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Abstract

In this thesis the author examines geometric properties of (Poisson) loop

soups generated from loop measures with varying weights. The framework

incorporates the Markovian loop measure, see [LJ11], as well as the Bosonic

loop measure, see [AV20]. The author characterises certain geometric features

of the loop soup, such as its percolative properties and correlation structure.
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Figure 1: Different realisations of a two-dimensional random walk loop soup, with
increasing intensity.
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Chapter 1

Introduction

Statistical mechanics is a branch of physics which aims to make a connection

between the macroscopic and the microscopic properties of a system. Often

cited examples of macroscopic properties include temperature, magnetisation,

and viscosity. The strength of molecular bonds or other interatomic forces are

examples of microscopic properties of a system. As systems typically consid-

ered in statistical mechanics consist of a large number of interacting micro-

scopic atoms (or agents), simplified probabilistic models are brought forward,

with the hope that the qualitative behaviour is accurately rendered.

1.1 Loop models and loop soups

There are many models in statistical mechanics describing different physical

systems. Our investigation is motivated by the fact that many have a (partial)

representation in terms of a loop model or loop soup. We first clarify what we

mean by a loop model or loop soup and then introduce some examples from

the literature where a loop representation exists. As this is purely to motivate

the study, the list will be far from exhaustive.

Given an at most countably infinite graph G = (V,E), we say that a loop ω

is a function from [0, t] → V (for some t > 0) which is continuous from the

right, has left limits, jumps across edges only and satisfies

ω(0) = ω(t) . (1.1.1)
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We say that t is the length of the loop ω. Let Γ be the space of all such loops

(of any finite length). In our setting, we define a loop model to be a probability

measure on (N0)Γ. For σ ∈ (N0)Γ, we interpret σω = k ∈ N as the loop ω being

sampled k-times and σω = 0 as the loop being absent. The multiset, where

loop ω is present σω-times, is then referred to as the loop soup and denoted

by U . It is trivial to see that both viewpoints are equivalent: specifying the

law of the random multiset U of Γ is equivalent to fixing the distribution of σ.

A statistical mechanics model has a loop representation if certain features of

the system can be computed in terms of a loop soup U . Instead of giving a

strict mathematical definition, we present an in-depth description of two cases.

1.1.1 Markovian loop soups and Gaussian fields

One of the most studied models in statistical mechanics and probability theory

is the Gaussian (free) field: given a finite collection of vertices V andQ ∈ RV×V

a positive definite, symmetric matrix over V , let NQ be the Gaussian measure

on RV 1 with covariance matrix Q−1. That is, NQ is a probability measure on

RV with density

dNQ(ψ) =
1

Z
exp

(
−
∑
x,y∈V

ψxQx,yψy

)
dψ, for ψ ∈ RV , (1.1.2)

where Z is the normalising constant and dψ is the Lebesgue measure on RV . In

many cases it is possible to define a Gaussian measure on an infinite graph by

taking weak limits of the above measures. For the purpose of this introduction,

we restrict ourselves to finite graphs.

It is well-known that for a Gaussian field its covariance can be represented

in terms of the local time of a continuous-time random walk, we refer the

reader to [Fun05, Chapter 3] for a reference. Let G(x, y) = NQ[ψxψy] be the

correlation function for x, y ∈ V . Enrich G with an additional symbol †, often

referred to as graveyard. Let (Xs)s≥0 be the continuous-time random walk

with semi-group
(
esQ
)
s≥0

. For any x ∈ V , set the weight of going from x to †

1We restrict ourselves to mean zero Gaussian measures.
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to be Q(x, x)−
∑

y 6=xQ(x, y). We have that

G(x, y) = Ex
[∫ τ

0

1{Xs = y}
]
, (1.1.3)

where † is an absorbing state and τ is the hitting time of †.
Building on the works of Symanzik (see e.g. [Sym68]), more powerful random

walk representations (of Gaussian measures) have been found, such as the

Dynkin Isomorphism (see [Dyn83] and [LJ08]), the Eisenbaum Isomorphism

(see [Eis95]), the Ray-Knight theorems (see [Kni63] and [Ray63]) and the

representations in [BFS82], to name a few. The above results are of the form

that some functional of both the Gaussian field and the random walk is equal

(in distribution) to a different functional applied to the Gaussian field alone.

For an account of these representations together with their implications, we

refer the reader to [Szn12] or [FFS13]. As we are primarily interested in

representations of the Gaussian field in terms of loops, we do not examine the

aforementioned results in greater detail.

In the works of Le Jan (see for example [LJ10]) a representation of the square

of the Gaussian field in terms of the accrued local time of a loop soup is given.

As the result is important to our work, we give a brief description: let Q be

positive definite and symmetric, as above. Let (Xs)s≥0 be the continuous-

time random walk induced by Q, with measure Px. This means that the

random walk starts at x ∈ V and then evolves according to (esQ)s≥0, as above.

For t > 0, let Ptx,x the measure Px restricted (not conditioned) to the event

{Xt = x}. Let M be the following measure on the space of loops Γ:

M =
∑
x∈V

∫ ∞
0

1

t
Ptx,x dt . (1.1.4)

Let Pλ be the Poisson point process (PPP) on Γ with intensity measure λM

for λ > 0. A sample from Pλ is a realisation of what we call the Markovian

loop soup. We define the occupation field L as the combined sum of all the

local times of the loops: let Lx = Lx(ω) be defined as
∫ t

0
1{ωs = x}ds, where
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t is the length of the loop ω. Given a realisation of the loop soup U , let

Lx =
∑
ω∈U

Lx(ω) . (1.1.5)

It then holds that:

Theorem 1.1.1. [LJ10] The occupation field (L)x∈V under Pλ with λ = 1/2

has the same distribution as the square of the Gaussian field. This means in

particular that for any continuous and bounded function F : [0,∞)V → R,

E1/2 [F (L)] = NQ
[
F (ψ2)

]
, (1.1.6)

where (ψ2)x = (ψx)
2 for all x ∈ V .

There exist several extensions of the above theorem: in [Lup16a,Cam15,

LST19] the isomorphism is generalised to the whole field (ψx)x∈V . The intu-

ition is that one can first sample (ψ2
x)x∈V and then sample the sign of ψx by

an Ising type weight depending on (ψ2
x)x∈V . These results are restricted to

the cases where Q is symmetric. For asymmetric random walks, one has to

consider complex valued Gaussian measures and replace ψ2
x by |ψx|2. This is

done in [AV20]. In the same publication an isomorphism for the full complex-

valued field is given. For a discussion for more general spaces, we refer the

reader to [LJMR17].

The above results have the following consequence: a measure N which has a

density with respect to NQ can be represented it in terms of a loop soup “with

interaction”. This is made precise in the following corollary.

Corollary 1.1.2. Let f : [0,∞)V → R be a continuous and bounded. Suppose

that dN ∝ f(ψ2)dNQ. Let E be the expectation with respect to the measure P
which satisfies dP ∝ f(L)dP. Then

E[F (L)] = N [F (ψ2)] . (1.1.7)

An important example of such a fieldN is the Phi-4 model, see [FFS13].

To summarise, in this subsection we have seen that the Gaussian field can be

represented as the occupation field of a random walk loop soup. A more
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general framework, which can be seen as generalisation of the above, is given

in Theorem 3.3.1.

For more properties of the Markovian loop measure, we refer the reader to

[LJ10,Szn12,Law18].

Recently, a number of new isomorphisms for non-Markovian random walks

have been found, connecting their local time to spin systems in spherical or

hyperbolic geometries. For more on that, we refer the reader to [BHS19].

1.1.2 Bosonic loop soups

Loop soups can also be used to describe a system of (non-)interacting Bosons.

The following introduction into Bosonic particle systems is paraphrased from

[AV20, Section 3]:

In quantum mechanics particles can either be Bosons or Fermions. Consider a

system of (interacting) Bosons on some finite box Λ ⊂ Zd: a single particle can

be described as a function in the one-particle Hilbert space HΛ = RΛ (with the

Euclidean inner product). The N -particle Hilbert space is given by the tensor

product H⊗NΛ . The Hamilton operator HN : H⊗NΛ → H⊗NΛ for N particles is

HN = −
N∑
i=1

∆(Λ)

i +
∑

1≤i<i≤N

v(|xi − xj|) , (1.1.8)

where ∆(Λ)

i is the discrete Laplacian operator on Λ with Dirichlet boundary

conditions2 giving the kinetic energy for particle i. The distance |xi − xj|
between two points xi, xj is the usual Euclidean norm. Thus, the interaction

depends only on the distance of particle i at xi ∈ Λ and particle j at xj ∈ Λ

and the function v. We assume that the particle number is only known in

expectation, and thus the thermodynamic equilibrium is given by the grand

canonical ensemble. This means that we have to work with the Hilbert space

F =
∞⊕
N=0

H⊗NΛ , (1.1.9)

2equivalently, the generator of the simple symmetric random walk killed upon entering
the complement of Λ.
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also called the Fock space.

States of identical and indistinguishable Bosons are described by symmetric

functions: for N Bosons, their possible states are given by all symmetric func-

tions in the tensor product H⊗NΛ . Here, symmetry refers to the exchangeability

of arguments, i.e. if f(x, y) = f(y, x) for all x, y ∈ Λ, we would say f is sym-

metric (N = 2). This symmetry is the unique distinguishing feature of Bosons.

Note that we can project from H⊗NΛ onto its subspace of symmetric function

H⊗NΛ,+ by

f 7→ 1

N !

∑
σ∈SN

f ◦ σ , (1.1.10)

where SN is the symmetric group of N elements and f ◦ σ(x1, . . . , xN) is

given by f(xσ(1), . . . , xσ(N)). Write F+ for the Fock space of all symmetric

functions. At thermodynamic equilibrium with inverse temperature β and

chemical potential µ, the grand canonical partition function (which is the

trace over the symmetrised Fock space) is given by

ZΛ,v(β, µ) = TrF+(e−β(H−µN)), (1.1.11)

where H is the quantised Hamilton operator having projection HN on the

subspace H⊗NΛ , N is the number operator in Λ taking the value N on the

space H⊗NΛ , and TrF+ is the trace operator on F+. Using the Feynman-Kac

formula (see e.g. [Szn12]), one can derive the following representation of the

grand canonical partition function

ZΛ,v(β, µ) =
∞∑
N=0

eβµN

N !

∑
xi∈Λ

i=1,...,N

∑
σ∈SN

N⊗
i=1

Pβxi,xσ(i)

[
e−

∑
1≤i,j≤N

∫ β
0 v(|Xi

t−X
j
t |) dt

]
,

(1.1.12)

where SN is the set of all permutations of N elements, and the right-hand

side can be interpreted as a system of N random walks (X i
t)t≥0, i = 1, . . . , N

(see [AD08] for details). Following [Gin71] and [ACK11], one can employ cycle-

expansion to simplify the above expression: define the Bosonic loop measure

MB
Λ,µ,β as

MB
Λ,µ,β =

∑
x∈Λ

∑
j≥1

eβµ

j
Pβjx,x . (1.1.13)
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Using the definition of the Bosonic loop measure one obtains

ZΛ,v(β, µ) =
∞∑
N=0

1

N !

N⊗
i=1

MB
Λ,µ,β(dω(i))

[
e−V (ω(1),...,ω(N))

]
, (1.1.14)

where the interaction energy of N loops is the given by

V (ω(1), . . . , ω(N)) =
1

2

∑
1≤i,j≤N

[`(ω(i))−1]/β∑
k=0

[`(ω(j))−1]/β∑
m=0

1{(i, k) 6= (j,m)}
∫ β

0

v(|ω(i)(kβ + t)− ω(j)(mβ + t)|) dt .

(1.1.15)

Here we write `(ω(i)) for the length of the i-th loop. The derivation of the above

representation of the partition function is non-trivial and is achieved through

a series of combinatorial identities and the concatenation of paths (from xi

to xσ(i)) of length β to form loops with lengths in βN. We refer the reader

to [Gin71] for the lengthy derivation. In [AV20], we show that the (quantum)

correlation functions can also be represented in terms of the Bosonic loop soup.

To summarise, we have defined a model of Bose particles and outlined how

several of its characteristics, such as the partition function and the correlation

functions, can be expressed in terms of a system of loops governed by the

Bosonic loop measure (with an additional interaction term).

Previous work has been focused on the distribution of the loop lengths (cycle

statistics), see [Lew86, Owe15, AD18]. In our work we are interested in more

geometric properties of the Bose gas, such as connectivity properties and cor-

relation functions, continuing the work from [AV20].

1.2 Loop percolation

Loop percolation generally refers to the connected components induced by a

loop soup. Previous results are restricted to the Markovian loop soup, defined

by the measure M from Equation (1.1.4). Assume that the underlying random

walk is the simple symmetric random walk on Zd. A sample of the loop soup

induces a bond-percolation model on Zd, where we declare a bond as open if

7



there is at least one loop traversing through it. Let C0 be the set of all open

bonds connected to the origin through other open bonds only. Note that in

this formulation constant loops (i.e. loops which only visit one vertex) do

not play any role. By considering the Poisson point process with intensity

measure λM , we obtain a one-parameter percolation model (as λ > 0 varies).

We explain here some of the past results in loop percolation, all of which are for

the Markovian loop soup. After introducing the main references and results,

we give a brief summary at the end of this section.

In [LJL13] percolation for the Markovian loop soup is introduced and then

first results are given. The authors introduced an additional parameter κ > 0

which corresponds to the rate the random walk is killed. To be more precise,

with probability 1/(1 + κ) the random walk chooses one of its neighbouring

sites uniformly for the next step and with probability κ/(1+κ) it moves to the

absorbing state †. The authors then showed the following: given any λ > 0,

C0 is finite almost surely for κ sufficiently large. Conversely for any κ ≥ 0,

by making λ sufficiently large one has that the cluster of open bonds at the

origin C0 is infinite with positive probability. For the first claim, they use

a path counting argument, like it is done for Bernoulli percolation (see for

example [Gri89, Chapter 1]). For the second statement, they use that loop

percolation can be bounded from below by Bernoulli bond percolation.

In [Lem13], the same model is studied on the complete graph, with the killing-

parameter κ proportional to the total number of vertices.

For Zd with d ≥ 3, a number of new results are given in [CS16]. All results

in this paper are for κ = 0. The most important result is that C0 is finite

almost surely for λ > 0 small enough. This implies (together with the results

from [LJL13]) that the critical parameter λc (which is the smallest λ for which

C0 being infinite with positive probability) is strictly between 0 and infinity.

Another result is that for d ≥ 5, they were able to show that there exists

two constants C1, C2 > 0 such that the probability P (C0 ∩Bc
n 6= ∅) can be

sandwiched in the following way

C1n
2−d ≤ Pλ (C0 ∩Bc

n 6= ∅) ≤ C2n
2−d , (1.2.1)
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where Bn is the ball centred at 0 with radius n and one has to assume that

0 < λ < λr where λr is positive and bounded from above by λc. Note their

other results include bounds on whether a point x is contained in C0, bounds

on the tails of the size of C0 and more. Most of their results are limited to the

case λ < λr.

The regime where λ > λc (also called supercritical phase) is studied in [Cha17].

Here, the author gives heat kernel bounds for the random walk on the infinite

connected component. Contrary to the behaviour of the subcritical phase, the

behaviour of the loop soup for λ > λc is similar to simpler percolation models.

In the important work [Lup16a], the author uses a novel coupling with the

Gaussian free field to show that λc ≥ 1/2 in the cases: for d ≥ 3 and κ = 0,

and for G = Z × N (the half space) with killing at the boundary Z × {0}.
In [Lup16b], the author shows that for the latter case one has λc = 1/2. For

this, previous results on conformal loop ensembles are used.

In [AS19], the authors study the vacant set, i.e. those bonds which have not

been traversed by any loop. Decoupling inequalities for local functions on the

vacant sets were proven.

To summarise: loop percolation has been studied for several years by now.

While for several parameter regimes, such as λ > λc and λ < λr, detailed es-

timates are available, there are open questions: Are the decay estimates from

Equation (1.2.1) valid for all λ < λc? What does the structure of large clusters

look like? Does the Bosonic loop soup percolate in a different way than the

Markovian one? In this thesis, we provide (partial) answers to these questions.

In this section we have introduced loop percolation and given an overview over

results from the literature. In the next section we will introduce sharpness and

the recently developed framework of randomised algorithms.

1.3 Sharpness and random algorithms

It is common in percolation theory that, at first, certain decay estimates can

only be proven for a parameter range [0, λr) with λr ≤ λc. This is also true

for loop percolation, see Equation 1.2.1.

We compare this to the case of Bernoulli bond percolation Pp with parameter

9



p ∈ [0, 1]: for many decades it was known (see [Gri89, Chapter 1]) that for

every p < c−1
2 (where cd is the connective constant of Zd) one has that

Pp (C0 ∩Bc
n 6= ∅) ≤ e−cpn , (1.3.1)

for some cp > 0. The question is whether this exponential decay continues to

hold for every p ∈ [0, pc), where pc is the critical parameter of Bernoulli bond

percolation. An affirmative answer to that question is often referred to as

sharpness (of the phase transition). In both [AB87] and [Men86], it is shown

that for Bernoulli bond percolation sharpness holds3. While their proofs differ,

in both references a system of differential inequalities is used together with an

iteration scheme. In [DCT16], the authors utilise the relatively new OSSS in-

equality (named after O’Donnell, Saks, Schramm and Servedio, see [OSSS05])

to give a new and short proof of sharpness for Bernoulli percolation and the

Ising model. The OSSS inequality can be seen as a generalisation of the

Poincaré inequality in the sense that it gives an upper bound on the variance

of functions. The strategy used in [DCT16] has the advantage of being flexible

enough to be adaptable to various other settings: in [DCRT19b] sharpness

for the random-cluster model is established, in [DCRT19a] for Voronoi per-

colation, in [BH19] for inhomogeneous percolation on quasi-transitive graphs,

in [DCRT18] for Poisson-Boolean percolation, in [MV20] for Gaussian fields

and in [DH18] for the Widom-Rowlinson model.

In this thesis we use the framework laid out in [DCT16] to show the validity

of various decay bounds for loop percolation in the whole subcritical regime.

1.4 Main results and outline

In this section we briefly summarise the key results of this thesis.

The main novelty presented in this work is the development of a method

which allows us to characterise various features and geometric properties of

loop soups uniformly over a wide range of loop measures and the employment

of that method. As giving the precise statements of the individual results needs

3This took almost 30 years to prove, exponential decay for parts of the subcritical regime
was first shown in [BH57].
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further notation, we only give rough characterisations and refer the reader to

the respective chapters of the thesis for more details.

(Geometric) Properties of the loop soup

Property Chapter and Remarks

Occurrence of long loops through a

point
Chapter 4.

Occurrence of long loops through an

annuls with diverging radius
Chapter 4.

Derivation of the two-point function Chapter 5.

Derivation of the cumulant function Chapter 5.

Distribution of the occupation field Chapter 3 and Chapter 5.

Occurance of vacant sets Chapter 5.

Existence/Absence of infinite clusters Chapter 6.

Decay of the one-arm connectivity
Chapter 6, strong decay assump-

tion on the weights.

Occurrence of long loops in clusters
Chapter 6, strong decay assump-

tion on the weights.

Equivalence of critical parameters/

Sharpness

Chapter 6, strong decay assump-

tion on the weights.

We now give a brief description of the content of each chapter of the thesis.

In Chapter 2 we fix notation and specify the class of admissible random walks.

We also prove lemmas regarding hitting time estimates for the random walk.

In Chapter 3 we define the loop measures and the induced loop soups used in

this thesis. We use the following approach: instead of proving statements sepa-

rately for different loop measures, we develop proofs which hold uniformly over

a wide range of loop measures. The results for Bosonic and Markovian loop

measure follow as special cases. This has the advantage that we no longer rely

on the closed form expressions which exists for the Markovian loop measure

(due to its connection to the Gaussian free field) only. We restrict ourselves

mainly to weights decaying at a polynomial speed, as in that case the loop

soup exhibits long-range correlations. In Chapter 3 we also generalise the

work from [AV20], which illuminates the intricate relation between Bosonic

and Markovian loop measures. We also show how the characterisation of the
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distribution of the occupation field is equivalent to solving a measure-valued

differential equation.

In Chapter 4 we give various decay estimates for loop measures. This is done

via representing quantities in terms of the range of the random walk bridge

and then using concentration estimates for the range.

In Chapter 5 we characterise different (geometric) properties of the loop soup.

We use the same strategy as employed in the previous chapter, to obtain novel

results for a wide class of loop measures.

In Chapter 6 we study the behaviour of the connected component of the loop

soup intersecting the origin. We employ the results from the previous chap-

ters to show that (given certain decay assumptions on the weights) different

critical parameters for loop percolation are equal. We use some standard tools

from percolation theory, such as the FKG-inequality or Russo’s formula, as

well as the recently developed framework of randomised algorithms and the

OSSS-inequality, see [OSSS05,DCRT18]. We also provide some finer estimates

on the structure of the cluster in the subcritical phase.

In Chapter 7, we direct the reader’s attention to potential uses of the tech-

niques developed in this thesis and speculate how technical restrictions could

be loosened. We give a number of conjectures we plan to verify in future stud-

ies.

In the Appendix we give several technical lemmas which we use throughout

the text.

At the end of the thesis we provide an index which lists the symbols used

throughout the text (not including the introduction) together with a number

referencing the page where they are defined. Notation restricted to a small

section of the thesis (such as a short proof) is not listed.
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Chapter 2

Random walk path measures

In this chapter we introduce notation, the set-up, and prove various technical

lemmas. We first define path spaces and then give the class of random walks

used in this thesis. We then prove a coupling result with the Brownian bridge.

In the last section of this chapter we establish several results on hitting times:

computing the (sharp) asymptotics of hitting a single point and the boundary

of a sphere.

2.1 Notation and set-up

We begin with a technical remark: in this work, we do not use the ”:=”

notation when it comes to defining new mathematical objects. Instead we use

the ”=” symbol. It will be clear from the context when ”=” refers to the

equality between two (predefined) mathematical objects and when ”=” refers

to a notational assignment. Furthermore, all equations in this thesis have been

labelled to facilitate referencing.

We present a list of conventions used in this work.

I. Constants : usually denoted by C and may change value from line to line.

Constants with sub/super-scripts are fixed and, unless stated otherwise,

only depend on the underlying random walk and the dimension.

II. Rounding : given a real number t ≥ 0, we define
∑

j=t . . . as
∑

j=btc . . .,
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where t 7→ btc is the floor function. If we split a sum, we set

t∑
j=1

. . .+
∞∑
j=t

. . . to be equal to

btc∑
j=1

. . .+
∞∑

j=dte

. . . , (2.1.1)

if t /∈ N, where t 7→ dte is the ceiling function.

III. Integration: given a measure space (Ω,A,m) and a measurable function

f : Ω→ C, we denote the integral of f with respect to m by

m[f ] =

∫
fdm =

∫
Ω

f(ω)dm(ω) . (2.1.2)

If n is absolutely continuous with respect to m and the Radon–Nikodym

derivative is given by g, we then write dn(ω) = g(ω)dm(ω). If m is the

Lebesgue measure (on Rd) and the integration variable is given by x, we

simply write dx instead of dm(x).

The delta measure on a set/point A is denoted by δA. The indicator

function on a set A is denoted by 1A or 1{A}.

IV. Conditioning : given an event A and a probability measure P, we write

P(B|A) for the conditional probability of B given A. This extends to

events of measure 0, using regular conditional distributions, see [Kle13].

If f is a real-valued function, we sometimes write E[f, A] as a shorthand

for E[f1A].

V. Cardinalities: given a countable set I, we denote its cardinality by |I|.

VI. Asymptotic Equality: given two real-valued sequences (xε)ε and (yε)ε,

depending on some sets of parameters ε, we write xε ∼ yε if there exist

two positive constants C1, C2 such that

∀ε : C1xε ≤ yε ≤ C2xε . (2.1.3)

Unless stated otherwise C1, C2 only depend on the dimension of the space

and the underlying random walk.

VII. Derivatives : for functions of multiple arguments, we use the notation

∂xf(x) for the derivative of f with respect to x (where x is a coordinate
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of x). If a function g only depends on one argument, we write ∂g for the

derivative.

VIII. Gamma function: the Gamma function is denoted by Γ(s), s > 0. The

upper incomplete Gamma function is denoted by Γ(s, x) =
∫∞
x
ts−1e−tdt.

The lower incomplete Gamma function is γ(s, x) =
∫ x

0
ts−1e−tdt. Note

Γ(s) = Γ(s, x) + γ(s, x).

IX. Norms : we denote the Euclidean norm on Rd by |·|. When we refer

to the p-norm (for p ∈ [1,∞]), we write |·|p, where |·|2 = |·|. For the

distance between a set and a point, write dist(x,A) = infy∈A|x− y| and

for two sets dist(B,A) = infx∈B dist(x,A). We see Zd as a subset of Rd

and thus the same notation is used on the lattice.

X. Landau Symbols : given two Rd valued functions f and g and a point

y, we write f = o(g) if for all ε > 0 we have |f(x)| ≤ ε|g(x)| in a

neighbourhood of y. We write f = O(g) if lim supx→y|f(x)|/|g(x)| ≤ C

for some C > 0. We use the same notation for the limit |x| → +∞.

For spheres we use the following notation: for x ∈ Rd and r > 0 we write

Br(x) = {y ∈ Rd : |x− y| ≤ r} . (2.1.4)

If x = 0, we omit it from the notation, i.e. Br(0) = Br. If we are working

on Zd, we use the same notation: in that case Br(x) is understood as {y ∈
Zd : |x− y| ≤ r}. Note that care must be taken when considering the discrete

ball in Zd: it is no longer rotationally invariant, see Figure 2.1.

2.1.1 Path spaces

For a metric space E (assumed to be separable and complete) with metric d

(think of Zd or Rd equipped with the Euclidean distance |·|), we define various

path spaces on which our stochastic processes live. We add an extra symbol

to E, denoted by †, and set d(x, †) = 1{x 6= †}. For any t ≥ 0 let

Dt(E) = {ω : [0, t]→ E ∪ {†}, with ω right continuous with left limits}.
(2.1.5)
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Figure 2.1: The points in the discrete ball B10 ⊂ Z2 in red. Note the missing
rotational invariance.

If the space E is apparent from the context, we omit it from the notation

and simply write Dt. The same applies to all subsequently defined spaces.

Following [Bil68, Section 12], we define a metric dt on Dt by first introducing a

functional F . The functional F acts on non-decreasing functions g, satisfying

g(0) = t− g(t) = 0, with

F (g) = sup
0<s1<s2<t

∣∣∣ log
d (g(s2), g(s1))

s2 − s1

∣∣∣ . (2.1.6)

Thus, F takes values in (0,+∞]. We define our metric

dt(ω1, ω2) = inf
g

max{F (g), sup
0≤s≤t

d(ω1(s), ω2 ◦ g(s))} , (2.1.7)

where the infimum is taken over those functions g for which we previously

defined F . Denote furthermore

D = {ω : [0,∞)→ E ∪{†}, such that ω is right continuous with left limits} .
(2.1.8)
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Define for ω1, ω2 ∈ D,

d∞(ω1, ω2) =
∞∑
m=1

2−mdm(ω1, ω2) . (2.1.9)

By [Bil68, Theorem 12.2 and 16.3] we have that Dt is separable and complete

under dt. The same applies to D under d∞. Denote the topology generated

by dt and d∞ by τ(Dt) and τ(D) respectively. These topologies are usually

referred to as Skorokhod topologies. Let σ(Dt) and σ(D) be the associated

Borel sigma-algebras. We write t− for the left limit and t+ for the limit from

the right, t ∈ R. Let

Γt = {ω ∈ Dt such that ω(0) = ω(t−) and ω(s) 6= †, ∀s ∈ [0, t]} ⊂ Dt ,
(2.1.10)

the space of loops of length t. We denote the subspace topology by τ(Γt) and

the (sub) sigma-algebra by σ(Γt). Define

Γ =
⋃
t>0

Γt . (2.1.11)

For ω ∈ Γ, define the length l(ω) as the unique t > 0 such that ω ∈ Γt.

Furthermore, we denote a loop’s maximal diameter by

‖ω‖ = sup
0≤s,t≤l(ω)

d (ω(t), ω(s)) . (2.1.12)

We can embed Γ into D by setting ω(t) = † for t > l(ω). Write x ∈ ω if there

exists t ≤ l(ω) such that ω(t) = x. Henceforth one (unless stated otherwise)

identifies Γ with its embedding into D. Denote the topology and the sigma-

algebra on Γ generated by this embedding by τ(Γ) and σ(Γ).

We also define the family of coordinate projections (Xt)X≥0 in the canonical

way: Xt(ω) = ω(t), for ω ∈ D. We also use the letters B and S instead of

X, depending on the reference measure. This will be made clear in the next

section.
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2.1.2 Random walks on the lattice

In this section, we introduce the reader to the class of random walks used in

this text. For this section, we consider the case E = Zd (only in Chapter 3 we

will have to consider E 6= Zd or E 6= Rd).

A generator matrix q : Zd∪{†}×Zd∪{†} → R induces a random walk. It has

the following properties:

I. q(x, y) ≥ 0 for all x 6= y ∈ Zd ∪ {†}.

II. For all x ∈ Zd ∪ {†}

∞ >
∑

y∈Zd∪{†}

q(x, y) = −q(x, x) . (2.1.13)

III. ‖q‖∞ = supx∈Zd∪{†}|q(x, x)| <∞.

Set p = ‖q‖−1
∞ q + I, the (one-step) transition matrix. Henceforth assume that

q(x, x) is constant with respect to x. Apart from the space-time random

walk to be defined in the next chapter, we always assume that ‖q‖∞ = 1.

By [Kle13, Theorem 17.25], the matrix q uniquely defines a continuous-time

Markov process whose coordinate projections we denote by Xt, t ≥ 0. We

refer to (Xt)t as continuous-time random walk. Its transition kernel is denoted

by pt(x, y) for x, y ∈ Zd ∪ {†}, t ≥ 0, and satisfies

∂tpt(x, y)
∣∣∣
t=0

= q(x, y) . (2.1.14)

Since we are going to think of † as a cemetery state, we require that −q(†, y) =

1{y = †}. The next assumption is key and therefore stated separately.

Assumption 2.1.1. Suppose that there exist p(1) : Z→ [0, 1] such that

I. Summability:
∑

x∈Z p
(1)(x) = 1.

II. Symmetry: p(1)(x) = p(1)(−x).

III. Interval-like support: let

I = {x ∈ Z : p(1)(x) > 0} = (α− 1,−α + 1) ∩ Z , (2.1.15)
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for some α ∈ {−1,−2, . . .} ∪ {−∞}.
Alternatively to the interval-like support, we may assume that p(1)(−1) =

p(1)(1) = 1/2.

IV. Square-exponential decay:

p(1)(x) = O
(

e−c|x|
2
)
, (2.1.16)

for some c > 0 as |x| → ∞.

V. If the support of p(1) is non-compact, we require

p(1)(x) ≥ p(1)(x− 1)p(1)(x+ 1) , (2.1.17)

for any x ∈ Z (this is equivalent to the distribution being strongly uni-

modal, see [DW19]). Furthermore, assume t 7→
∑

x p
(1)(x)etx is lower

semi-continuous.

Let e1, . . . , ed ∈ Zd be the standard basis vectors in Zd (over Z) and denote (x)i

the i-th coordinate of x ∈ Zd (i.e. the projection of x onto the space spanned

by ei). We assume that for x 6= y ∈ Zd,

q(x, y) =
p(1) ((x− y)i)

d− (d− 1)p(1)(0)
1{(x− y)i = 0 for all but at most one i} ,

(2.1.18)

and q(x, x) = 1 otherwise. In words, at each step the random walk chooses a

direction i ∈ {1, . . . , d} uniformly at random and then moves in that direction

distributed accordingly to p(1). For an illustration, see Figure 2.2.

Remark 2.1.2. I. Note that the above assumptions imply that the jump

chain induced by q is aperiodic over Zd (unless p(1)(−1) = p(1)(1) =

1/2). Indeed, the interval-like support ensures that p(1) is aperiodic and

Equation 2.1.18 implies that this carries over to q(x, y).

II. The ”independence” assumption (i.e. Equation (2.1.18)) is only due to
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Figure 2.2: Two possibilities for the support of q(x, y) (in red) on Z2.

the fact that the recently proved KMT coupling1 for the random walk

bridge (see [DW19]) has not been generalised to higher dimensions yet.

We expect the results in this work to hold for all random walks with finite

exponential moments.

The measure associated to (Xt)t≥0 starting at x ∈ Zd is denoted by Px.
The jump-chain2 associated to (Xt)t≥0 is denoted by (Sn)n∈N. The kernel of

the jump-chain is denoted by pn(x, y) for x, y ∈ Zd ∪ {†}, n ∈ N. We denote

the measure governing the discrete jump-chain started in x by Px.
Let t ∈ [0,∞) and j ∈ N. We define for G ∈ σ(D) and x, y ∈ Zd the bridge

measures in continuous and discrete time

Ptx,y(G) = Px(G ∩ {Xt = y}) and Pjx,y(G) = Px(G ∩ {Sj = y}) . (2.1.19)

We furthermore denote the normalised version of the above measures as

Btx,y(G) = Px(G|Xt = y) and Bjx,y(G) = Px(G|Sj = y) . (2.1.20)

1A coupling which produces an error at scale log(n) over a time horizon n, named after
Komlós–Major–Tusnády, see [KMT75].

2The discrete time random walk induced by p.
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We also write Λ b Zd if Λ ⊂ Zd and contains finitely many points.

For a set A ⊂ Zd, we define the inner boundary

∂iA = {x ∈ A : ∃ y /∈ A with |x− y| = 1} . (2.1.21)

If A ⊂ Rd, we write ∂A for its boundary in the topological sense (with respect

to any norm on Rd).

We use the Brownian motion and its kernel. Denote a standard Brownian

motion (in d dimensions, with the same covariance as the random walk) by

(Bt)t≥0 and write Px for its distribution (started at x ∈ Rd). The transition

kernel of the Brownian motion is denoted by pt(x, y). As the kernel pt(x, y) is

translation invariant, we occasionally write pt(x−y) for pt(y, x). For r ≥ 0 we

occasionally write pt(r) instead of pt(xr), where xr is any point in Rd satisfying

|xr| = r. The measure of the Brownian bridge transitioning from x to y in

time t ≥ 0 is denoted by Bt
x,y. We also use the unnormalised bridge measure:

P t
x,y = pt(x, y)Bt

x,y.

As a rule of thumb, boldface notation refers to discrete objects whereas stan-

dard and fraktur typeface indicates continuous processes.

A word on densities: for continuous (on Rd) processes (such as the Brownian

motion/bridge) we denote densities by adding the letter d before the measure,

i.e. dPx(Bt = y) is understood as the unique function satisfying

Px(Bt ∈ A) =

∫
A

dPx(Bt = y)dy , (2.1.22)

for every measurable A ⊂ Rd.

2.2 Hitting time estimates

This section is devoted to estimating the distribution of certain hitting times

of our random walk. These technical estimates will be of importance in later

chapters, in particular Chapter 4 and Chapter 5. We first prove a coupling

between the random walk bridge and the Brownian bridge. We then use this

to show that the distribution of the hitting times for the random walk is

close to those of the Brownian bridge. In this section we always assume that
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q(x, †) = 0.

The hitting time HA of a set A ⊂ Zd is defined in the following way

HA = inf{k ≥ 1: Sk ∈ A} . (2.2.1)

For the continuous time random walk (Xt)t and the Brownian (Bt)t, we define

the hitting time analogously: replace k ≥ 1 with k > 0 in the above equation.

We use the superscript ”B” when we refer to the hitting time of a set with

respect to the Brownian motion, e.g. HB
A (instead of HA). If A = {x}, we

write Hx instead of H{x}. If A = Bm, we use the following convention: if the

random walk is started from Bm \ ∂iBm, we set Hm to be the first time we

hit Bc
m. If the random walk is started from any other point, we set Hm the

first hitting time of Bm. This means that if the random walk is started from

inside the sphere, Hm is the first time it exits it. If the random walk is started

from outside, Hm is the first time we hit the sphere. This simplifies notation

in later chapters.

We begin by stating a coupling result, a consequence of the one-dimensional

version established in [DW19].

Lemma 2.2.1. For every α > 0, there exists cα > 0 such that for n ∈ N (if

the underlying random walk is the simple random walk, we need to assume n

even) one can construct a coupling bn between Bn0,0 (the random walk bridge of

n steps) and Bn
0,0 (Brownian bridge of duration n) satisfying

bn
(

sup
0≤t≤n

|St −Bt| ≥ cα log2(n)

)
≤ O

(
n−α

)
. (2.2.2)

The same holds for the continuous-time random walk bridge.

Proof of Lemma 2.2.1. We prove the result for the discrete-time random

walk, the continuous-time case follows analogously.

First the main ideas: let Mn(i) be the number of times the random walk has

chosen direction ei. We begin by sampling (Mn(i))di=1 first. We then couple

each one-dimensional bridge of time-horizon Mn(i) with a Brownian bridge of

time-horizon dMn(i) (to adjust for covariance). We then use a large deviation-

type bound to show that dMn(i) = n + small. In the final step, we perform
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a time change to get a Brownian bridge of time-horizon n and then use a

continuity estimate to control the error.

We assume without loss of generality that the random walk has the identity

Figure 2.3: The coupling from Lemma 2.2.1: the random walk bridge in black,
the continuous approximation in blue, with the time changed version in dashed
style.

as covariance matrix. We begin by rewriting our random walk (Sn)n as

Sn =
d∑
i=1

eiS
(i)
Mn(i) , (2.2.3)

where the S(i)’s are independent one-dimensional random walks (distributed

with respect to p(1)). Furthermore, Mn ∈ Nd (the coordinate process) is defined

in the following way

Mn =
n∑
j=1

Dj , (2.2.4)

where Di are i.i.d. uniform on the standard basis {ei}di=1. For C > 0, let An

be the event that the coordinate process is behaving atypically, i.e.

An = {∃i ∈ {1, . . . , d} : Mn(i) /∈ [n/d− C log(n), n/d+ C log(n)]} . (2.2.5)

A standard large deviation estimate shows that for any α > 0, there is C1 > 0

large enough, such that P(An) = o (n−α). Thus, we can now assume that we

are on the event Acn.

Note that since the ei’s form a basis, we have that

Sn = 0⇐⇒ ∀i ∈ {1, . . . , d} : S
(i)
Mn(i) = 0 . (2.2.6)

23



By [DW19, Theorem 1.2] (or [CD18, Theorem 8.1] in the case of the simple

random walk), conditioned on Sn = 0, we can couple each of the S
(i)
Mt(i)

’s with

B
(i),M
t , a one-dimensional bridge of time-horizon dMn(i), such that on an event

of mass at least 1− o (n−α), the error is at most cα logMn(i). Write

βt =
d∑
i=1

eiB
(i),M
t . (2.2.7)

Note that by the scaling invariance of the Brownian motion we have that

Bt =
d∑
i=1

ei

√
n

dMn(i)
B

(i),M

t
dMn(i)

n

, (2.2.8)

is distributed like a Brownian bridge on [0, n]. Since we conditioned to be on

Acn, we have that ∣∣∣ n

dMn(i)
− 1
∣∣∣ ≤ C1

log(n)

n
. (2.2.9)

From continuity estimates (see e.g. [MP10, Chapter 1]) it then follows that,

outside a set of probability o(n−α), we have

sup
t=0,1,...,n

|βt −Bt| ≤ log2(n) . (2.2.10)

Indeed, by the Markov inequality, we have that the probability that a cen-

tred Gaussian random variable with variance O(n−1 log n) exceeds log2(n) is

bounded by O
(

e−n log3/2(n)
)

. As there are at most 2C1dn log(n) choices, the

probability of the complement of the event in Equation (2.2.10) decays at an

exponential scale.

Together with the triangle inequality the result follows.

2.2.1 Hitting of a single point

The main result of is a technical estimate on the time it takes a random walk

bridge to hit a distant point.

Lemma 2.2.2. We have that for

|x| = o
(
(j − k)3/4

)
and |x| = o(k2/3) , (2.2.11)
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that it holds for any ε > 0 and some constants cd > 0,

Pjx,x(H0 = k)

=


c1|x|k−1pk(x)pj−k(x) (1 + o(1)) + o(|x|−5+ε) d = 1,

c2
log(|x|)
log2(k)

pk(x)pj−k(x)(1 + o(1)) + k−1 log−1(k)o(1 ∧ k1/2|x|−1) d = 2,

cdpk(x)pj−k(x)(1 + o(1)) d ≥ 3,

(2.2.12)

where in the case d ≥ 3 we additionally require the existence of an M > 1 such

that 0 ≤ |x| ≤M
√
k.

For the cumulative distribution function in one variable, we have for M > 0

fixed, d ≥ 3 and Mj ≥ |x|2

Pjx,x (H0 < j) =κdj
−d+1

∫ 1

1/M

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk (1 + o(1))

+O

(
j−d+1

∫ 1/M

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

)
,

(2.2.13)

where κd = P0(H0 =∞).

In the case d = 2, we have that for every ρ ∈ (0, 2),

Pjx,x (H0 < j) =
4π log|x|

j

∫ 1

|x|2/j log(|x|2−ρ)

pk
(
x/
√
j
)
p1−k

(
x/
√
j
)

log2(kj)
dk (1 + o(1))

+O

(
j−1

∫ |x|2/j log(|x|2−ρ)

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

)
.

(2.2.14)

For d ≥ 2, we also have the following bound

Bjx,x (H0 < j) ≤ C|x|2−dΓ
(
d/2− 1, 4|x|2j−1

)
. (2.2.15)

Proof of Lemma 2.2.2. Use the strong Markov property to write

Pjx,x (H0 = k) = Px (H0 = k) pj−k(x) . (2.2.16)
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The first part of the lemma follows immediately from [Uch11, Theorem 1.2,

1.4, 1.7]. Indeed, in that reference it is shown that

Px (H0 = k)

= cd

(
1{d ≥ 3}+

1 ∨ log|x|
log2(k)

1{d = 2}+ |x|k−1
1{d = 1}

)
pk(x) (1 + E) ,

(2.2.17)

where E are the Landau-symbols from Equation (2.2.12). Due to the assump-

tions we made on the decay of the tails of the random walk, we can em-

ploy [LL10, Theorem 2.3.11] to approximate pj−k(x) by pj−k(x) (1 + o(1)).

We now prove the second part of the lemma. Let us begin with d ≥ 3. We

expand

Pjx,x(H0 < j) =

j∑
k=1

Px(H0 = k)pj−k(x) . (2.2.18)

In the case that k ≥ |x|2/M = j0 for some M > 1, we expand

j∑
k=j0

Px(H0 = k)pj−k(x) = κd
(
1 +O(|x|2−d)

) j∑
k=j0

pk(x)pj−k(x) , (2.2.19)

by [Uch11, Theorem 1.7]. We can approximate the sum by an integral and

thus

j∑
k=j0

pk(x)pj−k(x) = (1 + o(1))

∫ j

j0

pk(x)pj−k(x)dk

= (1 + o(1))j−d+1

∫ 1

1/M

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk .

(2.2.20)

Indeed, in the proof of Proposition 4.2.2, the approximation of a sum by an

integral at cost of (1 + o(1)) is shown in a more general setting by computing

second derivatives and using the approximation result [LL10, Lemma A.1.1].

Bounding Px(H0 = k) ≤ pk(x), we can estimate using Lemma 8.2.1 to bound
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the sum by an integral and a change of variables k 7→ kj

j0∑
k=1

Px(H0 = k)pj−k(x) ≤ Cj−d+1

∫ 1/M

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk .

(2.2.21)

Combining the two previous equations finishes the proof in the d ≥ 3 case.

In the case that d = 2, we have for |x| ≤
√

3k log log(k) = p(k) that by [Uch11,

Theorem 1.4],

Px(H0 = k) =
2 log(|x|)
k log2(k)

e−|x|
2/(2k)

(
1 +O

(
1

log1/4(k)

))
. (2.2.22)

Let q(x) be the inverse function of p(k). Plugging in the above then gives us

j∑
k=q(x)

Px(H0 = k)pj−k(x) = (1 +O (r(x)))

j∑
k=q(x)

4π log(|x|)
log2(k)

pk(k)pj−k(x) ,

(2.2.23)

where r(x) = log−1/4(|x|). Note the bound q(x) ≤ 3|x|2/8 log log(|x|). We

can use [Uch11, Theorem 1.5] in conjunction with [Uch15, Theorem 2] to get

approximations on Px(H0 = k) for k ≤ q(x): by the first theorem, there exists

an explicit constant r0 > 0, depending on the distribution of random walk,

such that

Px(H0 = k) = dPx(H
B
r0

= k) +O
(

1

|x2|k log(k)

)
. (2.2.24)

By the calculation done in [Uch15, Corollary 4], we have for ρ > 0 small

enough and |x|2/(log|x|2−ρ) ≤ k ≤ q(x) that

dPx(H
B
r0

= k) =
π

log(k/|x|)
pk(x)

(
1 +O

(
1

log|x|

))
. (2.2.25)

Inspecting the error term in Equation (2.2.24) reveals that

Px(H0 = k) =
π

log(k/|x|)
pk(x)

(
1 +O

(
1

log|x|

))
=

4π log|x|
log2(k)

pk(x)

(
1 +O

(
1

log|x|

))
,

(2.2.26)
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for k’s satisfying the above bounds. From there on can approximate the sum

by an integral and proceed as in the case d ≥ 3.

Bound: we now prove the last claim of this lemma. Let d ≥ 2 and bound

Pjx,x(H0 < j) ≤
j∑

k=1

Pjx,x(Sk = 0) ≤ C

(
e−c|x|

2/3−ε
+

∫ j

0

pt(x)p1−t(x)dt

)
,

(2.2.27)

where we use Lemma 8.2.1 in conjunction with Lemma 8.2.2 to approximate

the sum by an integral and [LL10, Proposition 2.1.2] to bound the summand

for small values of j. We apply a change of variables t 7→ jt to get

jd/2
∫ j

0

pt(x)p1−t(x)dt = j−d/2+1

∫ 1

0

t−d/2(1− t)−d/2e−
|x|2
2j ( 1

t
+ 1

1−t)dt . (2.2.28)

We bound the integral (using symmetry around the midpoint)∫ 1

0

t−d/2(1− t)−d/2e−
|x|2
4j ( 1

t
+ 1

1−t)dt ≤ 2d/2+1

∫ 1/2

0

t−d/2e−
|x|2
4tj dt . (2.2.29)

After performing a change of variables t 7→ t−1|x|2j−1, we recognise the above

as the incomplete Gamma function. Combining this with the previous esti-

mates, we get that

Bjx,x(H0 < j) ≤ C
(
jd/2e−c|x|

2/3−ε
+ |x|2−dΓ

(
d/2− 1, 4|x|2j−1

))
, (2.2.30)

from which the desired estimate follows.

2.2.2 Hitting a sphere from inside

In this section we approximate the distribution of the time Hn it takes the

random walk bridge, started at 0, to leave a ball of radius n. We use a clas-

sical result on the first hitting time of Bessel processes and the coupling from

Lemma 2.2.1. As (for certain indices) Bessel processes have the same distribu-

tion as the Euclidean norm of Brownian motions, their appearance is natural

here.

Before stating the next lemma, we recall the following fact from [LL10, Propo-
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sition 2.4.5]: there exists a C > 0 such that for all j > 0

P0(Hn < j) + P0

(
HB
n < j

)
≤ C−1e−Cn

2/j . (2.2.31)

If one applies this for j = n2/c log(n), the right-hand side of the equation

above decays at polynomial speed, depending on c.

Lemma 2.2.3. I. For n2 > j ≥ n3/2 there exists C > 0,

Bj0,0(Hn < j) ≤ C−1e−Cn
2/j . (2.2.32)

II. For every M > 0, T > 0, S ∈ (0, 1), n3−S > j ≥ n2

log(nM )
and n ∈ N large

enough, the Brownian approximation reads as follows

Bj0,0(Hn < j) = Bj
0,0(HB

n < j)
(
1 +O(n−S/2)

)
+O

(
n−T

)
=

∫ j

0

pj−t(n)

pj(0)

∞∑
k=1

jν+1
ν,k e−j

2
ν,kt/(2n

2)

z22νΓ(ν + 1)Jν+1(jν,k)
dt
(
1 +O(n−S/2)

)
+O

(
n−T

)
,

(2.2.33)

where Jν(x) is the Bessel function (of the first kind) of ν−th order with

jν,k its strictly positive zeros, in increasing order (here, ν = d/2 − 1).

Note that summation and integration are not exchangeable here, this is

shown in the proof.

III. Furthermore, for any ε > 0 and n large enough, we have

inf
j≥εn2

Bj0,0(Hn < j) > 0 . (2.2.34)

Proof of Lemma 2.2.3.

Proof of I: by [LL10, Proposition 2.4.5], we can bound

P0(Hn < k) ≤ min
{
ce−r(n

2/k), 1
}
, (2.2.35)
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for some r, c > 0 and k ∈ N. We expand using the local central limit theorem

Bj0,0(Hn < j) ∼ jd/2
j−n4/3∑
k=n4/3

P0(Hn = k) pj−k(ne1)︸ ︷︷ ︸
=pj−k(n)

, (2.2.36)

where e1 is the unit vector into the first direction. We excluded k’s in {1, . . . , n4/3}
and {j − n4/3, . . . , j}, as they contribute at most an exponential factor. We

bound the above using integration by parts from Lemma 8.2.3

jd/2
j−n4/3∑
k=n4/3

P0(Hn = k)pj−k(n)

≤ jd/2
j−n4/3∑

k=n4/3−1

P0(Hn ≤ k) [pj−k(n)− pj−k−1(n)] + E ,

(2.2.37)

with

E = jd/2
[
Px(Hn ≤ n4/3 − 1)pj−n4/3(n)− Px(Hn ≤ j − n4/3)pn4/3(n)

]
.

(2.2.38)

Note that by the mean value theorem for k ∈ {n4/3, . . . , j− n4/3}, we can find

a C > 0 such that

[pj−k(n)− pj−k−1(n)] ∼ −C∂tpt(n)
∣∣∣
t=j−k

. (2.2.39)

For k ∈ {n4/3, . . . , j − n4/3}, we can find a C, c > 0 such that

∂tpt(n)
∣∣∣
t=j−k

≤ C
e−cn

2/(j−k)

(j − k)d/2+1
. (2.2.40)

Using Lemma 8.2.1 and 8.2.2 to bound the sum by an integral, we bound

Bj0,0(Hn < j) ≤ E + Cjd/2
∫ j−n4/3

n4/3

e−cn
2/(j−k)

(j − k)d/2+1
e−r(n

2/k)dk . (2.2.41)

We simplify this further by changing variables k 7→ kj and altering the bound-
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aries of integration

jd/2
∫ j−n4/3

n4/3

e−cn
2/(j−k)

(j − k)d/2+1
e−r(n

2/k)dk ≤
∫ 1

0

e−cn
2/j(1−k)

(1− k)d/2+1
e−r(n

2/jk)dk . (2.2.42)

Expand for ε > 0∫ 1

0

e−cn
2/j(1−k)

(1− k)d/2+1
e−r(n

2/jk)dk = e−εn
2/j

∫ 1

0

e−cn
2/j(1−k)+εn2/j

(1− k)d/2+1
e−r(n

2/jk)dk .

(2.2.43)

Now observe that for ε > 0 small enough

sup
j,n

∫ 1

0

exp
(
−n2

j

(
c

1−k + r
k
− ε
))

(1− k)d/2+1
dk <∞ , (2.2.44)

where the supremum is over all j, n’s with j2 > n. The boundary term E is

of exponential order and can be absorbed into the main contribution. This

concludes proof of the statement I.

Proof of II: for the second claim we use the coupling from Lemma 2.2.1 in

conjunction with the explicit formula for the hitting time of Bessel processes.

Several approximations will be necessary: since the coupling induces an error

in space, we have to show that this error remains negligible for contributing

loop of lengths j.

Let Pj0,0 be a coupling between Bj0,0 and Bj
0,0 such that

P
j
0,0

(
max
1≤i≤j

|Si −Bi| ≥ ct log2(j)
)
≤ C

jt
, (2.2.45)

with ct > 0 increasing in t > 0. We rewrite

Bj
0,0(HB

n+ < j) ≤ Bj0,0(Hn < j) +O
(
j−t
)
≤ Bj

0,0(HB
n− < j) . (2.2.46)

Next, we will show that in the above formula, n− can be replaced by n at

negligible cost. For this, we need to exclude certain atypical events.

Using the Markov property and the rotational invariance of the Brownian
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motion we get that

Bj
0,0(HB

n− < j) = (2πj)d
∫ j

0

dP0(HB
n− = r)pj−r(n

−)dr . (2.2.47)

The Brownian motion needs time of order ∼ n2 to reach the complement of

Bn and thus, for some d1 > 0 large enough, the integral over atypical times is

of order

(2πj)d
∫

[0,n1]∩[j−n1,n1]

dP0(HB
n− = r)pj−r(n

−)dr = O
(
j−t
)
, (2.2.48)

where n1 = n2/(d1 log(n)).

By [HM13] we have that for z, r > 0 and ν = d/2− 1

dP0(HB
z = r) =

∞∑
k=1

jν+1
ν,k

z22νΓ(ν + 1)Jν+1(jν,k)
e−j

2
ν,kr/(2z

2) . (2.2.49)

Note that we have that by [Zwi18, 6.15.12.1]

jν,k = πk + (ν/2− 1/4)π − 4ν2 − 1

(8k + 4ν − 2)π
+O(k−2) , (2.2.50)

and for x > 0

Jν(x) ∼
√

2/(πx)
[
cos (x− πν/2− π/4) +O(x−1)

]
. (2.2.51)

This implies that

Jν+1(jν,k) = (−1)k+1

√
2

πk

(
1 +O(k−1)

)
. (2.2.52)

For r > n1, we can bound

∣∣∣ ∞∑
k=1

jν+1
ν,k

n22νΓ(ν + 1)Jν+1(jν,k)
e−j

2
ν,kr/(2n

−2
)
∣∣∣ ≤ C(n)

∑
k≥1

k3/2+νe−k
2/(d1 log(n)) ,

(2.2.53)

where C(n) depends on n but not r. Thus, by dominated convergence, we can
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rewrite∫ j−n1

n1

dP0(HB
n− = r)pj−r(n

−)dr =
∞∑
k=1

jν+1
ν,k

n22νΓ(ν + 1)Jν+1(jν,k)

×
∫ j−n1

n1

e−j
2
ν,kr/(2n

−2
)pj−r(n)dr (1 +O (log(n)/n)) ,

(2.2.54)

since r ∈ [n1, j − n1]. We used that, by the definition of the heat kernel,

pj−r(n
−) = pj−r(n)(1 +O (log(n)/n)) for r ∈ [n1, j − n1].

Using the asymptotics for jν,k from Equation (2.2.50), we get that

e−j
2
ν,kr/(2n

−2
) = e−j

2
ν,kt/(2n

2)

(
1 +O

(
k2r log4(n)

n3

))
. (2.2.55)

We now show that large k’s are negligible and thus the above O-term is suffi-

ciently small for contributing k’s. First note that for k ≤ nS/4/ log1/2(n) = kn

and r ∈ [n1, j − n1], we have that

O
(
k2r log4(n)

n3

)
= O

(
n−S/2

)
, (2.2.56)

and thus

e−j
2
ν,kr/(2n

−2
) = e−j

2
ν,kr/(2n

2)
(
1 +O

(
n−S/2

))
. (2.2.57)

Recall that Γ(a, x) is the upper incomplete Gamma function (with index a and

argument x) and that ν = d/2− 1. We can estimate the error term

∣∣∣ ∞∑
k≥kn

jν+1
ν,k

n22νΓ(ν + 1)Jν+1(jν,k)
e−j

2
ν,kr/(2n

−2
)
∣∣∣ ≤ C

∞∑
k≥kn

kν+1/2

n2
e−kr/n

2

≤ C

∫ ∞
kn

dk
kν+1/2e−kr/n

2

n2
≤ C

nd+5

rd/2+3/2
Γ

(
d+ 2

2
,
nS/2

log(n)

)
≤ C

e−Cn
S/4

rd/2+3/2
.

(2.2.58)

Integrating the above from n1 to j − n1 is of order O
(

e−Cn
S/8
)

, which is

negligible. This implies that we can neglect k’s in Equation (2.2.54) with
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k > kn and thus

∫ j−n1

n1

dP0(Hn− = r)pj−r(n
−)dr =

kn∑
k=1

jν+1
ν,k

n22νΓ(ν + 1)Jν+1(jν,k)

×
∫ j−n1

n1

e−j
2
ν,kr/(2n

2)pj−r(n)dr
(
1 +O(n−S/2)

)
+O

(
j−t
)
.

(2.2.59)

since for k ≤ kn, we have e−j
2
ν,kr/(2n

−2
) = e−j

2
ν,kr/(2n

2) up to a multiplicative(
1 +O

(
n−S/2

))
term.

By arguments similar to the ones above, we can reintroduce terms with k ≥ kn

(this time with the correct n instead of n− in the exponent) and adjust the

areas of integration. This gives us

∫ j−n1

n1

kn∑
k=1

Q = O
(
j−t
)

+

∫ j−n1

n1

∞∑
k=1

Q = O
(
j−t
)

+

∫ j

0

∞∑
k=1

Q , (2.2.60)

with

Q =
jν+1
ν,k

n22νΓ(ν + 1)Jν+1(jν,k)
e−j

2
ν,kr/(2n

2)pj−r(n)dr
(
1 +O(n−S/2)

)
. (2.2.61)

To summarise (as we could have carried out the above computations using n+

instead of n− with no changes), we have shown that

Bj0,0(Hn < j) = Bj
0,0(HB

n < j)
(
1 +O(n−S/2)

)
+O

(
j−t
)
. (2.2.62)

This, together with the expansion in Equation (2.2.49), implies the second

claim.

Proof of III: we expand for some α > 0 by the previous coupling argument

Bj0,0(Hn < j) ≥ P
j
0,0

(
HB
n+cα log2(j) < j

)
+O

(
j−α
)
. (2.2.63)

We furthermore bound

Bj
0,0

(
HB
n+cα log2(j) < j

)
≥ Bj

0,0

(
HB

2n < εn2
)
≥ Bj

0,0

(
HB

2n,1 < εn2
)
, (2.2.64)

where HB
2n,1 is the hitting time of points {−2n,+2n} for the first coordinate
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of a multidimensional Brownian bridge. From there on it is straightforward to

see that above remains positive uniformly in j, n. Indeed, this is due to the

scale invariance (map j 7→ j/n2) and the distribution of the maximum of the

Brownian motion/bridge, see [MP10]. This concludes the proof.

2.2.3 Hitting a sphere from outside

In this section we prove random walk analogues of known hitting time esti-

mates for the Brownian motion. We begin by introducing the results for the

continuum case. Let for |x| ≥ n

q(x, t, n) = ∂tPx
(
HB
n ≤ t

)
, (2.2.65)

the ”density” (in d ≥ 3 it does not integrate to 1) of the first hitting time

of the centred ball with radius n. The main references are [Uch15], [Uch16]

and [BMR13]. Firstly, note that by Brownian scaling we have that

q(x, t, n) =
1

n2
q(x/n, t/n2, 1) . (2.2.66)

It is obvious that q is constant with respect to rotating its first argument and

so we write q(x, t, n) with x ∈ [n,∞).

In [BMR13] it is shown that for d ≥ 3

q(x, t, 1) ∼ x− 1

x

e(x−1)2/(2t)

t3/2
1

t(d−3)/2 + x(d−3)/2
, (2.2.67)

and for d = 2

q(x, t, 1) ∼ x− 1

x

e(x−1)2/(2t)

t3/2
(x+ t)1/2(1 + log x)

(1 + log (1 + t/x)) (1 + log(t+ x))
. (2.2.68)

The following observation is useful.

Lemma 2.2.4. Suppose n, n′ with n = n′(1 + o(1)). Suppose furthermore that

(x− n)2 − (x− n′)2 = o(t). We then have that

q(x, t, n) ∼ q(x, t, n′) . (2.2.69)
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Proof of Lemma 2.2.4. The lemma follows immediately after noticing that

by the scaling relation and Equation (2.2.67)

q(x, t, n) ∼ x− n
t3/2

e−(x−n)2/(2t) 1

(t/n2)(d−3)/2 + (x/n)(d−3)/2
. (2.2.70)

This concludes the proof.

The above lemma is useful for the following reason: when we apply the

coupling from Lemma 2.2.1, we have to shrink/enlarge a ball of radius n by a

logarithmic factor in n. Lemma 2.2.4 shows that if x is sufficiently far away

from the boundary of Bn and t large enough, this error is negligible.

However, it is not possible to infer the analogue of the density q(x, t, n) for the

random walk directly from the above and a coupling argument. Indeed, similar

to [DW15], it is only possible to get bounds on the cumulative distribution

function. This is the content of the next proposition. Note that we often write

Px and similar expressions for x ∈ [0,∞). This is shorthand for taking y ∈ Rd

(or Zd) with |y| = x(1 +O(1)).

Proposition 2.2.5. Let d ≥ 2. Take x, n, k > 0. Suppose there exists an

M > 0 such that Mn ≥ x and there exists δ > 0 such that k ≥ log5+δ(n).

Furthermore, suppose that k ≤ nL for some L > 0 and (x− n) log(n) = O(k).

Then

Px (∞ > Hn ≥ k) ∼
∫ ∞
k

q(x, t, n)dt. (2.2.71)

Proof of Proposition 2.2.5. We only prove the d ≥ 3 case, the case d = 2

follows analogously.

The idea of the proof is as follows: first restrict the k’s, as Px (∞ > Hn ≥ k)

converges to a constant as k ↓ 0. Given x very close to ∂iBn, we first use

standard estimates to let the random walk escape ”a bit further” from ∂Bn

and then use the coupling. We use that q(x, n, t) has bounds which are slowly

varying and then show that the errors from the coupling are negligible.

We begin by restricting the k’s we need to consider. By [LL10, Proposition

6.4.2] we know that

Px (Hn <∞) = c(x) = (n/x)d−2 (1 +O(n−1)
)
. (2.2.72)

Denote m = n − x. Choose ε1 > 0 (depending increasingly on M) such that
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for t ∈ N we have that

P0

(
max

1≤i≤ε1t2
|Si| ≥ t

)
≤ c(x)/2 . (2.2.73)

For k ≤ ε1m
2, we bound

Px (∞ > Hn ≥ k) = c(x)− Px (Hn < k) ≥ c(x)/2 . (2.2.74)

Henceforth we assume k ≥ ε1m
2. From now on, for l > 0, shorten Hl =

Hl1{Hl <∞}, to simplify notation. We use the same shorthand notation for

HB
l . Let n± = n± cα log2(n).

By [BMR13, Theorem 3] and the rescaling relation (2.2.66) we have that

Px
(
HB
n± ≥ k

)
∼
∫ ∞
k

n±(x− n±)

xt3/2
e−(x−n±)

2
/(2t)

(t/(n±)2)(d−3)/2 + (x/n±)(d−3)/2
dt .

(2.2.75)

We now assume that x − n = m ≥ log(n)2+δ/4. Note that we have n± =

n(1 + o(1)), x− n± = m(1 + o(1)) and m log(n)/t = O(1) for t ≥ k. We thus

get that

Px
(
HB
n± ≥ k

)
∼ Px

(
HB
n ≥ k

)
∼
∫ ∞
k

nm

xt3/2
e−(m)2/(2t)(

t
n2

)(d−3)/2
+ (x/n)(d−3)/2

dt

∼ n

x

∫ m2/k

0

e−t/2

t1/2
dt(

m2

n2t

)(d−3)/2
+
(
x
n

)(d−3)/2
.

(2.2.76)

By [LL10, Theorem 7.1.1], for every α > 0 we can choose cα > 0, such that

there exists a coupling Px between the random walk and the Brownian motion

with

Px

(
max
1≤i≤k

|Bi − Si| ≥ log(k)

)
≤ cαk

−α . (2.2.77)

Note that by the coupling from above equation

Px
(
HB
n+ ≥ k

)
+O

(
k−α

)
≤ Px (Hn ≥ k) ≤ Px

(
HB
n− ≥ k

)
+O

(
k−α

)
. (2.2.78)
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Making α > 0 sufficiently large finishes the proof for the case m ≥ log(n)2+δ/4.

We now treat the case m = x− n = O
(
log(n)2+δ/4

)
. Here we cannot employ

the coupling directly, as we only know |Bi − Si| = O
(
log2(n)

)
under the

coupling and thus the error in Equation (2.2.75) may no longer be negligible.

Therefore we let the random walk first ”escape” a bit further from the sphere

and then use the coupling: abbreviate n(δ) = n+ log2+δ/3(n) and decompose

Px (Hn ≥ k) =Px
(
Hn ≥ k,Hn > Hn(δ)

)
+
∑
l≥1

∑
z∈∂iBn(δ)

Px
(
Hn < Hn(δ) = l, Xl = z

)
Pz (Hn ≥ k − l) .

(2.2.79)

We begin by bounding the first term. We claim that

Px
(
Hn ∧Hn(δ) ≥ k/2

)
= O

(
ck/ log4+(2δ)/3(n)

)
for some c ∈ (0, 1) . (2.2.80)

As k ≤ nL and k ≥ log5+δ(n)

k/ log4+(2/3)δ(n) ≥ log1+δ/3(n) ≥ c(L) log1+δ/3(k) ≥ C log1+δ/4(n) . (2.2.81)

This implies that the above term decays faster than any polynomial and is of

order

Px
(
Hn ∧Hn(δ) ≥ k/2

)
= O

(
clog1+δ/4(k)

)
. (2.2.82)

We now prove the claim, i.e. Equation (2.2.80). Let for x ∈ Bn(δ) \Bn the

box Cn(x) ⊂ Rd be defined as the smallest rotated |·|∞ box3 centred at x

such that two faces of the box lie in
(
Bn(δ) \Bn

)c
. To be more precise, Cn(x)

is OB∞l (x) where O ∈ Rd×d with OT = O and |det(O)| = 1, for l > 0 the

smallest side length such that two faces of Cn(x) have zero intersection with

the interior of Bn(δ) \Bn. See Figure 2.4 for an illustration.

Let M(x)t1t2 be the event that the random walk in the time interval [t1, t2) first

exits Cn(x) on any but those two faces which lie outside Bn(δ). One has that

the length of the faces of Cn(x) ∼ log2+δ/3(n). Using the Markov property on

3B∞
l (x) = {y ∈ Rd : |x− y|∞ ≤ l}
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Figure 2.4: An illustration of Cn(x)

time scales of length log4+(2/3)δ(n)

Px
(
Hn ∧Hn(δ) ≥ k/2

)
≤
(

max
x∈Bn(δ)\Bn

max
y∈Cn(x)

Py
(
M(y)0

blog4+(2/3)δ(n)c
))bk/ log4+(2/3)δ(n)c

= O
(
ck/ log4+(2/3)δ(n)

)
= O

(
exp{−C log1+δ/4(k)}

)
,

(2.2.83)

by the Donsker’s invariance principle, see e.g. [MP10]. This proves the claim

from Equation (2.2.80).

Set m(δ) = log2+δ/3(n). By the results in [BMR13], we have

Pn(δ)

(
HB
n ≥ k

)
∼
∫ ∞
k

nm(δ)

n(δ)t3/2
e−(m(δ))2/(2t)(

t
n2

)(d−3)/2
+ (m(δ)/n)(d−3)/2

dt , (2.2.84)

where we recall that n(δ) = n+log2+δ/3(n) . Note that m2/k remains bounded

(see beginning of this proof). Thus, the above function satisfies that for any

l ∈ {1, . . . , k/2} we have that

Pn(δ)

(
HB
n ≥ k

)
∼ Pn(δ)

(
HB
n ≥ k − l

)
. (2.2.85)

Note that by a martingale (or harmonic function) argument (see [LL10, Propo-
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sition 6.3.5]), we have that

Px
(
Hn < Hn(δ)

)
∼ n(δ)2−d − x2−d

n(δ)2−d − n2−d ∼
m

m(δ)
, (2.2.86)

due to the restrictions placed on x, i.e. x− n = O
(

log2+δ/4(n)
)

. We use this

to expand

Px(Hn ≥ k) = O
(
clog1+δ/4(k)

)
+

k/2∑
l=1

∑
z∈∂iBn(δ)

Px
(
Hn < Hn(δ) = l, Xl = z

)
Pz (Hn ≥ k − l)

∼ O
(
clog2+δ/4(k)

)
+ Px

(
Hn < Hn(δ)

)
Pn(δ)

(
HB
n ≥ k

)
∼ O

(
clog2+δ/4(k)

)
+ Px

(
HB
n ≥ k

)
.

(2.2.87)

Note that we used that Equation (2.2.86) cancels the factor ofm(δ) in Equation

(2.2.84). This concludes the proof.

In the case d = 1 and the simple symmetric random walk, we can employ

a different proof and get stronger results. The proof itself is a generalisation

of [LL10, Proposition 5.1.2].

Lemma 2.2.6. Let d = 1 with the random walk with Px(S1 = x+1) = Px(S1 =

x − 1) = p and 1 − 2p = Px(S1 = x), x ∈ Z and p ∈ (0, 1/2]. We then have

that for x > n

Px(H0 = k) ∼ 2
x∑
l=0

pk−2(l)− pk(l) . (2.2.88)

Proof of Lemma 2.2.6. Note that we can assume that k ≥ x and let us

assume without loss of generality that x is even (the odd case follows analo-

gously). Note that we have for l ≥ k that

Px(H0 = k, Sl = y) = Px(H0 = k, Sl = −y) . (2.2.89)

From this we can infer that Px(H0 ≤ k, Sl = y) = Px(H0 ≤ k, Sl = −y) and
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therefore

Px(Hn > k) =
∑
y>0

Px(Hn > k, Sk = y)− Px(Hn > k, Sk = −y)

=
∑
y>0

pk(x, y)− pk(x,−y) = pk(0) + pk(x) + 2
x−1∑
l=1

pk(l) .

(2.2.90)

This concludes the proof.
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Chapter 3

Loop measures, soups and first

properties

In this chapter we define different loop measures, the associated loop soups,

and occupation fields. An important part of this chapter is the derivation of

the Bosonic loop measure as a space-time limit. This part is based on and

generalises the work from [AV20]. The last part of the chapter is devoted to

isomorphism theorems: we show how one can compute the distribution of the

accrued local time of all the loops by solving a measure-valued equation.

3.1 Loop measures

We begin by introducing the Markovian loop measure, following [LJ10, Section

3] and [AV20, Definition 1.1].

Definition 3.1.1. For G ∈ σ(D) and µ ≤ 0 (also called chemical potential)

Mµ[G] = M [G] =
∑
x∈Zd

∫ ∞
0

eµt

t
Ptx,x(G)dt . (3.1.1)

Remark 3.1.2. The factor µ is non-standard and appears in [AV20]. An

exponential decay in the above integral is usually achieved by introducing an

exponential killing uniform on the vertices, see [Szn12]. The two approaches

are equivalent.
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Another important measure on loops is the Bosonic loop measure. Fol-

lowing [AV20], we define.

Definition 3.1.3. For µ ≤ 0 (chemical potential), β ∈ (0,∞) (also referred

to as inverse temperature), we define the Bosonic loop measure

MB
µ,β[G] = MB[G] =

∑
x∈Zd

∑
j≥1

eβµj

j
Pβjx,x(G) , (3.1.2)

where G ∈ σ(D).

Remark 3.1.4. The Bosonic loop measure has its origin in the physics com-

munity in the context of functional integration, where mainly its continuum

analogue (replacing the random walk by a Brownian motion) is considered

(see e.g. [BR03]). For random walks on graphs, first computations for MB
µ,β

are carried out in [Owe15]. These are restricted to finite graphs and follow

from different methods compared to what we employ. In [AV20], various prop-

erties for MB
µ,β are proven in the finite setting.

We can unify the above definitions into a single framework. This will

only be needed when talking about isomorphism theorems, as done in Section

3.3.

Definition 3.1.5. Given a positive measure m on [0,∞) we define the loop

measure with weight m as

Mm[G] =

∫ ∞
0

Ptx,x(G)dm(t) = m
[
Ptx,x(G)

]
, (3.1.3)

where G ∈ σ(D). We assume that for all ε > 0∫ ∞
ε

dm(t)

(1 ∧ t)d/2
<∞ . (3.1.4)

For the discrete-time random walk, we define the discrete time loop

measure.

Definition 3.1.6. Given a positive sequence a = (aj)j∈N and G ∈ σ(D), we
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define the loop measure in discrete-time with weights (aj)j

Ma[G] =
∑
x∈Zd

∑
j≥0

ajPjx,x(G) . (3.1.5)

Note that the underlying random walk for Ma is a discrete-time random walk.

We begin with a proposition relating the above defined measures.

Proposition 3.1.7. For ease of notation we assume that q(x, †) = 0 for all

x ∈ Zd.

I. [AV20, Remark 2.2] Suppose that t 7→ eµtt−1Ptx,x(G) is Riemann-integrable

and x 7→
∑

j≥1
eβµj

j
Pβjx,x(G) can be dominated by an integrable (with re-

spect to the counting measure on Zd) positive function g(x) ≥ 0 for all

β > 0 small enough. We then have that

lim
β↓0

MB
µ,β[G] = Mµ[G] . (3.1.6)

II. Given µ ≤ 0 and

aj =
1

j

(
1

1− µ

)j
. (3.1.7)

For every G that is in the sigma-algebra generated by the discrete jump

chain (Sn)n∈N, we have that

Ma[G] = Mµ[G] . (3.1.8)

III. Given µ ≤ 0

aj =
βj

j!
PolyLog1−j

(
eβ(µ−1)

)
, (3.1.9)

we have for every G that is in the sigma-algebra generated by the discrete

jump chain (Sn)n∈N that

Ma[G] = MB
µ,β[G] . (3.1.10)
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Here, the function PolyLogk(z) is defined as

PolyLogk(z) =
∞∑
j=1

zj

jk
. (3.1.11)

IV. We have for every G that is in the sigma-algebra generated by the discrete

jump chain (Sn)n∈N that for aj = (j!)−1
∫∞

0
e−ttjdm(t) that

Ma[G] = Mm[G] . (3.1.12)

Remark 3.1.8. This proposition allows us to interpret the Markovian loop

measure as an infinite-temperature limit (i.e. the inverse temperature β ↓ 0)

of the Bosonic loop measure. In Section 3.2 we show how one can construct

the Bosonic loop measure from the Markovian one.

It furthermore shows that for events depending on the jump chain alone, the

Bosonic and the Markovian loop measure can be represented by Ma. Thus,

when analysing connectivity properties of the loop measure in Chapter 4 and

Chapter 6, we only use Ma.

Proof of Proposition 3.1.7.

I. As this was a remark in [AV20], we give a proof here. Fix K large enough

such that Mµ[G, l(ω) < K] ≥ Mµ[G] − ε. We then choose a sequence

βn ↓ 0 and write the Riemann integral representation of Mµ[G, l(ω) < K]

in the following way

Mµ[G, l(ω) < K] = lim
n→∞

∑
x∈Zd

bK/βnc∑
j=1

βn
eβnjµ

βnj
Pβnjx,x (G) . (3.1.13)

We use the dominated convergence theorem to switch limit and summa-

tion. This concludes the proof.

II. By the definition of d∞, we can write

G = {S0 = x0, S1 = x1, . . . , Sk = x0, Sk+j = †, ∀j ∈ N} . (3.1.14)

without loss of generality. The construction of (Xt)t≥0 as done in [Kle13,
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Chapter 17] shows that we can rewrite Xt = SNt , where (Nt)t≥0 is a

Poisson process on the real line with intensity 1. Note that

P(Nt = k) = e−t
tk

k!
. (3.1.15)

Thus,

∫ ∞
0

eµt

t
Ptx0,x0

(G)dt =
∑
k≥0

∫ ∞
0

eµt

t
e−t

tk

k!
dt

k−1∏
i=0

p(xi, xi+1) , (3.1.16)

where we identify xk = x0. The claim follows after a change of vari-

ables t 7→ t(µ − 1)−1 and using the integral representation of the facto-

rial/Gamma function.

III. This follows analogously to the previous proof. Indeed, write Pβjx,x =

e−βj
∑

k≥0(βj)k(k!)−1Pkx,x. Exchanging the sum over the lengths j with

the sum over the k’s gives the result.

IV. This is similar to the above.

The Bosonic and the Markovian loop measure assign comparable weight

to loops of the same length, this is shown in the next lemma.

Lemma 3.1.9. For β > 0 and µ ≤ 0

βj

j!
PolyLog1−j

(
eβ(µ−1)

)
=

1

j

(
1

1− µ

)j
(1 + o(1)) . (3.1.17)

As a consequence, for every β > 0 and for every µ ≤ 0 there exist constants

C1, C2 > 0 such that for every event G ∈ σ(Γ) that is generated by the jump

chain we have

C1Mµ[G] ≤MB
µ,β[G] ≤ C2Mµ[G] . (3.1.18)

Proof of Lemma 3.1.9. This is a consequence of the limiting behaviour of

the polylogarithm. By [Woo92], we have that

PolyLogs (er) = Γ (1− s) [−r]s−1 (1 + o(1)) , (3.1.19)
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as s→ −∞. Plugging in s = 1− j and r = β(µ− 1) gives us

PolyLog1−j
(
eβ(µ−1)

)
= (j − 1)! [β − βµ]−j (1 + o(1)) , (3.1.20)

and thus the claim follows.

3.1.1 Random walk soups and their occupation fields

In this section we introduce various loop soups, the notion of local times and

occupations fields.

Definition 3.1.10. For λ > 0 we introduce four different classes of Poisson

point processes. For a general definition of Poisson point processes (PPP) on

measurable spaces, see [Kal01, Chapter 12].

I. We define PMλ as the PPP with intensity measure λMµ.

II. We define PBλ as the PPP with intensity measure λMB
µ,β.

III. We define Paλ as the PPP with intensity measure λMa.

IV. We define Pm
λ as the PPP with intensity measure λMm.

If we omit the superscript, it is either to be understood that we refer to all four

types of PPPs simultaneously or that the superscript is clear from the context.

A random measure sampled from Pλ is denoted by U . We write Uλ when we

want to emphasise the dependence on λ. Since ‖q‖∞ <∞, we have that loops

with infinitely many jumps on finite intervals have zero mass, thus our loop

measures live on a Borel space and by [Kal01, Chapter 12] we can write

U =
∑
k≤κ

δωk , (3.1.21)

with κ ∈ N ∪ {∞} and ωk ∈ Γ. The collection of (ωk)
κ
k=1 is often referred to

as the loop soup. We use the (non-standard) notation x ∈ U if there exists ω

in the support of U with {x} ∩ ω[0, l(ω)] 6= ∅.

Remark 3.1.11. Note that Mµ,M
B and Mm are non-atomic and thus, almost

surely, all ωk’s from the above representation are distinct. This means that the
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Figure 3.1: A sample from a simulation of the loop soup and its occupation
field L, by the author. Bright colours correspond to large values of the local
time. Simulation obtained using Dirichlet boundary conditions on a larger
square and unit intensity.

associated PPPs are simple. For Paλ this is not the case, as Ma is a purely

atomic measure.

Another important concept is that of the local time and the occupation

field.

Definition 3.1.12. For ω ∈ Γ and x ∈ Zd we define the local time as

Lx = Lx(ω) =

∫ l(ω)

0

1{ω(t) = x}dt , (3.1.22)

where we recall that l(ω) is the length of the loop.

For U =
∑

k≤κ δωk a sample from Pλ, define the occupation field L as

Lx = Lx(U) = U [Lx] =

∫ ∞
0

|{ωk(t) = x, 1 ≤ k ≤ κ}|dt , (3.1.23)

where in the last equality monotone convergence is applicable. We occasionally

write L and L instead of (Lx)x∈Zd or (Lx)x∈Zd.

In Figure 3.1 we show a realisation of the loop soup together with a

heat map of its occupation field.
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3.2 The derivation of the Bosonic loop mea-

sure as a space-time limit

The goal of this section is to prove the converse of Proposition 3.1.7; this time

constructing the Bosonic loop measure from the Markovian one. Partial suc-

cess of that task was achieved in [Owe15, Theorem 3.12] and [Vog16, Theorem

3.3]. Our result is more general and shows a full convergence of the finite-

dimensional distributions. This section is based on and generalises [AV20].

3.2.1 Space-time random walks

We begin with enlarging Zd by taking the Cartesian product with a discrete

torus: define for N ∈ N

ZdN = Zd × {0, . . . , N − 1} = Zd × TN , (3.2.1)

the space-time torus. Define Σ ∈ RTN×TN by setting

Σ(b1, b2) = 1{b2 = b1 + 1} . (3.2.2)

In this definition, as well as throughout the whole section, we understand

arithmetics on TN always modulo N . For β > 0 and (x1, b1) 6= (x2, b2) let

qN ((x1, b1), (x2, b2)) =


β−1NΣ(b1, b2) if x1 = x2, b1 6= b2 ,

q(x1, x2) if x1 6= x2, b1 = b2,

0 otherwise.

(3.2.3)

Furthermore, set qN ((x1, b1), (x1, b1)) = −
∑

(x,b)6=(x1,b1) qN ((x1, b1), (x, b)).

For an illustration of the space-time random walk see Figure 3.2.

Let π : Γ(ZdN)→ Γ(Zd) be the projection onto the coordinate in Zd, i.e.

π
(
(ω(1), ω(2))

)
(t) = ω(1)(t) . (3.2.4)

Here we identify for z ∈ ZdN the coordinates z = (z(1), z(2)) with z(1) ∈ Zd and
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Figure 3.2: The space-time random walk can move freely on Zd, but on TN it
has to move upwards. Figure from [AV20].

z(2) ∈ {0, . . . , N − 1}.

Definition 3.2.1. Define the space-time loop measure MN in the following

way

MN [G] =
∑
z∈ZdN

∫ ∞
0

eµt

t
Ptz,z(G)dt , (3.2.5)

for G ∈ σ(D(ZdN)) and the random walk induced by the generator qN . It thus

is the standard Markovian loop measure on the (enlarged) graph ZdN .

For G ∈ σ(D(Zd)), we define the projected loop measure

M↓
N [G]=

(
MN ◦ π−1

)
[G] =

∑
z∈ZdN

∫ ∞
0

eµt

t
Ptz,z
(
{(Xs)s∈[0,t] : π(X) ∈ G}

)
dt.

(3.2.6)

The associated local times and occupation fields are denoted by LN , L↓,LN ,L↓

and the PPPs by PNλ and P↓λ, respectively.

We begin by analysing the distribution of (ω(1), ω(2)) under Pz for z ∈
ZdN .

Lemma 3.2.2. Under Pz and Ptz,z, we have that ω(1) and ω(2) are two inde-

pendent stochastic processes with weight matrices q and Σ.

Proof of Lemma 3.2.2. As the process is uniquely characterised by its

transition kernel, it suffices to show that

pt ((x1, b1), (x2, b2)) = pZ
d

t (x1, x2)pΣ
t (b1, b2) , (3.2.7)
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where the kernels pZ
d

and pΣ are those generated by the respective projections.

The superscripts will be omitted from now, as the kernel’s arguments serve as

an indicator for the underlying process. Recall 1 = ‖q‖∞ and expand

e−t(1+β−1N)pt ((x1, b1), (x2, b2)) =
∞∑
n=0

[t(1 + β−1N)]n

n!
pn ((x1, b1), (x2, b2))

=
∞∑
n=0

[t(1 + β−1N)]n

n!

×
n∑
k=0

(
n

k

)
pk(x1, x2)

(
1

1 + β−1N

)k
pn−k(b1, b2)

(
β−1N

1 + β−1N

)n−k
.

(3.2.8)

In the last line we count how many times the space-time random walk will

choose the torus coordinate.

Exchanging the two sums and expanding the binomial coefficient gives us

∞∑
k=0

pk(x1, x2)
1

k!

∞∑
n=0

pn(b1, b2)
(
β−1N

)n 1

n!
= e−tpt(x1, x2)e−tβ

−1Npt(b1, b2) .

(3.2.9)

This concludes the proof.

3.2.2 Convergence of the finite-dimensional distributions

We begin by stating a set of necessary assumptions for this section.

Assumption 3.2.3. Assume that d ≥ 3 and

µ− inf
x∈Zd

p(x, †) ≤ 0 . (3.2.10)

Let A ⊂ (0,∞) be Lebesgue-measurable and assume

βN ∩ ∂A = ∅ . (3.2.11)

The main result of this section is the following theorem.
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Theorem 3.2.4. Let Assumption 3.2.3 hold. For k ∈ N and 0 < t1 < . . . <

tk <∞, with A ⊂ (tk,∞), it holds that

lim
N→∞

M↓
N [Xt1 = x1, . . . , Xtk = xk, l ∈ A]

= MB
µ,β[Xt1 = x1, . . . , Xtk = xk, l ∈ A] .

(3.2.12)

Remark 3.2.5. This theorem is an extension of [AV20, Theorem 2.5]. Whilst

the proof is similar, we remove the condition of confinement to a finite box.

Before embarking on the proof, we briefly explain the necessity of Assumptions

3.2.3. The loop length l has the discrete support βN under MB. By [Bil68,

Theorem 13.1], in order to get a consistent notion of convergence on càdlàg

spaces, one needs to exclude those times on which the path is discontinuous

(except on a set of measure zero). If βN∩ ∂A = ∅, we can ensure that all the

coordinate projections are continuous almost surely. The conditions on µ and

on q ensure that both sides have finite mass.

Proof of Theorem 3.2.4. We begin with the case k = 1. Expanding the

left-hand side of Equation (3.2.12), we get

M↓
N [Xt1 = x1, l ∈ A]

=
∑
x∈Zd

∑
b,b1∈TN

∫
A

etµ

t
pt1 ((x, b), (x1, b1)) pt−t1 ((x1, b1), (x, b)) dt

=
∑
b1∈TN

∫
A

etµ

t
pt ((x1, b1), (x1, b1)) dt

=
∑
b1∈TN

∫
A

etµ

t
pt (x1, x1) pt (b1, b1) dt = N

∫
A

etµ

t
pt (x1, x1) pt (b1, b1) dt ,

(3.2.13)

where in the last line, b1 can be any element of TN . To go from the second to

the third line, we first used monotone convergence (to exchange integration and

summation) and then the Chapman-Kolmogorov equations. We used Lemma

3.2.2 to factorise the kernel pt ((x1, b1), (x1, b1)). In the last step we used that

the process on TN is translation invariant.
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Figure 3.3: The graph of the transition kernel pt (b1, b1). As N grows large,
the peaks converge to a sum of (weighted) delta-measures.

We expand the kernel on the torus

pt (b1, b1) = e−tβ
−1N

∞∑
n=0

(tβ−1N)
n

n!
pn(b1, b1) = e−tβ

−1N

∞∑
j=0

(tβ−1N)
jN

(jN)!
,

(3.2.14)

as the jump chain of the torus coordinate is deterministic. Thus, pn(b1, b1) 6= 0

for n ∈ NN only. Recall that the density of a Gamma distributed variable X

with parameters (x, y) ∈ (0,∞)2 is given by

yx

Γ(x)
tx−1e−ytdt , (3.2.15)

where Γ(x) denotes the Gamma function. Expectation with respect to X is

denoted by Ex,y[X]. Using monotone convergence and Equation (3.2.14), we

can rewrite

M↓
N [Xt1 = x1, l ∈ A] = β

∞∑
j=0

EjN+1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
. (3.2.16)

Indeed, note that the density Nβ−1pt (b1, b1) is an infinite sum of Gamma

densities with parameters (jN+1, β−1N). For a sketch of pt (b1, b1), see Figure

3.3.

We can bound for any t ≥ 0 and x ∈ Zd
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pt(x, x) ≤ exp

(
−t inf

x∈Zd
p(x, †)

)
. (3.2.17)

By [LL10, Theorem 2.5.6] we have that for any ε > 0 there exists C > 0 such

that for all t ≥ ε

pt(x, x) ≤ Ct−d/2 . (3.2.18)

Since Assumption 3.2.3 holds true, at least one of the two above bounds con-

verges to zero at speed O
(
t−d/2

)
. Thus

EjN+1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
≤ CEjN+1,β−1N

[
1[ε,∞)(X)X−d/2−1

]
,

(3.2.19)

for some ε > 0 (as inf A > 0). Using Lemma 8.3.1 to compute the moments

the Gamma distribution, we can bound this by

EjN+1,β−1N

[
1[ε,∞)(X)X−d/2−1

]
≤
(
β−1N

)d/2+1 Γ(jN − d/2)

Γ(jN + 1)
. (3.2.20)

For j ≥ 1 and N sufficiently large, we can expand the fraction of Gamma

functions using Stirling’s formula (see [LL10, Lemma A.1.4]) and bound

Γ(jN − d/2)

Γ(jN + 1)
≤ C

(jN + 1)d/2+1
. (3.2.21)

We have shown that

EjN+1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
≤ Cj−d/2−1 ≤ Cj−3/2 , (3.2.22)

and thus can exchange the limit as N →∞ with the sum over j ∈ N.

Recall two basic properties of the Gamma function, which can be easily verified

by hand: if Xi are i.i.d. Gamma distributed with parameters (x, y), then the

sum
∑n

i=1Xi is Gamma distributed with parameters (nx, y). Furthermore, if

X is Gamma distributed with parameters (x, y), then, for any c > 0, cX is

Gamma distributed with parameters (x, y/c). This implies that if X is Gamma
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distributed with parameters (jN + 1, β−1N)

X
d
=

1

N

jN+1∑
k=1

Xi , (3.2.23)

where each Xi is Gamma distributed with parameters (1, β−1). Using that if

X is Gamma distributed with parameters (x, y), its mean is given by x/y and

the strong law of large numbers, we get that for j > 0

lim
N→∞

EjN+1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
= 1A(βj)pβj(x1, x1)

eµβj

βj
. (3.2.24)

If X is Gamma distributed with parameters (1, β−1N), it converges to 0 almost

surely and in Lp and thus (since inf(A) > 0) we have that for j = 0

lim
N→∞

E1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
= 0 . (3.2.25)

We can thus conclude that

lim
N→∞

M↓
N [Xt1 = x1, l ∈ A] = β

∞∑
j=0

lim
N→∞

EjN+1,β−1N

[
1A(X)pX(x1, x1)

eµX

X

]
= β

∑
j∈β−1A

pβj(x1, x1)
eµj

j
= MB[Xt1 = x1, l ∈ A] .

(3.2.26)

This finishes the proof for the case k = 1.

Let us now assume that k ≥ 2. Rewrite

M↓
N [Xt1 = x1, . . . , Xtk = xk, l ∈ A]

=

(
k−1∏
i=1

pti+1−ti(xi, xi+1)

)∫
A

pt−tk+t1(xk, x1)Npt(b1, b1)
etµ

t
dt ,

(3.2.27)

by the Chapman-Kolmogorov equations. One can use the same approximation

procedure as employed in the case k = 1 to conclude the theorem.
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3.2.3 Convergence of local times and occupation fields

In this section we examine the convergence of the local time under M↓
N and

the occupation field under P↓λ. We want to show that (under M↓
N) the local

time converges to the local time distributed with respect to MB.

Assumption 3.2.6. Assume that either

I. The transition matrix satisfies

µ− inf
x∈Zd

q(x, †) < 0 . (3.2.28)

II. Or that d ≥ 3 and µ = 0.

The main result of this subsection is the following theorem.

Theorem 3.2.7. Let F : [0,∞)Z
d → R be such that

I. There exists ΛF ⊂ Zd bounded such that F is measurable with respect to

the sigma algebra generated by the coordinates in ΛF .

II. F (0) = 0 and that the right derivative at zero ∂F·(0) exists for all coor-

dinates in ΛF . This means that for x ∈ Zd, t > 0, we abbreviate RZd 3 tx
for tx(y) = tδx(y) and define ∂Fx(0) by

F (tx) = t∂Fx(0) + o(t) as t ↓ 0 . (3.2.29)

III. It holds that

sup
(sx)

x∈Zd

|F ((sx)x∈Zd)| <∞ . (3.2.30)

Given the above as well as Assumption 3.2.6, we have that

lim
N→∞

M↓
N [F (L↓)] = β

∑
x∈Zd

∂xF (0) +MB[F (L)] . (3.2.31)

Remark 3.2.8. This theorem is an extension of [AV20, Theorem 2.7], where

the case of random walks confined to a bounded set is considered. As we allow

for the loop measure to be fully supported on Zd, more care needs to be taken.

In fact, the largest part of the proof is to make sure that it takes the random
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Figure 3.4: A loop (in black, on the right) started far away from the support
of F (in red) are unlikely to reach Bm.

walks sufficiently long to reach the support of F and we can thus interchange

the limit as N →∞ together with the sum of x ∈ Zd.

Proof of Theorem 3.2.7. Without loss of generality, we may assume that

ΛF ⊂ Bm for some m > 0. Recall that Bm is the ball of radius m centred at

zero. Abbreviate

L↓x =
∑
b1∈TN

L(x,b1) . (3.2.32)

The idea of the proof is as follows: loops (of typical length) started far away

from Bm are unlikely to reach the support of F . For an illustration see Figure

3.4. This will allow us to work with loops started in a finite neighbourhood

around Bm. We then use the convergence of the waiting times, similar to the

proof of Theorem 3.2.4.

We begin by showing that loops started far away from Bm are negligible:

expand, using the independence of the process on Zd and on TN and the

translation invariance on TN ,

M↓
N [|F (L↓)|] = N

∑
x∈Zd

∫ ∞
0

etµ

t
Et(x,b1),(x,b1)[|F (L↓)|]dt . (3.2.33)

From now on we work with the assumption that d ≥ 3 and µ = 0. The

alternative assumption (i.e. that µ − infx q(x, †) < 0) induces an exponential

decay (see Equation (3.2.17)) which is faster than the polynomial decay implied

by µ = 0.
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We now estimate the integrand in the above equation: for t ∈ [0, ε], we bound

pt(x, x) ≤ 1. For t > ε, estimate pt(x, x) ≤ Ct−d/2. Notice that F ((si)i) is

bounded uniformly and F (0) = 0 with F differentiable at zero. We can thus

bound∫ ∞
0

1

t
Et(x,b1),(x,b1)[|F (L↓)|]dt ≤ sup

x∈BM
|∂xF (0)|

∫ ∞
0

C

t ∨ ε
Pt(x,b1),(x,b1)(Hm < t)dt

≤ C

∫ ∞
0

1

td/2+1 ∨ ε
Btx,x (Hm < t) pt(b1, b1)dt ,

(3.2.34)

where the constant C > 0 depends on F .

Take x ∈ Zd \Bm and define xm = |x| − dist(x,Bm). Using the union bound

and Lemma 2.2.2

Btx,x (Hm < t) ≤
∑
y∈Bm

Btx,x (Hy < t) ≤ Cmd|xm|2−de−
|xm|2

4t . (3.2.35)

Use the expansion in terms of Gamma functions from Theorem 3.2.4 and the

above bound to write

N

∫ ∞
0

1

t
Et(x,b1),(x,b1)[|F (L↓)|]dt ≤ CN

∫ ∞
0

|xm|2−de−
|xm|2

4t

td/2+1 ∨ ε
pt(b1, b1)dt

≤ C
∞∑
j=0

EjN+1,β−1N

[
|xm|2−de−

|xm|2
4t

(td/2+1 ∨ ε)

]
,

(3.2.36)

where the Gamma distributed random variable is denoted by t and the con-

stant C depends on m.

The strategy for the next part of the proof is the following: we want to show

that as we move the base point x of the loop further away from Bm (i.e.

|xm| → ∞), the sum above becomes a negligible contribution to Equation

(3.2.33).

For this purpose fix K > 2m > 0 and use the Lemmas 8.2.1, 8.2.2 to bound a
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sum by an integral:

∑
x∈Zd: |x|>K

∞∑
j=0

EjN+1,β−1N

[
|xm|2−de−

|xm|2
4t

(td/2+1 ∨ ε)

]

=
∞∑
j=0

EjN+1,β−1N

 1

(td/2+1 ∨ ε)
∑

x∈Zd: |x|>K

|xm|2−de−
|xm|2

4t


≤ C

∞∑
j=0

EjN+1,β−1N

[
1

(td/2+1 ∨ ε)

∫ ∞
K

rd−1r2−de−
r2

4t dr

]

≤ C

∞∑
j=0

EjN+1,β−1N

[
K

(td/2 ∨ ε)
e−

K2

4t

]
.

(3.2.37)

We begin with treating the case j = 0 in the above sum. By comparing

densities, we note that a Gamma distributed random variable with parameters

(1, β−1N) has the same distribution as an exponentially distributed random

variable with parameter β−1N . Thus

E1,β−1N

[
e−

K2

4t

(td/2 ∨ ε)

]
≤ Ce−K

1/3

+ C

∫ ∞
K2/3

(
β−1N

)−1
e−tNβ

−1

dt ≤ Ce−K
1/3

.

(3.2.38)

Therefore, we can choose K1 ∈ N such that the K-times the above is smaller

than δ/2 > 0 for all N ∈ N, K > K1 and δ > 0 arbitrary but fixed.

For a fixed K > 0, split the remaining sum from Equation (3.2.37)

∞∑
j=1

EjN+1,β−1N [. . .] =
K2/3∑
j=1

EjN+1,β−1N [. . .] +
∞∑

j=K2/3

EjN+1,β−1N [. . .] . (3.2.39)

Begin with j ≤ K2/3 and split the expectation into the regime where t < K3/4

and its complement:

EjN+1,β−1N

[
1

(td/2 ∨ ε)
e−

K2

4t

]
≤ Ce−K

1/4

+ PjN+1,β−1N

(
t ≥ K3/4

)
. (3.2.40)

Recall the fact that the mean of a Gamma (jN+1, β−1N) distributed random

variable is given by β(j + 1/N).

Recall the large deviation inequality P (Y ≥ y) ≤ exp (−Λ(y)), for Y a real-
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valued random variable, y > E[Y ] and Λ the associated large deviation rate

function. In Lemma 8.3.2, we show that for a Gamma random variable (with

parameter (jN + 1, β−1N)), the rate function is given by

Λ(y) =

β−1Ny + (jN + 1) (log ((jN + 1))− 1 + log (βNy)) if y > 0 ,

+∞ otherwise.

(3.2.41)

Thus, using that j is bounded by K2/3, we get

PjN+1,β−1N

(
t ≥ K3/4

)
≤ PjN+1,β−1N

(
t ≥ CjK1/12

)
≤ exp

(
−CK1/12

)
.

(3.2.42)

Therefore,

K2/3∑
j=0

EjN+1,β−1N

[
K

(td/2 ∨ ε)
e−

K2

4t

]
≤ CK5/3 exp

(
−C−1K1/12

)
, (3.2.43)

and so we can choose K2 large enough such that the above is smaller than δ/4

for all K > K2 and N ∈ N.

For j ≥ K2/3 we bound using Lemma 8.3.1 for the moments of the Gamma

distribution

EjN+1,β−1N

[
K

(td/2 ∨ ε)
e−

K2

4t

]
≤ CEjN+1,β−1N

[
t−d/2

]
≤ C

(
β−1N

jN − d/2

)d/2
.

(3.2.44)

Thus, we can bound

∞∑
j=K2/3

EjN+1,β−1N

[
1

(td/2 ∨ ε)
e−

K2

4t

]
≤ C

∞∑
j=K2/3

j−d/2 . (3.2.45)

As the above sum is convergent, we can choose K3 such that for all N ∈ N
and K > K3 we have

∞∑
j=K2/3

EjN+1,β−1N

[
1

(td/2 ∨ ε)
e−

K2

4t

]
≤ δ/4 . (3.2.46)

By collecting the previous estimates, we conclude that for δ > 0 there exists
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K0 ∈ N such that for all N ∈ and all K > K0 we have that

N
∑

x∈Zd: |x|>K

∫ ∞
0

1

t
Et(x,b1),(x,b1)[|F (L↓)|]dt ≤ δ . (3.2.47)

Thus, we can exchange the limit of N → ∞ with the sum over all x ∈ Zd

in Equation (3.2.33). By the independence of the processes on Zd and on TN
established in Lemma 3.2.2 we can write

Et(x,b1),(x,b1)[F (L↓)] = Etx,x[F (L)]pt(b1, b1) . (3.2.48)

Thus, as in the proof of Theorem 3.2.4,

N

∫ ∞
0

etµ

t
Et(x,b1),(x,b1)[F (L↓)]dt = β

∞∑
j=0

EjN+1,β−1

[
etµ

t
Etx,x[F (L)]

]
. (3.2.49)

For j ≥ 1 we use the convergence (similar to Equation (3.2.23)) to

lim
N→∞

EjN+1,β−1

[
1

t
Etx,x[F (L)]

]
=

1

βj
Eβjx,x[F (L)] . (3.2.50)

For j = 0 expand

F (tx) = t∂xF (0) + o(t) . (3.2.51)

Write

Etx,x[F (L)] = F (tx)P
t

x,x (RW does not jump) + Etx,x[F (L)1{RW does jump}].
(3.2.52)

By Equation (2.1.14), we have that

Ptx,x (RW does not jump) = 1−O(t2) and Ptx,x (RW does jump) = O(t2) .

(3.2.53)

As F is a bounded function and O(t2) is stronger than o(t) we can expand

Etx,x[F (L)] = t∂xF (0) + o(t) . (3.2.54)

61



Thus

E1,β−1N

[
1

t
Etx,x[F (L)]

]
= E1,β−1N [∂xF (0) + o(1)] = ∂xF (0) + o(1) . (3.2.55)

In the last equality in the above Equation, we use that if t is distributed

with respect to a Gamma distribution with parameters (1, β−1N), then t→ 0

almost surely as N →∞. This concludes the proof.

As a corollary, we deduce the convergence of the occupation field in a

suitable topology.

Corollary 3.2.9. In the topology of local convergence (for a definition see

Definition 8.4.1) it holds that L↓ − β converges to L distributed with respect

to PBλ , given λ > 0 and Assumption 3.2.6. Here, β denotes the constant field:

βx = β.

Proof of Corollary 3.2.9. By Proposition 8.4.2, it suffices to show the

convergence of fΛ
m(L), where (fΛ

m)m is a separating class for coordinates with

values [0,∞)Λ and Λ b Zd. By [Kle13, Theorem 15.6], we have that{
f : f(ϕ) = exp

(
−
∑
x∈Λ

rxϕx

)
, rx ≥ 0

}
, (3.2.56)

where Λ ranges over all finite subsets of Zd, is such a class of functions. By

[Kal01, Lemma 12.2], we have that

E↓λ
[
e−

∑
x∈Λ rxL

↓
x

]
= exp

(
−λM↓

N

[
1− e−

∑
x∈Λ rxL

↓
x

])
. (3.2.57)

Note that as supx∈Λ{|L↓x|} → 0 we have that

1− exp

(
−
∑
x∈Λ

rxL
↓
x

)
=
∑
x∈Λ

rxL
↓
x + o

(
sup
x
{|L↓x|}

)
. (3.2.58)

Thus, by applying Theorem 3.2.7, we have that

lim
N→∞

E↓λ
[
e−

∑
x∈Λ rxL

↓
x

]
= exp

(
−λβ

∑
x∈Λ

rx − λMB
[
1− e−

∑
x∈Λ rxLx

])
.

(3.2.59)
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This concludes the proof.

3.3 Isomorphism theorems

This section provides results regarding the distribution of the occupation field

of the loop soup. We only treat isomorphism in finite volume as infinite volume

versions of the fields may not exist. Extending our results to the whole of Zd

can be done using similar arguments to the proof of Proposition 3.2.7.

We restrict the random walk to some finite, connected subset Λ of Zd. Define

qΛ(x, y) =

q(x, y) if x, y ∈ Λ

0 otherwise.
(3.3.1)

This induces a random walk with Dirichlet boundary conditions. Let Q ∈
RΛ×Λ be the matrix with qΛ as entries. Enumerate the real eigenvalues (qy)y∈Λ

of Q and write ay = −qy. For (vx)x∈Λ with vx ≥ 0, define V ∈ RΛ×Λ the

matrix with (vx)x on the diagonal and zero everywhere else. Write py for the

eigenvalues of Q−V and set by = −py. For a weight measure m, denote m the

measure defined by its Radon–Nikodym derivative

dm(t) = tdm(t) . (3.3.2)

For example, in the case of the Markovian loop measure, we have that dm(t) =

t−1dt and thus m is the Lebesgue measure. For the Bosonic loop measure, we

have that m is a weighted counting measure on βN. We restrict ourselves to m

being a positive measure and refer to [AV20, Equation 4.37] for a construction

of PPP for signed measures.

For a measure m on [0,∞), we define its Laplace transform Lm = L(m) as

follows

Lm(x) = L(m, x) =

∫ ∞
0

e−xtdm(t), with x > 0 . (3.3.3)

If m has density f with respect to the Lebesgue measure, we write Lf . Denote

the inverse Laplace transform by L−1.

We are now in the position to state our isomorphism theorem. It gives the

distribution of the occupation field for loop measures with general weight by
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computing the Laplace transform.

Theorem 3.3.1. Let h : (−∞, 0] → R be analytically extendable to the half

plane {z ∈ C : <(z) ≤ 0}. Fix λ > 0. Suppose that

m = −L−1

(
∂h

h

)
, (3.3.4)

satisfies the conditions of Definition 3.1.5. Furthermore, assume that for any

ε > 0 the integral
∫ x
ε
Lm(s)ds exists for all x > ε. Then:

I. There exists a measure Σ on [0,∞)Λ such that its Laplace transform is

given by

Σ
[
e−〈v,ψ〉

]
=

(
deth(Q)

deth(Q− V )

)λ
. (3.3.5)

II. Under Pm
λ , we have that the occupation field L is distributed like ψ under

Σ, i.e. for any bounded test function u : Rd → R, we have that

Em
λ [u(L)] = Σ [u(ψ)] . (3.3.6)

Proof of Theorem 3.3.1. Since the Laplace transform uniquely charac-

terises a measure, the theorem follows upon showing that

Em
λ

[
e−〈v,L〉

]
=

(
deth(Q)

deth(Q− V )

)λ
. (3.3.7)

By the Campbell formula for Pm
λ

Em
λ

[
e−〈v,L〉

]
= exp

(
−λMm

[
1− e−〈v,L〉

])
. (3.3.8)

Note that due to the Dirichlet boundary conditions, the eigenvalues of Q are

contained in (−∞, 0). Choose ε > 0 such that −ε is larger than the largest

eigenvalue of Q. By Weyl’s inequality (see e.g. [HJ12, Theorem 4.3.1]), we

have that the eigenvalues of Q− V are also contained in (−∞,−ε). We recall

that (ay)y are the eigenvalues of Q with their sign flipped and (by)y for Q−V .
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Expand, using that the trace is the sum of the eigenvalues,

Mm
[
1− e−〈v,L〉

]
=
∑
x∈Λ

∫ ∞
0

(
etQ(x, x)− et(Q−V )(x, x)

)
dm(t)

=

∫ ∞
0

Tr
(
eQt − e(Q−V )t

)
dm(t)

=
∑
y∈Λ

∫ ∞
0

(
e−ayt − e−tby

)
dm(t)

=
∑
y∈Λ

∫ ∞
0

(
e−ayt − e−tε

)
dm(t)−

∫ ∞
0

(
e−byt − e−tε

)
dm(t) .

(3.3.9)

Fix y ∈ Λ and observe that g(ay) =
∫∞

0
(e−ayt − e−tε) dm(t) satisfies the fol-

lowing ODE ∂g(ay) = −Lm(ay) ,

g(ε) = 0 .
(3.3.10)

If g(x) = log(h(x)), this implies that

h(x) = exp

(
−
∫ x

ε

Lm(s)ds

)
. (3.3.11)

Thus

exp
(
−λMm

[
1− e−〈v,L〉

])
= exp

(
−λ
∑
x∈Λ

g(ay)− g(by)

)

= exp

(
−λ
∑
y∈Λ

log

(
h(by)

h(ay)

))
=
∏
y∈Λ

(
h(ay)

h(by)

)λ
=

(
deth(Q)

deth(Q− V )

)λ
.

(3.3.12)

In the last line we use that h can be written as a power series, and thus the

eigenvalues of h(Q) are the images of h applied to the eigenvalues of Q.
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On the other hand, since

log(h(x)) = −
∫ x

ε

Lm(s)ds , (3.3.13)

we have that
∂h(x)

h(x)
= −Lm(x) , (3.3.14)

and thus we get the condition on m stated in Equation (3.3.4) is satisfied. This

concludes the proof.

In the next remark we collect some examples of loop weights.

Remark 3.3.2. I. The above theorem is a straight-forward extension of

the Le Jan isomorphism, as presented in [LJ11, LJ10]. Indeed, choose

λ = 1/2 and h(x) = x, we solve

m = −L−1

(
∂h

h

)
= −L−1

(
1

Id

)
= Lebesgue measure , (3.3.15)

and thus dm(t) = t−1dt. The resulting measure Σ is the distribution of

the square of the Gaussian free field with covariance Q.

II. For the Bosonic field (the occupation field under PBλ ) introduced in [AV20],

we choose h(x) = β−1(1 + eβ(x+µ)) for some β > 0. It is easy to see that

in this case

− L−1

(
∂h

h

)
=
∑
j≥1

eβµδβj = m . (3.3.16)

This implies that m =
∑

j δβje
βµj/j and thus we recover the Bosonic loop

measure. See also [AV20, Lemma 4.2].

III. Choosing the positive measure m via

dm(t) =
1

t

(
∞∑
n=1

e−(2n−1)2π2t2/4

)
dt , (3.3.17)

results in

Lm(s) =
sinh (

√
s)√

s cosh (
√
s)

and thus h(x) = cosh−2
(√

s
)
.

(3.3.18)
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The above is shown in [LSL12, Equation 32.150]. Thus,

Em
λ

[
e−〈v,L〉

]
=

(
det cosh

(√
−Q
)

det cosh
(√

V −Q
))−2λ

. (3.3.19)

Remark 3.3.3. In [AV20] it is shown that one can also define the PPP for

signed measures. Extending the above theorem to signed measures m gives

these two additional examples:

I. For the Fermionic loop measure (introduced in [BR03, Theorem 6.3.14])

MF
β,µ =

∑
x

∑
j≥1

(−1)jeβµj

j
P(βµ)
x,x , we can do the same calculation as we did

for the Bosonic loop measure, where 1+eβ(x+µ) is replaced by 1−eβ(x+µ).

II. Suppose we choose

dm(t) =
cos(at)

t
dt , (3.3.20)

for some a > 0. Note that the resulting loop measure is no longer a

positive measure. By [LSL12, Equation 32.33]

Lm(s) =
s

s2 + 1
and thus h(x) =

√
x2 + a2 . (3.3.21)

This implies

Em
λ

[
e−〈v,L〉

]
=

(
detQ2 + a2Id

det(Q− V )2 + a2Id

)λ/2
. (3.3.22)

However, as in this work we restrict ourselves to positive measures, we do not

prove the above.
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Chapter 4

Connectivity results for loop

measures

In this chapter we prove various estimates for connectivity events with respect

to the loop measure. As connectivity features of the loop soup solely depend

on the jump chain (Sn)n, we work with general discrete-time loop measure

M =
∑

x

∑
j ajPjx,x. This is justified by Proposition 3.1.7.

In the first part of the chapter, we prove concentration inequalities for the

range of random walk bridges. We then use those to prove a sharp estimate

for the mass of all the loops connecting the origin to the complement of large

spheres. The last part of the chapter is devoted to a technical estimate, which

will be useful later on. The whole chapter treats the case where q(x, †) = 0

for all x ∈ Zd.

4.1 Introduction and preliminary results

We define the range of the random walk as follows: let Rj be the number of

vertices visited up to time j, i.e.

Rj = |{x ∈ Zd : ∃k ∈ {1, . . . , j} such that Sk = x}| . (4.1.1)
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Recall that Assumption 2.1.1 (defining the class of admissible random walks)

still holds. Let (for any δ > 0) and j ∈ N

rj =



√
πj/2 +O

(
j1/4
)

if d = 1 ,

πj/ log j +O
(
j log log(j)/ log2(j)

)
if d = 2 ,

κ3j +O
(
j1/2/ logδ(j)

)
if d = 3 ,

κ4j − 8κ2
4 log(j)/π2 +O(1) if d = 4 ,

κdj +O(1) if d ≥ 5 .

(4.1.2)

It is shown in [Ham06, Theorem 2.2] that the above is the expected range of

a random walk bridge, i.e.

rj = Bj0,0 [Rj] =
1

pj(0)
Ej0,0 [Rj] =

1

pj(0)
Ej0,0 [Rj]

(
1 +O

(
1

j

))
. (4.1.3)

In the next lemma we give some bounds on the probability that the range Rj

deviates from rj (on the scale of rj). Combining a number of fairly recent

results, the proof is short except in the case d = 2. There, one needs to

introduce an additional argument.

Lemma 4.1.1. Let d ≥ 3. For every ε > 0, there exists α > 0 and c > 0 such

that

Bj0,0 (|Rj − rj| ≥ εrj) ≤ O
(
e−cj

α)
. (4.1.4)

For d = 2 and for every ε > 0, we have that

Bj0,0 (|Rj − rj| ≥ εrj) =
1

ε2
O
(

log (log(j))

log(j)

)
. (4.1.5)

Additionally, for d = 2 and for ε > 0 fixed

Bj0,0 [Rj, |Rj − rj| ≥ εrj] = O
(
j log2(log(j))

log3(j)

)
. (4.1.6)

Remark 4.1.2. This lemma is crucial for the following reason: the strong

concentration of the range (Rj)j onto the deterministic sequence (rj)j allows

us to use (rj)j instead of (Rj)j.

Proof of Lemma 4.1.1. We begin with the case d ≥ 3. The result is
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implied by various large deviation type upper and lower bounds: in [HK01,

Theorem 1] and [Ham06, Theorem 2.3], it is shown that

lim
n→∞

1

n
logPx (Rj ≥ bj) = lim

n→∞

1

n
logBjx,x (Rj ≥ bj) = −I(1)(b) , (4.1.7)

where I(1)(b) > 0 if b > κd (where κd = P0(H0 =∞) is the escape probability

for the random walk). In [Phe11, Theorem 1.2.10], it is shown that for the

simple random walk

lim
n→∞

1

n(d−2)/d
logPx (Rj ≤ bj) = −I(2)(b) , (4.1.8)

where I(2)(b) > 0 if b < κd. In [LV19], it is proved that the result also holds

for random walks with finite moment generating function. Thus, the result is

applicable to our setting. Combining the above bounds finishes the proof for

the case d ≥ 3, as the exponential decay from the large deviation type bounds

dominates the polynomial decay from the bridge condition:

Pj0,0 (|Rj − rj| ≥ εrj) ≤ Px (Rj ≤ (1− ε)rj) + Px (Rj ≥ (1 + ε)j)

≤ O
(

e−O(n1−2/d)
)
.

(4.1.9)

In the case d = 2, the first result follows from Chebyshev’s inequality. Indeed,

note that by [Ham06, Theorem 2.3], we have that

Bj0,0
[(
Rj − Bj0,0[Rj]

)2
]

= O
(
j2 log log(j)

log3(j)

)
. (4.1.10)

Thus, by Chebyshev’s inequality and noting that rj = Bj0,0[Rj], we get that

for every ε > 0

Bj0,0 (|Rj − rj| ≥ εrj) =
1

ε2
O
(

log (log(j))

log(j)

)
. (4.1.11)

To verify the second claim made for d = 2, we introduce a new argument:

partition the event {|R − rj| ≥ εrj} into sub-events by dividing the interval

[0, εrj] into shorter scales. We use Chebyshev’s inequality on each scale and

then sum the resulting error.
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Fix a positive increasing sequence bj = o (log log(j)) with limj bj =∞. Let Ak

be the event

Ak =
{
|Rj/rj − 1| ∈

[
ε+ k log(j)b−1

j , ε+ (k + 1) log(j)b−1
j

] }
. (4.1.12)

for k ≥ 0. We then estimate

Bj0,0 [Rj, |Rj − rj| ≥ εrj]

≤
bj−1∑
k=0

(
(1 + ε)rj + (k + 1)

rj log(j)

bj

)
Bj0,0 (Ak)

≤ C

bj−1∑
k=0

(
(1 + ε)rj + (k + 1)

rj log(j)

bj

)
1(

ε+ k log(j)b−1
j

)2

(
log log(j)

log(j)

)

≤ C

bj−1∑
k=0

jbj log (log(j))

(k + 1) log3(j)
≤ C

j log log(j)bj log(bj)

log3(j)
,

(4.1.13)

where Chebyshev’s inequality gives an estimate on the probability of Ak. Using

the assumptions on (bj)j concludes the lemma.

In the following sections, we use the concentration inequalities from the

previous lemma and our new approach to prove results for the connectivity.

Before continuing, we offer a guiding principle: for the random walk/bridge

(or Brownian motion) to traverse a distance proportional to ∼ n, we need time

∼ n2. Usually it will be of interest to know the behaviour for times large than

n2−, where one should think of n2− as slightly smaller than n2 (say up to a

logarithmic scale). Characterising the behaviour for times in between n2− and

n2 is usually the most challenging part of our proofs.

4.2 Sharp connectivity estimates for connect-

ing 0 to Bn

In this section we prove a sharp loop estimate. The result is, to our best

knowledge, new even in the case of the Markovian loop measure.
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We begin by stating a class of sequences (aj)j such that the next propo-

sition holds. Concrete examples are given in the second part of the proposition.

Assumption 4.2.1. Let d ≥ 3. Assume that:

• (aj)j a sequence with values in [0,∞).

• aj ≥ Cjν for some C > 0 and ν > −∞. Also, aj = O
(
jd/2−2

)
.

• Furthermore, for S ∈ (2, 3):

∑
j≥nS

ajj

jd/2
= o

∑
j≥n2

ajrj
jd/2

 . (4.2.1)

For d = 2, assume that the above holds with two additional conditions: fix

ε > 0 and let n1 be

n1 =
n2

log
(
log1+ε (n)

) . (4.2.2)

Assume

nS∑
j=n1

aj
log2(log(n))

log3(n)
= o

 nS∑
j=n1

ajrjpj(0)Bj
0,0

(
HB
n < j

) , (4.2.3)

and
n1∑
j=1

aje
−cn2/j = o

 nS∑
j=n1

ajrjpj(0)Bj
0,0

(
HB
n < j

) , (4.2.4)

for some c > 0 sufficiently small.

The above assumptions are often quick to verify in practice as we will

see in the proof of the next proposition.

For a loop measure M , denote M [A
ω←→ B] the mass of all loops which

intersect both A and B, with A,B ⊂ Zd.

Proposition 4.2.2. If Assumption 4.2.1 holds, then:

I. For d ≥ 2

Ma[0
ω←→ Bc

n] = (1 + o(1))
∞∑
j=1

ajrjpj(0)Bj
0,0

(
HB
n < j

)
. (4.2.5)
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II. Fix ν < d/2−2. If d ≥ 3 and aj = jν(1+o(1)) or aj = jν log(j)(1+o(1))

for d = 2, we get the decay

Ma[0
ω←→ Bc

n] = κdGd,νn
4−d+2ν (1 + o(1)) , (4.2.6)

where we recall that κd is the escape probability of the random walk (and

we set κ2 = π, as the escape probability is zero for d = 2) and the explicit

constant Gd,ν is given in the Equation (4.2.35), as an integral over Bessel

function.

Remark 4.2.3. I. The condition ν < d/2− 2 is needed so that Ma[0
ω←→

Bc
n] converges to zero.

II. For the simple random walk, d ≥ 3 and the case aj = j−1, only an

upper and lower bound for Ma[0
ω←→ Bc

n] has been known before, see

[CS16, Lemma 2.7]. The proof in [CS16] is different and only covers

the sequence aj = 1/j. For more on that, see the remark after Theorem

4.3.1.

III. Many results in this thesis follow the same pattern: while our method

allows for results for a very general class of sequences (aj)j, closed form

expressions are only available in special cases. We use the sequence aj =

jν to generate closed form expressions.

Proof of Proposition 4.2.2. We begin the proof by counting paths and

then estimating stochastic quantities. Expand

Ma[0
ω←→ Bc

n] =
∑
x∈Zd

∑
j≥0

ajPjx,x (Hn < j, H0 < j)

=
∑
x∈Zd

∑
j≥0

ajPj0,0 (Hn < j, Hx < j)

=
∑
j≥0

ajEj0,0

[
1{Hn < j},

∑
x∈Zd

1{Hx < j}

]
=
∑
j≥0

ajEj0,0 [Rj1{Hn < j}] .

(4.2.7)

The second equality is due to the time-homogeneity of the random walk.

Monotone convergence implies the third equality above. For an illustration,
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see Figure 4.1.

We begin by proving the first statement of Proposition 4.2.2.

Figure 4.1: The set of possible starting points of a loop is equal to the points
visited by it.

First Statement: our strategy is as follows:

I. Firstly, restrict to d ≥ 3.

II. Show that loop lengths far below n2 can be neglected.

III. Show that loop lengths bigger than nS can be ignored, for S ∈ (2, 3).

IV. For the remaining loop lengths, use concentration inequalities for the

range and the hitting time estimates from Chapter 2.

V. Repeat the strategy for the case d = 2, with different concentration

bounds.

We begin with the case d ≥ 3. Define n1 = n2/c1 log(n) for some c1 > 0, to be

adjusted later. We have

n1∑
j=1

ajEj0,0 [Rj1{Hn < j}] ≤
n1∑
j=1

ajj
1−d/2jBj0,0 (Hn < j)

≤ C

n1∑
j=1

ajj
1−d/2e−Cn

2/j ≤ C

n1∑
j=1

e−Cn
2/j = O

(
n−f(c1)

)
,

(4.2.8)

for some f(c1) → ∞ as c1 → ∞. This is because Rj ≤ j, the polynomial

growth of aj, and the bound on Bj0,0 (Hn < j) from Lemma 2.2.3.
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Furthermore, note that by Lemma 2.2.3 for j ≥ n2

Bj0,0 (Hn < j) ≥ C , (4.2.9)

for some C > 0. We can thus obtain the lower bound

2n2∑
j=n2

ajEj0,0 [Rj, Hn<j] ≥ C
2n2∑
j=n2

aj
jd/2

Bj0,0(Hn<j) ≥ C

2n2∑
j=n2

jν−d/2 ≥ Cn2+2ν−d,

(4.2.10)

due to the assumption aj ≥ Cjν and the bound Rj ≥ 1.

Comparing the two previous equations, we see that by making c1 sufficiently

large, the sum over j ≤ n1 is of lower order than the sum of j ∈ {n1, . . . , n
S}.

To show that the sum over j ≥ nS with S ∈ (2, 3) is negligible is easier: indeed,

this is the third part of Assumption 4.2.1, Equation (4.2.1).

To finish the proof of the first statement, we need to show that

nS∑
j=n1

ajEj0,0 [Rj1{Hn < j}] = (1 + o(1))
nS∑
j=n1

ajrjpj(0)Bj
0,0

(
HB
n < j

)
. (4.2.11)

Fix ε > 0. We use the concentration inequality from Lemma 4.1.1 to bound

for some α > 0 and all j > n1

Ej0,0 [|Rj − rj| > εj] = O
(
e−n

α)
. (4.2.12)

By Equation (4.2.10), this error lives on a negligible scale:∑
j≥n1

ajO
(
e−n

α)
= o

(
n2+2ν−d) . (4.2.13)

Thus, we have

nS∑
j=n1

ajEj0,0 [Rj1{Hn < j}] ≤ (1 + ε)
nS∑
j=n1

ajrjpj(0)Bj0,0 (Hn < j) , (4.2.14)

75



and the corresponding lower bound

nS∑
j=n1

ajEj0,0 [Rj1{Hn < j}] ≥ (1− ε)
nS∑
j=n1

ajrjpj(0)Bj0,0 (Hn < j) , (4.2.15)

for ε > 0 small enough.

For any T > 0 fixed, we can apply Lemma 2.2.3 to approximate the random

walk bridge by the Brownian bridge:

Bj0,0 (Hn < j) = Bj
0,0

(
HB
n < j

)
(1 + o(1)) +O

(
n−T

)
. (4.2.16)

By making T > 0 sufficiently large and taking the limit ε ↓ 0, we arrive at

nS∑
j=n1

ajEj0,0 [Rj1{Hn < j}] = (1 + o(1))
nS∑
j=n1

ajrjpj(0)Bj
0,0

(
HB
n < j

)
. (4.2.17)

The sum over j ≤ n1 and n ≥ nS is negligible as seen above. This shows the

first statement for the case d ≥ 3.

For d = 2, the reasoning is the same: by Assumption 4.2.1, the sum over

j ≤ n1 and j ≥ nS is negligible. Lemma 4.1.1 gives us the scale of the error

term:

Bj0,0 [Rj, Hn < j] ≤ O
(

log2(log(j))

log3(j)

)
+ (1 + ε) rjBj0,0 (Hn < j) . (4.2.18)

By the additional assumption made for d = 2 (i.e. Equation (4.2.3)), the O-

term is negligible in the limit. From there on, one proceeds analogously to the

case d ≥ 3.

This finishes the proof of the first statement.

Second statement: the proof of the second statement consists of two steps:

I. Show that (aj)j with aj = (jν1{d ≥ 3}+ jν log(j)1{d = 2}) satisfies

Assumption 4.2.1.

II. We then compute the expression given by the first statement of this

proposition (Equation (4.2.5)) by approximating the sum by an integral.

We have to be careful in the second step, as Bj
0,0(HB

n < j) itself is expressed
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as an infinite sum and (as we will see later) the order of summation is not ex-

changeable. We begin by showing that the sequence (aj)j satisfies Assumption

4.2.1.

Step I: the first requirements (polynomial growth and bounded decay speed)

of Assumption 4.2.1 are trivially satisfied. Note that for the sum over long

loop lengths∑
j≥nS

ajjrjj
−d/2 ≥ C

∑
j≥nS

jν+1−d/2 ≥ Cn(S−2)(ν+2−d/2)
∑
j≥n2

jν+1−d/2

= o(1)
∑
j≥n2

arrjj
−d/2 .

(4.2.19)

This shows that (aj)j satisfies the assumptions for the case d ≥ 3.

For the case d = 2, recall that n1 = n2/c1 log(n) . Note that for the sum over

small loop lengths

n1∑
j=1

ajEj0,0 [Rj, Hn < j] ≤ C log(n1)

n1∑
j=1

jνBj0,0 (Hn < j)

≤ C log(n1)

n1∑
j=1

jνe−cn
2/j ≤ C log(n1)n2ν+2Γ

(
−ν − 1,

cn2

n1

)
= O

(
n2ν+2

logc(n)

)
,

(4.2.20)

for some c > 0. The above holds as aj ∼ jν log(j), Lemma 8.2.1 lets us approx-

imate the sum by an integral, and Lemma 2.2.3 gives a bound on Bj0,0 (Hn < j).

To verify the last remaining condition for the case d = 2, note that the sum

over the error term

∑
j≥n1

aj
log2(log(n))

log3(n)
≤ C

∑
j≥n1

jν
log3(log(j))

log2(j)

≤ C
log3(log(n))

log2(n)

n2ν+2

logν+1
(
log1+ε(n)

) = o

(
n2ν+2

log(n)

)
.

(4.2.21)

This finishes the proof that the sequence (aj)j satisfies Assumption 4.2.1 and

thus the first statement of Proposition 4.2.2 holds.

Step II: we now calculate the infinite sum
∑

j ajrjpj(0)Bj
0,0

(
HB
n < j

)
. We do
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this by successively removing areas of summation/integration, similar to Chap-

ter 2. We begin by excluding the event that the Brownian bridge ”quickly”

hits the boundary of Bn: define n2 = c2n
2/ log(n) and choose c2 > 0 small

enough such that for the hitting time HB
n of the Brownian motion

n5/2∑
j=n1

j−d/2+1+νBj
0,0

(
n2 > HB

n

)
= o

(
n4−d+2ν

)
. (4.2.22)

Such a choice is possible by noting

{x = (x1, . . . , xd) ∈ Rd : |xi| ≤ n} ⊂ Bn ⊂ {x = (x1, . . . , xd) ∈ Rd : |x1| ≤ n} ,
(4.2.23)

and using the independence of the Brownian motion coordinates.

Our goal is to evaluate

n5/2∑
j=n1

j−d/2+1+νBj
0,0

(
HB
n < j, n2 < HB

n

)
. (4.2.24)

We recall the explicit formula for dBj
0,0

(
HB
n = t

)
introduced in Lemma 2.2.3

dBj
0,0

(
HB
n = t

)
=
∞∑
k=1

jµ+1
µ,k e−j

2
µ,kt/(2n

2)

z22µΓ(µ+ 1)Jµ+1(jµ,k)
pj−t(n) . (4.2.25)

where µ = d/2 − 1. As this formula involves an infinite sum, we begin by

showing that most terms do not contribute to the asymptotics.

Recall the expansion

Jµ+1(jµ,k) = (−1)k+1

√
2

πk

(
1 +O(k−1)

)
. (4.2.26)

Fix T > 0. We now show that for T large enough, those terms with k > T

in Equation (4.2.25) are negligible. Bounding the sum by an integral using

Lemma 8.2.1 leads to∑
k≥T

kd/2+1/2e−k
2t/(2n2) ≤ C

∫ ∞
T

kd/2+1/2e−k
2t/(2n2)dk . (4.2.27)
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Note that∫ ∞
T

kd/2+1/2e−k
2t/(2n2)dk =

(
(2n)2

t

)d/2+3/2 ∫ ∞
T2

(2n)2

kd/4−1/4e−kdk . (4.2.28)

Recalling the definition of the upper incomplete Gamma function implies that

Equation (4.2.27) is proportional to
(
n2

t

)d/2+3/2

Γ
(
d+3

4
, T

2t
n2

)
. Choosing T =

log1+δ1(n) for any δ1 > 0 fixed, gives the bound for t > n2

Γ

(
d+ 3

4
,
T 2t

n2

)
≤ Γ

(
d+ 3

4
,O
(

log1+δ1/2(n)
))

= O
(

e− log1+δ′ (n)
)
, (4.2.29)

by the asymptotics of the Gamma function from Lemma 8.3.3, for some δ′ > 0.

As the above decays fast than any polynomial in n, we have that

n5/2∑
j=n1

j1+ν

∫ j

n2

pj−t(n)
∞∑
k=T

jµ+1
µ,k e−j

2
µ,kt/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dt = o

(
n4−d+2ν

)
. (4.2.30)

We now calculate the main contributing factor

n5/2∑
j=n1

j1+ν

∫ j

n2

pj−t(n)
T∑
k=1

jµ+1
µ,k e−j

2
µ,kt/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dt

=
T∑
k=1

n5/2∑
j=n1

∫ 1

n2/j

pj(1−t)(n)j2+ν
jµ+1
µ,k e−j

2
µ,ktj/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dt ,

(4.2.31)

by the change of variables t 7→ jt. In order to eliminate the scale n, we would

like to approximate the sum over j with an integral. Indeed, this would allow

us to perform a change of variables j 7→ n2j. To approximate the sum by an

integral, we use [LL10, Lemma A.1.1]. This lemma states that if the second

derivative decays sufficiently fast, we can replace the sum by an integral at the

cost of a (1 + o(1)) factor. Let us calculate the second derivative (take now
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j ∈ R)

∂2
j

(
j2+νpj(1−t)(n)e−j

2
µ,ktj/(2n

2)
)

= j−d/2+2+νpj(1−t)(n)e−j
2
µ,ktj/(2n

2)

×
(
c2 +

2ac

j
+

2

j2

(
a2 + bc

)
− 2

j3
(ab+ 2b) +

b2

j4

)
,

(4.2.32)

for a = 2 + ν, b = n2/2(1 − t), c = j2
µ,kt/(2n

2). Using the above bounds on j

and k, we can bound the above by

Cj2+νpj(1−t)(n)e−j
2
µ,ktj/(2n

2) log4(n)

n3

(
1 +

1

(1− t)2

)
. (4.2.33)

By [LL10, Lemma A.1.1]

∫ 1

0

T∑
k=1

n5/2∑
j=n1

pj(1−t)(n)j2+ν
jµ+1
µ,k e−j

2
µ,ktj/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dt =

∫ 1

0

T∑
k=1

∫ n5/2

n1

pj(1−t)(n)j2+ν
jµ+1
µ,k e−j

2
µ,ktj/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dj dt(1 + o(1)) .

(4.2.34)

By a similar approximation, we can rewrite the above (omitting the o
(
n4−d+2ν

)
factor to aid legibility)

∫ 1

0

T∑
k=1

∫ n5/2

n1

pj(1−t)(n)j2+ν
jµ+1
µ,k e−j

2
µ,ktj/(2n

2)

n22µΓ(µ+ 1)Jµ+1(jµ,k)
dj dt

= n4+2ν−d
∫ 1

0

∫ ∞
0

p(1−t)j(1)j2+ν

∞∑
k=1

jµ+1
µ,k e−j

2
µ,ktj/2

2µΓ(µ+ 1)Jµ+1(jµ,k)
dj dt

= Gd,νn
4+2ν−d ,

(4.2.35)

with

Gd,ν =

∫ 1

0

∫ ∞
0

p(1−t)j(1)j2+ν

∞∑
k=1

jµ+1
µ,k e−j

2
µ,ktj/2

2µΓ(µ+ 1)Jµ+1(jµ,k)
dj dt . (4.2.36)
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To summarise, we have shown that

Ma[0
ω←→ Bc

n]nd−4−2ν = Gd,νκd(1 + o(1)) . (4.2.37)

This finishes the proof of the second statement of Proposition 4.2.2.

We now state the result for the connectivity associated to the Bosonic

loop measure separately.

Corollary 4.2.4. For β > 0, µ < 0, and d ≥ 3, it holds that MB
µ,β[0←→ Bc

n]

decays exponentially fast, with speed increasing as µ ↓ −∞.

If µ = 0 and d ≥ 3, we have that

MB
µ,β[0

ω←→ Bc
n] = κdGd,−1n

2−d(1 + o(1)) , (4.2.38)

where the o(1) term depends on β.

As Lemma 3.1.9 implies that the Bosonic loop measure with µ = 0 gives

weight j−1 (1 + o(1)) to a loop of length j, the proof is immediate. Notice the

transition from exponential decay for non-zero chemical potential (µ < 0) to

algebraic decay for µ = 0.

4.3 Connecting large annuli

The next theorem gives upper and lower bounds on the mass of connecting

two spheres of diverging radius.

Theorem 4.3.1. Let the underlying random walk have bounded support. Let

ν < −1/2 and d ≥ 3. We then have that for every γ0 > 1, there exists a

C = C(γ0) > 1 such that for all γ > γ0, for n large enough and aj ∼ jν

C−1n2ν+2γ3−d+2ν ≤Ma[Bn
ω←→ Bc

γn] ≤ Cn2ν+2γν
′
, (4.3.1)

where ν ′ = max{2ν + 1,−4}.

Remark 4.3.2. I. Contrary to Proposition 4.2.2, we only give this theo-

rem for the case aj ∼ jν, as other sequences do not not yield closed
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form bounds. For more general sequences (aj)j, we summarise the (more

lengthy) bounds in the Appendix, see Proposition 8.1.1.

II. For d ≥ 3 and aj = j−1, a stronger version of the above theorem is

established in [CS16, Lemma 2.7]: it gives bounds on M [K
ω←→ BR]

with K ⊂ Bn and R > γn. The proof exploits the fact that aj = j−1

in an elegant way: if Ṁ is the push-forward measure of M under the

equivalence class of forgetting the base point of the loop, we have that for

a loop ω̇ (of length n) that

Ṁ [ω̇] =
n

m(ω̇)
M [ω] . (4.3.2)

Here, ω is an arbitrary representative of the equivalence class ω̇ and

m(ω̇) is the loop’s multiplicity. Noting that M [ω] has a factor of n−1,

one can rearrange the sum over loops intersecting K (for any K ⊂ Bn)

and Bc
R in a way which aides estimation, as the sum over lengths can

be interchanged with a sum over multiplicities. Our proof works in a

different way, we estimate the contribution of each length directly.

III. The restriction for ν < −1/2 is technical. Indeed, note that for ν > −1,

we have that Ma[Bn
ω←→ Bc

γn] diverges to +∞ as n→∞. This makes

the associated loop soups less interesting to study as long loops cover the

whole space.

Proof of Theorem 4.3.1. As in the proof of Proposition 4.2.2, we begin

with a combinatorial argument. Expand

Ma[Bn ←→ Bc
γn] =

∑
x∈Zd

∑
j≥1

ajPjx,x (Hn < j, Hγn < j)

=
∑
x∈Zd

∑
y∈Bn

∑
j≥1

ajPjx,x (Hn < j, SHn = y, Hγn < j)

=
∑
x∈Zd

∑
y∈Bn

∑
j≥1

ajPjy,y (Hx < j, Hγn < j, Hn(y) ≥ Hx)

=
∑
y∈Bn

∑
j≥1

ajEjy,y

[
1{Hγn < j}

∑
x∈Zd

1{Hn(y) ≥ Hx, Hx < j}

]
=
∑
y∈Bn

∑
j≥1

ajEjy,y
[
1{Hγn < j}RHn(y)

]
,

(4.3.3)
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where Hn(y) is the first time that the random walk hits the set Bn \ {y}. If

under Pjy,y the random walk bridge does not hit Bn \ {y}, we set Hn(y) = j.

All steps apart from the third equality are fairly standard, see also the proof

of Proposition 4.2.2. For the third equality, we use the Markov property to

Figure 4.2: A loop intersecting both Bn and Bc
γn. The points visited up to

Hn(y) are coloured red.

start the random walk at y and time-reverse it. As y is the first point at which

we hit Bn, the time-reversed walk has to hit x before it hits Bn \ {y}. For an

illustration, see Figure 4.2.

Note that since the random walk has finite support, the above sum is non-zero

only for O
(
nd−1

)
many y’s, as we need to move outside of Bn with the first

step of the random walk. Thus, we assume without loss of generality that p(1),

the jump distribution in each coordinate, is supported on {−1, 0, 1}.
Let us restrict the loop lengths j we need to consider. Fix ε > 0 small, let

γ = γ − 1 and expand

(γn)2−ε∑
j=1

ajEjy,y [RHn , Hγn < j] ≤
(γn)2−ε∑
j=1

ajj
−d/2+1Bj0,0 (Hγn < j)

≤
(γn)2−ε∑
j=1

ajj
−d/2+1e−C(γn)2/j ≤ e−C(γn)ε/2

∞∑
j=1

ajj
−d/2+1 = O

(
e−C(γn)ε/2

)
,

(4.3.4)

for some C > 0. We use Lemma 2.2.3 to bound Bj0,0 (Hγn < j) and the fact

that (aj)j grows at most polynomially.
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As the above lives on a smaller scale (exponentially decreasing) than our result

(of polynomial order), henceforth assume that j ≥ (γn)2−ε = n2−
γ (where we

suppress the dependence on ε > 0 in that notation).

In the spirit of the proof of Proposition 4.2.2 we want to replace the range

(Rj)j evaluated at the stopping time Hn(y), with the stopping time itself.

The intuition is that by Lemma 4.1.1, the range is approximately linear for

large enough arguments. We begin by cutting off small values of Hn(y): for

δ ∈ (0, 1/2) we bound

Ejy,y
[
1{Hγn < j}RHn(y), Hn(y) < jδ

]
≤ Ejy,y

[
Rjδ
]

= O
(
j−d/2+δ

)
, (4.3.5)

as Rjδ can be bounded from above by jδ. We impose the following constraint

on the values of (ε, δ):

2δ − ε (−d/2 + δ + ν + 1) < 1 . (4.3.6)

Indeed, with this we have that∑
y∈∂iBn

∑
j≥n2−

γ

ajEjy,y
[
RHn(y), Hn(y) < jδ

]
≤ Cnd−1

∑
j≥n2−

γ

j−d/2+δ+ν = o
(
n2ν+2

)
.

(4.3.7)

We now turn our attention to values of Hn(y) larger than jδ. For Hn(y) large,

we know that by Lemma 4.1.1 that RHn(y) ≈ Hn(y). We make this rigorous

now: for any t > 0 and two constants ct, Ct > 0, depending on t, we do a case

distinction whether Rk is close to its mean or not:

Ejy,y
[
RHn(y), Hn(y) ≥ jδ, Hγn < j

]
= Ejy,y

[
RHn(y)

(
1{∀k ≥ jδ : |Rk − rk| ≤ ctrk}

+ 1{∃k ≥ jδ : |Rk − rk| ≥ ctrk}
)
, Hn(y) ≥ jδ, Hγn < j

]
≤ CtEjy,y [Hγn < j, Hn(y)]

+O
(

e−c
−1
t jδ

′) j∑
k=jδ

Ejy,y
[
Hγn < j, Rk, Hn(y) = k

∣∣|Rk − rk| ≥ ctrk
]

≤ CtEjy,y [Hγn < j, Hn(y)] +O
(
j−δt−d/2+1

)
,

(4.3.8)
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for some δ′ > 0. This follows after using the union bound on k and Lemma

4.1.1 to estimate the probability that the range deviates by ct from the mean.

Choose t > 0 sufficiently large (if necessary, adjust ε > 0) such that

2tδ + ε(−d/2 + 2− δt+ ν) > 2 . (4.3.9)

Indeed, if the above holds, we have that∑
y∈∂iBn

∑
j≥n2−

γ

ajEjy,y
[
Hγn < j, RHn(y)

]
≤ C

∑
y∈∂iBn

∑
j≥n2−

γ

ajEjy,y [Hγn < j, Hn(y)]

+ o
(
n2ν+2

)
,

(4.3.10)

by a computation analogous to Equation (4.3.7). Repeating the argument

which give the bound above, results in∑
y∈∂iBn

∑
j≥n2−

γ

ajEjy,y
[
Hγn < j, RHn(y)

]
≥ C

∑
y∈∂iBn

∑
j≥n2−

γ

ajEjy,y [Hγn < j, Hn(y)]

+ o
(
n2ν+2

)
.

(4.3.11)

Having reduced the initial problem to an analysis of Ejy,y [Hγn < j, Hn(y)], we

now prove upper and lower bounds for Ejy,y [Hγn < j, Hn(y)]. The proof of the

lower bound is shorter and uses the FKG inequality. The justification of the

upper bound is lengthier and involves a series of approximations. We begin

with the lower bound.

Lower Bound: we firstly bound Hn(y) ≥ Hn. Indeed, hitting Bn \ {y} takes

longer than hitting Bn.

The main idea of the lower bound is the following: if y is the north pole1,

we can bound the hitting time Hn by the hitting time of the half space which

consists of those points whose first coordinate is less than n, see Figure 4.3. We

then use the FKG inequality to separate the events {Hγn < j} and {Hn = k}.
We begin by symmetrising the problem so that we can assume that y is equal

to the north pole. The strategy for the symmetrisation is to approximate the

1The point (n, 0, . . . , 0) ∈ Rd.
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Figure 4.3: The random walk started from the north pole hits the horizontal
red line before hitting the sphere.

random walk by a Brownian motion and then use the rotational invariance

of the Brownian motion. As we only need a lower bound, henceforth discard

j ∈ {n2−
γ , . . . , (γn)2}.

For a point x ∈ ∂iBn, let Tx be the approximate tangent (for a graphical

representation, see Figure 4.4) through x defined as follows: let x∗ ∈ Rd be

the unique point of absolute value n which lies on the line connecting x with

the origin and satisfies |x− x∗| ≤ d. Let T ∗x be the tangent through x∗ on the

surface of the ball of radius n (this time in Rd). Then

Tx = {y ∈ Rd : y + (x∗ − x) ∈ T ∗x} . (4.3.12)

Let H̄x be the half space which contains the origin and has Tx as its boundary.

Let τx be the hitting time of that H̄x ∩ Zd. We bound

Ejx,x [Hγn < j, Hn] ≥ Ejx,x [Hγn < j, τx] ≥
j

2
Pjx,x (Hγn < j/4, τx > j/2) .

(4.3.13)

By Lemma 2.2.1, there exists a coupling Pjx,x between Bjx,x and Bj
x,x such that

Pjx,x

(
max
1≤i≤j

|Si −Bi| ≥ cα log2(j)
)
≤ C

jα
, (4.3.14)
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Figure 4.4: The half-space H̄x, in blue. τx is the first time we hit any of the
blue-coloured dots.

with cα > 0. Choose α > 0 large enough such that

nd−1
∑

j≥(γn)2

Cj1+ν

jα+d/2
= o

(
n2ν+2

)
. (4.3.15)

For some C1 > 0, let τBn− be the hitting time of the half space

Hn− = {x = (x1, . . . , xd) ∈ Rd : x1 ≤ n− C1 log2(n)} . (4.3.16)

By adjusting the constant C1 > 0, we have that by the coupling and the

rotational invariance of the Brownian motion∑
y∈∂iBn

∑
j≥(γn)2

jνEjy,y [Hγn < j, Hn]

≥ C
∑

y∈∂iBn

∑
j≥(γn)2

j−d/2+1+νBjy,y (Hγn < j/4, τy > j/2)

≥ C
∑

y∈∂iBn

∑
j≥(γn)2

j−d/2+1+νBj
n̄,n̄

(
HB

2γn < j/4, τBn− > j/2
)

+ o
(
n2ν+2

)
.

(4.3.17)
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Here n̄ = (n, 0, . . . , 0) ∈ Rd is the north pole. Denote B
(i)
t the i-th coordinate

of the Brownian motion for i = 1, . . . , d. Bounding the ball Bγn by the box

with larger radius B∞2γn, we reduce the our expression to a one-dimensional

problem:

Bj
n̄,n̄

(
HB

2γn < j/4, τBn− > j/2
)

≥ Bj
n̄,n̄

(
∀i ∈ {1, . . . , d} ∃0 < ti < j/4: |B(i)

ti | = 2γn, τBn− > j/2
)

≥ CBj,(1)
n,n

(
∃0 < ti < j/4: |B(1)

ti | = 2γn, τBn− > j/2
)
,

(4.3.18)

where B
j,(1)
n,n is a one-dimensional Brownian bridge of length j. Note j ≥ (γn)2

and thus the probability of hitting the complement of a box with length 4γn

remains bounded away from zero uniformly in n and j. This allows us to

discard the other coordinates in the equation above. Use the coupling from

Lemma 2.2.1 once more (adjusting the constant C1 in Equation (4.3.16)),∑
y∈∂iBn

∑
j≥(γn)2

jνEjy,y [Hγn < j, Hn]

≥ C
∑

y∈∂iBn

∑
j≥(γn)2

j1−d/2+νBj,(1)
n,n

(
∃0 < ti < j/4: |B(1)

ti | = 2γn, τBn− > j/2
)

≥ C
∑

y∈∂iBn

∑
j≥(γn)2

j1−d/2+νBj,(1)
n̄,n̄ (H4γn < j/4, τn− > j/2) + o

(
n2ν+2

)
.

(4.3.19)

Here, Bj,(1)
n,n is a one-dimensional random walk bridge of length j.

Decompose the event {H4γn < j/4, τn− > j/2} by conditioning on the value
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of τn− : let Pj,(1)
n̄ be a one-dimensional random walk and

Bj,(1)
n̄,n̄ (H4γn < j/4, τn− > j/2)

≥
j∑

k=j/2

Pj,(1)
n̄ (H4γn < j/4, τn− = k) p−1

j (0)pj−k(n
−, n)

≥
2j/3∑
k=j/2

Pj,(1)
n̄ (H4γn < j/4, τn− = k) p−1

j (0)pj−k(−C2
1 log(n))

≥ C

2j/3∑
k=j/2

(
j

j − k

)1/2

Pj,(1)
n̄ (H4γn < j/4, τn− = k) exp

(
−C log4(n)/(j − k)

)
≥ C

2j/3∑
k=j/2

(
j

j − k

)1/2

Pj,(1)
n̄ (H4γn < j/4, τn− = k) .

(4.3.20)

Using discrete integration by parts from Lemma 8.2.3 and using that (j −
k)−1/2 − (j − k− 1)−1/2 is bounded above and from below by O

(
(j − k)−3/2

)
,

we rewrite the above as

C

2j/3∑
k=j/2

j1/2

(j − k)3/2
Pj,(1)
n̄ (H4γn < j/4, τn− ≥ k) + E , (4.3.21)

where

E ≥ CPj,(1)
n̄ (H4γn < j/4, τn− > j/2) . (4.3.22)

We want to apply the FKG inequality to separate the two events {H4γn < j/4}
and {τn− ≥ k}. For this purpose, firstly bound

Pj,(1)
n̄ (H4γn < j/4, τn− ≥ k) ≥ Pj,(1)

n̄

(
H+

4γn < j/4, τn− ≥ k
)
, (4.3.23)

whereH+
4γn is the first time the one-dimensional random walk enters {4γn, 4γn+

1, . . .}.
We now set up the FKG-inequality: set Ω = Zj, n =

(
p(1)
)⊗j

, where recall

that p(1) is the law induced by S1 on Z. We have the following partial order

on Ω: take a, b ∈ Ω and say a ≤ b if for all i ∈ {1, . . . , j} we have ai ≤ bi (in
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Z), see Figure 4.5 for an illustration. Note that the two events {H4γn < j/4}
and {τn− ≥ k} are both non-decreasing. Applying the FKG-inequality (see for

Figure 4.5: Two ordered configurations, with the larger one being represented
in the dashed style

example [FV17, Theorem 3.50]) to n, we get that

Pj,(1)
n̄

(
H+

4γn < j/4, τn− ≥ k
)
≥ Pj,(1)

n̄

(
H+

4γn < j/4
)
Pj,(1)
n̄ (τn− ≥ k) . (4.3.24)

Using Lemma 2.2.3 for the random walk, we then bound

Pj,(1)
n̄

(
H+

4γn < j/4
)
Pj,(1)
n̄ (τn− ≥ k) ≥ CPj,(1)

n̄ (τn− ≥ k) , (4.3.25)

where the constant C does not depend on γ. Indeed, as j ≥ (γn)2, the

probability of {H+
4γn < j/4} stays bounded away from zero. We then use

Lemma 2.2.6 to estimate

Pj,(1)
n̄ (τn− ≥ k) ≥ Ck−1/2 . (4.3.26)

Plugging the above into Equation (4.3.21), we get that for j ≥ (γn)2

jBj,(1)
n̄,n̄ (H4γn < j/4, τn− > j/2) ≥ Cj1/2 . (4.3.27)
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Thus, by Equation (4.3.13)

Ejy,y [Hγn < j, Hn] ≥ Cj1/2−d/2 . (4.3.28)

This then leads to the estimate∑
y∈∂iBn

∑
j≥(γn)2

Ejy,y [Hγn < j, Hn] ≥ Cnd−1
∑

j≥(γn)2

j−d/2+1/2+ν

≥ Cnd−1

∫ ∞
(γn)2

j−d/2+1/2+νdj ≥ C (n
√
γ)2ν+2 γ1−d ,

(4.3.29)

where Lemma 8.2.1 implies that one can approximate the sum by an integral.

This concludes the proof of the lower bound.

Upper Bound: we begin by recalling the definition of n2−
γ = (γn)2−ε where

γ = γ − 1 and ε > 0 small, subject to some constraints.

The proof is organised as follows: for j ≥ (γn)2 we bound Ejy,y[Hn(y), Hγn <

j] ≤ Ejy,y[Hn(y)]. This is justified by the fact that the event {Hγn < j} has

constant mass for such j. The expected value of Hn(y) is then analysed using

results from [Uch16], [BMR13] and [DW19]. The analysis of Hn(y) under a

bridge measure is more complex compared to not fixing the endpoint, as we

need to know where the bridge hits Bn. Finally, we need to consider the case

j ∈ {n2−
γ , . . . , (γn)2}; however, in that regime we can no longer discard the

event {Hγn < j}. From now, shorten Hn(y) as Hn.

Before embarking on the proof, we offer the following heuristics (ignoring the

condition {Hγn < j} for now) for the upper bound: rewrite Pjy,y (Hn = k) in

the following way by conditioning on the site at which the random walk hits

the sphere:

Pjy,y (Hn = k) = Py (Hn = k)
∑

z∈∂iBn

Py (Sk = z|Hn = k) pj−k(z, y) . (4.3.30)

We then expect that Py (Hn = k) ∼ q(y, k, n) ∼ k−3/2 (using the notation

from Chapter 2). Furthermore, for k ≥ n2 it is reasonable to expect that the

hitting distribution on ∂iBn is uniform, i.e. Py (Sk = z|Hn = k) ∼ n1−d, as

the random walk should have ”mixed” on the scale of Bn by that time. For

k’s smaller than n2, we can bound pj−k(z, y) by C(j − k)−d/2 and thus obtain
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the bounds

Pjy,y (Hn = k) ≤ C

k−3/2 1
nd−1

∑
z∈∂iBn pj−k(z, y) for k ≥ n2 ,

k−3/2(j − k)−d/2 otherwise .
(4.3.31)

The difficulty is making the above intuition rigorous: only bounds on the

cumulative distribution function of Py(Hn = k) are available and the ”mixing”

result regarding the first hitting location is only available for the Brownian

motion. To overcome this, we employ coupling arguments similar to those

used in Chapter 2 and integration by parts. Finally, for j ≤ (γn)2, we need

to refine the above bounds, as the bound for k < n2 is too rough in that case.

We now give the various steps into which we have subdivided the proof of the

upper bound:

I. Step 1: bounding small values of Hn.

II. Step 2: various expansion of Hn for j ≥ γn2.

III. Step 3: estimating
∑

j≥γn2

∑
y∈Bn E

j
y,y [Hn].

IV. Step 4a and Step 4b: estimating Hn1{Hγn < j} for j ≤ γn2. Step 4b is

further split into two parts, treating the cases Hn small and large.

Step 1: in this step we show that we can neglect values of Hn smaller

than j1/5. Expand

Ejy,y[Hn] =

j∑
k=0

kPjy,y(Hn = k) =

j1/5∑
k=1

kPjy,y(Hn = k) +

j∑
k=j1/5

kPjy,y(Hn = k) .

(4.3.32)

Using the bound pj(x) = O(j−d/2) for any x ∈ Zd, the first sum can be

bounded

j1/5∑
k=1

kPjy,y(Hn = k) ≤
j1/5∑
k=1

kpj(y, y) ≤ Cj−d/2+0.4 . (4.3.33)
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This implies for ε > 0 small enough∑
j≥n2−

γ

∑
y∈∂iBn

ajEjy,y[Hn1{k ≤ j1/5}] ≤ Cnd−1
∑
j≥n2−

γ

jν+0.4−d/2 = o
(
n2ν+2

)
.

(4.3.34)

Thus, henceforth assume that k ≥ j1/5.

Step 2: Assume j ≥ (γn)2 and bound Ejy,y[Hn, Hγn < j] ≤ Ejy,y[Hn].

The next step consists of getting good estimates for the cumulative distribution

function of Hn. For that we employ the following strategy: since we are

interested in values of Hn > j1/5 (see previous step), we know that with

overwhelming probability, the random walk first hits a shell with radius slightly

larger n before hittingBn. Once the random walk has hit that shell, we employ

the coupling with the Brownian bridge. We need this step, because otherwise

the error from the coupling would be non-negligible. We then use the bounds

on HB
n from the literature to estimate the expectation of Hn.

Rewrite using integration by parts

j∑
k=j1/5

kPjy,y(Hn = k) =

j∑
k=j1/5

Pjy,y(Hn ≥ k) . (4.3.35)

Note that by the same argument used in the previous step, we can neglect k’s

with j − k < j1/5.

Set n± = n± log2+δ(n) for some δ > 0 and expand

Pjy,y(Hn ≥ k) =
∑
l≥1

∑
z∈∂iBn+

Py(Hn+ = l > Hn, Sl = z)Pj−lz,y (Hn ≥ k − l)

+ Pjy,y(Hn ≥ k, Hn+ > Hn) .

(4.3.36)

By the argument made in the proof of Proposition 2.2.5, we have that for

F > 0 large enough that l < logF (k) apart from a negligible set. By a similar

argument as stated in that proof

j−j1/5∑
k=j1/5

Pjy,y(Hn ≥ k) ≤ C sup
l≤logF (k)
z∈Ry

j−j1/5∑
k=j1/5

Pj−lz,y (Hn ≥ k − l) , (4.3.37)
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where Ry = {x ∈ Zd : x ∈ ∂iBn+ and |x − y| ≤ log2+2δ(n)} are those points

in the boundary of Bn+ which have small distance to y. For an illustration of

Rz, see Figure 4.6.

Using the coupling from Lemma 2.2.1, we bound

Figure 4.6: The points z in Ry are coloured red.

Pj−lz,y (Hn ≥ k − l) ≤ CP j−l
z,y (HB

n− ≥ k − l) . (4.3.38)

We will bound P j
z,y(Hn− ≥ k−l) uniformly in 0 ≤ l ≤ logF (k). The bound will

not depend on z. Denote this bound by C(k, y). We then express Equation

(4.3.36) as follows

Pj−ly,y (Hn ≥ k) ≤ CP j−l
z,y (HB

n− ≥ k − l)Py(Hn+ < Hn)

≤ C(k, y)Py(Hn+ < Hn) ∼ C(k, y)

log2+δ(n)
,

(4.3.39)

where martingale argument from proof of Proposition 2.2.5 gives the estimate

on Py(Hn+ < Hn). We now show that C(k, y) ∼ k−1/2 log2+δ(n).

We proceed as follows: to bound dP j−l
z,y (HB

n− ≥ k− l), we firstly we bound the

density dP j−l
z,y (Hn− = k). By the Markov property we have

dP j−l
z,y (HB

n− = k) =

∫
∂Bn−

dPz(H
B
n− = k)dPz(Bk = z|HB

n− = k)pj−l−k(z, y)dz.

(4.3.40)

Indeed, the above is simply a conditioning on the location at which we hit
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∂Bn− . Note that by the restrictions placed on l and k, we have that pj−l−k(z, y) ∼
pj−k(z, y).

Using the result from [Uch16] on dPz(Bk = z|Hn− = k), we bound the above

expression in the following way: fix βo > 0 (to be adjusted later) and denote

U∂Bn− the uniform (Haar with respect to rotation) measure on ∂Bn− . We

then have two bounds

dP j
z,y(H

B
n− = k) ≤

dP j
z (HB

n− = k)pj−k(y
−, y) if k ≤ βon

2 ,

CdPz(H
B
n− = k)U∂Bn− [pj−k(Z, y)] otherwise ,

(4.3.41)

where y− is the projection (through the origin) of y onto Bn− and Z is dis-

tributed with respect to U∂Bn− . Indeed, for the first bound in the equation

above, a quick estimate using Equation (4.3.40) gives

dP j
z,y(H

B
n−= k) ≤ dPz(H

B
n−= k) sup

z∈∂Bn−
pj−k(z, y) ≤ CdPz(H

B
n−= k)pj−k(y

−, y) ,

(4.3.42)

by the definition of the heat kernel. To verify the second bound in Equation

(4.3.41), recall that [Uch16, Theorem 2.2] states that for k ≥ βon
2 the hitting

location of the Brownian motion is uniform (up to a multiplicative constant in

the density) on Bn− . This fact gives the second bound in Equation (4.3.41).

We furthermore bound (using that k ≥ (γn)1/5) and Lemma 2.2.4

dPz(H
B
n− = k) = q(z, k, n) = q(n+ log2+δ(n), k, n) ≤ C

log2+δ(n)

k3/2
. (4.3.43)

This implies

dP j
z,y(H

B
n− = k) ≤


log2+δ(n)

k3/2 pj−k(y
−, y) if k ≤ βon

2 ,

C log2+δ(n)

k3/2 U∂Bn− [pj−k(Z, y)] otherwise .
(4.3.44)

We now compute U∂Bn− [pj−k(Z, y)]. Note that we can expand

nd−1U∂Bn− [pj−k(Z, y)] ≤ C

(j − k)d/2

∫ 2n−

0

rd−2e−C(r2+c2α log(n)4)/2(j−k)dr .

(4.3.45)

Indeed, note that since Z ∈ ∂Bn− , we have that pj−k(Z, y) only depends on
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|y − Z|. We can use the inner product to rewrite this as

|y − Z|2 = 2 (1− cos(θ)) (n2 + cα log(n)) + c2
α log4(n) , (4.3.46)

where θ is the angle between Z and y. Approximating (1 − cos(θ)) ∼ θ2 and

incorporating the fact that ∂Bn− is a (d− 1)-dimensional submanifold (hence

the factor rd−2) gives us the bound Equation (4.3.45). Note that log4(n) =

o(j − k). We change variables,

1

(j − k)d/2

∫ 2n−

0

rd−2e−C(r2+c2α log(n)4)/2(j−k)dr

=
O(1)

(j − k)1/2

∫ C(n−)2/(j−k)

0

e−rrd/2−3/2dr .

(4.3.47)

We recognise that the integral above as the incomplete Gamma function. Thus

U∂Bn− [pj−k(Z, y)] ≤ 1

nd−1(j − k)1/2
γ

(
d/2− 1/2, C

(n−)2

j − k

)
. (4.3.48)

Recall the asymptotics from Lemma 8.3.3

γ(s, x) ∼ xs , (4.3.49)

as x ↓ 0. The above bounds imply that when we plug Equation (4.3.38) into

Equation (4.3.37), we can bound the sum by an integral using Lemma 8.2.1.

Furthermore, the function l 7→ P j
z,y(H

B
n− ≥ k − l) satisfies for l ≤ logF (k)

P j
z,y(H

B
n− ≥ k − l) ∼ P j

z,y(H
B
n− ≥ k/2) , (4.3.50)

and

∑
k≥j1/5

P j
z,y(H

B
n− ≥ k/2) ≤ C

∫ j

j1/5
P j
z,y(H

B
n− ≥ k)dk ≤ C

∫ j

j1/5
kP j

z,y(H
B
n− = k)dk.

(4.3.51)

Thus, by Equation (4.3.39), we have

∑
k≥j1/5

Pjy,y(Hn ≥ k − l) ≤
∫ j

j1/5

k

log2+δ(n)
P j
z,y(H

B
n− = k)dk . (4.3.52)
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Fix β1 > 0 with γ > β1 > βo and split the integration into three regions∫ j

j1/5

kP j
z,y(H

B
n− = k)

log2+δ(n)
dk =

∫ βon2

j1/5
. . . dk +

∫ j−β1n2

βon2

. . . dk +

∫ j

j−β1n2

. . . dk .

(4.3.53)

We begin with the integral from j1/5 to βon
2, where we employ the upper

bound from Equation (4.3.41) and Equation (4.3.43), so that we get

Ejy,y
[
Hn, Hn ∈ {j1,5, . . . , βon

2}
]

≤ C

log2+δ(n)

∫ βon2

j1/5
kP j

z,y(H
B
n− = k)dk ≤ C

∫ βon2

j1/5
k
pj−k(y

−, y)

k3/2
dk

≤
∫ βon2

0

C√
k(j − k)d/2

dk ≤ C

(j − βon2)d/2

∫ βon2

0

1√
k

dk ≤ C(βo)
1/2n

(j − βon2)d/2
,

(4.3.54)

as j ≥ (nγ)2 and

βo < β1 < γ = (γ − 1) . (4.3.55)

Next we integrate from βon
2 to j − β1n

2. Due to this restriction, one has that

β1n
2 ≤ j − k ≤ j − βon2 . (4.3.56)

We apply the second bound from Equation (4.3.41) together with Equation

(4.3.43) and Equation (4.3.48) to bound

Ejy,y
[
Hn, Hn ∈ {βon2, . . . , j − β1n

2}
]

≤ 1

log2+δ(n)

∫ j−β1n2

βon2

kP j
z,y(H

B
n− = k)dk

≤ C

nd−1

∫ j−β1n2

βon2

1√
k(j − k)

γ

(
d/2− 1/2,

n2

j − k

)
dk

≤ C

∫ j−β1n2

βon2

1√
k(j − k)d

dk

≤ Cj1/2−d/2
∫ 1−β1n2/j

βon2/j

1√
k(1− k)d

dk ≤ Cj1/2−d/2 .

(4.3.57)

The above uses the bounds in Equation (4.3.56) on j − k which allows us to
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apply the asymptotics of the Gamma function given in (4.3.49). Observe that

in the last equality, the bounds on βo and β1 make sure that the boundaries of

integration stay away from 1 uniformly in n, j. This implies that the integral

does not blow up.

For the last integral (k from j−β1n
2 to j) we use the fact that γ(d/2−1/2, x) ≤

Γ(d/2− 1/2) <∞ and Equation (4.3.46)

Ejy,y
[
Hn, Hn ∈ {j − β1n

2, . . . , j}
]

1

log2+δ(n)

∫ j

j−β1n2

kP j
z,y(H

B
n− = k)dk ≤ C

nd−1

∫ j

j−β1n2

1

k1/2(j − k)1/2
dk

C

nd−1(j − β1n2)1/2

∫ β1n2

0

1

k1/2
dk ≤ C

√
β1

nd−2
√
j − β1n2

.

(4.3.58)

This concludes the second step. In the next step we sum the above estimates.

Step 3: in this step we bound the estimates from the previous step and

calculate the asymptotics for j with j ≥ (γn)2. We use Equation (4.3.39)

together with the various estimates made for the integral over kP j
z,y(H

B
n− = k).

We begin with the part of Pjy,y(Hn = k) for k ∈ {j1/5, . . . , βon
2}. By Equation

(4.3.54), it holds that∑
j≥(γn)2

∑
y∈∂iBn

jνEjy,y
[
Hn, Hn ∈ {j1,5, . . . , βon

2}
]

≤
∑

j≥(γn)2

∑
y∈∂iBn

Cn

(j − βon2)d/2
jν ∼ nd

∫ ∞
(γn)2

jν

jd/2
1

(1− βon2/j)d/2
dj

∼ C(γn)2ν+2γ−d .

(4.3.59)

We furthermore have that by Equation (4.3.57)∑
j≥(γn)2

∑
y∈∂iBn

jνEjy,y
[
Hn, Hn ∈ {βon2, . . . , j − β1n

2}
]

≤ C
∑

j≥(γn)2

∑
y∈∂iBn

j1/2−d/2+ν ∼ C(γn)2ν+2γ1−d .
(4.3.60)
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For the third summation, notice that Equation (4.3.58) implies that∑
j≥(γn)2

∑
y∈∂iBn

jνEjy,y
[
Hn, Hn ∈ {j − β1n

2, . . . , j}
]

≤
∑

j≥(γn)2

∑
y∈∂iBn

jν

nd−2
√
j − β1n2

∼ Cn2ν+2γ2ν+1 ,
(4.3.61)

where the assumption that ν < −1/2 allows for a computation of the above

sum.

To summarise, we have shown that∑
j≥(γn)2

∑
y∈∂iBn

Ejy,y[Hn1{Hγn < j}] ≤
∑

j≥(γn)2

∑
y∈∂iBn

Ejy,y[Hn] ≤ Cn2ν+2γν
′
,

(4.3.62)

where ν ′ = max{2ν + 1, 2ν + 2− d}.
It remains to analyse the sum over n2−

γ ≤ j ≤ (γn)2 which is done in the next

step.

Step 4: in order to analyse the expectation of Hn1{Hγn < j}, we split the

associated density into two parts by distinguishing whether Bγn is hit before

Bn or not:

Pjy,y (Hn = k,Hγn< j) = Pjy,y (Hn = k, k< Hγn< j) + Pjy,y (Hn = k,Hγn< k) .

(4.3.63)

In Step 4a, we analyse the first summand, in Step 4b the second.

Step 4a: we use the Markov property to decompose the first summand into

Pjy,y (Hn = k, k< Hγn< j) = Py (Hn = k,Hγn > k)

×
∑

z∈∂iBn

Pz (1< Hγn< j − k, Sj−k = y)Py (Sk = z|Hn = k) .
(4.3.64)

Indeed, as Hn < Hγn, the random walk has to hit ∂iBn at point z after k

steps, it then hits ∂iBγn before returning to y.

As reasoned previously, since we have to cover a distance of (γn)2 in j − k

steps, we can neglect j − k ≤ (γn)2 log−1((γn)M), for some M > 1 large

enough. By a reasoning analogous to proof of Lemma 2.2.3, we have that for
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some t > 0 fixed

Pz (1< Hγn< j − k, Sj−k = y) ≤ e−t(γn)2/(j−k)(j − k)−d/2 . (4.3.65)

Indeed,

Pz (Hγn< j − k, Sj−k = y) =
∑

b∈∂Bγn

j−k∑
r=1

Pz (Hγn = r)

× Pz (Sr = b|Hγn = r) pr(b, y)

≤ C

j−k∑
r=1

Pz (Hγn = r) pj−k(y
+, y) ≤ Pz (Hγn ≤ j − k) (j − k)−d/2 ,

(4.3.66)

where y+ is some point in the O(1) neighbourhood around the intersection of

the line connecting the origin and y with ∂Bγn. The heat-kernel approximation

of the random walk kernel for the contributing r > 0 large enough was used

above.

Plug the above estimate (i.e. Equation (4.3.65)) into Equation (4.3.64) to

bound ∑
z∈∂iBn

Pz (1< Hγn< j − k, Sj−k = y)Py (Sk = z|Hn = k)

≤ Ce−t(γn)2/(j−k)(j − k)−d/2 .

(4.3.67)

Bounding Py (Hn = k,Hγn > k) ≤ Py (Hn = k) and performing a discrete in-

tegration by parts as described in Lemma 8.2.3, we bound

Ejy,y [Hn1{Hγn < j}, Hγn > Hn] ≤ C

j∑
k=(γn)2 log−1((γn)M )

Py (Hn ≥ k)
(

e−t(γn)2/(j−k)(j − k)−d/2 − e−t(γn)2/(j−k−1)(j − k − 1)−d/2
)
.

(4.3.68)

Using Proposition 2.2.5 to bound Py (Hn ≥ k) ≤ Ck−1/2 and Lemma 8.2.1 to
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approximate the integral by a sum, we rewrite the above as

Ejy,y [Hn1{Hγn < j}, Hγn > Hn] ≤ C

∫ j

1

k−1/2e−t(γn)2/(j−k)(j − k)−d/2dk .

(4.3.69)

By changing variables k 7→ jk, we can estimate∫ j

1

k−1/2e−t(γn)2/(j−k)(j − k)−d/2dk ≤ C(n, j)j1/2−d/2e−t(γn)2/j , (4.3.70)

where

C(n, j) ≤
∫ 1

1/j

k−1/2(1− k)−d/2e−t(γn)2[1/(1−k)−1]/jdk . (4.3.71)

However, as γ is bounded away from 1 and we assumed that j ≤ (γn)2, we

have that

sup
j,n

C(n, j) <∞ , (4.3.72)

where the supremum is taken over all n, j satisfying j ≤ (γn)2. This allows

us to estimate

(γn)2∑
j=n2−

γ

∑
y∈∂iBn

ajEjy,y [Hn1{Hγn < j}, Hγn > Hn]

≤ C

(γn)2∑
j=n2−

γ

ajn
d−1j1/2−d/2e−t(γn)2/j

≤ C(γn)2+2νγ1−d
∫ t

0

e−jj−5/2+d/2−νdj ∼ (γn)2+2νγ1−d ,

(4.3.73)

where Lemma 8.2.1 allows for an approximation of the sum by an integral and

a change of variables j 7→ t(γn)2/j was used. The above is of the right order

and thus we have finished the case Hγn > Hn.

Step 4b: it remains to estimate

Ejy,y [Hn1{Hγn < j}, Hγn < Hn] . (4.3.74)
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For C1 > 0 abbreviate n1 = C1(γn)2 log−1(γn) and bound∑
k≤n1

kPjy,y (Hn = k,Hγn< Hn) ≤ n1P0(Hγn ≤ n1) ≤ Cn1(γn)−t/C1 , (4.3.75)

for some t > 0 by [LL10, Proposition 2.4.5]. By making C1 sufficiently small,

we conclude that it suffices to estimate

Ejy,y [Hn1{Hγn < j}, Hγn < Hn, Hn ≥ n1] . (4.3.76)

Two different estimates have to be made for the case Hn = k ≤ j/2 and

Hn = k ≥ j/2.

Step 4b, Part I: the case k ≤ j/2: we use integration by parts to rewrite

j/2∑
k=n1

kPjy,y (Hn = k,Hγn< Hn) =

j/2∑
k=n1

Pjy,y (Hn ≥ k,Hγn< Hn) . (4.3.77)

The random walk bridge now has to hit first ∂iBγn before hitting the shell

∂iBn. We estimate again, by conditioning on the point at which the random

walk hits ∂iBγn,

Pjy,y (Hn ≥ k,Hγn< Hn) =
∑

z∈∂iBγn

j∑
l=0

Py (Hγn = l, Hn > Hγn)

× Pz (Hn≥ k − l, Sj−l = y)Py (Sl = z|Hγn = l) .

(4.3.78)

By the same reasoning as above it suffices to consider the sum over n1 ≤ l ≤
k − n1. We expand again

Pz (Hn≥ k − l, Sj−l = y)

=

j−l∑
t=k−l

Pz (Hn = t)
∑

w∈∂iBn

Pz (St = w|Hn = t) pj−l−t(w, y)

≤ C

j−l∑
t=k−l

Pz (Hn = t) (j − l − t)−d/2 ,

(4.3.79)

by the same reasoning as employed in Equation (4.3.67). We integrate by
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parts to bound the above

j−l−1∑
t=k−l+1

Pz (Hn ≥ t)
[
(j − l − t)−d/2 − (j − l − t− 1)−d/2

]
+ E , (4.3.80)

where

E = Pz (Hn ≥ k − l) (j − k)−d/2 . (4.3.81)

By Proposition 2.2.5, we have that

Pz (Hn ≥ t) ∼
∫ ∞
t

q(n+ 1, s, n)ds ∼
∫ ∞
t

nγe−(γn)2/2t

s3/2
ds ∼ Pz

(
HB
n ≥ t

)
.

(4.3.82)

Using discrete integration by parts, we can rewrite

j−l−1∑
t=k−l+1

Pz (Hn ≥ t)
[
(j − l − t)−d/2 − (j − l − t− 1)−d/2

]
+ E

≤ C

j−l−1∑
t=k−l+1

q(n+ 1, t, n)(j − l − t)−d/2 .

(4.3.83)

Approximating the sum by an integral using Lemma 8.2.1

Pz (Hn≥ k − l, Sj−l = y) ≤ C

∫ j−l

k−l

nγe−(γn)2/2t

γt3/2
(j − l − t)−d/2 dt . (4.3.84)

Shorten the above as C(k, l, n) and note that it does not depend on z anymore.

For f : N → R, denote ∇lf = f(l) − f(l + 1) and plug the above result into

103



Equation (4.3.78) to get that

j/2∑
k=n1

Pjy,y (Hn ≥ k,Hγn < Hn)

≤ C

j/2∑
k=n1

k−n1∑
l=n1

Py (Hγn = l, Hn > Hγn)C(k, l, n)

≤ C

j/2∑
k=n1

k

k−n1∑
l=n1

Py (Hγn = l, Hn > Hγn) [C(k, l, n)− C(k + 1, l, n)]

≤ C

j/2∑
k=n1

k

k−n1∑
l=n1

Py (Hγn = l, Hn > Hγn)
nγe−(γn)2/2(k−l)

γ(k − l)3/2
(j − k)−d/2

≤ C

j/2∑
k=n1

k

k−n1∑
l=n1

Py (Hγn≤ l, Hn > Hγn)∇l

[
nγe−(γn)2/2(k−l)

γ(k − l)3/2
(j − k)−d/2

]
,

(4.3.85)

using discrete integration by parts (and neglecting the boundary terms on

account of the reasoning behind Equation (4.3.75)). To estimate the above,

we now need to bound Py (Hγn≤ l, Hn > Hγn). By the Markov property and

the bound [LL10, Proposition 2.4.5], we have that for some β > 0

Py (Hγn≤ l, Hn > Hγn) ≤ Py (Hn > Hγn)Pz (Hγn≤ l) ≤ Ce−β(γn)2/l

γn
,

(4.3.86)

where the martingale argument from the proof of Proposition 2.2.5 gives the

bound on Py (Hn > Hγn). Inserting the above into Equation (4.3.85) implies
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that

j/2∑
k=n1

Pjy,y (Hn ≥ k,Hγn < Hn)

≤ C

j/2∑
k=n1

k

k−n1∑
l=n1

e−β(γn)2/l

γn
∇l

[
(nγ)e−(γn)2/2(k−l)

γ(k − l)3/2
(j − k)−d/2

]

≤ C

j/2∑
k=n1

k

k−n1∑
l=n1

β(γn)2e−β(γn)2/l(nγ)e−(γn)2/2(k−l)

(γn)l2γ(k − l)3/2 (j − k)d/2

≤ C

∫ j/2

1

∫ k−n1

n1

β(γn)2e−(γn)2/2(k−l)e−β(γn)2/l

l2γ(k − l)3/2 (j − k)d/2
k dl dk

≤ C(γn)2j−d/2−1/2

∫ 1/2

1/j

∫ k−n1/j

n1/j

e−(γn)2/2j(k−l)e−β(γn)2/(jl)

l2γ(k − l)3/2 (1− k)d/2
k dl dk

≤ C(γn)2j−d/2−1/2e−C(γn)2/j ,

(4.3.87)

using integration by parts. The factors of j−2(k − l)−3/2 are neutralised by

the exponential. Furthermore observe that (1 − k)−d/2 ≤ 2d/2, due to the

assumption that k ≤ j/2. Integrating the above from n2−
γ up to (γn)2 with

respect to j gives the upper bound for k ≤ j/2.

Step 4b, Part II: it remains to analyse the case k ∈ {j/2, . . . j}. The problem

is that for such k’s, the previously applied bound

Ez [pl(Sk, x)|Hn = k] ≤ max
y∈∂iBn

pl(y, x) , (4.3.88)

is not good enough, as l is small with non-negligible mass. This would lead

to a blow-up in the penultimate line of Equation (4.3.87). However, contrary

to the case that j ≥ (γn)2, we cannot assume uniformity of the hitting time

anymore. We begin by bounding (as done previously)

Pz(Hn ≥ k − l, Sj−l = y) ≤ P j−l
z,y (HB

n− ≥ k − l) +O
((

1

j − l

)α)
, (4.3.89)
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with n− = n− cα log2(n), α > 0 to be determined later. We expand

P j−l
z,y (HB

n− ≥ k − l) = C(z, j, l)

+

∫
∂Bn−

dz

∫ j−l

k−l
dt dPz

(
HB
n− = t

)
dPz

(
Bt = z|HB

n− = t
)
pj−t−l(z, y) .

(4.3.90)

Here, we use

C(z, j, l) = P j−l
z,y (HB

n− ≥ j − l) . (4.3.91)

Let us firstly neglect the O
((

1
j−l

)α)
term and expand

j∑
k=j/2

Pjy,y (Hn ≥ k,Hγn < Hn) ≤ C

j∑
k=j/2

k

k−n1∑
l=n1

Py (Hγn = l, Hn > Hγn)

×
∑

z∈∂iBγn

[
P j−l
z,y (HB

n− ≥ k − l)− P j−l
z,y (HB

n− ≥ k + 1− l)
]

× Py (Sl = z|Hγn = l, Hn > Hγn) .

(4.3.92)

We apply the same strategy as before: if k 7→ dP j−l
z,y (HB

n− = k − l) varies

sufficiently slowly with k, we have that

(
P j−l
z,y (HB

n− ≥ k − l)− P j−l
z,y (HB

n− ≥ k + 1− l)
)
∼ dP j−l

z,y (HB
n− = k − l) .

(4.3.93)

To show that, we use that

dP j−l
z,y (HB

n− = k − l) =

∫
∂Bn−

dPz(Bk−l = x,HB
n− = k − l)pj−k(x, y) . (4.3.94)

We now estimate the above quantity. Let, for z ∈ ∂Bγn, r = |z − n| and

t ∈ [0,∞), h∗n denote a function which can be bounded in the following way

h∗n(z, t) ≤

Cq(z, t, n) if t ≥ nr ,

C rnd−1

t1+d/2 e−r
2/(2t) otherwise.

(4.3.95)

By [Uch11, Lemma 4.5], we can choose h∗n such that one has that for any
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a > 0, t > 0, ξ ∈ ∂Ba

Pz
[
B(HB

a ) ∈ dξ, HB
a ∈ dt

]
U∂Ba(dξ)dt

= h∗a(z · ξ/a, t) , (4.3.96)

where U∂Ba is the uniform measure on ∂Ba. We apply it for a = n− and

t = k − l. In the following, set y = n, due to the rotational invariance of the

Brownian motion. We do a case distinction on whether k− l is smaller or large

than γn2.

Case 1: we can apply Equation (4.3.95) to find for r = |z · ξ/n− − n−| we

have that in the case t = k − l ≤ γn2

dP j−l
z,y (HB

n− = k − l) ≤ C

nd−1

∫
∂Bn−

rnd−1

t1+d/2
e−r

2/(2t)pj−k(ξ, y)dξ . (4.3.97)

We use that

r = n

√
γ2 + 1− 2γ cos(θ) + 2

cα log(n)

n
(cos(θ)− 1) +

c2
α log2(n)

n2
, (4.3.98)

where θ is not the angle between n and z · ξ. Note that for m ∈ Z we have

θ = θξ + θz = θξ + θz + 2mπ, where θξ is the angle between ξ and n and θz is

the angle between z and n. We can apply the angular identities to bound the

integrand

rnd−1

t1+d/2
e−r

2/(2t)pj−k(ξ, y)

≤ C

√
γ2 + 1− 2γ cos(θz + θξ)n

d

t1+d/2(j − k)d/2
e
−Cn2

[
(γ2+1−2 cos(θz+θξ))/t+(1−cos(θξ))

2
/(j−k)

]

≤ Cγnd

t1+d/2(j − k)d/2
e−Cn

2[γ2/t+θ2
ξ/(j−k)] .

(4.3.99)
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Use a change of variables and approximate |sin(θ)|d−2 ∼ |θ|d−2 to get

dP j−l
z,y (HB

n− = k − l) ≤ C
nγe−Cn

2γ2/t

t1+d/2(j − k)d/2

∫ n

0

θd−2e−Cθ
2/(j−k)dθ

≤C
nγγ

(
d−1

2
, n2

(j−k)

)
e−Cn

2γ2/t

t1+d/2(j − k)1/2
.

(4.3.100)

Case 2: consider case γn2 ≤ t = k − l ≤ C(γn)2. In that case, we have that

for the rescaled parameters t′ = t/n2 and z′ = z/n that

z′

t′
∈
[

1

γmax{1, C}
, 1

]
. (4.3.101)

Thus, we can apply [Uch11, Theorem 2.2] (which gives uniformity of hitting

location) to conclude

dP j−l
z,y (Bk−l = ξ|HB

n− = k − l) ≤ C

nd−1
pj−k(ξ, y)dξ . (4.3.102)

Similarly to before, this allows us to bound

dP j−l
z,y (HB

n− = k − l) ≤
Cn−d+1γ

(
d−1

2
, n2

(j−k)

)
√
j − k

qn(z, k − l)

≤
Cγn2−dγ

(
d−1

2
, n2

(j−k)

)
γ
√
j − k t3/2

e−(γn)2/(2t)

2γ(d−3)/2
.

(4.3.103)

Using Equations (4.3.100) and (4.3.103), we can see that by choosing α > 0

(the polynomial scale from of the error from the coupling) sufficiently large,

we can absorb the error term into a fixed universal constant. Use the previous
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results to expand

j∑
k=j/2

Pjy,y (Hn ≥ k, Hγn < Hn)

≤ C

j∑
k=j/2

k−n1∑
l=n1

kPy (Hγn = l > Hn) dP j−l
z,y (Hn− = k − l)

≤ C

j∑
k=j/2

k−n1∑
l=n1

k
β(γn)2e−β(γn)2/l

(γn)l2
dP j−l

z,y (Hn− = k − l) .

(4.3.104)

Let us firstly treat the case that j ∈ [n2−
γ ,γn2]. In that case, we bound the

sum

γn2∑
j=n2−

γ

∑
y∈∂iBn

jνEjy,y [Hγn > Hn > j/2]

≤ C

γn2∑
j=n2−

γ

jν
j∑

k=j/2

k−n1∑
l=n1

k
nd−1(γn)2e−C(γn)2/l

(γn)l2

nγγ
(
d−1

2
, n2

(j−k)

)
e−C(γn)2/(j−l)

(j − l)1+d/2(j − k)1/2

≤ C

γn2∑
j=n2−

γ

jν
j∑

k=j/2

k−n1∑
l=n1

knd+1γ2e−C(γn)2/lγ
(
d−1

2
, n2

(j−k)

)
e−C(γn)2/(j−l)

l2(j − l)1+d/2(j − k)1/2

≤ Cn2ν+2γ−4

∫ γ−1

0

dj

∫ 1

1/2

dk

∫ k

0

dl

×
j−ν+d/2−3/2kγ

(
d−1

2
, j

(1−k)

)
e−Cj(l

−1+(1−l)−1)

l2(1− l)1+d/2(l − k)1/2
,

(4.3.105)

where we can bound the integral by a universal constant, not depending on γ.

Now assume that j ∈ [n2γ, (nγ)2] (and thus implicitly that γ ≥ 1). As we

have to different bounds for dP j−l
z,y , we bound that term by the sum of the two

(previously) proven bounds. For the ease of reading, we suppress this in the

next two equations and simply treat each term separately.

Let us firstly employ the bound from Equation (4.3.103), using that the lower
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incomplete Gamma function can be bounded by a finite constant in that case

(γn)2∑
j=γn2

∑
y∈∂iBn

jνEjy,y
[
Hγn > Hn > j − n2/2

]
≤C

∫ (γn)2

γn2

dj

∫ j

j/2

dk

∫ k

0

dl
kjνnd−1+2−d+1e−Cn

2(l−1+(j−l)−1)

l2(j − k)1/2(j − l)3/2γ(d−5)/2

≤C n2+2ν

γ(d−4ν−5)/2
,

(4.3.106)

which can be seen after the following changes of variables: l 7→ kl, then k 7→ jk

and finally j 7→ n2j. If we use the bound from Equation (4.3.100), we get that

by the same change of variables

(γn)2∑
j=γn2

∑
y∈∂iBn

jνEjy,y
[
Hγn > Hn > j − n2/2

]
≤C

∫ (γn)2

γn2

dj

∫ j

j/2

dk

∫ k

0

dl
kjνnd−1+2e−Cn

2(l−1+(j−l)−1)

l2(j − k)1/2(j − l)1+d/2γ(d−5)/2

≤Cn2+2νγ3−d+2ν .

(4.3.107)

Collecting the bounds from Step 3, Step 4a and Step 4b finishes the proof.

A bound like the one we proved in the theorem above is essential to

renormalisation arguments (see [CS16, DCRT18]). We apply it in Chapter 6

to make statements about the connected component of the loop soup.
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Chapter 5

Properties of the occupation

field

In this chapter we characterise important features of the occupation field. We

begin by giving the scaling limit of the two-point function and then generalise

the result to correlation functions of arbitrary order. We also give scaling lim-

its for the moments of the occupation field. We then analyse the divergence

in two dimensions before giving scaling results on the probability of observing

large vacant sets.

Similar to the previous chapter, we restrict ourselves to the discrete-time loop

measure Ma =
∑

x

∑
j ajPjx,x and q(x, †) = 0. Continuous-time results follow

analogously.

Throughout the whole chapter, we observe the advantages of the method

(rewriting events in terms of the range) developed in the previous chapter:

not only do our proofs work for the Bosonic and the Markovian loop measure

alike but we also obtain quantitative estimates and precise scaling limits for

many different expressions.

5.1 The two-point function

In the next proposition, we prove sharp asymptotics for the two-point corre-

lation function ψ2, where

ψ2(x, y) = Pλ (x ∈ U , y ∈ U)− Pλ (x ∈ U)Pλ (y ∈ U) . (5.1.1)
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Recall that Paλ is the PPP with intensity measure λMa. As Ma is fixed in the

entire chapter, we omit the superscript a from the notation.

Proposition 5.1.1. We have that the two-point function ψ2(x, y) is given by

ψ2(x, y) = Pλ (x ∈ U , y ∈ U)− Pλ (x ∈ U)Pλ (y ∈ U)

= e−2λ
∑
j≥1 ajE

j
0,0[Rj ]

[
exp

(
λ
∑
j≥1

ajEj0,0[Rn, Hx < j]

)
− 1

]
.

(5.1.2)

For d ≥ 3, λ > 0, ν < d−3 and aj = jν(1+o(1)), we have that as |x−y| → ∞

ψ2(x, y) = λκ2
dKd,ν |y − x|6+2ν−2de−2λKo

d,ν (1 + o(1)) , (5.1.3)

with

Kd,ν =

∫ ∞
0

j2−d+ν

∫ 1

0

pk(j
−1/2)p1−k(j

−1/2)dk dj , (5.1.4)

and

Ko
d,ν =

∑
j≥1

ajEj0,0[Rj] . (5.1.5)

If d = 2 and aj = jν log(j)(1 + o(1)) we have that for ν < −1

ψ2(x, y) = π2e−2λKo
2,νλ|x− y|2ν+2 log(|x− y|)

×
∫ ∞

0

jν
∫ 1

0

pk
(
1/
√
j
)
p1−k

(
1/
√
j
)

log2(kj|x− y|2)
dk dj (1 + o(1)) .

(5.1.6)

An estimation of the integral reveals that the leading-order of the above expres-

sion is given by |x− y|2ν+2 log−1(|x− y|).

Remark 5.1.2. I. Higher-order correlations are given in Proposition 5.2.1.

II. The main difficulty in the proof consists in controlling Ej0,0 [Rj, Hx < j]

uniformly over lengths j. With the analysis provided in the proof be-

low, we can get an asymptotic expression for a wide range of different

sequences (aj)j. We summarise this in a separate statement, see Propo-

sition 5.2.3.

III. It is interesting to note that for d ≥ 3 the expression in Equation (5.1.2)
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gives the correct asymptotical behaviour (up to a multiplicative constant)

by employing the crude bounds Rn ≤ n and P0(Hx = k) ≤ pk(x).

IV. In [LJ11], closed form expressions for the correlation functions are also

given. From those, one can compute the asymptotics more directly (also

compare [CS16, Lemma 2.5]). However, our approach also works for loop

measures where no closed from expressions exists, and thus we follow our

approach.

Proof of Proposition 5.1.1. Note that due to translation invariance

ψ2(x, y) = Pλ (x /∈ U , y /∈ U)− Pλ (x /∈ U)2 . (5.1.7)

Let us assume without loss of generality that y = 0. We have that by the

properties of the PPP that

Pλ (x /∈ U , 0 /∈ U) = exp (−λMa [{0, x} ∩ ω 6= ∅]) . (5.1.8)

We can rewrite

Ma [{0, x} ⊂ ω] =
∑
y∈Zd

∑
j≥1

ajPjy,y (Hx < j, H0 < j)

=
∑
y∈Zd

∑
j≥1

ajPj0,0 (Hx < j, Hy < j)

=
∑
j≥1

ajEj0,0

1{Hx < j}
∑
y∈Zd

Hy < j


=
∑
j≥1

ajEj0,0 [Rj, Hx < j] .

(5.1.9)

Similarly, one finds

Ma [0 ∈ ω] =
∑
j≥1

ajEj0,0 [Rj] = Ko
d,ν . (5.1.10)

The proof of the first statement (i.e. Equation (5.1.2)) of Proposition 5.1.1 now

follows from applying the inclusion-exclusion principle to Equation (5.1.8):

Ma [{0, x} ∩ ω 6= ∅] = 2Ma [0 ∈ ω]−Ma [{0, x} ⊂ ω].
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We now prove the asymptotic expression of the two-point function, beginning

with the case d ≥ 3. To accomplish this, we need to analyse∑
j≥1

ajEj0,0 [Rj, Hx < j] . (5.1.11)

Note that, similarly to the proof of Proposition 4.2.2, the sum over j ≤ |x|5/3 is

negligible. Our strategy is as follows: we first show that we can neglect loops

of short length. For loops of typical length, we then use the precise asymptotic

results on the first hitting time of single points from Lemma 2.2.2.

Fix ε > 0. For j ≥ |x|5/3 one has Rj ≤ (1 + ε)κdj outside a set of negligible

probability, similar to the proof of Proposition 4.2.2. Thus, it holds∑
j≥|x|5/3

ajEj0,0 [Rj, Hx < j] ≤ κd(1 + ε)
∑

j≥|x|5/3
ajjPj0,0 (Hx < j) . (5.1.12)

Fix M > 1. Lemma 2.2.2 gives us the bound

Bj0,0 (Hx < j) ≤ Cjd/2Pj0,0 (Hx < j) ≤ C|x|2−dΓ(d/2− 1, |x|2j−1) . (5.1.13)

Thus,

|x|2/M∑
j=|x|5/3

ajjPj0,0 (Hx < j) ≤ C

|x|d−2

|x|2/M∑
j=|x|5/3

j1−d/2+νΓ

(
d− 2

2
,
|x|2

j

)

≤ C

|x|2

|x|2/M∑
j=|x|5/3

j3−d+νe−|x|
2/j ≤ C

|x|2

∫ |x|2/M
0

j3−d+νe|x|
2/jdj

≤ C|x|6+2ν−2dΓ(d+ ν,M) ,

(5.1.14)

using Lemma 8.3.3 for the asymptotics of the incomplete Gamma function.

By Lemma 2.2.2, we have that for j ≥ |x|2/M

Pj0,0 (Hx < j) =κdj
−d+1 (1 + o(1))

∫ 1

1/M

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

+O

(
j−d+1

∫ 1/M

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

)
.

(5.1.15)
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Using similar approximation arguments to those employed in the proof of

Proposition 4.2.2 and the change of variables j 7→ j|x|2, we write

∑
j≥|x|2/M

j2−d+ν

∫ 1

1/M

pk(xj
−1/2)p1−k(xj

−1/2)dk

=

∫ ∞
|x|2/M

j2−d+ν

∫ 1

1/M

pk(xj
−1/2)p1−k(xj

−1/2)dkdj (1 + o(1))

= |x|6+2ν−2d

∫ ∞
1/M

j2−d+ν

∫ 1

1/M

pk(j
−1/2)p1−k(j

−1/2)dk dj (1 + o(1)) .

(5.1.16)

To summarise, we have shown that∑
j≥|x|5/3

ajEj0,0 [Rj, Hx < j]

≤ (1 + ε)κ2
d|x|6+2ν−2d

∫ ∞
1/M

j2−d+ν

∫ 1

1/M

pk(j
−1/2)p1−k(j

−1/2)dk dj

+O
(
|x|6+2ν−2dΓ(d+ ν,M)

)
.

(5.1.17)

Note that we can get the analogous lower bound, replacing (1 + ε) by (1− ε).
Taking M →∞ and ε ↓ 0 finishes the proof for d ≥ 3.

We now treat the case d = 2. The first part is analogous to the proof of

Proposition 4.2.2: fix δ > 0 and

x1 =
|x|2

log
(
logδ (|x|)

) . (5.1.18)

We then expand

∑
j≥1

ajEj0,0 [Rj, Hx < j] = O
(
|x|2ν+2

logcδ/2(|x|)

)
+
∑
j≥x1

ajEj0,0 [Rj, Hx < j] ,

(5.1.19)

for some c > 0. Choose δ > 0 such that δc/2 > 1. Fix ε > 0 and partition the
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remaining sum∑
j≥x1

ajEj0,0 [Rj, Hx < j] ≤ (1 + ε)
∑
j≥x1

ajrjPj0,0 (Hx < j)

+
∑
j≥x1

jνpj(0) log(j)O
(
Bj0,0 [Rj, |Rj − rj| ≥ εrj]

)
.

(5.1.20)

Using Lemma 4.1.1 to bound Bj0,0 [Rj, |Rj − rj| ≥ εrj] by O
(
j log3(log(j))

log2(j)

)
, we

have

∑
j≥x1

jν−1 log(j)O
(
Bj0,0 [Rj, |Rj − rj| ≥ εrj]

)
≤ C

∑
j≥x1

jν
log3(log(j))

log2(j)

≤ C
log3(log(|x|))

log2(|x|)
|x|2ν+2

logν+1
(
logδ(|x|)

) = o

(
|x|2ν+2

log3/2(|x|)

)
.

(5.1.21)

We now analyse ∑
j≥x1

ajrjPj0,0 (Hx < j) . (5.1.22)

We get two contributions to Pj0,0 (Hx < j) from Lemma 2.2.2, a leading-order

term and an error term. Let us begin with the error term:

O

(
j−1

∫ |x|2/j log(|x|2−ρ)

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

)
. (5.1.23)

Recall that aj ∼ jν log(j) and that rj ∼ j/ log(j). We estimate

∑
j≥x1

jν+1O

(
j−1

∫ |x|2/j log(|x|2−ρ)

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dk

)

≤ C

∫ ∞
x1

jν
∫ |x|2/j log(|x|2−ρ)

0

pk

(
x/
√
j
)
p1−k

(
x/
√
j
)

dkdj

≤ C|x|2+2ν

∫ ∞
x1/|x|2

jν
∫ 1/j log(|x|2−ρ)

0

pk

(
1/
√
j
)

dkdj

≤ C|x|2+2ν

∫ ∞
x1/|x|2

jνΓ(0, log(|x|2−ρ)dj ≤ C|x|ρ+2ν log−(ν+1)(logε(|x|)) .

(5.1.24)

We recall that ρ > 0 can be chosen arbitrarily small and we have used the
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asymptotics of the incomplete Gamma function from Lemma 8.3.3.

Having estimated the error term, we turn our attention to the main contribu-

tion to Pj0,0 (Hx < j), calculated in Lemma 2.2.2:

4π log|x|
j

∫ 1

|x|2/j log(|x|2−ρ)

pk
(
x/
√
j
)
p1−k

(
x/
√
j
)

log2(kj)
dk . (5.1.25)

Estimate

∑
j≥x1

jν log(|x|)
∫ 1

|x|2/j log(|x|2−ρ)

pk
(
x/
√
j
)
p1−k

(
x/
√
j
)

log2(kj)
dk

=

∫ ∞
x1

jν log|x|
∫ 1

|x|2/j log(|x|2−ρ)

pk
(
x/
√
j
)
p1−k

(
x/
√
j
)

log2(kj)
dk(1 + o(1))

=|x|2+2ν log|x|
∫ ∞
x1/|x|2

jν
∫ 1

1/j log(|x|2−ρ)

pk
(
1/
√
j
)
p1−k

(
1/
√
j
)

log2(kj|x|2)
dk(1 + o(1))

=|x|2+2ν log|x|
∫ ∞

0

jν
∫ 1

0

pk
(
1/
√
j
)
p1−k

(
1/
√
j
)

log2(kj|x|2)
dk(1 + o(1)) ,

(5.1.26)

where similar arguments as in the proof of Proposition 4.2.2 imply that the

sum over j can be approximated by an integral. A quick computation reveals

that for ρ > 0 small enough, the estimate obtained in Equation (5.1.24) is o(1)

of the above. By letting ε > 0 tend to zero, we show the right upper bound.

The lower bound is then established analogously. This finishes the proof.

We give the analogue for the Bosonic loop measure.

Corollary 5.1.3. If µ < 0 and β > 0 we have that for the Bosonic Loop soup

PBλ (x ∈ U , y ∈ U) = ψB2 (x, y) ≤ O
(
e−f(µ)|x−y|) , (5.1.27)

where f(µ) increases as µ ↓ −∞. This implies that correlations decay expo-

nentially fast.

If d ≥ 3 and µ = 0 we have that for fixed β > 0

ψB2 (x, y) = λκ2
dKd,−1|x− y|4−2de−2λKo

d,β(1 + o(1)) , (5.1.28)

where Ko
d,β =

∑
j≥1 j

−1Eβj0,0 [Rβj] and the error term depends on β.
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Note that as β ↑ ∞, we have that

Ko
d,β = (1 + o(1))κdβ

∞∑
j=1

(2π)−d/2

(βj)d/2
=

κd
4π2

(2βπ)1−d/2 (1 + o(1)) . (5.1.29)

Transitions from an exponential decay to a power law decay are often referred

to as BKT transitions, see [KT73,FS81].

5.2 Higher-order correlations

In order to deal with higher-order correlations of the loop soup, we need ad-

ditional notation. We abbreviate {1, . . . , n} by [n] in this section. Let Pn be

the set of all partitions of [n] into non-empty subsets. For I ∈ Pn a partition,

we set |I| to be the number of (disjoint) blocks (Ii)
|I|
i=1 in I.

The higher-order analogue of the covariance ψ2(x, y) is the cumulant. Let

n ≥ 2 and x1, . . . , xn ∈ Zd and define the cumulant ψn

ψn(x1, . . . , xn) =
∑
I∈Pn

(−1)|I|−1(|I| − 1)!
∏
Ii∈I

Pλ (xj ∈ U , ∀j ∈ Ii) . (5.2.1)

For I ⊂ [n], abbreviate

M [I] = M [{xj : j ∈ I} ⊂ ω] . (5.2.2)

For J ⊂ [n] shorten the inclusion-exclusion formula without singletons

A1(J) =
∑
i≥2

(−1)i−1
∑
I⊂J
|I|=i

M [I] . (5.2.3)

Let Sn be the set of permutations of n points. Define S1
n be the set of

permutations which map 1 onto 1 and only have two cycles, i.e.

S1
n = {σ ∈ Sn : σ(1) = 1 and σ has two cycles } . (5.2.4)
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Define for a, b ∈ Rd and t, j > 0, the rescaled kernel

pjt(a, b) = pt

(
a√
j
,
b√
j

)
. (5.2.5)

Let for y1, . . . , yn ∈ Rd and d ≥ 3

ϕ (y1, . . . , yn) =

∫ ∞
0

jνn−dn/2
∫

∆n−1

pj1−
∑
i ti

(yn, y1)
n−1∏
i=1

pjti (yi, yi+1) d(ti)i dj ,

(5.2.6)

where ∆k = {t ∈ [0,∞)k :
∑k

i=1 ti ≤ 1} for k ∈ N. For d = 2 and N > 0, set

ϕ (y1, . . . , yn)

=

∫ ∞
0

jνn−dn/2
∫

∆n−1

pj1−
∑
i ti

(yn, y1)
n−1∏
i=1

pjti (yi, yi+1)

log2(tijN2|yi − yi+1|2)
d(ti)i dj .

(5.2.7)

For y1, . . . , yn ∈ Rd and d ≥ 2 let

Υ (y1, . . . , yn) =
∑
σ∈S1

n

ϕ
(
yσ(1), . . . , yσ(n)

)
. (5.2.8)

We now state the main result of this section.

Proposition 5.2.1. Let n ≥ 3 and x1, . . . , xn ∈ Zd. We then have that for

I = {i0, . . . , ik}

M [I] =
∑
j≥1

ajEjxi0 ,xi0
[
Rj, Hxi1

< j, . . . , Hxik
< j
]
, (5.2.9)

and

ψn(x1, . . . , xn) = e−λnM [1]

(∑
I∈Pn

(−1)|I|−1(|I| − 1)!e−
∑
Ii∈I

A1(Ii)

)
. (5.2.10)

Fix C1, C2 > 0. Consider distinct y1, . . . , yn ∈ Rd satisfying

0 < C1 < sup
i 6=j
|yi − yj| < C2 inf

i 6=j
|yi − yj| < C−1

1 . (5.2.11)
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Pick xi ∈ Zd such that xi = N(yi + o(1)). Suppose that aj = j−ν (1 + o(1))

with ν ≤ −1 and d ≥ 3. We then have that (uniformly in y)

ψn(x1, . . . , xn) = Ad,nΥ (y1, . . . , yn)N2+2ν+n(2−d) (1 + o(1)) , (5.2.12)

with

Ad,n = λ(−1)nκnde−λnM [1] . (5.2.13)

If d = 2 and aj = jν log(j) (1 + o(1)) with ν < −1, we then have that

ψn(x1, . . . , xn) = A2,nΥ (y1, . . . , yn)N2+2ν logn(N) (1 + o(1)) , (5.2.14)

with

A2,n = λ(−1)nπne−λnM [1] . (5.2.15)

Remark 5.2.2. Similar to the case n = 2, we need to analyse

Ejx1,x1
[Rj, Hx2 < j, . . . , Hxn < j] . (5.2.16)

However, for n ≥ 3 a different reasoning must be used. Several combinato-

rial estimates are needed to prove a cancellation of lower order terms in the

expansion of the exponential in Equation (5.2.10). Similar to previously, the

analysis allows for a wide range of sequences (aj)j, which we state separately

in Proposition 5.2.3.

Proof of Proposition 5.2.1. To show that

M [I] =
∑
j≥1

ajEjxi0 ,xi0
[
Rj, Hxi1

< j, . . . , Hxij
< j
]
, (5.2.17)

one uses a similar reasoning to the case |I| = 2, i.e. Proposition 5.1.1.

The remaining proof is split into three steps. We first obtain an abstract

representation of the cumulant ψn in terms of products of M [I]’s (for I ⊂ [n])

and then devise the precise asymptotics for M [I]. In the final step we use the

assumption ν ≤ −1 and combine the results from the two previous steps.

Step 1: combinatorial identities

We now prove Equation (5.2.10). Note that since the cumulant is invariant
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under adding constants, we have that

ψn(x1, . . . , xn) =
∑
I∈Pn

(−1)|I|−1(|I| − 1)!

|I|∏
i=1

Pλ (xj /∈ U , ∀j ∈ Ii) , (5.2.18)

where we work with an arbitrary ordering on the Ii’s in Pn. Note that by the

fundamental properties of the PPP

Pλ (xj /∈ U , ∀j ∈ Ii) = exp (−λM [∃j ∈ Ii : xj ∈ ω]) . (5.2.19)

By the inclusion-exclusion formula and the translation invariance of M , we

have that

M [∃j ∈ Ii : xj ∈ ω] =
∑
r≥1

(−1)r−1
∑
I⊂Ii
|I|=r

M [Ir] . (5.2.20)

and thus

Pλ (xj /∈ U , ∀j ∈ Ii) = exp (−λ|Ii|M [1]− λA1(Ii)) , (5.2.21)

where we recall that A1(Ii) is the inclusion-exclusion formula without the sin-

gletons, defined in Equation (5.2.3).

Inserting Equation (5.2.21) into Equation (5.2.18) gives the abstract represen-

tation stated in Equation (5.2.10).

Now expand the exponential and use the alternating combinatorial factor of

(−1)|I|−1(|I| − 1)! to cancel a large proportion of the M [J ]’s, for J ⊂ [n]. We

begin by setting up some new notation. For an illustration see Figure 5.1.

For (Ji)
k
i=1 subsets of [n], we abbreviate

M [J, k] =

(
k∏
i=1

(−1)|J |−1λM [Ji]

)
. (5.2.22)

Given a collection (Ji)
k
i=1, we introduce (Jj)

T
j=1 where Ji are the connected (in

this context we say Ji connected to Jr if Ji ∩ Jr 6= ∅) components of ∪iJi
and T is the number of disjoint connected components. Let Θ: {1, . . . , n} →
{1, . . . , T} with Θ(i) = j whenever Ji ⊂ Jj. Given a partition I = {I1, . . . , Ir}
and J ⊂ [n], we write J ≺ I if there exists an i ∈ [r] such that J ⊂ Ii,
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i.e. J is fully contained in one of the blocks of the partition. Expanding the

Figure 5.1: The coloured lines represent subsets Ji, the dashed lines are the
boundaries of the JΘ(i)’s. Here k = 4, T = 2 and m = 3, as there are 4 Ji’s, 2
JΘ(i)’s and 3 points are not contained in any of the Ji’s.

exponential, we get that∑
I∈Pn

(−1)|I|−1(|I| − 1)!e−λ
∑
Ii∈I

A1(Ii)

=
∑
I∈Pn

(−1)|I|−1(|I| − 1)!
∞∑
k=0

1

k!

(
−λ
∑
Ii∈I

A1(Ii)

)k

=
∑
I∈Pn

∞∑
k=0

(−1)k+|I|−1(|I| − 1)!

k!

 |I|∑
i=1

∑
J⊂[n]

(−1)|J |−1λM [J ]1{J ⊂ Ii}

k

=
∑
I∈Pn

∞∑
k=0

(−1)k+|I|−1(|I| − 1)!

k!

∑
J⊂[n]

(−1)|J |−1λM [J ]1{J ≺ I}

k

=
∑
I∈Pn

∞∑
k=0

(−1)k+|I|−1(|I| − 1)!

k!

∑
J1,...,Jk⊂[n]

M [J, k]1{Ji ≺ I, ∀i ∈ [k]} ,

(5.2.23)

since J ≺ I being true is equivalent to the sum of the indicator functions

1{J ⊂ Ii} being one. All sets Ji are understood to have at least two elements.
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Let m be the number of points in [n] not contained in any of the Ji’s, i.e.

m = |[n] \ ∪jJj| . (5.2.24)

Recall that S(n, k) are the Stirling numbers of second kind, i.e. the number

of ways to partition [n] into k non-empty subsets. Fix k ∈ N and expand

∑
J1,...,Jk⊂[n]

M [J, k]
m+T∑
r=1

(−1)r−1(r − 1)!
∑
I∈Pn
|I|=r

1{Ji ≺ I, ∀i ∈ [k]}

=
∑

J1,...,Jk⊂[n]

M [J, k]
m+T∑
r=1

(−1)r−1(r − 1)!
∑
I∈Pn
|I|=r

1{JΘ(i) ≺ I, ∀i ∈ [k]}

=
∑

J1,...,Jk⊂[n]

M [J, k]
m+T∑
r=1

(−1)r−1(r − 1)!S(m+ T, r) .

(5.2.25)

Indeed, ”collapse ” each {JΘ(i)}Ti=1 onto a single point. This gives a total of

m+ T points. Since we partition those into r subsets, this gives S(m+ T, r),

compare also Figure 5.1.

Note that by [AS65, p.825]

m+T∑
r=1

(−1)r−1(r − 1)!S(m+ T, r) = δ1(T +m) . (5.2.26)

Write Pk
c (n) for all the subsets J1, . . . , Jk such that m+ T = 1. By the above

cancellation, we can expand

ψn(x1, . . . , xn) = e−nλM [1]

∞∑
k=1

(−1)k

k!

∑
J1,...,Jk∈Pkc (n)

M [J, k] . (5.2.27)

This concludes the expansion.

Step 2: analysis of M[I]

We can assume without loss of generality that I = [n]. We restrict ourselves

to the case d ≥ 3, as the case d = 2 follows by using reasoning from the cases

d = 2, n = 2 and d ≥ 3, n ≥ 3.

We use the following approach: suppose that the random loop (started at x1)
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hits the points x2, . . . , xn. Then partition that event by specifying the order in

which the points are hit. This leads to a sum over S1
n. We then show that the

probability of going from a point xi to a point xj without hitting any other xl

(for i 6= j 6= l) is dominated by going from xi to xj (due to restrictions placed

on (yi)i).

We begin by excluding a certain class of loop lengths, similar to previous

proofs. Set Hi = Hxi and

N1 =
N2

C logN
, (5.2.28)

for some C > 0 sufficiently large such that

N1∑
j=1

ajjPjx1,x1

(
n⋃
i=2

{Hi < j}

)
= o

(
N2+2ν+n(2−d)

)
. (5.2.29)

The existence of such a C > 0 follows from the same reasoning which is used

in the proof of Proposition 4.2.2 or Theorem 4.3.1.

Let us assume that j ≥ N1. Similar to previous proofs, we approximate

Ejx1,x1
[Rj, H2 < j, . . . , Hn < j] = rjPjx1,x1

(
n⋃
i=2

{Hi < j}

)
(1 + o(1)) , (5.2.30)

where we recall that rj is the expected range of the random walk bridge of

length j. We then need to estimate

∑
j≥N1

ajrjPjx1,x1

(
n⋃
i=2

{Hi < j}

)
. (5.2.31)

We do a case distinction by summing over all the different orders in which the

points (xi)i can be hit: expand the different permutations of x2, . . . , xn

Pjx1,x1

(
n⋃
i=2

{Hi < j}

)
=
∑
σ∈S1

n

Pjx1,x1

(
Hσi < Hσi+1

, ∀i = 2, . . . , n− 1
)
.

(5.2.32)
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Figure 5.2: The solid line is a random walk starting from x1, then hitting x2

and then x3. The dashed line represents a realisation of the event E2: the
point x4 has been hit before x3.

We use the (strong) Markov property and recursively decouple

Pjx1,x1

(
Hσi < Hσi+1

, ∀i = 2, . . . , n− 1
)

=
∑

0≤t1,...,tn−1≤j
t1+...+tn−1≤j

Pjx1,x1

(
ti−1 = Hσi < Hσi+1

= ti, ∀i = 2, . . . , n− 1
)

=
∑

0≤t1,...,tn−1≤j
t1+...+tn−1≤j

pj−∑i ti
(xσn , x1)

n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti > Hσ(j), ∀j > i+ 1

)
.

(5.2.33)

Let Ei be the event that, for r > i + 1, we hit a point xσ(r) before hitting

xσ(i+1), i.e.

Ei =
{
Hσ(i+1) = ti and ∃ r ∈ {i+ 2, . . . , n} ∃t ∈ {0, . . . , ti} : Hσ(r) = t

}
.

(5.2.34)

For an illustration of the event Ei in the case σ = Id, see Figure 5.2.

We can then subtract

Pxσ(i)

(
Hσ(i+1) = ti > Hσ(j), ∀j > i+ 1

)
= Pxσ(i)

(
Hσ(i+1) = ti

)
− Pxσ(i)

(Ei) .

(5.2.35)
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Thus, we get the expansion

n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti > Hσ(j), ∀j > i+ 1

)
=

n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti

)
−

∑
I⊂{1,...,n−1}

I 6=∅

(−1)|I|

(∏
j∈I

Pxσ(j)
(Ej)

)∏
j /∈I

Pxσ(j)
(Hσ(j+1) = tj)

 .

(5.2.36)

The intuition is as follows: the probability of Ei is of lower order than the

one of {Hσ(i+1) = ti}. This is because Ei requires hitting an additional one of

the xj’s. Thus, only the first term on the right-hand side in Equation (5.2.36)

remains in the limit. We make this rigorous below.

Let us evaluate Pxσ(j)
(Ej). Note that by the same reasoning applied above,

we use ti ≥ N1. This allows us to approximate the random walk transition

density. We bound

Pxσ(j)
(Ej) ≤ max

r∈{i+2,...,n}

ti∑
t=0

pt(xσ(j), xσ(r))ptj−t(xσ(j), xσ(j+1))

≤ Ct−d+1
j max

r∈{i+2,...,n}

∫ 1

0

t−d/2(1− t)−d/2

× exp

(
− 1

2ti

(
|xσ(j) − xσ(r)|2

t
+
|xσ(r) − xσ(j+1)|2

1− t

))
dt

= err(ti) ,

(5.2.37)
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by the change of variables t 7→ tjt. Note that

∑
N1≤t1,...,tn−1≤j
t1+...+tn−1≤j−N1

pj−∑i ti
(xσn , x1)Pxσ(1)

(E1)

(∏
j 6=1

Pxσ(j)
(Hσ(j+1) = tj)

)

≤ C

∫
t1+...+tn−1<j

(∏
j 6=1

ptj(xσ(j), xσ(j+1))

)
pj−

∑
i ti

(xσn , x1)err(t1)d(ti)i

≤ Cj(d−1)−(n−1)d/2

∫
∆n−1

(∏
j 6=1

ptj
(
xσ(j)j

−1/2, xσ(j+1)j
−1/2

))
p1−1

∑
i ti

(xσn , x1)

× err(t1j) d(ti)i

= Er(1, j) .

(5.2.38)

This leads to the following asymptotics

Pjx1,x1

(
Hσ(2) < . . . < Hσ(n)

)
=

∑
N1≤t1,...,tn−1≤j
t1+...+tn−1≤j−N1

pj−
∑
i ti

(xσn , x1)
n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti

)
+O (Er(1, j)) .

(5.2.39)

Let M > 1 be large. For ti ≥ N2/M , we have that by [Uch11, Theorem 1.7]

Pxσ(i)

(
Hσ(i+1) = ti

)
= κdpti(xσ(i), xσ(i+1))

(
1 +OM

(
N−d

))
. (5.2.40)
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We then have that, approximating the sum by an integral,

∑
t1+...+tn−1<j

|ti|≥N2/M

pj−∑i ti
(xσn , x1)

n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti

)

=
∑

t1+...+tn−1<j

|ti|≥N2/M

κn−1
d pj−

∑
i ti

(xσn , x1)
n−1∏
i=1

pti(xσ(i), xσ(i+1))
(
1 +O

(
N−d

))

= κn−1
d

∫
t1+...+tn−1<j

|ti|≥N2/M

pj−
∑
i ti

(xσn , x1)
n−1∏
i=1

pti(xσ(i), xσ(i+1))d(ti)i (1 + o(1))

= κn−1
d j(n−1)−nd/2

×
∫

∆n−1
ti>1/M

pj1−
∑
i ti

(yσnN, y1N)

(
n−1∏
i=1

pjti
(
yσ(i)N, yσ(i+1)N

))
d(ti)i (1 + o(1)) .

(5.2.41)

We also estimate (we assume ti ≥ N1 in the first two lines) the error term

∑
t1+...+tn−1<j

|ti|≤N2/M

pj−
∑
i ti

(xσn , x1)
n−1∏
i=1

Pxσ(i)

(
Hσ(i+1) = ti

)

≤ C
∑

t1+...+tn−1<j

|ti|≤N2/M

pj−∑i ti
(xσn , x1)

n−1∏
i=1

pti(xσ(i), xσ(i+1))

≤ Cj(n−1)−nd/2
∫

∆n−1
ti<1/M

pj1−
∑
i ti

(yσnN, y1N)

(
n−1∏
i=1

pjti
(
yσ(i)N, yσ(i+1)N

))
d(ti)i .

(5.2.42)
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We have (ignoring the (1 + o(1)) term to aid legibility) that

∑
j≥N1

ajrjj
n−1−dn/2κn−1

d

∫
∆n−1
ti>1/M

pj1−
∑
i ti

(yσnN, y1N)

×
n−1∏
i=1

pjti
(
yσ(i)N, yσ(i+1)N

)
d(ti)i

=

∫ ∞
N1

dj ajrjj
n−1−dn/2κn−1

d

∫
∆n−1
ti>1/M

pj1−
∑
i ti

(yσnN, y1N)

×
n−1∏
i=1

pjti
(
yσ(i)N, yσ(i+1)N

)
d(ti)i

= κndN
2+2ν+n(2−d)

∫ ∞
0

jνn−dn/2
∫

∆n−1
ti>1/M

pj1−
∑
i ti

(yσn , y1)

×
n−1∏
i=1

pjti
(
yσ(i), yσ(i+1)

)
d(ti)i dj .

(5.2.43)

The result follows by observing that the (error) term containing O (Er(1, j))

is of lower order and by letting M →∞. To summarise, we have that

M [{x1, . . . , xn} ∈ ω] = κndN
2+2ν+n(2−d)

∑
σ∈S1

n

ϕ
(
yσ(1), . . . , yσ(n)

)
(1 + o(1)) .

(5.2.44)

Step 3: conclusion

Fix k ∈ N and, for i ∈ [k], choose sets Ji ⊂ [n]. Write |J | = |J1| + . . . + |Jk|
and fix d ≥ 3. We then have by the second step

M [J, k] =

(
k∏
i=1

(−1)|J |−1λM [Ji]

)
∼ λk(−1)|J |−kN2k(1+ν)+(2−d)|J | . (5.2.45)

We examine for which k and (Ji)i the exponent is maximised, under the con-

dition that J1, . . . , Jk ∈ Pk
c (n), see Equation (5.2.27). J1, . . . , Jk ∈ Pk

c (n)

implies that |J | ≥ n. For k = 1, this implies that J1 = [n]. As for k ≥ 2, a

collection J1, . . . , Jk ∈ Pk
c (n) has to have non-zero intersection, we can con-

clude |J | > n for k > 1. Thus, J1 = [n] and k = 1 maximise the exponent in
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Equation (5.2.45). This implies that

∞∑
k=1

(−1)k

k!

∑
J1,...,Jk∈Pkc (n)

M [J, k] = (−κdλ)nN2+2ν+n(2−d)Υ (y1, . . . , yn) (1+o(1)) .

(5.2.46)

This finishes the proof in the case d ≥ 3. For d = 2, the same reasoning

applies.

Similar to previous results, we can give a more general version of the

above result. As the proof is similar, we omit it.

Proposition 5.2.3. I. Suppose (aj)j satisfies aj ≥ Cj−ν0 for some ν0 >

−∞, C > 0 and the xi’s are as in Proposition 5.2.1. We then have that

M [xi ∈ ω, ∀i ∈ {1, . . . , n}] = (1 + o(1))κn−1

∞∑
j=1

∑
σ∈S1

n

ajrjj
n−1−dn/2

×
∫

∆n−1

p1−
∑
i ti

(yσnN, y1N)

(
n−1∏
i=1

pti
(
yσ(i)N, yσ(i+1)N

))
d(ti)i ,

(5.2.47)

where in the case d = 2 we need to add log−2 (tij) to each factor in the

product. In the case that d = 2 we furthermore need that

∑
j≥n1

|aj| log3(log(j))

log3(j)
= o

(∑
j≥n1

|aj|rj

)
, (5.2.48)

for n1 = N2/ log (logε(N)) with ε > 0.

II. Suppose that for any sets (Ik)k, J ⊂ [n] we have that∏
k

M [Ik] = o(M [J ]) if |∪kIk| > |J | . (5.2.49)

We then have that

ψn(x1, . . . , xn) = λM [{1, . . . , n}](−1)ne−λnM [1](1 + o(1)) . (5.2.50)

Note that the cumulant uniquely determines the distribution. For the

Bosonic loop measure, analogous statements to the above proposition hold.
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5.3 The occupation field

Similar to Proposition 5.2.1, we can completely characterise the distribution

of the occupation field in the limit. Due to the similarity in the proof, we

only write out the parts where the proofs differ. Similarly to the correlation

functions, the distribution of the moments of the occupation field have been

studied in [LJ11] for the Markovian loop soup.

Proposition 5.3.1. Let x1, . . . , xn and y1, . . . , yn as in Proposition 5.2.1. Let

aj = jν (1 + o(1)) for d ≥ 3 and aj = jν log(j) (1 + o(1)) for d = 2. We then

have that joint cumulant of the family (Lxi)
n
i=1 is given by

κdN
4+2ν+n(2−d)−dϕ̄(y1, . . . , yn)(1 + o(1)) , (5.3.1)

where

ϕ̄(y1, . . . , yn) =

∫ ∞
0

jν+1+n−d(n+1)/2

∫
[0,1]n

dt
n∏
i=0

pjtσ(i)

(
yσ(i), yσ(i+1)

)
, (5.3.2)

where for t ∈ [0, 1]n we set σ such that tσ(1) ≤ . . . ≤ tσ(n). Furthermore, we

set σ(0) = σ(n+ 1) = 1.

Proof of Proposition 5.3.1. First, note that

M

[
n∏
i=1

Lxi

]
=
∑
j≥1

ajEjx1,x1

[
Rj

n∏
i=1

Lxi

]
, (5.3.3)

using by now well-known arguments. The computation of the asymptotics

follows the same strategy as in the proof of Proposition 5.3.1 from there on.

Note that for I ⊂ [n]

Eλ

[∏
i∈I

Lxi

]
=

∂|I|∏
i∈I ∂vi

Eλ
[
e−〈v,L〉

] ∣∣∣
v=0

. (5.3.4)

We can use Campbell’s formula to compute Eλ
[
e−〈v,L〉

]
in terms ofM

[
1− e−〈v,L〉

]
.

A multivariate version of Faà di Bruno’s formula (e.g. [Har06]) then shows that
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the joint cumulant of the family (Lxi)
n
i=1 is given by

M

[
n∏
i=1

Lxi

]
. (5.3.5)

Together with the asymptotics this implies the main result and thus finishes

the sketch of the proof.

Remark 5.3.2. A version of the above result for more general sequences (aj)j,

similar to Proposition 5.2.3, can be given. As the conditions should be clear

by now, we leave it to the reader.

The above result could serve as an important tool for any cluster ex-

pansion for a loop soup with interaction.

5.4 Divergence in two dimensions

By Lemma 6.1.1, we have that for d = 2 and aj = 1/j, every vertex in Z2

is covered by at least one loop. In this section we explore the speed of this

occupation by approximating the loop measure with aj = 1/j.

We restrict the lengths of the loops: for T > 0, let

MT =
∑
x∈Z2

T∑
j=1

1

j
Pjx,x . (5.4.1)

Let PTλ be the PPP process with intensity measure λMT . We then have the

following limiting behaviour.

Proposition 5.4.1. We have that

lim
T→∞

1

log log(T )
logPTλ (0 /∈ U) = −λ

2
. (5.4.2)

This shows that the divergence occurs at a very slow speed.

Proof of Proposition 5.4.1. We use the fundamental property of the PPP
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to write

PTλ (0 /∈ U) = exp
(
−λMT [0 ∈ ω]

)
= exp

(
−λ

T∑
j=1

1

j
Ej0,0[Rj]

)
. (5.4.3)

By [Ham06, Theorem 2.2] we have that the logarithm of the above is equal to

− λ
T∑
j=2

1

2j log(j)
(1 +O (1/ log log(j))) +O(1) . (5.4.4)

Indeed, Bj0,0[Rj] = πj/ log(j) (1 +O (1/ log log(j))) and thus the above follows

by approximating pj(0) by pj(0). Note that for f(j) = 1/(j log(j)) one has

that

|∂2
j f(j)| = O

(
1

j3 log(j)

)
, (5.4.5)

and thus by [LL10, Lemma A.1.1] one has that

T∑
j=2

1

2j log(j)
(1 +O (1/ log log(j))) =

1

2

∫ T

2

1

j log(j)
dj + C +O

(
1/T 2

)
,

(5.4.6)

where the constant C is uniformly bounded in T . By computing the integral,

we get that

logPTλ (0 /∈ U) = −λ
2

log log(T ) +O(1) . (5.4.7)

This concludes the proof.

We can also analyse the divergence of the expectation of the occupation

field. Due to the similarity of the proof, we have chosen to omit it.

Proposition 5.4.2. We have that asymptotically

lim
T→∞

1

log(T )
ETλ [L0] =

λ

2π
. (5.4.8)

5.5 Vacant sets

It is increasingly unlikely to observe a large unoccupied region of the space.

We derive a precise limit for `∞-boxes, as their symmetry corresponds to the

random walk. We make this precise later.
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Proposition 5.5.1. Let B∞n = {x ∈ Zd : |x|∞ ≤ n}. Furthermore, assume

that ajj
−d/2rj is summable (see beginning of Chapter 4 for a definition of rj).

We then have the following limit

lim
n→∞

1

(2n+ 1)d
logPλ (B∞n ∩ C = ∅) = −λ

∑
j≥1

ajpj(0) = −λC∞d . (5.5.1)

Furthermore, we can even get the next order term

lim
n→∞

(
logPλ (B∞n ∩ U = ∅)+λ(2n+ 1)dC∞d

)
λ(2n+ 1)d−1

= −2d
∑
j≥1

ajEj0,0 [RH̃ ] = −D∞d ,

(5.5.2)

where H̃ is the first time the random walk hits the half space {x ∈ Zd : x(1) ≤
0} \ {0}.

Proof of Proposition 5.5.1. Note that by the fundamental properties of

the PPP we have that

logPλ (B∞n /∈ U) = −λM [ω ∩B∞n 6= ∅] . (5.5.3)

Let H∞n be the hitting time of B∞n . We expand

M [ω ∩B∞n 6= ∅] =
∑
x∈Zd

∑
j≥1

ajEjx,x [H∞n < j]

=
∑

x∈Zd\B∞n

∑
j≥1

ajEjx,x [H∞n < j] +
∑
x∈B∞n

∑
j≥1

ajpj(0)

=
∑

x∈∂B∞n

∑
j≥1

ajEjx,x
[
RH∞n (x)

]
+ (2n+ 1)d

∑
j≥1

ajpj(0) ,

(5.5.4)

where H∞n (x) is the first time of hitting B∞n \ {x}. We can bound the first

term∑
x∈∂B∞n

∑
j≥1

ajEjx,x
[
RH∞n (x)

]
≤

∑
x∈∂B∞n

∑
j≥1

ajEjx,x [Rj] ≤ Cnd−1
∑
j≥1

ajj
−d/2rj .

(5.5.5)

Thus, dividing by (2n + 1)d and taking the limit as n → ∞ shows the first

part of Proposition 5.5.1.
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Figure 5.3: The (black) square is ∂B∞n , the red subset is ∂B∞n,ε1 , with ε1 = 2.

Hitting the blue line corresponds to H̃(x), for x in the horizontal part of
∂B∞n,ε1 .

We now prove the second statement, the characterisation of the second order

term. Fix ε > 0 and choose M > 0 large enough such that

1

nd−1

∑
x∈∂B∞n

∑
j≥M1

ajEjx,x
[
RH∞n (x)

]
≤ ε/4 , (5.5.6)

for n sufficiently large. Let 1 > ε1 > 0 and define ∂B∞n,ε1 as follows

∂B∞n,ε1 = {x ∈ ∂B∞n : ∀i ∈ {1, . . . , d}∀j ∈ {−1,+1} : |x− jnei|∞ > ε1n} ,
(5.5.7)

where we recall that (ei)
d
i=1 are the standard basis vectors in Zd. For an illus-

tration of ∂B∞n,ε1 in two dimensions, see Figure 5.3. Choose ε1 > 0 sufficiently

small such that

1

nd−1

∑
x∈∂B∞n \∂B∞n,ε1

M1∑
j=1

ajEjx,x
[
RH∞n (x)

]
≤ ε/4 . (5.5.8)

This is possible as |∂B∞n,ε1| ∼ ε1n
d−1. For x ∈ ∂B∞n,ε1 let

H̃(x) = inf{n ≥ 1: |S(i)
n | ≤ n} , (5.5.9)

where S
(i)
n is the i-th coordinate of Sn and i is the unique coordinate such that

|x(i)| = n. Note that for x ∈ ∂B∞n,ε1 we have that bound

Pjx,x
(
H̃(x) 6= H∞n (x)

)
≤ Pjx,x

(
sup

0≤k≤n
|x− Sk| ≥ ε1n

)
. (5.5.10)

As the above goes exponentially fast to zero uniformly in x ∈ ∂B∞n,ε1 , we can
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write

1

nd−1

∑
x∈∂B∞n,ε1

M1∑
j=1

ajEjx,x
[
RH∞n (x)

]
=

1 + o(1)

nd−1

∑
x∈∂B∞n,ε1

M1∑
j=1

ajEjx,x
[
RH̃(x)

]
.

(5.5.11)

Choose n sufficiently large such that the o(1) term is smaller than ε/4. By

symmetry, we have that

Ejx,x
[
RH̃(x)

]
= Ej0,0

[
RH̃(0)

]
, (5.5.12)

and thus

∑
x∈∂B∞n,ε1

M1∑
j=1

ajEx,x
[
RH̃(x)

]
= 2d(2n(1− ε) + 1)d−1

M1∑
j=1

ajE0,0

[
RH̃(0)

]
.

(5.5.13)

By further increasing M1 and using the triangle inequality, we have shown

that∣∣∣∣∣ ∑
x∈∂B∞n

∑
j≥1

ajEjx,x
[
RH∞n (x)

]
− 2d(2n+ 1)d−1

M1∑
j=1

ajEj0,0
[
RH̃(0)

]∣∣∣∣∣ ≤ εnd−1 .

(5.5.14)

This concludes the proof.

Remark 5.5.2. The volume order limit in Proposition 5.5.1 holds true more

generally: given a sequence of connected sets (An)n which is strictly increasing

and satisfies |∂An| = o(|An|), we have

lim
n→∞

1

|An|
logPλ(An ∩ U = ∅) = −λC∞d . (5.5.15)

For the second order term, we need some knowledge of the ”scaling limit” of

the geometry of ∂An. In the case of B∞n , it scales to the half space and we can

thus compute the second order limit.
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Chapter 6

Loop percolation

In this chapter we study the connected component of U which intersects the

origin, denoted by C0. As in all percolation models, there are different param-

eters:

λc = inf{λ > 0: Pλ (|C0| =∞) > 0} ,

λr = inf{λ > 0: lim sup
n→∞

Pλ (Bn connected to Bc
2n) = 1} ,

λ# = inf{λ > 0: Eλ [#C0] =∞} .

(6.0.1)

It is obvious that λr ≤ λc and λ# ≤ λc. In [CS16], it is shown that λ# ≤ λr

for d ≥ 5 and aj = 1/j 1.

We firstly introduce loop percolation rigorously and recall some results from

the literature before applying them to our setting. We then use the estimates

obtained in Chapter 4 to prove equality of critical parameters for (aj)j decay-

ing sufficiently fast. Important will be the framework of the OSSS inequality,

which is applied in [DCRT18] to show λc = λr for the Poisson-Boolean and

other models. In the last section of the chapter, we prove some finer estimates

on the structure of C0, some of which were predicted in [CS16].

We restrict ourselves to random walks such that the increments in each di-

mension are supported on {−1, 0, 1} in this chapter.

Remark 6.0.1. A brief comment regarding decay assumptions: while in the

previous chapters, assumptions on the decay of aj were generous, in this chap-

1Their definition of λr is slightly different: take λk the smallest λ such that
lim supn→∞ Pλ (Bn connected to Bc

kn) = 1 and set λr = supk>1 λk.
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ter we often assume that aj decays much faster than j−1. It is common in long-

range percolation models (see e.g. [DCRT18]) that some restrictions on the cor-

relation decay is imposed. One can interpret sequences aj with
∑

j≥1 ajj <∞
as introducing an additional (slow) killing to the Markovian loop measure: set

Va the measure on N with Va(X = j) = ajj. We can then rewrite

Ma =
∑
j≥1

ajPjx,x = Va(N)

∫
dVa
Va(N)

(j)
Pjx,x
j

. (6.0.2)

6.1 Introduction and preliminary results

Given a random point measure U =
∑

k≤κ δωk , we define C ⊂ Zd × Zd to

be the subset of bonds in Zd which are open in the following way: given

(discrete-time) loops (ωk)k with ωk = (ωk(0), ωk(1), . . . , ωk(nk) = ωk(0)) (with

ωk(i) ∈ Zd), set

C =
⋃
k≤κ

nk⋃
l=1

{ωk(l − 1), ωk(l)} . (6.1.1)

Note that bonds are not directed in this setting. If the bond b = {b1, b2} ∈ C,
we say that b = {b1, b2} is open. For x ∈ Zd, we often say that x ∈ C (or

equivalently, x open) when we mean that {x, y} ∈ C for some y ∈ Zd.
Let λc be the smallest λ ≥ 0 such that for all λ > λc there exists an unbounded

connected component of C almost surely. Note that λc < ∞ as the random

walk loop soup is bounded from below by the Bernoulli bond percolation. This

argument is made for aj = j−1 in [LJL13] and applies for (aj)j positive.

For x, y ∈ Zd we say that x is connected to y if there exists a sequence of open

bounds b1, . . . , bn such that

I. x ∈ b1.

II. y ∈ bn.

III. For all i ∈ {1, . . . , n− 1} we have bi ∩ bi+1 6= ∅.

For A,B ⊂ Zd we say that A is connected to B (denoted by A←→ B) if there

is x ∈ A connected to y ∈ B. If one of the sets consists of a singleton, we

write x←→ B instead of {x} ←→ B. If there exists a single loop connecting
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A and B, we write A
ω←→ B.

The next lemma gives us a minimal condition on the weights (aj)j such that

the percolation problem is not trivial. We recall that Paλ denotes the loop soup

with intensity measure λMa.

Lemma 6.1.1. For any λ > 0 we have that∑
j≥0

ajrjj
−d/2 =∞ =⇒ Paλ (0 ∈ C) = 1 . (6.1.2)

Due to the translation invariance of the loop measure, this implies that every

edge is covered by at least one loop.

Proof of Lemma 6.1.1. We expand

Ma [0 ∈ ω] =
∑
x∈Zd

∑
j≥0

ajPjx,x (H0 < j) =
∑
x∈Zd

∑
j≥0

ajPj0,0 (Hx < j)

=
∑
j≥0

ajEj0,0

[∑
x∈Zd

1{Hx < j}

]
=
∑
j≥0

ajEj0,0 [Rj] ≥ C
∑
j≥1

ajrjj
−d/2 ,

(6.1.3)

by the time-homogeneity of the random walk, monotone convergence and fi-

nally [Ham06, Theorem 2.2] (to evaluate the expectation of the random walk

bridge). Note that by the fundamental properties of the PPP and by a limiting

argument

Paλ (0 /∈ C) = exp (−λMa [0 ∈ ω]) . (6.1.4)

This concludes the proof of the first statement. By an inclusion-exclusion

argument, it is straightforward to see that every edge is covered by at least

one loop. This concludes the proof.

Remark 6.1.2. This lemma is a slight generalisation of [CS16, Proposition

3.4], where the case aj = aj with a > 1 is treated. The above lemma can also be

applied more generally: replacing rj with j, the lemma is valid for any random

walk, as Rj ≤ j holds true always.

We incorporate the result of the above lemma into an assumption.
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Assumption 6.1.3. Henceforth assume that∑
j≥0

ajrjj
−d/2 <∞ ,

so that the induced percolation process is not trivial.

Next, we state a proposition establishing some basic properties of the

connected component. As its proof is essentially the same as the one given

in [CS16], we chose to omit it.

Proposition 6.1.4. The loop soup is ergodic under lattice shifts. It has at

most one unique infinite cluster.

6.2 Decay estimates of the loop soup

In this section we prove decay estimates for the entire loop soup. We work in

the regime that aj ≤ Cj−1 for the entire section. We recall that

λr = inf{λ > 0: lim inf
n→∞

Pλ (∂Bn ←→ ∂B2n) = 1} . (6.2.1)

Note that 0 ≤ λr ≤ λc. The next proposition follows immediately form [CS16,

Lemma 4.1].

Proposition 6.2.1. [CS16] For d ≥ 3 and aj = O(1)j−1 we have that

λr > 0.

Furthermore, for λ < λr, we have that the connectivity Pλ (0←→ Bc
n) is

bounded from above by C(λ)n−c(λ) for some C(λ), c(λ) > 0 both depending

on λ > 0.

Indeed, in aforementioned reference the special case aj = j−1 is exam-

ined. However, for aj = O(1)j−1, we can bound the associated loop soup from

above by the special case.

The next proposition uses a proof strategy laid out in [CS16, Section 5]. Let

λ# > 0 be the largest λ > 0 such that Eλ[|C0|] <∞. We then have that:
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Proposition 6.2.2. Let λ < λ#. Let aj ∼ jν (ν ≤ −1) if d ≥ 3 and

aj ∼ jν log j (ν < −1, d = 2). We then have that

Pλ (0←→ Bc
n) ∼ n4+2ν−d . (6.2.2)

Proof of Proposition 6.2.2. The lower bound follows from the Proposition

4.2.2. The upper bound is analogous the proof of Proposition [CS16, Proposi-

tion 5.2] where the only ingredient needed is an estimate of the probability of

having a single loop connecting zero to the boundary of a ball with diverging

radius. This we compute in Proposition 4.2.2.

By [CS16, Proposition 5.1], we know that for d ≥ 5 that λ# > 0.

Remark 6.2.3. In [DCRT18], it is shown that for Poisson-Boolean percola-

tion2 Pb one has

lim
n→∞

Pbλ (0←→ Bc
n)

Pbλ
(

0
ω←→ Bc

n

) = 1 , (6.2.3)

where Pbλ
(

0
ω←→ Bc

n

)
is the probability of connecting 0 to the complement of

Bc
n through a single ball. Proposition 6.2.2 might seduce one into thinking that

such a statement for loop percolation could be true as well. However, this is

not the case: connecting the origin to Bc
n through a single loop is of the same

order than having a loop of diameter O(1) which intersects both the origin

as well as different loop, which intersects ∂Bn and the first loop, but not the

origin. This reasoning is true for d ≥ 3 due to the transience of the random

walk. For d = 2 the above reasoning no longer applies, and it remains an open

question whether for sufficiently fast decaying weights the above equation holds

true for loop percolation in two dimensions. As Theorem 4.3.1 has only been

shown for d ≥ 3, an important tool used in [DCRT18] is not available and so

we do not explore this question further. See Chapter 7 for further remarks.

2In Poisson-Boolean percolation one studies the PPP with intensity measures ν ×
λLebesgue on (0,∞) × Rd, with ν a probability measure and intensity λ > 0. A sample
(r, x) is interpreted as a sphere with radius r, centred at x. The overlapping of the spheres
induces clusters in Rd.
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6.2.1 Equivalence of two critical parameters for small ν

In this section we prove that for ν < −1 sufficiently small, we have the equiva-

lence of the two critical parameter λr and λ#. Given Theorem 4.3.1, the proof

is short and classical.

Theorem 6.2.4. Given aj ∼ jν, s > 0, ν < −1, d ≥ 3 and 2 + 2ν < −sd− 1,

we have that for λ < λr that

Eλ [|C0|s] <∞ . (6.2.4)

In particular, if ν < −d− 1 (i.e. s ≥ 1), we have that λr = λ#.

Proof of Theorem 6.2.4. We follow [GT19], where the case of the Poisson-

Boolean model is considered.

We begin by noting that

Pλ (Bn ←→ Bc
4n) ≤ Pλ (Bn ←→ Bc

2n)2 + Pλ
(
B2n

ω←→ Bc
4n

)
. (6.2.5)

Indeed, if there does not exist a loop connecting ∂iB2n to Bc
4n, then Bn is

connected to Bc
2n through loops contained in B3n−1 and the same for ∂B3n

to B4n. Note that by Theorem 4.3.1

Pλ
(
B2n

ω←→ Bc
4n

)
≤ λM

[
B2n

ω←→ Bc
4n

]
≤ Cλn2ν+2 . (6.2.6)

Let π(n) = Pλ (Bn ←→ Bc
2n). By covering Bn with smaller balls, we can find

K such that for all n we have

Pλ
(
Bn ←→ Bc

3n/2

)
≤ KPλ

(
Bn/4 ←→ Bc

n

)
. (6.2.7)

Choose n0 sufficiently large that 4Kπ(n) < 1/2 for all n ≥ n0/4. This is
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possible as λ < λr. Then for all n > n0∫ n

n0

ms−1π(m)dm ≤ K

∫ n

n0

ms−1π(m/4)2dm+ λC

∫ n

n0

ms−1m2ν+2dm

≤ 1

2

∫ n

n0

ms−1π(m/4)dm+ λC

∫ ∞
n0

ms−1m2ν+2dm

≤ 1

2

∫ n/4

n0/4

ms−1π(m/4)dm+ λC .

(6.2.8)

Rearranging, we get that∫ n

n0

ms−1π(m)dm ≤ 1

2

∫ n0

n0/4

ms−1π(m/4)dm+ λC (6.2.9)

As the right-hand side of the above equation no longer depends on n, we can

let n go to infinity and obtain∫ ∞
0

ms−1π(m)dm <∞ . (6.2.10)

As {|C0| ≥ 2n} ⊂ {Bn1/d ←→ Bc
2n1/d}, we have proven the claim.

6.3 The OSSS inequality and sharpness

In this section we prove sharpness for loop percolation, i.e. that λr = λc,

given (aj)j decays sufficiently fast. We use the strategy laid out in [DCT16,

DCRT18].

We begin by explaining the framework of the OSSS inequality, as proved in

[OSSS05] and used in [DCRT18]. Let I be a finite index set, Ω =×i∈I Ωi the

product space over some probability spaces (Ωi, πi) and π =
⊗

i∈I πi. Take

f : Ω→ {0, 1} (think of f = 1{0←→ Bc
n}). An algorithm T takes a point in

the sample space ω ∈ Ω and checks the value of each of its coordinates, one

after the other. It stops as soon as the value of f does not change with the

remaining coordinates. For example, if we need to check whether 0 ←→ Bc
n,

we may stop as soon as we have found a lattice path connecting 0 to Bc
n. Note

that it is not necessary to check all coordinates in Bn.

Given an algorithm T and a product space (Ω, π), we define two important
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functions

I. The revealment : it quantifies how likely it is for the algorithm to visit

Ωi for i ∈ I. It is henceforth denoted by δi(T) and is defined as

δi(T) = π [T reveals the value in Ωi] . (6.3.1)

It will turn out that it is desirable to have a uniformly low revealment.

II. The influence. It quantifies how important a coordinate is to the outcome

of f . It is defined as

Infi(f) = π ⊗ πi [f(ω) 6= f (ω)] , (6.3.2)

where πi is an independent copy of πi and ω is the tuple where we take

ω and re-sample the i-th coordinate with respect to πi .

The OSSS inequality can then be seen as a generalisation of the Poincaré

inequality for product spaces.

Theorem 6.3.1. [OSSS05] Given the above set-up, we have that

π[f ]− π[f ]2 = varf ≤
∑
i∈I

δi(T)Infi(f) . (6.3.3)

The central idea in [DCT16] is to combine the OSSS-inequality with

two other tools from percolation theory to obtain a short proof of sharpness.

These are a Russo type formula (see Lemma 6.3.3) and a differential inequality.

We begin by stating the latter one:

Lemma 6.3.2. Differential Inequality, [DCRT19b, Lemma 3.1] Given

a converging sequence of differentiable functions fn : [0, 1]→ [0, 1] satisfying

∂fn ≥
n∑n−1
k=0 fk

fn , (6.3.4)

for all n ≥ 1. Then, there exists β1 ∈ [0, 1] such that

I. For any β < β1, there exists cβ > 0 such that fn(β) = O (e−cβn), as

n→∞.
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II. There exists C > 0 such that for any β > β1, limn fn(β) ≥ C(β − β1).

Next, we present a proof of the Russo’s formula adapted to our setting.

Lemma 6.3.3. Russo Let A = {0←→ ∂Bn}, with n > 0. We then have that

∂λPλ(A) =
∑
ω∈Γ

M [{ω}]Pλ (ω pivotal for A) . (6.3.5)

Furthermore, the above formula holds for any increasing event A satisfying

M [{ω could be pivotal for A}] <∞ .

Proof of Lemma 6.3.3. Let Γn = {ω : ω ∩Bn 6= ∅}. We write the loop

soup Uλ+h = Uλ ∪ Uh using the superposition of Poisson point processes. Let

P denote this coupling between Pλ+h and Pλ and expand

Pλ+h(A)− Pλ(A) = P
(
A ∈ Uλ ∪ Uh, A /∈ Uλ

)
=

=
∑
ω∈Γr

P
(
A ∈ Uλ ∪ {ω}, A /∈ Uλ, ω = Uh ∩ Γn

)
+ P

(
A ∈ Uλ ∪ Uh, A /∈ Uλ, |Uh ∩ Γn| ≥ 2

)
.

(6.3.6)

A quick calculation in the spirit of Lemma (6.1.1) reveals that M [Γn] <∞ as

long as the percolation process is non-trivial. As a consequence, the second

term in the above equation is of order O(h2) and thus negligible.

We expand further, using the independence of Uλ and Uh,

P
(
A ∈ Uλ ∪ {ω}, A /∈ Uλ, ω = Uh ∩ Γn

)
= Pλ (ω pivotal for A) e−hM

a[{ω}]hM [{ω}] .
(6.3.7)

Dividing by h and taking the limit h→ 0 yields

∂λPλ(A) =
∑
ω∈Γn

M [{ω}]Pλ (ω pivotal for A)

=
∑
ω∈Γ

M [{ω}]Pλ (ω pivotal for A) .
(6.3.8)

In the last equality we used that for ω to be pivotal, it has to hold that

ω ∈ Γn.
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We recall the renormalization parameter

λr = inf{λ ≥ 0: lim
n→∞

Pλ (∂Bn ←→ B2n) = 1} ≤ λc . (6.3.9)

6.3.1 Estimating influence

In this subsection we quantify the influence of re-sampling a coordinate. We

begin with a lower bound on connectivity. The following lemma is given in

[DCRT18] for the Poisson-Boolean percolation in Rd. The proof is similar, we

adapt it here. We say that A
Z←→ B if A is connected to B through loops

which are contained inside Z.

Lemma 6.3.4. Let d ≥ 2. We then have for every λ > λr and x ∈ ∂Bn

Pλ
(

0
Bn←−→ x

)
≥ C

n2d−2
. (6.3.10)

Proof of Lemma 6.3.4. We begin by noting that

Pλ (∂Bn ←→ ∂B2n) ≤ Cnd−1Pλ (0←→ Bn) , (6.3.11)

by the union bound. Since we have that λ > λr, we get that for some Co > 0

we have that

Pλ (0←→ Bn) ≥ Co
nd−1

. (6.3.12)

Define Y = ∂iBn and the finite set Z = Bn \ Y . Note that if 0 is connected

to ∂Bn then either we have that for one z ∈ Z that z is connected to 0 in Bn

or that there exists a y ∈ Y such that A(y) occurs with

A(y) = {0 Bn←−→ y} ∩ {∃ω intersecting both y and ∂Bn} . (6.3.13)

By independence and the estimates from Proposition 4.2.2, we have for n̄ =

n− |y|
Pλ(A(y)) ≤ cn̄4+2ν−dPλ(0

Bn←−→ y) , (6.3.14)

by the independence of the PPP. Note that by the union bound we have

∑
z∈Z

Pλ
(

0
Bn←−→ z

)
+
∑
y∈Y

Pλ (A(y)) ≥ Pλ (0←→ Bn) ≥ Co
nd−1

. (6.3.15)
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Note that we have by the FKG inequality that

Pλ
(

0
Bn←−→ x

)
≥ Pλ

(
0

Bn←−→ y
)
Pλ
(
y

Bn̄(y)←−−−→ x
)

≥ Cn̄d−4−2νPλ(A(y))Pλ
(
y

Bn̄(y)←−−−→ x
) (6.3.16)

If we assume that Pλ
(

0
Bn←−→ x

)
≥ Cn2−2d, one can use induction, as Equation

(6.3.16) reduces the question from x ∈ ∂Bn to x ∈ ∂Bn−r. One readily checks

that assuming aj ∼ jν and 2ν ≤ −d − 3 ensures the success of the inductive

step. Indeed, combining the above equations we have

U(n) ≥ C

C1n2d−2 + C2

∑
y∈Y

nd−1

U(n−|y|)(n−|y|)d−4−2ν

, (6.3.17)

where U(n) = supx∈∂Bn Pλ
(

0
Bn←−→ x

)
. The condition imposed on ν ensures

that the sum over y (in the above equation) does not grow faster than n2d−2.

If 2ν ≥ −d−3, note that the loop process can be written as a sum of two loop

soups, one with weight j−d−3 and the other with weight aj − j−d−3. Since the

event in question is increasing and we are seeking a lower bound, the sum of the

two processes fulfils the inequality in question. This concludes the proof.

Write C0 for the points connected to 0 and Cn for those connected to

∂Bn. Fix n,m ≥ 1 and x ∈ Zd and define the event

Px(m) = {C0 ∩Bm(x) 6= ∅} ∩ {Bm(x)←→ Bc
n} ∩ {0←→ Bc

n}c . (6.3.18)

The following lemma is proven in [DCRT18] for the Poisson-Boolean case and

can be adapt easily to the setting of loop percolation.

Lemma 6.3.5. [DCRT18] For some constant C > 0 we have that

Pλ (Px(m) and dist (C0 ∩B3m(x), Cn) < 2) ≥ C

m3d−2
Pλ (Px(m)) . (6.3.19)

For an increasing event A, we define the random variable Pivx,A in the

following way

Pivx,A(U) = 1{U /∈ A}
∑

ω : ω(0)=x

1{U ∪ ω ∈ A}M [ω] . (6.3.20)

147



The next lemma is an important result and is a consequence of Lemma 6.3.5.

It is also given in [DCRT18] for the Poisson-Boolean case. We give its proof

for the sake of completeness. Let M|| be the distribution of ω 7→ ‖ω‖ under

M . We recall that ‖ω‖ is the maximal distance between any two points in the

loop.

Lemma 6.3.6. [DCRT18] We have for some C > 0 that for every m,n ≥ 1

and every λ > λr∑
x∈Zd

Inf(x,m)(fn) ≤ Cm4d−2M||[m− 1,m]
∑
x∈Zd

Eλ [Pivx,A] . (6.3.21)

Proof of Lemma 6.3.6. We firstly note that

Inf(x,m)(fn) ≤ λM||[m− 1,m]Pλ (Px(m)) , (6.3.22)

as Px(m) has to occur and we need to have at least one loop connecting x to

Bm(x). Note that if dist (C0 ∩B3m(x), Cn) < 2, we have to have at least one y

with |y − x| ≤ 4m such that Py(1) occurs. By the union bound together with

Lemma 6.3.5, this implies that

Pλ (Px(m)) ≤ Cm4d−2Pλ (Py(1)) , (6.3.23)

for such y’s. As we have Pλ (Py(1)) ≤ CEλ [Pivy,A], this finishes the proof.

6.3.2 Proving sharpness

The main result of this section is the following theorem.

Theorem 6.3.7. Consider loop percolation induced by the loop measure with

weight sequence (aj)j. Supposed that aj ≤ Cjν, for some C > 0.

We have that for d ≥ 3 and ν < −2d− 1/2 that

λr = inf{λ > 0: lim inf
n→∞

Pλ (∂Bn ←→ ∂B2n) = 1} = λc . (6.3.24)

This implies (together with Theorem 6.2.4) that under the above conditions

λc = λ# = λr. It also implies that the estimates in Proposition 6.2.1 and

Proposition 6.2.2 hold for the entire subcritical regime λ ≤ λc.
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Proof of Theorem 6.3.7. At first, we restrict our probability space. Let

α = −4d(2 − d/2 + ν) and L > 2nα > 0 and set A = {0 ←→ Bc
n} and

f = 1{A}. Define the space of restricted coordinates IL in the following way

SL = {ω ∈ Γ: |ω(0)|+ ‖ω‖ ≤ L} . (6.3.25)

Let g = Γ \ SL and let Ug be the PPP restricted to loops in g. Denote πg the

law of Ug and let, for (x,m), πx,m be the law of Pλ restricted to loops with

ω(0) = x and ‖ω‖ ∈ [m − 1,m). Denote the space of such loops by Γx,m and

Ux,m the restricted PPP. Let IL be those (x,m) such that Γx,m ⊂ SL. Write

then Ω = (g, πg)××(x,m)
(Γx,m, πx,m). Write I = {g} ∪ IL.

In order to apply the OSSS-inequality, we need to choose an appropriate al-

gorithm TL. Fix an arbitrary ordering of I. Set i0 = g and reveal Ug. Suppose

that {i0, . . . , it−1} ⊂ I have been revealed, and denote Cst the connected com-

ponents formed by ∪t−1
l=0Uil intersecting ∂Bs. The algorithm TL then takes one

of the two following steps:

I. If there exists (x,m) ∈ I \{i0, . . . , it−1} with the distance between x and

Cst being less than m, reveal the first (x,m) in the ordering which fulfils

that. Set it = (x,m).

II. Halt the algorithm if such (x,m) does not exist.

For an illustration of a configuration explored after the above algorithm ter-

minates, see Figure 6.1 . By Theorem 6.3.1 we then have that

Pλ(A)− Pλ(A)2 = θn(1− θn) ≤ 2
∑
i∈I

δi(TL)Infi(f) , (6.3.26)

where θn = Pλ(A). We begin by bounding the influence of the coordinate g.

From the choice of L > 0, it follows that

Infg(f) ≤ Pλ (∃ω : ‖ω‖ > L and ω ∩Bn 6= ∅)

≤ C
∑
|x|≥L

∑
j≥1

ajEjx,x [Hn < j] ≤ Cnd−1
∑
j≥L3/2

ajj
1+d/2 = o(1) ,

(6.3.27)

due to the conditions placed on (aj)j and L and using similar reasoning to the
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Figure 6.1: The loops connected to ∂Bs have been revealed by TL. In this
instance the origin is not connected to Bc

n

proof of Proposition 4.2.2. We can also bound

δi(TL) ≤ Pλ (Bm(x)←→ Bc
n) . (6.3.28)

By letting L→∞, we thus obtain

θn(1− θn) ≤ 2
∑
x∈Zd
m≥1

Pλ (Bm(x)←→ Bc
n) Inf(x,m)(f) . (6.3.29)

We then estimate

n−1∑
s=1

Pλ (Bm(x)←→ Bc
n) ≤ Cmd−1

n−1∑
s=1

θs , (6.3.30)

150



by the union bound. Using the above equation, we obtain

nθn(1− θn)∑n−1
s=1 θs

≤ 2C
∑
x∈Zd
m≥1

md−1Inf(x,m)(f) . (6.3.31)

Assume that λ > λr. We use Lemma 6.3.6 and bound∑
x∈Zd
m≥1

md−1Inf(x,m)(f) ≤ C
∑
x∈Zd
m≥1

m5d−3M||[m− 1,m]Eλ[Pivx,A] . (6.3.32)

Applying Proposition 4.2.2, integration by parts and the assumption on ν, we

get that∑
m≥1

m5d−3M||[m− 1,m] ≤
∑
m≥1

m5d−4+4−d+2ν = C <∞ . (6.3.33)

Plugging that into the above equation, we get that

nθn(1− θn)∑n−1
s=1 θs

≤ C
∑
x∈Zd

Eλ[Pivx,A] ≤ C∂θn , (6.3.34)

where in the last step we use Lemma 6.3.3.

Fix λo > λr. By Lemma 6.3.2 there exists a β1 ≥ λo such that for λ < β1,

we have exponential decay of connectivity and for λ > β1 we have a positive

bound from below. This implies that β1 = λc. On the other hand, since the

decay of connectivity is exponentially fast, this implies that β1 ≥ λr and thus

β1 = λr = λc.

Remark 6.3.8. Like the results in [DCRT18], our results put some moment

conditions on the decay of the connectivity and do not cover all non-trivial

weights. We conjecture that by refining the estimation of the influence and

using different algorithms, one can allow for a wider range of sequences (aj)j.

6.4 Finer properties of the subcritical phase

We now turn our attention to the structure of the loop soup for λ > 0 small.

The following bound is predicted in [CS16] and we give a proof here:
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Lemma 6.4.1. Let λ < λ#, d ≥ 3 and aj ∼ jν. We then have that

Pλ (0←→ Bn through loops of diameter at most m) = O
(
e−cn/m

)
. (6.4.1)

Proof of Lemma 6.4.1. We show that

Pλ (0←→ Bn through loops of diameter at most m) = O
(
e−cbn/mc

)
,

(6.4.2)

and prove the result via induction over bn/mc. Note that this result implies

the lemma. Let n = mk + r with k, n,m ∈ N and 0 ≤ r < m. Let Am be the

event that loops of diameter at most m are used to facilitate the connectivity.

Then

Pλ (0←→ Bkm, Am)

≤ Pλ
(

0
B2k←−→ Bm, Am, ∃x ∈ ∂B2k ∩ C0 : x

U\B2k←−−→ ∂Bkn

)
≤ Pλ (0←→ Bm, Am)Eλ [C0]Pλ

(
0←→ B(k−2)m, Am

)
,

(6.4.3)

where we use the independence of the loops which are contained in B2k and

those which are not. To go from the penultimate to the last line, we condi-

tioned on x ∈ C0. For n = m, we have that

Pλ (0←→ Bm, Am) = O
(
m2−d) , (6.4.4)

by Proposition 6.2.2. This finishes the proof of the lemma.

Note that in the above proof, Equation (6.4.4) implies that O
(
e−cn/m

)
can be replaced by the stronger O

(
e−c(n/m) logm

)
.

The next bound had also been predicted in [CS16] for the Markovian case. We

give a general proof here.

Proposition 6.4.2. Given that λ < λ#, d ≥ 3 and aj ∼ jν. We then have

that

Pλ(C0 contains at least two loops of diameter bigger than m)=O
(
m10−4ν−2d

)
.

(6.4.5)

Proof of Proposition 6.4.2. Let Am the event that C0 contains at least
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two loops of diameter bigger than m. Let C<m0 be the open cluster formed by

loops of length less than m. We have two possibilities: either there exists two

or more loops contained in C<m0 or the C<m0 intersects only one loop of length

greater than m. Define Cm+ the sub-cluster of C0 formed in the following way:

in the first scenario described above, take the cluster formed by loops of length

less than m and ω0, where ω0 is the first loop of diameter bigger than m (in

some arbitrary ordering on Γ). In the second scenario, take the cluster formed

by loops of diameter less than m together with ω0, where ω0 is the unique

loop intersecting C<m0 . We show Eλ
[
Cm+
]
≤ Eλ[C0]Eλ [R(ω0)]. The intuition

Figure 6.2: The long loop in red, together with 3 clusters of small loops at-
tached to it.

is as follows: if ω0 contains j points, the maximum size of the cluster Cm+ is

bounded by j-times the size of the cluster C<m0 as we can attach at most one

”version” of C<m0 to each point in ω0, see Figure 6.2. Expand

Eλ
[
Cm+
]

=
∑
j≥m

∑
x∈Zd

Eλ
[
Cm+ , R(ω0) = j, ω0(0) = x

]
≤
∑
j≥m

∑
x∈Zd

Eλ [jC<m0 , R(ω0) = j, ω0(0) = x]

≤ Eλ[C<m0 ]Eλ [R(ω0)] ,

(6.4.6)

where we use that the loops which form C<m0 are independent from loops with

diameter greater than m.

Note that by the same reasoning used in the proof of Proposition 4.2.2

Eλ [R(ω0)] =
∑
j≥1

ajEj0,0
[
R2
j

]
∼ m6−d+2ν . (6.4.7)
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By the same reasoning to above, we can bound

Pλ (Am) ≤ Eλ
[
Cm+
]
Pλ (∃ω1 : 0 ∈ ω1 and ω1 ∩Bc

m 6= ∅) = O
(
m10−4ν−2d

)
,

(6.4.8)

where we bound Pλ (∃ω1 : 0 ∈ ω1 and ω1 ∩Bc
m 6= ∅) by O

(
m4+2ν−d) using

Proposition 4.2.2. This concludes the proof.
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Chapter 7

Outlook

In this chapter we briefly comment on continuations of the results proved in

this thesis.

7.1 Sharpness

The sharpness result in Theorem 6.3.7 is limited by the decay assumption

aj ≤ Cj−2d−1/2 for some C > 0. We believe that this is a purely technical

assumption and that one can show in general that λr = λc using our method

and thus answering a question posed in [CS16] for the Markovian case. The

route to such a result will probably use different algorithms for the OSSS

inequality and refined intersection estimates for random loops. Indeed, most

proofs for loop percolation (so far) usually do not involve classical random

walk intersection estimates (compiled in the classic reference [Law13]).

We compare loop percolation to the Poisson-Boolean model: in the Poisson-

Boolean model each realisation consists of a collection of spheres. This means

that the ”base” element (a sphere) has volume of the same order as the space.

In loop percolation this is not the case: a loop of diameter n consists of only

n2+o(1) points (with overwhelming probability under Pλ). Since we ”know”

(strictly speaking only for λ < λ#) that large clusters C0 typically have one

large loop, we can argue P
(
|C0| = n2+o(1)|0←→ Bc

n

)
= 1−o(1). If we want to

use a renormalisation approach, we need to factor in that if we want to connect

the loops contained in B2n (denoted by C2n) with a single loop to Bc
4n, it is

very unlikely that this loop intersects C2n. Using similar computations as done
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in Chapter 4, we can find bounds such as

Pj1,j2o,x (int) ≤ C

∫
Rd
|y|2−d|y−x|2−dΓ

(
d− 2

2
, |y|2/j1

)
Γ

(
d− 2

2
, |y − x|2/j2

)
dy,

(7.1.1)

where Pj1,j2o,x (int) is the probability that two independent random walk bridges

of length j1 and j2 intersect (where the first loop is started at the origin and

the second one at x ∈ Zd). One can then use the properties of the Poisson

process to estimate intersection probabilities of the loop soup. We believe that

the above strategy is key to reducing the moment conditions from Chapter 6.

7.2 One-arm domination in two dimensions

For d = 2 and aj sufficiently fast decaying we make the following conjecture:

for any λ < λc, we have that

lim
n→∞

λM [0
ω←→ Bc

N ]

Pλ(0←→ Bc
N)

= 1 . (7.2.1)

This kind of result is known as one-arm domination. It is proven in [DCRT18]

for the Poisson-Boolean case for d ≥ 2. In loop percolation, it can only hold

for d ≤ 2 as the random walk is transient for d ≥ 3. Indeed, transience implies

that we could connect 0 to e1 (the point (1, 0 . . . , 0)) and e1 to the boundary

of Bn through a loop which avoids the origin and have a comparable cost to

connecting 0 to Bc
n through a single loop.

To prove one-arm domination result in the planar case, it would be vital to

have a stronger version of Theorem 4.3.1 for d = 2. The large deviation

bounds for range process from [BCR09,LV19] together with the explicit bounds

from [BMR13] can be used to prove Theorem 4.3.1 for d = 2 for ν < −1

sufficiently negative. Indeed, our method does not need to be adapted for

that. To prove a one-arm domination result, we could strengthen the result

by showing

M [BN
ω←→ Bc

γN ] = f(γ,N)N2ν−2 (1 + o(1)) , (7.2.2)

with f(γ,N) converging as N →∞ uniformly in γ. Indeed, this would allow

us to utilise the strategy from the proof of [DCRT18, Theorem 2] to show one
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arm domination. This seems out of reach, as the upper and lower bounds in

Theorem 4.3.1 differ substantially. The aim would therefore be to exploit the

recurrence of the planar random walk to show that

M [BN
ω←→ Bc

γN , 0 /∈ ω] ∼ N2ν−2f(γ) , (7.2.3)

where f(γ) goes to zero as N → ∞. Equipped with such an estimate, the

proof of one-arm domination would follow rather quickly.

7.3 The disordered loop soup

Given the results on the correlation function in Chapter 5, we could study the

loop soup with disorder. We briefly explain the setting of disordered models,

following the notes [CSZ16]. Given a statistical mechanics model with law PrN
on some domain ΩN , governing the behaviour of a family of spins (σx)x∈ΩN

with σx ∈ {0, 1}. We assume that ΩN = (N−1Z)
d

for a continuum domain

Ω ⊂ Rd as N → ∞. We model disorder by a family of i.i.d. centred random

variables (ωx)x∈ΩN .Given two parameters, β > 0 and h ∈ R, we define the

disordered model Pωβ,h through its Radon–Nikodym derivative

dPωβ,h =
exp

(
−
∑

x∈ΩN
(βωx + h)σx

)
Zω
N,β,h

dPrN(σ) . (7.3.1)

Some examples of disordered models are the disordered pinning model (see

e.g. [DGLT09]), the directed polymer model (see e.g. [CSY04]) and the ran-

dom field Ising model (see e.g. [CSZ17]). It is important to know whether

the model is disorder relevant or not, i.e. does an arbitrarily small amount

of disorder change the statistical properties of the model. Harris in [Har74]

proposed the following criterion: let γ > 0 be the correlation length (i.e. the

correlation functions of order k of PrN scale like N−γk). Then the model is

disorder irrelevant if γ < d/2 and disorder relevant for γ > d/2. In [CSZ17],

the authors give a different viewpoint on disorder relevance: does there exist

βN , hN ↓ 0 such that the limit of Zω
N,β,h converges to a non-constant random

variable? If the answer is yes, then the model is disorder irrelevant. If any scal-

ing of βN , hN ↓ leads to a trivial limit, the model is disorder relevant. One key
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advantage of that method is that the existence of the scaling limit of the corre-

lation functions (pointwise and in L2) suffice (together with some uniform, in

N , bounds for k large). See [CSZ16, Assumption 1.1] for a precise statement.

One can study the disordered loop soup model by making the identification

σx = 1{x ∈ U}. At least for d ≥ 3 and aj = j−ν(1 + o(1)) (thus including the

Bosonic and Markovian case) the required bounds follow immediately from

Proposition 5.2.1. As the framework in [CSZ16] assumes the finiteness of Ω,

one could study the disordered loop soup on the continuum torus first (making

small adjustments in Proposition 5.2.1), before extending the disorder to the

whole space. As the correlation length is d − 2 (compare Equation (5.2.12)),

Harris criterion would predict that d < 4 is disorder irrelevant and d > 4 is

disorder relevant. This shows that d = 4 is the critical dimension. Only small

gaps need to be filled for computing the scaling limit of Zω
N,β,h for the loop

soup and we will close them in a forthcoming publication.

Note that besides a criterion to classify order/disorder relevance, the existence

of the continuum limit allows for statements on the free energy of the system.

This can be used to make statements regarding localisation/delocalisation

transitions. Using Proposition 5.3.1 on the asymptotic behaviour of the oc-

cupation field, we could extend the study to disorder on non-compact state

spaces.
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Chapter 8

Appendix

8.1 Bounds for connecting annuli

The next proposition summarises the bounds from Theorem 4.3.1. Given

some sequence (aj)j, one can use these bounds to compute asymptotics of

connectivity.

Proposition 8.1.1. Let γ0 = γ0 − 1. Let c1 > 0 arbitrary but fixed. Let

n1 = n2/c1 log(n). The following bounds hold for all j ≥ n1, γ > γ0:

Lower bound: we have that for some C > 0

Ejy,y
[
1{Hγn < j}RHn(y)

]
≥ Cj1/2e−C(γn)2/jpj(0) . (8.1.1)

Upper bounds: fix 0 < β0 < β1 < γ. We then have that

Ejy,y
[
1{Hγn < j}RHn(y)

]
≤ C


(

n
(j−β0n2)d/2

+ j1/2−d/2 + 1
nd−2(j−β1n2)1/2

)
,(

j1/2 + (γn)2j−1/2
)

e−C(γn)2/j +
∑j

k=j/2

∑(k−n1)∧n1

l=n1
b(n, j, k, l) ,

(8.1.2)

where the first bound is for j ≥ (γn)2 and the second for j ∈ [n1, (γn)2].
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Furthermore, b(n, j, k, l) =

(γn)2k γ ((d− 1)/2, n2/(j − k))

eC(γn)2/leC(γn)2/(k−l)l2

(
n2−d

γ
√
j − k(k − l)3/2

+
(γn)

(k − l)1+d/2
√
j − k

)
.

(8.1.3)

The above proposition follows by collecting the bounds from the proof

of Theorem 4.3.1.

8.2 Sum and integral techniques

In this section we collect various ways of approximating integrals by finite

sums.

Lemma 8.2.1. Given f : [a, b]→ (0,∞), a, b ∈ N ∪ {±∞} measurable and

sup
k∈[a,b]∩N

sup
r∈[0,1]

f(k + r)

f(k)
<∞ and inf

k∈[a,b]∩N
inf
r∈[0,1]

f(k + r)

f(k)
> 0 , (8.2.1)

then there exists C > 1 with

C−1

b−1∑
k=a

f(k) ≤
∫ b

a

f(t)dt ≤ C
b−1∑
k=a

f(k) . (8.2.2)

Proof of Lemma 8.2.1. We bound∫ b

a

f(t)dt ≤
b−1∑
k=a

f(k)

∫ k+1

k

f(t)

f(k)
dt ≤

b−1∑
k=a

f(k) sup
r∈[0,1]

f(k + r)

f(k)
, (8.2.3)

from which the result follows by taking the supremum over all k ∈ [a, b]. The

lower bound works analogously.

Lemma 8.2.2. We have that for f(k) = pk(x)

sup
k∈[a,b]∩N

sup
|x|≤k

sup
r∈[0,1]

f(k + r)

f(k)
<∞ and inf

k∈[a,b]∩N
inf
|x|≤k

inf
r∈[0,1]

f(k + r)

f(k)
> 0 ,

(8.2.4)
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Furthermore

sup
x∈Zd

sup
k≥|x|

sup
r∈[0,1]d

pk(x+ r)

pk(x)
<∞ and inf

x∈Zd
inf
k≥|x|

inf
r∈[0,1]d

pk(x+ r)

pk(x)
> 0 , (8.2.5)

Proof of Lemma 8.2.2. Note that

pk+r(x)

pk(x)
=

(
k

k + r

)d/2
exp

(
− |x|2

2k(k + r)

)
. (8.2.6)

Due to the restrictions placed on |x|, we can conclude the statement. The

second part of the theorem follows analogously by expanding |x+ r|2 = |x|2 +

2〈x, r〉+ |r|2 and using the Cauchy-Schwarz inequality.

Lemma 8.2.3. For a, b ∈ Z and f, g : [a− 1, b]→ C we have that

b∑
k=a

f(k)g(k) =
b−1∑
k=a

F (k) [g(k)− g(k + 1)] +F (a− 1)g(a)−F (b)g(b) , (8.2.7)

where F (k) =
∑

l≤k f(l)

Proof of Lemma 8.2.3. We have that

b∑
k=a

f(k)g(k) =
b∑

k=a

[F (k)− F (k − 1)] g(k)

=
b∑

k=a

F (k)g(k)−
b−1∑

k=a−1

F (k)g(k + 1)

=
b−1∑
k=a

F (k) [g(k)− g(k + 1)] + F (a− 1)g(a)− F (b)g(b) .

(8.2.8)

8.3 Properties of the Gamma function and Gamma

distribution

Let Eα,β be the expectation with respect to a Gamma distributed variable with

parameter (α, β).
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Lemma 8.3.1. If γ ∈ R with α > γ, we have that

Eα,β
[
X−γ

]
=
βγΓ(α− γ)

Γ(α)
. (8.3.1)

Lemma 8.3.2. The moment generating function of a Gamma distributed ran-

dom variable is given by

ϕ(r) = Eα,β
[
erX
]

=

(
1− r

β

)−α
1{r < β}+∞1{r ≥ β} . (8.3.2)

Furthermore, its large deviation rate function satisfies

Λ(x) = sup
r∈R
{xr − logϕ(r)} =

βx+ α (log(α)− 1− log(xβ)) if x > 0 ,

+∞ if x ≤ 0 .

(8.3.3)

Proof of Lemma 8.3.2. The first part of the lemma is standard and follows

easily from observing that ϕ(r) = C(r)Eα,β−r[1] and solving for C(r).

For r < β, we differentiate xr−logϕ(r) to obtain that (given r < β and x > 0)

xr − logϕ(r) =

decreasing if r > β − α/x ,

increasing if r < β − α/x
(8.3.4)

whereas for x ≤ 0 it is strictly decreasing. This implies that for x ≤ 0 that

Λ(x) =∞, as xr dominates the log term. For x > 0, we have that β−α/x < β

and thus we attain a maximum at β−α/x. Plugging that value back into the

definition of Λ(x), we obtain the result.

We also include the following asymptotics of the incomplete Gamma

function. As they are easy to derive, we omit the proof.

Lemma 8.3.3. We have

lim
x→∞

Γ(s, x)

xs−1e−x
= 1 and lim

x↓0

γ(s, x)

xs
= 1 . (8.3.5)
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8.4 The topology of local convergence

This section relies heavily on [Geo88, Definition 4.2]. Let (E, τ(E)) be a locally

compact Polish space (e.g. Rm, Zn or the real half-line).

Definition 8.4.1. Denote ϕ ∈ EZd = Ω a field with values in E. Let

px : EZd → E be the projection which maps ϕ to ϕx ∈ E. Let F = EZd be

the product sigma algebra on EZd. For a finite subset Λ ⊂ Zd let FΛ be the

sigma algebra generated by the maps (px)x∈Λ. Let F0 be the sigma algebra of

cylindrical events defined by

F0 =
⋃

Λ⊂Zd: |Λ|<∞

FΛ . (8.4.1)

The topology of local convergence is then the coarsest topology such that the

map ν 7→ ν(A) is measurable for all ν ∈M1(Ω,F) and A ∈ F0.

We need the following results about the topology of local convergence.

We call a function local if it is measurable with respect to FΛ for some Λ ⊂ Zd

finite. We call it quasilocal, if it can be approximated by a sequence of local

functions in the infinity norm.

Proposition 8.4.2. I. M1(Ω,F) equipped with the topology of local con-

vergence is Hausdorff.

II. νn → ν in the topology of local convergence if and only if νn(f) → ν(f)

for all f quasilocal.

III. Let {fΛ
m, n ∈ N, fΛ

m − FΛ measurable } be a collection of separating

classes for (EΛ, EΛ). Then νn → ν in the topology of local convergence

if and only if νn(fΛ
m)→ ν(fΛ

m) for all m,Λ.

Proof of Proposition 8.4.2. The first two statements follow directly from

[Geo88, Remark 4.3]. For the third statement, choose Λ b Zd and fΛ-FΛ

measurable such that |f − fΛ| ≤ ε/3 for some ε > 0. We can write

|νn(f)− ν(f)| ≤ 2ε/3 + |νn(fΛ)− ν(fΛ)| . (8.4.2)

But as νn(fΛ
m)→ ν(fΛ

m) and (fΛ
m)m a separating class for FΛ, we have that for

n large enough |νn(fΛ)− ν(fΛ)| < ε/3. This concludes the proof.
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