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Abstract

As part of a concerted pandemic response to protect public health, businesses can enact

non-pharmaceutical controls to minimise exposure to pathogens in workplaces and prem-

ises open to the public. Amendments to working practices can lead to the amount, duration

and/or proximity of interactions being changed, ultimately altering the dynamics of disease

spread. These modifications could be specific to the type of business being operated. We

use a data-driven approach to parameterise an individual-based network model for trans-

mission of SARS-CoV-2 amongst the working population, stratified into work sectors. The

network is comprised of layered contacts to consider the risk of spread in multiple encoun-

ter settings (workplaces, households, social and other). We analyse several interventions

targeted towards working practices: mandating a fraction of the population to work from

home; using temporally asynchronous work patterns; and introducing measures to create

‘COVID-secure’ workplaces. We also assess the general role of adherence to (or effec-

tiveness of) isolation and test and trace measures and demonstrate the impact of all these

interventions across a variety of relevant metrics. The progress of the epidemic can be

significantly hindered by instructing a significant proportion of the workforce to work from

home. Furthermore, if required to be present at the workplace, asynchronous work pat-

terns can help to reduce infections when compared with scenarios where all workers work

on the same days, particularly for longer working weeks. When assessing COVID-secure

workplace measures, we found that smaller work teams and a greater reduction in trans-

mission risk reduced the probability of large, prolonged outbreaks. Finally, following isola-

tion guidance and engaging with contact tracing without other measures is an effective

tool to curb transmission, but is highly sensitive to adherence levels. In the absence of

sufficient adherence to non-pharmaceutical interventions, our results indicate a high likeli-

hood of SARS-CoV-2 spreading widely throughout a worker population. Given the hetero-

geneity of demographic attributes across worker roles, in addition to the individual nature

of controls such as contact tracing, we demonstrate the utility of a network model approach
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to investigate workplace-targeted intervention strategies and the role of test, trace and iso-

lation in tackling disease spread.

Author summary

As part of a collective effort to protect public health by disrupting viral transmission of

SARS-CoV-2, businesses have implemented measures to minimise exposure to coronavi-

rus in workplaces and premises open to the public. Adjustments in working practices can

result in changes to patterns of interaction, altering the dynamics of viral spread. To assess

the impact of workplace targeted non-pharmaceutical disease controls against epidemic

spread of SARS-CoV-2 amongst a population of workers, we present a network-based

model with layered contacts capturing multiple encounter settings (workplaces, house-

holds, social and other). Informed by UK data, the model accounts for work sector, work-

place size and the division of time between work and home. We study three workplace

focused interventions: (i) a specified fraction of each work sector working from home; (ii)

temporally asynchronous work patterns; (iii) introduction of COVID-secure workplaces.

We also examine the role of adherence to isolation and test and trace measures. Following

isolation guidance and engaging with contact tracing alone is an effective tool to curb

transmission, but is highly sensitive to adherence levels. Given the heterogeneity of demo-

graphic attributes across worker roles, we demonstrate the utility of a network model

approach to investigate workplace-targeted control measures against infectious disease

spread.

Introduction

Globally, many countries have employed social distancing measures and non-pharmaceutical

interventions (NPIs) to curb the spread of SARS-CoV-2 [1]. For many individuals, infection

develops into COVID-19 disease, with symptoms including fever, shortness of breath, and

altered sense of taste and smell, potentially escalating to a more severe state which may include

pneumonia, sepsis, and kidney failure [2]. In the United Kingdom (UK), the enaction of lock-

down on 23rd March 2020 saw the closure of workplaces, pubs, restaurants and the restriction

of a range of leisure activities. As the number of daily confirmed cases went into decline during

April, May and into June [3], measures to ease lockdown restrictions began; some non-essen-

tial businesses were permitted to re-open and small groups of individuals from different

households were allowed to meet up outdoors, whilst maintaining social distancing.

By the end of September 2020, exponential growth had returned in almost all regions of

the UK [4, 5] and stricter controls were subsequently reintroduced to curtail growth. Whilst

lockdown has been a strategy used around the world to reduce the public health impacts of

COVID-19, it is important to recognise that such strategies are very disruptive to multiple ele-

ments of society [6, 7], especially given that restrictions are largely unpredictable to local popu-

lations and businesses.

As part of a collective effort to protect public health by disrupting viral transmission, busi-

nesses also need to act appropriately by taking all reasonable measures to minimise exposure

to coronavirus in workplaces and premises open to the public. In the UK, each of the four

nations (England, Wales, Scotland, Northern Ireland) has published guidance to help employ-

ers, employees and the self-employed to work safely [8–11]. Adjustments in working practices
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can result in changes to the amount, duration, and/or proximity of interactions, thereby alter-

ing the dynamics of viral spread. These modifications could be variable depending upon the

type of business being operated and may include limiting the number of workers attending a

workplace on any given day, as well as introducing measures to make a workplace COVID-

secure, such as compulsory mask wearing and the use of screens. For this paper, we are inter-

ested in how interventions targeting workplace practices may affect infectious disease control

efforts, whilst accounting for the variation in employee demographics across working sectors.

Modelling has been contributing to the COVID-19 pandemic response, with analyses hav-

ing been carried out pertaining to transmission of SARS-CoV-2 within specific parts of society,

including health care workers [12], care homes [13], university students [14–16], and school

pupils and staff [17–19]. As in these studies, we view the contact structure for the adult work-

force as being comprised of several distinct layers. Knowledge of the contact structure allows

models to compute the epidemic dynamics at the population scale from the individual-level

behaviour of infections [20]. More generally, such models of infectious disease transmission

are a tool that can be used to assess the impact of options seeking to control a disease outbreak.

In this study, we outline an individual-based network model for transmission of SARS-

CoV-2 amongst the working population. Informed by UK data, the model takes into account

work sector, workplace size and the division of time between work and home. In addition to

workplace interactions, contacts also occur in household and social settings. Given the hetero-

geneity of demographic attributes across worker roles, as well as the use of individual-based

NPIs such as contact tracing, we demonstrate the utility of a network model approach in inves-

tigating workplace-targeted control measures against infectious disease spread.

Methods

We simulated an epidemic process over a network of workers and assessed the impact of work-

place-targeted non-pharmaceutical interventions. In this section we detail: (i) the structure of

the network model, (ii) the data sources used to parameterise the network contact structure,

(iii) the model for SARS-CoV-2 transmission and COVID-19 disease progression, and (iv) the

simulation protocol used to assess the scenarios of interest.

Network model description

Each node in the network represented a worker. We did not include in the network children,

the elderly, or working-age individuals not in employment (this is an acknowledged limitation

of the system). The entire network was assumed to be contained within the same geographical

area, such that any node could possibly be linked with any other node. We used a multi-lay-

ered network model to capture common contact settings. Our model was comprised of four

layers: (i) households, (ii) workplaces, (iii) social contacts, and (iv) other contacts.

Household contact layer. To allocate workers to households, we sampled from an empiri-

cal distribution based on data from the 2011 census in England [21]. To obtain this distribu-

tion, we calculated the proportion of households containing 1 to 6+ people between the ages of

20–70 (Fig H in the S1 Text). Thus, as previously highlighted, we omit children and the elderly

from our analysis. When sampling from this distribution, we restricted the maximum house-

hold size to six people. Since we assumed that everyone in a household is an active worker, this

size restriction helped to reduce the overestimation of the number of active workers mixing

within households. Within each household, members formed fully connected networks.

Workplace contact layer. To disaggregate working sectors, we used data from the 2020

edition of the ONS ‘UK business: activity, size and location database’ [22]. Specifically, we took

counts (for the UK) of the number of workplaces, stratified into 88 industry divisions/615
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industry classes (Standard Industrial Classifications (UK SIC2007)) and workforce sizes (0–4,

5–9, 10–19, 20–49, 50–99, 100–249, 250+).

We reassigned the industry types to one of 41 sectors (see Table 1 for a listing of the work

sectors). We generated a set of workplaces and workplace sizes for each of the 41 sectors in a

two-step process: first, we sampled from the relevant empirical cumulative distribution func-

tion of the binned workplace size data to obtain the relevant range. For a bounded range (all

but the largest bin), we then sampled an integer value according to a uniform distribution

that spanned the selected range. Since the largest data bin (250+ employees) is unbounded, in

this instance we instead sampled from a shifted Gamma(1,100) distribution (shape and scale

parameterisation, shifted to 250). When sampling the number of workplaces and individual

workplace sizes in each simulation run, there was variation in these distributions, though qual-

itative features were retained in individual realisations (Fig I in the S1 Text).

We separated workplace contacts into static contacts and dynamic contacts. For static con-

tacts, we constructed the network to allow for contacts both within a worker’s workplace

(most common) and to other workplaces in the same industrial sector (less common). These

contacts occurred every workday, unless either person was working from home, and remained

unchanged throughout the simulation. We generated static contacts using a ‘configuration

model’ style algorithm, allowing the specification of a desired degree distribution for each sec-

tor. We adapted the standard configuration model to allow a variable amount of clustering,

where a higher value of clustering led to more contacts being made within a workplace com-

pared to between different workplaces. We subjectively assumed throughout that the probabil-

ity of making contact with an individual in another workplace, compared to an individual

within the same workplace, was 0.05. We applied this consistently across sectors as a simplify-

ing assumption, however, were relevant fine-scale data available then sector-specific parame-

terisations may be more appropriate. Unlike the standard configuration model, we did not

allow edges to be made with oneself or repeated edges. As such, the resulting degree distribu-

tion was an approximation of the distribution used as an input. For the steps defining the algo-

rithm, see Section A.1 in the S1 Text.

Dynamic contacts represented those that may occur between workers and non-workers,

though still in the workplace, for example contacts between retail workers and shoppers. These

were regenerated every day: for each worker (not working from home), we generated a num-

ber of dynamic contacts from a sector-specific degree distribution and assigned the recipients

at random. These were not clustered in any way; that is, every person in the population had an

equal probability of being the recipient, though we did not allow repeated edges or edges with

Table 1. Within the network model, workplaces were grouped into the following 41 industrial sectors.

1. Agriculture 12. Postal 23. Employment and HR 34. Betting

2. Mining 13. Accommodation 24. Travel Agency 35. Sport

3. Manufacturing (food & beverages) 14. Restaurant and Bar 25. Security 36. Theme Parks

4. Manufacturing (other) 15. Broadcasting and Communications 26. Cleaning 37. Religious and Political Organisations

5. Utilities and Waste 16. Information Technology 27. Office (other) 38. Repair

6. Construction 17. News 28. Public Administration and Defence 39. Hairdressers

7. Motor Trade 18. Banking/Accounting 29. Education 40. Funeral

8. Wholesale 19. Real Estate 30. Hospital/Doctor/Dental 41. Personal Services

9. Retail 20. Professional/Science/Tech 31. Care Homes

10. Transport 21. Veterinary 32. Social Work

11. Transport Support 22. Rental Companies 33. Arts

https://doi.org/10.1371/journal.pcbi.1009058.t001
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oneself. Given that the number of dynamic contacts per person is small compared to the size

of the population, the desired degree distribution was approximately preserved.

Social contacts. Social contacts were generated in two stages. First, we generated a ‘social

group’ for each person. We used a similar configuration model style algorithm as for the gen-

eration of static workplace contacts, allowing the specification of a desired degree distribution.

We adapted the standard configuration model to allow for greater clustering (which in this

context relates to the probability that each contact is made with a friend-of-a-friend, opposed

to someone at random, set at 0.5) and did not allow edges with oneself or repeated edges. This

resulted in an acceptable approximation of the desired degree distribution. The second step

specified who a person socialised with each day: for each individual on each day, we sampled a

subset of their social group to construct the social contacts made on that day. The number of

social contacts made per day was specified by a degree distribution (but restricted by the size

of their social group), which we allowed to differ between workdays and non-workdays. We

provide a description of the steps for constructing the social contact layer of the network in

Section A.2 of the S1 Text.

Other contacts. The final contact layer captured random, dynamic, contacts made each

day with any other individuals in the population (for example on public transport). We used a

fixed daily probability of each individual interacting with any other individual in the network,

without clustering or preference. We justify this with the assumption that the entire network is

contained within the same geographical area.

Contact parameterisation

We parameterised the number of contacts that occurred within each layer of the network

using data from the University of Warwick Social Contact Survey [23–25]. The Social Contact

Survey was a paper-based and online survey of 5,388 participants in the United Kingdom con-

ducted in 2010. We extracted records provided by 1,860 participants, with a total of 34,004

contacts (eligibility criteria are outlined in Section B of the S1 Text). This data informed the

network construction parameters for the workplace and social layers, with stratification

according to sector. We fit parameters for these contact distributions using maximum likeli-

hood estimation via the FITDISTRPLUS package in R. We present a summary of network parame-

ters in Table 2.

Workplace contacts. We used the Warwick Social Contact Survey to parameterise the

degree distributions for both static and dynamic contacts occurring in workplaces. For a full

description of the workplace contact layer parameterisation, including the mapping between

the ONS sectors and occupations listed in the Contact Survey, see Section B.1 in the S1 Text.

Table 2. Description of network contact parameters. Lognormal distributions are described using a mean and stan-

dard deviation parameterisation. All values are given to 2 decimal places.

Description Degree distribution Source

N, network size 10,000 Assumption

Household (static) Fully connected Assumption

Work setting See Section B.1 in the S1 Text Fitted from Social Contact Survey [23–25]

Friendship group size Lognormal(3.14,1.141) Fitted from Social Contact Survey [23–25]

Social contacts (workday) Lognormal(1.40,1.27) Fitted from Social Contact Survey [23–25]

Social contacts (non-workday) Lognormal(1.54,1.15) Fitted from Social Contact Survey [23–25]

Other contact probability 1

N Assumption

Between workplace contact probability 0.05 Assumption

Friend-of-friend probability 0.5 Assumption

https://doi.org/10.1371/journal.pcbi.1009058.t002
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We found that, across all work sectors, the daily number of workplace contacts displayed a

heavy tail. Thus, we chose to fit lognormal (LN) distributions to the data, which consistently

provided stronger correspondence to the data, across different occupations, than alternative

choices of distribution.

Social contacts. We used data from the Warwick Social Contact Survey to acquire a distri-

bution of social group sizes and estimate the daily number of social contacts on both work

and non-work days. To acquire a distribution of social group sizes, we scaled up the contacts

recorded in the Warwick Social Contact Survey, resulting in a LN(3.14, 1.41) distribution with

a mean and standard deviation parameterisation (Fig 1 and Table 2, full methodological details

in Section B.2 of the S1 Text).

Through fitting distributions to the workday and non-workday data independently, we

obtained LN(1.40, 1.27) and LN(1.54, 1.15) distributions for workday and non-workday social

contacts respectively (Fig 1 and Table 2, for additional information see Section B.3 in the S1

Text).

Other contacts. To capture other miscellaneous, randomly-occurring contacts, for

each individual on each day, we generated random contacts according to a fixed probability.

We set this probability so that each individual had, on average, one additional contact per day

(Table 2), resulting in a Poisson(1) distribution across the entire population.

Fig 1. Density functions of the best fit lognormal distributions with respect to number of social contacts each day

and friendship group size. All traces are plotted against the number of contacts, presented on a log scale. The stated

lognormal (LN) distributions that follow are given using a mean and standard deviation parameterisation. We

obtained a heavier tailed distribution for number of social contacts per day on non-workdays (red dashed line, LN

(1.54, 1.15)) versus workdays (blue solid line, LN(1.40, 1.27)). The histograms show the associated empirical

probability densities in a matching colour scheme. Friendship group sizes were sampled from a LN(3.14, 1.41)

distribution, depicted by the green dotted line.

https://doi.org/10.1371/journal.pcbi.1009058.g001
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Epidemiological model

Disease states. We ran a disease process on the network structure, with each individual

being in either a susceptible, latent (infected but not infectious), infectious or recovered state.

Once infected, we assumed infectiousness could start from the following day. We assumed

an Erlang-distributed incubation period, with shape parameter 6 and scale parameter 0.88

[26].

The distribution of infectiousness had a four day pre-symptomatic phase, followed by a ten

day symptomatic phase. This gave a total of 14 days of infectivity and a minimum 15 day infec-

tion duration. The infectiousness temporal profile weighted the contact setting transmission

risk (see the subsequent subsection on Setting transmission risk) across the duration of the

infectious period (for the full temporal profile, see Table 3). It was based on a Gamma(97.2,

0.2689) distribution, with shape and scale parameterisation, shifted by 25.6 days [27, 28]. Fol-

lowing completion of the infectious period, the individual entered the recovered state.

Asymptomatic transmission. Infected individuals could be either asymptomatic or

symptomatic, according to a specified asymptomatic probability. There remains significant

uncertainty as to what this probability should be, however community surveillance studies

informed this parameter. The REal-time Assessment of Community Transmission-1 (REACT-

1) study found approximately 70% of swab-positive adults and 80% of swab-positive children

were asymptomatic at the time of swab and in the week prior [3]. Note that this includes pre-

symptomatic infected individuals who would later go on to display symptoms. This fell to 50%

at later stages of the study [5]. To reflect this uncertainty, for each simulation we sampled the

asymptomatic probability from a Uniform(0.5, 0.8) distribution.

There remains limited data available to provide a robust quantitative estimate of the relative

infectiousness of asymptomatic and symptomatic individuals. However, there are indications

that asymptomatic individuals could be less infectious than symptomatic individuals [29, 30].

Therefore, we assumed that asymptomatic individuals had a lower risk of transmitting infec-

tion compared to symptomatic individuals. To reflect the uncertainty in this area, for each

simulation we sampled the relative infectiousness of asymptomatics compared to sympto-

matics from a Uniform(0.3, 0.7) distribution. This was sampled independently to the asymp-

tomatic probability. The sampled value was applied as a scaling on transmission risk, applied

evenly throughout the duration of infectiousness (i.e. with no time dependence, see the subsec-

tion Probability of transmission per contact).
Setting transmission risk. Attributing risk of transmission to any particular contact in a

particular setting is complex, due to the huge heterogeneity in contact types. We used a data-

driven approach to obtain the relative risk of transmission within each network layer. We then

scaled these risks equally in order to obtain an appropriate growth rate of the disease.

For each contact setting (network layer), the transmission risk corresponded to the proba-

bility of a susceptible individual being infected over the course of the entire infectious period

Table 3. Description of epidemiological parameters.

Description Distribution Source

Incubation period Erlang(6, 0.88) [26]

Infectiousness profile Infectivity profile over 14 days: [0.0369, 0.0491, 0.0835, 0.1190,

0.1439, 0.1497, 0.1354, 0.1076, 0.0757, 0.0476, 0.0269, 0.0138,

0.0064, 0.0044]

[27, 28]

Proportion of cases

asymptomatic

Uniform(0.5, 0.8) REACT-1

study [3, 5]

Relative infectiousness of an

asymptomatic

Uniform(0.3, 0.7) [29, 30]

https://doi.org/10.1371/journal.pcbi.1009058.t003

PLOS COMPUTATIONAL BIOLOGY A network modelling approach to assess NPIs against SARS-CoV-2 in a worker population

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009058 June 16, 2021 7 / 24

https://doi.org/10.1371/journal.pcbi.1009058.t003
https://doi.org/10.1371/journal.pcbi.1009058


for an infected with a relative infectiousness of 1, assuming the susceptible and infectious indi-

vidual were in contact in the specified setting every day. The transmission risk was then scaled

to obtain the probability of transmission occurring across a susceptible-infectious contact pair

on a given day (see the subsection Probability of transmission per contact).
For household transmission, we used estimates of adjusted household secondary attack

rates from a UK based surveillance study [31]. We attributed a household secondary attack

rate to each student based on the size of their household. We sampled the attack rates from a

normal distribution with mean dependent on the household size: 0.48 for a household size of

two, 0.40 for three, 0.33 for four, and 0.22 for five or more. The standard deviation of the nor-

mal distribution for households of size two or three was 0.06, and for households of four or

more was 0.05. We highlight that these estimates were made using a sample of 379 confirmed

COVID-19 cases, meaning the robustness of the central estimates could be low. As such, we

sampled from a distribution to ensure this uncertainty was captured.

For transmission risk in other settings, we performed a mapping from the Social Contact

Survey [23–25] to obtain a relative transmission risk compared to household transmission. To

obtain the means, we used the central estimate of adjusted household secondary attack rate for

those aged 18–34 of 0.34 [31] and scaled this based on the characteristics of contacts in differ-

ent locations, obtained from the contact survey (further details in Section C of the S1 Text).

Standard deviations were set to have a constant size relative to the mean. Transmission risks

were consistent across all non-household settings, except within organised societies where we

assigned a lower transmission risk to reflect the implementation of COVID-secure measures

that would be required to permit these meetings to take place.

We calibrated the relative transmission risks to achieve an uncontrolled reproductive num-

ber, Rt, that was, on average, in the range 2–4 for the initial phase of the outbreak. To obtain

these early phase transmission dynamics, we applied an equal scaling of 0.8 to all of the trans-

mission risks calculated above (see Section D in the S1 Text).

Probability of transmission per contact. We outline here how the setting transmission

risk, infectiousness temporal profile and relative infectiousness of an individual were used to

compute the probability of transmission across an infectious-susceptible contact pair.

For an infectious individual j on day t of their infectious state, the probability of transmis-

sion per susceptible contact in contact setting s, denoted pj,s(t), was given by the product of

four components:

pj;sðtÞ ¼ rs � iðtÞ � aj � 0:8;

with rs the transmission risk in setting s, i(t) the value of the infectiousness temporal profile on

day t (Table 3), aj the relative infectiousness of individual j (taking either value 1 for cases that

were symptomatic during the infection episode, or the sampled value for relative infectious-

ness of asymptomatics compared to symptomatics otherwise), and 0.8 the scaling applied to

calibrate the system to achieve (in the majority of simulations) an Rt in the range of 2–4 for the

initial phase of the outbreak.

Isolation, test and trace

Testing and isolation measures. Upon symptom onset, an adhering individual would

immediately take a test and enter isolation for 10 days. At that time, their household would

also enter self-isolation for 14 days (matching the UK government guidance prior to 14th

December 2020, when self-isolation for contacts of people with confirmed coronavirus was

shortened from 14 days to 10 days across the UK) [32]. Isolation was assumed to remove all

non-household contacts for the period of isolation.
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We assumed that an isolating individual would remain in isolation for the required amount

of time, or until a negative test result was returned. We included a two day delay between tak-

ing the test and receiving the result. We assumed the test had 100% specificity and its sensitiv-

ity was dependent upon time since infection (we used the posterior median profile of the

probability of detecting infection reported by Hellewell et al. [33]).

In the event that the test result from the index case was negative, household members

would be released from isolation, as long as no other members had become symptomatic dur-

ing that time. The index case remained in self-isolation if they had independently been identi-

fied via contact tracing as a contact of a known infected; otherwise, that individual also left

self-isolation.

Forward contact tracing. The modelled tracing scheme looked up contacts for an index

case up to five days in the past. It was assumed that tracing took place on the third day after

symptom onset, following testing and a two day delay to return a positive result. Thus contacts

may be recalled up to two days prior to the onset of symptoms. We assumed that an individual

would be able to recall all of their regular contacts for that time. However, we assumed that the

probability of being able to recall their ‘dynamic’ contacts diminished with time, from 0.5 one

day previously, reducing in increments of 0.1, such that the probability of successfully tracing

a contact five days in the past is 0.1. Other assumptions could be explored and a wider range of

assumptions, collectively, would generate more variation in the results.

Contacts of a confirmed case were required to spend up to 14 days in self-isolation [34]

(matching the UK government guidance prior to 14th December 2020, when self-isolation

for contacts of people with confirmed coronavirus was shortened from 14 days to 10 days

across the UK). We set the isolation period to elapse 14 days after the index case became

symptomatic.

Adherence. We used an adherence parameter to capture the proportion of individuals

that follow the recommended guidance. This was applied to the isolation and test-and-trace

measures, representing the probability that an individual would both adhere to isolation

guidance and engage with test and trace. We did not allow partial adherence to one measure

and not the other. Adherence to isolation encompassed isolation for any reason: presenting

with symptoms themselves, being in the same household as someone displaying symptoms,

or being identified as a close contact of an infected individual via contact tracing. Unless

otherwise stated, we assumed a constant 70% adherence to isolation and test-and-trace

measures.

We give an overview of isolation, test and trace related parameters in Table 4.

Table 4. Description of isolation, test and trace related parameters.

Description Value Source

Duration of self-isolation if

symptomatic

10 days UK government guidance [32]

Household isolation period 14 days UK government guidance (prior to

14th December 2020) [32]

Duration of isolation if

contact traced

14 days (beginning from the day the index

case first displays symptoms)

UK government guidance (prior to

14th December 2020) [34]

Delay in receiving test

result

2 days Assumption

Dynamic contact recall For five previous days, [0.5, 0.4, 0.3, 0.2, 0.1].

Zero probability beyond five days.

Assumption

Adherence 0.7 Assumption

https://doi.org/10.1371/journal.pcbi.1009058.t004
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Simulation outline

We used this model framework to evaluate the transmission dynamics of SARS-CoV-2

amongst the workforce under different workplace-targeted NPIs. We also assessed the role of

adherence to the underlying social distancing guidance and engagement with test-and-trace.

We ran all simulations with a population of 10,000 workers and a simulation time corre-

sponding to 365 days. The size of the network was kept small due to the assumption that any

node could contact any other, thus must be in the same geographical area. For the default

working pattern, we applied a simplifying assumption that all workers had the same working

pattern of five days at the workplace (that can be considered to be Monday to Friday) and two

days off (Saturday and Sunday). This applied unless otherwise stated. Ten individuals began

the simulations in an infectious state, of whom between 5–8 were asymptomatic (randomly

sampled) and the remaining symptomatic (between 2–5 individuals). All other individuals

began the simulations in a susceptible state.

Unless stated otherwise, we assumed that all NPIs, including isolation and test-and-trace,

were implemented from day 15. For the two weeks prior to this, the virus was assumed to

spread unhindered. Once isolation guidance began, any pre-existing symptomatic, adherent

individuals would follow the new guidance, entering isolation themselves until 10 days after

symptom onset. Adhering household members would also enter isolation until 14 days after

symptom onset for the index case. However, only those that developed symptoms after the

implementation of test-and-trace would be tested and contact traced.

For each parameter configuration, we ran 1,000 simulations, amalgamating 50 batches of

20 replicates. Each batch of 20 replicates was obtained using a distinct network realisation. We

performed the model simulations in Julia v1.5. The code repository for the study is available at:

https://github.com/EdMHill/covid19_worker_network_model.

Our assessment comprised of four strands, assessing the impact of: i) a proportion of work-

ers working from home; ii) different working patterns; iii) the introduction of COVID-secure

workplace measures; and iv) the level of adherence to isolation and test-and-trace interven-

tions. We detail these below. Across all sections of analysis, we primarily focused on measures

associated with outbreak severity (size and peak in infectious case prevalence), outbreak dura-

tion, and extent of isolation (cumulative isolation time). Further measures are provided in the

S1 Text.

Proportion of the workforce working from home. We investigated the impact of differ-

ent proportions of the workforce working from home full time. We varied this proportion

(consistent across all sectors) from 0 to 1 in increments of 0.1. We also included a scenario in

which the proportion of workers working from home was not consistent across work sectors

(summarised in Table 5). For this, we subjectively set the proportion of workers working from

home to be highest in office based roles (70% working from home), at a moderate level in pri-

mary and manufacturing trade occupations (for example, repair with 50% working from home

and construction with 30% working from home), lower in sales and customer service roles

such as retail (20% working from home) and zero for those in the education, health, care home

and social work sectors (0% working from home). Overall for this scenario, approximately

35% of the workforce was working from home.

Worker patterns. We explored two alternative choices related to the scheduling of work-

ers being present at their usual workplace: (i) synchronous work pattern—workers returned to

work for a given number of days per week (between Monday to Friday inclusive), with all

workers scheduled to work on the same days; or (ii) asynchronous working pattern—workers

returned to work for a given number of days per week, with the days of return randomly

assigned to each worker (between Monday to Sunday inclusive).
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COVID-secure workplaces. We defined a workplace to be ‘COVID-secure’ if measures

had been taken to reduce the number of contacts workers had and decrease the risk of trans-

mission for those contacts that remained. We assessed the impact of all workplaces undergoing

changes to their contact structures, combined with a possible reduction in transmission risk

across work based contacts. We simulated all combinations of work team sizes of 2, 5 or 10, in

conjunction with the scaling of the baseline work sector transmission risks (for both static and

dynamic work contacts) by a factor of either 0.25, 0.5, 0.75 or 1. We assumed that everyone

within a team was connected with each other, but with no one else at the workplace. No regu-

lar work contacts were made outside a worker’s workplace. We did not amend the distribu-

tions of dynamic contacts occurring at the workplace.

As well as the baseline assumption of 70% adherence to isolation and test-and-trace mea-

sures, in order to highlight the effects brought about solely by COVID-secure measures (in the

absence of other NPIs), we also ran simulations with 0% adherence (i.e. in the absence of) and

100% adherence to isolation and test-and-trace measures.

Adherence to isolation, test and trace. Finally, we analysed the sensitivity of our model

to the underlying adherence parameter, which defines whether or not an individual will both

adhere to isolation guidelines and engage with test-and-trace. We sampled adherence between

0 and 1 in increments of 0.1. To conclude, we explored the sensitivity to the adherence param-

eter of the impact of workplace interventions on outbreak severity, outbreak duration, and

extent of isolation.

Results

Working from home

We found that a greater proportion of the workforce working from home was effective in

reducing the final size of the outbreak, the peak in infectious cases, and total-isolation-days

(Fig 2(a)–2(c)). An increase from no one working from home (corresponding to there being

no changes in the work pattern policy) to everyone working from home resulted in a 60–70%

decrease in the medians of each of these metrics. However, working from home was relatively

ineffective in reducing outbreak duration and displayed a non-monotonic relationship (Fig

2(d)). For increases in the proportion working from home between 0–70%, we observed an

Table 5. Sector-specific working from home proportions.

Sector Prop. Sector Prop. Sector Prop.

Agriculture 0.3 Broadcasting/Comm. 0.7 Education 0

Mining 0.3 IT 0.7 Hospital/Doctor/Dental 0

Manufact. (food) 0.3 News 0.7 Care Homes 0

Manufact. (other) 0.3 Banking/Accounting 0.7 Social Work 0

Util. and Waste 0.3 Real Estate 0.7 Arts 0.2

Construction 0.3 Professional/Sci/Tech 0.7 Betting 0.2

Motor Trade 0.5 Vet 0.2 Sports 0.2

Wholesale 0.2 Rental Company 0.7 Theme Parks 0.3

Retail 0.2 Employment/ HR 0.7 Religious Org. 0.7

Transport 0.5 Travel Agency 0.7 Repair 0.5

Transport Support 0.5 Security 0.3 Hairdressers 0.2

Postal 0.2 Cleaning 0.5 Funerals 0.2

Accomm. 0.2 Office 0.7 Personal Services 0.7

Restaurant/Bar 0.2 Public/Admin/Defence 0.7

https://doi.org/10.1371/journal.pcbi.1009058.t005
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increase in the median outbreak duration from 186 days (95% prediction interval (PI): 140–

272 days) to 230 days (95% PI: 128–365 days). Further increases in the proportion working

from home between 70–100% resulted in a decrease in the median duration, reaching 211 days

(95% PI: 81–365 days). Finally, we observed a consistent increase in variability in duration

across simulations as more people worked from home.

The relationships observed in Fig 2 can also be seen in the temporal profiles of the propor-

tion of the population infectious, the proportion isolating, and Rt (left column of Fig J in the S1

Text). A greater proportion of the workforce working from home resulted in a faster decrease

Fig 2. Case and isolation summary statistics under differing fractions of workers working from home. We introduced NPIs from day 15

onwards, with varying proportions of the workforce working from home. N-U corresponds to non-uniform proportions working from home

across the work sectors (see Table 5). Outputs are summarised from 1,000 simulations (20 runs per network for 50 separate network realisations).

We assumed an adherence of 70% in all runs. The white markers denote medians and solid black lines span the 25th to 75th percentiles. We give

central and 95% prediction intervals in Table D in the S1 Text. (a) Additional proportion of the population that were infectious post introduction

of NPIs (day 15 onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak duration (days).

https://doi.org/10.1371/journal.pcbi.1009058.g002
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in Rt towards 1 during the early stages of the outbreak. This resulted in a flattened epidemic

curve, observed in both infection and isolation levels. However, in the long run, Rt remained

marginally higher (though below 1), due to a larger susceptible population. This allowed the

outbreaks to last longer.

Thus far, we have assumed that the proportion working from home applies equally across

all industry sectors. However, in reality, such an approach may not be implementable, due to

the differing nature of such sectors. We demonstrated the flexibility of the model construction

by also simulating one example of a scenario in which the proportion working from home was

sector-dependent (labelled N-U in Fig 2). The sector-dependent proportions used resulted in

approximately 35% of the total population of workers working from home. However, when

compared to the results using an equal proportion across all sectors, the non-uniform simula-

tions appeared closer to the results obtained from a proportion working from home lower

than 35% (10–25% depending on the metric used). Thus, correlation between the amount of

contacts workers within a sector have with the general public and the ability of those workers

to work from home may reduce the effectiveness of a work from home policy.

We note that there was significant variation in infection and isolation outcomes for each

working from home intervention scenario. This was primarily due to the variability in epide-

miological factors between simulation runs, such as the distribution of initial infections, the

asymptomatic probability, and the relative infectiousness of an asymptomatic case, all of which

were randomly generated at the start of each simulation. The different network structures con-

tributed relatively less variation. Results from a collection of simulations performed on a single

network realisation also display a large amount of variation (Fig K in the S1 Text), a character-

istic observed for each form of intervention studied in subsequent result subsections (not

shown).

Worker patterns

Rather than stipulating a proportion of the population to work from home full-time (five days

a week), we can instead consider the case where workers only work from home on specified

days and are physically present at their workplace otherwise. We varied the number of days

spent at the workplace from 0 to 5 and considered working schedules that were: i) synchro-

nous: workers returned to work for the given number of days per week, with all workers sched-

uled to work on the same days (between Monday and Friday inclusive); or ii) asynchronous:

workers returned to work for the given number of days per week, with the days of return ran-

domly assigned to each worker (between Monday and Sunday inclusive).

The number of days workers spend at the workplace had a similar effect on the reported

metrics as the proportion working from home. Fewer days at the workplace resulted in fewer

infections overall (Fig 3(a)), a lower peak in infectious case prevalence (Fig 3(b)) and fewer iso-

lating individuals (Fig 3(c)). However, there was relatively less effect on the outbreak duration

and the relationship is non-monotonic (Fig 3(d)). These relationships were again displayed in

the temporal profiles of the proportion of people infectious, isolating, and Rt (Fig J in S1 Text,

centre and right columns).

Compared to a work from home policy, in which a proportion of workers work from home

all the time, allowing all workers to work from home some of the time was less effective if work

patterns were synchronous, but more effective if they were asynchronous. For example, com-

paring a policy of 40% of workers working from home all the time (Fig 2) to a policy of all

workers spending 40% of their time working from home (two days per week working from

home, three days per week at the workplace; Fig 3), we found the former resulted in a median

of 37% (95% PI: 19%–51%) of the population infected (post-introduction of interventions on
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day 15) and the latter 42% (95% PI: 25%–55%) if worker patterns were synchronous, or 35%

(95% PI: 15%–51%) if they were asynchronous.

When using asynchronous work patterns we observed fewer total infections, a reduced

expected peak prevalence and fewer total isolation-days compared to when using synchronous

work patterns (Fig 3(a)–3(c)). These differences depended on the number of days the workers

attended the workplace. For total infections and days spent in isolation, the difference between

synchronous and asynchronous worker patterns was most pronounced when fewer days were

spent at the workplace (assuming this was non-zero). For peak sizes, the same was true for 2–4

Fig 3. Case and isolation summary statistics under differing worker patterns. We introduced NPIs from day 15 onwards and tested

synchronous (brown) and asynchronous (cyan) worker patterns, for a range of days spent at the workplace. In all panels, we summarise outputs

from 1,000 simulations (with 20 runs per network, for 50 network realisations). We assumed an adherence of 70% in all runs. The white markers

denote medians and solid black lines span the 25th to 75th percentiles. We give central and 95% prediction intervals in Table E in the S1 Text. (a)

Additional proportion of the population that were infectious post introduction of NPIs (day 15 onwards). (b) Peak in infectious case prevalence.

(c) Total isolation-days. (d) Outbreak duration (days).

https://doi.org/10.1371/journal.pcbi.1009058.g003
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days spent at the workplace, with differences diminishing at the extremes. Finally, we found

that asynchronous working schedules tended to result in longer outbreaks than synchronous

(Fig 3(d)). Note that, for 0 days per week spent at the workplace, synchronous and asynchro-

nous schedules are theoretically identical, with variation between the two caused by stochasti-

city alone.

COVID-secure workplaces

We assessed the impact of all workplaces undergoing changes to their contact structures, com-

bined with a possible reduction in transmission risk across workplace contacts (Fig 4).

Without a reduction in transmission risk, we found that restricting workers to teams of up to

10 people was sufficient to reduce the total number infected and size of the infectious case peak

(purple violins; Fig 4(a) and 4(b)). Although we did not include team sizes greater than 10, based

on the relationship observed in Fig 4(a), we extrapolate that greater team sizes may cause an

increase in infections overall. This is likely due to the overall increase in the average number of

contacts per worker compared to a non-COVID-secure context, caused by fully connected

teams. Intuitively, smaller team sizes resulted in fewer infections. We observed a similar relation-

ship with total isolation-days, although at a team size of 10, isolation-days increased in compari-

son to a non-COVID-secure context (Fig 4(c)). In contrast, the introduction of teams of workers

increased the duration of the outbreak, with smaller teams causing longer outbreaks (Fig 4(d)).

If the risk of transmission was also reduced through COVID-secure measures, we observed

further reductions in total infections, the peak in infectious case prevalence and isolation-days

(colours; Fig 4(a)–4(c)). The relationship with duration was non-monotonic, with a transmis-

sion risk scaling of 1 or 0.75 (no reduction in transmission risk or a 25% reduction in transmis-

sion risk) resulting in an increase in duration, but greater reductions (transmission risk

scalings of 0.5 and 0.25) resulting in a decrease (Fig 4(d)). However, compared to a non-

COVID-secure context, duration was increased in all tested scenarios. Finally, a reduction in

transmission risk resulted in more significant changes across all metrics compared to a reduc-

tion in team size.

These relationships were reflected in the temporal profiles of the number of infectious

and isolating individuals (S1 Text, Figs L and M). As team sizes decreased (right to left), we

observed a slight flattening and lengthening of the curves for both metrics. A similar, but more

pronounced, effect was seen for decreasing transmission risk (bottom to top).

Adherence to isolation guidelines and engagement with test-and-trace

Finally, we assessed the sensitivity of our model set-up to different levels of adherence. This

applied to both the adherence to isolation measures and engagement with test-and-trace.

We found that increased adherence to isolation and test-and-trace measures resulted in

fewer infections overall and a lower peak (Fig 5(a) and 5(b)). From 0% adherence (effectively

no NPIs) to 100%, we saw a 50% reduction in overall outbreak size and 75% reduction in

infectious prevalence peak size. Nonetheless, whilst increasing adherence introduced greater

variability in the final epidemic size (lengthening violin plots with increasing adherence proba-

bility), it simultaneously caused a reduction in the variation in the peak in infectious cases

(shorter violin plots with increasing adherence probability).

In contrast, higher adherence caused an increase in both the total number of days spent in

isolation and the duration of the outbreak (Fig 5(c) and 5(d)). Variability in both these metrics

also increased significantly at higher levels of adherence.

These relationships can also be observed in the temporal profiles of infectious cases, isolat-

ing individuals and Rt (Fig N in the S1 Text). Increased adherence resulted in a faster decline
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in Rt at early stages. However, Rt remains higher during later stages (but still below 1) due to a

greater proportion of the population remaining susceptible, causing the temporal profiles of Rt

for different adherence levels to cross over. This caused a flatter, longer outbreak, resulting in

fewer infections but longer duration. Finally, increased adherence resulted in greater amounts

of isolation throughout.

To give an indication of the sensitivity of workplace interventions to adherence, we

tested the implementation of COVID-secure workplaces with adherence probabilities of 0

Fig 4. Case and isolation summary statistics under COVID-secure workplace measures. We introduced NPIs from day 15 onwards, alongside

COVID-secure workplace measures. We tested sensitivity to the maximum work team size (2, 5 or 10) and to the relative scaling of transmission

risk under COVID-secure conditions: 0.25 (blue violins), 0.50 (orange violins), 0.75 (yellow violins), 1.00 (purple violins). In all panels, we

summarise outputs from 1,000 simulations (with 20 runs per network, for 50 network realisations). We assumed an adherence of 70% in all runs.

The white markers denote medians and solid black lines span the 25th to 75th percentiles. The grey dashed horizontal line corresponds to the

median estimate with no active COVID-secure workplace interventions. (a) Additional proportion of the population that were infectious post

introduction of NPIs (day 15 onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak duration (days). We give

central and 95% prediction intervals for each summary statistic distribution in Table F in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1009058.g004

PLOS COMPUTATIONAL BIOLOGY A network modelling approach to assess NPIs against SARS-CoV-2 in a worker population

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009058 June 16, 2021 16 / 24

https://doi.org/10.1371/journal.pcbi.1009058.g004
https://doi.org/10.1371/journal.pcbi.1009058


(equivalently, without isolation and test-and-trace), 0.7 (the default adherence probability),

and 1 (all individuals adherent). We present the results for a fixed team size of 5, with varying

transmission risk and the three levels of adherence (Fig 6(a)–6(c)), as well as for a fixed scaling

of transmission risk of 0.5, with varying team size and the three levels of adherence (Fig 6(d)–

6(f)).

We observed that, on average, a lower underlying level of adherence (lighter colours)

diminished the relative effectiveness of a workplace targeted intervention at reducing total

infections and peak size (Fig 6(a), 6(b), 6(d) and 6(e)). This reduction in median relative effec-

tiveness was generally more pronounced for more intensive interventions (smaller team sizes

Fig 5. Case and isolation summary statistics under differing levels of adherence to NPIs. We introduced NPIs from day 15 onwards, with

varying levels of adherence. In all panels, outputs are summarised from 1,000 simulations (with 20 runs per network, for 50 network

realisations). The white markers denote medians and solid black lines span the 25th to 75th percentiles. We give central and 95% prediction

intervals in Table D in the S1 Text. (a) Additional proportion of the population that were infectious post introduction of NPIs (day 15

onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak duration (days).

https://doi.org/10.1371/journal.pcbi.1009058.g005
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and greater reduction in transmission risk). Lower adherence also reduced the relative vari-

ability between simulations in these two metrics.

We observed the opposite effect on outbreak duration (Fig 6(c) and 6(f)): lower adherence

caused a relatively greater increase in outbreak duration from the implementation of work-

place targeted interventions. Again, this was most pronounced for more intensive interven-

tions. The relative variability in duration appeared to increase with lowered adherence.

However, we note that the duration without intervention (dashed lines) is significantly shorter

when adherence is lower, thus we are less likely to reach the upper bound for outbreak dura-

tion of 365 days (Figs O and P in S1 Text).

Overall, a lack of adherence to underlying isolation and test-and-trace measures led to

larger (although shorter duration) outbreaks and worsened the relative performance of work-

place interventions. We obtained qualitatively similar relationships between adherence and

Fig 6. COVID-secure workplace measures and sensitivity of epidemiological quantities to adherence. We introduced NPIs from day 15 onwards,

alongside COVID-secure workplace measures. We compare three scenarios of adherence to isolation and test-and-trace measures: 0% (lightest shaded

violins); 70% adherence (moderate shaded violins); 100% (darkest shaded violins). In panels (a-c) we fixed the work team size at 5 and varied the

relative scaling of transmission risk under COVID-secure conditions. In panels (d-f) we fixed the relative scaling of transmission risk at 0.5 and varied

the work team size. We summarise outputs from 1,000 simulations (with 20 runs per network, for 50 network realisations). The white markers denote

medians and solid black lines span the 25th to 75th percentiles. The dashed horizontal line corresponds to where estimates from simulations including

COVID-secure measures match estimates from simulations that had no active COVID-secure interventions. We present the following summary

statistics: (a,d) additional proportion of the population that were infectious post introduction of NPIs (day 15 onwards); (b,e) peak in infectious case

prevalence; (c,f) outbreak duration, where we note that some of the violin plots are flat topped, caused by the outbreak duration in any single run being

unable to exceed the simulated time horizon of 365 days. We give central and 95% prediction intervals for each summary statistic distribution in Tables

G and H in the S1 Text. For the distributions of absolute values for these scenarios, see Fig O and Tables G and H in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1009058.g006
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the effectiveness of the other workplace targeted interventions considered in this paper (Figs

Q-S in S1 Text).

Discussion

In this study, we have developed a model to analyse the spread of SARS-CoV-2 in the working

population, considering the risk of spread in workplaces, households, social and other settings.

We have investigated the impact of working from home, asynchronous working patterns, and

COVID-secure measures upon disease spread and the time spent in isolation by the working

population.

In the UK, an instruction to work from home where possible formed part of a collection of

measures that were effective in forcing the initial wave of SARS-CoV-2 infection into decline

[35]. Our work supports this effect, finding that requiring a proportion of the population to

work from home was effective in reducing the final size of the outbreak and total isolation-

days. Under our modelling assumptions and default parameter values, we found a 60–70%

decrease in the median estimates of infections, peak infectious prevalence and total isolation-

days with everyone working remotely compared to everyone attending the workplace Mon-

day-Friday. However, flattening the epidemic curve in this way would typically result in a pro-

longed outbreak duration compared to a scenario without workplace targeted interventions.

Furthermore, we demonstrated that a non-uniform proportion working from home across dif-

ferent industry sectors can affect the efficacy of this intervention, even if the overall proportion

remains the same. In particular, if sectors with a greater number of dynamic contacts (e.g. hos-

pitality) are also less able to function with workers at home, this could hinder the effectiveness

of this intervention. Nonetheless, a sector-specific approach may be explored to determine

optimal combinations of work from home percentage across applicable sectors (where work-

ing from home is possible), whilst maximising the overall proportion of workers able to attend

the workplace.

Another approach to modify work-associated mixing patterns is to alter the scheduling of

when workers attend the workplace. We observed (under our default parameter set) up to 20%

fewer infections and up to a 40% lower infection peak when using an asynchronous work

schedule rather than a synchronous work schedule. These differences between worker pattern

implementations were most pronounced when fewer (but non-zero) days were spent at the

workplace. We postulate similar outcomes for flexible start and finish times that suit an

employee’s needs. There are also indications that some businesses envisage retaining flexible

working habits longer-term [36], incorporating flexible work times and working from home

[37]. This may result in the percentage of the UK workforce reporting a flexible working pat-

tern increasing above a October-December 2019 estimate of 28.5% [38].

It is clear that not all work sectors would be able to implement a work from home policy or

allow flexible, asynchronous work patterns. In April, during the first wave of infection in the

UK, 46.6% of respondents to a UK-based survey reported having done any work from home in

the reference week [39]. However, we have shown that the introduction of COVID-secure

measures in the workplace that reduce the number and transmission risk of contacts between

workers can help to stem the spread of the virus in the population.

The use of these workplace-targeted interventions should be carefully considered, and the

effect and fallout from each weighed against each other. Every decision has an impact on peo-

ple’s lives and livelihoods. In the event of enforced alterations to working practices, it is vital to

consider harms to businesses and to personal well-being and mental health, with those affected

being fully supported. We believe that a sector-specific combination of workplace-targeted
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policies could help to both slow the spread of SARS-CoV-2 and reduce the negative impact to

workers, as well as the people and businesses that depend on them.

Prior modelling studies have indicated that nationally applied NPIs (such as social distanc-

ing, self-isolation upon symptom onset and household quarantine) may reduce the spread of

SARS-CoV-2 [40–42]. Our analysis corroborates these findings, demonstrating that increased

adherence to isolation and test-and-trace measures can significantly reduce the size of an out-

break. However, conversely, lower adherence not only worsens the outbreak, but can also

reduce the relative effectiveness of workplace targeted interventions. The true adherence of the

population, and how this could change over time, should be carefully considered when inter-

preting these results and applying them in other contexts.

The success of contact tracing operations is not only dependent on engagement from the

population, but also on the rapid detection of cases and isolation of contacts (for simplicity we

applied a consistent two day turnaround time for this process, though there is observed non-

uniformity and temporal variation in these distributions [43]). Given the burden when tracing

large numbers of contacts, there is the potential the system could be overwhelmed when the

incidence of new cases occurs at a rapid rate [44]. Other operational considerations include

the adoption of digital approaches to enable the application of tracing at scale [45]. From the

policy maker perspective there are, therefore, trade-offs to consider between investing costs

and care in designing sophisticated monitoring networks to enhance rapid detection, or allo-

cating finite resources to alternative interventions as part of the overall package of infectious

disease control measures. There would be merits in the use of a coupled transmission model

and health economic analysis to determine under what circumstances sophisticated contact

tracing systems would be most efficient.

Our evaluations using multiple simulations have incorporated network and epidemiologi-

cal uncertainty. That being said, there were network, epidemiological and intervention param-

eters that we assumed fixed and did not vary. In our network contact parameters, we fixed the

probability of making contact with an individual in another workplace, compared to an indi-

vidual within the same workplace, as 0.05 for all work sectors. Sector-specific values would

lead to disparities in the amount of clustering between sectors, with higher values increasing

the likelihood of multiple workplaces in a sector having cases (less clustering). Additionally,

we did not explore uncertainty in the underlying degree distributions for the contact networks.

Our conjecture would be inclusion of such uncertainty would increase variability in outcomes.

The contact distributions were also informed from a single data source, and it is possible that

contact patterns may have changed in the intervening time since the contact survey was under-

taken (approximately 10 years). However, contact studies with the richness of data to parame-

terise work sector contacts are infrequent, thus we have used the most recent data of the

required quality available to us.

Another item of prospective sensitivity analysis pertaining to network structure is having a

representative proportion of part time workers, though this requires additional assumptions

on contact patterns during non-workday weekdays and adds complexity to the network gener-

ation. Hence, we have presented a pragmatic approach where we have sought broad insights

from what we acknowledge is a simplification of a complex real-world system. Using the analy-

sis we performed around worker patterns, we can postulate that replacing a proportion of the

full-time working population with asynchronous, part-time workers would result in a reduced

outbreak size and severity.

As part of our epidemiological parameters, we assumed the absolute infectiousness of an

asymptomatic case to be less than a symptomatic case, but the duration of infectiousness to be

equal. Recent data suggests that while symptomatic and asymptomatic individuals have similar

average peak viral loads and proliferation stage durations, their average duration of clearance
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stages have been observed to differ [46, 47]. Furthermore, our intervention parameters

included a fixed delay in receiving a test result of two days and (for most analyses) a 70%

adherence assumption. Our findings may be sensitive to alternative epidemiological model

structures and intervention assumptions, with this being a direction of further study.

Our data-driven approach to parameterise the work sector populations and contact struc-

tures highlights the heterogeneities that are present in the system. Our work has shown that

changing workplace interactions can make a difference to disease transmission and outbreak

size, suggesting that relative effectiveness of these factors could contribute to regional varia-

tions in epidemiological outcomes. However, there are characteristics of the underlying con-

tact structure that our model formulation does not presently capture. We have not considered

clustering of individuals within an individual workplace to capture the fact that, for example,

individuals who share an office will be exposed to higher risk. We would expect this to have a

stronger effect upon transmission within larger workplaces. In addition, the risk of contracting

COVID-19 at work, and the risk of developing serious or fatal COVID-19 should infection

occur, will also depend on personal vulnerability [48]. Strong determinants of individual risk

are the presence of comorbidities and age, which could be correlated with job type.

Furthermore, our system contained active workers only, with children and the elderly not

present. The susceptibility to infection and severity of clinical outcomes generally differs in the

youngest and eldest ages compared to those of adults. Within multi-generational households,

the relative amount of contact between each generation may differ. Our assumption of mem-

bers of each household forming a fully connected network could be too general in these cir-

cumstances, with an alternative parameterisation required. The impact of age-specific

interventions on contact structures also requires attention, such as children switching from

attending school in-person to online learning (or vice versa). Thus, the incorporation of age

and risk stratification in an expanded network model, and the consequential impact of the dis-

ease dynamics amongst the population, merits further investigation.

Another aspect we have not included here is the presence of other respiratory infections.

Such an extension would permit the study of test capacity requirements when levels of cough

and fever are high due to non-COVID-19 causes. This is especially of concern during the win-

ter period, with expectations of the national test and trace system being put under extra strain

[49].

Lastly, while we have informed our model based on UK data, the model may be applied to

other countries given the availability of the necessary data to parameterise the model. Modify-

ing the framework to other contexts that have contacts occurring across several reasonably

well-defined settings (such as school communities) we perceive as another viable extension.

Models of infectious disease transmission are one tool that can assess the impact of options

seeking to control a disease outbreak. Here, we have presented a network model to study epi-

demic spread of SARS-CoV-2 amongst a population with layered contacts capturing multiple

encounter settings, including distinct work sectors. Our work demonstrates the potential uses

of this choice of model framework in generating a range of epidemiological measures, which

may be analysed to assess the impact of interventions targeting the workforce.
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