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Abstract

DUNE is a future on-axis long-baseline neutrino oscillation experiment under

construction in South Dakota, USA. Preceding it are two prototype experiments

currently located at CERN - ProtoDUNE-SP and ProtoDUNE-DP. During the final

months of the LHC 2018 running period, a mixed particle beam was provided to the

ProtoDUNE-SP detector, where over 4 million beam trigger events were recorded.

This data will be used to benchmark many aspects of the detector technology, and

the results from it are vital to the success of DUNE’s full scale detector.

Analysis of electron induced electromagnetic showers using ProtoDUNE-SP’s

2018 beam data and ‘Production 2’ Monte Carlo has been performed. A number

of modifications to existing reconstructed variables have been suggested to better

meet the requirements of their intended use cases. Energy estimations have been

shown to provide resolutions within the expected range of a calorimeter, and dE/dx

measurements align with expected values also.

The Pandora reconstruction software has been applied to the nucleon decay search

through the p → K+ν̄ channel, and a BDT has been implemented with a sensitivity

of 8.0 × 1033 years.
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1
Introduction

“Behold, as a wild ass in the desert, go I
forth to my work.”

Frank Herbert - Dune - 1965

H igh energy particle physics sits at the very forefront of modern day physics,
consisting of experiments worth multiple billions of pounds, driven by
complex collaborations of scientists numbering in the thousands. Chief

among which are the neutrino detectors – such as the current T2K, and future
DUNE and Hyper-K – poised to make the next1 large discovery of physics beyond
the Standard Model.

From the emergence of particle accelerators in the second quarter of the 20th century,
the observance of the composite nature of the proton in the 1960s [1, 2], and the
discovery of the Higgs Boson at CERN in 2012 [3, 4], particle physics has been moving
forward at a phenomenal pace. The crowning achievement of the field however, was
the formalisation of the Standard Model, and its predictive capabilities, in the 1970s.
Despite its power, and the experimental confirmation of its predictions, the Standard
Model has many shortcomings. The model provides no quantised description of
General Relativity, nor a particle that explains the observations of dark matter and
dark energy in the universe. The Standard Model also does not predict the existence
of neutrino mass, and subsequently their oscillations; an observed phenomenon [5].

1In the opinion of the author.
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The upcoming DUNE collaboration’s goals include furthering the understanding of
the beyond the Standard Model physics observed by previous, and currently running,
neutrino experiments around the world. To do this it will deploy a 40 kt state of the
art liquid argon time projection chamber - a technology with the ability to image
particle interactions in phenomenal detail. This leap forward in detector abilities will
pave the way for novel methods of data analysis, such as utilising the full potential
of modern deep learning methodologies.

Neutrino theory, DUNE’s goals and detector design, and data reconstruction
techniques are discussed in Chapters 2-4.

Chapter 5 of this thesis investigates the reconstruction ability of electron induced
electromagnetic showers. Using data from the ProtoDUNE Single-Phase run I dataset,
as well as DUNE collaboration ‘Production 2’ Monte Carlo, a number of key variables
are assessed:

• Principal components analysis.

• Energy estimation.

• Measurement of the dE/dx at the start of a shower.

• Longitudinal and transverse profiles.

• A method for identifying the start position of a shower’s cascade.

. In Chapter 6, a sensitivity study on the lower lifetime limit per branching fraction
for the p → K+ν̄ is done using the Pandora reconstruction software, and a BDT for
signal-background separation.
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2
Neutrino Theory

“Science is made up of so many things that appear
obvious after they are explained.”

Frank Herbert - Dune - 1965

2.1 Neutrino History

D uring the first two decades of the 20th century, a number of experiments
were being conducted by numerous scientists on the recently discovered
phenomenon of radioactivity. Within the first few years of the century, it

had been determined that there were three distinct types of radiation; alpha, beta,
and gamma. Results from the experiments showed that alpha and gamma radiation
both conserved energy, as observed by having a narrow energy distribution. However,
in 1914, James Chadwick showed that the energy spectrum of the electron emitted
in the beta decay process was continuous [6]; a result not expected based on the
nuclear models of the time1, nor if energy conservation was to be universal.

Thus, for many years scientists were left rather nonplussed by this observation, and
it was not until 1930 when Wolfgang Pauli suggested “einen verzweifelten Ausweg": a
desperate solution [7]. Pauli suggested that there must be a third constituent to the
nucleus in the form of a small neutral particle. Which he named the neutron - later

1That being atomic nuclei consisted of only electrons and protons, and beta decay the emission
of a sole electron.
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renamed the neutrino following Chadwick’s discovery of the large2 nucleon, which
Chadwick also named the neutron. In 1934 Fermi formalised a neutrino-inclusive
beta decay theory, describing the reactions [8–10]:

n → p + e− + ν̄e (2.1)

p → n + e+ + νe (2.2)

where n and p are neutrons and protons, e−/+ an electron/positron, and νe/ν̄e the
neutrino/antineutrino. Note that Eqn. 2.2 can only occur inside a nucleus.

However, it was not until 1956 [8, 11–13] that the existence of Pauli’s proposed
neutrino was confirmed experimentally by the Cowan-Reines neutrino experiment.
The experiment was initially designed to use the inverse beta decay process,

ν̄e + p → n + e+ (2.3)

to detect antineutrinos emitted from a nearby nuclear explosion. The detector
would be filled with a liquid scintillator that would produce flashes of light as the
positron emitted by the process of eqn. 2.3 annihilates with a nearby electron. These
light flashes could be detected by photomultiplier tubes on the detector’s edge,
and their intensity used to calculate the energy of the initial two gamma photons.
Despite receiving approval for their rather radical experiment, Cowan and Reines
were persuaded to attempt the detection of antineutrinos emitted from the reactions
inside a nuclear reactor instead. The change in direction came following a realisation
that it could be possible to also detect the neutron emitted in eqn. 2.3. By doping
the target material with a cadmium salt, it would be possible to quickly recapture
the neutron released by the process in eqn. 2.3. As the neutron travels through the
target material, it slows down and eventually is absorbed by a cadmium atom in the
process:

n + 108Cd → 109mCd → 109Cd + γ (2.4)

As the excited cadmium atom relaxes, it emits a secondary burst of photons. This
delayed secondary burst of photons, in coincidence with the prompt photons from
the positron annihilating, can be used to verify the observation of an inverse beta
decay process, and as such show the existence of the antineutrino.

Amidst the tribulations surrounding the missing energy in beta-decay, other
2Relative to the size suggested by Pauli.
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scientists had their focus set on the problem surrounding the age of the Sun. What
physical process was allowing the Sun to burn so ferociously? Anaxagoras had first
theorised the Sun was a ‘mass of fiery metal’ [14] in the 5th century BCE, an idea
that went largely unquestioned until the industrial revolution. During this time,
as the understanding of thermodynamics increased, it became apparent that no
physical process could account for a large ball of metal remaining so hot for the
known history of humanity. As such, other explanations for the process that fuelled
the Sun were floated about - such as the idea that the Sun was collapsing inwards, an
idea from Lord Kelvin - but none provided processes that could last the timescales
suggested by geologists, or required by Darwin’s theory of evolution. It was not until
Rutherford suggested that radioactivity could be the source of the Sun’s energy, did
the field pick up pace. This suggestion eventually led to Hans Bethe’s theorisation of
the carbon-nitrogen-oxygen cycle, and upon further investigation, the proton-proton
chain. During both of these processes neutrinos are emitted - in vast quantities.

Ray Davis led the first large scale experiment - a detector consisting of 400 000 l of
tertachloroethylene, C2Cl4 3, 1 480 m underground at the Homestake mine in Lead,
South Dakota - to measure this neutrino flux from the Sun. John Bahcall noted in his
1964 Phys. Rev. Letter [15], that the 5.1 MeV excited state of argon is superallowed
as it is the analogue for the ground state of chlorine. Thus, the experiment would
rely on the capture of neutrinos by chlorine atoms in the process

37Cl + νe → 37Ar + e− (2.5)

The neutrino flux measured by the experiment would be that of boron-8, shown by
the curve labelled 8B in Fig. 2.1. The boron-8 neutrino flux is resultant from the
process

3He + 4He → 7Be + γ

7Be + p → 8B → 8Be + e+ + νe

where the initial 3He and 4He are products of the proton-proton chain. However,
during the 20 years that the experiment was running, the number of detected neutri-
nos was falling short of the amount predicted by the Standard Solar Model (SSM),
leading to the anomaly knows as the Solar Neutrino Problem.

Before Davis had started the Homestake experiment, another experiment at the
Brookhaven National Laboratory had discovered the existence of the muon neutrino

3Also a common cleaning fluid.
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Figure 2.1: The Standard Solar Model, showing the flux of neutrinos produced by
various processes in the Sun, and their energies [16].

using a high energy neutrino beam produced by the decay [17]

π± → µ± + ν/ν̄ (2.6)

while the flavour of the neutrino is not directly measured, the experiment found that
the neutrinos produced by the decay in Eqn. 2.6 always produced muons when inter-
acting in the detector. This led to the assertion that the neutrinos produced in the
beta decay must be different to the neutrinos produced by pion decay. The discovery
of the distinct electron and muon neutrinos led Pontecorvo, Maki, Nakagawa, and
Sakata to postulate the idea of neutrino mixing and oscillations in the vacuum [18–20].

Over the 30 years following the start of the Homestake experiment, a number
of other experiments also started taking data on neutrino fluxes, and also found
deficiencies in the number of neutrinos detected. The Kamiokande and Super-
Kamiokande experiments, both water Cherenkov detectors, observed deficits in the
number of solar neutrinos consistent with the results from the Homestake experiment.
Both Kamiokande and Super-Kamiokande detected solar neutrinos through the
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elastic scattering process:

ν + e− → ν + e− (2.7)

where ν is left flavourless as all neutrino flavours can scatter in this way [21, 22]. How-
ever, as electron neutrinos have a significantly larger cross-section as they are able to
undergo the process described by Eqn. 2.7 through both neutral and charged current
interactions. The neutrino flux measured by Kamiokande and Super-Kamiokande is
therefore dominated by the electron neutrino.

Like the Homestake experiment, Kamiokande and Super-Kamiokande were only
able to measure the flux of the 8B neutrinos. It was not until the 1990’s that the
proton-proton chain neutrino flux was able to be investigated using two gallium
based experiments - GALLEX/GNO and SAGE. Both experiments made use of the
process:

71Ga + νe → 71Ge + e− (2.8)

The experiments produced compatible results, again showing a deficit in the number
of expected neutrinos [23–26].

So far all experimental evidence was pointing towards two possibilities: i) The
SSM was incorrect, ii) neutrinos had properties that were not known about. To
solve this conundrum, there needed to be an experiment that could measure all
neutrino fluxes, independent of flavour and solar model. To do this the Sudbury
Neutrino Observatory (SNO) was made. SNO, like Super-Kamiokande, would be a
water Cherenkov detector, but would use heavy water (D2O) as opposed to normal
water. The advantage of using D2O is the sensitivity to two extra processes alongside
Eqn. 2.7:

νe + d → e− + p + p (2.9)

ν + d → ν + p + n (2.10)

Eqns. 2.9 & 2.10 describe the charged and neutral weak current processes respectively.
The charged current data, sensitive to only electron neutrinos, once again showed a
deficit in the expected value of the flux from the Sun. However, the neutral current
data showed a flux consistent with the SSM [5] - the first direct evidence that the
electron neutrinos could be oscillating into other flavours on their journey from the
Sun to the Earth.
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2.2 Neutrino Interactions

It is only possible for neutrinos to interact through the weak force, as they con-
tain neither electric charge nor colour charge. As such, it is possible for neutrino
interactions to proceed through either a charged current (CC) interaction, mediated
through the W boson, or a neutral current (NC) interaction, mediated through the
Z boson.

νl νl

Z0

N N

νl l

W

n(p) p(n)

νl l−

W +

p ∆++

π+

p

νl l−

W +

p

Figure 2.2: Top left: NC scattering of a neutrino off of a nucleon (N). Top right:
Quasi-elastic CC scattering of a neutrino with a nucleon, producing a lepton and
change neutrons to protons and vice-versa. Bottom left: An example of one possible
CC resonance scattering where a neutrino scattering off a proton produces a lepton,
and a ∆++ resonance which decays to a proton and a charged pion. Bottom right:
A deep inelastic scattering interaction. A high energy neutrino interacting with a
proton produces a lepton and a jet of hadronic particles.

At the lowest energy scale, all neutrino flavours are able to elastically scatter off
of nucleons through the NC interaction process: ν + N → ν + N. If the neutrino
has enough energy to create its corresponding charged lepton’s mass, then it is able
to scatter ‘quasi-elastically’ off a nucleon in the CC processes: ν + n → l− + p and
ν̄ + p → l+ + n. Because electrons exist in normal matter, it is also possible for
electron neutrinos to scatter off electrons through the process: νe + e− → e− + νe.

With higher energies, it is possible that a neutrino interacting with a nucleon causes
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the nucleon to go into a baryonic resonance, which then decays back into the nucleon
plus another charged particle. At the highest energies, it is possible for the neutrino
to interact directly with the quarks inside the nucleons, producing a jet of hadronic
particles.

2.3 Oscillations

The experimental observation of neutrino oscillations gives rise to the need for
neutrinos to have non-zero masses. As briefly mentioned in Chapter 1, this is one of
the shortcomings of the Standard Model (SM). The SM does not explicitly require
that neutrinos have mass, however, for neutrino oscillations to take place, the mass
and flavour eigenstates of the neutrinos must be distinct. It is then possible to
express the traditional flavour eigenstates - electron (νe), muon (νµ), tau (ντ ) - as a
superposition of the mass eigenstates

|να〉 =
N∑
i

Uαi |νi〉 (2.11)

where |να〉 are the flavour eigenstates, |νi〉 the mass eigenstates, and Uαi a unitary
mixing matrix4. Under current experimental results N = 3, but this is not necessarily
limited by theory. The mixing matrix, Uαi, is analogous to the CKM5 mixing matrix
of the quark sector, and is known as the PMNS6 mixing matrix (UPMNS). An n × n

unitary matrix consists of n2 parameters, but by fixing the relative phases between
the six neutrino states, it can be parametrised using three weak mixing angles, θ12,
θ23, θ13, and one CP-violating phase, δCP.
The UP MNS matrix can be written as [27]:

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1

 (2.12)

where cij = cos θij and sij = sin θij . The left most matrix, containing only θ23, de-
scribes the oscillations of νµ → ντ - the atmospheric oscillations. The central matrix,
containing θ13 and δCP, describes νµ → νe oscillations - the reactor oscillations. The
final matrix governs the oscillations νe → νµ and νe → ντ - the solar oscillations.

4U†U = I. Where I is the identity matrix.
5Cabibbo-Kobayashi-Maskawa
6Pontecorvo-Maki-Nakagawa-Sakata
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2.3.1 Oscillation Formalism

The following formalism primarily draws from Neutrino Physics Second Edition by
K. Zuber [27].

Assuming a plane wave solution to the time dependant Schrödinger equation, the
mass eigenstates |νi〉 have a time dependence

|νi(~x, t)〉 = e−iφi |νi(~0, 0)〉 (2.13)

where φi = Eit − ~p · ~x. Given that at a some time t and position ~x the neutrino
flavour state |νβ(~x, t)〉 will be measured, it can be written as

|νβ(~x, t)〉 =
∑

i

Uβi |νi(~x, t)〉 (2.14)

and combined with eqn. 2.13 to obtain

|νβ(~x, t)〉 =
∑

i

Uβie
−iφi |νi(~0, 0)〉 (2.15)

Assuming that the initial neutrino state is a pure |να〉 state, then the transition
amplitude να → νβ is given by

A(α → β)(t) = 〈νβ(~x, t)|να(~0, 0)〉 =
∑

i

∑
j

U∗
βie

iφiUαj 〈νi(~0, 0)|νj(~0, 0)〉 (2.16)

using

〈νβ(~x, t)| =
∑

i

U∗
βie

iφi 〈νi(~0, 0)| (2.17)

and eqn. 2.11 where i → j. Because the mass eigenstates are orthogonal, the relations

〈νi(~0, 0)|νj(~0, 0)〉 = 1 for i = j and 〈νi(~0, 0)|νj(~0, 0)〉 = 0 for i 6= j

can be used to reduce eqn. 2.16 to

A(α → β)(t) =
∑

i

U∗
βie

iφiUαi (2.18)

Now under the assumption that the neutrino travels in the x-direction, φi becomes

φi = Eit − ~p · ~x = Eit − pix (2.19)

and assuming that the momenta of each mass state is the same
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Ei =
√

m2
i + p2

i ' pi + m2
i

2pi
(2.20)

substituting eqn. 2.20 into eqn. 2.19

φi = pit + m2
i t

2pi
− pix (2.21)

and then using the relativistic assumptions, L = x = t and E ≈ p, eqn. 2.21 can be
simplified to

φi = EL + m2
i L

2E
− EL = m2

i L

2E
(2.22)

This can then be substituted back into the transition amplitude, eqn. 2.18

A(α → β)(t) =
∑

i

U∗
βie

i m2
i

L

2E Uαi (2.23)

It is then possible to obtain the transition probability P (α → β)(t) by squaring the
transition amplitude to obtain:

P (α → β)(t) = A(α → β)(t) =
∑

i

∑
j

U∗
βiUβjei

(m2
i

−m2
j

)L

2E UαiU
∗
αj (2.24)

which when expanded, gives

P (α → β)(t) =
∑

i

UαiU
∗
βi

∑
j

U∗
αjUβj

+ 2 Re
∑
i>j

U∗
βiUβjUαiU

∗
αj

[
ei

(m2
i

−m2
j

)L

2E − 1
] (2.25)

Because the masses, lengths, and energy are real observables, we can separate the
exponential into real and complex parts

Re
(

ei
∆m2

ij
L

2E − 1
)

= − 2 sin2
[

∆m2
ijL

4E

]

Im
(

ei
∆m2

ij
L

2E − 1
)

= sin
[

∆m2
ijL

4E

] (2.26)

where ∆m2
ij = m2

i − m2
j has been used for simplification. Because U is a unitary

matrix, the first term in Eqn. 2.25 becomes δαβ . Finally, by inserting Eqns. 2.26 into
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Eqn. 2.25, we can obtain our final oscillation probability of:

P (α → β)(t) = δαβ

− 4 Re
∑
i>j

U∗
βiUβjUαiU

∗
αj sin2

[
∆m2

ijL

4E

]

+ 2 Im
∑
i>j

U∗
βiUβjUαiU

∗
αj sin

[
∆m2

ijL

4E

] (2.27)

2.4 CP Violation

The simplest models of the Big Bang predict that the universe was created with
equal amounts of matter and anti-matter. However, the universe appears to be
dominated by normal matter. Thus following the simplest assumption of the Big
Bang models, some asymmetry in physical processes must exist to yield such a state.
This asymmetry lies in the violation of the charge-parity (CP) operator. The charge
(C) operator is the conjugation of a particle for its anti-particle (and vice-versa),
while the parity (P) operator flips the signs of all spatial coordinates for a particle.
The CP operator is the combination of the two.

If Eqn. 2.27 is applied to the three-flavour paradigm, and all parts of the UPMNS mixing
matrix are considered, then CP violating behaviour can be parameterised in terms of
a CP violating phase δCP - which can be seen in the oscillation probability between
two neutrino flavour states. For example, if we take the first order approximation
for the νµ → νe oscillation [28],

P (νµ → νe) ' sin2(θ23) sin2(2θ13)sin2(∆31 − aL)
(∆31 − aL)2 ∆2

31

+
[

sin(2θ23) sin(2θ13) sin(2θ12)

sin(∆31 − aL)
(∆31 − aL) ∆31

sin(aL)
(−aL) ∆21 cos(∆31 + δCP)

]
+ cos2(θ23) sin2(2θ12)sin2(aL)

(aL)2 ∆2
21,

(2.28)

with ∆ij =
∆m2

ijL

4E
,

it can be seen that δCP (highlighted in red) plays a role in the second term. When
considering the conjugate oscillation probability (ν̄µ → ν̄e), the sign of δCP changes.
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The effects that different values of δCP have on the oscillation probability, likely to
be observed at the DUNE far detector, are shown in Fig. 2.3
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Figure 2.3: The effect that different values of δCP has on the oscillation probability
of νµ → νe (left) and ν̄µ → ν̄e (right) with a baseline of 1 300 km, and normal mass
ordering. Figure taken from [29]

The current best results from the T2K collaboration, seen in Fig. 2.4, suggests that
within a 95% confidence level the values of δCP = 0 and δCP = π are ruled out, thus
hinting towards CP being violated in the lepton sector [30]. However, the 99.73%
confidence level does not exclude the CP conserving points, and so while this gives
strong hints as to level of CP violation in the lepton sector, definitive results at the
five sigma level require a next generation oscillation experiments, such as DUNE.

2.5 MSW Matter Effect

In Eqn. 2.28 there is present another factor that affects the oscillation probability,
a = GF Ne/

√
2, where GF is the Fermi constant and Ne the number density of

electrons in the Earth. This is known as the matter effect, or the MSW effect -
named after Mikheyev, Smirnov, and Wolfenstein for their work on the subject
[31, 32]. The cause of this parameter is simply the fact that electrons are the only
leptons to exist within normal matter, thus enabling electron neutrinos to undergo a
CC scattering process as well as the NC scattering that all neutrinos can undergo.
This then introduces another effect to the neutrino-antineutrino asymmetry as the
sign of a is reversed for neutrinos and antineutrinos.
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Figure 2.4: The current latest results from the T2K Collaboration. CP conservation,
δCP = 0, π, is ruled out to the 95% confidence level, but are not excluded by the
99.73% confidence level. Figure a shows the 68.7% confidence level for δCP vs sin2 θ13
as measured by T2K, with the star representing the best fit point for T2K + reactors
for the normal mass ordering (Sec. 2.6). Figure b shows the 68.27% and 99.73%
confidence intervals for δCP vs sin2 θ23 as measured by T2K. The colour scheme
represents the value of negative two times the logarithm of the likelihood for each
parameter value. Figure c shows the 68.27% (box) and 99.73% (whiskers) confidence
intervals for the normal mass ordering, and the 68.27% confidence interval of the
inverted mass ordering, both as measured by T2k [30].

2.6 Mass Ordering

Due to the neutrino oscillation measurements being sensitive only to the square of
the neutrino mass, as seen in Eqn. 2.27, it is not possible to make a direct mass meas-
urement with oscillation experiments. It is, however, possible to make measurements
of the mass-squared differences: ∆m2

ij ≡ m2
i − m2

j .

The smallest mass-squared difference, ∆m2
21, is defined as being positive-definite

such that m2
2 > m2

1, and has magnitude of order 10−4 eV2. The two remaining
mass-squared differences will be an order of magnitude larger, and so can be treated
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as being similar: |∆m2
31| ∼ |∆m2

32|. Measuring the sign of these two remaining
differences is the crux of the mass ordering problem in physics. If the third mass
eigenstate is more massive than the two other mass eigenstates then the mass ordering
is said to be ‘normal’, otherwise it is said to be ‘inverted’.
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Figure 2.5: The two possible neutrino mass orderings - normal or inverted. Each
mass eigenstate is also split into its fractional flavour content, with the δCP varied
from 0 to π (bottom of mass bar to top of mass bar). Figure taken from [28]

2.6.1 Majorana Mass

It is possible to generate the mass of particles in the SM through spontaneous sym-
metry breaking, however this process relies on the existence of right- and left-handed
particles - neutrinos, however, only exist as left-handed particles. It is possible
however to generate a mass term for neutrinos using a theory proposed by Ettore
Majorana in 1937 [33].

In the case that neutrinos are Majorana particles, then it is necessary to extend the
neutrino unitary mixing matrix, Eqn. 2.12, to include two Majorana phases, η1 and
η2.

U = UPMNS


eiη1 0 0
0 eiη2 0
0 0 1

 (2.29)

Because the oscillation probability depends on the square modulus of the mixing
matrix elements, these complex phases are cancelled out and do not affect the
neutrino oscillations. This is evidenced by a lack of neutrino-antineutrino oscillation
observations [34]. As such, it is necessary to have a different type of experiment that
involves the mixing of antineutrinos and neutrinos to measure the existence of these
Majorana phases. A number of neutrinoless double-beta decay experiments - such as
SuperNEMO [35], GERDA [36], and EXO [37] - are investigating this.
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3
The Deep Underground
Neutrino Experiment

“What senses do we lack that we cannot see and
cannot hear another world all around us?”

Frank Herbert - Dune - 1965

T he Deep Underground Neutrino Experiment (DUNE), is a next generation
long-baseline neutrino oscillation experiment using liquid argon time pro-
jection chamber (LArTPC) technology, in conjunction with the world’s

most intense neutrino beam. DUNE will be based at two locations: the U.S. Depart-
ment of Energy’s Fermi National Accelerator Laboratory (Fermilab), just outside
Chicago, Illinois; and the Sanford Underground Research Facility (SURF), in Lead,
South Dakota. An overview of the locations of the near site (Fermilab), the far site
(SURF), and the baseline connecting them is shown in Fig. 3.1.

The infrastructure for the near and far detectors, as well as the beamline, will be
provided by the Long-Baseline Neutrino Facility (LBNF), a U.S. Department of
Energy (DoE) project. The detectors themselves will be jointly funded and run by
the U.S. DoE and multiple international collaborators.

3.1 Physics Goals of DUNE

Neutrino physics has taken a great many leaps forward in uncovering some funda-
mental questions in particle physics in recent years. The observed neutrino oscillations
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Figure 3.1: An overview of the planned LBNF and DUNE projects, and the two
locations for the project - Fermilab, the near site, and SURF, the far site [29].

clearly show that we do not hold all the answers in the Standard Model, and that
there is physics beyond it. DUNE will attempt to answer questions further, and also
hope to answer some currently open questions. DUNE will do this by having a set
of primary and secondary physics goals.

DUNE’s primary physics goals are [29]:

• Precision measurements of neutrino oscillation parameters:

– Determination of the neutrino mass ordering - sign of ∆m2
31.

– Measurements of the charge-parity violating phase δCP.

– Measurements of the θ23 mixing angle.

• Search for the evidence of proton decay, and other processes that violate baryon
number.

• Measurement of νe flux from an intra-galactic core-collapse supernova.

DUNE’s secondary physics goals are:

• Search for sterile neutrinos in Beyond Standard Model (BSM) physics.

• Use of atmospheric neutrinos in measurements of neutrino oscillation phenom-
ena.

• Tau neutrino appearance measurements.

• Neutrino interaction physics using the near detector - such as neutrino interac-
tion cross sections, and various nuclear effects.

• Dark matter searches.
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3.2 Far Detector

The far detector (FD) modules will be located at a far site at the SURF facility
in South Dakota. The location will provide a baseline of 1 300 km, allowing access
to the first and second oscillation maxima across a range of energies (see Fig. 2.3).
The excavation of the caverns, located 1.5 km underground, will be provided by the
LBNF project. The caverns, as seen in Fig. 3.2, will consist of two larger caverns
for housing the cryostats - seen in Fig. 3.3 - of the FD modules, a smaller central
cavern for the data acquisition (DAQ) system and the cryogenics, as well as various
connecting tunnels and a refitted elevator shaft. The two larger caverns will provide
enough space to each house two cryostats. The project’s first phase will see two far
detector modules installed by 2028, with the remaining two modules being installed
over the following two years - or as quickly as funding allows.

Figure 3.2: The caverns at SURF. The large red boxes illustrate the cryostats of the
first two far detector modules. The central cavern, housing the DAQ system and
cryogenics, is located between the two cryostat caverns. The large vertical shaft is
the access elevator [29].

As of the time of writing, the first two planned modules will utilise the current
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Figure 3.3: A graphic showing the size of the cryostat housing for a LArTPC FD
module [38].

single-phase (Sec. 3.2.2) LArTPC technology being prototyped at various current and
past experiments. The third module will likely use dual-phase (Sec. 3.2.3) technology
if proven to work effectively. The design of the final module is left open to new
technological developments in the coming years.

3.2.1 Liquid Argon Time Projection Chambers

The time projection chamber was originally proposed by David Nygren in the late
1970’s [39], as a gas based drift chamber amalgamated with a multiwire proportional
chamber, designed to sit wrapped around the beam pipe of particle colliders. Carlo
Rubbia then iterated upon the design, and suggested using a liquid argon medium
instead of a gaseous one, as the liquid argon functions as both the target and detec-
tion medium [40].

Currently, LArTPC technology comes in two flavours - a single-phase (SP) and a
dual-phase (DP) design. The SP design operates by drifting ionisation electrons, that
have been liberated from their parent nuclei as a charged particle travels through the
LAr medium, laterally towards an instrumented anode plane that is also submerged
in the LAr volume. The ionisation electrons drift is instigated by a uniform −→

E -field,
typically of strength in the order of a few hundred volts per cm - DUNE will nomin-
ally operate at 500 V cm-1. The anode plane will itself consist of multiple planes of
finely pitched wires, where the signal induced and collected on these planes will form
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the basis for the reconstruction process. The DP technology works by drifting the
ionisation electrons vertically, extracting them across the boundary with a gaseous
argon volume where they are multiplied by an electron multiplier plane. The anode
plane of the DP differs from the SP by using two-dimensional PCBs with gold-plated
copper strips as the readout material.

In both technologies a prompt time signal is also provided by the VUV scintillation
light of LAr, which is collected by a photon detection system installed on the frames
of the SP anode planes and on the bottom of the DP TPC. The technology of SP
LArTPCs has already been demonstrated by a number of prototyping experiments -
ICARUS [41], ArgoNeuT [42], MicroBooNE [43], LArIAT [44], and ProtoDUNE [45]
- and is illustrated in Fig. 3.4.

Figure 3.4: A cartoon illustrating the principals of how a single-phase LArTPC
operates. Electrons are liberated from their parent nuclei as charge particles traverse
the LAr volume. These ionisation electrons are then drifted, under a large electric
field, towards a set of instrumented wire planes where the charge information is read
out [46].
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3.2.2 Single-Phase

Each DUNE-FD SP LArTPC module will have a total mass of 17.5 kt, with a fiducial
mass of 10 kt. The fiducial volume will be divided down the length of the LArTPC
by an alternating set of anode and cathode walls, as shown in Fig. 3.5. Each area
located between one anode wall and the adjacent cathode wall is known as a drift
volume. The individual anode walls will each be made from two rows of 25 anode
plane assembly (APA) units stacked on top of each other, while the cathode walls
will be made from three rows of 50 cathode plane assembly (CPA) units. A field
cage is then also placed on the top, bottom, and ends of the LArTPC to ensure a
uniform −→

E -field throughout the volume. Attached to the frame of the APAs will also
be the photon detection system’s X-Arapuca bars - with each APA having 10 bars
attached. An Arapuca works by using a dichroic filter to trap light inside a reflective
cell mounted with silicon photo-multiplier devices used to measure the light signal [46].

Figure 3.5: A schematic of the layout of a SP LArTPC. The anode (A) will be 2
APAs high, and the cathode (C) 6 CPA units high. The field cage can also be seen
covering the top, bottom and end of the LArTPC [46].

The LAr will be cooled to a temperature of around 87 K, and must maintain a high
purity. Oxygen contamination must be kept below 100 ppt (parts per trillion) to
ensure an ionisation electron lifetime of greater than 3 ms, as oxygen and water
impurities can absorb these drifting electrons. ProtoDUNE-SP’s operational per-
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formance has shown it is possible to achieve ionisation electron lifetimes exceeding
6 ms. Nitrogen contamination must also be kept below 25 ppm (parts per million),
as nitrogen absorbs the scintillation photons. To maintain this purity the LAr is
continuously cycled through a purification system. A summary of the required
specifications for the single-phase LArTPC can be seen in Table 3.1.

Table 3.1: Single-phase LArTPC Specifications [46].

Item Quantity
TPC size 12.0 m × 14.0 m × 58.2 m
Nominal fiducial mass 10 kt
APA size 6 m × 2.3 m
CPA size 1.2 m × 4 m
Number of APAs 150
Number of CPAs 300
Number of X-ARAPUCA PD bars 1500
X-ARAPUCA PD bar size 209 cm × 12 cm × 2 cm
Design voltage - 180 kV
Design drift field 500 Vcm-1

Drift length 3.5 m
Drift speed 1.6 mm µs-1

3.2.2.1 Anode Plane Assemblies

The APAs consist of 6 m tall by 2.3 m wide stainless steel frames, with multiple planes
of wires covering the large flat faces. The APAs on the top row of the anode walls
will have the readout electronics along the top edge, while the bottom row of APAs
will be inverted with the readout electronics along the bottom. The steel frames are
constructed from hollow bars to allow cables to be run through, and are mounted
with a grounding mesh to prevent ionisation from within the APA creating signals on
the instrumented wires. The wire planes are wrapped around the APA, creating four
planes of wires on each side of the APA. The wires are made from 152µm diameter
copper-beryllium (CuBe) alloy, chosen for its high durability and yield strength
(the maximum amount of stress applied before plastic deformation occurs). The
maximum tensile strength of the CuBe wires used in the ProtoDUNE-SP APAs has
been recorded as being higher than 1380 MPa, and a yield strength of over 1100 MPa.
This far exceeds the operational stress of around 340 MPa [46].
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Figure 3.6: A face on schematic of an APA. The blue boxes on the right hand edge
are the readout electronics. The green and magenta lines represent the two induction
planes, and the blue lines represent the collection and shielding wires [46].

The wire planes are layered with the top and bottom layers vertical, and the two
sandwiched layers at an angle of ±35.7◦ to the vertical, as shown in Fig. 3.6 and
Fig. 3.7. The two sandwiched layers, U and V, are held at voltages rendering them
transparent to the drifting ionisation charge. This transparency allows the charge to
completely drift past both of the planes, inducing1 signals of positive and negative
polarity as they do so. Once the charge has passed these two induction planes, it is
collected on the electrically opaque X plane of wires - the collection plane - where a
single unipolar signal is recorded. The outermost wire plane, G, is there to shield
the U induction plane from seeing a long leading edge to the signal pulses, thus
providing a cleaner measurement. The voltages of the wire planes can be seen in
Table 3.2, and have been calculated by COMSOL software [46].

Table 3.2: Bias voltages for the wire planes of an APA [46].

Wire Plane Voltage
G - Shield -665 V
U - Induction -370 V
V - Induction 0 V
X - Collection 820 V
Grounding Mesh 0 V

1Hence their names as ‘induction planes’
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3.2.2.2 Cathode Plane Assemblies

Key to the success of a good LArTPC is a strong and highly uniform −→
E -field facil-

itating the effective transport of ionisation charge across the detector. To achieve
this in DUNE there is the high voltage system, CPA plane, and the field cage. The
high voltage system is formed of an external power supply system, and the required
cabling and electrical filters to provide a stable and uniform voltage to the CPA plane.
The CPA plane is formed from smaller CPA units made from carbon-impregnated
Kapton2 laminated to FR-43 sheets. The CPA plane will be 6 CPA units high, and
25 CPA units long, and will be kept at a bias voltage of -180 kV, providing the
500 V cm−1 −→

E -field. The field cage is constructed from extruded aluminium bars
designed to ensure uniformity of the −→

E -field at the edges of the LArTPC. The CPA
and field cage arrangement can be seen in Fig. 3.5.

The chosen nominal value for −→
E -field strength is a trade-off between detector

performances that improve or degrade with −→
E -field values. For example, dE/dx

measurements are strongly affected by electron-ion recombination, which is suppressed
with a high value −→

E -field. However, the number of scintillation photons is inversely
proportional to the strength of the −→

E -field, potentially increasing the difficulty of
reconstructing a t0 for reconstructed particles. Through much operational experience
from preceding prototype experiments, it has been shown that 500 V cm−1 is the
most suitable −→

E -field value when considering potential trade-offs [46].

3.2.3 Dual-Phase

An alternative detector technology to the SP LArTPC is the DP LArTPC. The DP
design differs from the SP design by drifting the ionisation charge vertically before
extraction into a gaseous phase, as seen in Fig. 3.8. While in the gaseous phase,
the ionisation charge is amplified using large electron multipliers and collected on
instrumented PCBs as opposed to instrumented wire planes. This ionisation charge
amplification will provide an enhanced signal to noise ratio compared to the SP,
allowing for a lower threshold on the charge required to form a reconstructed particle
object. Another benefit of the DP design is the use of one singular readout plane at
the top of the TPC, reducing the amount of material in the LAr , providing a larger
homogeneous volume compared with the SP.

2DuPontTM, Kapton® polymide film, E. I. du Pont de Nemours and Company http://www.
dupont.com/

3NEMA grade designation for flame-retardant glass-reinforced epoxy laminate material, multiple
vendors, National Electrical Manufacturers AssociationTM, https://www.nema.org/pages/default.
aspx
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Figure 3.8: The operational principle of the dual-phase design. The ionisation
electrons are drifted vertically to be extracted and multiple in a gaseous phase to
increase signal to noise ratio [29].

The DP design, however, faces a number of challenges such as; maintaining an
ultra-pure gaseous layer, a much higher cathode voltage (600 kV, compared to 180 kV
for the SP design), build up of space charge in the liquid-gas interface layer, stability
at the top of the liquid layer with Argon boiling off. The ability to overcome these
challenges is currently being tested with the ProtoDUNE-DP located at the Neutrino
Platform Facility4 at CERN. While the construction of ProtoDUNE-DP was unable
to be completed before CERN’s LS2, it is now operational and has seen its first
particle tracks from cosmic rays [47, 48].

3.3 The LBNF Beamline and Target

The LBNF neutrino beam will be the world’s most intense neutrino beam, with
an assumed 1.1 × 1021 protons-on-target per year [29], once in operation [49]. The
Fermilab Main Injector proton accelerator will provide a 1.0-1.2 MW proton beam to

4Located in the EHN1 hall at CERN’s Prevessin site
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LBNF, where the beam will be focused onto a target, creating a wide-band on-axis
neutrino beam in the direction of the DUNE-FD. The current Fermilab roadmap
also includes upgrading the beam power to 2.4 MW by 2030.

A side on view of the proposed LBNF beam site and ND are shown in Fig. 3.9. As
the beam is leached from the Fermilab Main Injector, it is taken over an embankment
before being directed towards the target hall complex, and subsequent near site
facilities. The inclusion of the embankment allows the target hall complex to be
above ground, removing the need to excavate more material than is strictly necessary,
as well as minimising target installation and maintenance efforts going forwards.

Once the proton beam collides with the target, a beam of secondary charged particles
(mainly kaons and pions) are directed down a decay pipe, where the particles decay
into the neutrinos for the ND and FD detectors to measure. The proposed target
is a 1.8 m long graphite rode with a 16 mm diameter. This choice of target results
from considering a number of desired properties such as thermo-mechanical and
radiological damage, as well as a trade off between converting enough protons into
mesons without them simply absorbing the produced particles. The secondary
particles produced by the protons in the target are then charge selected by a series
of magnetic horns, that will direct the selected particles down the aforementioned
decay pipe. The target system will also have to incorporate a cooling jacket for
the target, as well as considerations for facilitating the replacement of the target
material as it deteriorates over prolonged use. A cartoon of the discussed facilities
can be seen in Fig. 3.10.

Figure 3.10: A cartoon showing the layout of the target hall and decay pipe at the
near site. The proton beam comes in from the left before hitting the graphite target,
creating a secondary set of charged particles which are directed towards the decay
pipe by the focusing horns located immediately downstream of the target. The
neutrinos produced in the decay pipe then travel on to the far site [50].
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3.4 Near Detector

An important part of long-baseline neutrino experiments is understanding the neut-
rino properties at the source of the beam. To accomplish this DUNE will have a
near detector (ND) located 304 m downstream of the end of the decay pipe. The
DUNE ND will be a complex of three technologically different detectors5. The three
detectors will be arranged linearly downstream of the neutrino beam, the planned
layout of the ND complex can be seen in Fig. 3.11.

The most upstream detector, ArgonCube, will use a modular LArTPC design, similar
to the FD but modified in areas to accommodate the much larger intensity expected
so close to the neutrino source. This detector will be used to reduce detector driven
systematic errors, and nuclear effects affecting the oscillation signal at the FD. The
size of the detector will be sufficient to provide high statistics, and good hadron
containment, but will not be able to contain muons with momenta greater than
0.7 GeV/c.

To measure the momenta of the muons escaping ArgonCube, there will be the
multi-purpose detector (MPD) located directly downstream. The MPD will consist
of a high-pressure gaseous argon TPC (HPgTPC), surrounded by an electromagnetic
calorimeter (ECAL) inside a 0.5 T magnetic field. The lower density and high pressure
system provides a number of benefits in tracking resolution and lower momentum
acceptances, and will help identify the particles produced in the primary interactions
in ArgonCube.

Both ArgonCube and the MPD will be able to move off-axis through a system called
DUNE Precision Reaction-Independent Spectrum Measurement (DUNE-PRISM).
Being able to take off-axis measurements allows the ND to create a neutrino energy
distribution closely mimicking the spectrum at the FD by combining different flux
measurements at different off-axis degrees.

5Affectionately known by collaborators as LArgon, GArgon, and NArgon (‘Liquid argon’, ‘gaseous
argon’, and ‘not argon’)
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Figure 3.11: The layout of the DUNE ND complex. ArgonCube (pink box) can be
seen to be the most upstream detector, SAND (red box) the most downstream, and
the MPD (green box) sandwiched between the two. In the top down view you can
also see the area where the DUNE-PRISM mechanism can move ArgonCube and
the MPD off-axis [29].

The final detector in this complex will be the System for on-Axis Neutrino Detection
(SAND). Consisting of 1 cm3 plastic scintillator cubes inside an ECAL and normal
pressure TPCs, this will act as the neutrino spectrum monitor determining the
on-axis neutrino flux, and will provide a good cross-check for flux measurements
made with ArgonCube.
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3.5 ProtoDUNE

The DUNE project’s R&D phase has resulted in a number of LArTPC prototype
devices [51–53], with the latest being the two sister ProtoDUNE experiments located
at CERN - ProtoDUNE Single-Phase and ProtoDUNE Dual-Phase. The two Pro-
toDUNE detectors are located in the EHN1 building extension at CERN’s Prevessin
site, and serve to test all aspects of the technology to be deployed at the DUNE-FD.
A photo of the two prototype detectors can be seen in Fig. 3.12.

Figure 3.12: The EHN1 building extension at CERN’s Prevessin site - home to the
two ProtoDUNEs. ProtoDUNE-SP can be seen in the foreground, while ProtoDUNE-
DP is in the background. Located between the two detectors, surrounded by the large
concrete blocks, is the end of the H4 beamline pointing towards ProtoDUNE-SP.

Both detectors use full size components following the FD design specifications, but
only represent a small section of a full scale FD module. For example, ProtoDUNE-
SP is only two drift volumes wide, with one cathode wall equidistant between two
anode walls. The anode walls are also only one APA tall, and six APAs deep.
ProtoDUNE-DP represents a similar portion of a full size DP FD module. The pro-
duction of the full size components used in the prototype detectors has been crucial
in understanding the needs required for mass fabrication of components in the years
to come, as well as the methods for transportation and installation of the components.

The construction of the two ProtoDUNEs, including that of the EHN1 extension itself,
was completed at breakneck speed between October 2015 and July 2018. ProtoDUNE-
SP was fully completed, and then filled with liquid Argon and commissioned in
August 2018, in time to receive test beam data between early September and mid
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November. ProtoDUNE-DP unfortunately suffered from a number of setbacks,
causing it to miss the test beam data taking opportunity offered before CERN’s
planned long shutdown 2. It is however now filled, and taking data from cosmic
ray interactions along with ProtoDUNE-SP. The continued running after the test
beam period is an important verification of the long term stability, and durability, of
detector components. There are also further planned test beam data taking periods
for 2022 and beyond.

3.5.1 H4-VLE Beamline

The beamline for the ProtoDUNE detectors is not a neutrino beam, but is instead
a charged particle beam operating in two different particle modes - hadron mode,
and electron mode. The purpose of the test beam is to test the response of the
LArTPC volumes to a selection of charged particle types across a range of mo-
menta. CERN’s Super Proton Synchrotron (SPS) provides a 400 GeV/c proton beam
which is directed towards a beryllium target. This produces a 80 GeV/c secondary
mixed hadron beam, which is then subsequently directed at a secondary target
of interchangeable material. The resultant tertiary beam is in the 0.3 - 7 GeV/c
momentum range, and is transported for injection into the TPC. The materials
used for the secondary target are tungsten and copper, where the former is used
for sub 4 GeV/c momenta to enhance the beam’s hadron content. The beamline
has a three types of monitoring instruments; profile monitors, trigger counters, and
Cherenkov counters. The profile monitors provide individual particle momentum
measurements, the trigger counters provide a “beam trigger”, and particle identifica-
tion is provided by a combination of the trigger counters and the Cherenkov counters.

Over the test beam operating period, a total of four million beam triggers were
recorded, at momenta ranging from 0.3 GeV c-1 to 7 GeV c-1, as shown in Table 3.3.
Below a beam momentum of 1 GeV c-1, electrons are the dominant particle species,
while above 1 GeV c-1 pions are dominant. At 1 GeV c-1, protons marginally dominate
over pions. A very small kaon contamination also exists at momenta above 1 GeV c-1.

3.5.2 ProtoDUNE-SP

As the majority of the work done in this thesis uses data and Monte Carlo simula-
tions from ProtoDUNE-SP, extra detail for the internal layout and terminology for
detector components is laid out here. Fig. 3.13 and Fig. 3.14 provide diagrams that
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Table 3.3: Number of beam triggers recorded at different energies provided by the
test beam [54].

Momentum (GeV/c) Total Recorded Beam Triggers
0.3 269 000
0.5 340 000
1.0 1 089 000
2.0 728 000
3.0 568 000
6.0 702 000
7.0 477 000

All Momenta 4 173 000

complement the following text.

As mentioned above, ProtoDUNE-SP consists of three APAs either side of a central
CPA wall. The APAs are numbered from 1 through 6, and also have labels matching
their location within the cryostat. First, the detector is split into three areas along the
detector’s length: upstream, midstream, and downstream. Upstream represents the
area covering the two APAs that are closest to the beamline, downstream represents
the area covering the two APAs at the opposite side of the detector, and midstream
is the two APAs between upstream and downstream. Secondly, the detector is split
along the CPA wall into two halves: beam left, and beam right, from the perspective
of facing towards the upstream face of the cryostat. This is shown in the diagram
of Fig. 3.13. Each APA can also be split into two faces, a TPC face, and a cryostat
face. The TPC face is the face that is on the side of the APA facing the CPA wall,
while the cryostat face faces the internal wall of the cryostat.

The x, y, z coordinate system for ProtoDUNE-SP has the origin located at bottom
corner of the upstream edge of the central CPA wall, with x increasing towards
the beam left side, y increasing vertically upwards, and z increasing towards the
downstream face of the cryostat. The test beam enters the cryostat slightly off centre
towards the beam right side of the detector, and about three-quarters of the way up
the upstream face. The test beam is also angled by about 13◦ towards the beam
right side in the x-z plane, and by roughly the same amount downwards in the y-z
plane.
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Figure 3.13: Diagram showing a top down view of the detector with the upstream,
midstream, downstream, beam left, and beam right areas labelled. The x-z plane
origin is located on the upstream edge of the CPA wall, with x increasing towards
the beam left side of the detector. The beam is shown as entering the detector with
a slight offset towards the beam right side, and with an angle of ∼ 13◦ to the central
CPA wall.
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Figure 3.14: Diagram showing the upstream face of the detector, labelling the TPC
and cryostat faces of the APAs. The entry point of the beam is also shown slightly
offset to the beam right side, and about three-quarters of the way up the upstream
detector face. The x-y plane origin is located at the bottom of the CPA wall, with y
increasing vertically, and x increasing towards the beam left side.
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3.5.2.1 Online Monitor

An important system for any detector is that of the online monitoring system used
during data taking runs. Such a system must provide a suite of informative plots
that provide any collaborator working in the control room with a good overview
of the detector’s current state. A particular aspect of the online monitor that was
used very frequently for ProtoDUNE-SP is that of the event displays. A particularly
important set of plots are the event displays for the wire planes of the APAs.

Each wire plane of an APA has its own event display in the online monitor, displaying
a 2D histogram of a wire channel number against the detector time tick, with the
intensity of each bin being the amount of charge collected. Alongside the event
displays for each wire plane of the APAs are a number of special event displays, for
example Fig. 3.15 shows the beam window event display. The beam window event
display is a zoomed in look at the wires and time window of APA-3 that correspond
to the volume of the TPC where the beam particles enter. As seen in Fig. 3.15,
this particular event display can show very clean images of the interactions of the
beam particles, and informs collaborators in the control room that the detector
is correctly measuring the charge. The saw like structure seen on the left hand
side of the event display is due to a bad timing clock on the motherboard that the
wires are connected to, and is easily correctable in the later data reconstruction stages.

Some maintenance, however, is required to keep the event displays in a useable
condition. As part of the event display creation, a pedestal value is subtracted from
the collected charge of each wire to reduce noise on the wires. The pedestal values
are calculated from a recorded time window when no test beam is being provided
to the detector, and then stored locally. Over time, the pedestal values will drift
from the ones previously calculated and stored. Fig. 3.16 shows what happens to the
event display as the pedestal values drift. This is easily correctable by performing
recalculations of the pedestal values on a frequent basis - ideally it should be at the
start of every run, or once a day, whichever is more frequent.

50



Figure 3.15: An example event display as seen on the online monitor’s webpage.
This particular display shows the area of the TPC where particles from the test
beam enter the detector. Collaborators find such a display useful as they can easily
see the quality of data being recorded in the most important area of the detector.
The colour scheme indicates collected ionisation charge.

Figure 3.16: An example of what can happen to the event display if the pedestal
values for the online monitoring system are not updated regularly. Each vertical line
of colour represents a single wire. The colour scheme indicates collected ionisation
charge.
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4
Particle Reconstruction and
Identification

“From the top of the mountain, you cannot see the
mountain.”

Frank Herbert - Dune - 1965

I n all modern particle physics experiments, the design, building, and measure-
ment taking capabilities of a detector is only half the battle. The ability to
reconstruct particle trajectories, and calculate their relevant kinematics, using

fully automated algorithms is a battle of constantly increasing complexity as the
detection techniques advance even further.

4.1 Monte Carlo Simulations

A key concept in experimental high energy physics is that of the Monte Carlo (MC)
Simulation. MC simulations are very powerful methods of estimating the outcomes
of the stochastic and probabilistic interactions that occur in the realms of particle
physics. When simulating experimental data with the MC method it is often done
in two stages. The first stage, event generation, sees a set of kinematic properties
given to a number of primary particles. These properties will follow probabilistic
physical laws, such as scattering angles, and will provide an initial state for each
particle in the second MC stage. The second stage will use the initial particle states
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as an input for a simulated detector, where MC methods are used to determine the
interactions and detector responses to the initial particles.

The simulated MC data is then used in many different ways. In the first stage of an
experiment, it can be used as a proof-of-concept and test-bed for detector designs. In
late stages, MC simulations can be used to assess detector performance, data analysis
techniques, or removing irreducible backgrounds. Experimental data can also be fed
back into the MC simulations to improve them further, as no MC simulation is a
perfect description of all physics. Often MC generators are specialised to a particular
niche of particle physics interactions, and sometimes multiple different generators
cover the same area.

For the DUNE FD MC, the event generator used is GENIE [55], a universal neutrino
event generator, and GEANT4 [56–58] is used to simulate the detector response. For
ProtoDUNE, a custom event generator [59] is used that generates beam particles
after the SPS extracted proton beam is impacted on the beryllium target, as per
sec 3.5.1, using information based on previous results [60]. The second stage is then
split in two, with the GEANT-4 based framework G4BeamLine [61] simulating the
secondary beam target and the particle transport in the beam pipe, and then a
separate GEANT-4 simulation for detector response.

4.2 Data Reconstruction

The ability to reconstruct particles from measuring charge drifting by, or being
collected on, a wire is a task with no one single solution. However, all solutions
require algorithms that are adept at the innate human ability to recognise patterns.
While being able to tell the difference between a cat and a dog can be instantaneous
for any human, it is a process that requires the recognition of a series of features
and patterns that distinguished the two.

Asking any individual to explain how they know a cat from a dog, and you will
likely receive an answer similar to ‘Well, one looks like a cat, and one looks like a
dog’, without them realising that they looked for a series of subtle patterns that
distinguish them. It is this decomposition of a problem into a series of smaller
pattern recognition aspects that sits at the heart of data reconstruction in particle
physics. Building an algorithm that looks at all the data at once, and identifies
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individual particles would be hard to build, and likely make lots of mistakes1. It
would be better to have a suite of algorithms, that slowly build upon each other until
the full image is complete. This is known as the multi-algorithm paradigm, and is
followed by the leading LArTPC reconstruction software, Pandora [62–64] (Sec. 4.5).

Before being able to begin pattern recognition however, an event data model is
required to store all the collected experimental data.

4.3 The art Framework

The art framework [65, 66] was developed to provide a universal base on which
current and future Fermilab experiments could build on, greatly reducing start-up
efforts and allowing greater cohesion between experiments. The design of art has
been largely driven by the CMS framework, which many of the art developers
have been involved with designing also. The art framework provides a method for
running code modules, often written by collaborations or individual users, in order
to simulate, reconstruct, or analyse data. The framework also provides a number of
utility classes that can connect data across stages of an art program. The running of
an art program is controlled by the custom made Fermilab Hierarchical Configuration
Language (FHiCL). FHiCL is a very accessible language, and allows for complete
control over the sequence and configuration of all invoked modules and utilities.

Importantly, art also provides a way to encapsulate all related data products
into an event . An event is usually defined as a particular period of time by each
individual experiment, but usually follows the time before and after some form
of trigger. For ProtoDUNE-SP an art event corresponds to a 3 ms time window
surrounding the beam trigger. Data products contained in an event can also be
bi-directionally linked by an art association.

4.4 The LArSoft Framework

LArSoft is a software framework, maintained by the LArSoft Collaboration [67],
providing a set of tools, algorithms, and utilities for LArTPC based detectors. LAr-
Soft also provides all the data products that are contained within an art event. While
LArSoft contains many hundreds of different data products, used by a multitude of
different algorithms through any complete reconstruction chain, there are a number
that are key for analysis work. Table. 4.1 lists and describes the data products that
are of particular relevance.

1Deep learning algorithms attempt to combat this, and a lot of research is being done into their
applications in particle physics.
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Table 4.1: Important LArSoft data products, and their descriptions.

Data Product Description
MC Particle An object containing the truth information for simulated particles.

Hit A 2D representation of the charge deposited on a wire.
Cluster A collection of hits that are grouped together by pattern recognition

algorithms.
Space Point A 3D point created from matching hits across wire planes.
PFParticle An object made from groups of clusters, and the primary output of

Pandora. A PFParticle contains hierarchical information connecting
it to a flow of PFParticles.

Track A high level fitted object created from a PFParticle that has track
like properties.

Shower A high level fitted object created from a PFParticle that has shower
like properties.

The base data product for each event is the 2D hit, which serves as the input for the
Pandora reconstruction chain - an example of which can be seen in Fig. 4.1. Each
hit contains information regarding the charge measured, time of measurement, and
wire number and plane. From this starting point, pattern recognition can be used
to group hits into clusters, which can then be formed into PFParticles. The PF in
PFParticle stands for ‘Particle Flow’, which is a method for linking particles through
hierarchies to provide more information about the flow of particles in an event.
Comparing 2D hits across all three planes of an APA, it is possible to form 3D hits
called Space Points. This process requires 2D hits on multiple planes to be correlated,
and so the number of Space Points does not always match the number of hits for a
particular particle. Once a PFParticle is made, it is possible to perform some form
of track/shower identification, and then fill the corresponding data product with
relevant particle properties. The PFParticle, track, and shower are the primary data
products that an analyser will likely access.

The MC Particle data object comes from the generation stage of an MC simulation.
They are the objects that are propagated through the detector simulation, and
generate the drift charge used for the creation of hits. As such, they contain the
truth information for what was actually simulated by the MC simulation.
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Figure 4.1: An example of the input hits from the collection planes of the APAs that
get passed to Pandora. The hits in blue, red, and black represent hits caused by the
test beam particle, test beam halo particles, cosmic-ray particles respectively [64].

4.5 The Pandora SDK

The Pandora software development kit (SDK) [62–64] is a solution to the problem
of complex pattern recognition posed above by using a multi-algorithm approach
to slowly build up a full picture of the particles, and interactions going on, inside a
detector at any given moment. Initially developed for use on data from the Inter-
national Linear Collider, Pandora has grown over the past 13 years to become the
leading reconstruction software used in LArTPCs. The extreme fine granularity of
LArTPCs, and the subsequent photograph like images produced, provides a challen-
ging, yet rewarding, medium with which to really showcase the power of the Pandora
multi-algorithm approach. The move from collider to LArTPC based experiments is
also a real testament to how flexible the framework can be.
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Pandora’s multi-algorithm approach to pattern recognition and event reconstruction
is designed so that no downstream algorithm should have to correct errors of previous
algorithms. This, in ways, mirrors the Unix philosophy of creating simple algorithms
that attempt to do one thing well, and to not become bloated and overcomplicated.
To achieve this, Pandora uses up to 75 algorithms on the 2D images that are created
from the charge induced or collected on a LArTPC’s wires. The order that the
algorithms are applied is completely configurable if needed2.

4.5.1 Pandora Reconstruction Chains

The Pandora team have created a consolidated reconstruction chain that emphasises
the power of the multi-algorithm approach, by applying algorithm chains in a logical
order designed to ensure the correct reconstruction for a particle. To facilitate this,
two algorithm chains have been devised - Pandora Cosmic, and Pandora Test Beam.

4.5.1.1 Pandora Cosmic

Pandora Cosmic is an algorithm chain tuned to reconstructing cosmic-ray like
particles. The reconstruction chain targets track-like particles, and assumes that
they are cosmic-ray muons. This means that the primary interaction vertex of each
track-like particle is assumed to be the y-point nearest the top of the detector, and
that all shower-like particles are assumed to be delta ray daughters of a parent
track-like particle.

4.5.1.2 Pandora Test Beam

Pandora Test beam is a slight modification to the Pandora Neutrino algorithm chain.
The Pandora Neutrino algorithm is designed to find a primary neutrino interaction
vertex, and then reconstruct the daughter particles emerging from it. The Pandora
Test Beam algorithm adds an additional algorithm at the end of the chain that
identifies the incident test beam particle by using knowledge of the location and
direction of the test beam, and sets it as the primary particle for that hierarchy.
This can be seen in Fig. 4.2.

4.5.1.3 Particle Stitching

All particles are initially reconstructed assuming a drift start time that corresponds
to the triggered test beam particle, from which two useful scenarios are possible
when trying to identify true cosmic-ray particles. The first immediately obviously

2However, some algorithms must come before others. For example 2D reconstruction must come
before 3D reconstruction.
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Figure 4.2: An example of a reconstructed test beam particle. The colours of particles
represent the hierarchy, with red being the initial incident test beam particle, blue
the daughters of the test beam particle, and green the granddaughters [64].

situation is where a particle track appears outside of the physical drift volume of the
detector. This is caused from a cosmic-ray traversing the detector out of sync with
the triggered beam particle, making it appear that the charge from the cosmic-ray
particle is outside of the detector. The second scenario is where a CPA crossing
particle can become split, as the direction of drift is mirrored between both sides of
the CPA. This concept is illustrated in Fig. 4.3.

CPA Plane APA PlaneAPA Plane

z

y

x, drift position Drift 
Direction

Drift time 
offset direction

Figure 4.3: An example of how the stitching works for CPA crossing cosmic-rays.
The red and blue tracks are the initial reconstructed particles, the green arrows show
the direction of the drift time offset, and the black track represents the stitched
together cosmic-ray [64].
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When a particle crossing the CPA plane is split in this way, it is possible to attempt
to ‘stitch’ the two individual tracks back together. If two reconstructed particles are
found to have parallel direction vectors pointing towards or away from the central
CPA wall, then a drift time offset is applied in opposite directions to each particle.
If the separate particle tracks are found to line up at the CPA wall boundary, with
drift time offsets of equal magnitude, then the two particles can be stitched together
into one CPA crossing particle.

4.5.1.4 Pandora Consolidated reconstruction

Together, the Pandora Cosmic and Pandora Test beam algorithm chains are combined
into a consolidated reconstruction shown in Fig. 4.4. The consolidated reconstruction
chain makes use of the multi-algorithm approach by walking the input hits through
a decision tree like architecture to ensure the final result is the most appropriate
reconstruction.

Input 
Hits

Pandora 
Cosmic

Tag 
Cosmic-Ray

Muons

Clear Cosmic-
Ray

Muons

Cosmic-Ray 
Muon

Removed Hits
3D Slicing Test Beam

Particle Id

Remaining 
Cosmic-Ray

Muons

Test Beam
Particles

Pandora 
Cosmic

Pandora 
Test Beam

Figure 4.4: The Pandora consolidated reconstruction. The consolidated reconstruc-
tion first removes clear cosmic-ray particles by reconstructing all input hits under
the Pandora Cosmic hypothesis. The non clear cosmic-ray hits are separated into 3D
slices before being reconstructed under both the Pandora Test Beam and Pandora
Cosmic hypotheses. The best outcome of which is decided by a boosted decision tree
(BDT) [64].

The first algorithm chain to be run by the consolidated reconstruction is the Pandora
Cosmic chain, reconstructing all particles under the cosmic-ray hypothesis. At the
end of the Pandora Cosmic algorithm chain, three criteria are used to label every
particle as being a ‘clear cosmic-ray’ or not. A particle is labelled as a clear cosmic-ray
if [64]s:

• it crosses the CPA plane and can be stitched with a drift time offset of greater
than 6.2µs, corresponding to a shift of 1 cm.
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• using the triggered test beam timing, a particle’s hits appear outside of the
detector.

• it enters the detector through the top face, and exists through the bottom face.

Any particle labelled as a clear cosmic-ray will have its constituent hits removed
from the hits that are passed onto the following stage of the reconstruction.

The next stage of the consolidated reconstruction starts before a 3D slicing on the
hits labelled as not clear cosmic-ray hits. The 3D slicing works by running a fast
reconstruction where reconstructed 3D particles are used to isolate hierarchically
linked particles into their own slices of the detector. Thus, one 3D slice will contain
a single primary particle and its daughter particles, as determined by the fast
reconstruction. The 3D slices are then passed onto another Pandora Cosmic instance,
as well as a Pandora Test Beam instance. This provides two reconstructed outputs
for each 3D slice, and a BDT (Boosted Decision Tree) is used to determine which
reconstructed outcome is the most sensible to persist. The BDT uses features that
are justified by the well understood position and direction of the test beam’s entry
into the TPC [63, 64].

4.5.2 Track/Shower Separation

Once Pandora has created a PFParticle it attempts to categorise it as either shower-
like or track-like using a cut based approach. To do this, a sliding linear fit is
performed on the clusters constituting the PFParticle. This is used to assess how
well a straight line approximates the particle’s trajectory, and how the width - the
particle’s spread perpendicular to the direction vector - of the particle changes along
its length. By comparing ratios of the change in width, or the distance to the
particle’s vertex, to the length of the linear fit with a predetermined optimised cut
value, a reasonable track/shower separator can be made.

A new BDT approach is also being developed for Pandora. This new approach
takes features such as length, like in the cut based approach, but also incorporates
hierarchical information, like number of daughters, and calorimetric information,
such as various charge ratios. The BDT approach has been shown to quickly outpace
the performance of the cut based approach. This can be seen in Fig. 4.5, where
accuracy is defined as ratio of correctly identified track-like and shower-like particles
to total number of particles.
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Figure 4.5: A comparison of Pandora’s original cut based approach (red) with the
newer BDT approach (blue) to track separation. The BDT approach clearly has a
much better accuracy at lower numbers of hits.

4.5.3 Performance

Pandora primarily uses three metrics to determine its reconstruction performance
for simulated data:

Efficiency = Number of MC particles matched to at least one reco particle

Total number of MC particles

Purity = Number of hits shared between matched MC and reco particle

Total number of hits in reco particle

Completeness = Number of hits shared between matched MC and reco particle

Total number of hits in MC particle

When calculating the efficiency, a reconstructed particle is matched to the MC
particle with which it shares the largest number of hits, provided the purity is above
50% and the completeness above 10%. All matches are used when assessing the purity
and completeness. Fig. 4.6 shows the efficiency of Pandora’s reconstruction when
presented with hits from the beam particle only (black), beam particle and beam
halo particles (red), and beam particle, beam halo particles, and cosmic-rays (blue).
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Figure 4.6: A breakdown of Pandora’s reconstruction efficiencies, for all beam
particles, with increasing simulation complexity. Removing cosmic-ray muons and
beam halo particles shows the scale of effect they have on decreasing the reconstruction
efficiency. Across all momenta, the cosmic ray-muons decrease efficiency by a constant
amount, while the beam halo particles have a much more pronounced effect at the
higher momentum [64].

The figure shows how at the highest momenta, the reconstruction efficiency is mostly
degraded by the beam halo particles, while around 3 GeV the beam halo particles
have almost no effect. The cosmic-rays are shown to degrade the reconstruction
efficiency by an almost uniform amount across the whole momentum spectrum.

When assessing the reconstruction efficiency of experimental data it is necessary to
construct a different efficiency to the one described above, due to no truth information
existing for experimental data. The efficiency definition is thus modified to count
the number of beam triggers (from the beamline information in data, and from the
MC particle hierarchy in simulation) that have a reconstructed beam particle, as
a fraction of the total number of beam triggers. Using this definition of efficiency
produces Fig. 4.7 for data (red) and simulation (black). The decreased efficiency in
data for low momenta is due to a triggering beam particle not leaving a strong enough
signal in the TPC for Pandora to realistically be able to successfully reconstruct it.
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Figure 4.7: Pandora’s reconstruction efficiency against true particle momenta for real
(red) and simulated (black) data. The simulated data’s efficiency differs from the
blue line in Fig. 4.6 because of the different definition used for efficiency as described
in the final paragraph of Sec. 4.5.3 [64].
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5
Characterisation of EM Showers

“A process cannot be understood by stopping it. Understanding must
move with the flow of the process, must join it and flow with it.”

Frank Herbert - Dune - 1965

E lectromagnetic (EM) showers are QED processes where a large cascade of
propagating particles is induced by a single initial particle. The cascade
is initiated either by a high energy electron∗ undergoing bremsstrahlung,

or a high energy photon annihilating through pair production. As the cascade of
particles propagates through the material, undergoing further pair production and
bremsstrahlung, the energy of each individual particle slowly decreases until the
dominant energy loss mechanism becomes ionisation, where the EM shower will
slowly die out.

EM showers are typically discussed using two parameters: radiation length (X0) and
Molière radius (RM ). The radiation length is defined as the amount of material a
high-energy electron will pass through before loosing all but 1

e of its energy through
bremsstrahlung, and is often used as the length scale when describing EM showers.
The Molière radius describes a cylinder in which one would expect to find 90% of an
EM shower’s energy, and is defined relative to the radiation length as RM = X0Es/Ec,
where Ec is the critical energy of the material, and Es ≈ 21 MeV† [34]. The critical
energy is the energy below which ionisation becomes the dominating energy loss
mechanism. For LAr, Ec = 30.5 MeV [68].

∗Electron is used here to represent both electrons and positrons.
†Material independent scaling factor.
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An example diagram depicting how a shower initiated by an electron might propagate
is shown in Fig. 5.1. As depicted, the electron will travel for one radiation length,
shown by the vertical dashed lines, before radiating a photon through bremsstrahlung.
After another radiation length, one would expect the bremsstrahlung photon to pair
produce an electron and a positron, and the initial electron would radiate another
photon. This process would repeat until the ionisation becomes dominant.

Figure 5.1: An example diagram of an electromagnetic shower induced by an incoming
electron. After traversing one radiation length (X0) of a medium, indicated here by
the blue hatched region, the electron radiates a bremsstrahlung photon. This process
repeats until the EM shower dies out due to energy losses through ionisation.

5.1 Datasets

Three datasets have been used for the analysis presented in this chapter; a single
particle gun MC dataset, a ProtoDUNE-SP beam simulation MC, and real ProtoDUNE-
SP beam data.

The ProtoDUNE-SP beam data (PDSP-BD) used in this analysis are listed in
Table 5.1. These data taking runs have been selected as they are free from instabilities
in the ProtoDUNE-SP hardware that occurred during some other data taking runs.
These runs provide a statistically significant sample of events per momentum interval.
The ProtoDUNE-SP beam simulation MC (PDSP-MC) used in this chapter are the
‘Production 2’ MC found under the Fermilab SAMWeb definitions in Table 5.2.
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Table 5.1: Beam data run numbers.

Momentum (GeV/c) Run Numbers
1.0 5809, 5816, 5817
2.0 5824
3.0 5777, 5779, 5785, 5786
6.0 5770, 5771
7.0 5143, 5145, 5204

Table 5.2: ProtoDUNE-SP beam simulation MC datasets.

Momentum (GeV/c) SAMWeb Definition

1.0 PDSPProd2_MC_1GeV_reco_sce_datadriven
2.0 PDSPProd2_MC_2GeV_reco_sce_datadriven
3.0 PDSPProd2_MC_3GeV_reco_sce_datadriven
6.0 PDSPProd2_MC_6GeV_reco_sce_datadriven
7.0 PDSPProd2_MC_7GeV_reco_sce_datadriven

As briefly discussed in section 4.1, the PDSP-MC generates beam particles 2 m
upstream of the TPC, including beam halo particles, and using the G4BeamLine
framework transports the particles to the detector where GEANT-4 is used to sim-
ulate interactions and energy deposits in the TPC. Two LArSoft algorithms are
then used to simulate ionisation charge and scintillation-photons. A cosmic ray
background is simulated using either CORSIKA [69], or CRY [70]. The space charge
effects SCE are applied using a map, made using SPaCE [71], of distortions to true
position.

A single particle gun MC dataset is also used throughout parts of this chapter. The
beam particles in this MC consist solely of electrons, and are generated at the beam
window position on the upstream face of the TPC. The initial position, direction,
and momentum of each initial electron is also subjected to a 5% smearing. This MC
also does not contain any cosmic ray background, or any SCE. This MC is generated
using the v08_40_00 version of dunetpc [72].
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5.2 Space Charge Effect

The −→
E -field in a TPC should, nominally, be uniform throughout the detector. The

uniformity of the −→
E -field is critical in ensuring accurate reconstruction of a particle’s

position and trajectory. However, as particles traverse the detector, slow moving
positive ions build up inside the TPC leading to distortions in the electric field.
As the build up of positive ions is caused by particles ionising the LAr, the effect
is very notable in ProtoDUNE-SP as a surface detector. As the ProtoDUNE-SP
beam is also not pure, each beam spill comprises of multiple particles and particle
species, worsening the effect around the beam’s entry position into the TPC. As
such, the most upstream section of reconstructed particles is the most severely
affected. As the positive charge is attracted to the central cathode, and constantly
replenished by continual cosmic-ray interactions, the ionisation drift electrons are
pulled towards the cathode slightly as they proceed to the anode. This can cause
a bowing towards the cathode of subsequent reconstructed particles, as well as a
squeezing in the z-direction. Using the SCE map it is then possible to correct the
position of reconstructed hits. Fig. 5.2 shows the effect of correcting the position for

1 GeV

2GeV

3GeV

6GeV

7GeV

Figure 5.2: The uncorrected and corrected positions for 3D space points in the
PDSP-MC dataset. The impact of SCE is most notable in the z-positions due to the
squeezing of the drift charge.

the different momentum in the PDSP-MC dataset. The difference in the z-positions
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demonstrates how large the z-direction squeezing is, and how the effect is greater
nearer the edge of the TPC.

5.2.1 Event Selection

A LArSoft analyser is used to select events where the primary reconstructed particle
is the initial electron. Doing so in the single particle gun MC is trivial, but the
other two MCs require a more in-depth solution. The PDSP-MC requires matching
reconstructed particles to the GEANT4 simulation, and the PDSP-BD requires
using beam matching tools that utilise information from the various beam monitors
operated by CERN’s beam group. The beam’s time of flight monitors and Cherenkov
detectors are used to select electron candidates from the recorded events. The
reconstructed events are matched back to information from the beam monitoring
system by a LArSoft utility that compares the beam trigger’s timestamp with time
of flight information. The analyser is written with the v08_39_00 protoduneana
library of analysis tools.

Beyond selecting the electron candidates in the PDSP-BD dataset, it is import-
ant to also select EM showers that start showering inside the TPC. As the single
particle gun MC electrons are generated within the TPC, they can serve as a bench-
mark for what a complete shower looks like. As seen in Fig. 5.3, two particularly useful

Figure 5.3: Number of reconstructed 2D hits (a) and length (b) for 1 GeV/c (red)
and 6 GeV/c (azure) single particle gun MC events.
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properties in determining a complete shower are the number of hits associated to, and
the length of the EM shower. The distributions in Fig. 5.3 are for 1 and 6 GeV/c single
particle gun MC events, and can provide a good benchmark for an understanding
of whether selected electron events in the PDSP-MC and PDSP-BD datasets can
be considered as fully contained showers. The (a) plots of Fig. 5.3 are fitted with a
Gaussian function

f(x; A, µ, σ) = A

σ
√

2π
e

−(x−µ)2

2σ2 , (5.1)

while the (b) plots are fitted with a skewed Gaussian function

f(x; A, µ, σ, γ) = A

σ
√

2π
e

−(x−µ)2

2σ2

{
1 + erf

[
γ(x − µ)

σ
√

2

]}
(5.2)

where A is the amplitude of the fit, µ the mean, σ the standard deviation, γ the
skew, and erf the error function.

Using the number of 2D hits distributions in Fig. 5.3, and similar distributions
for other momenta, a minimum number of 2D hits threshold can be set on the
PDSP-MC and PDSP-BD datasets. The threshold being that all reconstructed
electron candidates with less 2D hits than this threshold will be considered as not
fully reconstructed (due to showering before the TPC), and will be rejected from the
selection. The value for these hit thresholds can be seen in Table 5.3. The effect of
applying a 2D hit threshold to the 1 and 6 GeV/c PDSP-MC and PDSP-BD can be
seen in Fig. 5.4, where the two Fig. 5.4(a)s show a peak at lengths of 0 cm due to
electrons that start showering before they reach the TPC. The two Fig. 5.4(b)s show
how after applying the 2D hit threshold, the peaks near 0 cm are removed, and the
samples are left with EM showers that start within the TPC.

Table 5.3: Number of 2D hit thresholds for PDSP-MC and PDSP-BD datasets.

Momentum (GeV/c) Hit threshold

1.0 250
2.0 500
3.0 900
6.0 1800
7.0 2000
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Figure 5.4: Length distribution before (a) and after (b) applying a 2D hit threshold
to events in the PDSP-MC and PDSP-BD datasets. The fits in (b) are computed
for the PDSP-MC distributions, and use the skewed Gaussian function of Eqn. 5.2.

5.3 Shower Principal Components Analysis

During the Pandora reconstruction chain, the 3D space points are used to perform
a principal components analysis (PCA). The PCA is performed using the C++
template library Eigen [73], the outputs of which are three eigenvector-eigenvalue
pairs. These eigenvector-eigenvalue pairs are used to form a coordinate system
unique to each individual reconstructed shower object, which is used as the basis for
calculating many kinematic variables (such as direction and length) when analysing
EM showers. An example of the eigenvectors calculated by a PCA of a toy 2D
dataset can be seen in Fig. 5.5.
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Figure 5.5: An example of the resultant eigenvectors, orange and maroon arrows, for
a distribution of points, with the length of the arrow being three times the square
root of the eigenvector’s corresponding eigenvalue.

5.3.1 Pandora’s PCA

The PCA is performed by the method of eigenvalue decomposition of the covariance
matrix for the three spatial coordinates of the shower’s space points. First assume
that N space points are described by vectors ~si = (xi, yi, zi), where i = 0 → N . The
space point vectors ~si are then arranged into an N × 3 matrix, S. The mean for
each column of S can be calculated and formed into a mean vector using

~µ = 1
N

N∑
j

Sj (5.3)

where j is the row index of the matrix S. The mean vector is then subtracted from
all row vectors in S such that

P = S − h~µ (5.4)

where h is an N × 1 column vector of all 1s, and P contains the N row vectors
~si − ~µ, translated such that their mean position is now the origin. The covariance
matrix of the space points is then calculated as

C = 1
N

P T P (5.5)
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where P T is the transpose of P . The covariance matrix C will then be a 3 × 3
matrix with eigenvectors and eigenvalues such that

C = QΛQ−1 (5.6)

where Q is a 3×3 matrix whose columns, ~qk with k = 1, 2, 3, are the three eigenvectors
of C, and Λ is a diagonal matrix whose diagonal elements are the corresponding
eigenvalues, Λkk = λk. The eigenvector-eigenvalue pairs, ~qk and λk, are then ordered
by magnitude of the eigenvalue and are called, in decreasing magnitude, the primary,
secondary, and tertiary components of the PCA. As the components from the PCA
are used to describe the coordinate system of a real 3D shower, they will be referred
to as axes. Because the eigenvalue for each pair describes the variance along each
axis, the spread of space points along each axis can be estimated by

`λk = 6
√

λk (5.7)

where 3
√

λk represents 3σ along the corresponding axis, but because the axis origin-
ates from the mean position of the shower it is multiplied by two. An example of a
reconstructed shower’s 3D space points and their PCA axes are shown in Fig. 5.6, with
the PCA axes emanating from the centroid of the shower and of width `λi. In this
example it can be seen that the primary axis (red) appears alongside what a human
analyser would select as the length of the shower’s 3D space points. The secondary
(green) and tertiary (blue) axes would be much harder for a human analyser to select,
but a PCA is able to identify them. It is worth noting that in Fig. 5.6, and other 3D
figures, the secondary and tertiary axes may not appear orthogonal to the reader
because of the scaling of the plot’s own axes and the perspective chosen by the author.

A useful operation to perform when looking at these 3D images is to project the
space points onto two 2D axes. This has been done for the example shown in Fig. 5.6,
where the projections of the secondary and tertiary axes are plotted against the
projections of the primary axis, and can be seen in Fig. 5.7. Doing this creates a
more easily digestible representation of the distribution of the Shower’s space points.
Fig. 5.7 shows that the secondary axis of the shower has a width roughly three times
(ignoring the three potentially anomalous points at 50 cm from the primary axis
in the secondary-primary plane) that of the tertiary axis. It is also evident that
while the minimally ionising start of the shower lies along the primary axis in the
primary-secondary axes plane, it is at a very noticeable angle in the primary-tertiary
axes plane. A possible explanation is that the PCA might have settled inside a local
minima during computation - but this was found not to be the case. The angle
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Figure 5.6: An example of a reconstructed 3D shower with its PCA primary (red),
secondary (green), and tertiary (blue) axes overlaid. The secondary and tertiary
axes do not appear orthogonal to the primary axis because of the different scale plot
axes and the perspective of the image.

between the primary axis and the minimally ionising start of the shower is due to the
diffuse stage of the developed shower, as all space points are given the same weight
in the PCA computation. While this is the desired outcome of a traditional PCA, it
is much more desirable from a physics perspective to have the primary axis lie along
the initial track-like section of the shower. This is because the angle at which the
particle leaves a vertex is an important quantity for various physics analyses, and
the direction attributed to each Shower object is derived from the PCA primary axis
- as discussed later, in section 5.4. Thus, it is prudent to create a PCA that does
bias the primary axis to being along the minimally ionising start of the shower.
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5.3.2 Recursive Weighted PCA

It is possible to bias a reconstructed Shower’s PCA by providing a weight to each
3D space point, with the weights being designed in a way that would prioritise
certain features of the Shower. For the reasons described in the previous section, it
is desirable to produce a weight that would prioritise the initial minimally ionising
section of the Shower, and a method using a recursive weighted PCA has been
created to do so.

This method builds off of the initial unweighted PCA performed by the Pandora
reconstruction software, and recursively performs subsequent PCAs with changing
weights until one of two cut-off conditions are met. The recursive weighted PCA
method works by calculating a weight for each 3D space point based off of the
previously calculated PCA - and so the process must start with an unweighted PCA.
The weight for a 3D space point is calculated using

wi = 1
ziri

(5.8)

where zi is the projection along, and ri the radial distance to, the primary axis of
the previous PCA. The origin for the projection is set as being `λi/2 away from
the PCA’s average position backwards‡ along the primary axis. The PCA is then
recomputed using the new weighted 3D points, and done so recursively until the
average normalised weight ceases to change. The average normalised weight for any
given PCA is calculated as

W = 1
Nwm

i=N∑
i=0

wi (5.9)

where wi are the weights as calculated in Eqn. 5.8, wm is the maximum of the weights
wi, and N the number of weights. The value of W for a PCA is compared against
the value of W for the previous PCA, and if they are the same (or similar to within
0.00001) then the recursion is halted and the last computed PCA is returned. The
recursion is also stopped, and the last computed PCA returned, if the recursion
depth reaches 50 without the two values of W becoming within 0.00001 of each other
- this is to prevent any possible case of infinite recursion.

The result of running the recursive weighted PCA method on the same example
Shower as shown previously can be seen in Fig. 5.8 and Fig. 5.9. The effect of the
recursive weighted PCA can be readily seen in the 2D projections of Fig. 5.9, where

‡Shower direction is discussed further in the next section.
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the minimally ionising part of the Shower in the primary-tertiary plane now runs
parallel to the primary axis. The fact that the secondary and tertiary axes are now
mirrored along the primary axes is down to the nature of a PCA, and is completely
unproblematic as the specific direction of the secondary and tertiary axes are not used.

Figure 5.8: An example of a reconstructed 3D shower with its unweighted PCA and
recursive weighted PCA axes overlaid. The unweighted PCA axes are the dotted
lines, and the recursive weighted PCA axes are the solid lines.

5.4 Shower Direction

The direction vector of a Shower is set by Pandora as the direction along the primary
axis from the PFParticle’s vertex (as determined by Pandora’s vertex finding al-
gorithm) to the centroid calculated from the unweighted PCA. As mentioned above,
this direction is not well suited to physics analyses that will rely on the angle at
which a particle leaves an interaction vertex, and thus a new method is needed to
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provide a direction more closely matching this.

To see if the new recursive weighted PCA gives a better estimation of the direction
of the particle along the minimally ionising part of the Shower, the angle between
the primary axis and the Monte Carlo truth can be measured. The truth value for
the direction vector is taken as the direction of the Monte Carlo true particle at the
simulation step where it starts to interact. Fig. 5.10 shows two box plots for each
simulated momentum interval, the blue box plot showing the angle between the MC
true particle’s direction and the unweighted PCA, and the orange box plot showing
the angle between the MC true particle’s direction and the recursive weighted PCA.
Comparing the orange box plot to the blue box plot for each momentum interval,
it can be seen that the recursive weighted PCA provides a shower direction that is
much closer to the true direction. Fig. 5.10 is made using electrons from the single
particle gun MC dataset.
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Figure 5.10: Plots comparing the angle between the direction of the Monte Carlo
true particle and the primary axis from the unweighted PCA (blue) and the recursive
weighted PCA (orange), for electrons from the single particle gun MC dataset.

Applying the recursive weighted PCA direction to the PDSP-MC and PDSP-BD
datasets can be seen in Fig. 5.11. The value of true direction for the PDSP-MC
dataset remains the same as the single particle gun MC, but the truth value for
PDSP-BD comes from the last measurements made by the beam monitors. The
cosine of the angle between the truth and the reconstruction is larger in PDSP-BD
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as the truth measurement is made a few metres upstream of the detector, and so
any interactions in the cryostat wall will cause a greater deviation between the true
value and the reconstructed value.
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Figure 5.11: Comparison of the angle between true and reconstructed direction
using the recursive weighted PCA on PDSP-MC and PDSP-BD. The truth value for
PDSP-BD is taken from the final beam monitors.

5.5 Fractional Explained Variance

It is also possible to learn about the relative spread of a shower, along each axis, from
the eigenvalues of the PCA. When taking the ratio of one eigenvalue calculated by the
PCA to the total of all eigenvalues, this gives a quantification of how much of the total
variation of the data is described by that axis. This is often known as the fractional
explained variance§. The fractional explained variance of the unweighted PCA is
more interesting from a physics perspective, as it will describe the whole Shower
better, while the recursive weighted PCA’s fractional explained variance is likely
to be largely uninteresting by design of being biased to the minimally ionising section.

Fig. 5.12 shows the fractional explained variances for the axes of the unweighted
PCA at each momentum interval for PDSP-MC and PDSP-BD. It can be seen in
both datasets, that at higher energies the shower’s width increases at a faster rate
than the length of the shower as energy increases. It can also be seen that Showers

§Explained variance is another term for the PCA’s eigenvalues, as the eigenvalues are a measure
of the variance along any given axis.
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in PDSP-BD appear wider relative to their length, as compared with PDSP-MC
Showers. The fractional explained variances of the recursive weighted PCA for
PDSP-MC and PDSP-BD events can be seen in Fig. 5.13. This figure shows that the
recursive weighted PCA is being heavily weighted by a very linear set of 3D space
points, which would be consistent with it having found the minimally ionising section
of the EM shower. Again however, like in Fig. 5.12, these minimally ionising sections
of events for PDSP-BD do appear to be slightly less linear than for PDSP-MC.
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Figure 5.12: Box plots for the fractional explained variance of the three axes from
the unweighted PCAs at each momentum interval for the PDSP-MC (orange) and
PDSP-BD (blue) datasets. The decrease in the values for the primary axis (blue
boxes) shows that EM showers of higher momentum are more spread out laterally
relative to their length.
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Figure 5.13: Box plots for the fractional explained variance of the three axes from
the recursive weighted PCA at each momentum interval for the PDSP-MC (orange)
and PDSP-BD (blue) datasets.

5.6 Shower Length

Because showers are cascades of multiple particles, there is no well defined value
for their length. Pandora assigns the width of the primary axis, calculated using
Eqn. 5.7, to the length variable of a reconstructed shower object. This is a reasonable
measure of the length of a shower, however, it is subtly different from what one
might intuitively expect for a quantity labelled as the length of the shower. The axis
width as per Eqn. 5.7 is actually just twice the value used to commonly quantify
the variance of a principal component, which is normally measured in one direction
along the component’s axis from the PCA centroid. So while this usually describes
the width of a PCA axis well, it can appear to overestimate the length of a shower if
measuring from the initial hit from a shower. This subtle difference can be seen in
Fig. 5.14, where the PCA primary axis width is labelled as the Eigenvalue length.
While the Eigenvalue length encapsulates the whole of the shower, it is rather severely
overestimating the length of the shower as measured from the most upstream point.

On the same figure is another measure of length, the Projection length, which is
defined as the projection of the most downstream 3D space point onto the primary

81



axis, relative to the most upstream 3D space point. This definition of length provides
a value which is closer to the shower length one might conclude ‘by-eye’ given the
distribution of 3D space points. A downside to this length definition is that it will
be much more sensitive to any extreme downstream 3D space point outliers.

Figure 5.14: A 1 GeV/c single particle gun MC shower that has had its 3D space
points projected into the PCA axes coordinate system. Overlaid are the two different
definitions of length for the shower, with the eigenvalue length being about 50 cm
longer than the projection length.

A comparison between the Eigenvalue length and the ‘Projection Length’ for each
momentum interval of the single particle gun MC can be seen in Fig. 5.15. This figure
shows how the Projection length is generally shorter than the Eigenvalue length,
with the difference between the two lengths decreasing as the particle’s momentum
increases. Although both methods of length estimation converge for high momenta,
the conclusion from this study is that at lower momenta the projection length is
preferred due to a tendency of the eigenvalue method to overestimate. Applying the
projection length to the PDSP-MC and PDSP-BD can be seen in Fig. 5.16, which
shows the lengths of the MC and data showers are the same at each momentum
interval.
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Figure 5.15: Comparison of eigenvalue length and max projection length for single
particle gun MC electrons.
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Figure 5.16: Comparison of the projection lengths for PDSP-MC (orange) and
PDSP-BD (blue).

83



5.7 Shower Energy Estimation

Estimating the energy for all reconstructed particles is a very important part of any
analysis. For EM showers in LAr this is done by summing over individual 2D hit
estimations using [74]

Eshower =
i=N∑
i=0

ε(X, Y Z) · N · Qi

Ccal · R
· 1

4.237 × 107 GeV (5.10)

The energy for each individual 2D hit is estimated by taking the collected charge
Qi, applying a SCE based correction ε(X, Y Z), and normalising it values at the
anode using the normalisation factor N . This corrected and normalised charge is
then converted from ADC, the unit of charge as measured by the detector, into an
estimate for the number of ionisation electrons. As ionisation electrons drift from
the location of the initial travelling particle, some electrons are reabsorbed by argon
atoms and so the number of ionisation electrons is corrected by the recombination
factor R. Now that the number of ionisation electrons has been estimated, they
can be converted to a measure of the energy of the particle based on the minimum
ionisation energy of argon. This is represented by the 1

4.237×107 factor in Eqn. 5.10.
Ccal, N , and ε(X, Y Z) are all run dependant.

The recombination factor, R, in Eqn. 5.10 is dependant on both the energy loss per
unit length (dE/dx), see section 5.8, and the electric field strength applied across
the LArTPC. As these values would differ between individual charge deposits, and
dE/dx is ill-defined for the bulk of an EM shower, a single global value is used.
The recombination factor used in the Monte Carlo simulation is calculated using
the Modified Box recombination model [74], and the values of a simulated 1 GeV/c
electron can be seen in Fig. 5.17. The average value of the recombination factor in

Figure 5.17: Recombination factors for simulated 1 GeV/c electrons.
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Fig. 5.17 has a value of 0.6469, however, due to the long tail of the distribution,
77.3% of values are larger than the average. Therefore the average of this distri-
bution is not a good estimator for the recombination factor, and the peak value of
0.715 is used instead for Eqn. 5.10. The results are similar for momenta up to 7 GeV/c.

The true momentum, from the PDSP-MC, and the measured beam momentum, from
the PDSP-BD, is shown in Fig. 5.18. It can be seen that the PDSP-MC production
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Figure 5.18: True momentum for PDSP-MC (histograms), and beam momentum
for PDSP-BD (points). The measured beam momenta for data appears to be more
accurately reconstructed than anticipated by the MC, and this has been corrected
for in the next MC production.

used in this analysis assumed a worse distribution in momenta from the beamline
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than was actually provided. This is to be fixed in the next PDSP-MC production
run. The results of applying Eqn. 5.10 to reconstructed Showers, separated by their
true momentum, can be seen in Fig. 5.19. While the momentum estimations of
PDSP-MC and PDSP-BD appear to match better than their true momentum, this
is not particularly surprising as both datasets have different Ccal, N , and ε(X, Y Z)
constants. A notable issue is the underestimation of the momentum. While the
absolute underestimation grows with momentum, the relative peak underestimation
remains around 20%.
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Figure 5.19: Energy estimations using Eqn. 5.10 for electrons generated at different
momenta. It can be seen that there is a systematic underestimation across all
momenta.
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5.7.1 Energy Estimation Corrections

To investigate the deficit in the estimated momentum of electrons, as shown in
Figs. 5.19, five estimation corrections were identified: deposition correction, missed
hits correction, no hits correction, contamination correction, and hit energy correction.
These corrections are discussed in the following sections, and plots showing the ratio
of the correction to mean expected momentum - the mean energy of which the Monte
Carlo beam particles are generated around - are used to show the relative effect of
each correction. These corrections are discussed in terms of the PDSP-MC dataset.

5.7.1.1 Deposition Correction

This correction encapsulates any energy from the initial particle that is not deposited
in the TPC. Energy may not be deposited in the TPC due to some parts of the
shower reaching beyond the fiducial volume, or any interactions the particle may
undergo between the beam pipe and the TPC (for example in the cryostat wall). To
calculate this value, the sum of the energy associated to all ionisation deposits made
by the true particle are subtracted from the energy with which the true particle was
created. Fig. 5.20 shows that this correction accounts for less than 2% of the mean
expected energy, and decreases with momentum as expected.
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Figure 5.20: The ratio of the deposition correction to the mean expected energy for
different momenta.

5.7.1.2 Missed Hits Correction

The missed hits correction accounts for energy associated to 2D hits that have been
successfully reconstructed, but have not been associated with the correct particle.
This value is calculated by summing the energy for 2D hits that are resultant from
ionisation electrons caused by the simulated beam particle, but have not been
included in the reconstructed particle tagged as the beam particle by Pandora. As
can be seen in Fig. 5.21 this correction is highly skewed for each momentum, though
each peak between 2-4% with the width decreasing as momentum increases.
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Figure 5.21: The ratio of the missed hits correction to the mean expected energy for
different momenta. The fit used is Eqn. 5.2.

5.7.1.3 No Hits Correction

This correction accounts for all the energy that was deposited inside the TPC by
the particle, but did not get incorporated into any reconstructed 2D hits. The
reason some drift electrons are not incorporated into any 2D hit is simply because
the 2D hit fitting function has a threshold to reduce noise, and sometimes drift
electrons will not create signals on the sense wires that meet this threshold. This
value is calculated by summing all the energy of any ionisation electrons that have no
associated reconstructed 2D hit. This correction is the largest contributor, as seen in
Fig. 5.22, to the momentum deficit in the estimator, with mean values approaching
25% of the mean expected energy.
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Figure 5.22: The ratio of the no hits correction to the mean expected energy for
different momenta. The fit used is Eqn. 5.2.

5.7.1.4 Contamination Correction

The contamination correction attempts to correct for any 2D hits that have been
incorrectly associated to the selected particle. Such incorrectly associated 2D hits
could come from nearby activity from cosmic ray particles, or beam halo particles.
This value is calculated by summing the energy associated to any 2D hits that have
been associated to the Pandora tagged reconstructed beam particle, but are not
associated to the true MC beam particle. Looking at Fig. 5.23 it can be seen that
this correction is peaked at zero for all momentum, testifying to the reconstruction
abilities of Pandora, with tails out to 8% of the mean expected energy.
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Figure 5.23: The ratio of the no hits correction to the mean expected energy for
different momenta.

5.7.1.5 Hit Energy Correction

This correction looks at how accurate the energy estimator is for the 2D hits used in
the estimator itself. Fig. 5.24 shows that for all momenta, the energy estimator used
is over estimating the energy of the 2D hits included in the estimation. Thus this
correction is a negative correction. The reason the energy estimator overestimates
is due to using a singular value for the recombination factor, R, in Eqn. 5.10. If
an R factor was calculated for each individual hit, this correction would likely be
much smaller and centred around zero. This value is calculated by summing the true
energy associated to the reconstructed 2D hits, and comparing it to the estimated
energy as per Eqn. 5.10.
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Figure 5.24: The ratio of the hit energy correction to the mean expected energy for
different momenta. The fit used is Eqn. 5.2.

5.7.1.6 Total Correction

Summing all of the above corrections leads to the results in Fig. 5.25, and shows that
the total correction as a ratio to mean expected energy remains mostly consistent
as the initial true energy increases. The distributions do, however, have a notable
positive skew. This makes estimating a global correction factor slightly more com-
plicated, as any chosen value will invariably cause a subsequent skew in the final
momentum estimation value.
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Figure 5.25: The ratio of the total correction to the mean expected energy for
different momenta. The fit used is Eqn. 5.2.

However, as this is Monte Carlo data it is possible to apply the exact correction for
each event, allowing for a confirmation of whether or not the total energy deficit has
been accounted for. The outcome of doing so is shown in Fig. 5.26, and it can be
seen that the corrections appear to be correcting the energy estimations towards
their true values. There is however some slight jitter that increases with higher
energies, and this is down to the complexity of matching reconstructed objects with
the truth information from the Monte Carlo simulation. Being confident that these
corrections recover the correct energy estimation in the PDSP-MC dataset, the
peak values for each momentum interval in Fig. 5.25 are used as a correction factor
for the PDSP-BD dataset. The results of correcting the PDSP-BD energy estima-
tions can be seen in the residual plots shown in Fig. 5.27. By fitting a Gaussian to each
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Figure 5.26: The corrected energy estimation for the PDSP-MC dataset, using an
event-by-event correction.

peak in Fig. 5.27, the energy resolution achieved can then be calculated using:

σ

〈E〉
= a ⊕ b√

〈E〉
⊕ c

〈E〉
(5.11)

where, a, b, and c are the constant, stochastic, and noise terms respectively, ⊕
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denotes a summation in quadrature, and 〈E〉 is the mean expected energy. The right
hand plot of Fig. 5.28 shows the achieved energy resolution of 1%-6%, an expected
range for calorimeters. The left hand plot of Fig. 5.28 shows good linear agreement
between the corrected estimated energy and the true energy from the beamline. Fit
values for Fig. 5.28 are listen in Table 5.4.

Figure 5.27: Residuals for corrected energy estimations of the PDSP-BD dataset.
The correction factor is calculated as the peak values from Fig. 5.25. The fits are
Gaussians as per Eqn. 5.1.
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Table 5.4: Fit parameters for Fig. 5.28

Figure Parameter Value
5.28 (a) Gradient 0.99 ± 0.011
5.28 (a) Intercept −0.05 ± 0.005
5.28 (b) a 0.050 ± 0.001
5.28 (b) b 0.15 ± 0.016
5.28 (b) c −0.20 ± 0.011

(a) (b)

Figure 5.28: Energy resolution for the PDSP-BD dataset. The left plot shows
good agreement between the corrected estimated energy and the true energy. The
right plots shows that, as expected, the resolution improves as the expected energy
increases.

5.8 Shower dE/dx

An important quantity to measure with EM showers is the energy loss per unit
length, dE/dx, at the start of the shower. The expected energy loss per centimetre
for a minimally ionising particle in ProtoDUNE-SP is 2.1 MeV/cm [75]. The method
employed in this thesis to calculate the dE/dx of a Shower attempts to utilise the
energy estimation of each individual 2D hit, as calculated in the previous section.
The recursive weighted PCA is used to determine the minimally ionising section
of the shower, and a 3D cylinder, of radius and length of 5 cm, is built around the
primary axis. The energy located within this cylinder is then used as the value of
dE.
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Fig. 5.29 shows the dE/dx measurements made on showers in the PDSP-MC and
PDSP-BD datasets. It can be seen that the peak of each distribution is congruent
with the expected value for dE/dx in ProtoDUNE-SP. The data, however, is less
strongly peaked than the MC. This is likely due to the method for dE/dx estimation
used here, and could be refined further to improve the estimation in data.
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Figure 5.29: Comparison of measured dE/dx for the first 5 cm of electron showers in
the PDSP-MC (histograms) and the PDSP-BD (points) datasets. Each distribution
is area normalised.

5.9 Shower Longitudinal Profile

The energy loss per centimetre can be generalised for the whole length of a shower
to energy loss per radiation length, dE/dt, where t = x/X0. This is known as the
longitudinal profile of a shower, and should be reasonably well described by the
gamma function [34]:

dE

dt
= 〈E〉 b

(bt)a−1e−bt

Γ(a) (5.12)

where 〈E〉 is the mean expected energy, and a and b are constants describing the rise
and fall of the function. The longitudinal profiles shown in Fig. 5.30 shows how the
longitudinal profiles for each momentum interval are reasonably well described by the
above gamma function. It can also be seen that the peak of the distribution moves
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further down the length of the shower, and the width of the distribution increases,
as the momentum increases.

a = 2.10± 0.076
b = 0.62± 0.033

a = 2.51± 0.083
b = 0.59± 0.027

a = 2.60± 0.068
b = 0.55± 0.020

a = 2.70± 0.058
b = 0.47± 0.014

a = 2.80± 0.062
b = 0.45± 0.014

Figure 5.30: Energy deposition per radiation length for PDSP-BD dataset events.

The increase in width of the Showers can also be seen in Fig. 5.31. These plots show
the standard deviations (1σ, 2σ, and 3σ going outwards from the x-aaxis) of the
cross-sectional area of the 3D space points along the secondary and tertiary PCA
axes. It can also be noted that the showers in the PDSP-BD dataset appear to be
wider than those found in the PDSP-MC dataset.
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Figure 5.31: Averages of the binned cross-sectional areas for the PDSP-BD dataset
(dashed lines), and the PDSP-MC dataset (shaded regions). As seen in Fig. 5.12, the
PDSP-BD EM showers appear to be wider than the EM showers in the MC.

5.9.1 Cascade Start

As shown in Fig. 5.1 at the start of the chapter, an electron is expected to start
cascading after travelling through one radiation length of material, but with the
incredible positional resolution of LArTPCs is it possible to make an actual meas-
urement of when the cascading section of the EM shower starts?

To attempt to solve this, individual shower profiles like the one seen in Fig. 5.32 were
used to identify a method of finding the start of the cascading section of the EM
shower. The plots of Fig. 5.32 are made by:
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• Rotating the 3D space points onto the recursive weighted PCA axes.

• The 3D space points are binned into 1 cm bins.

• The standard deviation of the 3D space point along the secondary and tertiary
axes for each bin are calculated.

• A cross-sectional area is formed by multiplying the two standard deviations
for each bin.

The cross-sectional area from the final step is then the value used to attempt to find
the start of the cascading section. By walking along each bin from the start of the
shower, the bin where the cross-sectional area goes above a threshold is selected as
the start of the cascade. The bin that has been selected by this method in Fig. 5.32
is denoted by the green dashed line in the bottom plot. Through visual inspection
of this plot, and many others, the currently selected threshold value of 0.005 RM

appears to do a reasonable job. However, no attempt has yet been made to find a
more optimal value through an analytical method. Applying the above method to
the PDSP-BD dataset yields the cascade start distribution in Fig. 5.33. While one
radiation length is within 1σ for all momenta when fitted with a skewed Gaussian,
as per Eqn. 5.2, the width of each distribution is too wide to draw any conclusions
about the effectiveness of this method. A deeper investigation would need to be made
into this subject, and a possible exploration into the use of deep learning algorithms
could yield improved results.
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Figure 5.33: The start positions, in radiation lengths, of the cascading part of the
EM showers from the PDSP-BD dataset.

5.10 Shower Transverse Profile

A method for calculating the transverse profile of an EM shower has been devised.
The reconstructed hits of a Shower object are projected onto the plane defined by
the secondary and tertiary axes of the weighted recursive PCA, and then binned in
concentric rings centred on the origin. The radii of the concentric rings are such that
the area of each ring remains constant with a value of π(0.2RM )2. This then allows
an averaging to be done across a momentum range, and for different momentum
ranges to be comparable. The ADC density of each bin is then calculated, and the
results of doing so are shown in Fig. 5.34, where the coloured dots represent the
PDSP-MC dataset and the black represent the PDSP-BD dataset. The tails for each
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momentum range in Fig. 5.34 shows good agreement between both datasets, however
at the core of the shower the PDSP-MC is more energy dense than PDSP-BD at all
momenta. The reason for this is currently thought to be due to the space charge
effect, especially in the region directly around where the beam particles enter the
TPC. This will likely improve as modelling of the space charge effect is improved,
but a more in-depth investigation is planned if this difference persists in updated
Monte Carlo simulations.
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Figure 5.34: Transverse profiles for EM showers in the PDSP-MC and PDSP-BD
datasets.
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5.11 Summary

In summary, a new recursive weighted PCA has been created to better align the
primary axis, and thus direction, of a Shower with its minimally ionising section.
The aim of which was to improve the accuracy of angular measurements with respect
to interaction vertices for showering particles. This method was seen in Fig. 5.10
to improve the angle between the direction of the reconstructed particle, and the
direction of the truth information from the MC.

A new length measurement based on the projection of 3D space points onto the
PCA axis has been suggested as an alternative to the using the eigenvalue length of
Eqn. 5.7. This alternative method appears to have better agreement with ‘by-eye’
inspection of lower momenta events, while converging with the current method at
higher momenta, as seen in Fig. 5.15.

An energy estimator has been constructed, and five correction factors have been
identified to deal with a systematic underestimation of a Shower’s energy. Once the
corrections are applied to data from the PDSP-BD dataset, the resolution of the
energy estimator was calculated to be between 1%-6%, with better resolution for
higher momenta.

A method for calculating the dE/dx for the minimally ionising section of a EM
shower has been demonstrated, and provides results expected for minimally ionising
particles in LAr. The longitudinal profile of EM showers has also been seen to follow
the expected gamma function.

A method for estimating the starting point of the particle cascade for an EM
shower has also been suggested, and with further investigations could prove a useful
parameter for the future.
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6
Proton Decay

“Deep in the human unconscious is a pervasive need for a logical universe
that makes sense. But the real universe is always one step beyond logic."

Frank Herbert - Dune - 1965

T he stability of the proton is a rather important aspect of the universe, but
is not explicitly ensured by the standard model. The local symmetries that
give birth to the photon, and the conservation of electric charge, do not

exist for baryon number - the quantity behind the apparent stability of the proton.
In fact, it is predicted to not be a conserved quantity by most Grand Unified Theories
(GUTs), where nucleon decay is often a low energy observable phenomena [76–82].
At a high level, current GUTs can be categorised in two ways; supersymmetric, and
non-supersymmetric models. While each category of GUT can be subdivided further,
supersymmetric models predominantly predict the p → K+ν̄ decay mode as being
most common, while non-supersymmetric models predict p → e+π0 as the most
common decay mode. The current lifetime limits for these decay modes can be seen
in Fig. 6.1.

Fig. 6.1 also compares a number of GUT model predictions with the current limits,
which completely reject some of the models, and highly constrain a number of the
others. Fig. 6.1 also shows that the limits for p → e+π0 have been set much more
stringently than for the other decay mode. This is in part because the p → e+π0 has
a larger predicted branching fraction, and the kaon’s energy resulting from p → K+ν̄

is regularly below the Cherenkov threshold for water, and so cannot be seen by
Super-Kamiokande very easily. LArTPCs, however, are able to reconstruct particles
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Figure 6.1: Summary of the 90% confidence level lower limits from Super-K for
p → K+ν̄ and p → e+π0, and predicted lifetime from various GUT models. Adapted
from [28].

with
much lower energies, and so DUNE will be able to more often see the signature kaon
from proton decay, as well as the kaon’s decay products - the dominant six of which
can be seen in Table 6.1.

Table 6.1: The six most probable decay modes for a K+ [34].

Decay Mode Branching Fraction

K+ → µ+νµ 63.56±0.11%
K+ → π+π0 20.67±0.08%

K+ → π+π+π− 5.583±0.024%
K+ → π0e+νe 5.07±0.04%
K+ → π0µ+νµ 3.352±0.033%
K+ → π+π0π0 1.760±0.023%

As such, DUNE will be a major driving force behind lifetime limits set on the
p → K+ν̄ decay channel. It will however, of course, be able to also push the current
lifetime limits of the p → e+π0 channel set by Super-Kamiokande. The expected
sensitivities to the two discussed proton decay channels can be seen in Fig. 6.2 for
DUNE and the future Hyper-Kamiokande. These two experiments will make a great
pairing for increasing the overall lifetime limit on proton decay.
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Figure 6.2: DUNE (cyan) and Hyper-Kamiokande’s (red) expected sensitivity to
p → e+π0 (left) and p → K+ν̄ (right) [83].

The major background for the p → K+ν̄ decay mode are interactions caused by
atmospheric neutrinos. A CC νµ interaction has a proton and a muon emerging from
the interaction vertex, which very closely mimics the dominant decay of K+s, where
a kaon decays into a muon. As seen in Table 6.2, CC νµ interactions are the most
commonly expected interactions in DUNE. The event rates shown in Table6.2 are
calculated using the Bartol model of atmospheric neutrino flux [84], and neutrino
interaction cross-sections from GENIE. Neutrino oscillation effects are not included
in these calculations. An example signal event and a CCνµ background event can be
seen in Fig. 6.3. The colour of each pixel represents the total charge of hits contained
within the pixel. The background event of Fig. 6.3 is a particularly challenging type
of background to remove as it is very similar to the signal event in a lot of aspects.
The key to removing this background event is in identifying the location in the rise
in charge deposition of the kaon and proton, in relation to the vertex with the muon.

For proton lifetime measurements where no signal is observed, any background
should be reduced as much as possible as it is a dominant factor in calculations. The
DUNE TDR [28] suggests an optimal rate of one event per megaton year (Mt · year),
which requires the percentage of background events that need to be rejected be equal
to (

1 − 1
2886 × 100

)
× 100 = 99.9997%

where the denominator’s factor of 100 is from scaling the number of events expected
in Table 6.2 to 1 Mt · year.
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Table 6.2: Expected rate of atmospheric neutrino interactions in 40Ar for a 10 kt · year
exposure (not including oscillations) [28].

10 kt · year CC NC Total

νµ 1038 398 1436
ν̄µ 280 169 449
νe 597 206 83
ν̄e 126 72 198

Total 2014 845 2886

Final state interactions (FSI) complicate the identification of signal events even
further. As the kaon from p → K+ν̄ propagates out of the nucleus, it can undergo
scattering processes causing it to lose energy, or to cause the emission of a nucleon
alongside it. The scattering processes have the effect of reducing the average
kinetic energy of the kaons, making them immediately more difficult to reconstruct.
Furthermore, the presence of associated nucleons blurs the dE/dx measurement at
the start of the kaon track, complicated particle identification.

Kaon
Muon

Electron

Electron

Muon Pro
ton

N
eutrino

Figure 6.3: Images for a p → K+ν̄ signal event (top), and a CC νµ background event
(bottom).
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6.1 Event Reconstruction and Classification

The aim of this analysis is to develop further the proton decay sensitivity for the
p → K+ν̄ channel using the Pandora reconstruction software, and a new event
selection based on some of the tools developed earlier. While reading the results of
this analysis it is important to keep in mind that this is the first time Pandora has
been used on such events, and has not yet received any sort of tuning. Fig. 6.4 shows

Figure 6.4: True kaon kinetic energy for p → K+ν̄

the kinetic energy of the kaons in the signal MC events. The nucleon decay signal
events are generated using GENIE v2.12.10, and are generated using the DUNE FD
geometry.

This analysis is done using Pandora’s output PFParticles, as opposed to the track
and shower objects provided by LArSoft, as these provide hierarchy information
for the reconstructed particles. The PFParticles provide art associations to the
reconstructed 2D hits, which are used as the basis for all features used in the BDT
for signal and background separation. The efficiency for reconstructing a particle of
type x± can be defined as [28]

εx± = events where true x± can be matched to a reconstructed track
events with x± particle (6.1)

The efficiency can be viewed as a function of either the true length of the kaon, or
the kinetic energy of the kaon. The reconstruction efficiencies as functions of both
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variables can be seen in Fig. 6.5. The red points show the current performance of the

0 25 50 75 100 125 150 175 200
Kaon Kinetic Energy (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Pandora Standard
Pandora Cheated with 2D hit cut
Pandora Cheated without 2D hit cut

0 10 20 30 40 50 60 70
Kaon True Length (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Pandora Standard
Pandora Cheated with 2D hit cut
Pandora Cheated without 2D hit cut

Figure 6.5: Efficiency for reconstructed kaons using Pandora (top).

standard version v03_11_01g of the Pandora reconstruction software. The efficiency
as a function of the kinetic energy tops out at 80%, and has a relatively slow turn on.
The efficiency as a function of true length performs better, and tops out at around
90%. The overall efficiency for the standard Pandora reconstruction is 53%. However,
it is possible to glimpse at the full potential of Pandora by ‘cheating’ the reconstruc-
tion. When the reconstruction is cheated, the hierarchy information, connecting the
true MC particles together, is passed in parallel with the normal reconstructed 2D
hits to Pandora. Pandora can then use this extra hierarchy information to more
accurately group 2D hits together. The rest of the reconstruction chain remains
identical to the un-cheated case. The result of cheating the reconstruction is shown
by the green points on Fig. 6.5, which shows almost perfect reconstruction efficiency
- and any inefficiencies are from very low energy particles simply not having any
reconstructable 2D hits. This is of course a theoretically perfect scenario, and a more
realistic outcome for when Pandora is appropriately tuned in this regime, can be seen
by applying a threshold on the number of 2D hit for the cheated reconstruction. This
is seen in Fig. 6.5 with the blue points, where a requirement of four 2D hits is imposed
on whether or not a kaon is considered to have been reconstructed by Pandora or not.

To discriminate between signal and background events a BDT is used, where
every reconstructed event (signal or background) is reduced to a number of key
features. Firstly, the two largest PFParticles for each event are selected, and all other
PFParticles are disposed of - though the total number of PFParticles is retained.
The size of a PFParticle is determined by the number of associated 2D hits. For each
of the two remaining PFParticles, the features listen in Table 6.3 are then recorded,
and the largest PFParticle is labelled as ‘particle 1’, and the smaller labelled as
‘particle 2’. Fig. 6.6 shows two example features for the BDT. The left image shows
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Figure 6.6: Two example BDT features.

the length of the largest particle, with a peaked signal distribution from primary
kaons and a uniform background distribution cutting off at 100 cm (as per selection
requirements discussed below). The right image shows the number of hits for the
smaller particle. The correlation matrix for the BDT features can be seen in Fig. 6.7.

Table 6.3: Features used in the BDT for separating nucleon decay signal, p → K+ν̄,
from atmospheric neutrino background.

Feature Description

Total Particles The total number of PFParticles in an event’s hierarchy
dE/dx The dE/dx at the start of the PFParticle

End dE/dx The dE/dx at the end of the PFParticle
No. Hits The number of collection plane 2D hits in the PFParticle

Primary Length The length of the primary axis from a principal component
analysis performed on the particle

Secondary Length The length of the secondary axis from a principal com-
ponent analysis performed on the particle

Energy The estimated energy of the PFParticle
Direction The direction of the PFParticle from the recursive

weighted PCA

Three pre-BDT selection requirements are then used to remove obvious background
events. The first requirement is a minimal threshold on the number of particles in
an event, requiring at least two PFParticles - preferentially selecting events with
a kaon and a decay product. The second requirement is a limit on the length of
the longest PFParticle to be less than 100 cm - removing events from high energy
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neutrino interactions. The third requirement is a limit of 400 2D hits for the particles
with the most 2D hits - removing events with large EM showers. The pre-BDT selec-
tion requirements leave 17.5% of the background, and 74.85% of the signal remaining.

The BDT is implemented using scikit-learn’s [85] ensemble.AdaBoostClassifier. The
initial sample size is ∼82 000 signal events, and ∼166 000 background events. After
the pre-BDT selection requirements above are applied, ∼28 500 background events,
and ∼61 000 signal events are left. As it is important for there to be equal number
of background and signal events when training a BDT, 20 000 events are taken from
each remaining sample. While a slightly larger training set would have been more
ideal, this is certainly adequate for an initial foray.
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Figure 6.7: Correlation matrix for the features of the BDT. The colour scheme
denotes the level of correlation between two variables.

The BDT responses can be seen in Fig. 6.8. A BDT response threshold is then
selected to give the suggested background rejection of 99.9997% when combined with
the pre-BDT selection requirements. The signal efficiency from the training sample
is then 23%.
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(a)

(b)

Figure 6.8: BDT response for p → K+ν̄ for background (blue hatch) and signal
(red), with linear (a) and log (b) axes.

The remaining signal and background events are then used to test the BDT model.
However, because the number of events remaining is relatively low, once the remain-
ing events have been processed by the BDT their response is Poisson fluctuated to
approximate a larger dataset. The results of doing so, and calculating their signal
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efficiencies and background rejections for the chosen BDT response threshold from
the training sample, can be seen in Fig. 6.9. The signal efficiency across all samples
remains consistent with the training sample, with a mean signal efficiency of 23.64%.
However, the background rejection falls slightly below the required value to a peak
rejection of 99.99922%, corresponding to 2.25 events per Mt · year.
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Figure 6.9: Background rejection (left) and signal efficiency (right) for Poisson
fluctuated BDT responses to the non-training sample of events.

Assuming no signal events are to be observed for a given exposure, and a constant
signal efficiency and background rejection, then the partial lifetime lower limit can
be calculated using [86]
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τ/B(p → K+ν̄) > λ · Np · εsig · 1
S

(6.2)

where λ is the exposure in kt · years, Np the number of protons in one kiloton
of argon (2.7 × 1032), εsig the signal selection efficiency, and S the upper limit for
90% confidence level for the expected number of background and signal events
[86]. Assuming ten years of running, and DUNE’s complete 40 kt fiducial mass,
an exposure of 400 kt · years can be reached. The value of S can be obtained from
Feldman-Cousins [87] for an experiment measuring a Poisson distributed variable
that is expecting no signal events but is expecting background events. For the
case presented here, with 0.9 background events expected in 400 kt · years, S = 3.2.
Combined with the current signal efficiency of 23.64%, a lower limit on the partial
lifetime can be set as 8.0 × 1033 years. While this exceeds the current limit set by
Super-Kamiokande of 5.9 × 1033 years [88], it is less than the sensitivity presented by
the method used in the DUNE TDR [28]: 1.3 × 1034 years.

DUNE is sure to play a prominent role in the future of proton lifetime limit meas-
urements. While the reconstruction software used here and in the DUNE TDR
differ, Pandora and Projection Matching Algorithm (PMA) respectively, both are
currently unoptimised for the proton decay regime but show good signs for per-
formance improvements. A study done for the DUNE TDR showed PMA’s current
overall tracking efficiency being increased from 58% to 80% - enhancing the final
selection performance, which resulted in the 1.3 × 1034 years lower lifetime limit.
If the cheated reconstruction for Pandora is considered, as discussed above, then
Pandora’s overall tracking efficiency can be improved from 53% to 80% also. This
could see the lower lifetime limit of the method presented here reaching as high as
1.6 × 1034 years with the same background rejection. Further advancements to the
reconstruction techniques and abilities employed at DUNE over the next five years,
and full utilisation of the Pandora particle flow hierarchy, will certainly bring many
other unforeseen improvements before the DUNE program starts taking data at the
full size far detectors.
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7
Summary

“We change our past by what we learn."

Frank Herbert - Dune - 1965

T his thesis has explored a number of interesting areas around the capab-
ilities of LArTPCS, but the full power of the technology is still yet to be
utilised.

In Chapter 5 an in-depth analysis of the reconstruction of electron induced elec-
tromagnetic showers was performed. The current PCA method employed by the
Pandora reconstruction software was developed further to utilise a weighted recursion
technique that provides a better estimate for the direction of an electromagnetic
shower. Better estimations on the direction of an electromagnetic shower will help
with analyses that require angular information of particles as they emerge from
interaction vertices. The subsequent primary axis from the weighted recursive PCA
was also used repeatedly in determination of other electromagnetic shower properties.
A new measure for the length of the electromagnetic shower based on 3D recon-
structed hit’s projections onto the primary axis was shown to better describe an
electromagnetic shower’s length at lower momenta, while converging to the currently
employed method at higher momenta. The longitudinal profile of electromagnetic
showers along their primary axes was shown to be well described by the gamma
function presented in the PDG review [34]. The transverse profiles in terms of charge
density of concentric rings of equal area in the secondary-tertiary PCA axes plane
highlighted a wider dense central core for the 6 and 7 GeV/c PDSP-BD dataset as
compared to showers in the PDSP-MC dataset. The energy estimator was shown to
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systematically underestimate a shower’s energy by 20-21%. This was recovered by
identifying five energy loss mechanisms using the PDSP-MC dataset, and a correction
factor based on the mean expected energy was found. Once the correction factors
were applied to energy estimates for the PDSP-BD dataset it was shown that an
energy resolution of 1-6%, typical for calorimeters, can be achieved. The energy
estimates for individual hits in the first 5 cm of the shower were used to calculate a
dE/dx value for the minimally ionising section, and was shown to be the expected
value. Finally, an attempt was made to find the position along the shower’s primary
PCA axis at which the electromagnetic cascade initiates. While initial results are
promising, further investigation will be needed to improve upon the currently used
threshold limit for defining the start of the cascade.

A sensitivity estimate of the p → K + ν̄ decay channel was also presented using a
BDT based on some features developed in Chapter 5, and utilising the power of the
Pandora reconstruction software. The current BDT performance stands at a 23.64%
signal efficiency and a 99.99922% background rejection rate. This gives a sensitivity
of 8.0 × 1033 years for the p → K + ν̄ decay channel. With potential tuning to the
Pandora reconstruction software, a sensitivity of 1.6 × 1034 years could be achieved,
even if the background rejection rate remains the same. It will be interesting to
see how this is developed further, especially if a powerful CNN predictor is introduced.

Some interesting years certainly lay ahead as more research is done to unlock the
full potential of the LArTPC technology, with exciting developments to surely be
made in the area of deep learning which greatly benefits from the high resolution
particle reconstruction.
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“And I say: Look! I have hands!
But the people all around me say: What are hands?”

Frank Herbert - Dune - 1965

126


	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Acronyms
	Chapter Introduction
	Chapter Neutrino Theory
	Neutrino History
	Neutrino Interactions
	Oscillations
	Oscillation Formalism

	CP Violation
	MSW Matter Effect
	Mass Ordering
	Majorana Mass


	Chapter The Deep Underground Neutrino Experiment
	Physics Goals of DUNE
	Far Detector
	Liquid Argon Time Projection Chambers
	Single-Phase
	Anode Plane Assemblies
	Cathode Plane Assemblies

	Dual-Phase

	The LBNF Beamline and Target
	Near Detector
	ProtoDUNE
	H4-VLE Beamline
	ProtoDUNE-SP
	Online Monitor



	Chapter Particle Reconstruction, Identification, and Tagging
	Monte Carlo Simulations
	Data Reconstruction
	The art Framework
	The LArSoft Framework
	The Pandora SDK
	Pandora Reconstruction Chains
	Pandora Cosmic
	Pandora Test Beam
	Particle Stitching
	Pandora Consolidated reconstruction

	Track/Shower Separation
	Performance


	Chapter Characterisation of EM Showers
	Datasets
	Space Charge Effect
	Event Selection

	Shower Principal Components Analysis
	Pandora's PCA
	Recursive Weighted PCA

	Shower Direction
	Fractional Explained Variance
	Shower Length
	Shower Energy Estimation
	Energy Estimation Corrections
	Deposition Correction
	Missed Hits Correction
	No Hits Correction
	Contamination Correction
	Hit Energy Correction
	Total Correction


	Shower dE/dx
	Shower Longitudinal Profile
	Cascade Start

	Shower Transverse Profile
	Summary

	Chapter Proton Decay
	Event Reconstruction and Classification

	Chapter Summary
	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/154435


