θ̄1. The

above condition implies that the transformed selling threshold θ̄1 satisfies:

θ̄1 =

(
A(γ1 + β1)

β1

) β
γ1

(B.2)

and

ḡ1(θ) =

θ
−β2
β φ1

[
1−Aθ−

γ1
β ] for θ ≥ θ̄1

θ̄
−β1
β

1
φ1γ1

γ1+β1
θ for θ < θ̄1

Thus from Proposition 2.3.8, since y = F−1(θ) = 1
β ln(θ), we get:

ȳ1 = yR +
1

γ1
ln

(
γ1 + β1

β1

)
and

V1(y) =


φ1

(
1− exp(−γ1(y − yR))

)
for y ≥ ȳ1[

φ1γ1

γ1+φ1
exp

(
− β1ȳ1

)]
exp

(
β1y
)

for y < ȳ1

The optimality of the resulting optimal stopping time follows from Theorem 2.3.9.

Proof of Proposition 3.3.4. By applying Proposition 3.3.1 and by using the trans-

formation described in (3.13), the multiple optimal stopping problem described in

the statement of this Proposition can be expressed as follows:

V2(y, x) = sup
τ1≥τ2

Ey
[
e−ρτ1U

(
x+

2∑
i=1

(Yτi − yR)

)]
= sup

τ2
Ey
[
e−ρτ2V1(Yτ2 , x+ Yτ2 − yR)

]
(B.3)
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where:

V1(y, x) = sup
τ1

Ey
[
e−ρτ1U

(
x+ Yτ1 − yR

)]
(B.4)

By applying the same methodology applied in the proof of Proposition 3.3.3 above,

we obtain:

ȳ1(x) = yR − x+
1

γ1
ln

(
γ1 + β1

β1

)
and

V1(y, x) =

φ1

(
1− exp(−γ1(y + x− yR))

)
for y ≥ ȳ1(x)

K exp
(
β1(y + x− yR)

)
for y < ȳ1(x)

where:

K =

(
φ1γ1

γ1 + β1

)(
γ1 + β1

β1

)−β1
γ1

Hence the optimal stopping problem in (B.3) has a reward function h2(y, x) =

V1(y, x+ y − yR) characterised as follows:

h2(y, x) =

φ1

(
1− exp(−γ1(2y + x− 2yR))

)
for y ≥ ŷR(x)

K exp
(
β1(2y + x− 2yR)

)
for y < ŷR(x)

with:

ŷR(x) = yR −
x

2
+

1

2γ1
ln

(
γ1 + β1

β1

)
From Proposition 2.3.6 we again check whether the problem is well defined by check-

ing whether the limits l2−∞ and l2∞ are finite. We have:

l2−∞ = lim
y↓−∞

h+
2 (y, x)

φ(x)
= 0 and l2∞ = lim

y↑∞

h+
2 (y, x)

ψ(x)
= 0

and thus a solution always exists. By Proposition 2.3.8, the solution involves finding

the smallest non-negative concave majorant of

g2(θ, x) =

θ
−β2
β φ1

[
1− Cθ−

2γ1
β ] for θ ≥ θ̂2

R(x)

Dθ
2β1−β2

β for θ < θ̂2
R(x)

where the constants C,D and θ̂2
R(x) are given by C = exp(γ1(2yR − x)), D =

K exp(−β1(2yR − x)) and θ̂2
R(x) = exp(βŷR(x)) respectively.

By differentiating g2(θ, x) twice w.r.t θ we note that g2(θ, x) is convex over

(0, θ̂2
R(x)) and increasing over [θ̂2

R(x),∞). A similar analysis of the second derivative
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of g2(θ, x) w.r.t θ shows that if γ1 ≥ −β2−β1

2 then, g2(θ, x) is concave over [θ̂2
R(x),∞).

On the other hand if γ1 <
−β2−β1

2 , there exists θ̃(x) such that g2(θ, x) is convex

over [θ̂2
R(x), θ̃(x)) and concave over (θ̃(x),∞). Thus the smallest concave majorant

ḡ2(θ, x) of g2(θ, x) can be characterised in the same way as described in the proof

of Proposition 3.3.3, giving:

ḡ2(θ, x) =

θ
−β2
β φ1

[
1− exp(γ1(2yR − x))θ

− 2γ1
β ] for θ ≥ θ̄2(x)

θ̄
−β1
β

2
2φ1γ1

2γ1+β1
θ for θ < θ̄2(x)

with

θ̄2(x) =

(
C(β1 + 2γ1)

β1

) β
2γ1

Thus from Proposition 2.3.8, since θ = F−1(y) = 1
β ln(θ) and V2(y) =

V2(y, 0) = φ(y)ḡ2(F (y), 0) with ȳ2 = F−1(θ̄2(0)), we get:

ȳ2 = yR +
1

2γ1
ln

(
2γ1 + β1

β1

)
and

V2(y) =


φ1

(
1− exp(−2γ1(y − yR))

)
for y ≥ ȳ2[

2φ1γ1

2γ1+β1
exp

(
− β1ȳ2

)]
exp

(
β1y
)

for y < ȳ2

giving the result. The optimality of the resulting optimal stopping times follows

from Theorem 2.3.9.
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Appendix C

Appendix for Chapter 4

C.1 Characterising gv(y)

The implementation of the methodology proposed by Dayanik and Karatzas [2003]

to solve general optimal stopping problems - summarised in Chapter 2, requires

an understanding of the geometry of the underlying transformed reward function

in order to ultimately solve the underlying problem. This enables one to charac-

terise how the corresponding non-negative concave majorant can be obtained, thus

characterising the stopping and continuation regions of the corresponding problem.

This Appendix will serve as a discussion of the underlying geometry of the

transformed reward function gv(y) resulting from the model described in Section

4.2. This in turn will provide an understanding of what type of solutions to expect

under this problem. The transformed reward function gv(y) under this setting is

given by:

gv(y) =

Kγvy
γ−α
β−α +

(
y

1
β−α − 1

)γ
y
−α
β−α for y ≥ 1

Kγvy
γ−α
β−α − λ

(
1− y

1
β−α
)γ
y
−α
β−α for y < 1

(C.1)

For y ≥ 1, by taking derivatives w.r.t. y it is directly deducible that gv(y) is increas-

ing in y. Apart from providing an initial characterisation of gv(y), the following

result indirectly also proves that provided β ≥ γ the problem discussed in Section

4.2 will always admit a solution - in line with Proposition 4.2.2 discussed in the

same Section.

Lemma C.1.1. Given β ≥ γ, for y ≥ 1, there exists some constant ỹ ≥ 1 such that

gv(y) is concave over y ∈ (ỹ,∞).

Proof. By taking the second derivative of gv(y) with respect to y it can be shown
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that d2

dy2 gv(y) ≤ 0 for y ≥ 1 if and only if:

βα
(
y

1
β−α − 1

)γ
+ γ(γ − 1)y

2
β−α
(
y

1
β−α − 1

)γ−2 − 2αγy
1

β−α
(
y

1
β−α − 1

)γ−1

+ (α− β + 1)γy
1

β−α
(
y

1
β−α − 1

)γ−1 ≤ 0

By letting z = y
1

β−α and dividing throughout by
(
y

1
β−α
)γ−2

the above in-

equality translates into the following inequality:

(
βα+ γ(γ − β)− αγ

)
z2 +

(
αγ − 2βα− γ(1− β)

)
z + βα ≤ 0 (C.2)

Given that we assume β ≥ γ, the coefficient of z2 is negative. Thus the left

hand side of (C.2) defines an inverted parabola and thus there exists some constant

ỹ > 1 such that the (C.2) is satisfied for all y ≥ ỹ.

The implication that gv(y) always admits a minimal non-negative concave-

majorant under the assumptions described in Lemma C.1.1 follows by noting that

any finite continuous function defined over a bounded interval (a, b) (−∞ < a < b <

∞) admits a minimal non-negative concave majorant. Thus by noting that gv(y) is

strictly positive and finite over (1,∞) and gv(y) is concave over (ỹ,∞), it follows

that a minimal non-negative concave majorant can always be constructed.

Next we discuss the characterisation of gv(y) for y < 1. We first note that

gv(y) → 0 as y ↓ 0 and gv(y) ↑ Kγv as y ↑ 1. The following Lemma provides an

overview of some other important characteristics of gv(y).

Lemma C.1.2. There exists ε ∈ (0, 1) such that d
dygv(y) < 0 over (0, ε). Further-

more gv(y) has a unique turning point over the interval (0, 1).

Proof. By definition:

d

dy
gv(y) =

1

β − α

(
Kγv(γ−α)y

γ−β
β−α + γλ(1− y

1
β−α )γ−1y

1−β
β−α +αλy

−β
β−α (1− y

1
β−α )γ

)
and hence result is true if there exists ε ∈ (0, 1) such that over (0, ε) the following

inequality is satisfied:

Kγv(γ − α)y
γ−β
β−α + γλ(1− y

1
β−α )γ−1y

1−β
β−α ≤ −αλy

−β
β−α (1− y

1
β−α )γ
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or equivalently:

Kγv(γ − α)zγ + γλ(1− z)γ−1z ≤ −αλ(1− z)γ (C.3)

for z ∈ (0, εβ−α) where (C.3) is obtained by letting z = y
1

β−α and dividing

by z−β throughout.

Recall that α < 0. Furthermore since γ ∈ (0, 1), as z ↓ 0, (1− z)γ ↑ 1 whilst

zγ ↓ 0 and (1− z)γ−1z ↓ 0. Thus ∃ε > 0 such that the inequality in (C.3) is satisfied

over (0, εβ−α). This proves the first part of the statement of this Lemma.

The first order condition implies that y ∈ (0, 1) is a turning point of gv(y) if

it satisfies:

Kγv(γ − α)y
γ

β−α + γλ(1− y
1

β−α )γ−1y
1

β−α + αλ(1− y
1

β−α )γ = 0 (C.4)

or alternatively for z = y
1

β−α :

(γ − α)Kγvzγ(1− z)1−γ + λ(γ − α)z = −αλ. (C.5)

Given that the left hand side is continuous in z and the value λ(γ − α) > −λα, the

intermediate value theorem implies that (C.5) has at least one solution.

Furthermore note that the functions (γ−α)y
γ

β−α , γλ(1− y
1

β−α )γ−1y
1

β−α and

αλ(1 − y
1

β−α )γ in (C.4)are all increasing in y over (0, 1) and hence the solution is

unique.

Equipped with the characteristics obtained in Lemmas C.1.1 and C.1.2 to-

gether with the definition of gv(y) in (C.1), a good exposition of the geometry of

the function gv(y) can now be derived.

Note that the definition of gv(y) over (0, 1) in (C.1) is the sum of two function

components; call them f1 : (0, 1)→ R and f2 : (0, 1)→ R respectively. The function

f1(y) = Kγvy
γ−α
β−α is concave over (0, 1) and increases from f1(0) = 0 to f1(1) = Kγv

over this interval. The function f2(y) = −λ
(
1− y

1
β−α
)γ
y
−α
β−α defines a non-positive,

U-shaped curve and decreases from f2(0) = 0 to a unique minimum achieved at

y =
( −α
γ−α

)β−α
and then increases to f2(1) = 0. This behaviour is clearly observable

in Figures C.1a and C.1b below.
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(a) Parameter values: λ = 1.2, α = −0.01,

β = 2, γ = 0.7
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(b) Parameter values: λ = 1.2, α = −0.5,

β = 1.3, γ = 0.7

Figure C.1: Plots of the function f2(y) = −λ
(
1− y

1
β−α
)γ
y
−α
β−α

From Lemma C.1.2 we know that for y < 1, the graph of the function gv(y)

decreases from gv(0) = 0 to achieve a unique minimum point after which it increases

to gv(1) = Kγv.1 This together with the statement of Lemma C.1.1 and the general

form of the functions f1(·) and f2(·) described above imply that the geometry of the

function gv(y) takes the general form portrayed in Figures C.2a and C.2b; that is,

an S-shaped like curve with a skewed parabola close to zero.
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(a) Parameter values: λ = 1.2, α = −0.01,

β = 2, γ = 0.7, v = 4 and K = 0.9
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(b) Parameter values: λ = 1.2, α = −0.5,

β = 1.3, γ = 0.7, v = 1 and K = 0.9

Figure C.2: Plots of the function gv(y)

This general form, and as clearly observable in Figures C.2a and C.2b the

1By considering the definition of gv(y) in (C.1) it can also be easily deduced that as the value
of the constant Kγv increases, the constant ε in Lemma C.1.2 decreases.
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minimal non-negative concave majorant of gv(y) can be constructed in one of two

ways depending on the case:

– Case 1: The concave majorant is constructed by fitting a chord between the

points
(
0, 0
)

and
(
ŷ, gv(ŷ)

)
with ŷ ∈ (0, 1) and satisfying:

gv(ŷ)

ŷ
=

d

dy
gv(y)

∣∣∣∣
y=ŷ

and another chord between the points
(
yl, gv(yl)

)
and

(
yu, gv(yu)

)
satisfying

0 < ŷ ≤ yl < 1 < yu and:

gv(yu)− gv(yl)
yu − yl

=
d

dy
gv(y)

∣∣∣∣
y=yl

=
d

dy
gv(y)

∣∣∣∣
y=yu

Figure C.2a provides an example where such a construction would be applica-

ble.

– Case 2: The concave majorant is constructed by fitting a chord between the

points
(
0, 0
)

and
(
yu, gv(yu)

)
where yu > 1 and:

gv(yu)

yu
=

d

dy
gv(y)

∣∣∣∣
y=yu

An example of this case is provided in Figure C.2b.

C.2 Proofs of Results in Section 4.2

Proof of Proposition 4.2.2. Suppose ρ ≥ γµ+ 1
2γ(γ− 1)σ2. We first note that there

exists C ∈ R+ such that for any x > 0, we have U(x, 1) ≤ C(1 + xγ). This can be

verified easily using the definition of U(x, 1).
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Thus for any stopping times τ1 ≤ τ2 ≤ · · · we have:

Ew,r[
∞∑
n=1

e−ρτnU(Wτn−, Rτn−)I{τn<∞}]

= Ew,r[
∞∑
n=1

e−ρτn(Rτn−)γ U

(
Wτn−
Rτn−

, 1

)
I{τn<∞}]

≤ CEw,r[
∞∑
n=1

e−ρτn(Rτn−)γ
(

1 +

(
Wτn−
Rτn−

)γ)
I{τn<∞}]

= CEw,r[
∞∑
n=1

e−ρτn
(

(Rτn−)γ + (Wτn−)γ
)
I{τn<∞}]

=
∞∑
n=1

CEw,r[e−ρτn
(

(Rτn−)γ + (Wτn−)γ
)
I{τn<∞}] (C.6)

Since Rτn− = Wτn−1 = KWτn−1− for n ≥ 2, we need to consider the case

when n = 1 separately. Thus for n = 1, by the assumption discussed in Remark

4.2.1 we have:

Ew,r[e−ρτn
(

(Rτn−)γ + (Wτn−)γ
)
I{τn<∞}]

= Ew,r[e−ρτ1
(
rγ + (Wτ1−)γ

)
I{τ1<∞}]

≤ rγ + Ew,r[e−ρτ1(Wτ1−)γI{τ1<∞}] (C.7)

However since |Wt∧τ1 | ≤ c1 almost surely, we have:

Ew,r[e−ρτ1(Wτ1−)γI{τ1<∞}]

= wγEw,r
[

exp

((
− ρ+ γµ− 1

2
γ(1− γ)σ2

)
τ1− −

1

2
γ2σ2τ1− + γσBτ1−

)
I{τ1<∞}

]
≤ wγEw,r

[
exp

(
− 1

2
γ2σ2τ1− + γσBτ1−

)
I{τ1<∞}

]
(C.8)

= wγ . (C.9)

where (C.8) follows from our initial assumptions and (C.9) follows by the Optional

Sampling Theorem. By applying a similar argument to the above, we can show that

for n ≥ 2 we have:
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Ew,r[e−ρτn
(

(Rτn−)γ + (Wτn−)γ
)
I{τn<∞}]

= Ew,r[e−ρτn
(

(Wτn−1)γ + (Wτn−)γ
)
I{τn<∞}]

=

(
wKn−1

)γ
Ew,r[e−ρτn

((
Xτn−1

X0

)γ
+

(
Xτn

X0

)γ)
I{τn<∞}]

≤ 2

(
wK(n−1)

)γ
(C.10)

Amalgamating (C.6), (C.7), (C.9) and (C.10) gives:

Z(w, r) ≤ C(rγ + wγ) +

∞∑
n=2

2C

(
wK(n−1)

)γ
= C(rγ + wγ) + 2Cwγ

(
K

1−Kγ

)
<∞

giving the result.

For the converse argument, suppose ρ < γµ+ 1
2γ(γ − 1)σ2.

Let β = σ−2

[
− (µ − 1

2σ
2) +

√
(µ− 1

2σ
2) + 2δσ2

]
. Then it can be easily

shown that the conditions γ > β and ρ < γµ + 1
2γ(γ − 1)σ2 are equivalent. Now

given a ∈ R+, consider the sub-optimal strategy τ1 = Ha and τ2 = τ3 = · · · = ∞,

where Ha is defined by:

Ha = inf{t ≥ 0 : Wt = a}

The definition of U(w, r) in (4.5) implies that ∃ C1, C2 ∈ R+ such that

U(x, 1) ≥ C1(xγ − C2) for x ≥ 0. Thus:
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Z(w, r) ≥ Ew,r[e−ρHaU(WHa−, RHa−)I{Ha<∞}]

= Ew,r[e−ρHa(RHa−)γ u

(
WHa−
RHa−

, 1

)
I{Ha<∞}]

≥ Ew,r[e−ρHa(RHa−)γ C1

((
WHa−
RHa−

)γ
− C2

)
I{Ha<∞}]

≥ Ew,r[e−ρHarγ C1

((
a

r

)γ
− C2

)
I{Ha<∞}]

From Borodin and Salminen [2012] we know that Ew,r[e−ρHaI{Ha<∞}] =(
w
a

)β
and hence from above it follows that

Z(w, r) ≥ wβC1

(
aγ−β − C2r

γa−β
)

(C.11)

But since γ > β we see that the right hand side is increasing in a and thus under

this parameter regime, even if the agent follows a strategy of this form, it is always

optimal for the investor to delay selling implying the result.

Proof of Proposition 4.2.5. By definition in (4.4), we have:

Z(w, r) = sup
0≤τ1≤τ2≤...

Ew,r
[ ∞∑
n=1

e−ρτnU(Wτn−, Rτn−)I{τn<∞}
]

(C.12)

Let ζ = (τ1, τ2, τ3, . . . ) and let J(w, r, ζ) be defined by:

J(w, r, ζ) = Ew,r
[ ∞∑
n=1

e−ρτnU(Wτn−, Rτn−)I{τn<∞}
]

(C.13)

Furthermore let F (w, r, τ) denote the corresponding gain function in (4.7), that is:

F (w, r, τ) = e−ρτ
(
U(Wτ−, Rτ−) + Z(Wτ , Rτ )

)
I{τ<∞} (C.14)

In view of the above, our objective is to prove that:

Z(w, r) = sup
τ

Ew,r[F (w, r, τ)] (C.15)

Fix ζ. Then by using the tower-property for conditional expectation in (C.13), we

86



get:

J(w, r, ζ) = Ew,r
[
e−ρτ1U(Wτ1−, Rτ1−)I{τ1<∞}+

e−ρτ1E
[ ∞∑
n=2

e−ρ(τn−τ1)U(Wτn−, Rτn−)I{τn<∞}
∣∣∣∣Fτ1]I{τ1<∞}]

= Ew,r
[
e−ρτ1U(Wτ1−, Rτ1−)I{τ1<∞}+

e−ρτ1E
[ ∞∑
n=1

e−ρ(τn+1−τ1)U(Wτn+1−, Rτn+1−)I{τn+1<∞}

∣∣∣∣Fτ1]I{τ1<∞}]

Note that (Bτ1+s − Bτ1)s≥0 is a standard Brownian Motion. Hence there

exists Fs-measurable stopping times 0 ≤ τ1 ≤ τ̄2 ≤ τ̄3 ≤ . . . such that condi-

tional on τ1, ((Bτ1+s − Bτ1)s≥0, τ2 − τ1, τ3 − τ1, . . . ) is identically distributed to

((Bs)s≥0, τ̄2, τ̄3, . . . ). Denote ζ̄ = (τ̄2, τ̄3, . . . ). Then:

J(w, r, ζ) = Ew,r
[
e−ρτ1U(Wτ1−, Rτ1−)I{τ1<∞} + e−ρτ1J(Wτ1 ,Wτ1 , ζ̄)I{τ1<∞}

]
≤ Ew,r

[
e−ρτ1

(
U(Wτ1−, Rτ1−) + Z(Wτ1 ,Wτ1)

)
I{τ1<∞}

]
giving:

Z(w, r) ≤ sup
τ

Ew,r[F (w, r, τ)] (C.16)

Conversely, fix ε > 0. We know that Z(w, r) is homogeneous in r of degree γ

from Lemma 4.2.4. Thus by definition, there exists an Fs-stopping time τ̃ ≥ 0 such

that:

sup
τ

Ew,r[F (w, r, τ)]− ε ≤ Ew,r[F (w, r, τ̃)] (C.17)

where we have:

F (w, r, τ̃) = e−ρτ̃
(
U(Wτ̃−, Rτ̃−) +

(
KWτ̃−

)γ
Z(1, 1)

)
I{τ̃<∞}

Furthermore, there exists ζ̂ = (τ̂2, τ̂3, . . . ) such that Z(1, 1)− ε ≤ J(1, 1, ζ̂). Thus:

F (w, r, τ̃) ≤ e−ρτ̃
(
U(Wτ̃−, Rτ̃−) +

(
KWτ̃−

)γ
(J(1, 1, ζ̂) + ε)

)
I{τ̃<∞}

Note that we can again find stopping times (τ2, τ3, . . . ) such that conditional on τ̃ ,

((Bτ̃+s)s≥0, τ2 − τ̃ , τ3 − τ̃ , . . . ) is identically distributed to ((Bs)s≥0, τ̂2, τ̂3, . . . ). Let

ζ = (τ̃ , τ2, τ3, . . . ). Then by again applying the Tower Property conditioned on Fτ̃ ,
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we have:

Ew,r
[
F (w, r, τ̃)

]
≤ Ew,r

[
J(w, r, ζ)

]
+ εEw

[
e−ρτ̃ (KWτ̃−)γI{τ̃<∞}

]
(C.18)

If we show that E
[
e−ρτ̃ (Wτ̃−)γI{τ̃<∞}

]
= C < ∞ for some constant C ∈ R+, then

from (C.17) and (C.18) we have:

sup
τ

Ew,r
[
F (w, r, τ)

]
≤ sup

ζ
Ew,r

[
J(w, r, ζ)

]
+ ε(1 +KγC)

= Z(w, r) + ε(1 + C̃)

The arbitrariness of ε > 0 yields:

Z(w, r) ≥ sup
τ

Ew,r
[
F (w, r, τ)

]
giving the result. Hence what remains to be shown is that for a finite Fs−stopping

time τ , Ew
[
e−ρτ (Wτ−)γI{τ<∞}

]
= C <∞ for some constant C ∈ R+. But by follow-

ing a similar argument to that outlined in the proof of Proposition 4.2.2 particularly

in (C.9) we have:

Ew
[
e−ρτ (Wτ−)γI{τ<∞}

]
≤ wγ

giving the result.

Proof to Lemma 4.2.6. Firstly note that given β ≥ γ, we have l0 = 0 and l∞ = 0,

where the limits l0 and l∞ are as defined in (2.9). By applying the statement of

Corollary 2.3.10, it directly follows that the optimal stopping time τ∗ is a hitting

time of Xt. Furthermore given that X0 = 1, this implies that there exists a, b ∈ R+

satisfying 0 ≤ a ≤ 1 ≤ b and τ∗ = Ha ∧Hb.

By applying this characterisation of τ∗ in (4.14) and (4.15), H(v) satisfies

the following linear equation in v:

H(v) = H(0) + E1

[
eρτ
∗
(KXτ∗)

γ
]
v

= H(0) + C̃v (C.19)

for some C̃ ∈ R+. This linearity in v of (C.19), gives the uniqueness result for the

fixed point problem H(v) = v.
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Proof of Proposition 4.2.8. For β > γ we have that:

l0 = lim sup
x↓0

h+
v (x)

φ(x)
= 0 and l∞ = lim sup

x↑∞

h+
v (x)

ψ(x)
= 0

where l0 and l∞ are as defined in (2.9). Then by Proposition 2.3.8 the solution

depends primarily on finding the smallest concave majorant of the transformed gain

function gv(y) = hv(F
−1(y))/φ(F−1(y) given by:

gv(y) =


(
Kγvy

γ
β−α +

(
y

1
β−α − 1

)γ)
y
−α
β−α for y ≥ 1(

Kγvy
γ

β−α − λ
(
1− y

1
β−α
)γ)

y
−α
β−α for y < 1

(C.20)

Denote by ḡv(y) : [0,∞) → R the smallest concave majorant of gv(y). Then from

Proposition 2.3.8 we have:

H(v, x) =

φ(x)ḡv(F (x)) for x > 0

l0 = 0 for x = 0
(C.21)

If the one-threshold strategy is optimal then the smallest non-negative concave ma-

jorant ḡv(y) of gv(y) can be characterised as follows:

1. Find the point θ̄ > 1 satisfying:

gv(θ̄)

θ̄
=

dgv
dy

(y)

∣∣∣∣
y=θ̄

(C.22)

2. Then for y ≥ θ̄, we have ḡv(y) = gv(y) and for y < θ̄, ḡv(y) is defined by the

line passing through the points (0, 0) and (θ̄, gv(θ̄)).

This gives:

ḡv(y) =


(
Kγvy

γ
β−α +

(
y

1
β−α − 1

)γ)
y
−α
β−α for y ≥ θ̄(

Kγvθ̄
γ

β−α+
(
θ̄

1
β−α−1

)γ)
θ̄
−α
β−α

θ̄
y for y < θ̄

(C.23)

By applying the transformation in (C.21) above, and by noting that y = xβ−α, we

get:

H(v, x) =

Kγvxγ + (x− 1)γ for x ≥ x̄v(
Kγvx̄γ−βv + (x̄v − 1)γ x̄−βv

)
xβ for x < x̄v

(C.24)

where x̄v = F−1(θ̄). Next, to characterise θ̄ and hence x̄v, the condition in (C.22)
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gives:

(
Kγvθ̄

γ
β−α+(θ̄

1
β−α − 1)γ

)
θ̄
−β
β−α =

θ̄
−β
β−α

β − α

(
(γ − α)Kγvθ̄

γ
β−α + γ

(
θ̄
−α
β−α − 1

)γ−1
θ̄

1
β−α − α

(
θ̄
−α
β−α − 1

)γ)
Rearranging and rewriting in terms of x̄v we get:

Kγvx̄v =

((
β

β − γ

)
− x̄v

)
(x̄v − 1)γ−1

giving (4.19).

Proof of Proposition 4.2.12. From Proposition 4.2.8 we see that the value function

H(v, x) satisfies H(v, x) = A
(1)
v xβ when the one threshold strategy is optimal (for

some constant A
(1)
v ∈ R+). Furthermore under this setting, it is clear from the

characterisation of H(v, x) in (4.20), that the value function does not depend on λ

when the solution contains one selling threshold. On the other hand for the two

threshold strategy, from Proposition 4.2.10, we have H(v, x) = A
(2)
v xβ +B

(2)
v xα and

H(v, x) is decreasing in λ. Hence there must exist a unique value of λ at which the

two value functions are equal and hence A
(1)
v = A

(2)
v = Av, B

(2)
v = 0 and v = V (1)

satisfies (4.21). We have:

A(1)
v = Kγvx̄γ−β∗ + (x̄∗ − 1)γ x̄−β∗

and

A(2)
v =

[
Kγv

(
x̄γ−α∗ − xγ−α∗

)
+
(
x̄∗ − 1

)γ
x̄−α∗ +

(
1− x∗

)γ
x−α∗

x̄β−α∗ − xβ−α∗

]
.

Equating the two, plugging in v as given in (4.21) and arranging for λ we

obtain:

λ∗ = −(x̄∗ − 1)γ(xβ∗ −Kγxγ∗)

(1− x∗)γ(x̄β∗ −Kγ x̄γ∗)
(C.25)

Note that H(v, x) = hv(x) for x = x̄∗ or x = x∗. Furthermore by definition

we have that v = H(v, 1) = Av and H(v, x̄∗) = Avx̄
β
∗ and H(v, x∗) = Avx

β
∗ . Thus

we have:

Avx̄
β
∗ = (x̄∗ − 1)γ +Kγ x̄γ∗Av

Avx
β
∗ = −λ(1− x∗)γ +Kγxγ∗Av
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implying:

Av =
(x̄∗ − 1)γ

x̄β∗ −Kγ x̄γ∗
=
−λ(1− x∗)γ

xβ∗ −Kγxγ∗
(C.26)

By applying the smooth fit principle described in Proposition 2.3.11 we also

obtain the following system of equations after re-arranging:

Avβx̄
β−1
∗ = γ(x̄∗ − 1)γ−1 + γKγ x̄γ−1

∗ Av

Avβx
β−1
∗ = γλ(1− x∗)γ−1 + γKγxγ−1

∗ Av

giving:

Av =
γ(x̄∗ − 1)γ−1

βx̄β−1
∗ − γKγ x̄γ−1

∗
=

γλ(1− x∗)γ−1

βxβ−1
∗ − γKγxγ−1

∗
(C.27)

Since the quotients in both (C.26) and (C.27) are equal to Av we get:

(x̄∗ − 1)γ

x̄β∗ −Kγ x̄γ∗
=

γ(x̄∗ − 1)γ−1

βx̄β−1
∗ − γKγ x̄γ−1

∗
and

−λ(1− x∗)γ

xβ∗ −Kγxγ∗
=

γλ(1− x∗)γ−1

βxβ−1
∗ − γKγxγ−1

∗
(C.28)

and hence both x∗ and x̄∗ satisfy:

(γ − β)x+ β = γKγxγ−β (C.29)

giving (4.31). The expressions in (C.28) can be re-arranged to show that x̄∗ and x∗

both satisfy:

xβ −Kγxγ =
Kγxγ(β − γ)(x− 1)

(γ − β)x+ β
(C.30)

Plugging (C.30) in (C.25) gives

λ∗ =
(x̄∗ − 1)γ−1xγ∗((γ − β)x̄∗ + β)

(1− x∗)γ−1x̄γ∗((γ − β)x∗ + β)

and result follows from the relation in (C.29).
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C.3 Characterising gv̄(y)

Understanding the geometry of the underlying scaled reward function is an integral

step to implement the methodology outlined in Chapter 2. This section will serve

as an overview of the general structure of the function gv̄(y) in (4.39) to obtain

a similar characterisation to the one obtained in Appendix C.1 for the problem

described in Section 4.2. The transformed reward function gv̄(y) for the optimal

stopping problem described in Section 4.3 is given by:

gv̄(y) =

Kγ v̄y
γ−α
β−α − λ(1− y

1
β−α )γy

− η+α
β−α , for y ≤ 1

Kγ v̄y
γ−α
β−α + (y

1
β−α − 1)γy

− η+α
β−α , for y > 1.

(C.31)

In-line with the assumptions considered throughout Section 4.3, we will here

assume that β > γ is satisfied. The first important distinction which needs to be

made when analysing the geometry of gv̄(y) is that it varies depending on where

the parameters α and η lie relative to each other. In fact note that given −α < η,

limy↓0 gv̄(y) = −∞ whereas when −α > η we have limy↓0 gv̄(y) = 0.

The discussion is split into two parts, outlining the cases when −α > η and

−α < η separately. For the case when α = −η, a similar argument can also be

made.

Case 1: −α < η

The definition of gv̄(y) over (0, 1) in (C.31) is composed of a sum of two functions;

f1 : (0, 1) → R and f2 : (0, 1) → R respectively. The function f1(y) = Kγvy
γ−α
β−α is

concave over (0, 1) and increases from f1(0) = 0 to f1(1) = Kγv. When −α < η, the

function f2(y) = −λ(1−y
1

β−α )γy
− η+α
β−α is increasing, negative and it’s range over this

interval is (−∞, 0). Furthermore by examining f ′′2 (y), it follows that ∃Cv̄ ∈ (0, 1)

such that f2(y) is concave over (0, Cv̄). All of these properties of f2(·) are clearly

observable in Figures C.3a and C.3b below.

For y ≥ 1, gv(y) is also composed of a sum of two functions; f1 : (0, 1)→ R
and f3 : (0, 1) → R with f3(y) = (y

1
β−α − 1)γy

− η+α
β−α respectively. Note that f3(·) is

increasing and limy↑∞ f3(y) ≥ limz↑∞
(
z−1
z

)η
z−α =∞. Furthermore f3(·) = h(g(·))

with h(z) = (z− 1)γz−η−α and g(y) = y
1

β−α . The second order condition gives that

h(·) is concave and since g(·) is either concave or convex over (1,∞), then f3(·) is

concave over this interval. This implies that gv̄(y) is concave over (1,∞) as it is the

sum of two concave functions.

The properties outlining the general form of f1(·) and f2(·) described above
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(a) Parameter values: γ = 0.8, α = −0.1,
β = 0.9, η = 0.4, λ = 1.2, v̄ = 2 and K = 0.9.)
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β = 10, η = 0.4, λ = 1.2, v̄ = 2 and K = 0.9.)

Figure C.3: Plots describing the function f2(y) = −λ(1− y
1

β−α )γy
− η+α
β−α .

together with the geometry of gv̄(y) over (1,∞) implies that over (0,∞), gv̄(y) takes

the general form portrayed in Figures C.4a and C.4b; that is, an S-shaped like curve

which decreases to −∞ close to 0.

0.25 0.5 0.75 1 1.25

y

-3

-2

-1

0

1

2

3

4

g
v(y

)

(a) Plot of gv̄(y) (Case 1) with parameter
values: γ = 0.32, α = −0.2, β = 2.8, η = 0.3,

λ = 2.9, v̄ = 2.4 and K=0.9.)
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(b) Plot of gv̄(y) (Case 2) with parameter
values: γ = 0.32, α = −0.2, β = 3.2, η = 0.3,

λ = 1.1, v̄ = 2.4 and K=0.9.)

Figure C.4: Plots describing the shape of the function gv̄(y) when −α < η.

Case 2: −α > η

For y ≥ 1, we again have gv̄(y) = f1(y) + f3(y), where both f1(·) and f3(·) are

strictly increasing. Given that f1(y) is concave over (1,∞) and limy↑∞ f
′
3(y) = 0,

it follows that there exists ỹ ≥ 1 such that gv̄(y) = f1(y) + f3(y) is concave over

(ỹ,∞).
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For y ≤ 1, gv̄(y) is given by f1(y)+f2(y) where f1(y) and f2(y) are as defined

in the previous case.

Lemma C.3.1. There exists ε ∈ (0, 1) such that d
dygv̄(y) < 0 over (0, ε). Further-

more gv̄(y) has a unique turning point over the interval (0, 1).

Proof. By definition:

d

dy
gv̄(y) =

1

β − α

(
Kγ v̄(γ − α)y

γ−β
β−α + γλ(1− y

1
β−α )γ−1y

1−β−η
β−α +

(η + α)λy
− β+η
β−α (1− y

1
β−α )γ

)
and hence result is true if there exists ε ∈ (0, 1) such that over (0, ε) the following

inequality is satisfied:

Kγ v̄(γ − α)y
γ−β
β−α + γλ(1− y

1
β−α )γ−1y

1−β−η
β−α ≤ −(η + α)λy

− β+η
β−α (1− y

1
β−α )γ

or equivalently:

Kγ v̄(γ − α)zγ+η + γλ(1− z)γ−1z ≤ −(η + α)λ(1− z)γ (C.32)

for z ∈ (0, εβ−α) where (C.32) is obtained by letting z = y
1

β−α and dividing by z−β

throughout.

Recall that α < 0. Furthermore since γ ∈ (0, 1), as z ↓ 0, (1− z)γ ↑ 1 whilst

zγ−η ↓ 0 and (1 − z)γ−1z ↓ 0. Thus ∃ε > 0 such that the inequality in (C.32) is

satisfied over (0, εβ−α). This proves the first part of the statement of this Lemma.

The first order condition implies that y ∈ (0, 1) is a turning point of gv̄(y) if

it satisfies:

Kγ v̄(γ − α)y
γ

β−α + γλ(1− y
1

β−α )γ−1y
1−η
β−α + λ(α+ η)(1− y

1
β−α )γy

− η
β−α = 0 (C.33)

or alternatively for z = y
1

β−α :

(γ − α)Kγ v̄zγ+η(1− z)1−γ + λ(γ − (η + α))z = −λ(η + α). (C.34)

Given that the left hand side is continuous in z and the inequality λ(γ − (α+ η)) >

−λ(α + η) holds, the intermediate value theorem implies that (C.34) has at least

one solution.

Furthermore note that the functions (γ−α)y
γ

β−α , γλ(1− y
1

β−α )γ−1y
1−η
β−α and

λ(α+ η)(1− y
1

β−α )γy
− η
β−α in (C.33) are all increasing in y over (0, 1) and hence the
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solution is unique.

The above Lemma together with the characteristics of gv̄(y) over (0, 1) dis-

cussed earlier provide a good stepping-stone towards obtaining an overview of the

geometry of gv̄(y) when −α > η. It is worth mentioning here that the proof of

Lemma C.3.1 specifically the inequality in (C.32), that as the constant Kγ v̄ in-

creases, the constant ε > 0 decreases towards 0.

Over (0, 1), recall that gv̄(y) = f1(y) + f2(y) where f1(y) is concave and

increasing over the range specified by f1(0) = 0 and f1(1) = Kγ v̄. Given the

constant α satisfies −α > η, the function f2(y) = −λ(1 − y
1

β−α )γy
− η+α
β−α defines

a negative U-shaped curve which decreases from f2(0) = 0 to a unique minimum

achieved at y =
( −(α+η)
γ−(α+η)

)β−α
and increases to f2(1) = 0; as outlined in Figures

C.5a and C.5b below.
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(a) Parameter values: γ = 0.8, α = −0.1,
β = 0.9, η = 0.4, λ = 1.2, v̄ = 2 and K = 0.9.)
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(b) Parameter values: γ = 0.5, α = −0.1,
β = 10, η = 0.4, λ = 1.2, v̄ = 2 and K = 0.9.)

Figure C.5: Plots describing the function f2(y) = −λ(1− y
1

β−α )γy
− η+α
β−α .

In view of the above discussion, for y < 1 the graph of gv̄(y) decreases

from gv̄(0) = 0 to a unique minimum point and then increases to gv̄(1) = Kγ v̄.

Furthermore, in view of the general form of f1(·) and f2(·) described above we can

conclude that the geometry of gv̄(y) when −α > η is as portrayed in Figures C.6a

and C.6b; that is, an S-shaped like curve with a skewed parabola close to zero2.

C.3.1 The Resulting Solution Types

The general form of gv̄(y) arising under both parameter cases discussed provides us

with a clear indication of what types of solutions will arise for the optimal stopping

2In Figure C.6b it is not very clear that gv̄(y) is decreasing at 0. However this is only the case
since the constant ε discussed in Lemma C.3.1 is very close to 0 under this case.
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(a) Plot of gv̄(y) (Case 3) with parameter
values: γ = 0.32, α = −3.4, β = 1.5, η = 0.3,

λ = 2.7, v̄ = 2.4 and K=0.9.)
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(b) Plot of gv̄(y) (Case 4) with parameter
values: γ = 0.32, α = −3.4, β = 11.4, η = 0.3,

λ = 1.7, v̄ = 2.4 and K=0.9.)

Figure C.6: Plots describing the shape of the function gv̄(y) when −α > η.

problem being considered. As noted in Chapter 2; specifically Proposition 2.3.83,

the types of solutions arising from a problem of this form are directly related to the

construction of a minimal non-negative concave majorant of the transformed reward

function gv̄(y). It is worth noting here that the non-negativity assumption implies

a different solution type under the cases depicted in Figures C.4a and C.4b.

In view of the above we can conclude that two types of solutions will arise:

1. The agent stops only at a gain (as is the case in Figures C.4a and C.6a)).

2. The continuation region is disconnected and it consists of a neighbourhood of

0 and a neighbourhood of 1.

C.4 Proofs of Results in Section 4.3

Proof of Proposition 4.3.1. Suppose ρ ≥ γµ+ 1
2γ(γ − 1)σ2. We again note that for

utility function U(w, r) defined in (4.32), ∃C ∈ R+ such that Ũ(x, 1) ≤ C(1 + xγ).

A similar argument to that used in the proof of Proposition 4.2.2 can be transposed

for this case giving Z(w, r) <∞.

For the converse, suppose that ρ < γµ+ 1
2γ(γ − 1)σ2 or equivalently, β < γ

where β is as defined in (4.9). Given w and r, let a ∈ R+ such that a > r and

consider the (sub-optimal) strategy τ1 = Ha and τ2 = τ3 = · · · =∞, where

Ha = inf{t ≥ 0 : Wt = a} (C.35)

3Assume for now that l0 and l∞ defined in (2.3.6) are both equal to 0. This will be shown later.
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Then we have:

Z̄(w, r) ≥ Ew,r
[
e−ρHaŨ(WHa−, RHa−)I{Ha<∞}

]
= rγEw,r

[
e−ρHaŨ

(
WHa−
r

, 1

)
I{Ha<∞}

]
= rγ

(
a

r
− 1

)γ(a
r

)−η
Ew,r

[
e−ρHaI{Ha<∞}

]
= rγ

(
a

r
− 1

)γ(a
r

)−η
wβaγ−β

≥ rγwβ
((

a

r

)γ
− 1

)(
a

r

)−η
aγ−β (C.36)

But (xγ − 1)x−η is positive and increasing in x for x ≥ 1. Hence given the

initial choice of a ∈ R+, in (C.36) we have the product of two positive, increasing

functions in a. Thus even if we were to restrict our strategies to hitting of the types

defined in (C.35), it would always be optimal to wait and sell at a larger threshold,

a thus waiting indefinitely, giving the result.

Proof of Proposition 4.3.5. Let β > γ and consider l̄0 and l̄∞ as defined in (2.9).

Then we have:

l̄0 = lim sup
x↓0

h+
v̄ (x)

φ(x)
= 0 and l̄∞ = lim sup

x↑∞

h+
v̄ (x)

ψ(x)
= 0

By Proposition 2.3.8, assuming the one-threshold strategy is optimal, the solution

follows after finding the smallest concave majorant of the transformed gain function

gv̄(y) = hv̄(F
−1(y))/φ(F−1(y) given by:

gv̄(y) =

Kγ v̄y
γ−α
β−α +

(
y

1
β−α − 1

)γ
y
− η+α
β−α for y ≥ 1

Kγ v̄y
γ−α
β−α − λ

(
1− y

1
β−α
)γ
y
− η+α
β−α for y < 1

(C.37)

Denote the smallest concave majorant of gv̄(y) by ḡv̄(y) : [0,∞) → R. Then from

Proposition 2.3.8 we have:

H̄(v̄, x) =

φ(x)ḡv̄(F (x)) for x > 0

l0 = 0 for x = 0
(C.38)

If the one threshold strategy is optimal then the smallest concave majorant ḡv(y) of

gv(y) is given by a chord connecting the point (0, 0) to a point (θ̄, gv̄(θ̄)) with θ̄ > 1
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satisfying:
gv̄(θ̄)

θ̄
=

dgv̄
dy

(y)

∣∣∣∣
y=θ̄

(C.39)

Thus ḡv̄(y) is given by:

ḡv(y) =


Kγ v̄y

γ−α
β−α +

(
y

1
β−α − 1

)γ
y
− η+α
β−α for y ≥ θ̄

Kγ v̄θ̄
γ−α
β−α+

(
θ̄

1
β−α−1

)γ
θ̄
− η+α
β−α

θ̄
y for y < θ̄

(C.40)

and by (C.38), since y = xβ−α:

H̄(v̄, x) =

K
γ v̄xγ + (x− 1)γx−η for x ≥ x̄v̄

Kγ v̄x̄γ−αv̄ +(x̄v̄−1)γ x̄−η−αv̄

x̄β−αv̄

xβ for x < x̄v̄
(C.41)

where x̄v̄ = F−1(θ̄). The condition in (C.39) gives (4.40) and v̄ = H̄(v̄, 1) charac-

terises v̄ as in (4.41).

Proof of Lemma 4.3.7. Consider the optimal stopping problem described in (4.36)

and (4.37) and let z1 = (x̄, v̄1) be a solution to (4.40) and (4.41). If it exists, also let

z2 = (x̂, x̄l, x̄u, v̄) be the solution corresponding to the system described in (4.42),

(4.43) and (4.44).

Suppose that v̄1 6= v̄2. The proof for the case when v̄1 = v̄2 = v̄ follows

directly from the fact that the function gv̄(y) has a unique non-negative concave

majorant.

Suppose that both z1 and z2 define a non-negative concave majorant with

respect to gv̄1 and gv̄2 respectively. The solutions z1 and z2 allow us to define the

corresponding stopping times τ1 = {t ≥ 0 : Xt ≥ x̄} and τ2 = {t ≥ 0 : Xt /∈
(0, x̂)∪ (x̄l, x̄u)} respectively. Furthermore from (4.35), our assumption implies that

v̄1 and v̄2 satisfy v̄1 = H(v̄1, 1, τ1) and v̄2 = H(v̄2, 1, τ2) respectively.

From Proposition 2.3.8, this implies that τ1 and τ2 are both optimal stopping

times for the problem:

V̄ (1) = sup
τ

E
[
e−ρτ

(
Ũ(Xτ , 1) + (KXτ )γ V̄ (1)

)
I{τ<∞}|X0 = 1

]
described in (4.35). But this implies that v̄1 = v̄2 as by definition τ1 and τ2 both

achieve the maximal expected reward. This gives the required contradiction.
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Proof of Proposition 4.3.8. The geometry of gv̄(y) implies that one of the types of

solutions described in Propositions 4.3.5 and 4.3.6 is optimal. If the system of

equations described in (4.42) and (4.44) has no real-valued solution then it follows

that the one threshold strategy is optimal, giving (1).

Suppose now that the system of equations described in (4.36) and (4.37)

gives a solution of the form z1 = (x̄, v̄1), and let z2 = (x̄l, x̄u, v̄2) be a solution to the

system of equations described in (4.42) and (4.44). Furthermore we let zy1 = (ȳ, v̄1)

and zy2 = (ȳl, ȳu, v̄2) where ȳ = F (x̄), ȳl = F (x̄l) and ȳu = F (x̄u). Finally define the

constant a by:

a = gv̄(ȳl)−
ȳl

ȳu − ȳl
(
gv̄(ȳu)− gv̄(ȳl)

)
(C.42)

The condition in (4.46) is equivalent to a ≥ 0

– Case 1 (−α < η):

Under this case we have gv̄(y) ↓ −∞ as y ↓ 0. Furthermore we know that

gv̄(y) is concave over (1,∞) and as described in Appendix C.3, there exists a

constant Cv̄ ∈ (0, 1) such that gv̄(y) is concave over (0, Cv̄). In view of this,

both systems of equations discussed above have a real-valued solution; that is,

zy1 and zy2 exist and ȳl < 1 < ȳu satisfy:

gv̄(ȳu)− gv̄(ȳl)
ȳu − ȳl

=
dgv̄
dy

∣∣∣∣
y=ȳl

=
dgv̄
dy

∣∣∣∣
y=ȳu

(C.43)

The constant a defined in (C.42) above corresponds with the intercept of the

line passing through the points (ȳl, gv̄(ȳl)) and (ȳu, gv̄(ȳu)) with the vertical

axis. If gv̄(ȳl) ≤ 0, then the two threshold strategy is obviously not optimal

as the non-negativity assumption is not satisfied. In fact if gv̄(ȳl) ≤ 0, the

monotonicity of gv̄(·) gives a < 0. Let us hence assume that gv̄(ȳl) > 0.

(⇒) If the two threshold strategy is optimal, the system of equations in (4.42),

(4.43) and (4.44) defines a non-negative concave majorant of gv̄(y). This means

that there exists ŷ ≤ ȳl satisfying:

gv̄(ŷ)

ŷ
=

dgv̄
dy

∣∣∣∣
y=ŷ

Since Cv̄ > ȳl ≥ ŷ and gv̄(y) is concave over (0, Cv̄) then:

dgv̄
dy

∣∣∣∣
y=ŷ

≥ dgv̄
dy

∣∣∣∣
y=ȳl

=
gv̄(ȳu)− gv̄(ȳl)

ȳu − ȳl
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Furthermore the concavity of gv̄(y) also implies that:

gv̄(ȳl)

ȳl
≥ dgv̄

dy

∣∣∣∣
y=ȳl

and hence
gv̄(ȳl)

ȳl
≥ gv̄(ȳu)− gv̄(ȳl)

ȳu − ȳl
giving a ≥ 0.

(⇐) Suppose now that a ≥ 0. We show that the two threshold strategy

zy2 defines a non-negative concave majorant of gv̄(y) and thus the uniqueness

result in Lemma 4.3.7 implies that the two threshold strategy is optimal. Given

that a ≥ 0 and the definition of z2
y , we have:

dgv̄
dy

∣∣∣∣
y=ȳu

=
gv̄(ȳu)− gv̄(ȳl)

ȳu − ȳl
=

dgv̄
dy

∣∣∣∣
y=ȳl

and
gv̄(ȳl)

ȳl
− gv̄(ȳu)− gv̄(ȳl)

ȳu − ȳl
≥ 0

Recall that since −α < η, gv̄(y) is concave over an interval (0, Cv̄) for some

constant Cv̄ < 1. Given a ≥ 0, we have gv̄(ȳl) > 0 and hence:

gv̄(ȳl)

ȳl
≥ dgv̄

dy

∣∣∣∣
y=ȳl

.

Also by definition of gv̄(y), there exists ỹ ≤ ȳl such that gv̄(ỹ) = 0 and

dgv̄
dy

∣∣∣∣
y=ỹ

≥ 0

The concavity of gv̄(y) over (0, Cv̄) implies that dgv̄
dy (y) is decreasing over this

interval. Moreover gv̄(y)
y is continuous over (ỹ, ȳl). These two properties imply

that there exists ŷ ∈ (ỹ, ȳl) satisfying:

dgv̄
dy

∣∣∣∣
y=ŷ

=
gv̄(ŷ)

ŷ

and hence (ŷ, ȳl, ȳu, v̄) defines a smallest concave majorant of gv̄(y) which

concludes the proof for this case.

– Case 2 (−α ≥ η):

As discussed in Appendix C.3 under this case we have lim y ↓ 0gv̄(y) = 0.

Furthermore, there exists ε ∈ (0, 1) such that d
dygv̄(y) < 0 over (0, ε) and gv̄(y)
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has a unique turning point over (0, 1). Suppose that the solutions zy1 and zy2
exist and hence ȳl < 1 < ȳu satisfy:

gv̄(ȳu)− gv̄(ȳl)
ȳu − ȳl

=
dgv̄
dy

∣∣∣∣
y=ȳl

=
dgv̄
dy

∣∣∣∣
y=ȳu

(C.44)

We can again assume that gv̄(ȳl) ≥ 0, since otherwise a < 0. Using these

arguments a similar proof to the one discussed in Case 1 above follows.

Proof of Proposition 4.3.9. Proposition 4.3.5 implies that when the one threshold

strategy is optimal, the value function H̄(v̄, x) satisfies H̄(v̄, x) = Ā
(1)
v̄ xβ for some

constant Ā
(1)
v̄ ∈ R+. Furthermore Ā

(1)
v̄ does not depend on λ, and thus the value

function is independent of λ. For the two threshold strategy Proposition 4.3.6

implies that we have H̄(v̄, x) = Ā
(2)
v̄ xβ + B̄

(2)
v̄ xα for some constants Ā

(2)
v̄ , B̄

(2)
v̄ and

is decreasing in λ. Hence there must exist a unique value of λ; call it λ∗, at which

the two value functions are equal and hence Ā
(1)
v̄ = Ā

(2)
v̄ = Āv̄, B̄

(2)
v̄ = 0 and v̄

satisfies (4.41). By definition we have that v̄ = H̄(v̄, 1) = Āv̄ and H̄(v̄, x̄∗) = Āv̄x̄
β
∗

and H̄(v̄, x∗) = Āv̄x
β
∗ .

Āv̄ =
(x̄∗ − 1)γ x̄−η∗

x̄β∗ −Kγ x̄γ∗
=
−λ(1− x∗)γx

−η
∗

xβ∗ −Kγxγ∗
(C.45)

and hence:

λ∗ = −(x̄∗ − 1)γ x̄−η∗ (xβ∗ −Kγxγ∗)

(1− x∗)γx
−η
∗ (x̄β∗ −Kγ x̄γ∗)

(C.46)

By applying the smooth fit principle described in Proposition 2.3.11 we also

obtain the following system of equations after re-arranging:

Āv̄βx̄
β−1
∗ = γ(x̄∗ − 1)γ−1x̄−η∗ − η(x̄∗ − 1)γ x̄−η−1

∗ + γKγ x̄γ−1
∗ Āv̄

Āv̄βx
β−1
∗ = γλ(1− x∗)γ−1x−η∗ + ηλ(1− x∗)γx−η−1

∗ + γKγxγ−1
∗ Āv̄

giving:

Āv̄ =
γ(x̄∗ − 1)γ−1x̄−η∗ − η(x̄∗ − 1)γ x̄−η−1

∗

βx̄β−1
∗ − γKγ x̄γ−1

∗
=
γλ(1− x∗)γ−1x−η∗ + ηλ(1− x∗)γx

−η−1
∗

βxβ−1
∗ − γKγxγ−1

∗
(C.47)

101



Since the quotients in both (C.26) and (C.27) are equal to Āv̄ we get:

(x̄∗ − 1)γ x̄−η∗

x̄β∗ −Kγ x̄γ∗
=
γ(x̄∗ − 1)γ−1x̄−η∗ − η(x̄∗ − 1)γ x̄−η−1

∗

βx̄β−1
∗ − γKγ x̄γ−1

∗
(C.48)

and
−(1− x∗)γx

−η
∗

xβ∗ −Kγxγ∗
=
γ(1− x∗)γ−1x−η∗ + η(1− x∗)γx

−η−1
∗

βxβ−1
∗ − γKγxγ−1

∗
(C.49)

and hence after re-arranging (C.48) and (C.49), both x∗ and x̄∗ satisfy:

(β + η − γ)x− (β + η) = Kγxγ−β
(
η(x− 1)− γ

)
(C.50)

giving (4.48). The expressions in (C.48) and (C.49) can be re-arranged to show that

x̄∗ and x∗ both satisfy:

xβ −Kγxγ =
Kγxγ(γ − β)(x− 1)

(β + η − γ)x− (β + η)
(C.51)

Plugging (C.51) in (C.46) gives

λ∗ =
(x̄∗ − 1)γ−1xη+γ

∗ ((β + η − γ)x̄∗ − (β + η))

(1− x∗)γ−1x̄η+γ
∗ ((β + η − γ)x∗ + (β + η))

Proof of Proposition 4.3.10. Proposition 4.3.8 implies that the two threshold strat-

egy is optimal if and only if the upper and lower thresholds x̄v̄ and xv̄ satisfy:

F (x̄v̄)

F (x̄v̄)
≥ gv(F (x̄v̄))

gv(F (x̄v̄))

which yields:

x̄β−αv̄

x̄β−αv̄

≥ Kγ v̄x̄v̄ + (x̄v̄ − 1)γ x̄−η−αv̄

Kγ v̄xv̄ − λ(1− xv̄)γx
−η−α
v̄

(C.52)

Plugging in the value of v̄ as given in (4.44) into (C.52) and re-arranging we get:

λ ≤ −(x̄∗ − 1)γ x̄−η∗ (xβ∗ −Kγxγ∗)

(1− x∗)γx
−η
∗ (x̄β∗ −Kγ x̄γ∗)

But from (C.46), this implies λ ≤ λ∗ where λ∗ is as given in Proposition 4.3.9.

Hence the equivalence.
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Appendix D

Appendix for Chapter 5

Proof of Proposition 5.2.1. Consider the case when η ≥ 1. We will show that under

this case the optimal strategy for the Expected Utility agent is to stop immediately.

The result then follows from the fact that the regret agent always stops before or with

the EU agent. Consider the problem described in (5.16). We will show that V̂ = u

implying that the stopping region is equivalent to the whole domain of X. Note that

by the super-harmonic characterisation of the value function (See Theorem 2.4 in

Peskir and Shiryaev [2006]), V̂ is the smallest super-harmonic function dominating

u(·). If u(·) is in itself a super-harmonic function of X then V̂ ≡ u and we are done.

It hence suffices to show that for every stopping time τ and x ∈ I,

Ex[u(Xτ )] ≤ u(x) (D.1)

Let LX be the infinitesimal generator of X. Since u(·) is concave and in-

creasing over I and given η ≥ 1, we have:

LXu(x) =
1

2
σ2x2uxx(x) + µxux(x) ≤ 0 (D.2)

By Ito’s lemma:

u(Xτ ) = u(x) +

∫ τ

0
u′(Xs)dXs +

∫ τ

0

1

2
u′′(Xs)d[X]s

= u(x) +

∫ τ

0
u′(Xs)σXsdWs +

∫ τ

0
LXu(Xs)ds

From (D.2) it follows that:

Ex[u(Xτ )] ≤ u(x) + σEx
[ ∫ τ

0
u′(Xs)XsdWs

]
(D.3)
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The process Ht =
∫ t

0 u
′(Xs)XsdWs is a continuous martingale starting at H0 = 0.

This follows from the fact that xu′(x) is bounded over (0,∞) giving Ex
[
[H]t

]
<∞,

∀t ∈ [0,∞). Hence from (D.3), it follows that

Ex[u(Xτ )] ≤ u(x)

giving the result when η ≥ 1.

Consider now the case when η ≤ 0. Let a ∈ R+ be an arbitrary constant

satisfying a ≥ s where s = S0. Consider the stopping time Ha = inf{t ≥ 0 : Xt ≥ a}
and let ν = µ

σ2 − 1
2 . Under Ha the agent attains the value:

Ex,s[u(XHa)− κu(SHa)] = (1− κ)u(a)Px
[

sup
0≤t<∞

Xt > a
]

= (1− κ)u(a)

(
x

a

)|ν|−ν
= (1− κ)u(a)

This implies that when η ≤ 0, the expected reward for the agent is increasing in a

and thus it is always optimal for the agent to keep delaying stopping. This gives

τ∗ =∞ under η ≤ 0.

Proof of Proposition 5.2.4. Let b, B ∈ R+ be some constants satisfying 0 ≤ b < B

and consider τ̂ as defined in (5.15). Furthermore, define g(·) = u(f−1(·)).
Part 1: Consider the case when X0 = x and S0 = s satisfy 0 < x ≤ s ≤ b.

Then by definition τ̂ = Hb almost surely. Hence:

Ṽ (x, s) = Ex,s
[
u(Xτ̂ )− κu(Sτ̂ )

]
= Ex,s

[
u(XHb)− κu(SHb)

]
= Ey,s̃

[
g(YH̃b̃

)− κg(SY
H̃b̃

)
]

= g(b̃)
y

b̃
− κEy,s̃

[
g(SY

H̃b̃
)
]

(D.4)

where we use the fact that the stopped process Yt∧Hb is an (Ft,Px)-martingale. The

last term in (D.4) above can be determined analytically by partitioning the sample

space into three; that is,

– Yt reaches the level b̃ in finite time,

– Yt remains below the level s̃ indefinitely ,

– Yt reaches the level s̃ in finite time but remains below the level b̃.
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Thus the last term in (D.4) can be re-written as follows:

Ey,s̃
[
g(SY

H̃b̃
)
]

= Ey,s̃
[
g(SY

H̃b̃
)(I{H̃b̃<∞} + I{H̃s̃=∞} + I{H̃s̃<∞ & H̃b̃=∞}

)
]

(D.5)

= g(b)Py,s̃
[
SY
H̃b̃

= b̃
]

+ g(s̃)Py,s̃
[
H̃s̃ =∞

]
+ Ey,s̃

[
g(SY

H̃b̃
)I{H̃s̃<∞ & H̃b̃=∞}

]
=
(
g(b̃)

y

b̃
+ g(s̃)

s̃− y
s̃

)
+

∫ b̃

s̃
g(z)Py,s̃

(
SY∞ ∈ (z, z + dz)

)
(D.6)

But:∫ b̃

s̃
g(z)Py,s̃

(
SY∞ ∈ (z, z+dz)

)
=

∫ b̃

s̃
g(z)Py,s̃

(
{SY∞ ∈ (z, z + dz)} ∩ {H̃z <∞}

)
=

∫ b̃

s̃
g(z)Py,s̃

(
SY∞ ∈ (z, z + dz) | H̃z <∞

)
Py,s̃

(
H̃z <∞)

=

∫ b̃

s̃
g(z)

y

z
Py,s̃

(
SY∞ ∈ (z, z + dz) | H̃z <∞

)
=

∫ b̃

s̃
g(z)

y

z
Pz
(
H̃z+dz =∞

)
=

∫ b̃

s̃
g(z)

y

z

dz

z + dz

)
≈
∫ b̃

s̃
g(z)

y

z2
dz (D.7)

From (D.4), (D.6) and (D.7) above, it hence follows that for x ≤ s satisfying

0 < x ≤ s < b:

Ṽ (x, s) = u(b̃)
f(x)

f(b)
(1− κ)− κ

(
u(s)

(
1− f(x)

f(s)

)
+

∫ f(b)

f(s)
u(f−1(ω))

f(x)

ω2
dω

)
(D.8)

= g(b̃)
y

b̃
(1− κ)− κ

(
g(s̃)

s̃− y
s̃

+

∫ b̃

s̃
g(ω)

y

ω2
dω

)
(D.9)

Part 2: Consider now the case when (x, s) ∈ {(x, s) ∈ R2 : 0 < x ≤ s & s ≥
B}. Note that under τ̃ , this region can be further split into a continuation region

(i.e. 0 < x < B) and a stopping region (i.e. B ≤ x ≤ s). Furthermore given the

definition of τ̃ in (5.15), for s > B it follows that Sτ̃ = S0 = s.

Consider first the case 0 < x < B. Letting B̃ = f(B) it follows that for

s ≥ B, τ̃ = HB = H̃B̃ = τ̃Y almost surely. The corresponding value function can
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hence be characterised as follows:

Ṽ (x, s) = Ex,s[u(Xτ̃ )− κu(s)]

= Ey,s̃[g(Yτ̃Y )]− κg(s̃)

= g(B̃)
y

B̃
− κg(s̃) (D.10)

= u(B)
f(x)

f(B)
− κu(s) (D.11)

since the stopped process Yt∧HB is an (Ft,Px)-martingale.

Given that under τ̃ , the agent stops immediately if B ≤ x ≤ s if follows that

over this region,

Ṽ (x, s) = u(x)− κu(s) (D.12)

Part 3: Finally for S0 = s ∈ (b, B) the proposed stopping rule τ̃ is equivalent

to the first hitting time Hs = inft≥0{Xt ≥ S0 = s} implying:

Ṽ (x, s) = Ex,s[u(XHs)− κu(SHs)]

= Ex,s[u(XHs)− κu(s)]

= Ey,s̃[g(YH̃s̃)− κg(s̃)]

= g(s̃)
y

s̃
− κg(ŝ)

= u(s)
f(x)

f(s)
− κu(s) (D.13)

since the stopped process Yt∧Hs is an (Ft,Px)-martingale.

The result follows by combining (D.8), (D.11), (D.12) and (D.13).

Proof of Corollary 5.2.5. For τ̃ to be considered as a candidate optimal stopping

time, the constants b and B have to be chosen in such a way that they maximise

the corresponding value function Ṽ (x, s). From (D.10) this implies that B̃ = f(B)

must maximise:

c1(B̃) = g(B̃)
y

B̃
− κg(s̃)

giving:
g(B̃)

g′(B̃)B̃
= 1.

Similarly from (D.9) it follows that the parameter b̃ = f(b) maximises:

c2(b̃) = g(b̃)
y

b̃
(1− κ)− κ

(
g(s̃)

s̃− y
s̃

+

∫ b̃

s̃
g(ω)

y

ω2
dω

)
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Through the first order condition, the maximum of c2(·) is achieved at b̃ satisfying:

g(b̃)

g′(b̃)b̃
= 1− κ. (D.14)

The first order condition in (D.14) does not ensure that b̃ ≥ 0. Note however that

h(·) is monotonically increasing and

h(x) =
g(x)

g′(x)x
=
η

γ
x
− 1
η

(
exp

(
γy

1
η
)
− 1

)
> (1− κ)

for all x ∈ R+ if and only if η > (1 − κ). Thus a constant b̃ ≥ 0 satisfying (D.14)

exists only when η ≤ (1− κ), with b̃ = 0 when η = (1− κ) and no positive solution

to (D.14) when η > (1−κ). However, under the assumption that η > (1− κ) it can

be easily that c2(·) is monotonically decreasing over R+ and thus c2(·) achieves its’

maximum value over R+ at b̃ = 0.

Proof of Proposition 5.2.6. The continuity of Ṽ (Xt, St) follows from the definition

in (5.17). Applying Ito’s Lemma to Ṽ (Xt, St) gives

dṼ (Xt, St) = Ṽx(Xt, St)dXt +
1

2
Ṽxx(Xt, St)d[X]t + Ṽs(Xt, St)dSt

where:

Ṽx(Xt, St)dXt+
1

2
Ṽxx(Xt, St)d[X]t (D.15)

=

[
I{St<b}

(
u(b)

f(b)
(1− κ) + κ

u(St)

f(St)
− κ

∫ f(b)

f(St)

u(f−1(z))

z2
dz

)
+ I{b≤St≤B}

(
u(St)

f(St)

)
+ I{Xt≤B, St>B}

(
u(B)

f(B)

)]
×(

f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t

)
+ I{Xt>B}

(
u′(Xt)dXt +

1

2
u′′(Xt)d[X]t

)
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But by definition, ∀x ∈ I the scale function f satisfies LXf(x) = 0, implying:

Ṽx(Xt, St)dXt+
1

2
Ṽxx(Xt, St)d[X]t (D.16)

=

[
I{St<b}

(
u(b)

f(b)
(1− κ) + κ

u(St)

f(St)
− κ

∫ f(b)

f(St)

u(f−1(z))

z2
dz

)
+ I{b≤St≤B}

(
u(St)

f(St)

)
+ I{Xt≤B, St>B}

(
u(B)

f(B)

)]
f ′(Xt)σXtdWt

+ I{Xt>B}(LXu(Xt)dt+ u′(Xt)σXtdWt)

=
(
G(Xt, St)f

′(Xt)σXtI{Xt≤B}
)
dWt

+ I{Xt>B}(LXu(Xt)dt+ u′(Xt)σXtdWt) (D.17)

where:

G(x, s) = I{s<b}
(
u(b)

f(b)
(1− κ)+κ

u(s)

f(s)
− κ

∫ f(b)

f(s)

u(f−1(z))

z2
dz

)
+ I{b≤s≤B}

(
u(s)

f(s)

)
+ I{x≤B, s>B}

(
u(B)

f(B)

)
(D.18)

We note that for all t ≥ 0, |G(Xt, St)| ≤ Cs for some constant Cs ∈ R+ depending

on the initial value S0 = s. Letting Mt =
∫ t

0

(
G(Xt, St)f

′(Xt)σXtI{Xt≤B}
)
dWu it

hence follows that:

E
[
[M ]t

]
= E

[ ∫ t

0
(ησG(Xu, Su)Xη

u)2I{Xu≤B}du
]

≤ K̃st

This gives E
[
[M ]t

]
<∞, ∀t ∈ [0,∞) and hence Mt is a martingale (See Billingsley

[2013] page 72 Corollary 3).

Since the region {(x, s) ∈ R2 : x ≥ B} corresponds with the stopping region

of τ̃ , LXu(x) ≤ 0 is satisfied over this region. Moreover, the boundedness of u′(x)x

gives the martingale property for
∫ t

0 u
′(Xs)σXsdWs. The above arguments imply

that for all 0 ≤ x ≤ s,

Ex,s
[ ∫ t

0
Ṽx(Xu, Su)dXu +

1

2

∫ t

0
Ṽxx(Xu, Su)d[X]u

]
≤ 0 (D.19)
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Moreover we have:

Vs(Xt, St)dSt =

[
− I{St<b}

(
κu′(St)

(
1− f(Xt)

f(St)

))
+ I{St>B}

(
− κu′(St)

)
+ I{b≤St≤B}

(
u′(St)

(
f(Xt)

f(St)
− κ
)
− u(St)

(f(St))2
f(Xt)f

′(St)

)]
dSt

(D.20)

By definition dSt terms are naturally zero whenever Xt < St, imply-

ing that the the first term in (D.20) above vanishes. Furthermore given that

dSt = (1/f ′(St))dS
Y
t then the third term in (D.20) above can be re-written as:

I{b̃≤SYt ≤B̃}

[
(1− κ)g′(SYt )− g(SYt )

SYt

]
dSYt

and given that the function h(x) = g(x)
xg′(x) is increasing and h(b̃) ≥ (1 − κ),

it follows that this term is always negative. This together with (D.19) give the

result.

Proof of Proposition 5.2.7. By applying Ito’s Lemma to (5.17) and following a sim-

ilar argument to the one used in the proof of Proposition 5.2.6,

Ṽ (Xt∧τ̃ , St∧τ̃ ) = v(x, s)

+

∫ t∧τ̃

0

[
I{Su<b}

(
u(b)

f(b)
(1− κ) + κ

u(Su)

f(Su)
− κ

∫ f(b)

f(Su)

u(f−1(z))

z2
dz

)
+I{b≤Su≤B}

(
u(Su)

f(Su)

)
+ I{Xu≤B, Su>B}

(
u(B)

f(B)

)]
f ′(Xu)σXudWu

= v(x, s) + ση

∫ t∧τ̃

0
G(Xu, Su)Xη

u dWu

where G(x, s) is as defined in (D.18). Given |G(Xu, Su)| ≤ Cs for every u > 0 then

for every t > 0:

Ex,s
[[
Ṽ (X,S)

]
t∧τ∗

]
≤ C̃sEx,s

[ ∫ t∧τ̃

0
X2η
u du

]
≤ C̃sEx,s

[ ∫ t

0
X2η
u I{Xu≤B} du

]
for some constant C̃s. This implies that the stopped process Ṽ (Xt∧τ̃ , St∧τ̃ ) is a
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martingale (See Billingsley [2013] page 72 Corollary 3), since:

Ex,s
[[
Ṽ (X,S)

]
t∧τ̃

]
<∞ ∀t ∈ [0,∞)

Furthermore from the characterisation of Ṽ (x, s) in (5.17) it follows that the

stopped process V (Xt∧τ̃ , St∧τ̃ ) is bounded and hence uniformly integrable. This

implies:

Ex,s
[

lim
t→∞

Ṽ (Xt∧τ̃ , St∧τ̃ )

]
= lim

t→∞
Ex,s

[
Ṽ (Xt∧τ̃ , St∧τ̃ )

]
= Ṽ (x, s)

Proof of Lemma 5.2.8. Recall the characterisation of Ṽ (x, s) in (5.17):

Ṽ (x, s)

= I{s<b}
[
u(b)

f(b)
f(x)(1− κ)− κ

(
u(s)

(
1− f(x)

f(s)

)
+

∫ f(b)

f(s)
u(f−1(ω))

f(x)

ω2
dω

)]
+ I{s≥B}

[(
f(x)

u(B)

f(B)
− κu(s)

)
I{x≤B} +

(
u(x)− κu(s)

)
I{x>B}

]
+ I{b≤s<B}

[
u(s)

f(x)

f(s)
− κu(s)

]
and let:

h(y) =
g(y)

yg′(y)
=
η

γ
y
− 1
η
(

exp(γy
1
η )− 1

)
.

The inequality in (5.21) holds trivially over the region {(x, s) ∈ R2 : 0 ≤
x ≤ s, s ≥ B and x ≥ B}. Consider now the region {(x, s) ∈ R2 : 0 ≤ x ≤ s, s ≥
B and x ≤ B}. The inequality holds over this region if:

f(x)

u(x)
≥ f(B)

u(B)
for x ≤ B

This follows from the fact that f(x)
u(x) has a unique minimum xmin, is strictly decreasing

over (0, xmin) and xmin = B. A similar argument can be made to prove the inequality

over the region {(x, s) ∈ R2 : 0 ≤ x ≤ s and 0 ≤ b ≤ s ≤ B}.
Finally consider the region D = {(x, s) ∈ R2 : 0 ≤ x ≤ s and 0 ≤ s ≤ b}.

Recall from Corollary 5.2.5 that b > 0 if and only if η < (1 − κ) and hence we can
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assume that η < (1− κ). The result follows if for all (x, s) ∈ D,

u(b)

f(b)
(1− κ) + κ

u(s)

f(s)
− u(x)

f(x)
≥ κ

∫ f(b)

f(s)

u(f−1(ω))

ω2
dω (D.21)

However since u(x)
f(x) is increasing over (0, B), and (D.21) must be satisfied for

all x satisfying 0 ≤ x ≤ s ≤ b then the inequality in (D.21) holds if:

(1− κ)

(
u(b)

f(b)
− u(s)

f(s)

)
≥ κ

∫ f(b)

f(s)

u(f−1(ω))

ω2
dω (D.22)

By applying y = f−1(ω), the inequality in (D.22) can be re-written as:(
u(b)

f(b)
− u(s)

f(s)

)
≥ κγ

∫ b

s
exp

(
− γy

)
y−η dy (D.23)

Define:

D(s) =

(
u(b)

f(b)
− u(s)

f(s)

)
− κγ

∫ b

s
exp

(
− γy

)
y−η dy (D.24)

Note that D(b) = 0 and d
dsD(s) ≤ 0 which follows easily by noting that

s ≤ b, h(b) = 1− κ and h(y) is increasing. Thus D(s) ≥ 0 for s ∈ (0, b) which gives

(D.24) and hence the result.

Proof of Theorem 5.2.9. Since Ṽ (Xt, St) defines a continuous super-martingale,

given any stopping time τ :

Ṽ (x, s) ≥ Ex,s
[
Ṽ (Xt∧τ , St∧τ )

]
But from the characterisation of Ṽ (x, s) in (5.17), it follows that Ṽ (Xt∧τ , St∧τ ) is

bounded. Hence by letting t → ∞ by the Dominated Convergence Theorem and

Lemma 5.2.8, we get:

Ṽ (x, s) ≥ Ex,s
[
V (Xτ , Sτ )

]
≥ Ex,s

[
u(Xτ )− κu(Sτ )

]
(D.25)

This holds for every stopping time τ and thus:

Ṽ (x, s) ≥ sup
τ

Ex,s
[
u(Xτ )− κu(Sτ )

]
(D.26)
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On the other hand from Proposition 5.2.7 we have:

Ṽ (x, s) = lim
t→∞

Ex,s
[
Ṽ (Xt∧τ̃ , St∧τ̃ )

]
= Ex,s

[
Ṽ (Xτ̃ , Sτ̃ )

]
= Ex,s

[
u(Xτ̃ )− κu(Sτ̃ )

]
by definition of Ṽ (x, s). Thus it follows that:

Ṽ (x, s) ≤ sup
τ

Ex,s
[
u(Xτ )− κu(Sτ )

]
(D.27)

Equations (D.26) and (D.27) give the result.
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