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Abstract. RoleSim and SimRank are popular graph-theoretic similarity
measures with many applications in, e.g., web search, collaborative fil-
tering, and sociometry. While RoleSim addresses the automorphic (role)
equivalence of pairwise similarity which SimRank lacks, it ignores the
neighboring similarity information out of the automorphically equiva-
lent set. Consequently, two pairs of nodes, which are not automorphi-
cally equivalent by nature, cannot be well distinguished by RoleSim if
the averages of their neighboring similarities over the automorphically
equivalent set are the same.
To alleviate this problem: 1) We propose a novel similarity model, namely
RoleSim*, which accurately evaluates pairwise role similarities in a more
comprehensive manner. RoleSim* not only guarantees the automorphic
equivalence that SimRank lacks, but also takes into account the neigh-
boring similarity information outside the automorphically equivalent sets
that are overlooked by RoleSim. 2) We prove the existence and unique-
ness of the RoleSim* solution, and show its three axiomatic properties
(i.e., symmetry, boundedness, and non-increasing monotonicity). 3) We
provide a concise bound for iteratively computing RoleSim* formula, and
estimate the number of iterations required to attain a desired accuracy.
4) We induce a distance metric based on RoleSim* similarity, and show
that the RoleSim* metric fulfills the triangular inequality, which implies
the sum-transitivity of its similarity scores. Our experimental results on
real and synthetic datasets demonstrate that RoleSim* achieves higher
accuracy than its competitors while retaining comparable computational
complexity bounds of RoleSim.

1 Introduction

RoleSim is a role-based similarity measure that quantifies the closeness between
two objects based on graph topology, with a proliferation of real-life applications
[9, 10, 23] in, e.g., link prediction (social network), co-citation analysis (biblio-
metrics) , motif discovery (bioinformatics), and collaborative filtering (informa-
tion retrieval). It recursively follows a SimRank-like reasoning that “two nodes
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are assessed as role similar if they interact with automorphically equivalent sets
of in-neighbors”. Intuitively, automorphically equivalent nodes in a graph are
objects having similar roles that can be exchanged with minimum effect on the
graph structure. Similar to the well-known measure SimRank [7], the recursive
nature of RoleSim allows to capture the multi-hop neighboring structures that
are automorphically equivalent in a network. Unlike SimRank that measures the
similarity of two nodes from the paths connecting them, RoleSim quantifies their
similarities through the paths connecting their different roles. As a result, two
nodes that are disconnected each other will not be considered as dissimilar by
RoleSim if they have similar roles. For evaluating similarity score s(a, b) between
nodes a and b, as opposed to SimRank whose similarity s(a, b) takes the aver-
age similarity of all the neighboring pairs of (a, b), RoleSim computes s(a, b) by
averaging only the similarities over the maximum bipartite matching of all the
neighboring pairs of (a, b). This subtle difference enables RoleSim to guaran-
tee the automorphic equivalence, which SimRank lacks, in final scoring results.
Therefore, RoleSim has been demonstrated as an effective similarity measure in
many real applications. We summarize two of these applications below.

Application 1 (Similarity Search on the Web). Discovering web pages
similar to a query page is an important task in information retrieval. In a Web
graph, each node represents a web page, and an edge denotes a hyperlink from
one page to another. RoleSim can be applied to measure the similarity of two
web pages, based on the intuition that “two web pages are role-similar if they
are pointed to by the automorphically equivalent sets of their in-neighboring
pages”. This similarity measure produces more reliable similarity results than
the SimRank model [10].

Application 2 (Social Network De-anonymisation). Social network de-
anonymisation is a method to validate the strength of anonymisation algorithms
that protect a user’s privacy. RoleSim has been applied to de-anonymise node
mappings based on the similarity information between a crawled network and an
anonymised one. Based on the observation that “correct mappings tend to have
higher similarity scores”, RoleSim iteratively evaluates pairwise node similarities
between two networks, and captures the reasoning that “a pair of nodes between
two networks is more likely to be a correct mapping if their neighbors are correct
mappings”. RoleSim has demonstrated superior performance as compared with
other existing de-anonymization algorithms [23].

Despite its popularity in real-world applications, RoleSim has a major limita-
tion: with the aim to achieve automorphic equivalence, its similarity score s(a, b)
only considers the limited information of the average similarity scores over the
automorphically equivalent set (i.e., the maximum bipartite matching) of a’s
and b’s in-neighboring pairs, but neglects the rest of the pairwise in-neighboring
similarity information that is out of the automorphically equivalent set. Con-
sequently, RoleSim does not always produce comprehensive similarity results
because two pairs of nodes, which are not automorphically equivalent by nature,
should be distinguished from each other even though the average values of their
in-neighboring similarities over the set of the maximum bipartite matching are
the same, as illustrated in Example 1.
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Fig. 1: Limitation of RoleSim (RS) on a tiny web graph, where node-pairs (1, 2)
and (1, 3) have the same RoleSim score (0.426) since RS aggregates only the in-
neighboring pairs that are automorphically equivalent (colored in green) whose
sums are the same (0.488 + 0.360 = 0.848), while ignoring the remaining pairs.

Example 1 (Limitation of RoleSim). Consider the web graph G in Figure 1,
where each node denotes a web page, and each edge depicts a hyperlink from
one page to another. Using RoleSim, we evaluate pairs of similarities between
nodes, as partially illustrated in the ‘RS’ column of the right table. It is discerned
that node-pairs (1, 2) and (1, 3) have the same RoleSim similarity values, which
is not reasonable. Because node 2 and node 3 are not strictly automorphically
equivalent by nature, their similarities with respect to the same query node 1,
i.e., s(1, 2) and s(1, 3), should not be the same.

We notice that the main reason why s(1, 2) and s(1, 3) are assessed to be
the same by the RoleSim model is that its similarity s(a, b) considers only the
average similarity scores over the maximum bipartite matching, denoted as Ma,b,
of (a, b)’s in-neighboring pairs Ia × Ib, where Ia denotes the in-neighbor set
of node a, and × is the Cartesian product of two sets. Thus, the similarity
information in the remaining in-neighboring pairs of (a, b), i.e., Ia × Ib −Ma,b,
are totally ignored. For example, if unfolding the in-neighboring pairs of (1, 2)
and (1, 3) respectively, we see that, in the gray cells, M1,2 = {(4, 6), (5, 7)}
(resp. M1,3 = {(4, 9), (5, 10)}) is the maximum bipartite matching of (1, 2)’s
(resp. (1, 3)’s) in-neighboring pairs I1×I2 (resp. I1×I3). The sum of the similarity
values over M1,2 is 0.488 + 0.360 = 0.848, which is the same as that over M1,3.
Thus, RoleSim cannot distinguish s(1, 2) from s(1, 3). ut

Example 1 illustrates that, to effectively evaluate s(a, b), relying only on
the in-neighboring-pairs similarities in the maximum bipartite matching Ma,b

(e.g., RoleSim) is not enough. Although RoleSim has the advantage of finding the
most influential pairsMa,b among all the in-neighboring pairs Ia×Ib for achieving
automorphic equivalence, it completely ignores the similarity information outside
Ma,b. For instance in Example 1, there are opportunities to take good advantage
of the similarity values in the regions I1 × I2 −M1,2 and I1 × I3 −M1,3 which
would be helpful to distinguish s(1, 2) from s(1, 3) further when the average
similarities over M1,2 and M1,3 are the same.

Contributions. Motivated by this, our main contributions are as follows:
1) We first propose a novel similarity model, RoleSim*, which accurately

evaluates pairwise role similarities in a more comprehensive fashion. Compared
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with the existing well-known similarity models (e.g., SimRank and RoleSim),
RoleSim* not only guarantees the automorphic equivalence that SimRank lacks,
but also takes into consideration the pairwise similarities outside the automor-
phically equivalent sets that are overlooked by RoleSim. (Section 3.1)

2) We prove the existence and uniqueness of the RoleSim* solution, and show
three key axiomatic properties of RoleSim*, i.e., symmetry, boundedness, and
non-increasing monotonicity of its iterative similarity scores. (Section 3.2)

3) We derive an iterative formula for computing RoleSim* similarities, and
a concise upper bound is obtained, which can estimate the total number of
iterations required for attaining a desired accuracy. (Sections 3.3 and 3.4)

4) We induce a distance metric based on our RoleSim* measure, and rig-
orously show that the RoleSim* distance metric fulfills the triangular inequal-
ity which other measures (e.g., cosine distance) lack. This implies the sum-
transitivity of the RoleSim* measure. (Section 3.5)

5) We conduct an experimental study to validate the effectiveness of our
RoleSim* model. Our empirical results show that RoleSim* achieves higher accu-
racy than the existing competitors (e.g., RoleSim and SimRank) while entailing
comparable computational complexity bounds of RoleSim. (Section 4)

2 Related Work

Graph-based similarity models have been popular since SimRank measure was
proposed by Jeh and Windom [7]. SimRank is a node-pair similarity measure,
which follows the recursive idea that “two nodes are considered as similar if they
are pointed to by similar nodes”. Since then, there have been surges of studies fo-
cusing on optimization problems to accelerate SimRank computation as the naive
SimRank computing method entails quadratic time in the number of nodes. Ac-
cording to assumptions on data updates, recent results can be divided into static
algorithms [4, 11, 20, 24, 28, 36, 27, 1, 5, 15, 31], and dynamic algorithms on evolv-
ing graphs [34, 25, 12, 22, 8, 18, 30]. According to types of queries, these results
are classified into single-source SimRank [8, 11, 24, 34, 18], single-pair SimRank
[14, 6], all-pairs SimRank [29, 28, 1, 19], and partial-pairs SimRank [20, 33].

There are many studies on semantic problems of pairwise similarity measures.
Various SimRank-like measures have come into play, including C-Rank [26], Sim-
Fusion [32], P-Rank [35], RoleSim [9], MatchSim [17], ASCOS [2], SimRank* [31],
CoSimRank [21], SemSim [27]. Among them, RoleSim has stood out as a promis-
ing role-based similarity model, due to its elegant intuition that “if two nodes are
automorphically equivalent, they should share the same role and their role sim-
ilarity should be maximal”. To speed up the RoleSim computation, an approx-
imate heuristic, named Iceberg RoleSim, was devised to prune small similarity
values below a threshold.

Unlike SimRank that takes the average similarity of all the neighboring pairs
of (a, b), RoleSim computes s(a, b) by averaging only the similarities over the
maximum bipartite matching Ma,b. However, all the similarity information not
included in the matching Ma,b is completely ignored by RoleSim. In contrast,
our RoleSim* model can effectively capture these information while guaranteeing
automorphic equivalence.
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There have also been a host of studies on variations of RoleSim [17, 13, 23, 3].
Lin et al. [17] introduced MatchSim whose similarity is defined to be the aver-
age similarity of (a, b)’s maximum matched neighbors. It differs from RoleSim in
that MatchSim initialises s0(a, b) = 1 if a = b, and 0 otherwise, whereas RoleSim
initialises all s0(∗, ∗) = 1. As a result, MatchSim scores do not guarantee au-
tomorphic equivalence. Li et al. [13] proposed CentSim, a centrality based role
similarity measure, which compares the centrality values of two nodes to evalu-
ate their similarity. This measure employs several types of centralities including
PageRank, Degree and Closeness for each node, and considers the weighted aver-
age of them for evaluating CentSim scores. Recently, Shao et al. [23] introduced
RoleSim++, an extension of RoleSim, which considers both incoming and out-
going neighbors in a digraph for social network de-anonymisation. It employs
a novel matching algorithm, called NeighborMatch, to find matching for in-
ner and outer neighbors, respectively. Furthermore, a threshold based version,
α-RoleSim++, is proposed to eliminate tiny scores for speedup further. Most
recently, Chen et al. [3] suggest a scalable model, StructSim, with an efficient
BinCount matching algorithm and present a hierarchical scheme, which achieves
a more efficient role similarity computation.

3 RoleSim*

3.1 RoleSim* Formulation

The central intuition underpinning RoleSim* follows a recursive concept that
“two distinct nodes are assessed to be similar if they

1. mainly interact with the automorphically equivalent sets of in-neighbors, and
2. are in-linked by similar nodes that are out of automorphically equivalent sets.

The starting point for this recursion is to assign each pair of nodes a similarity
score 1, meaning that initially no pairs of nodes are thought of to be more (or
less) similar than others.

Notations. Before illustrating the mathematical definition to reify the RoleSim*
intuition, we introduce the following notations.

Let G = (V,E) be a directed graph with a set of nodes V and a set of edges
E. Let Ia be all in-neighbors of node a, and |Ia| the cardinality of the set Ia. For a
pair of nodes (a, b) in G, we denote by Ia×Ib = {(x, y) | ∀x ∈ Ia and ∀y ∈ Ib} all
in-neighboring pairs of (a, b), and s(a, b) the RoleSim* similarity score between
nodes a and b. Using Ia× Ib and s(a, b), we define a weighted complete bipartite
graph, denoted by K|Ia|,|Ib| = (Ia ∪ Ib, Ia × Ib), with each edge (x, y) ∈ Ia × Ib
carrying the weight s(a, b). We denoted by Ma,b (⊆ Ia × Ib) the maximum
weighted matching in bipartite graph K|Ia|,|Ib|.

Example 2. Recall digraph G in Figure 1. For nodes 1 and 2, their in-neighbors
sets are I1 = {4, 5} and I2 = {6, 7, 8}, respectively. The set of all in-neighboring
pairs of (1, 2) is I1×I2 = {(4,6), (4, 7), (4, 8), (5, 6), (5,7), (5, 8)}. The maximum
matching of bipartite graph (I1 ∪ I2, I1× I2) is M1,2 = {(4, 6), (5, 7)} (bold). ut
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Symbol Description

G directed graph G = (V,E) with a set nodes V and a set of edges E
Ia all in-neighbors of node a in G
|Ia| cardinality of the set Ia (i.e., the number of nodes in Ia)
Ma,b maximum weighted matching in bipartite graph K|Ia|,|Ib| = (Ia ∪ Ib, Ia × Ib)
s(a, b) RoleSim* similarity score between nodes a and b
β damping factor (0 < β < 1)
λ relative weight that balances similarities inside and outside Ma,b (0 < λ < 1)
K total number of iterations

Table 1: Description of Main Symbols

Other notations frequently used throughout this paper are listed in Table 1.

RoleSim* Formula. Based on our aforementioned intuition, we formally for-
mulate the RoleSim* model as follows:

s(a, b) = β ×
(
λ×

Part 1: average similarity over maximum matching Ma,b︷ ︸︸ ︷
1

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

s(x, y)

+ (1− λ)× 1

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

s(x, y)

︸ ︷︷ ︸
Part 2: average similarity over (Ia × Ib)−Ma,b

)
+ (1− β)

(1)

In Eq.(1), for every pair of nodes (a, b), the set of their in-neighboring pairs,
Ia × Ib, is split into two subsets: Ia × Ib = Ma,b ∪ (Ia × Ib −Ma,b). As a result,
the definition of RoleSim* consists of two parts: Part 1 is the average similarity
over maximum matching Ma,b, indicating the contribution from (a, b) interacting
with the automorphically equivalent set, Ma,b, of (a, b)’s in-neighbors pairs. Part
2 is the average similarity over (Ia×Ib)−Ma,b, corresponding to the contribution
from (a, b) being pointed to by the rest of (a, b)’s in-neighbors pairs out of auto-
morphically equivalent set Ma,b. The relative weight of Part 1 and 2 is balanced
by a user-controlled parameter λ ∈ [0, 1]. β is a damping factor between 0 and 1,
which is often set to 0.6 or 0.8, implying that similarity propagation made with
distant in-neighbors is penalised by an attenuation factor β across edges. When
Ia (or Ib) = ∅, which implies the maximum matching Ma,b = ∅, we define Part 1
and Part 2= 0 in order to avoid the denominators of the fraction in Part 1 and
2 being zeros.

Fixed-Point Iteration. To solve RoleSim* similarity s(a, b) in Eq.(1), we adopt
the following fixed-point iterative scheme:

s0(a, b) = 1 (∀a, b) (2)

sk+1(a, b) = β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

sk(x, y)

+
1− λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

)
+ (1− β) (3)



An Axiomatic Role Similarity Measure Based on Graph Topology 7

where sk(a, b) denotes the RoleSim* score between nodes a and b at iteration
k. Based on Eqs.(2) and (3), we can iteratively compute all pairs of similarity
scores sk+1(∗, ∗) from those at the last iteration sk(∗, ∗). The fixed-point scheme
in Eqs.(2) and (3) implies an iterative algorithm for RoleSim* computation,

which requires O(K|E|2) time to compute |V |2 node-pairs for K iterations.

Threshold-Based RoleSim*. To accelerate RoleSim* computation in Algo-
rithm 1, we notice that there are a significant number of node pairs whose itera-
tive similarity values sk(∗, ∗) are very close to their convergent scores s(∗, ∗) and
thus will not change much in subsequent iterations. We eliminate such pairs from
unnecessary iterative computations, based on Cauchy Convergence Criterion:

lim
k→+∞

sk(∗, ∗) = s(∗, ∗) ⇔ ∃δ s.t. |sk(∗, ∗)− sk+1(∗, ∗)| < δ

Hence, we propose the following threshold-based RoleSim* model, where δ is a
user-controlled threshold, which is a speed-accuracy trade-off.

sδ0(a, b) = 1

sδk+1(a, b) =





sδk(a, b) if sδk−1(a, b)− sδk(a, b) < δ

1− β if sδk(a, b) < (1− β) + δ

β ×
(

λ
|Ia|+|Ib|−|Ma,b|

∑
(x,y)∈Ma,b

sδk(x, y) otherwise

+ 1−λ
|Ia|×|Ib|−|Ma,b|

∑
(x,y)∈(Ia×Ib)−Ma,b

sδk(x, y)

)
+ (1− β)

3.2 Axiomatic Properties for RoleSim* Iterative Similarity

Based on the definition of iterative similarity sk(a, b) in Eqs.(2) and (3), we next
show three axiomatic properties of RoleSim*, i.e., symmetry, boundedness, and
non-increasing monotonicity, based on the following theorem.

Theorem 1. The iterative RoleSim* {sk(a, b)} in Eqs.(2) and (3) have the fol-
lowing key properties: for any node pair (a, b) and each iteration k = 0, 1, · · · ,
1. (Symmetry) sk(a, b) = sk(b, a)
2. (Boundedness) 1− β ≤ sk(a, b) ≤ 1
3. (Monotonicity) sk+1(a, b) ≤ sk(a, b)

Theorem 1 indicates that, for every iteration k = 0, 1, 2, · · · , {sk(a, b)} is a
bounded symmetric scoring function. Moreover, as k →∞, it can be readily ver-
ified that the exact solution s(a, b) also is a bounded symmetric measure, which
is similar to SimRank and RoleSim. In comparison, other measures (e.g., Hitting
Time and Random Walk with Restart) are asymmetric ones.

3.3 Existence & Uniqueness

It is worth mentioning that, as opposed to SimRank whose iterative similarity is
non-decreasing between 0 and 1 w.r.t. k, RoleSim* similarity is non-increasing
between 1 − β and 1. The bounded non-increasing property of RoleSim* guar-
antees the existence and uniqueness of its exact solution s(a, b), as shown below:
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Theorem 2 (Existence and Uniqueness). There always exists a unique so-
lution s(a, b) (i.e., the exact RoleSim score) to Eqs.(2) and (3) such that the iter-
ative RoleSim similarity {sk(a, b)} converges to it, i.e., limk→∞ sk(a, b) = s(a, b).

3.4 Accuracy Estimation

Having proved the existence and uniqueness of the exact RoleSim* solution, we
are now ready to investigate the error bound of the difference between the k-th
iterative similarity sk(a, b) and exact one s(a, b). In virtue of the non-increasing
monotonicity of {sk(a, b)}, one can readily show that the exact s(a, b) is the
lower bound of all the iterative similarities {sk(a, b)}, i.e., sk(a, b) ≥ s(a, b) (∀k).
The following theorem further provides a concise upper bound to measure the
closeness between sk(a, b) and s(a, b).

Theorem 3 (Iterative Error Bound). For every iteration number k = 0, 1, 2, · · · ,
the difference between sk(a, b) and s(a, b) is bounded by

sk(a, b)− s(a, b) ≤ βk+1 (∀a, b) (4)

Theorem 3 derives a concise exponential upper bound for the difference be-
tween the k-th iterative similarity sk(a, b) and exact s(a, b). Combining this
bound with the non-increasing monotonicity sk(a, b) ≥ s(a, b), we can obtain
that the k-th iterative error sk(a, b)− s(a, b) is between 0 and βk+1. Moreover,
Theorem 3 also implies that, given desired accuracy ε > 0, the total number of
iterations required for computing RoleSim* similarity is K = dlogβ εe.

3.5 “Sum-Transitivity” of RoleSim* Similarity

In this section, we investigate the transitive property of the proposed RoleSim*
similarity measure. Intuitively, when a similarity measure s(∗, ∗) fulfils the tran-
sitive property, it means that, for any three nodes a, b, c in the graph, if a is
similar to b and b is similar to c, it implies that a is likely to be similar to c. The
transitivity feature is useful in many real applications, e.g., for predicting and
recommending links in a graph.

To study the transitive property of RoleSim*, let us induce a distance d(a, b) :=
1 − s(a, b) from the RoleSim* measure. Due to s(∗, ∗) ∈ [1 − β, 1], the distance
d(∗, ∗) is between 0 and β. In what follows, we will show that d(∗, ∗) satisfies the
triangular inequality, which is an indication of s(∗, ∗) transitivity.

We first show the following lemma, which is needed for further proof of
RoleSim* triangular inequality.

Lemma 1. Let sk(∗, ∗) be the k-th iterative RoleSim* similarity to Eqs.(2) and
(3). For any three nodes a, b, c in a graph, if sk(a, b)+sk(b, c)−sk(a, c) ≤ 1 holds
at iteration k, the following inequalities holds:

P1 :=

∑
(x,y)∈Ma,b

sk(x, y)

|Ia|+ |Ib| − |Ma,b|
+

∑
(y,z)∈Mb,c

sk(y, z)

|Ib|+ |Ic| − |Mb,c|
−

∑
(x,z)∈Ma,c

sk(x, z)

|Ia|+ |Ic| − |Ma,c|
≤ 1 (5)
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P2 :=

∑
(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

|Ia| × |Ib| − |Ma,b|
+

∑
(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

|Ib| × |Ic| − |Mb,c|
−

∑
(x,z)∈(Ia×Ic)−Ma,c

sk(x, z)

|Ia| × |Ic| − |Ma,c|
≤ 1 (6)

Leveraging Lemma 1, we are now ready to show the sum-transitivity of the
RoleSim* similarity distance, which is the main result in this subsection:

Theorem 4. The RoleSim* similarity s(a, b) defined by Eq.(1) satisfies the fol-
lowing “sum-transitive” property: Let d(a, b) := 1 − s(a, b) be the closeness be-
tween nodes a and b. Then, for any three nodes a, b, c in a graph, the following
triangular inequality holds, i.e.,

d(a, b) + d(b, c) ≥ d(a, c) (7)

4 Experimental Evaluation

4.1 Experimental Settings

Datasets. We use both real and synthetic datasets, as illustrated below:

Datasets Abbr. #Node-Pairs #Nodes #Edges Type
Amazon (AMZ) 25, 867, 396 5, 086 8, 970 Directed
DBLP (DBLP) 5, 626, 384 2, 372 7, 106 Undirected
Synthetic (SYN) 4, 000, 000 2, 000 5, 481 Undirected

– Amazon. A co-purchasing digraph crawled from Customers Who Bought This
Item Also Bought feature of Amazon3. Each node is a product, and edge
i→ j means that product j appears in the frequent co-purchasing list of i.

– DBLP. A collaboration (undirected) graph taken from DBLP bibliography.4

We extract a co-authorship subgraph from six top conferences in computer
science (SIGMOD, VLDB, PODS, KDD, SIGIR, ICDE) during 2018–2020.
If two authors (nodes) co-authored a paper, there is an edge between them.

– Synthetic. A random scale-free graph with a power-law degree distribution,

generated by GenRndPowerLaw function in C++ SNAP Library.5

All experiments are conducted on a PC with Intel Core i7-10510U 2.30GHz
CPU and 16GB RAM, using Windows 8 Professional 64-bit. Each experiment is
repeated 5 times and the average is reported.

Compared Algorithms. We implemented all the following algorithms in VC++:

Models Abbr. Description
RoleSim* (RS*) our proposed RoleSim* model in Algorithm 1.
SimRank (SR) a pairwise similarity model proposed by Jeh and Widom [7].
MatchSim (MS) a similarity model relying on the matched neighbors of node pairs [16].
RoleSim (RS) a model that guarantees the automorphically equivalence of nodes [9].
RoleSim++ (RS++) an enhanced RoleSim that considers both in- and out-neighbors [23].
CentSim (CS) a similarity model that compares the centrality values of node pairs [13].

3 www.amazon.co.uk
4 www.informatik.uni-trier.de/˜ley/db/
5 https://snap.stanford.edu/data/index.html
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Fig. 2: Effect of Sampling Ratio (η) and Weight (λ) on Ranking Quality (DBLP)
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Fig. 3: Effect of Sampling Ratio (η) and Weight (λ) on Ranking Quality (AMZ)

Parameters. We use the following parameters as default: (a) damping factor
β = 0.8, (b) relative weight λ = 0.7, (c) total number of iterations K = 4.

Semantic Evaluation. We design an unsupervised evaluation setting to quan-
tify the effectiveness of the similarity measures in preserving self-similarity under
different conditions. In particular, we study the effect of sampling the immediate
neighborhood of a query point on similarity scores in RoleSim* compared with
SimRank and RoleSim. Consider a single query node q. In our experiment, we
create a node q′ and add it to the graph. We connect q′ to some proportion (η)
of the total number of neighbors of q, and hereby refer to q′ as the “sampled
clone”. The similarity scores of q to all other points in the graph are computed
using SimRank, RoleSim, and RoleSim*. We evaluate how much the relative
similarities are preserved when different measures are used. We vary η in q′

with step size 0.25 (and ensuring no orphaned nodes), and additionally consider
λ = 0.0, 0.3, 0.5, 0.7, 1.0 for RoleSim*. Our results are aggregated over 20 queries
on DBLP and AMZ graphs respectively, where query nodes are chosen as having
high degree of neighbors.
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# RS*(λ = 0.6) RS*(λ = 0.8) RS SR
1 Nitesh V. Chawla Xia Hu Xia Hu Yuan Fang
2 Danai Koutra Nitesh V. Chawla Nitesh V. Chawla Chenwei Zhang
3 Yanjie Fu Yanjie Fu Yanjie Fu Nan Du
4 Jure Leskovec Jure Leskovec Huan Liu Wei Fan
5 Haifeng Chen Danai Koutra Jure Leskovec Lichao Sun
6 Xia Hu Haifeng Chen Haifeng Chen Weiran Huang
7 Xing Xie Xing Xie Danai Koutra Jianxin Ma
8 Xiangnan He Xiangnan He Xing Xie Xinyue Liu
9 Di Niu Di Niu Xiangnan He Binbin Hu
10 Jennifer G. Dy Huan Liu Fenglong Ma Daixin Wang
· · · · · · · · · · · · · · ·
28 Huan Liu Dawei Yin Di Wu Ning Wu
· · · · · · · · · · · · · · ·
89 Xiang Li Han Zhu Qinyong Wang Huan Liu
· · · · · · · · · · · · · · ·
350 Mao Yang Houdong Hu Xi (Stephen) Chen Jure Leskovec

Table 2: Similarity rankings for “Philip S. Yu” on DBLP co-authorships data

4.2 Experimental Results

Semantic Accuracy. We first count the number of queries where the sampled
clone q′ appears in the top-k (k = 1, 5, 10) similar nodes to query q for RoleSim*.
Intuitively, this studies how much structural information is gleaned about a query
node. Figure 2(a) presents the number of such queries out of 20 on the undirected
DBLP graph, considering top-5 similarity scores. Other top-k plots are omitted,
but show that with increasing k for a given sampling proportion there are more
such queries even at lower λ.

Next, we test the impact of sampling η and λ on ranking quality in RoleSim*.
We plot the average ranking quality (normalized discounted cumulative gain
(nDCG)), considering top-100 similar nodes of the sampled clone and comparing
this to the baseline original query. We observe that the trend (with respect to η)
seen in Figure 2(b) and Figure 3(b) for λ = 1 resembles that for RoleSim, and
the trend for λ = 0.5 is close to that for SimRank.

Finally, we consider a fixed value of λ = 0.7 and confirm that the RoleSim*
has higher ranking quality compared to SimRank and RoleSim, with respect
to the average nDCG. Figure 2(c) with undirected DBLP graph shows that
RoleSim* produces a more consistent nDCG even with small η. For the directed
AMZ graph in Figure 3(c) too, RoleSim shows significant improvement at lower
sampling, and the performance of SimRank is negatively affected throughout,
while RoleSim* remains stable.

Qualitative Case Study. Table 2 compares the similarity ranking results from
three algorithms (SR, RS and RS*) for retrieving top-10 most similar authors
w.r.t. query “Philip S. Yu” on DBLP. From the results, we see that the top rank-
ings of RS* are similar to RS, highlighting its capability to effectively capture
automorphic equivalent neighboring information. For instance, “Jure Leskovec”
is top-ranked in RS* list. This is reasonable because he and “Philip S. Yu”
have similar roles - they are both Professors in Computer Science with close
research expertise (e.g., knowledge discovery, recommender systems, common-
sense reasoning). However, the rankings of RS* are different from those of RS.
For example, “Jure Leskovec” is ranked 350th by SR, but 4th by RS* and RS.



12 W. Yu et al.

DBLP AMZ SYN
100

101

102

103

E
la
p
se
d
T
im

e
(s
ec
)

RS* RS MS
RS++ CS SR

(a) Varying Datasets

4 6 8 10
100

500

1000

1500

# of Iterations (k)

E
la
p
se
d
T
im

e
(s
ec
)

RS∗
δ = 0.01
δ = 0.03
δ = 0.05

(b) Varying k on DBLP

4 6 8 10
100

500

1000

1500

# of Iterations (k)

E
la
p
se
d
T
im

e
(s
ec
)

RS∗
δ = 0.01
δ = 0.03
δ = 0.05

(c) Varying k on AMZ

Fig. 4: Elapsed Time Comparison for Different Threshold-Based RS*

This is because SimRank can only capture connected paths between two authors
while ignoring their automorphic equivalent structure. “Jure Leskovec” has rare
collaborations with “Philip S. Yu”, both direct and indirect, thus leading to a
low SimRank score.

To evaluate RS* further, we choose two different values for λ ∈ {0.6, 0.8} to
show how RS* ranking results are perturbed w.r.t. λ. From the results, we notice
that, when λ is varied from 0.6 to 0.8, nodes with small SR scores (e.g., “Jure
Leskovec”) exhibit a stable position in RS* ranking, whereas nodes having higher
SR scores (e.g., “Huan Liu”) have a substantial change. This conforms with our
intuition because “Huan Liu”’s collaboration with “Philip S. Yu” is closer than
“Jure Leskovec”’s, and RS* is able to capture both connectivity and automorphic
equivalence of two authors using a balanced weight λ. Thus, compared with “Jure
Leskovec”, “Huan Liu” who has higher SimRank value with “Philip S. Yu” is
more sensitive to λ change, as expected.

Computational Time. Figure 4(a) compares the computational time of six al-
gorithms (RS*, RS, MS, RS++, CS, SR) on various datasets (AMZ, DBLP, SYN),
respectively. We notice that, on each dataset, RS* has comparable computational
time to RS and MS. This implies that RS* achieves high accuracy without sac-
rificing running speed. In addition, RS*, RS, and MS are 2–4 times faster than
RS++. This is because RS* need to find two maximum bipartite matchings for
both in- and out-neighboring pairs, as opposed to RS* that involves the compu-
tation of only one matching. SR is slightly slower than RS*. This is consistent
with our analysis as SR simply takes the average of all similarities of the in-
neighboring pairs without the need to find the maximum bipartite matching.
CS achieves the fastest speed since it simply assesses a node-pair similarity by
aggregating their centrality values, thereby leading to low accuracy.

Figures 4(b) and 4(c) show the effect of iteration number k and threshold δ
on the running time of RS* on DBLP and AMZ, respectively. For each dataset,
we vary δ from 0 to 0.05. When δ = 0, it reduces to RS* algorithm. From the
results on both datasets, we discern that, for each fixed δ, the running time of
threshold-based RS* increases as k grows. When δ becomes larger, the growth
rate of RS* time tends to be sublinear. For example, when δ = 0.05 on DBLP,
only after k = 5 iterations, the increasing time of threshold-based RS* has leveled
off. In contrast, when δ = 0.01, the time becomes steady after k = 8 iterations.
The reason is that a higher setting of threshold δ implies a larger number of
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pairs to be pruned per iteration, thus leading to the growth rate of the running
time decreasing in an earlier stage during iterations.

5 Conclusion

We propose RoleSim*, a novel similarity model that guarantees automorphic
equivalence and also considers neighboring similarity information beyond au-
tomorphically equivalent sets, thereby achieving better performance than both
SimRank and RoleSim. We prove the existence and uniqueness of the RoleSim*
solution, show that iteratively computing RoleSim* is bounded, and induce a
RoleSim* distance obeying sum-transitivity of similarity scores. We also evalu-
ate our model on DBLP, AMZ, and SYN datasets to demonstrate its superior
ranking quality and comparable complexity to competitors.
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A Proofs of Theorems & Lemmas

A.1 Proof of Theorem 1

Proof. 1. (Symmetry) By virtue of Eqs.(2) and (3), sk(a, b) = sk(b, a) follows
immediately.

2. (Boundedness) We will prove by induction on k. For k = 0, it is apparent
that s0(a, b) = 1 ∈ [1− β, 1]. For k > 0, we assume that sk(x, y) ≤ 1 holds, and
will prove that sk+1(x, y) ≤ 1 holds as follows: Let

P1 :=
1

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

sk(x, y)︸ ︷︷ ︸
≤1

≤ |Ma,b|
|Ia|+ |Ib| − |Ma,b|

=
min{|Ia|, |Ib|}
max{|Ia|, |Ib|}

≤ 1

P2 :=
1

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)︸ ︷︷ ︸
≤1

=
|Ia × Ib −Ma,b|
|Ia| × |Ib| − |Ma,b|

= 1

Thus, Eq.(3) can be rewritten as

sk+1(a, b) ≤ β ×
(
λ+ (1− λ)

)
+ (1− β) = 1

On the other hand,

sk+1(a, b) = β ×
(
λ× P1 + (1− λ)× P2

)
︸ ︷︷ ︸

≥0

+(1− β) ≥ 1− β

3. (Monotonicity) We will prove by induction on k. For k = 0, s0(a, b) = 1.
According to Eq.(3), it follows that

s1(a, b) = β ×
(
λ× min{|Ia| , |Ib|}

max{|Ia| , |Ib|}︸ ︷︷ ︸
≤1

+(1− λ)× (|Ia| × |Ib|)− |Ma,b|
(|Ia| × |Ib|)− |Ma,b|︸ ︷︷ ︸

=1

)
+ (1− β)

≤ β(λ+ (1− λ)) + (1− β) = 1 = s0(a, b)

For k > 0, we assume that sk+1(a, b) ≤ sk(a, b) holds, and will prove that
sk+2(a, b) ≤ sk+1(a, b) holds. According to Eq.(3), it follows that

sk+2(a, b) = β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

{using hypothesis} ≤sk(x,y)︷ ︸︸ ︷
sk+1(x, y)

+
1− λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk+1(x, y)︸ ︷︷ ︸
≤sk(x,y)

)
+ (1− β)

≤ β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

sk(x, y)

+
1− λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

)
+ (1− β)

= sk+1(a, b) ut
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A.2 Proof of Theorem 3

Proof. (Existence) For each pair of nodes (a, b), since the sequence {sk(a, b)}k
is lower-bounded by (1 − β) (according to Property 2) and non-increasing (ac-
cording to Property 3), by Monotone Convergence Theorem, {sk(a, b)} will con-
verge to its infimum, denoted as s(a, b), which is the exact RoleSim* solution,
i.e., limk→∞ sk(a, b) = s(a, b).

(Uniqueness) For each pair of nodes (a, b), suppose there exist two solu-
tions, s(a, b) and s̃(a, b), that satisfy Eq.(3). We will prove that s(a, b) = s̃(a, b).
Let δ(a, b) := s(a, b)− s̃(a, b) and ∆ := max(a,b){|δ(a, b)|}. Then,

δ(a, b) = s(a, b)− s̃(a, b)

= β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

=δ(x,y)︷ ︸︸ ︷
s(x, y)− s̃(x, y)

+
1− λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

s(x, y)− s̃(x, y)︸ ︷︷ ︸
=δ(x,y)

)

Therefore, taking the absolute value of both sides and applying triangle inequal-
ity |x+ y| ≤ |x|+ |y| produces

|δ(a, b)| ≤ β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
×
∣∣∣∣

∑

(x,y)∈Ma,b

δ(x, y)

∣∣∣∣

+
1− λ

|Ia| × |Ib| − |Ma,b|
×
∣∣∣∣

∑

(x,y)∈(Ia×Ib)−Ma,b

δ(x, y)

∣∣∣∣
)

≤ β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
×

∑

(x,y)∈Ma,b

∣∣δ(x, y)
∣∣

︸ ︷︷ ︸
≤∆

+
1− λ

|Ia| × |Ib| − |Ma,b|
×

∑

(x,y)∈(Ia×Ib)−Ma,b

∣∣δ(x, y)
∣∣

︸ ︷︷ ︸
≤∆

)

≤ β(λ×∆+ (1− λ)×∆) = β ×∆ (∀a, b)

Thus, ∆ = max(a,b){|δ(a, b)|} ≤ β×∆, implying ∆ = 0, i.e., s(a, b) = s̃(a, b). ut

A.3 Proof of Theorem 4

Proof. We prove by induction on k. For k = 0, s0(a, b) = 1. According to Prop-
erty 2 of Theorem 1, 1 − β ≤ sk(a, b) ≤ 1, implying that 1 − β ≤ s(a, b) ≤ 1.
Thus, s0(a, b)− s(a, b) ≤ β.
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For k > 0, we assume that sk(a, b)−s(a, b) ≤ βk+1 holds, and will prove that
sk+1(a, b)− s(a, b) ≤ βk+2 holds. Subtracting Eq.(3) from Eq.(1) produces

sk+1(a, b)− s(a, b) = β ×
(

λ

|Ia|+ |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

≤βk+1

︷ ︸︸ ︷
sk(x, y)− s(x, y)

+
1− λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)− s(x, y)︸ ︷︷ ︸
≤βk+1

)

≤ β(λ× βk+1 + (1− λ)× βk+1) = βk+2 (∀a, b) ut

A.4 Proof of Lemma 1

Proof. Without loss of generality, we only consider the case of |Ia| ≤ |Ib| ≤ |Ic|.
The proofs for other cases are similar, and omitted here due to space limitation.
In this case, we have

|Ia|+ |Ib| − |Ma,b| = max{|Ia| , |Ib|} = |Ib| .

Hence, P1 in Eq.(5) can be rewritten as

P1 =
1

|Ib|
∑

(x,y)∈Ma,b

sk(x, y) +
1

|Ic|
∑

(y,z)∈Mb,c

sk(y, z)− 1

|Ic|
∑

(x,z)∈Ma,c

sk(x, z)

=

Part 1(a)︷ ︸︸ ︷(
1

|Ib|
− 1

|Ic|

) ∑

(x,y)∈Ma,b

sk(x, y)

+
1

|Ic|

( ∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈Mb,c

sk(y, z)−
∑

(x,z)∈Ma,c

sk(x, z)

︸ ︷︷ ︸
Part 1(b)

)
(8)

To find an upper bound of Part 1(a), since
∑

(x,y)∈Ma,b

sk(x, y) ≤
∑

(x,y)∈Ma,b

1 = |Ma,b|,

it follows that

Part 1(a) ≤
(

1

|Ib|
− 1

|Ic|

)
× |Ma,b| =

(
1

|Ib|
− 1

|Ic|

)
× |Ia| (9)

To get an upper bound of Part 1(b), let

Ĩb = {y | ∀x ∈ Ia, ∃y ∈ Ib, s.t. (x, y) ∈Ma,b}
M̃a,c = {(x, z) | ∃y ∈ Ib, s.t. (x, y) ∈Ma,b ∧ (y, z) ∈Mb,c}

Then, Mb,c can be partitioned into two parts: Mb,c = M
(1)
b,c ∪M

(2)
b,c where

M
(1)
b,c = {(y, z) ∈Mb,c | y ∈ Ĩb, z ∈ Ic}

M
(2)
b,c = {(y, z) ∈Mb,c | y ∈ Ib − Ĩb, z ∈ Ic}
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Therefore,

Part 1(b) =
∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈Mb,c

sk(y, z)−
∑

(x,z)∈Ma,c

sk(x, z)

=

( ∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈M(1)
b,c

sk(y, z)

)
+
∑

(y,z)∈M(2)
b,c

sk(y, z)︸ ︷︷ ︸
≤1

−
∑

(x,z)∈Ma,c

sk(x, z)

≤
( ∑

(x,z)∈M̃a,c

sk(x, z)

︸ ︷︷ ︸
≤ ∑

(x,z)∈Ma,c

sk(x,z)

+ |Ia|
)

+
(
|Mb,c|︸ ︷︷ ︸
=|Ib|

− |Ĩb|︸︷︷︸
=|Ia|

)
−
∑

(x,z)∈Ma,c

sk(x, z) ≤ |Ib| (10)

Substituting Eqs.(9) and (10) into (8) produces

P1 ≤
(

1

|Ib|
− 1

|Ic|

)
|Ia|+

|Ib|
|Ic|

=
|Ia|
|Ib|

+
|Ib| − |Ia|
|Ic|

≤ |Ia|
|Ib|

+
|Ib| − |Ia|
|Ib|

≤ 1 ut

For each x ∈ Ia, there exist yx ∈ Ib and zx ∈ Ic such that (x, yx) ∈Ma,b and
(x, zx) ∈Ma,c. Then, for each z ∈ Ic − {zx}, there exists y ∈ Ib such that

sk(x, y) + sk(y, z)− sk(x, z) ≤ 1

Summing both sides of the inequality over all z ∈ Ic−{zx} and all y ∈ Ib yields

∑

y∈Ib

∑

z∈Ic−{zx}
sk(x, y)

︸ ︷︷ ︸
Part 2(a)

+
∑

y∈Ib

∑

z∈Ic−{zx}
sk(y, z)

︸ ︷︷ ︸
Part 2(b)

−
∑

y∈Ib

∑

z∈Ic−{zx}
sk(x, z)

︸ ︷︷ ︸
=|Ib|×

∑
z∈Ic−{zx}

sk(x,z)

≤ (|Ic| − 1)×|Ib|

where

Part 2(a) = (|Ic| − 1)×
∑

y∈Ib
sk(x, y) ≥ (|Ic| − 1)×

∑

y∈Ib−{yx}
sk(x, y)

Part 2(b) =
∑

(y,z)∈(Ib×Ic)
sk(y, z)−

∑

y∈Ib
sk(y, zx)

︸ ︷︷ ︸
≤ ∑

(y,z)∈Mb,c

sk(y,z)

≥
∑

(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

Therefore, it follows that

(|Ic|−1)×
∑

y∈Ib−{yx}
sk(x, y)+

∑

(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)−|Ib|×
∑

z∈Ic−{zx}
sk(x, z) ≤ (|Ic| − 1)×|Ib|
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Summing both sides of the inequality over all x ∈ Ia produces

(|Ic| − 1)×

=
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x,y)

︷ ︸︸ ︷∑

x∈Ia

∑

y∈Ib−{yx}
sk(x, y) + |Ia| ×

∑

(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

− |Ib| ×
∑

x∈Ia

∑

z∈Ic−{zx}
sk(x, z)

︸ ︷︷ ︸
=

∑
(x,z)∈(Ia×Ic)−Ma,c

sk(x,z)

≤ |Ia| × (|Ic| − 1)× |Ib|

Since
⋃
x∈Ia
{(x, yx)} = Ma,b and

⋃
x∈Ia
{(x, zx)} = Ma,c, we divide both sides of

the inequality by (|Ia| × (|Ic| − 1)× |Ib|) to get P2 ≤ 1 in Eq.(6). ut

A.5 Proof of Theorem 2

Proof. By the definition of d(a, b) := 1− s(a, b), based on the fact that

d(a, b) + d(b, c) ≥ d(a, c) ⇔ 1− s(a, b) + 1− s(b, c) ≥ 1− s(a, c)
⇔ s(a, b) + s(b, c)− s(a, c) ≤ 1 (11)

in what follows we will prove Eq.(11) holds by induction on k. For k = 0, by
virtue of Eq.(2), it is apparently that

s0(a, b) + s0(b, c)− s0(a, c) = 1 + 1− 1 = 1 ≤ 1.

For k > 0, we assume that sk(a, b) + sk(b, c)− sk(a, c) ≤ 1 holds, and will prove
that sk+1(a, b) + sk+1(b, c)− sk+1(a, c) ≤ 1 holds.

Let P1 and P2 be defined by Eqs.(5) and (6), respectively. According to
Lemma 1, it follows from P1 ≤ 1 and P2 ≤ 1 that

sk+1(a, b) + sk+1(b, c)− sk+1(a, c) = β(λ× P1 + (1− λ)× P2) + (1− β)

≤ β(λ× 1 + (1− λ)× 1) + (1− β) ≤ 1. ut

B Description of RoleSim* Algorithm

Algorithm. The fixed-Point scheme in Eqs.(2) and (3) implies an iterative algo-
rithm for RoleSim* computation, as illustrated in Algorithm 1. It starts initial-
ising all pairs of similarities to 1s (line 1), and carries out iterative computations
of similarities for each pair of nodes (lines 3–15). If there are no in-neighbors
for node a or b, s(a, b) is set to 1 − β (lines 4–6). Otherwise, it finds maximum
weighed matching Ma,b in bipartite graph (Ia ∪ Ib, Ia × Ib) (8), and averages
the (k − 1)-th iterative similarities over Ma,b (resp. (Ia × Ib)−Ma,b) to get w1

(resp. w2) (lines 9–14). Then, the weighted average of w1 and w2 is returned as
score sk(a, b) at k-th iteration. This process continues till all pairs of similarities
are computed for each iteration.
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Algorithm 1: RoleSim* (G, β, λ,K)

Input : digraph G = (V,E), decay factor β, relative weight λ, #-iterations K
Output: RoleSim* scores sK(∗, ∗).

1 initialise s0(∗, ∗) := 1
2 for k := 1, 2, · · · ,K do
3 foreach pair (a, b) ∈ V 2 do
4 Ia := {x ∈ V | (x, a) ∈ E}, Ib := {x ∈ V | (x, b) ∈ E}
5 if Ia = ∅ or Ib = ∅ then
6 sk(a, b) := 1− β
7 else
8 Ma,b := maximum matching in bipartite graph (Ia ∪ Ib, Ia × Ib)
9 initialise t1 := 0 and t2 := 0

10 foreach (x, y) ∈Ma,b do
11 t1 := t1 + sk−1(x, y)

12 foreach (x, y) ∈ (Ia × Ib)−Ma,b do
13 t2 := t2 + sk−1(x, y)

14 w1 := λ/(|Ia|+ |Ib| − |Ma,b|), w2 := (1− λ)/(|Ia| × |Ib| − |Ma,b|)
15 sk(a, b) := β × (w1 × t1 + w2 × t2) + (1− β)

16 return sK(∗, ∗)
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(c) # of Pruned Pairs

Fig. 5: Accuracy Comparison for Different Threshold-Based RS*

C Additional Experiments

Effect of Threshold δ on RS* Accuracy. Figures 5(a) and 5(b) show the
influence of threshold δ on RS* accuracy over real datasets (DBLP and AMZ).
The accuracy is evaluated using three ranking measures (Spearman, Kendall,
nDCG). We randomly sample 100 queries from each dataset, and vary threshold
δ from 0.01 to 0.05. For each δ, we compute single-source threshold based RS*
similarities {sδk(∗, q)} w.r.t. each query q. Choosing non-threshold based RS*
similarities {sk(∗, q)} as the baseline, we evaluate the average value of Spear-
man, Kendall, and nDCG, respectively, for each threshold based RS* over 100
queries on each dataset. We notice that, on each dataset, all the threshold based
RS* consistently achieve > 98% accuracy by each ranking measure. For top-100
results on both datasets, the similarity rankings attain > 99% nDCGs on av-
erage. These imply that the accuracy compromised by the threshold based RS*
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Fig. 6: Effect of (k, β) on εk

β = 0.6 β = 0.8 β = 0.6 β = 0.8

#- Actual Est. Actual Est. #- Actual Est. Actual Est.

Iter. Error Bound Error Bound Iter. Error Bound Error Bound

(k) (εk) (βk+1) (εk) (βk+1) (k) (εk) (βk+1) (εk) (βk+1)

1 0.1029 0.3600 0.2717 0.6400 6 0.0031 0.0280 0.0339 0.2097

2 0.0509 0.2160 0.1793 0.5120 7 0.0015 0.0168 0.0224 0.1678

3 0.0252 0.1296 0.1183 0.4096 8 0.0008 0.0101 0.0147 0.1342

4 0.0125 0.0778 0.0780 0.3277 9 0.0004 0.0060 0.0097 0.1074

5 0.0062 0.0467 0.0515 0.2621 10 0.0002 0.0036 0.0064 0.0859

Table 3: Actual & Estimate Error for β ∈ {0.6, 0.8}
is negligibly small for fast speed. Moreover, when δ increases from 0.01 to 0.05,
the accuracy decreases slightly for each ranking measure because large threshold
may prune a large number of node-pairs per iteration. This agrees well with the
pruning table in Figure 5(c), where large δ implies more pairs are eliminated at
each iteration.

Iterative Error. Finally, we evaluate the effects of number of iterations k on
the iterative error of RS*. The error is measured by difference εk between k-th
iterative score sk(∗, ∗) and exact one s(∗, ∗). We only report the results for a
pair of nodes on DBLP since the trends for other pairs and on other datasets
(AMZ and SYN) are similar and omitted here due to space limitations. For each
pair of nodes on DBLP, we fix damping factor β, and vary k from 1 to 15.

Figure 6 depicts how k-th iterative error εk changes with k. It is discerned
that, for any given damping factor β, εk exponentially decreases to 0 as k grows.
The larger damping factor β will cause a shift outward in the accuracy curve,
thereby exhibiting the slower convergence rate of RoleSim* iterations. In addi-
tion, at each iteration k, it is noticed that small settings of damping factor β will
lead to small iterative error of RoleSim*. These agree well with our theoretical
bound k = dlogβ εke in Theorem 3 for RoleSim* accuracy analysis.

The actual and the estimated error bound value for β = 0.6 and β = 0.8
per 10 iteration are illustrated in Table 3, which shows for each iteration the
computed actual error bounds are completely compatible with the theoretical
estimated error bounds.


