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Abstract

Flavour changing neutral currents only occur at loop level within the Standard Model of particle

physics. This makes these processes extremely rare and potentially sensitive to interference

with currently undiscovered physics that lies beyond the scope of the Standard Model. To date,

tensions with the Standard Model have been found in the studies of b→ sl+l− processes at

large hadronic recoil. This thesis presents a branching fraction analysis of the b→ d(s)µ+µ−

processesB0(B0
s )→ π+π−µ+µ− using the data recorded by the LHCb collaboration during Run

1 and Run 2 of the Large Hadron Collider. The presence of the B0(B0
s )→ π+π−µ+µ− decays

are confirmed with a statistical significance in excess of 12 standard deviations. The branching

fraction of theB0→ π+π−µ+µ− process is measured to be (2.35±0.26±0.18)×10−8 while the

branching fraction of theB0
s→ π+π−µ+µ− process is measured to be (5.35±0.64±0.24)×10−8

where the first uncertainties are statistical and the second systematic. In addition, this thesis

presents for the first time the branching fraction measurements for the decay modes in two

separate regions of the invariant mass of the dimuon pair, q2. The B0 decay is observed for the

first time at both large and small hadronic recoil while the B0
s decay is observed for the first time

at large hadronic recoil.

viii



CHAPTER1
Introduction

“ There will come a time when our descendants will be amazed that we did not

know things that are so plain to them ”
Seneca,

It is a common misconception that the idea that matter is made up of particles was

first conceived of within the twentieth century. Long before the birth of what we now call

the scientific method, natural philosophers the world over pondered the mysteries of nature

and expressed interest in the building blocks of the material world. Historical records tell us

that Jainists in ancient India, from the 9th to the 5th century BCE, referred to the paramanu,

which were tiny, indivisible particles which made up the “non-living” part of the universe [1].

Furthermore, in ancient Greece in the 5th century BCE, the doctrine of atomism was furthered by

the philosopher Democritus who reasoned that it was unthinkable to believe that matter could

be divided ad infinitum [2]. 1 Of course, these early ideas were philosophical in nature and

completely untestable due to the limitations of technology at the time. As a result, many of these

musings from the ancient world were effectively forgotten about at the end of the classical period

with only a few, such as intellectual factions of the Islamic Golden Age, keeping them alive [3].

Centuries later, new scholars of the Western enlightenment returned to these concepts

and further developed them. Robert Boyle [4], of thermodynamics fame, supposed that all of the

chemical elements were composed of particles of various sizes. Sir Isaac Newton concluded, like

the Islamic scholars before him, that light may be composed of tiny “corpuscles” and John Dalton
1The word atom comes from the Greek word atomos, meaning “uncuttable.”
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built on the Democritic idea by pushing forward his atomic theory [5]. It can be argued that

interest in the field truly began to accelerate at the end of the nineteenth century with the discovery

of the electron in 1897 by J. J. Thomson which moved the discipline from the atomic to the

sub-atomic for the first time [6]. Indeed, following on from Thomson’s discovery of the electron,

discoveries came thick and fast. Soon, another key figure, Ernest Rutherford, demonstrated that

the atom was mainly comprised of empty space before he went on, in 1918, to discover the

existence of the proton [7] which was then complemented by James Chadwick’s discovery of the

neutron in 1932 [8].

As the twentieth century got underway, particle physics entered a golden age -- primarily

driven by the advent of quantum mechanics, special relativity and the subsequent revolutions of

modern physics. The recognition of this new set of theories led to the development of modern

chemistry via the Bohr model of the atom, the unlocking of the secrets of both nuclear fission

and fusion and new insights into the nature of magnetism [9] -- a phenomenon known about for

thousands of years but which had never been well understood.

Following on from the discovery of the muon in 1937 [10] more exotic particles, those

not found easily in nature, were hypothesised. Simultaneously, thanks to rapid developments in

accelerator and detector technology, higher energies could be probed which led to the prediction,

discovery and classification of a plethora of new particles and the discovery of an underlying,

three generational structure to matter. Within the second half of the century the rapidly maturing

set of theories were unified into the modern Standard Model of particle physics [11] which has

boasted numerous successful predictions and which culminated, famously, with the discovery of

the Higgs boson in 2012 [12, 13].

Today, the study of particle physics has reached an inflection point; despite the Standard

Model’s successes the model is known to be incomplete and a superior understanding of the

universe is currently lacking. There are currently many different areas of study within the field,

each of which is being experimentally probed to find a statistically significant derivation from the

Standard Model which leads to the next big discovery. This thesis focuses on the heavy flavour

sector which concerns transitions between the different types of heavy quark within the Standard

Model. Within this sector, international collaborations such as the LHCb experiment are currently

observing some tensions with the established model -- potentially showing the first signs of new

physical phenomena.

One area of current experimental focus in heavy flavour physics is the study of the rare

decays of beauty hadrons. This thesis, using data from the LHCb experiment, presents an analysis

of the rare decays of the beauty hadrons B0 and B0
s to a π+π−µ+µ− final state.

The organisation of this thesis is as follows. Chapter 2 discusses the Standard Model of

particle physics, provides a motivation for the study of rare decays within heavy flavour physics,
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and reviews some previous experimental results. Chapter 3 describes the functionality of both the

Large Hadron Collider and the LHCb detector. Chapter 4 introduces the analysis strategy while

Chapters 5, 6, 7, 8 and 9 discuss in detail the various steps of the analysis itself. The results are

analysed within the context of the wider literature in Chapter 10. Finally, additional information

regarding the LHCb data flow and the service task completed for the collaboration is included

in Appendix A and some fit parameters, not included within the main body of Chapter 8, are

included in Appendix B. Some additional figures are included in Appendix C for reference.
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CHAPTER2
Theoretical Background

“ He who loves practice without theory is like the sailor who boards ship

without a rudder and compass and never knows where he may cast ”
Leonardo Da Vinci,

Within this chapter the theory motivating the thesis work is presented. This includes a

general introduction to the Standard Model of particle physics with a particular emphasis on

flavour physics and b-hadron decays. In addition, some of the current exciting flavour anomalies

as measured by both the B-factories and LHCb are discussed. The anomalies include recent

branching fraction measurements, angular analyses and lepton flavour universality measurements

which all show tensions with the Standard Model within the same kinematic region. A motivation

for the thesis work, in the context of these anomalies, is presented at the end of the chapter.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a relativistic quantum field theory which describes

the fundamental constituents of the universe and the dynamics that govern them [15–17]. Within

the model all of the known particles are understood to be excited quanta of the fundamental

fields which permeate the universe and these particles are classified by their quantum numbers, as

visualised in Figure 2.1.

Particles with a half integer spin are known as fermions and are divided into the quarks, of

which there are six (up, down, charm, strange, top and bottom) and the leptons of which three are

4



Figure 2.1: The constituents of the Standard Model of particle physics [14].

charged (electron, muon and tau) and three are neutral (electron neutrino, muon neutrino and tau

neutrino) [18]. These different types, or flavours, of fermion are arranged into three generations

of increasing mass whereby fermions in either the second or third generation eventually decay

back to the first due to Nature’s proclivity to maintain the universe in the lowest possible energy

state [19, 20]. It is for this reason that the atom is comprised of up and down type quarks with

orbiting electrons leaving the more exotic fermions within the SM absent from daily life.

Alongside these fermions are their antimatter equivalents; partners to the fermions which

share the same mass but have oppositely-signed quantum numbers meaning that an interaction be-
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tween a matter particle and it’s antimatter counterpart results in annihilation. This set of fermions

then interacts with the fundamental forces of nature via the full-integer spin gauge bosons.

The strong nuclear force is mediated by the gluon as described by quantum-chromodynamics

(QCD), the electromagnetic interaction is mediated by the photon as described by quantum-

electrodynamics (QED) and the weak nuclear force is mediated by the Z0 and W± bosons with

the underlying theory being merged with electromagnetism as part of the overarching electroweak

theory [21].

Whether or not a fermion will interact via each force depends on whether the fermion

possesses the corresponding hypercharge. For example, only fermions with a non-zero electrical

charge may interact electromagnetically. The charge equivalent for the weak interaction is the

weak hypercharge, possessed by all fermions, while for the strong interaction it is the colour

charge which, uniquely comes in three varieties, red, green and blue. Furthermore, the non-

abelian symmetry structure of QCD mandates that objects bound together by the strong force

must be colour singlets. As a result, the quarks, which also possess colour charge, are unable to

exist independently and therefore are bound together into hadrons [22]. There are, to date, several

observed combinations of quarks and anti-quarks under the umbrella of hadrons including the

qq̄ meson, the qqq baryon, and, as recently confirmed to exist by the B-factory experiments and

the LHCb experiment, the exotic qqq̄q̄ tetraquark and qqqq̄q̄ pentaquark [23–31]. The binding

together of the quarks in various combinations leads to an extensive list of hadrons and the

so-called “particle zoo” as was predicted and classified by Gell-Mann and Zweig in the 1960s as

part of their Quark Model [32, 33].

Finally, alongside the quarks, leptons and gauge bosons, the SM includes a single scalar

boson, the now famous Higgs boson. This particle exists as an excitation of a field which, through

the Higgs mechanism (discussed in more detail in Section 2.4), broke the electroweak symmetry

within the early universe resulting in most SM particles gaining a mass.

A noticeable absence from the SM is a gauge boson responsible for mediating the force

of gravity although such a boson, normally referred to as the Graviton, has been hypothesised.

Furthermore, gravity is the only fundamental force in physics (that we currently know of) which

has not been incorporated into the SM and all attempts to combine Einstein’s theory of General

Relativity with quantum mechanics have, to date, been fruitless [34].

2.2 The Insufficiency of the Standard Model

The successes of the SM are hard to understate and they culminated in 2012 with the discovery of

the Higgs boson by the ATLAS and CMS collaborations at CERN [12, 13]. Indeed, the SM of

particle physics can lay claim to the most accurately validated theory in scientific history with the
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measurement of the anomalous magnetic moment of the electron [35]. However, despite these

successes, the SM does not address some of the phenomena we witness in nature and therefore

cannot be considered a complete picture.

Aside from the inability of the SM to incorporate gravity, as mentioned above, several

other key phenomena remain unexplained such as the nature of dark matter and dark energy.

Together these make up∼95% of the energy density of the universe and their existence is inferred

from astrophysical data such as galactic rotation curves, gravitational lensing and the cosmic

microwave background [36, 37].

In addition, the observed matter-antimatter asymmetry seen in the universe is not under-

stood. It is assumed that in the early, hot, universe there was a statistical equilibrium between

baryonic and anti-baryonic matter which evidently is no longer the case. If the universe indeed

did once possess this equilibrium then Nature, in order to have evolved away from this initial

state, must possess the ability to fulfill the three so-called Sakharov conditions that explain under

what conditions matter and antimatter can be produced at different rates [38]. The conditions are:

1. A mechanism to violate the conservation of Baryon number must exist;

2. Interactions must have taken place out of thermal equilibrium in order to allow the state of

the universe to evolve;

3. There must be mechanisms which violate both C and CP symmetry.

Mechanisms which violate CP symmetry are known of in the SM (discussed further in

Section 2.3) however, they do not account for the size of the CP violating effect required to

explain the state of the modern universe [39].

Additional conundrums in particle physics exist which the SM also fails to explain. These

include:

• We do not know why there are three generations of fermions;

• QCD results in a CP violating term yet no strong CP violation is observed experimen-

tally [40];

• The Higgs mass (at 125 GeV) seems very low given existing large quantum loop contribu-

tions [41];

• There seem to be many (19) free parameters in the SM -- why is this?

How to go about finding an explanation to these big questions is a matter of debate within the

field of particle physics. There are theories which address some of these problems by invoking the
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existence of new, heavy, particles which only exist at the TeV energy scale [42]. Currently, and

as is the focus of this thesis, there are some exciting tensions currently seen experimentally in the

rare decays of beauty hadrons (see Section 2.10). Although these tensions are yet to reach a 5 σ

confirmation level they may point to a problem with the SM and, potentially, to physics beyond

the scope of the SM which, one would hope, may start to shed some light on these conundrums.

2.3 Symmetries of the Standard Model

The role of symmetries within particle physics is a crucial one. In 1917 Emmy Noether published

her theorem which highlighted the relationship between symmetries and the dynamics of a sys-

tem [43]. Her theorem states that every symmetry of nature yields a corresponding conservation

law. Some examples include the symmetry of a system under a translation in time corresponding

to the conservation of energy, and the symmetry of the electromagnetic interaction under a local

gauge transformation which results in the conservation of electric charge.

The SM exhibits invariance under continuous local gauge symmetry transformations

which belong to the

SU(3)C × SU(2)L × U(1)Y (2.1)

group [44]. Here, SU(3)C represents QCD with C a conserved colour charge, while SU(2)L ×
U(1)Y represents the symmetry of the electroweak theory with L denoting the left-handed

chirality of the weak interaction and Y denoting conserved weak hypercharge. This symmetry

structure is not obeyed at all energy scales however. Indeed, in today’s cooled universe the

electroweak symmetry has been broken by the Higgs mechanism. Also, remembering that the SM

is only an effective, low-energy theory, a high-energy grand unified theory most likely will have a

different symmetry structure which was broken very quickly within the early universe [45, 46].

In addition to the continuous form of symmetry, discrete symmetries are also present,

such as symmetries of space-time. At various points in the development of the SM certain discrete

symmetries have been considered to be fundamental symmetries of the universe. These discrete

symmetries are:

• C - Charge Conjugation: The symmetry of the system when replacing a particle with it’s

anti-particle by inverting the sign of all quantum numbers;

• P - Parity: The symmetry of the system when inverting the sign of all spatial space-time

co-ordinates;

• T - Time: The symmetry of the system when inverting the temporal co-ordinate of space-

time.
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Today, it is known that these three symmetries are not good symmetries of the universe

when applied individually, i.e. transformation under these symmetries alone does not guarantee

the invariance of a system. Chronologically, P symmetry was long considered a good symmetry

and indeed is conserved in both electromagnetic and strong interactions. However, in 1957 an

experiment was performed by Wu showing that the direction of electrons emitted from the decay

of 60Co atoms was completely asymmetric to their spin orientation, thereby demonstrating that

the weak force was violating parity [47]. At the time the natural assumption of particle physicists

was that the application of the combination of the operators C and P, CP , must be invariant in

nature. This too was shown to not be the case in 1964 by Cronin and Fitch in their experiment

where they found evidence of the CP violating decay K0
L→ π+π− [48] where a CP odd K0

L

decays to a CP even π+π− pair.

Given it’s importance in explaining the matter-antimatter asymmetry of the universe,

much experimental effort has been expended trying to probe the extent of CP violation. As of

2020 CP violation has been observed independently in K, B0, B0
s and (recently) D mesons [49–

52]. In addition, there are searches ongoing for CP violation in the baryon sector [53–55] and

there are even hints that violation may be present in the neutrino sector as part of the neutrino

mixing model with experimental confirmation yet to be achieved [56].

Lastly and continuing the pattern, the T symmetry has been observed to be violated in an

analysis performed by the BABAR experiment at SLAC which measured T violating parameters

in neutral B meson decays [57]. However, despite the confirmation of both T and CP symmetry

breaking, the application of C, P and T, known as CPT , is, according to the CPT theorem, a good

symmetry of nature [58, 59]. The theorem states that CPT invariance is upheld in a relativistic

quantum field theory as long as Lorentz invariance is respected, a condition which the SM fulfills.

To date, no experiment has witnessed any evidence of CPT violation.

2.4 The Higgs Mechanism and Spontaneous Symmetry Breaking

The symmetries of nature result in some strange and conceptually challenging phenomena. For

example, a feature of the gauge symmetry fields of the SM is that they must be massless. This

can be seen when considering that a Lagrangian mass term for a fermion field takes the form

m2ψ̄ψ which can then be decomposed into both left and right handed chiral fields as

m2(ψ̄L + ψ̄R)(ψL + ψR) = m2(ψ̄LψL + ψ̄RψR + ψ̄LψR + ψ̄RψL). (2.2)

This expression contains terms which couple left and right-handed fermion fields together

which individually are known to have different transformation properties under the weak force.
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This means that the existence of these terms would break gauge symmetry and so they are not

permitted by Nature. A similar problem is seen for bosons where the equivalent mass term is not

invariant under a boson field gauge transformation.

For both the strong and electromagnetic interactions this presented no obvious theoretical

problem due to both the photon and gluon having no mass. However, as the W± and Z0 are both

massive, the question arose of how a non-zero mass appears within a gauge field theory. This

problem was solved in 1964 with the Higgs mechanism [60–63] which provides a way to break

the electroweak symmetry of the universe and simultaneously give rise to gauge-compatible mass

terms. In addition, it eventually leads to the introduction of quark flavour changing within the

SM. Mathematically, the mechanism introduces a new term to the SM Lagrangian:

LSM = LEW + LQCD + LHiggs (2.3)

where, LEW and LQCD contain the dynamics of the electroweak and QCD aspects of the SM,

while the additional term can be written as

LHiggs = (DµΦ)†(DµΦ)− V (Φ), Φ =

(
φ+

φ0

)
(2.4)

where Φ represents a new complex scalar field. The Dµ operators are covariant derivatives given

by

Dµ = ∂µ + igT iW i
µ + i

1

2
g
′
Bµ (2.5)

which contain terms for the three SU(2)L gauge bosons, W i
µ, and the single U(1)Y gauge boson,

Bµ. T i are the Pauli matrices while both g and g
′

are coupling terms.

The potential energy of the vacuum, V (Φ), can be written in the form

V (Φ) = −µ2Φ†Φ + λ
(

Φ†Φ
)2

(2.6)

and finding the minimum of V (Φ) yields a vacuum energy expectation value (VEV), v, often

parameterised in terms of the coupling constants as

v =

√
µ2

λ
. (2.7)

For cases where µ2 > 0 there are an infinite number of potential minima lying around a circle in

the complex plane of Φ as shown in Figure 2.2.

In order to break the SU(2)L × U(1)Y electroweak gauge symmetry, while leaving a
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Figure 2.2: The so-called “Mexican-hat” potential of the vacuum [64].

U(1)Q electromagnetic gauge symmetry unbroken, a form of Φ which is a neutral field and

therefore invariant under U(1)Q is of interest. Canonically, this form is chosen to be:

〈Φ〉 =
1√
2

(
0

v

)
(2.8)

with oscillations about the potential minimum included by perturbing v to v+h [44]. Substituting

the perturbed VEV back into the kinetic term of Equation 2.4 yields terms quadratic in h,

quadratic in the combination of W 1µ and W 2µ and quadratic in the combination of W 3µ and

Bµ. The results, therefore, are that a new massive scalar boson, the now named Higgs boson,

is born. Additionally, the W 1,2µ mix to provide mass terms for the W± bosons while the third

gauge boson, W 3µ, mixes with the U(1) gauge boson, Bµ, to provide mass for the Z0 boson.

Meanwhile the electromagnetic gauge field, Aµ, lacks any quadratic term meaning it is left

massless. A diagram of the boson mixing with the gauge fields defined as a function of the

Weinberg mixing angle, θW, is shown in Figure 2.3.

Counting degrees of freedom before and after the electroweak symmetry breaking shows

that the theory has not thrown away any physical information. Before symmetry breaking, there

were twelve degrees of freedom. The SU(2) doublet is complex meaning it had four degrees of

freedom. The massless SU(2)L × U(1)Y gauge bosons, of which there were four, each had a

further two giving the final total of twelve. After the vacuum gains a VEV we have a real scalar

Higgs boson with one degree of freedom, the now massive W± and Z0 bosons each with three

degrees of freedom and a massless photon with two transverse polarisations, again giving a total

of twelve.
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Figure 2.3: The mixing of the SU(2)L and U(1)Y gauge bosons during spontaneous electroweak
symmetry breaking and the resulting gauge bosons of the SM. The mass fields are defined and
the figure is edited from the original taken from [65].

2.5 Quark Masses and Flavour Changing Transitions

The Higgs mechanism which solves the issue of bosonic mass terms within the SM, also provides

mass terms for the quarks. Interestingly, this source of quark masses is intrinsically linked to the

ability of the quarks to change flavour. To demonstrate this firstly it is recalled that within the SM

chirally left-handed quarks are arranged into SU(2) doublets, QLi, whilst chirally right-handed

quarks are arranged into SU(2) singlets, uRj or dRj , i.e.

QLi =

(
u

d

)
L

or

(
c

s

)
L

or

(
t

b

)
L

(2.9)

and

uRj = uR or cR or tR,

dRj = dR or sR or bR.
(2.10)
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A new term, LY , can be added to the SM Lagrangian which is of the form

LY = −Y d
ijQLiΦdRj − Y u

ijQLiεΦ
∗uRj (2.11)

where Y u,d are the 3×3 Yukawa matrices, ε is the anti-symmetric Levi-Civita tensor and Φ is the

Higgs field. By substituting in the VEV from Equation 2.8 mass terms arise of the form

v√
2
Y d
ijqLqR (2.12)

where q denotes either an up or down type quark. The Yukawa mass matrix terms are in the

flavour basis and, in this consideration of mass terms, should be transformed to the mass basis.

This is done by diagonalising the Yukawa matrix terms using unitary matrices denoted by, VqL,R:

v√
2
Y d → v√

2
VqLY

dV †qR (2.13)

with the same shift of basis performed for the quark terms:

qiL → VqLqiL. (2.14)

Considering the current corresponding to the W± gauge bosons, Jµ
W± , and substituting in the

change of bases gives:

Jµ
W± =

1√
2
uiLγ

µdiL →
1√
2
uiLγ

µ(V †uVd)diL (2.15)

where the matrix combination

(V †uVd) = VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.16)

is known as the CKM matrix, named after Cabibbo, Kobayashi and Maskawa [66]. The

CKM matrix terms provide a coupling between the different quark flavours and, therefore, both

the quark masses and the phenomenon of quark flavour changing is revealed simultaneously.

Conversely, as a neutral current from the Z0 boson contains terms only of the form qiγµqi

there are no terms which give rise to the CKM matrix upon the change of basis, meaning that

interactions involving the Z0 boson do not change flavour in the SM.
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Figure 2.4: The commonly represented CKM triangle with an apex at (ρ, η). This triangle is
commonly used as the three mixing angles, position of the corners of the triangle and the length
of the sides are easier to visualise.

2.6 Parameterisation of the CKM Matrix

The CKM matrix has four parameters: three real parameters and a single complex phase. This

stems from the fact that any complex 3×3 matrix has 18 parameters. Half of these parameters are

removed by insisting that the matrix is unitary. Another 5 of the degrees of freedom are removed

by imposing phase rotations on the six flavours of quark. The four remaining parameters can

be represented by three rotation (Euler) angles and a single complex phase. Crucially, it is the

overall complex phase left over which is responsible for all CP violation within the SM.

A useful parameterisation, the Wolfenstein parameterisation [67], is commonly used as it

makes explicit the matrix’s hierarchy; the matrix terms further away from the diagonal which

correspond to inter-generational flavour changing are more suppressed that those which only

change flavour within the same generation. This parameterisation is given by

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(q − ρ− iη) −Aλ2 1

+O(λ4) (2.17)

where the current best fits give values of A ∼ 0.84, λ ∼ 0.23, ρ ∼ 0.16, η ∼ 0.35 [68].

The unitarity of the CKM matrix ensures that rotations can be made between bases

without changing any of the underlying physics. This feature enables the construction of several

unitarity relations such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.18)

which trace out triangles in the complex plane. In total there are six possible triangles to construct

from the unitarity relations however the most commonly used is as represented in Figure 2.4 The
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area for all of the CKM triangles is the same and is given by half of the Jarlskog invariant [69], J ,

where

J ∝ sin(δ), (2.19)

where δ is the complex phase of the CKM matrix. As it is a function of δ, the CP violating

parameter within the CKM matrix, the area of the CKM triangle provides a direct measure of the

amount of CP violation within the SM. Measuring the angles of the CKM triangles is therefore of

great interest and, over the last 15 years, there has been an enormous improvement in the precision

of the measured parameters thanks to the work of both LHCb and the B-factory experiments,

BABAR and Belle. The current best fit of the CKM triangle can be seen in Figure 2.5.

2.7 Flavour Changing Neutral Currents

Quark flavour is changed via charged current interactions but whether such a flavour change can

take place with a neutral current interaction was a question only answered during the discovery

of the need for a second generation of quarks in 1970 [70]. Faced with the lack of experimental

evidence for the existence of the decay K0
L→ µ+µ−, Glashow, Iliopoulos and Maiani introduced
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the charm quark to complete the second generation of quarks alongside the already known strange

quark. This prediction explained the apparent absence of the K0
L→ µ+µ− process by introducing

the idea that, at tree level, a flavour changing neutral current (FCNC) has a contribution from the

first quark doublet which cancels with that from the second, resulting in tree level FCNCs being

rendered impossible. At loop level there is not a complete cancellation, but a heavy suppression

with the sum of the two decays producing a small contribution of order

g4(m2
c −m2

u)

m2
W

∼ α2m2
c

m2
W

(2.20)

which, in the case of K0
L → µ+µ−, results in a small branching fraction of O(10−9) [71],

explaining it’s elusiveness. The existence of the FCNC terms at loop level relies, as can be seen

from Equation 2.20, on non-degenerate intermediate quark masses. The GIM mechanism extends

from two to three generations and, due to the masses of the quarks within the SM and the large

mass of the top quark, FCNC processes are less suppressed when involving an external down-type

quark than an external top-type quark.

The GIM mechanism provides an additional layer of suppression to FCNC processes in

addition to the CKM matrix terms, making them very rare within the SM. Their rarity makes

them a valuable tool in the hunt for new physics for several reasons. The presence of new physics

within the loop would lead to a measurable alteration of certain physical observables such as

the rate of the decay or variables associated to the angular structure of the decay. Additionally,

as the SM predictions of the rate of FCNC processes are very small, any background from the

SM would also be small. Therefore, the effect of the new physics would be comparatively large.

Specifically, the small SM contributions result in an expected sensitivity to new physics up to

energies of around 10 TeV/c2 [72]. This makes the job of hunting for a new physics signal slightly

less challenging than it would otherwise be.

2.8 Characterising New Physics with Effective Field Theory

If FCNC processes are to be used to hunt for new physics it becomes necessary to remember

that the SM is a low-energy effective theory. Indeed, the SM is expected to break down at

high energies such as the Planck scale where the strength of the gravitational force becomes

comparable to the electroweak and strong forces. Furthermore, theoretical models fail to predict

the convergence of the coupling strengths of the fundamental forces to a single point in the high

energy limit despite the assumption that this should happen in Nature [73]. In general, effective

field theories within particle physics make use of the fact that the different particle masses are

spread over many orders of magnitude. As a result, physical processes which take place at a high
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Figure 2.6: Feynman diagram for Beta decay (left) with the Fermi theory equivalent (right) which
assumes that the weak interaction is a point-like four fermion interaction with a coupling strength
of GF .

energy scale are effectively decoupled from processes which take place at a lower energy scale

and therefore the two processes can be treated, with care, separately [74]. Crucially, an effective

field theory is only considered a valid approximation when performing calculations at a particular

energy scale appropriate for the particles in question.

Arguably the most famous example of an effective field theory within particle physics is

that of Fermi’s theory of beta decay, proposed in 1933 [75, 76]. The theory postulated that beta

decay could be well described by a four point fermion interaction, as seen in Figure 2.6, with a

coupling given by, GF, the Fermi constant. The theory describes weak decays very well up to

energies of around 100 GeV beyond which the energy scale approaches the mass of the W± and

so the accuracy breaks down. It is now understood that beta decay includes the propagator W−

term and so Fermi theory is an oversimplification. However, the predictive accuracy of the theory

at lower energies provided the precedent of using effective theories elsewhere in the absence of a

more fundamental theory.

When considering rare, FCNC decays involving a b→ q transition an effective field

theory can be used where particles with masses much larger than mb, such as the top quark and

the W± bosons, are integrated out. It is then possible to use an operator product expansion and

define an effective Hamiltonian given by,

Heff =
−4GF√

2
VtbV

∗
tq

∑
i

Ci(µ)Oi(µ) (2.21)

which is discussed in more detail in [77, 78]. This Hamiltonian only contains CKM terms involv-

ing a top quark transition as it assumes that these terms dominate over those with intermediate up

and charm quarks, due to the very large top mass and the resulting weak GIM suppression.

Analogously to Fermi theory the short distance, or high energy, physics is encapsulated in
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a series of couplings, known as Wilson coefficients,Ci(µ), which are calculated at the electroweak

scale by comparing the full theory to the effective theory before being evolved down to the energy

scale under study [79]. In addition, the structure of the fermion interaction in question is described

by a series of matrix operators, Oi(µ). Of particular interest are the operators O7,9,10, which

provide contributions to semi-leptonic b→ qll processes. They are defined as:

O7 =
e

16π2
mb(qLσµνbR)Fµν (2.22)

O9 =
e2

16π2
mb(qLγµbL)

∑
l

(lγµl) (2.23)

O10 =
e2

16π2
mb(qLγµbL)

∑
l

(lγµγ5l) (2.24)

where O7 describes radiative decays, and O9,10 describe decays via a semi-leptonic vector and

axial vector current respectively. Additionally, for each operator, one can also define a primed set

of operators, O′, which correspond to the chirally-flipped state. Due to the left handedness of the

weak interaction the corresponding Wilson coefficients for these operators, C ′i, are suppressed by

a factor of mq/mb. Despite this suppression, O′7−10 could be greatly enhanced by the presence

of new physics [80].

It is possible that there could be new contributions with the inclusion of new, scalar,

pseudo-scalar or tensor operators. There are many possibilities of new operators such asOS,P both

of which are zero in the SM but could arise in new physics scenarios. Indeed, the consequences

of including new operators which describe beyond the SM processes could be large [72]. For

example, the addition of a new operator which is complex would point to the discovery of a new

source of CP violation in Nature. In addition, it is conceivable that new operators could exist

which result in lepton flavour violation, or which do not respect the lepton flavour universality

which is present in the SM couplings between gauge bosons and leptons.

Ultimately, searching for new physics via a particular Wilson coefficient is equivalent

to testing a specific form of Lorentz structure as the Wilson coefficient is independent of any

specific process. As a result a statistically significant deviation from the SM seen in global fits

to Wilson coefficients informs which class of process should be studied further. Current Wilson

coefficient fits are discussed in more detail in Section 2.10.
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Figure 2.7: Lowest level FCNC Feynman diagrams for a b→ ql+l− process.

2.9 b→ ql+l− processes

As mentioned previously FCNC decays with external top-type quarks suffer from heavier GIM

suppression than those with external down-type quarks. Indeed, top-type FCNC processes which

take place via a t→ cg, t→ cγ or t→ cZ process have predicted branching fractions ofO(10−10),

O(10−12) andO(10−13) respectively [81], making measurements of these modes experimentally

difficult. The FCNC processes of the form b→ ql+l− have larger predicted branching fractions,

of O(10−6 − 10−9) (e.g. [82]) and, when coupled with the relatively long lifetime of B mesons

at O(10−12) seconds, makes them a more promising candidate for experimentation. Examples of

lowest level diagrams for these processes are shown in Figure 2.7.

A feature of these processes is that the contributions of the operators O7,9,10 to the rate

of the decay are known to vary depending on the decay kinematics. Specifically, the variation

of the decay rate with the value of q2, which is defined as the invariant mass squared of the

dilepton system [83], is of particular interest, as shown in Figure 2.8. Probing a specific region of

q2 leads to an increased sensitivity to particular Wilson coefficients and, by extension, specific

classes of underlying physics. Figure 2.8 also shows large peaks which originate from the narrow

charmonium resonances, J/ψ and ψ(2S). These point to long distance b→ qcc contributions

that decay to two charged leptons and which obscure any sensitivity to the potential new physics.

As a result, such regions are normally vetoed in any b→ ql+l− study.

Another motivation for performing b→ ql+l− analyses in particular regions of q2 arises

from the handling of uncertainties associated to the calculation of QCD hadronic terms. The

operator term can be decomposed and factorised into two components representing the leptonic
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and hadronic parts of the process:

〈Xll|O|B0〉 = 〈X|IQuark|B0〉 · 〈ll|Ilepton|0〉+ non-factorisable terms

= F (q2) · 〈ll|Ilepton|0〉+ non-factorisable terms
(2.25)

where X denotes a hadron, the I terms the quark and lepton currents, F (q2) a hadronic form-

factor and where non-factorisable terms refer to cases where the assumption of decoupled short

and long distance physics breaks down. The calculation of the hadronic form-factor as a function

of q2 provides the dominant source of systematic uncertainty in the theoretical predictions for

these decays due to the non-pertubative nature of QCD at low energies. Typically, these large

uncertainties are around 30% of the central value [84–86]. At high hadronic recoil, corresponding

to a low q2, sum rules which exploit the analyticity of the equations on the light cone [87] are

used to calculate these form-factors (e.g. [88]). At low recoil, where the QCD coupling strength

is highly non-linear, QCD calculations can be performed using a space-time lattice with some

finite element spacing, a [89, 90]. As a → 0 and the size of the lattice itself→ ∞ the QCD

continuum becomes well described up to a momentum cut-off of the order of 1
a meaning QCD

Figure 2.8: Differential decay rate of a b→ ql+l− process as a function of the invariant mass of
the dilepton pair, q2. The regions dominated by particular Wilson coefficient contributions are
labelled. Figure taken from Ref. [83]
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calculations can be performed.

2.10 Experimental status of b→ sl+l− processes

There are, to date, some interesting tensions with the SM arising in the study of b→ sl+l−

processes as measured by both LHCb and the B-factory experiments, Belle and BABAR. These

tensions are present in several complementary physical measurements, and, most excitingly, seem

to occur within the same low q2 region.

The first of these tensions has arisen in the measurements of differential branching

fractions of several decay modes including B0
s→ φµ+µ−, B0→ K∗µ+µ−, B+→ K+µ+µ−,

B0 → K0µ+µ− and B+ → K∗+µ+µ− [91–93]. Despite the rarity of these processes, (for

example B0→ K∗0µ+µ− has a branching fraction of O(10−7)), the large amount of data taken

by the LHCb experiment has made measurements in bins of q2 experimentally feasible. Both the

latest experimental results alongside the theoretical predictions are shown in Figure 2.9.

The set of results show, consistently, that the SM prediction for the branching fraction at

low values of q2 seems too high when compared to the experimental results. Although in each

decay mode this discrepancy does not reach a 5 σ confirmation threshold, the fact that the same

effect is seen over multiple decay modes is, perhaps, a clue of some underlying pattern.

Unfortunately, the SM predictions for the differential branching fractions suffer from the
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Figure 2.10: The P ′5 LHCb measurements [95], ATLAS [96], CMS [97], Belle [98], and theory
predictions from [99] and [100]

large hadronic uncertainties mentioned previously. However, a second source of tension with the

SM, which stems from the angular analysis of the decay B0→ K∗0µ+µ−, is sensitive to angular

observables which have reduced form-factor uncertainties and are thus a cleaner probe for new

physics [94]. The angular analysis describes the decay in terms of the helicity angles of the K∗

and dilepton systems and the angles between decay planes. It is possible to parameterise different

physical observables in terms of the transversity amplitudes of the K∗ meson and a subset of

these observables have been “optimised” to reduce form-factor uncertainties. This is achieved by

constructing the optimised observables as ratios of transversity amplitudes, and hence ratios of

form-factors. This exploits the fact that by expanding the form-factor ratios to first order in 1/mb

the corresponding form-factor uncertainties will cancel as many of the form-factors are related at

low q2. An example of such an observable is P ′5 which is defined as

P ′5 =
√

2
R(AL0A

L∗
⊥ −AR0 AR∗⊥ )√

(|AL0 |2 + |AR0 |2)(|AL‖ |2 + |AL⊥|2) + |AR‖ |2 + |AR⊥|2)
(2.26)

where A0 refers to a longitudinally polarised amplitude and A‖ and A⊥ to transversely polarised

amplitudes. The measurement of P ′5 in bins of q2 from LHCb, ATLAS and CMS with Run 1

LHC data and from Belle can be seen in Figure 2.10. Once again, there is a tension with the SM

theory within the low q2 region, specifically a 2.8 σ tension in the q2 ∈ [4.0, 6.0] GeV2/c4 region

and a 3.0 σ tension in the q2 ∈ [6.0, 8.0] GeV2/c4 region.

The tensions in both the differential branching fraction and P ′5 result could potentially be

explained by hadronic effects not accounted for within the theoretical estimates such as the inclu-

sion of interactions with additional charm loops outside of the charmonium regions [101]. Addi-
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tionally, it is possible that the current theoretical uncertainties associated to the non-factorisable

hadronic terms where, for example, a spectator quark interacts with the short distance physics,

may be underestimated across the q2 range [102, 103]. Understanding these hadronic effects is

therefore a prerequisite to being able to claim a new physics discovery with these measurements

alone. This theoretical barrier is not present, however, for a final set of tensions which are seen in

studies that test the universality of the electroweak coupling strength for the different flavours of

charged lepton. Within the SM it is expected that the different lepton flavours couple with the

same strength and, therefore, that the ratio

RX =
Γ(B0→ Xµ+µ−)

Γ(B0→ Xe+e−)
(2.27)

is equal to unity (differing only due to mass differences between the leptons). The hadronic

form-factor uncertainties that prove problematic for the branching fraction and, to a lesser extent,

the angular analyses are here effectively removed by the ratio. Other systematic effects will also

cancel in the ratio meaning that these tests of the SM are very clean from a theoretical standpoint.

As shown in Figure 2.11, the processes with X = K+,K∗0 show a 2.5 σ and 2.1-2.5 σ (differs

depending on theoretical models) tension with the SM respectively within the low q2 range [104–

108]. Furthermore, these results complement the so-called RD(∗) measurements made by the

B-factories and LHCb which, while considering b→ clνl processes instead of b→ sll processes,

also show tensions with the SM expectation at a combined significance of 3.8 σ [109–115].

Ultimately, additional data from LHCb and from the future Belle 2 experiment is required

to determine whether these tensions are true smoking gun signals of new physics. With the current
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datasets however, global fits in WC space can be made by using the operator product expansion

to convert results into WCs and then performing a global likelihood fit using results from the

different measurements. At the moment these global fits show a preference for the inclusion of

new physics with modifications to C9, and to a lesser extent, C10 preferred. The latest C9 and

C10 fits show a 4 σ tension with the SM while the quality of the fits is seen to improve with the

addition of small lepton universality new physics [116]. Examples of such global fits are shown

in Figure 2.12. Some of the new physics models which are currently proposed to address the B

decay anomalies include the introduction of a new, Z ′ vector boson (e.g. [117]), or models which

involve a U(1) leptoquark (e.g. [118, 119]). Both models suggest that the inclusion of a scalar

leptoquark/Z ′ can simultaneously explain the lepton non-universality results as the models have

different lepton family couplings built in. Alongside the B anomalies the models also claim a

possible explanation for other tensions seen in particle physics, such as the famous anomalous

magnetic moment of the muon, (g − 2)µ [120].

2.11 B0(B0
s)→ π+π−µ+µ− as examples of b→ d(s)l+l−

If new physics is indeed discovered within the b→ s processes then its flavour structure could

be probed by studying the similar and yet, to date, less studied b→ dl+l− processes. These

experience even greater CKM suppression due to the small size of the off-diagonal CKM matrix

element |Vtd| meaning that b→ dl+l− processes are potentially even more sensitive to new

physics signals. Furthermore, the study of such modes would provide a new source of constraint

on the CKM triangle with measurements of |Vtd|/|Vts| able to be extracted from data.

The b→ dl+l− processes are also potentially sensitive to large CP violating effects.

This is due to the fact that the relevant CKM amplitudes for a b → d process contain the

contributions VtbV ∗td, VcbV ∗cd, VubV ∗ud which are all proportional to λ3 where λ is the Wolfenstein

CKM parameter. As the contributions are all of the same magnitude and each have different weak

phases, the interference effects between the different processes could be large. The equivalent

terms for b→ s processes differ from one another by orders of magnitude in λ and therefore are

not as interesting for these CP violation searches.

The primary focus of this thesis is the decay B0→ π+π−µ+µ−, which is an example

of a b→ dµ+µ− process believed to mainly proceed via the decay B0→ ρ0(770)µ+µ− where

ρ0(770)→ π+π− [121] and where the ρ0(770) is a vector meson comprising of a superposition

of up and down quarks. Theoretical predictions for the branching fraction are of O(10−8).

Predictions for the full q2 range include 2.4× 10−8 and 4.1× 10−8 where these different values

originate from the different form factors used in the theoretical calculations [84–86]. These

predictions suffer from the large hadronic form-factor uncertainties previously discussed with
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uncertainties of around 30%. Theoretical predictions in the low q2 region include (4.2± 0.5)×
10−9 [86] while predictions in the upper q2 region are yet to be determined.

A previous analysis by the LHCb collaboration, using the Run 1 dataset, measured a

branching fraction value of

B(B0→ π+π−µ+µ−) = (2.11± 0.51 (stat)± 0.15 (syst)± 0.16 (norm))× 10−8 (2.28)

at a statistical significance of 4.8 σ. The analysis was performed by selecting candidates where

the invariant π+π− mass was close to the ρ0(770) resonance [122]. The work presented within

this thesis provides an updated branching fraction measurement using both Run 1 and Run 2

LHCb data.

The previous Run 1 LHCb analysis also provided the first observation of the b→ sµ+µ−

mode, B0
s→ π+π−µ+µ− where the branching fraction was measured to be

B(B0
s→ π+π−µ+µ−) = (8.6± 1.5 (stat)± 0.7 (syst)± 0.7 (norm))× 10−8 (2.29)

at a statistical significance of 7.2 σ.

The decay B0
s → π+π−µ+µ− proceeds mainly via B0

s → f0(980)µ+µ−. Theoretical

predictions for the branching fraction across the full q2 range include (5.21+3.23
−2.06)× 10−7 [123],

(9.5+3.1
−2.6)× 10−8 [124] and between (0.81− 2.02)× 10−8 [125] where the different predictions

arise from different parameterisations and form factor values. Theoretical predictions across low

and high q2 lie in the ranges (0.49− 1.29)× 10−8 and (0.63− 1.57)× 10−8 respectively [125].

The already large form-factor uncertainties on these predictions are made larger by additional

uncertainties due to the limited understanding of the f0(980) quark content. Although it is

generally assumed that the f0(980) is a meson with a superposition of up, down and strange

quarks, there is speculation that the f0(980) could in fact be a tetraquark due to it’s unusual

quantum numbers [126]. Being able to minimise both the statistical and systematic uncertainties

on the branching fraction measurement is therefore of great interest and so this thesis also provides

an updated measurement of the B0
s mode with the inclusion of the Run 2 LHCb data.

Given the wider context, this thesis presents the branching fraction measurements in bins

of q2, allowing for comparisons to the discrepancies seen in the b→ s sector. It is hoped that by

performing the measurements in specific regions of q2, similar tensions may start to be uncovered

within the b→ d sector.
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Figure 2.12: Global fits taken from Ref. [116] showing tensions seen between the SM prediction
(marked by the origin) and the b→ sµ+µ− results in C9 and C10 (top). A sizeable preference
for a modification in C9 can be seen. Also shows (bottom) a global fit when including small
lepton flavor universality new physics contributions which results in a better quality of fit.
NCLFU refers to neutral current lepton flavour universality and these observables include the
RK and RK∗0 measurements in addition to the P ′5 measurements from the angular analysis of
B0→ K∗0µ+µ−(e+e−).
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CHAPTER3
The LHCb detector at CERN

“ Measure what is measurable, and make measurable what is not so ”
Galileo Galilei,

This chapter provides an introduction to the LHCb experiment, which is the source of

the data used within the analysis. The role of the various sub-detectors that comprise the LHCb

experiment are discussed and aspects of the performance of the experiment are detailed. Details

regarding the LHCb detector are taken from references [127] and [128]. The chapter begins with

an introduction to the Large Hadron Collider which is the source of the proton beams that provide

the particle collisions necessary for data-taking [129].

3.1 The Large Hadron Collider

Located at CERN (the European Organisation for Nuclear Research), and lying underneath the

French-Swiss border near the city of Geneva, the Large Hadron Collider (LHC) holds the title of

the most energetic particle accelerator in the world, and, perhaps even more impressively, also lays

claim to being the largest machine that humans have ever built. The size of the LHC, at 26.6 km in

circumference, is appropriate given the LHC’s fundamental objective: to attempt to help answer

the fundamental questions in particle physics which have, to date, eluded understanding. In

order to try and make some progress towards this ambition the LHC has been carefully designed

to fulfill it’s primary functional purpose which is to provide proton-proton collisions at centre

of mass energies of up to 14 TeV by accelerating two 7 TeV beams of protons around the ring
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Figure 3.1: CERN accelerator complex with LINAC 2, PS Booster, PS, SPS and LHC ring
labelled as 1-5. The energy of the protons after each acceleration stage is labelled. Figure is
edited from CERN-DI-0606052 [130].

clockwise and counterclockwise before allowing them to collide at four different crossing points,

which house different detectors.

The LHC itself is the final stage in a chain of accelerators, known collectively as the

CERN accelerator complex, with each stage of the complex accelerating the particles to higher

energies before injecting them into the next stage. In addition to proton-proton collisions the

LHC is also designed to provide proton-ion and ion-ion collisions. The following discussion

concerns the proton-proton collisions which are of interest for this thesis. The proton-proton

collisions originate from a small canister of hydrogen gas whereby the gas is exposed to an

electric field that strips away the electrons from the atoms. The protons are then injected into the

linear accelerator, LINAC 2, where they are accelerated to an energy of 50 MeV. The protons

continue, being injected into the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS)

and the Super Proton Synchrotron (SPS) being accelerated each time to 1.4 GeV, 26 GeV and
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450 GeV respectively before being deposited into the LHC for a final acceleration up to 7 TeV. A

schematic of the complex with acceleration energies labelled is shown for reference in Figure

3.1.

Within the LHC, charged particles are accelerated with the use of radio frequency cavities

operating at a frequency of 400MHz. The particle trajectories around the ring are bent with the

use of 1232 superconducting dipole magnets, each of which weighs around 35 metric tonnes and

produces a magnetic field strength in excess of 8T. The magnetic field from the dipole magnets is

continuously adjusted to ensure that the particles stay on their fixed orbit while the frequency

of the electromagnetic field inside the cavity is synchronised to match the changing angular

frequency of the protons. As a result the acceleration of the protons varies depending upon when

the proton enters the cavity resulting in the formation of proton bunches instead of a continuous

stream. The bunch structure varies between the different accelerators however, for the LHC,

each bunch contains O(1011) protons with the number of bunches per beam varying between

the different data taking runs, 2011-2012 (Run 1) and 2015-2018 (Run 2). The bunches are

separated from each other with a minimum separation in time of 25ns which corresponds to

a bunch crossing frequency of 40MHz - the operational frequency of the LHC. In addition to

the dipole magnets, the LHC also makes use of quadrupole, sextupole, octupole and decapole

magnets. These both compress and focus the dimensions of the beam which is necessary for

beam stability and for allowing collisions at the crossing points.

The overall structure of the LHC is described in terms of sixteen separate sections. Eight

are straight insertion sections of which four house the main LHC experiments while the other

four holde either radio frequency cavities, beam dump areas or equipment used to collimate the

beams. The remaining eight sections of the LHC, the arced sections, consist of the dipole bending

magnets. In order to ensure clean particle collisions, the beam pipe is evacuated using cryogenic

pumping techniques to a pressure of 10−7 Pa which is reduced further to 10−9 Pa around the

beam crossing points.

A key metric to gauge the performance of any particle accelerator is the detector’s

instantaneous luminosity, L [131]. This quantity is defined as

L =
1

σ

dN

dt
=
NB(N2

p )f

4πδ2
S (3.1)

where NB is the number of bunches in a beam, Np is the number of protons in each bunch, δ is

the transverse size of the beam at the interaction crossing point, f is the revolution frequency,

S is a geometrical factor related to the beam crossing angle, σ is the cross section of the event

under study and, finally, dNdt is the number of events generated per second. The maximum design

luminosity of the LHC is 1×1034cm−2s−1 [132]. The four main experiments of the LHC, LHCb,
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Figure 3.2: Feynman diagrams showing different channels for bb production. The mechanisms
are: 1) quark-antiquark annihilation, 2) flavour excitation, 3) gluon splitting and 4) gluon-gluon
fusion.

ATLAS, ALICE and CMS are each designed to run at different luminosities depending on their

physics objectives. Both ATLAS (A Toroidal LHC ApparatuS) [133] and CMS (Compact Muon

Solenoid) [134] are general purpose detectors which are able to study a wide breadth of high

transverse momentum, (pT), physics at the maximum luminosity of the LHC. ALICE (A Large

Ion Collider Experiment) [135] and LHCb are designed for more specific studies with ALICE

studying the quark-gluon plasmas originating from the collisions of heavy ions and LHCb CP

violation and rare decay phenomena in the beauty and charm sectors. Both of these detectors

are designed to operate at a lower instantaneous luminosity with ALICE’s peak luminosity

2× 1029cm−2s−1 and LHCb’s equivalent, 2× 1032cm−2s−1.

Conveniently for heavy flavour physics, the LHC produces large numbers of both bb and

cc pairs from proton-proton collisions. These quark pairs are mainly produced from processes that

are initiated via a gluon interaction as opposed to via valence quark scattering [136, 137] and the

four main types of production are shown in Figure 3.2. Of the four mechanisms presented within

the figure the prevalence of each in describing the production of bb and cc pairs varies with energy

and their contributions are calculated in terms of the QCD strong coupling constant, αs. Naively,

it would be expected that the leading order processes in αs such as the gluon-gluon fusion and
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quark-antiquark processes would provide the largest contributions. However, the contributions

depend on the energy of the interaction and the high energy of the LHC collisions results in the

next to leading order contributions providing the largest contributions. This results in the flavour

excitation processes followed by the gluon splitting processes ultimately dominating the total bb

production cross-section. These are represented by sub-figures 2) and 3) of Figure 3.2.

In addition to the heavy mesons, the LHC also provides a unique laboratory to study

relatively unknown b baryon decays. The fragmentation fraction of a b quark hadronising into a

particular species of b hadron, Xi
b, is given by:

fXi
b

=
σ(b→ Xi

b)∑
i σ(b→ Xi

b)
(3.2)

where fXi
b

is the fragmentation fraction and σ(b→ Xi
b) is the hadronisation rate. Recognising

that, for example, the fragmentation fraction for the Λ0
b baryon is as high as approximately

40% [138] means that the LHC also provides significant scope to study baryon decays.

3.2 Introduction to the LHCb experiment

The LHCb detector is a single-arm forward spectrometer designed to probe the decay phenomena

of heavy b and c quarks, which are created from the proton-proton collisions of the LHC. A

general schematic of the detector, which was used for data taking between 2011-2018, can be

seen in Figure 3.3. The schematic shows that the spatial extent of the detector is described using

a coordinate system whereby the z-axis is aligned with the beam, the y-axis describes the vertical

direction with respect to the beam and the x-axis the horizontal direction towards the centre of

the LHC ring. Unlike the general purpose detectors ATLAS and CMS, LHCb has a smaller

angular acceptance corresponding to the pseudorapidity range 2 < η < 5, where pseudorapidity

is defined as

η = − ln(tan(θ/2)) (3.3)

and where θ is the angle between a particle and the beam. This is equivalent to a 15 mrad to

300 mrad acceptance in the x direction and 15mrad to 250mrad acceptance in the y direction

where the difference between the x and y acceptance takes into account the bending of the track

trajectory by the LHCb magnet. The acceptance region is specifically chosen to exploit the fact

that at the high energies of the LHC the production of b quarks primarily originates from the

interaction of a soft parton with a hard parton meaning that the resultant bb pair is highly boosted

and produced within a forward cone as shown in Figure 3.4. In total, approximately 25% of

the LHC bb pairs which are produced fall within the angular acceptance of the LHCb detector.
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Figure 3.3: Schematic of the LHCb detector from Run 1 and Run 2 of the LHC [127] with the
different sub-detectors labelled. Proton-proton collisions occur at z = 0.

Furthermore, the heavily boosted nature of bb pairs at the LHC means that the beauty hadrons fly

a distance large enough to provide a good decay time resolution which is important for signal

identification in physics analyses.

As mentioned previously the LHCb detector operates at an instantaneous luminosity of

O(1032)cm2s−1 that is much lower than the maximum instantaneous luminosity of the LHC. The

main justification for running at this lower luminosity is that LHCb’s reconstruction and trigger

algorithms exploit the fact that b hadrons fly, approximately, 1 cm before decaying which is a

sufficiently large distance to be resolved with the LHCb VELO sub-detector. Therefore, when

reconstructing the tracks of daughter particles, a secondary vertex (SV) can be determined in

addition to the primary vertex (PV) and the existence of this displaced SV is a key indicator

of a heavy flavour decay. However, the process of identifying and separating the PVs and SVs

becomes both much harder and also computationally intensive when there is too high a luminosity

and the resulting multiple PVs per bunch crossing.
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Figure 3.4: Left: The pseudorapidity of the bb quark pairs generated in 14 TeV centre of mass
energy proton-proton collisions with PYTHIA 8. The red square region shows the acceptance
covered by LHCb while the yellow square the equivalent for the general purpose LHC experiments.
Right: The polar distribution of bb quark pairs with respect to the beamline. The red shaded
region shows the area included within the LHCb acceptance. Figures are taken from [139].

Figure 3.5: (Left) the instantaneous luminosity recorded by LHCb, ATLAS and CMS during a
fill [128] and (Right) Integrated luminosity recorded by the LHCb experiment from Run 1 and
Run 2 of the LHC [139].

To ensure that the instantaneous luminosity does not become too large, the focus and

lateral separation of the beams at the crossing point is carefully adjusted over the course of an

LHC fill. As well as preventing the luminosity from becoming too large, this levelling scheme is

also used to achieve the opposite effect and compensate for the fact that the longer a fill goes on,

the more the instantaneous luminosity reduces due to the loss of protons following beam collisions.

The luminosity levelling scheme allows LHCb to maintain this balance between maintaining a

high enough luminosity to record sufficient data to perform physics analyses, whilst ensuring
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that this luminosity does not become too large as to make vertex reconstruction untenable. A

comparison between the instantaneous luminosity profiles of the general purpose detectors and

LHCb can be seen in Figure 3.5. It should be noted that to date, during data-taking runs, ATLAS,

CMS and LHCb have all operated at luminosities much higher than they were initially designed

for. For example, during Run 1, LHCb’s operational luminosity was L = 4× 1032 cm−2s−1 --

twice the initial design value.

The amount of data recorded by LHCb over the course of data taking is quantified in

terms of the integrated luminosity, L. As shown in Figure 3.5, LHCb recorded a total integrated

luminosity of 3.1 fb−1 of data in 2011+2012, 1.9 fb−1 of data in 2015+2016 and 3.8 fb−1 of data

in 2017+2018. It is this full dataset which is used within the analysis presented within this thesis.

3.3 Particle Tracking

The LHCb tracking system is responsible for the reconstruction of the trajectories of charged

particles that pass through the detector. The system is comprised of a VErtex LOcator (VELO)

that surrounds the interaction region, a warm dipole magnet, the Tracker Turicensis (TT) upstream

of the magnet and, finally, a series of three additional tracking stations downstream of the magnet

known as T1, T2 and T3. The spatial information which describes where a particle interacts

with an element of the tracking system is referred to as a particle hit and the LHCb tracking

system takes the series of particle hits arising in the different sensors to estimate the particle

trajectory. This process is extremely precise within the interaction region to allow for the

separation and classification of the PVs and SVs. Additionally, this fine resolution is necessary

for the measurement of several different physical observables. For example, B0
s mesons oscillate

into a B0
s meson and vice versa at a frequency of 17.7ps−1. Under the assumption that the B0

s

travels at 99% of the speed of light, the tracking system would need to have a spatial resolution

of ∼ 0.1 mm or better to resolve the two states. The excellent spatial resolution provided by the

tracking system and in particular from the VELO sub-detector is complemented with precise

measurements of the track momenta from a high bending power dipole magnet with the precision

in the momentum measurement resulting in a good resolution in reconstructed invariant masses.

Particle tracks at LHCb are classified depending on which sub-detectors they pass through

as is illustrated in the schematic diagram of Figure 3.6. Charged particles which only leave

hits within the VELO system are known as VELO tracks and tracks which pass through both

the VELO and TT tracker before being swept out of the acceptance region by the magnet are

known as Upstream tracks. Tracks which pass through the TT and the T1-3 stations are known as

Downstream tracks while those which only pass through the T1-3 stations are known as T tracks.

Finally, tracks which pass through all of the elements of the tracking system are known as Long
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Figure 3.6: The different types of track which may pass through the LHCb tracking system.
Tracks which only register hits within the VELO are classified as VELO tracks and tracks which
register hits only in the VELO and TT tracker are known as Upstream tracks. Tracks which
register hits only in the TT and T1-3 stations are known as Downstream tracks and those only
passing through the T1-3 stations are known as T tracks. Tracks which pass through all elements
of the tracking system are known as Long tracks.

tracks. The different classes of tracks are often separated from one another as each class can be

used to study different phenomena. For example, T tracks can be used to help identify decays

which originate from a K0
S meson which fly a long way through the detector and only tend to

decay by the time they have reached the T1-3 stations. However, due to the lack of momentum

measurements, T tracks are not useful for most physics analyses. In addition, VELO tracks can be

used in the identification of PVs within an event. Long tracks have the most precisely measured

momenta as they are reconstructed from hits from both the VELO and all of the tracking stations.

As a result they are the most useful for physics analyses and they are the tracks of interest within

this thesis.

3.3.1 VELO

The VELO is made up of two sets of 21 semi-circular silicon strip detectors which measure

particle hits using an (r,φ,z) polar coordinate system. Each VELO module is split into an R-

sensor which measures the radial distance of a particle hit from the beam and a φ-sensor which

measures the hit’s azimuthal position. The position of the hit in the z direction is determined

from the VELO module which detects the hit signal. The positioning of the VELO modules in

the z direction is such that a track which falls into LHCb’s acceptance must create a hit in at

least four VELO modules. Therefore, the modules which are further downstream are separated
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from one another by a larger distance than those closer to the interaction point. The minimum

separation between VELO modules is set to be 3.5cm. A schematic of the layout of the VELO

can be seen in Figure 3.7 while a diagram of an individual module can be seen in Figure 3.8.

The arrangement of the silicon strips on the sensors are as follows. The R sensor silicon

strips are arranged in a concentric fashion with the pitch of the strips increasing linearly from a

value of 38µm on the inside edge of the sensor to a value of 102µm on the outside edge. In order

to ensure that a single strip does not suffer from an over-capacitance, the sensor is split into four

45
◦

sections with 512 strips present in each section. Without this separation, a large number of

hits in a single sensor can result in the individual hits becoming unresolvable from one another

which leads to a large drop in strip efficiency. The φ strips are arranged radially with the pitch

increasing linearly from inner edge to outer edge. In order to make sure that the pitch does not

become too large at the outer edge, which would reduce the sensitivity of the module, the sensor

is split into two regions. In the inner section, which contains 683 strips, the pitch is 38µm at the

inner edge and 78µm at the upper edge. At the beginning of the second section, which contains

1365 strips, the pitch resets to 39µm before increasing to a maximum pitch of 97µm at the outer

edge of the sensor. There is a slight skew of 20
◦

in the inner region and 10
◦

in the outer region

between the R and φ strips meaning that the two sets of strips are not perfectly orthogonal and

this slight skew introduces a stereo angle. When consecutive VELO modules are placed next to

one another they have an opposite skew and the total polar resolution of the VELO is improved.

Finally, in addition to the primary VELO modules, and in order to measure the pile-up at the

interaction region, each set of VELO modules includes two additional sensors, known as VETO

stations which are upstream of the other modules. These additional sensors are only comprised of

R-sensors.

During the injection and ramping stages of an LHC fill each set of detectors is placed,

either side of the beam, at a distance of 30mm from the beam to prevent unnecessary radiation

damage. Once the LHC beam is stable and is ready for data taking the VELO modules are

moved into position with the active region of the detector 8.2mm away from the beam. Having a

measurement point close to the beam improves the IP resolution, which results in an improved

vertex separation capability. Due to small variations in the position of the LHC beam from

one fill to another it is also necessary for the VELO to be re-centred around the beam slightly

differently each time it is closed. When closed the VELO modules slightly overlap one another

by approximately 1.5mm. This is a design tolerance intended to make sure that there is a full

coverage of the possible hit region.

Both the modules themselves and the corresponding readout electronics are placed inside

an evacuated vessel. Inside the vessel the VELO modules are surrounded by a radio frequency

(RF) foil which is made of 300µm thick aluminium. The RF foil is designed to shield the sensitive
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Figure 3.7: Distribution of VELO modules along the LHC beamline including the VETO stations
upstream and 42 standard modules downstream [127]. The lower half of the figure shows the
configuration of the VELO module in both the closed (left) and retracted (right) state.

VELO modules from any RF signals which originate from the beam and which would interfere

with the VELO readout whilst also ensuring that the VELO modules do not contaminate the

separate LHC beam pipe vacuum.

3.3.2 Tracker Turicensis

The Tracker Turicensis (TT) is a 150cm×130cm silicon strip detector that covers the entire LHCb

acceptance. It is located after RICH 1 and before the LHCb dipole magnet and its function is

two-fold. Firstly, the TT provides a measurement point before the magnet which allows for the

reconstruction of long lived particles, such as a K0
S or Λ0, which do not decay inside the VELO.

Secondly, the TT enables the reconstruction of soft, low momentum, particles which are deflected

by the magnet such that they never reach the T1-3 Tracking stations further downstream. The

TT, which can be seen in Figure 3.9, is made up of four layers which are arranged into two pairs,

with each pair separated by approximately 27cm in the z direction. The first and last layers are

arranged parallel to one another in a vertical direction. The inner two layers are skewed by +5
◦

and −5
◦

respectively to the vertical giving the TT tracker a so-called (x-u-v-x) structure where x
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Figure 3.8: Schematic of a single VELO module [127]. The left sensor corresponds to the R
sensor with concentric silicon strips while the right the φ sensor with radial strips. The φ half of
the figure is comprised of two superimposed, consecutive VELO modules in order to highlight
the skew between strips on adjacent modules.

represents the two end layers and u and v the two inner layers. This skew is included to introduce

a stereo angle, similarly as is done for consecutive VELO modules. Each layer of the TT is

made from a half-module above the beampipe and another half-module below the beampipe and

each half-module comprises of a column of seven silicon strip sensors each with 512 readout

strips where the pitch between adjacent strips is 183µm. A single half module is also divided

into 3 sectors named L, M and K where the different sectors have separate readout channels and

different numbers of sensors. The L sector covers the area of the module furthest from the beam

and comprises of 4 sensors. The M sector is then placed closer to the beam and comprises of

2 sensors whilst the K sector is placed closest to the beam and consists of a single sensor. By

providing dedicated readout channels for the sectors the possibility of electrical over-capacitance

is guarded against. The area closest to the beam, given that the area is expected to have the most

number of tracks passing through it, requires it’s own channel. The outer sectors receive fewer

tracks and so sensors can be grouped together safely without risking signal overloading.

At the end of the modules, outside of the detector acceptance, lie the readout electronics,

structural supports and a cooling system. The cooling system is designed to keep the TT at
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Figure 3.9: The Tracker Turicensis (TT) with the four layers visible in the (x-u-v-x) orienta-
tion [140]. The blue region houses the hybrid readout electronics, the dark orange regions the L
sectors, the lighter orange sectors the M sectors and the yellow regions the K sectors.

temperatures less than 5
◦

C. The four layers which make up the TT are housed inside a light-tight,

thermally and electrically insulated volume. The volume is continuously flushed with nitrogen

gas to ensure that no condensation forms on any components of the detector.

3.3.3 Inner Tracker

The three tracking stations T1, T2 and T3 are split into two different regions known as the Inner

Tracker (IT) and the Outer Tracker (OT) with these two regions highlighted in Figure 3.10. The

IT covers the acceptance region where the track multiplicity is largest and it’s function is to help

reconstruct those tracks which pass through the magnet very close to the beamline. Approximately

20% of charged particle tracks which pass through the tracking stations do so via the IT. The

structure of the IT is very similar to that of the TT; the IT is comprised of four layers of silicon

strip detectors arranged in the (x-u-v-x) configuration with the inner layers having a +5
◦

and

−5
◦

skew. The IT section of each of the three tracking stations is comprised of 4 light-tight boxes

which house the silicon sensors and which surround the beam pipe. The sensors above and below

the beam pipe comprise of a single layer of 7 silicon sensors, while the sensors either side of the

beam pipe comprise of two layers of 7 sensors. Each sensor comprises of 384 silicon strips with

a strip pitch of 196µm. Like the TT tracker, the IT is cooled to temperatures below 5
◦

C and

constantly flushed with nitrogen to prevent condensation. However, unlike the TT, the readout

electronics and the cooling system are included within the detector acceptance. A schematic of

an IT module can be seen in Figure 3.11.
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Figure 3.10: An angular view of the TT and the T1-T3 [127]. The purple regions of the
downstream tracking stations show the IT and the turquoise sections the OT.

Figure 3.11: Layout of an IT module from the second IT station [127].

3.3.4 Outer Tracker

The OT, which accounts for 98.7% of the area of the tracking stations and which is shown in

Figure 3.12, reconstructs the tracks traversing the acceptance region not covered by the IT. Unlike

the TT and IT and due to it’s large, 30m2 area, the OT does not provide tracking capability via

silicon strip technology. Instead, each OT station comprises of four modules of straw drift tubes,

with the modules arranged in the same (x-u-v-x) configuration as used by both the TT and IT.
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Figure 3.12: The OT detector [141], showing a) a cross section of a single OT layer with the
staggered rows of drift tubes and their dimensions visible and b) the overall layout of the OT
with each tracking station being comprised of four modules which each have two OT layers. The
figure shows the re-tractability of the OT modules.

Each module contains two staggered layers of 64 drift tubes, with each tube having an inner

diameter of 4.9mm and a length of 2.4m. The tubes themselves are made of two layers of foil

with the inner, carbon-doped polyamide layer acting as a cathode and a gold-plated tungsten

anode running down the tube centre. The drift tubes are filled with a gas containing Ar, CO2 and

O2 in the ratio 70%:28.5%:2.5% and when a charged particle track passes through the tube the

gas is ionised. The ionised charge then drifts to the anode in the centre of the drift tube via the

application of an electrical current. The measured drift time then provides information on the

location of the ionisation. The gas composition was chosen to ensure that drift times would be

kept below 50ns and that the drift resolution would be kept below 200µm.

3.3.5 Dipole Magnet

In order to measure the momenta of different particle tracks passing through the detector with

sufficient precision, LHCb makes use of a warm dipole magnet with a bending power of 4Tm,

which corresponds to the integrated magnetic field experienced by a track 10m in length. The
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Figure 3.13: A schematic of the LHCb warm dipole magnet (left) [127]. The coordinate system
is defined by a set of axes in the middle of the schematic. The magnetic field strength of the
LHCb dipole magnet as a function of z, the beam axis, as measured by Hall probes (right) [142].

magnet produces a magnetic field parallel to the y direction and, in conjunction with the tracking

detectors, is able to achieve a momentum precision of δp/p < 5 × 10−3 for particles with a

momentum of less than 100 GeV/c. The magnetic field covers the full LHCb acceptance and

therefore can provide a momentum measurement for most particle tracks. However, the magnet

cannot provide good momentum measurements for the Upstream tracks which typically have

momenta < 1 GeV/c and which are swept out of the detector acceptance. Additionally, the

magnet cannot provide a momentum measurement for T tracks.

The magnet is comprised of two identical coils placed symmetrically about the beam

axis with each coil made of fifteen aluminium layers with the layers enclosed inside an iron

yoke. In order to determine the momentum of a particle track the magnetic field strength must be

known precisely and the profile of the magnetic field must be well understood. Therefore, the

magnetic field profile as a function of z is measured with Hall probes with the profile seen in

Figure 3.13. It can be seen that the strength of the magnetic field drops off quickly as you move

away from the magnet itself. The strength of the magnetic field present in the VELO region is

very small meaning that the tracks inside the VELO are straight and that the VELO resolution is

not compromised. The magnetic field in the regions containing the RICH detectors (discussed

further in Section 5.5) is larger which could provide a problem for the RICH system’s sensitive

photon detectors. As a result, the RICH detectors are enclosed with iron shielding to prevent any

interference from the magnetic field.

Over the course of a data taking period the polarity of the magnet is flipped at regular

intervals such that the datasets recorded by LHCb can be approximately divided equally into
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a “Magnet Up” and “Magnet Down” state. This is done to ensure that there are no systematic

uncertainties which enter LHCb analyses due to some asymmetry in the detector which is

especially important for analyses which study CP asymmetries.

3.3.6 Tracking and Vertexing Performance

The process of particle track reconstruction starts from the identification of particle hits in the

various tracking sub-detectors. Straight hit trajectories in both the VELO and the TT are identified

as these are regions where the magnetic field strength is relatively small. These trajectories are

then matched to hits in the tracking stations and any duplicate tracks are removed. Then, using a

Kalman filter, the tracks are fit to improve the estimated track parameters. This process accounts

for multiple scatterings and loss of track energy in the detector. It is possible that tracks are

reconstructed which do not correspond to any trajectory in the detector. These are referred to

as “Ghost” tracks and these tend to originate from an incorrect matching of hits in the different

tracking detectors. Ghost tracks can be removed using multivariate analysis techniques which

take track kinematics, trajectories and particle hits as inputs.

The vertexing resolution is measured from data by taking vertices which have a large

number of tracks. Then, the tracks are randomly split into two groups with the fit repeated for the

two groups separately to obtain two separate measurements of the vertex position. The resulting

difference in vertex position between the two groups is then measured [128]. The variation in the

reconstructed vertex position can then be fitted with a distribution whose width can be used to

infer the PV resolution. It can be seen in Figure 3.14 that for a typical event with 25 reconstructed

particle tracks the resolution of the primary vertex is 13× 13× 71µm in x− y− z. Additionally,

the vertexing resolution is seen to improve in the z co-ordinate in Run 2. Within Run 2 only

VELO tracks were used to reconstruct the PVs whereas in Run 1 Long tracks were also used. In

Run 2 this led to a more consistent set of PV positions throughout the analysis chain and smaller

systematic effects.

Another common metric to describe the performance of the VELO is the measurement of

the Impact Parameter (IP) resolution for a given track. The IP of a track is defined as the distance

of closest approach between the track and the PV. It is a useful parameter for heavy flavour decays

because the displaced SV will result in a larger value of the IP compared to background events.

The IP resolution is measured in a similar way to the vertexing resolution [128]. Firstly PVs

are selected and the IP of a random track is measured. Then, the random track is removed from

the vertex fit and the fit is repeated and the IP recalculated. After repeating the exercise, the

distribution of differences in IP values is taken as the IP resolution. A measure of the IP resolution

as a function of pT can be seen in Figure 3.15 where the plot shows that superior resolutions are
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Figure 3.14: The resolution of the PV as a function of number of tracks in the event for both
Run 1 and Run 2 in both the x direction (left) and the z direction (right) [143]. The resolution in
the x direction is the same as the resolution in the y direction due to the VELO geometry. The
improvement seen in the z resolution in Run 2 is due to the PV algorithm only using VELO
tracks leading to a reduction in systematic effects.

Figure 3.15: The IP resolution as a function of pT for Run 1 and Run 2 for both the x direction
(left) and the y direction (right) [143].

achieved at higher transverse momenta.

The performance of the TT and IT trackers is studied by measuring the tracking resolution

using an experimentally clean sample of J/ψ → µ+µ− decays [128]. The resolution can be

estimated by comparing the position of the hit in the detector to the position estimated based

on the other hits on the track. The distribution of the difference between these two positions

provides the resolution. For both the TT and IT resolutions of ∼ 50µm have been achieved. This

resolution varies slightly across the TT tracker and is seen to improve towards the edge of the

detector due to a larger track angle resulting in more charge sharing between strips. This effect

can be seen in Figure 3.16.

The performance of the OT is primarily dependent on the drift time resolution. In Run 1

drift time resolutions of less than 3ns were achieved alongside a single-hit efficiency per module

of over 99%. In Run 2 this resolution was improved by approximately 20% due to improvements
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Figure 3.16: The left plot shows the resolution of particle hits across the TT [128]. The different
modules in the (x-u-v-x) configuration are labelled and a slight improvement in the resolution
can be seen at the edges of the tracker. The right figure shows the distribution of the drift time
residuals for both Run 1 and Run 2 in the OT [144]. The approximate 20% improvement in
resolution in Run 2 can be seen.

in the calibration procedure, as can be seen in Figure 3.16.

The total tracking efficiency for reconstructed tracks is evaluated using a tag and probe

method with a sample of J/ψ → µ+µ− decays. The tag and probe method involves taking

the first muon track, the tag, and fully reconstructing it to select events. The second muon

track, the probe, is then only partially reconstructed. The fraction of probe muons which are

successfully matched to a long track in the event then defines the tracking efficiency. As can

be seen from Figure 3.17 the tracking efficiency is normally very high and is in excess of 96%

for particle tracks with momenta between 5 < p < 200 GeV/c. When trying to replicate the

tracking efficiency with LHCb Monte Carlo (MC) simulation, generally, the simulation describes

the tracking efficiency well. However, small discrepancies are corrected for by weighting the MC

in bins of track momenta and pseudorapidity which the tracking efficiency is sensitive to.

Figure 3.17: The efficiency in tracking reconstruction as a function of both the track momentum
(left) and the pseudorapidity (right). The efficiencies are shown for 2012 and 2015 with similar
behaviour seen for the rest of both Run 1 and Run 2 [143].
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Figure 3.18: A cross-section of RICH 1 (left) in the side view, y-z plane. Also a top-down,
x-z plane, view of RICH 2 (right). The aerogel plates were removed after Run 1 due to poor
performance [128].

3.4 Particle Identification

The ability to identify different species of particles is crucial for most heavy flavour physics

analyses. In particular, the ability to distinguish between pions, kaons and protons is especially

important for LHCb as these are the hadronic final state particles which exist in the finite length

covered by the detector.

The LHCb detector has dedicated sub-detectors which are designed for the specific task

of performing Particle IDentification (PID). These include the Ring Imaging Cherenkov Detectors

(RICH) RICH 1 and RICH 2 as well as a muon detector system. In addition, information from

the calorimeter system (see Section 3.4.2) is combined with information from these sub-systems

so that the LHCb detector can also separate out electrons, photons and neutral pions.
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3.4.1 RICH Detectors

Hadronic PID information is provided by two RICH detectors, RICH 1 and RICH 2, seen in

Figure 3.18. These exploit the Cherenkov effect, whereby a charged particle travelling through

a material at a speed quicker than light travels through the medium results in the emission of

photons in a cone. The angle of the cone produced depends both on the refractive index of the

material and the velocity of the particle in question and can be expressed as

cos(θc) =
1

βn
(3.4)

where θc is the Cherenkov angle, β is the velocity as a fraction of the speed of light and n is

the refractive index. The idea behind the RICH system is that it is possible to exploit this by

measuring the angle and then combining the angle with the momentum measurements from the

tracking system to infer the mass and hence the species of the particle. The different hypotheses as

a function of Cherenkov angle can be seen in Figure 3.19. In practice, hits in the RICH detectors

produce hit patterns which are compared to images of hits from different mass hypotheses in a

likelihood calculation.

The first RICH detector, RICH 1, is located downstream of the VELO and upstream of

the TT. RICH 1 covers the full angular acceptance of LHCb and is designed to provide PID for

low momentum particles; defined as those particles with momenta in the range 2-60 GeV/c. In

Run 1 of data taking the Cherenkov medium used for RICH 1 included aerogel tiles which were

designed to cover the momentum range 2-10 GeV/c and perfluorobutane (C4F10) designed to

cover the momentum range 10-60 GeV/c. It was observed in Run 1 that the ability of the aerogel

to improve the PID performance was poorer than predicted. As a result, in Run 2, the aerogel was

removed from RICH 1 to reduce the amount of material in the detector. This did not result in a

noticeable drop in PID performance although did speed up the RICH reconstruction process [145].

RICH 2 is located further downstream; between the T1-3 tracking stations and the calorimeters.

This location is chosen to reduce the amount of material which tracks have to travel through

before arriving at the tracking stations. The Cherenkov material of RICH 2 is tetrafluoromethane

(CF4) and is chosen to provide PID for higher momentum particles with momenta between

15-100 GeV/c. The angular acceptance of RICH 2 is 15-120mrad, instead of the full LHCb

angular acceptance. This smaller acceptance covers the range in which high-momentum particles

are produced and is chosen because lower momentum particles will not reach RICH 2 as they are

swept out by the magnet.

The Cherenkov photons emitted by charged particles, in both RICH 1 and RICH 2, are

directed and focused, using both flat and spherical mirrors, onto a plane of hybrid photodetectors
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Figure 3.19: The dependence of the Cherenkov angle on particle momentum for different particle
species. The radiative mediums used by both RICH 1 and RICH 2 and labelled [127].

(HPDs). The HPDs, of which there are 196 in RICH 1 and 288 in RICH 2, are vacuum photon

detectors. When incident photons hit the HPD cathode they release photoelectrons which are then

accelerated by an applied voltage onto a pixelated silicon detector. The HPDs are enclosed inside

an external iron shield, outside of the detector acceptance, in order to shield them from the dipole

magnet’s strong field. This is necessary as in the presence of a magnetic field, photoelectrons can

be swept out and lost from the active area of the HPD which dramatically lowers its efficiency.

3.4.2 Calorimetry

The calorimeter system comprises of four sub detectors. These are the Scintillator Pad Detector

(SPD), the Pre-shower Detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic

Calorimeter (HCAL). The calorimetry system both measures the energy of particles and is crucial

in the identification of photons, electrons and neutral pions. Information from the calorimeters is

also used within the LHCb hardware trigger to select physics events of interest before saving them

to disk (discussed more in Section 3.5.) Specifically, the calorimeters are tasked with identifying

those events which have a high transverse energy, ET , which are likely to stem from the decay of

a beauty hadron.

All four sub detectors of the calorimetry system work on the same principle. As particles

fly through the calorimeter they interact with the material of the calorimeter and produce cascading

particle showers. In the case of an electromagnetic shower this process takes place via pair
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production, Compton scattering and bremsstrahlung radiation. Alternatively, within a hadronic

shower, the cascade is created via inelastic processes which produce copious amounts of pions

and further electromagnetic showers. The photons from the particle shower are transported, via

wavelength-shifting fibres, to arrays of photomultiplier tubes where the intensity of light provides

a proxy for the energy of the incoming particle. The material used in the calorimetry system is a

doped polystyrene and layers of this material are separated from one another by a layer of dense

absorber material where the showers originate from.

Another common feature of the calorimetry sub-detectors is that they are all separated

into different sections to process different regions of the LHCb acceptance where there is a

different occupancy. The PS, SPD and ECAL have three sections which include, as can be seen

in Figure 3.20, an inner section (where the occupancy is expected to be highest), a middle and

finally, an outer section. The HCAL has only two regions; an inner and an outer region.

The PS and SPD detectors are immediately upstream of the ECAL and downstream of

the first muon detector and are located before the location of any particle showers. These are

single layered scintillator pad detectors which are separated from one another by 15mm of lead.

The SPD’s function is to determine whether or not the incident particle is electrically charged as

charged particles are more likely to deposit energy in the SPD layer whereas neutral particles are

more likely to proceed and deposit their energy in the ECAL. The PS detector then complements

this by distinguishing electrons from hadrons as electrons are more likely to begin showering in

the separating lead absorber. Therefore, when combining the SPD and PS output with information

from the ECAL a distinction can be made between photons and electrons, despite the fact that

these different particle species all produce similar electron-photon showers in the ECAL itself.

The ECAL, which has a design energy resolution of σE/E = 10%/
√
E[GeV ], com-

prises of alternating layers of 2mm thick lead and 4mm thick scintillating tiles with the layers

arranged transverse to the beam. In total, there are 66 layers of lead and scintillating tiles. The

Figure 3.20: The different scintillating regions of the SPD, PS and ECAL (left) and the HCAL
(right) with the position of the beam pipe in black [128].
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reason for choosing this thickness and number of layers is that, together, this corresponds to 25

radiation lengths for photons and electrons which means that the showers should be completely

contained within the ECAL.

Finally, the HCAL is made of 216 alternating layers of 3, 7mm thick, iron plates and 3,

3mm thick, scintillator tiles arranged parallel to the beam axis. Due to space constraints in the

cavern housing LHCb, the depth of the HCAL is limited to 1.6m which corresponds to 5.6 nuclear

interaction lengths. As a result, high energy showers are not entirely contained by the HCAL

but this does not impact the HCAL’s ability to identify high ET particles which is it’s primary

function. Another difference between the ECAL and the HCAL is that the HCAL readout cells

are larger than those in the ECAL due to the different structure of hadronic showers compared to

electromagnetic showers. The different cell structure and finite length of the calorimeter results

in an energy resolution of σE/E = 69%/
√
E[GeV ].

3.4.3 Muon Detection

The muon system enables the detection of muons which result from many of the rare, FCNC

decays of interest, as was mentioned in the Chapter 2. In addition, and similarly to the calorimeter

system, pT information from the muon detectors is included in the trigger system. In total, there

are five separate muon stations, referred to as M1-M5, and these are shown in Figure 3.21. Due to

the ability of muons to pass through most materials with minimal interaction, the muon stations

are positioned at the most downstream extent of the LHCb detector and muons are the only

charged particle which reaches them. The exception to this is M1 which is placed just upstream

of the SPD and PS detectors in order to provide an improved pT measurement for use in the

trigger, before the muon passes through the dense material of the calorimetry system.

The muon stations are made from four concentric regions known as R1-R4 with the

division made in order to ensure that the occupancy of each section is approximately the same.

Apart from section R1 of station M1 (which is made of triple-Gas Electron Multipliers), the

muon stations are made from staggered layers of Multi-Wire Proportional Counters (MWPCs).

The MWPCs are comprised of a pair of cathode plates separated by 5mm which are filled with

a gas mixture of Ar, CO2 and CF4 in the ratio 40%:55%:5% respectively with an anode wide

running down the middle. The multipliers used in M1 have a higher radiation tolerance than the

MWPCs which is appropriate given their position further upstream in the detector. The principle

of operation for both the MWPCs is the same as the straw drift tubes in the OT and a time

resolution of approximately 3 ns is achieved in the MWPCs.

The muon stations further downstream, M2-M5 are each separated with iron shielding

plates which are 80cm thick. These plates serve to reduce any background from non-muon
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particles which have managed to penetrate far downstream. In addition, M1-M3 have a larger

granularity than M4 and M5. Stations M1-M3 are used to establish the direction of muon tracks

whilst providing a 20% momentum resolution in the bending plane. Meanwhile, M4 and M5,

being at the most downstream point of the LHCb detector, are used to identify the most penetrating

particles. As a result, the spatial resolution of M4 and M5 is reduced compared to the earlier

stations. In order to pass through all of the muon stations a muon is required to have a momentum

of at least 6 GeV/c.

3.4.4 PID performance

Ultimately, the PID hypothesis for a particular particle track depends on the information from the

entire PID system, the RICH detectors, the calorimeters and the muon detectors. The output from

these different subsystems can be combined to form a likelihood that the particle is a specific

species of particle that can then be compared to the likelihood that the particle is a pion. An

alternative technique, which is now more commonly used, uses a multivariate analysis which

takes the likelihoods as an input along with other variables which describe the whole event, such

Figure 3.21: A side view of the muon detectors M1-M5 [146].

51



Figure 3.22: Different PID efficiencies for different particle hypotheses as a function of momen-
tum, taken from 2017 Run 2 data. The left plot shows the efficiency of correctly identifying
a kaon and mis-identifying a pion as a kaon. The right plot shows the efficiency of correctly
identifying a muon as a muon and mis-identifying a pion as a muon [139].

as the event multiplicity. The multivariate analysis then returns the probability that the particle

track corresponds to a particular hypothesis and, unlike the bare likelihood values, accounts for

correlations between the different input variables.

The PID performance is determined using a data-driven method, from sets of calibration

samples. The pion-kaon PID efficiencies are determined from a calibration sample of D∗+→
(D0→ K−π+)π+ decays from which the true particle hypothesis can be obtained by tagging on

the pion in the final state which does not originate from the decay of the D0 and then using the

charge of this pion to infer which of the two daughters from the charm meson is a kaon and which

a pion. Samples of protons are obtained from Λ→ pπ− and Λ+
c → pK−π+ decays. Finally,

muon PID efficiencies are obtained from calibration samples of J/ψ→ µ+µ− decays, such as

B+→ J/ψK+ whereby one of the final state muons is selected using PID variables and one is

used to evaluate the PID efficiency.

The pion-kaon and pion-muon PID performance plots for Run 2 can be seen in Figure 3.22.

The PID efficiencies are slightly improved in Run 2 compared to Run 1. This is because the

hyperparameters of the multivariate analyses are fine tuned in Run 2 while also being trained on

larger data sets, resulting in a better overall separation between PID hypotheses. From Figure 3.22

it can be seen that the PID performance from the RICH system decreases at both high and low

momenta. The drop in efficiency at low momenta is attributable to the momentum threshold

on the production of Cherenkov radiation while at high momenta is due to saturation of the

Cherenkov angle.
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3.5 Trigger system

The proton-proton bunch crossing frequency at the LHC is 40MHz. For LHCb, the interaction

rate is effectively reduced from this number to around 30MHz due to the presence of abort gaps

in the beam and the inelasticity of the proton-proton collisions. Nonetheless, reading out data

even at this reduced rate would be impractical, not least because most of this data would not be of

interest given the experiment’s heavy flavour physics focus. Therefore, LHCb utilises a two-stage

trigger system made of a hardware and software stage to select data of interest while reducing the

data readout frequency to a manageable readout rate of 1MHz which can then be saved to disk at

a rate of 2-5kHz in Run 1 and 12kHz in Run 2 [147, 148].

The hardware based trigger, referred to as the Level Zero (L0) trigger, is responsible

for reducing the readout from 30MHz to 1MHz. The L0 trigger selects events with a large

ET deposited in the calorimeter system or a large muon pT detected in the muon system. The

information from the tracking and RICH detectors is read out after the L0 trigger stage is passed.

The calorimeter based trigger selects high ET events by summing together cells in either

the ECAL or the HCAL whose ET passes a specific threshold which changes between data taking

years and between different particle species. At L0, there is a condition placed on the number of

hits in the SPD detector. This condition exists to make sure that events which would take too long

to process at the HLT level are removed. The L0 triggers on muons by selecting the two muons

passing through the muon system with the highest pT. The trigger compares either these singular

values or the product of the transverse momenta to threshold values, with the trigger then firing if

the threshold is reached. The pT threshold differs between data taking periods.

All events which pass L0 are then passed to the Event Filter Farm (EFF). The EFF

comprises of several thousand computer nodes and it is this computing farm which then runs the

algorithms for the software trigger, known as the High Level Trigger (HLT), which has two stages,

HLT1 and HLT2. Before the application of the HLT triggers the EFF builds up the event by

combining information from the different LHCb subsystems. This accumulated event information

is then used to make the final HLT trigger decision.

HLT1 reduces the data rate to 50-111 kHz using a subset of the data where it performs

a partial event reconstruction. This involves the reconstruction of PVs within the VELO sub-

detector and the extrapolation of VELO tracks upstream to the TT and tracking stations. Once

a vertex has been formed it is possible to calculate the IP, the χ2 value from the vertex fit and

the pT of all of the tracks within the event. If the vertices have a small χ2, the SVs are displaced

from the PVs and the tracks have high pT values then the event is of interest and they are then

allowed to pass HLT1.

The second level, HLT2, performs a full event reconstruction on the subset of events
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Figure 3.23: The 2011 (left), 2012 (middle) and Run 2 (right) LHCb trigger schemes [149].

which pass HLT1. As HLT2 is exposed to a far lower data input rate, it is able to make trigger

decisions using the full event information while making more specific requirements to help

search for specific decays which are relevant for physics analyses. HLT2 is associated to two

types of triggers known respectively as exclusive trigger lines which are designed to trigger on

very specific combinations of final state particles and inclusive trigger lines which trigger on

decays which have more general topological features. The topological lines can use multivariate

algorithms to help in the trigger decision process and these algorithms take in the kinematics of

any tracks associated to the candidate as inputs [150, 151]. Of particular interest in this thesis

are the topological trigger lines. These search for candidates with two, three or four charged

tracks within the final state that form a displaced vertex that is consistent with originating from a

b-hadron decay.

The behaviour and operation of the HLT has been altered over the course of LHC Run 1

and Run 2. At the beginning of Run 1, in 2011, the EFF was not being used when the LHC had

finished a fill. In order to avoid wasting computing resources, after 2011, ∼20% of events that

passed the L0 trigger were sent to local disks with the HLT selection then run on these events

between fills. This process resulted in a 25% increase in the HLT processing rate. Furthermore,

in Run 2, all events which passed HLT 1 were sent to a buffer. The HLT decision could then be

deferred for as long as there was room in the buffer. This meant that the software trigger could be

less strict and that a more careful, precise selection could be done at HLT level. Furthermore, due

to the presence of the buffer, the detector could be calibrated in real-time during Run 2 and these

calibrations could then be made available in the Run 2 trigger.
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CHAPTER4
Analysis Strategy

“ An experiment is a question which science poses to Nature and a measurement

is the recording of Nature’s answer ”
Max Planck,

This chapter provides an introduction to the branching fraction measurement of the

rare decays B0→ π+π−µ+µ− and B0
s→ π+π−µ+µ−. Specifically, this chapter outlines the

measurement strategy used and highlights some of the key aspects and challenges of the analysis.

4.1 Branching Fraction Measurement Strategy

As discussed in Chapter 2, the decays B0(B0
s )→ π+π−µ+µ− are believed to mainly proceed via

the ρ0(770) and f0(980) resonances which subsequently decay to π+π−. These decays, for which

some of the leading order Feynman diagrams can be seen in Figure 4.1, are examples of rare b→ d

and b→ s processes. Due to their rare nature, extracting an accurate measurement of a branching

fraction for these modes is not trivial. The signal candidates within the dataset are outnumbered

by many orders of magnitude by the various sources of backgrounds whose presence within

the dataset makes a branching fraction measurement initially impossible. Therefore, before any

measurement is made, a series of selection requirements are applied. These requirements involve

the removal of candidates from the dataset which fail to pass specific kinematic, topological

or particle identification conditions that preferentially select out signal-like candidates. The

analysis presented within this thesis uses a single selection for both decay modes. This is due
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to the two rare modes sharing a common set of final state particles and subsequently, a similar

response to the selection procedure. As was mentioned earlier, a previous analysis from LHCb

has already confirmed the existence of the B0
s→ π+π−µ+µ− mode while falling short of a 5

standard deviation confirmation of the B0 mode. As a result, the selection presented within this

thesis is optimised to make a statistically significant observation of the B0 mode. The entire

selection process is discussed, in detail, in Chapter 5.

After the application of the selection, the branching fractions of the rare decays are

determined for the two modes by performing a maximum likelihood fit to the π+π−µ+µ−

invariant mass distribution of the surviving candidates. The fit is made simultaneously to the

three datasets used within the analysis which correspond to the 2011+2012, the 2015+2016 and

the 2017+2018 datasets. The branching fraction values are free parameters and are allowed

to vary during the fitting procedure meaning they can be directly extracted from the fits. The

branching fraction parameter values are directly proportional to the signal yields of the two rare

modes. Therefore, the underlying functionality of the fits is to determine these yields while the

parameters, which relate the yield and branching fraction, are evaluated prior to the mass fit or

are taken from previous literature. As only a single fit is performed to provide a measurement

for both rare modes it is necessary for the process to be able to separate the B0 and B0
s signals.

Despite the small (87.42 MeV/c2) separation between the pole masses of the B0 and B0
s mesons,

this separation is much larger than the expected signal resolution and so the two signal peaks can

be resolved safely.

The yields from the invariant mass fits are normalised using the result of a fit to a control

mode, which, in this analysis, is the decay B0→ J/ψK∗0 where the K∗0 decays to a K+π− and

the J/ψ to a µ+µ− pair. The control mode serves several purposes within the analysis with it’s

primary role being to cancel systematic uncertainties in the ratio of the rare mode and control

mode. The decay B0→ J/ψK∗0 is used within this analysis for several reasons. Firstly, it’s

final state K+π−µ+µ− is very similar to the final state of the rare mode, π+π−µ+µ−. This

improves the cancellation power of different systematic uncertainties whilst also ensuring that

many of the selection requirements used to select the rare mode from the data can also be utilised

to select the control mode. Secondly, the decay B0→ J/ψK∗0, is a very pure signal relative to

the rare modes having a predicted branching fraction of the order 10−3 compared to 10−8 for

the rare modes. Thirdly, there is a precedent for using B0→ J/ψK∗0 as a control mode within

similar rare decay searches such as the confirmed existence of B0
s→ K∗0µ+µ− [152]. Indeed,

due to it’s prior use as a control mode, parameters which describe the decay B0→ J/ψK∗0 are

well known experimentally. These parameters include the size of the S-wave contribution to the

K+π− final state which describes the proportion of K+π− daughters which exist in a net zero

angular momentum configuration. This particular parameter must be included within this analysis
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to align the meaning of the control mode branching fraction used here with that used in previous

analyses.

The cancellation power which results from including the control mode normalisation

channel can be seen explicitly by first considering that the rare mode yields can be written as

N(B0(B0
s )→ π+π−µ+µ−) = B(B0(B0

s )→ π+π−µ+µ−)

× ε(B0(B0
s )→ π+π−µ+µ−)

× L× 2σ(pp→ bb)× fd(s)

(4.1)

where N(B0(B0
s )→ π+π−µ+µ−) are the yields, B(B0(B0

s )→ π+π−µ+µ−) are the branching

fractions while ε(B0(B0
s )→ π+π−µ+µ−) are efficiency terms which describe the proportion of

candidates which survive the selection procedure. Furthermore, L is the integrated luminosity

and σ(pp→ bb) is the cross-section of bb production where the additional factor of 2 takes into

account the bb pair not reconstructed within the LHCb acceptance. Finally, fd(s) is a fragmentation

fraction term taking into account the relative production ofB0 andB0
s mesons at specific centre of

mass energies. By normalising the rare mode yield with a control mode yield the terms describing

both the luminosity and cross-section disappear, as seen in Equation 4.2 which is used to extract

the final rare mode branching fractions.

B(B0(B0
s )→ π+π−µ+µ−) =

N(B0(B0
s )→ π+π−µ+µ−)

N(B0→ J/ψK∗0)
× ε(B0→ J/ψK∗0)

ε(B0(B0
s )→ π+π−µ+µ−)

× B(B0→ J/ψK∗0)× B(J/ψ→ µ+µ−)× B(K∗0→ K+π−)

(1− FS)

× fd
fd(s)

(4.2)

Within Equation 4.2 the efficiency ratio term, which is determined using Monté Carlo

simulated candidates, effectively scales up the measured yields for both the control mode and rare

mode to before the application of the analysis selection. In addition, some systematic uncertainties

relevant when calculating individual efficiency terms cancel within this ratio. The third term is the

branching fraction of the control mode multiplied by the branching fractions of the subsequent

decays J/ψ → µ+µ− and K∗0→ K+π− and finally multiplied by a term, (1 − FS), where

FS describes the proportion of S-wave K+π− decays. Finally, the last term of Equation 4.2

denotes the ratio of fragmentation fractions where the subscript d or s refers to a down or strange

quark, corresponding to a B0 or B0
s meson. The fragmentation fraction ratio is needed for the
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calculation of the B0
s mode branching fraction due to the choice of B0→ J/ψK∗0 as the control

mode.

Within the analysis presented within this thesis the value of the control mode branching

fraction is taken from [153] and is equal to

B(B0→ J/ψK∗0(892)) = (1.19± 0.01± 0.08)× 10−3, (4.3)

where the first uncertainty is statistical and the second systematic. The branching fraction for the

J/ψ decay is then taken from [154] and is equal to

B(J/ψ→ µ+µ−) = (5.961± 0.033)× 10−2, (4.4)

while the branching fraction value for the decay K∗0 → K+π− is taken as 2/3 which is

determined from Clebsch-Gordon coefficients. The fraction of S-wave candidates, FS , is taken

from a previous analysis [155] where it was determined to be

FS = (6.4± 0.3± 1.0)%. (4.5)

Finally, for the fragmentation fraction values, the ratio fs/fd, is measured by LHCb to be

0.259± 0.015 for Run 1 [156] and 0.244± 0.012 for Run 2 [138]. An alternative value for the

Run 2 value can be taken from [157] where the Run 1 value is scaled by 1.068± 0.016 to get a

different value of 0.277± 0.017.
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Figure 4.1: Examples of Feynman diagrams for the b→ d process B0→ ρ0µ+µ− (left column)
and the b→ s process B0

s → f0(980)µ+µ− (right column). Both final state mesons decay to
π+π−. The top and middle row show examples of penguin diagrams while the bottom row shows
examples of box diagrams.
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4.2 Branching Fraction Variations with q2 and m(π+π−)

In order to make a direct comparison with theoretical predictions, the rare mode branching

fractions can be measured in particular regions of q2 providing sensitivity to different Wilson

coefficients. Within this analysis the possibility of performing the branching fraction measure-

ments in the different q2 regions is explored (in Chapter 5) and separate measurements are

made in three different regimes. The first corresponds to the full q2 range considered, q2 ∈
[0.1-19.0] GeV2/c4. Within this range candidates within the range q2 ∈ [8.0− 11.0] GeV2/c4 and

q2 ∈ [12.5− 15.0] GeV2/c4 which are dominated by the J/ψ and ψ(2S) resonances are rejected.

The final result in the full q2 range is corrected to account for the removed regions using a decay

model. The second region considered is the low q2 region which lies below the threshold for

the J/ψ charmonium resonance and which corresponds to q2 ∈ [0.1-8.0] GeV2/c4. The third is

the high q2 region which lies above the ψ(2S) resonance, and which is defined as the q2 region

q2 ∈ [15.0-19.0] GeV2/c4. In addition, all three of these measurements are made in a bin of the

mass of the dipion pair, m(π+π−), which corresponds to m(π+π−) ∈ [0.515,1.3] GeV/c2. This

choice of mass range is motivated by several factors. Firstly, the number of expected candidates

in a higher m(π+π−) region is small making a branching fraction measurement impractical.

Secondly, the understanding of the various resonance contributions to the π+π− system at higher

values of m(π+π−) is less well known further away from the ρ0(770) and f0(980) resonances.

This means that any result from this region provides a less useful comparison to theoretical

predictions. Thirdly, the lower boundary of the mass bin is set to 0.515 GeV/c2 to remove

backgrounds originating from a K0
S where K0

S → π+π−. Finally, the mass bin is the same as

used by the previous LHCb analysis. This allows a comparison of results within this thesis to be

made against previous experimental results.

Candidates which fall within the range q2 ∈ [8.0-11.0] GeV2/c4, are dominated by decays

where the dimuon pair originates from the J/ψ meson. These charmonium decays have branching

fractions which are much larger than those attributable to the rare modes. Previous LHCb

measurements [158, 159] of these modes have found that the decay B0→ J/ψπ+π− occurs with

a branching fraction of

(3.94± 0.14(stat)± 0.21(syst))× 10−5 (4.6)

while B0
s→ J/ψπ+π− has been confirmed with a branching fraction of

(2.09± 0.08(stat)± 0.21(syst))× 10−4. (4.7)

These decays, which are hereafter referred to as the “resonant modes”, are orders of magnitude
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more common than their rare mode equivalents and yet share a very similar structure. This means

their response to the selection process is similar to the rare modes. Furthermore, the signal shapes

used within any invariant mass fit to the resonant mode candidates should intuitively be the same

as to those of the rare mode candidates. Indeed, many of the experimental backgrounds relevant

for a measurement of the yield of the resonant modes, are also valid for the rare mode. These

similarities between resonant and rare modes make the resonant modes a very useful proxy and

so, prior to the measurement of the rare mode branching fractions, the selection is applied and

the branching fractions calculated for the resonant modes. This serves to validate the analysis

strategy prior to the measurements of the rare mode.

When confirming the existence of the rare b→ d and b→ s processes it is necessary to

demonstrate that the π+π− system originates from either the ρ0(770) in the case of the B0 decay,

or the f0(980) in the case of the B0
s decay. This is not trivial as there are contributions from

various resonances to the π+π− system. Furthermore, due to the large widths of both the ρ0 (770)

and f0(980) resonances, a simple selection around these resonances in m(π+π−) is not feasible.

In order to achieve a confirmation that the dipion system originates from the ρ0(770) and f0(980)

resonances several techniques could be used. One such technique involves checking the angular

distribution of the dipion final state to ensure that the angular information shows consistency

with the ρ0(770) or f0(980) quantum numbers. Figure 4.2 shows a cartoon showing how the

pion helicity angle distribution, cos(θh), varies with the angular momentum of the intermediate

resonance. Within the sketch the red distribution shows the expected distribution if the dipion

system originates from an S-wave resonance. Then, the blue and green distributions correspond

to P-wave and D-wave resonances which correspond to J = 1 and J = 2 states respectively. It is

therefore theoretically possible to exploit the angular information of the rare mode π+π− system

to determine whether the quantum numbers are consistent with the expected rare decay channel.

The existence of the other resonance contributions also has an effect on the accuracy

of the estimated efficiencies which determine the final branching fraction values. The Monté

Carlo samples which are used to estimate these efficiencies, by default, only consider a single

intermediate hadronic resonance component. This means that using the pure LHCb simulation

samples for the calculation of these efficiencies will result in an inaccurate final measurement

as they do not include the smaller resonant contributions. Within this analysis, this problem

is addressed using a weighting procedure where the simulation samples are adjusted, using a

model, to artificially include the contributions from the other resonances. The decay model for

the resonant mode decays is based upon previous experimental results while the model for the

rare mode decays is built following theoretical modelling found in previous literature. Both decay

models use an underlying angular basis and the decay models are discussed in the dedicated

chapter, Chapter 6.
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Figure 4.2: A sketch showing the distribution of the pion helicity angle, cos(θh) for resonances
with different quantum numbers. The red distribution shows the generic shape expected for a
J = 0 state, while the blue and green distributions show what is expected for a J = 1 and J = 2
state respectively. The sketch is created using the decay model described in Chapter 6.

The remaining chapters of this thesis examine, in detail, the various aspects of the

branching fraction analysis which have been introduced here; Chapter 5 describes the selection

criteria used within the analysis; Chapter 6 discusses the decay model used for both the resonant

and rare modes; Chapter 7 details the methods used to calculate the efficiencies of relevance and

Chapter 8 presents the results of the mass fits to the control mode, the resonant mode and the rare

mode. The various sources of systematic uncertainty that affect the branching fraction results are

detailed in Chapter 9 and, finally, the results and a summary are presented in Chapter 10.
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CHAPTER5
Selection Procedure

“ If you torture the data long enough, it will confess. ”
Ronald Coase,

The branching fraction values of the rare modes B0(B0
s )→ π+π−µ+µ− are expected

to be of the order 10−8 and any signal will be hard to identify within the dataset. Furthermore,

any measurement of these small signals is frustrated by the presence of numerous experimental

backgrounds which are present within the dataset, some of which lie directly on top of the expected

signal region in any fit to the π+π−µ+µ− invariant mass distribution. These backgrounds must

be identified and reduced via the application of a series of selection requirements that exploit the

decay topologies, kinematics and LHCb sub-detector responses. While the objective of reducing

backgrounds is of paramount importance, it is crucial that the number of signal candidates within

the dataset remains large enough post-selection to allow for a statistically significant observation

of the rare modes. The following chapter discusses the different steps of the selection procedure.

Throughout this chapter when referring to a particle decay, the inclusion of charge conjugate

processes is implied.

5.1 Trigger

As was discussed within Chapter 3, all candidates within the analysis must have passed both the

hardware (L0) and software (HLT1, HLT2) trigger stages, which reduce the LHCb data output

rate whilst simultaneously selecting out events of interest. In order to pass each trigger stage, an
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event must pass a set of bespoke “trigger lines” which are implemented within the LHCb software

and which are only passed under a specific set of topological or kinematic conditions. The set of

trigger lines required to have been passed within a given analysis is tailored to the analysis in

question with the different trigger lines used within this analysis shown within Table 5.1 where

each line is referred to by its name within the LHCb software.

A classification system is used to determine which of the particle tracks within an

event are responsible for causing each individual trigger line to fire. This system includes the

categories TOS and TIS which stand for “Trigger On Signal” and “Trigger Independent of Signal”

respectively. As the names suggest, a line which is fired under a TOS condition is fired in response

to a particle track (or combination of particle tracks) that is reconstructed to form part of the

signal candidate. Conversely, a line which is fired under a TIS condition is fired due to a particle

track (or a combination of particle tracks) elsewhere in the event, which is not reconstructed to

form a signal candidate. It is possible for an event to be selected by multiple trigger lines, some

of which trigger under a TOS condition and some under a TIS condition. This is referred to as

TISTOS and can be used to help evaluate the efficiency of the trigger and this is discussed further

in Chapter 7.

In order to pass a given trigger stage, at least one of the trigger lines of each stage must be

TOS. As is seen within the table, this requirement is implemented via the application of a logical

OR operator between the different trigger lines of each stage.

As can be seen from Table 5.1, the trigger conditions used for the Run 1 data are different

from those used for the Run 2 data. This is driven by the different physical conditions of the

Run 2 data taking period, the redefinition of trigger lines between the Run 1 and Run 2 data, and

also by the availability of new software trigger lines in the Run 2 data which were not available

for Run 1. The L0 trigger lines used, for both Run 1 and Run 2, are L0MuonDecision

and L0DiMuonDecision. The L0MuonDecision line requires that a pattern of hits in the

muon system is present and is consistent with the existence of a track that has a high transverse

momentum, pT. The L0DiMuonDecision line is triggered by a dimuon pair within the event

which has a large product of muon transverse momenta. Both the L0 lines include a requirement

on the detector occupancy as an event with too many tracks can take too long, and be too hard, to

reconstruct in the high level trigger. The detector occupancy is represented here, by proxy, via the

number of hits recorded in the SPD sub-detector. This number of hits is approximately equivalent

to the number of charged particles within the event which travel far enough downstream to reach

the SPD. The value of this occupancy requirement is different between the two L0 trigger lines.

The requirement for the L0MuonDecision trigger line is that the number of SPD hits be< 600

for Run 1 and < 450 for Run 2. The equivalent requirement for the L0DiMuonDecision line

is that the number of SPD hits be < 900.
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Table 5.1: The trigger requirements which candidates are required to have passed for the Run 1
and Run 2 data. For each stage of the trigger (L0, HLT1, HLT2) a candidate must pass at least
one of the lines, implemented via a logical OR operator.

Trigger Stage Run 1 Run 2

L0
L0MuonDecision L0MuonDecision

or L0DiMuonDecision or L0DiMuonDecision

HLT1

Hlt1TrackAllL0Decision Hlt1TrackMuonDecision
or Hlt1TrackMuonDecision or Hlt1DiMuonHighMassDecision

or Hlt1DiMuonLowMassDecision
or Hlt1TrackMVADecision

or Hlt1TwoTrackMVADecision

HLT2

Hlt2Topo2BodyBBDTDecision Hlt2DiMuonHighMassDecision
or Hlt2Topo3BodyBBDTDecision or Hlt2SingleMuonDecision
or Hlt2Topo4BodyBBDTDecision or Hlt2SingleMuonRareDecision

or Hlt2TopoMu2BodyBBDTDecision or Hlt2Topo2BodyDecision
or Hlt2TopoMu3BodyBBDTDecision or Hlt2Topo3BodyDecision
or Hlt2TopoMu4BodyBBDTDecision or Hlt2Topo4BodyDecision
or Hlt2DiMuonDetachedDecision or Hlt2TopoMu2BodyDecision

or Hlt2TopoMu3BodyDecision
or Hlt2TopoMu4BodyDecision

or Hlt2TopoMuMu2BodyDecision
or Hlt2TopoMuMu3BodyDecision
or Hlt2TopoMuMu4BodyDecision

or Hlt2DiMuonDetachedDecision

The HLT1 trigger lines select out decays which have particles with high pT values, a

good track quality and a high impact parameter, (IP) [160]. Lines which specifically target muons,

such as Hlt1TrackMuonDecision have slightly relaxed thresholds on these requirement

values in order to increase the trigger efficiency for decays containing final-state muons. For

Run 2 the TrackMVA lines which use a Multi-Variate Analysis (MVA) to remove tracks with

a low reconstruction quality were added. This MVA takes as inputs the number of hits in

the sub-detectors, the reconstruction quality of both individual track segments and the total

reconstructed track and the track pT value. The HLT1 lines used within this analysis also include

the DiMuonMass lines which require a pair of muons and which place requirements on the

invariant mass of the dimuon pair and also place requirements on the quality of the dimuon vertex

reconstruction.

The HLT2 trigger lines used include multiple Topo lines [161]. These trigger on can-

didates which exhibit a topology commonly shared by heavy b-hadron decays such as the

characteristic displaced secondary vertex and the high pT and IP value. The lines make use of a
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Boosted Decision Tree (BDT) algorithm to make the final trigger decision by taking into account

the detached secondary vertex information, lifetime information, IP values and pT information

simultaneously. Other HLT2 lines which are used include the Hlt2DiMuonDetached line

which selects events containing a dimuon pair that is significantly displaced from the PV and the

Hlt2SingleMuonRare line which includes requirements to select a high pT and IP single

muon track and which is tailored towards rare decay searches.

5.2 Stripping

The huge amount of data accumulated by the LHCb experiment goes through many different

stages of processing before it is analysed. Although much of the selection procedure varies from

analysis to analysis, a certain stage of the selection process, known as the stripping selection, is

more standardised. This is a necessity given the unwieldy size of the entire LHCb dataset. The

stripping selection is a series of loose requirements made on kinematic, topological, quality of

reconstruction and global event variables. The objective of these requirements is to reduce the

dataset to a manageable size for off-line analysis. In addition the stripping provides a common

starting point for physics analyses which will share certain immutable characteristics, such as, for

example, the presence of a dimuon pair within the final-state. A set of stripping requirements

is known collectively as a stripping “line” and the data which pass similar stripping lines are

grouped together into data “streams”. It is therefore possible to visualise the full LHCb dataset as

being divided up into different data streams which broadly describe very general characteristics

of a decay before the streams are subdivided further via the relevant stripping lines into a smaller

dataset more tailored for a specific physics search.

The analysis presented within this thesis makes use of the LHCb Leptonic stream,

which selects events with at least one lepton within the final-state. More specifically, the analysis

makes use of the LHCb B2XMuMu stripping line, which looks for events containing a b-hadron

that decays to an oppositely charged dimuon pair within the final-state and a hadron, denoted by

X . This stripping line is widely used for b→ s(d)µ+µ− decay searches.

The selection requirements made by the B2XMuMu stripping line can be found in Table 5.2.

Some of the requirements within this table differ from year to year as LHCb stripping requirements

are decided upon by the collaboration on an annual or biannual basis as part of dedicated “stripping

campaigns”. The B2XMuMu line places a series of requirements on the invariant mass of the

reconstructed B0 (B0
s ) meson and also on the χ2 of the distance of closest approach (DOCA) of

the B meson trajectory to the PV, the χ2 flight distance between the B candidate and associated

PV and quality of vertex χ2. A requirement is also placed on the size of the DIRA angle, which

is defined as the angle between the momentum vector of the reconstructed particle and the vector

66



Table 5.2: Stripping requirements applied by the LHCb B2XMuMu stripping line as part of the
Leptonic stream. Where the requirements vary depending on the year of data taking, the
relevant year is specified in brackets. m(π+π−µ+µ−) and m(π+π−) refer to the invariant mass
combinations of the π+π−µ+µ− and π+π− systems respectively.

Particle Variable Cut Value

B0

IP χ2 < 16
m(π+π−µ+µ−) > 4900 MeV (11,12,15,17,18)
m(π+π−µ+µ−) > 4700 MeV (16)
m(π+π−µ+µ−) < 7100 MeV (11,12,15,16)
m(π+π−µ+µ−) < 7000 MeV (17,18)
cos(DIRA angle) < 0.9999

Flight Distance χ2 > 121
Vertex χ2/ndf < 8

π+π−

m(π+π−) < 6200 MeV
DOCA χ2 < 20

Vertex χ2/ndf < 12
DIRA > -0.9

Flight distance χ2 > 9 (11,12) 16 (15,16,17,18)

µ+µ−

m(µ+µ−) < 7100 MeV
Vertex χ2/ndf < 12

DIRA > -0.9
Flight distance χ2 9

µ±
IsMuon True
DLLµπ > -3

All Tracks
Ghost Probability < 0.35 (11,12) 0.5 (15,16,17,18)

Min. IP χ2 w.r.t all PVs > 9
Global Event Cut SPD multiplicity < 600

from the particle’s origin vertex to its decay vertex. Figure 5.1 shows the IP, flight distance and

DIRA angle in the context of the decay topology of a B0(B0
s )→ Xµ+µ− process. Within the

schematic a generic intermediate resonance is represented by X and generic final-state hadron

by h± which represents either pion or kaon. The four momentum vector shown belongs to the

b-hadron and is used as an example.

The stripping requirements place additional requirements on the intermediate vector

meson and on the dimuon pair and particle identification requirements are made on the two

final-state muons. These include a requirement on the likelihood that each muon track is a muon

with respect to the likelihood that it is a pion, described by the difference in log-likelihoods

variable, DLLµπ which provides muon-hadron separation. The identification requirements also
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Impact Parameter Four Momentum Vector

Primary Vertex

Figure 5.1: The topology of the rare mode decays. The impact parameter (IP), flight distance
(FD) and DIRA angle, θDIRA are labelled. The labels X and h± refer to generic intermediate
hadronic resonances and final-state hadrons (kaons or pions) respectively. For a genuine signal,
θDIRA = 0.

include the need for the final-state muons to satisfy the IsMuon requirement which is a low-level

muon PID variable created by checking whether the track can be associated with hits in any of

the LHCb muon chambers [162]. The B2XMuMu stripping line also places requirements on the

probability that each track is in fact a “ghost” track which refers to a track which is reconstructed

from the partial trajectories of more than one particle. This probability is the output of a neural

network algorithm which takes into consideration vertex quality, IP and pT information [163]. A

general requirement is then placed on the quality of all decay vertices present within the event and,

finally, on the number of hits recorded within the SPD sub-detector. This occupancy requirement

is aligned with the L0Muon occupancy requirement in Run 1.

5.2.1 Post-stripping

After the application of the stripping selection it is possible to observe some rudimentary structures

within the data from the invariant π+π−µ+µ− mass distributions. This is a useful exercise

because even at this early stage of the selection, the profile of many of the dominant backgrounds

are visible. Figure 5.2 shows the invariant mass distributions, post-stripping. The top plots show

the invariant mass distribution when selecting only candidates that are attributable to the resonant

modes. The bottom plots show the mass distributions when vetoing these candidates and selecting

for the rare modes. Both of these types of distribution show a broad exponential shape which

decreases in it’s contribution as the invariant mass is increased. This shape can be attributed to

combinatorial background which is a form of background that results from the reconstruction of
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Figure 5.2: The invariant π+π−µ+µ− mass distributions after the application of the stripping
selection, for the 2011+2012 dataset (left column), 2015+2016 dataset (middle column) and
2017+2018 dataset (right column). The top plots show the reconstructed candidates where the
dimuon pair originates from the J/ψ resonance and the lower plots the equivalent where only
candidates where the dimuon pair does not originate from the J/ψ resonance are included.

random combinations of particle tracks within an event that manage to pass the initial selection

criteria. Given it’s prevalence the selection procedure must reduce this form of background as

much as possible and this is addressed in Section 5.4. The plots from Figure 5.2 attributable to

the Run 2 datasets show the existence of discontinuities within the mass spectrum. These are

present due to the different m(π+π−µ+µ−) stripping requirements made on data in different

years, as seen in Table 5.2.

The resonant mode distributions from Figure 5.2 show two peaks which can be observed

above the broad combinatorial exponential. The larger peak is dominated by the decay mode

B0 → J/ψK∗0 and is present within the dataset due to the inclusion of events where the

selection criteria mis-identify a kaon from the event as a pion before going on to reconstruct a

K+π−µ+µ− candidate. The incorrect identification of the kaon as a pion results in this peak

being smeared out and then shifted within the distribution to lower values than the known B0

mass of 5281 MeV/c2 [154], due to the difference in kaon and pion masses. As can be seen,

this is a dominant source of background within the analysis whose importance is driven by its

large branching fraction compared to the corresponding decays to a π+π− final-state (indeed,

this purity motivates it’s selection as a control mode for the analysis). This source of background

is reduced using particle identification requirements discussed in Section 5.5. However, as the

background lies in the same invariant mass region as the B0 signal mode it is modelled as part of

the final invariant mass fits. In addition to this large peak, a smaller peak can be seen to the right,
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around 5360 MeV/c2, which is attributable to the B0
s→ J/ψπ+π− decay. The B0→ J/ψπ+π−

decay, is not visible without vetoing the B0→ J/ψK∗0 background.

The lower plot of Figure 5.2 shows far fewer structures but is once again obscured

by combinatorial background. A wide structure can be seen around 5200 MeV/c2, which is

attributable to the decayB0→ K∗0µ+µ−, entirely analogously to theB0→ J/ψK∗0 background

within the resonant mode distribution. The B0 and B0
s signal from the two rare modes, prior to

the application of the full selection, are obscured.

At this stage of the analysis a requirement is placed on the opening angles between the

two positive tracks which are included within the candidate and the equivalent angle between the

two negative tracks. The requirement rejects candidates where these angles are smaller in size

than 0.5 mrad. The purpose of these requirements is to reject events which include “clone tracks”

where an individual track is used twice to reconstruct a candidate.

5.3 Monté Carlo Simulation

Throughout the analysis, data samples originating from a Monté Carlo (MC) simulation are used

in order to optimise each step of the selection process, provide an estimation of efficiencies, train

the BDT used to separate signal from background and determine the shapes which describe the

signal and background components in final invariant mass fits.

Dedicated MC samples are generated using the full LHCb simulation software (with the

software itself described in slightly more detail in Appendix A). The generated MC samples

model the decays B0 → ρ0µ+µ−, B0
s → f0(980)µ+µ−, B0 → K∗0µ+µ−, B0 → J/ψK∗0,

B0→ J/ψK+π−, B0
s→ J/ψf0(980), B0→ J/ψρ0, B0

s→ J/ψη′ and B0
s→ J/ψφ. These MC

samples, apart from the B0
s → J/ψη′ and B0

s → J/ψφ samples which are background modes

where a final-state particle is not reconstructed, share the same topology as shown in Figure 5.1.

These two background modes are relevant to the resonant mode fits of Chapter 8. Due to the

large number of potential backgrounds of potential relevance to both the resonant and rare modes,

additional simulation samples, such as for the decay mode B0
s → η′µ+µ−, are also useful to

this analysis. However, due to limited computing resources these additional simulation samples

are not generated using the complete LHCb MC software. Instead, they are generated with

the RapidSim software package [164] which is a particle-gun generator which simulates only

the decaying particle instead of the underlying event. RapidSim determines the kinematic

distributions of the generated particles by sampling histograms generated from fixed-order next-

to-leading-logarithm transverse momentum calculations [165]. RapidSim then decays the

generated particles inside a bespoke geometry using physics models from the EvtGen package.

All MC samples used within the analysis are initially truth-matched whereby the information
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from the generator level samples, which is the MC sample prior to passing through the full

LHCb data-flow, is compared to the final output after passing through the LHCb digitisation,

reconstruction and stripping stages. Candidates that are included within the simulated datasets as

a result of an artifact of the generation, instead of the decay of interest, are then removed before

the simulation is used for analysis.

The MC samples for the B0→ ρ0µ+µ−, B0
s → f0(980)µ+µ− and B0→ K∗0µ+µ−

are referred to throughout this thesis as the B0→ π+π−µ+µ−, B0
s→ π+π−µ+µ− and B0→

K+π−µ+µ− samples respectively. This is because these LHCb MC samples are weighted within

Chapter 6 to include intermediate resonances which contribute to the π+π− (K+π−) system in

addition to the ρ0 (770), f0(980) and K∗0 (892) which they are generated with by the LHCb

collaboration. This is also the case for the resonant mode MC samples B0
s→ J/ψf0(980) and

B0→ J/ψρ0 which are referred to as B0
s→ J/ψπ+π− and B0→ J/ψπ−π− after applying the

decay model weights.

5.3.1 Data/Simulation Agreement and Weighting

Given the importance placed on the MC simulation data samples within the analysis it is impera-

tive that these simulated samples model the data accurately. Although this agreement is generally

good across the majority of variables of interest to the analysis there are specific variables that are

known to show a poorer level of agreement as they are not properly reproduced by the PYTHIA

package and the LHCb simulation. These include the pT of the B0 (B0
s ), the vertex χ2 of the B0

(B0
s ) and the detector occupancy, which describes the number of tracks or hits registered by the

detector.

In order to address this data-MC disagreement, the MC samples used within the analysis

are corrected via a sequential weighting of the B0 pT, vertex χ2 fit and event occupancy variables.

This procedure first requires the separation of signal from background within the data distributions.

This separation is achieved using the sPlot technique [166] where weights are extracted from

a fit to the B0→ J/ψK∗0 control mode invariant mass distribution. The set of sPlot weights

are then applied to the data to extract the “true” variable distributions and these distributions

are then compared to the MC distributions to calculate the final set of kinematic weights. The

application of these weights on the MC distributions is seen to dramatically improve the data-MC

agreement as can be seen in Figure 5.3 where the un-weighted MC distributions are shown in red,

the unfolded data distributions in black and the weighted MC distributions in blue.

The sPlot technique exploits the fact that by clearly separating signal from background

within one variable distribution, the signal and background distributions can be separated from

one another in a second variable assuming that the covariance relation between the two variables
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Figure 5.3: The result of the MC kinematic variable weighting for the 2011+2012 dataset (top),
the 2015+2016 dataset (middle) and the 2017+2018 dataset (bottom) in the B0 pT, B0 vertex χ2

and event occupancy variables. A good level of agreement can be seen between the unfolded data
distributions and the weighted B0→ J/ψK∗0 MC distributions.

can be determined [166]. In practice, the sPlot weights take both positive and negative values to

“up-weight” candidates more likely to belong to the signal distribution while “down-weighting”

candidates more likely to belong to the background distribution. When applying the weights to

the second variable the effect is to artificially remove the candidates most likely to belong to

background. Within this analysis the first variable is the invariant m(K+π−µ+µ−) mass from

the control mode, while the second variables are the three kinematic variables to be corrected.

Crucially, this technique is only applicable in this context as the invariant mass is not highly

correlated with the three kinematic variables.

Different variables are used between Run 1 and Run 2 to describe the detector occupancy.

In Run 1 this variable is the number of long tracks in the event, whereas in Run 2, due to changes

in track reconstruction, the number of hits in the SPD sub-detector is used as it is thought to be

a more reliable proxy. Another feature seen in the figure is that there is a discontinuity which

appears in the Run 2 occupancy variable distributions. As was previously mentioned within

Section 5.1 there exists a difference between the occupancy requirements included as part of

the two L0 trigger lines used, L0MuonDecision and L0DiMuonDecision, in Run 2. This
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difference manifests itself as a discontinuity in the distribution where any candidates with a

number of SPD hits above 450 are only passing the L0DiMuon trigger requirement.

In addition to this weighting procedure, additional corrections are made to the MC

samples to further improve the agreement between simulation and data. Corrections are applied

to correct the MC particle identification efficiencies, discussed in Section 5.5, and to correct the

calculated trigger and tracking efficiencies as is discussed in Chapter 7. Furthermore, corrections

are applied to improve the accuracy of the underlying MC physics models and this is discussed in

Chapter 6.

5.4 Multi-Variate Analysis

The large levels of combinatorial background seen within the data cannot be isolated using

standard requirements or vetoes as would be possible for other background sources. This is due

to the fact that the combinatorial background and signal show very similar behaviour across many

physical variables meaning it is not possible to separate the two using a single variable. In order

to isolate and reduce this background it is necessary to make use of Multi-Variate Analysis (MVA)

techniques that take in many different variables into account simultaneously order to make an

informed decision on whether an individual candidate is likely, or not, to be attributable to signal.

Many tools exist which can be used for a multivariate analysis due to recent renewed

interest in machine learning and artificial intelligence. Within this analysis, the reduction of

combinatorial background is performed using a gradient-Boosted Decision Tree (BDT) [167]

classifier implemented via the XGBoost algorithm [168].

5.4.1 XGBoost: Training

In order to train the XGBoost classifier to separate signal and background events the classifier

must first be trained to recognise the different patterns within the data which separate out these two

categories. The training is performed with two proxy samples, one of which contains examples of

signal candidates and the other containing examples of background candidates. The MC sample

of B0→ π+π−µ+µ− decays is used as the signal proxy. The background sample is taken from

the upper sideband of the data, which corresponds to candidates with an invariant π+π−µ+µ−

mass of greater than 5800 MeV/c2. This upper sideband region is not expected to contain any

significant signal or peaking background features and is therefore dominated by combinatorial

background. For this reason candidates in the upper mass sideband are not used in the subsequent

analysis. The two proxy samples are added together to form a larger sized sample and then

75% of this larger sample is used to train the classifier. The remaining 25% is used to test the
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performance of the classifier and to ensure that the levels of over-training present are small.

Table 5.3: Variables used to train the XGBoost BDT.

Particle Variable BDT Ranking Run 1 BDT Ranking Run 2

B0 (B0
s )

Vertex χ2 5 2
cos(DIRA angle) 10 9

IP χ2 12 8
Isolation 11 12
Lifetime 4 5
pT 1 1

µ+µ− IP χ2 9 10
π+π− Minimum IP χ2 2 6

µ±
Minimum IP χ2 6 3

Minimum pT 3 4
|µ+pT − µ−pT| 8 11

Daughters Minimum pT 7 7

The classifier is trained using a set of training variables which are listed in Table 5.3.

These variables are selected for the training procedure due to the fact that they show different

behaviour between the signal and background proxy samples, as can be seen in Figure 5.4 and

Figure 5.5. Due to differences in these variables between the Run 1 and Run 2 data samples,

which exist due to differences in the physical data-taking conditions, the XGBoost training is

completed twice: once for the Run 1 data sample and once for the sample corresponding to

the data taking years 2015 and 2016. Due to similar variable behaviour seen across Run 2, the

2017+2018 data has the 2015+2016 classifier applied to it.

One of the training variables included, which has not yet been defined, is the “Isolation”

training variable. This variable considers tracks, not reconstructed as part of the signal candidate,

which fall in a cone around the signal candidate. For each non-signal track in the cone the signal

candidate is refit with one of the signal tracks replaced with one of the non-signal tracks. The

difference in vertex χ2 is calculated between the nominal fit and the fit with track replacement.

Then, after all possible replacements are made the minimum difference in χ2 seen is converted to

a probability. The separation power of this variable comes from the fact that, for a signal-like

event, the signal candidate should be relatively isolated from non-signal tracks. Such a candidate

would register a lower value of the Isolation variable than a background candidate formed by

particles from two different b-hadron decays.

The final two columns within Table 5.3 show the ranking of each variable which describes

how “useful” the algorithm finds each variable when separating signal from background. Within

74



0 5 10 15 20 25 30 35 40
2χ Vertex 0B

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

N
or

m
al

is
ed

 C
an

di
da

te
s

Data

MC

0.99996 0.99997 0.99998 0.99999 1
 cos(DIRA angle)0B

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

is
ed

 C
an

di
da

te
s

0 2 4 6 8 10 12 14 16
2χ IP 0B

0

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

is
ed

 C
an

di
da

te
s

0 500 1000 1500 2000 2500 3000 3500 4000
2χ IP −µ+µ

5−10

4−10

3−10

2−10

1−10

1

N
or

m
al

is
ed

 C
an

di
da

te
s

0 500 1000 1500 2000 2500 3000 3500 4000
]c [MeV/

T
pMinimum 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
or

m
al

is
ed

 C
an

di
da

te
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Isolation0B

5−10

4−10

3−10

2−10

1−10

1

N
or

m
al

is
ed

 C
an

di
da

te
s

0 0.002 0.004 0.006 0.008 0.01 0.012

 [ns]τ 0B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
or

m
al

is
ed

 C
an

di
da

te
s

0 5000 10000 15000 20000 25000 30000

]c [MeV/
T

p 0B

0

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

is
ed

 C
an

di
da

te
s

0 1000 2000 3000 4000 5000

)−π+π (2χMinimum IP 

6−10

5−10

4−10

3−10

2−10

1−10

1

N
or

m
al

is
ed

 C
an

di
da

te
s

0 2000 4000 6000 8000 10000

)−µ+µ (2χMinimum IP 

6−10

5−10

4−10

3−10

2−10

1−10

1

N
or

m
al

is
ed

 C
an

di
da

te
s

0 1000 2000 3000 4000 5000 6000 7000 8000
]c) [MeV/−µ+µ (

T
pMinimum 

0

0.01

0.02

0.03

0.04

0.05

N
or

m
al

is
ed

 C
an

di
da

te
s

0 2000 4000 6000 8000 10000 12000 14000

]c| [MeV/
T

p −µ − 
T

p +µ| 

0

0.01

0.02

0.03

0.04

0.05
N

or
m

al
is

ed
 C

an
di

da
te

s

Figure 5.4: The input variables used for the BDT training for Run 1. The variables are shown
for the B0→ J/ψK∗0 mode. Blue shows the signal distribution represented by MC and the
red shows the background taken from the upper mass sideband of the data. All histograms are
normalised to unity.

this context the usefulness is determined by counting how many times each variable was cut on

within the training procedure. For example, if a single decision tree made two requirements on

the value of the Isolation variable and one requirement on the value of the mother pT, then the

ranking of the Isolation variable is higher than that for the transverse momentum. This ordering

is then summed across all of the training trees to produce a final ranking.

Given that the background proxy sample is selected from the data by making a requirement

on the invariant π+π−µ+µ− mass, it is important to ensure that the BDT cannot “cheat” by

deciding that all background events can be simply categorised by making a requirement on this
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Figure 5.5: The input variables used for the BDT training for 2015+2016. The variables are
shown for the B0→ J/ψK∗0 mode. Blue shows the signal distribution represented by MC and
the red shows the background taken from the upper mass sideband of the data. All histograms are
normalised to unity.

mass variable. Although this variable is not included within the training directly, there is a

danger that the BDT could reconstruct it if it is highly correlated with one or more of the training

variables. To ensure that this is not the case, 2-D histograms are filled with the training variable

distributions and the invariant mass distribution. These histograms which can be seen for the Run

1 dataset in Figure 5.6, do not show any significant correlations and the same lack of correlation

is seen for the Run 2 dataset.

The accuracy of the final BDT classification decision relies on the quality of the training

samples which are used to train the algorithm. This includes the relative size of the samples, the
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Figure 5.6: The correlations of the BDT training variables with the m(π+π−µ+µ−) invariant
mass taken from the Run 1 dataset. The lack of clear correlation indicates that the variables can
be safely used within the training of the classifier. Similar plots are seen for the Run 2 datasets.

separation power of the variables and the ability of the MC data samples to accurately reflect

the behaviour seen in the data. As was discussed in Section 5.3, the MC samples used within

the analysis are weighted in different kinematic variables to improve the data-MC agreement.

The level of data-MC agreement for the training variables used is checked, both before and after

this weighting, to ensure that the variables reliably match the data and these distributions can be

seen in Figure 5.7 and Figure 5.8. The agreement between MC and data is seen to be very good

for the training variables however small levels of disagreement can be seen in the distributions

which rely on the transverse momentum of the final-state particles. This is understood to be due

to the model which is used to generate the B0→ J/ψK∗0 MC sample used to calculate the sPlot
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Figure 5.7: The data-MC agreement seen for the Run 1 BDT training variables. The original
MC sample distributions are shown in red and the MC sample after the kinematic weighting in
blue. The data which is unfolded using the sPlot method to make the data-MC comparison is
represented by the black data points. For all of the plots shown the area of the histograms is
normalised to unity.

weights. The model used generates decays via a P-wave K∗0(892) resonance. In reality, is is

known that a fraction of these decays proceed in an S-wave configuration and this discrepancy

accounts for the limited level of disagreement still seen after the kinematic weighting. Indeed,

this discrepancy can be seen to be removed after the application of the decay model weights from

Chapter 6, as can be seen in Figure 5.9. Ultimately, the effect of this discrepancy during the

training makes very little difference on the total BDT classifier as it is taken into consideration

with all of the other variables together.
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Figure 5.8: The data-MC agreement seen for the 2015+2016 BDT training variables. The original
MC sample distributions are shown in red and the MC sample after the kinematic weighting in
blue. The data which is unfolded using the sPlot method to make the data-MC comparison is
represented by the black data points. For all of the plots shown the area of the histograms is
normalised to unity.

In addition to the training variables used within the BDT, additional variables, known

as “hyper-parameters”, exist which define the structure of the BDT classifier itself. Three

different hyper-parameters are used within the training of the XGBoost classifier and these are

the maximum depth of the training trees, the number of rounds of training performed and the

classifier learning rate. These parameters can be adjusted to improve the performance of the

training while simultaneously avoiding large amounts of bias and over-training. The maximum

depth of the individual training trees was chosen to be 4, the number of rounds of training to be
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Figure 5.9: Improvement seen in the data-MC agreement in the minimum pT variable when
including the decay model weights of Chapter 6. The data which is unfolded using the sPlot
method to make the data-MC comparison is represented by the black data points. The original
MC sample distribution is shown in red while the MC distributions after the application of the
kinematic weights and then the kinematic + decay model weights are seen in blue and green
respectively. The figure is made with the 2011+2012 dataset with the same behaviour seen for the
Run 2 datasets.

100 and the learning rate, defined by the XGBoost variable η, was fixed to a value of 0.3. These

values were slightly modified from the default training values as the values used were found to

result in a slightly better level of performance.

A common tool to describe the performance of a classifier is the Receiver Operating

Characteristic Curve, or ROC curve. This describes the level of background rejection and signal

efficiency achieved for a given classifier output. The ROC curves produced when applying the

trained XGBoost classifier to the 2011+2012, 2015+2016 and 2017+2018 datasets can be seen in

Figure 5.10. As can be seen from these curves, a very high level of background rejection can be

achieved for all three datasets, for a wide range of signal efficiencies. The final decision on which

BDT requirement value to make within the analysis is discussed in Section 5.5.1.

5.4.2 XGBoost: Over-training Studies

When training a classifier it is important to ensure that the level of bias and over-training which

is developed during the training process is kept to a minimum. Over-training occurs when

the classifier is given too much information about the training dataset such that is recognises

artificial features of the training dataset, such as statistical fluctuations, as genuine features. To a

certain extent, over-training is always present within a BDT classifier due to the mechanics of the
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Figure 5.10: Receiver Operating Characteristic (ROC) curves for the 2011+2012 dataset (blue),
the 2015+2016 dataset (red) and the 2017+2018 dataset (green). The lower plot shows the ROC
curve zoomed into the signal efficiency region relevant for the analysis.

underlying classification process. However, it is imperative that this over-training is not too large

and different tests can be made to ensure that the over-training levels are minimised.

Figure 5.11 shows, for the Run 1 and 2015+2016 classifier, the BDT response for the

signal and background proxies, for both the training and testing samples. A large level of
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over-training would present itself as a noticeable difference in the BDT distribution between

the training and testing samples. As can be seen from the figure, the BDT distributions for the

training and testing samples are very similar suggesting that the level of over-training present is

small. The different shape of the BDT response distribution between the Run 1 and 2015+2016

datasets can be understood by considering the meaning of the BDT response variable output. The

BDT output number represents the signal purity of the training sample. A BDT output closer

to one implies the candidate is more likely to be a signal candidate and an output closer to zero

implies the event includes a background candidate. The dependence of the BDT output on the

signal purity for a given BDT output requirement means that the BDT response distribution will

differ between the Run 1 and 2015+2016 training as the relative size of the two proxy samples is

different between the two classifiers.

An additional tool that can be used to check the performance of the BDT, whilst ensuring

that over-training is minimised, is the classifier learning curve which shows how the integrated

area under the ROC curve varies as a function of a specific learning parameter, such as the

number of trees used when training. The area under the ROC curve is a direct measure of the

performance of the classifier and so, generally, classifiers are optimised to maximise this metric.

It is possible to check the learning curves for both training and test samples simultaneously where

a gradual convergence of the two learning curves indicates a lack of over-training. Figure 5.12

shows examples of learning curves for the Run 1 and 2015+2016 training. The top plots show the

performance of the classifiers for the training and test samples as a function of the fraction of the

total dataset used. For small data samples the level of overtraining is larger and the performance of

the two samples diverges as expected. Equally, no large divergence can be seen for larger datasets

which would indicate a bias. The bottom figures show the performance of the classifier for the

training and testing samples as a function of the number of trees used in the training. Similarly, a

large level of divergence between the two curves would indicate significant over-training. As was

mentioned at the beginning of this section a small level of overtraining is unavoidable for a BDT

classifier. However, the small level of divergence seen here suggests that the level of over-training

present within the classifier is small enough to be neglected.

Over-training can also be checked for by performing a cross-validation test where the

classifier is trained on a subset of the data before being applied on a different subset. If the

classifier is unbiased then the classifier should not show significant performance improvements

when using different subsets of the data for the training. Within this analysis a cross-validation

test is performed by creating subsets from the different data-taking years present within the data.

ROC curves for the different train-application combinations can be seen in Figure 5.13. As can

be seen, the level of classifier performance variation between the different subsets is small. The

variation is seen to be slightly larger for the 2015+2016 training and this is understood to be due
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Figure 5.11: The XGBoost BDT response for the signal (blue) and background (red) samples.
The training data is represented with the histograms while the test data is represented with the
data points. The top plot shows the Run 1 response and the bottom plot the 2015+2016 response.

to the greater levels of variation in the number of events which make up the different 2015+2016

MC year subsets.

A final check of over-training is made to validate the BDT training. This test involves the

comparison of the BDT output distributions when the BDT is applied on different MC modes

which all share the same topology and, therefore, are expected to behave similarly. Figure 5.14

shows the BDT response on the B0→ π+π−µ+µ−, B0
s→ π+π−µ+µ−, B0→ K+π−µ+µ−,

B0→ J/ψπ+π−, B0
s → J/ψπ+π− and B0→ J/ψπ+π− MC samples. This is a particularly

useful test on the rare mode MC samples as the decay models of these modes are not well

known. Therefore, if the BDT output shows consistency between resonant and rare mode MC
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Figure 5.12: Learning curves showing the performance of the classifiers for the Run 1 training
(left plots) and the 2015+2016 training (right plots). The top row shows the performance of the
classifier as the fraction of the total dataset which is used to train the classifier is increased. The
bottom row shows the performance of the classifier as the number of trees used within the training
is increased.

samples then this adds confidence in the ability of the classifier to produce similar results despite

different intermediate resonance contributions to the hadronic final-state particles. As can be

seen the shapes of the BDT response between the different distributions are very similar for

the 2011+2012, 2015+2016 and 2017+2018 datasets. In order to make the BDT response more

meaningful the BDT response is transformed within the figure. This is necessary as the signal is

normally peaked towards high values and so by transforming the variable the subtler differences

between the different responses can be seen.
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Figure 5.13: Cross-validation ROC curves which show the performance of the BDT classifier
when training using a subset of the data and then applying on a different subset. The top set of
ROC curves show the Run 1 training and the bottom set the 2015+2016 the training.
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Figure 5.14: The XGBoost BDT output when applied on different MC samples which share a
similar topology. The top left plot shows the distributions for the Run 1 MC samples, the top
right plot shows the distributions for the 2015+2016 MC samples and the bottom plot for the
2017+2018 MC samples.
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5.5 Particle Identification vs BDT Response Selection

As was previously discussed in Chapter 3 the PID information provided by the LHCb detector

allows for the identification of different particle species within an event. During an off-line

physics analysis the LHCb PID information can be accessed through different sets of variables.

Within this analysis the PID variables used are known as the ProbNN variables [169]. These are

the output of a neural network that is trained using data samples to give the probability that a

given particle track belongs to a particular species using the LHCb RICH system, muon system,

calorimetry system and ghost track probability information. The ProbNN variables therefore

have a value between 0 and 1 and requirements on these values can be made to reduce the

presence of backgrounds within an analysis which arise due to particle species mis-identification.

Within this analysis the PID requirements which are applied on the final-state hadron

tracks to select out the rare and resonant modes take the form shown in Equation 5.1

ProbNNπ *(1-ProbNNK)*(1-ProbNNp). (5.1)

By combining the requirements in this way the probability that the final-state hadron is a pion

is combined with the probabilities that it is not a kaon or proton, allowing for a more powerful

rejection of K-π and p-π mis-identification backgrounds. In addition to these PID requirements,

the requirements placed on the final-state muons take the form ProbNNµ which serves to reduce

the levels of fully hadronic backgrounds present within the dataset. Finally, the response of

the LHCb muon system, which is summarised by a boolean variable, IsMuon is applied to the

final-state tracks. A particular track is given a true IsMuon value if it has a minimum number of

hits in the muon stations. The number of required hits depends on the momentum of the track as

low momentum tracks are absorbed and do not reach further downstream in the detector. Within

this analysis the two pion tracks are required to return false on an IsMuon query, while the

muons are required to return a true value.

The value of the ProbNN requirements made in the analysis needs to be carefully

considered due to the necessity of maintaining a balance between a reduction in background

levels and the retention of signal candidates. Within the analysis, the final choice of working

point for both the PID requirements and the BDT response selection is made simultaneously by

optimising the expected statistical significance of aB0→ π+π−µ+µ− observation with a pseudo-

experiment study. The pseudo-experiment study (which is discussed in detail in Section 5.5.1)

makes use of PID efficiency estimates. However, as was the case in Section 5.3.1 where the

standard LHCb MC samples fail to accurately model certain kinematic variables, the PID variables

present within the MC samples are known to also disagree with data. This is due to the sensitivity
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Table 5.4: PID Fiducial requirements for Run 1 and Run 2

Dataset Variable Requirement

Run 1 + Run 2 All Tracks
3 < p < 100 GeV/c

1.5 < η < 5
pT > 250 MeV/c

Run 1 Occupancy 0 < nTracks < 500

Run 2 Hadrons
p /∈ [5.5, 11.5] GeV/c and η /∈ [4.1, 5.0]
p /∈ [3.0, 5.5] GeV/c and η /∈ [3.75, 4.1]
p /∈ [3.0, 5.5] GeV/c and η /∈ [3.45, 3.75]

Occupancy 0 < nSPDHits < 600

of the PID variable responses to factors within a specific event, such as the detector occupancy. In

order to calculate the correct PID efficiencies, the LHCb PIDCalib package is used [170]. This

package uses calibration samples taken from data that contain decays where a particle species

hypothesis can be determined using kinematic information only, as was discussed in Chapter 3. By

binning both the calibration samples and the MC samples in kinematic and occupancy variables,

the corresponding PID efficiency from the calibration sample can be looked up and used as the

PID efficiency for each MC candidate.

Within this analysis the PIDCalib calibration samples are binned in the track momen-

tum, track pseudo rapidity and detector occupancy, the latter being represented by the number of

tracks in Run 1 and the number of SPD hits in Run 2. However, prior to using the PIDCalib

package it is necessary to make sure that the phase-space coverage of the calibration samples

matches that of the MC samples. This is necessary because otherwise candidates within the MC

samples would receive a meaningless PID efficiency. These candidates are first removed removed

via the application of a series of fiducial requirements that are listed in Table 5.4. For consistency,

these fiducial requirements are also applied to the Run 1 and Run 2 datasets.

5.5.1 Working Point Optimisation

To perform the optimisation study 1000 pseudo experiments are generated and fit with a model in

order to evaluate the average significance of a B0→ π+π−µ+µ− signal for different combina-

tions of PID and BDT requirements. This procedure, which is performed separately for the three

datasets and across the full q2 range, calculates the significance of each pseudo experiment, at

each working point, using Wilk’s theorem [171]. Using Wilk’s theorem the statistical significance,

S, can be expressed as

S = −2
(

ln(L1)− ln(L0)
)

(5.2)
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where L1 is the likelihood calculated under the signal hypothesis and L0 is the likelihood

calculated under the null hypothesis. To make the different BDT working points differentiable

from one another, the BDT response at this stage of the analysis is flattened whereby the raw

BDT output is replaced with a corresponding BDT efficiency.

The model used within the optimisation procedure is fit, using a maximum likelihood

fit, to the invariant m(π+π−µ+µ−) mass using a set of probability density functions (PDFs).

The same PDFs are used in both the generation and fitting of the pseudo-experiment data with

the form of the PDFs used discussed in Chapter 8. The PDF shapes for the components are

determined from separate fits to MC samples with three PDF components included corresponding

to the decays B0→ π+π−µ+µ−, B0
s→ π+π−µ+µ− and B0→ K+π−µ+µ− where the kaon is

mis-identified as a pion by setting the invariant mass of the kaon track to the known pion mass.

Finally a final PDF is included to describe the combinatorial background component. When

applying the PID variable requirements on the data, the shapes of the signal and background

components within the data is altered. This shaping is larger for a background component that

results from the PID mis-identification of particle tracks, such as B0→ K+π−µ+µ−. In order to

include this effect within the optimisation the PID efficiencies from the PIDCalib package are

applied as weights to the different MC samples before they are fit to determine the different PDF

parameters. The extent of the shape alteration differs between working points meaning that these

fits are repeated for each set of PID and BDT requirements.

The combinatorial exponential lineshape is modelled using an exponential distribution

from a separate fit to the upper sideband of the data. The exponential parameter is allowed to

float within each pseudo experiment with the initial value set from the initial upper sideband fit.

The number of events generated within the toy datasets is determined by first calculating

the expected yields of the different components. The yield for the combinatorial component is

determined by extrapolating the yield from the upper sideband fit to the full fit range. This is

repeated for each separate working point. The yields for the B0(B0
s )→ π+π−µ+µ− components

are determined by scaling the yield from the control mode fit of Chapter 8 using ratios of

efficiencies and branching fractions, following Equation 4.2 from Chapter 4. The yield for the

B0→ K+π−µ+µ− background is calculated from a separate fit to the data where alternative

PID requirements are applied alongside a mass window selection around the K∗0(892) resonance

peak to determine the yield of B0→ K∗0µ+µ− events which dominate the B0→ K+π−µ+µ−

background. This yield is then scaled with PIDCalib and mass requirement efficiencies. The

yield of the B0→ K+π−µ+µ− component in the pseudo experiments is then constrained in

the fit with a Gaussian function which takes the scaled yield and uncertainty as mean and width

parameters.

An example of a single fitted toy dataset can be seen in Figure 5.15. After the calculation
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of the significance of each pseudo experiment using Wilk’s theorem, the final significance for

the corresponding PID and BDT working point is determined from the mean of the resulting

Gaussian distribution of the 1000 individual toys experiments.

5.5.2 Optimisation Results

The results of the optimisation procedure can be seen in Figure 5.16. The plots shown correspond

to studies performed with muon PID requirements of ProbNNmu > 0.10. The process was

repeated with an alternative muon PID requirement of ProbNNmu > 0.05, however, this was

found to result in worse performance. For all three of the datasets, a clear area of larger statistical

significance can be seen. Within these regions many of the adjacent working points yield a similar

expected significance. Therefore, the final working points for the three datasets were ultimately

chosen by also considering the signal and background yields, for each working point, which were

calculated for the study. As a tighter set of requirements results in a smaller signal yield, the final

working points were not selected to be the tightest requirements available within the significant

region. Instead, the chosen requirements reach a compromise between lying within the optimal

region and being loose enough to ensure a larger signal yield.

The optimal requirements are selected to be

ProbNNπ *(1-ProbNNK)*(1-ProbNNp) > 0.6 (5.3)

for all three datasets with ProbNNmu > 0.10 requirements on the muons and a flattened BDT

requirement corresponding to a 60% BDT efficiency.
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Figure 5.15: Example of a single pseudo-experiment where the generated dataset is fit with
a model to determine the statistical significance of a B0→ π+π−µ+µ− observation. In this
example only a loose requirement is made on the PID variables and a large B0→ K+π−µ+µ−

is present.
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Figure 5.16: PID vs BDT working point optimisation results for Run 1 (top), 2015+2016 (middle)
and 2017+2018 (bottom). The results show the mean significance of a B0 → π+π−µ+µ−

observation for each PID and BDT working point.
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5.6 q2 vs m(π+π−) Selection

At this stage of the analysis, with the majority of the selection procedure completed, the possibility

of performing the analysis in different bins of m(π+π−) and q2 is explored. As was discussed

within Chapter 2, being able to provide measurements of the rare mode branching fractions

in different regions of q2 opens up sensitivity to different classes of new physics and is more

comparable to different theoretical predictions. Furthermore, the possibility of performing the

analysis in bins of m(π+π−) is also considered and is of interest given the wide widths of the

ρ0 and f0(980) resonances and the presence of the higher mass states which are seen in the

m(π+π−) spectra within previous LHCb analyses [172, 173].

In order to determine the practicality of making binned branching fraction measurements,

a m(π+π−) versus q2 binned study is performed whereby the yields for the signal, the combina-

torial background and the dominant K-π particle mis-identification background are estimated in

the different bins. The main purpose of this study is to determine whether, after the application

of the analysis selection, the predicted signal yield for the rare B0 mode is high enough to be

measured in each bin separately.

For the study, three q2 bins corresponding to [0-8] GeV2/c4, [11-12.5] GeV2/c4 and [15-

19] GeV2/c4 alongsidem(π+π−) bins corresponding to [0.5-1.3] GeV2/c4 and [1.3-2.0] GeV2/c4

are used. The boundary of the lower m(π+π−) bin is chosen to mimic that of a previous LHCb

analysis [122]. The optimal BDT, fiducial and PID requirements are made and, in addition,

m(π+π−µ+µ−) mass requirements corresponding to the signal region of

m(π+π−µ+µ−) ∈ [5170, 5800] MeV/c2.

The combinatorial background yield is determined by counting the number of events in

the upper sideband of the data in each bin. The low number of events in the upper sideband after

the application of the selection means that fitting an exponential curve to the upper sideband to

extrapolate the yield to the signal region is not possible so this yield is left unscaled.

Both the B0 → K+π−µ+µ− background and B0 → π+π−µ+µ− signal yields are

estimated in the lower m(π+π−) bin by scaling the control mode yield from Chapter 8 using the

ratio of branching fractions and efficiencies as is done in Equation 4.2. However, this estimation

method is only used for the lower m(π+π−) bin because the branching fractions assumed in the

calculation were calculated, in separate, previous analyses, within this range. To estimate the

yield in the upper m(π+π−) bin, the yield in the lower bin is multiplied by an additional factor

that accounts for the fraction of events expected in the upper bin, relative to the lower bin. This

factor is estimated using the decay model described in Chapter 6.

The resulting estimated yields can be seen in Figure 5.17 where the given yields are

summed over all three datasets. Due to the low expected yield in the higher m(π+π−) bin, the
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Figure 5.17: Estimated yields for the combined Run 1 and Run 2 dataset in bins of q2 and
m(π+π−) for the B0 → π+π−µ+µ− mode (top), the background decay B0 → Kπµ+µ−

(middle) and the number of events within the upper sideband of the data attributed to combinatorial
background (bottom). The black bands show the vetoes applied to remove the charmonium
resonances.
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analysis proceeds using the lower m(π+π−) bin. In addition, the lower m(π+π−) bin boundary

is raised within the analysis from 0.5 GeV/c2 to 0.515 GeV/c2 to effectively veto any π+π−

backgrounds originating from the decay of a K0
S meson.

From the study it is also concluded that the branching fraction can only be measured in

the low and high q2 bins, and integrated across the three q2 bins. The possibility of performing a

measurement in the middle q2 bin is ruled out due to the smaller number of predicted events in

that bin. This region is also of less interest due to the difficulty in making accurate theoretical

predictions in this q2 range.

5.7 Peaking Backgrounds

In addition to combinatorial backgrounds, other sources of background are present within the

data which are reconstructed within the invariant mass fits as peaking structures. These peaking

backgrounds can lie in the same mass region as the rare mode signal peaks and this close proximity

can make separation of the signal and peaking backgrounds difficult. Furthermore, many of these

peaking backgrounds share a similar topology with that of the signal mode which means that the

BDT classifier does not remove peaking backgrounds as efficiently as it removes combinatorial

background. The identification of peaking backgrounds is therefore a key consideration within

the analysis selection procedure and those backgrounds identified as dangerous to the analysis

can be reduced, or even removed, using combinations of PID requirements and invariant mass

vetoes.

In this analysis the different classes of peaking backgrounds considered include over

reconstructed backgrounds, partially reconstructed backgrounds and backgrounds arising from

the the mis-identification of particle species. More specific examples of these primary types

of peaking background are discussed within the following sections with some examples being

fully hadronic backgrounds, charm backgrounds and pion-muon swap backgrounds. Many of

these peaking backgrounds are relevant for both the rare modes and the resonant modes. This

means that the resonant modes, where the peaking backgrounds are often far easier to identify,

can be used as a proxy to identify the backgrounds that will also be relevant for the rare mode.

This technique for identifying relevant peaking backgrounds has been used previously in other

rare decay searches, such as when determining the branching fractions of the B0
s→ K∗0µ+µ−

and B0→ K∗0µ+µ− processes [91, 174]. Noticeable exceptions where this technique cannot

be used include the identification of semi-leptonic cascade decays, swap backgrounds and fully

hadronic decays which are only relevant for the rare modes because their contribution to the

resonant modes is so small.
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5.7.1 Identifying Backgrounds

There are several different techniques that can be used to identify the presence of peaking

backgrounds within the data. The most straightforward of these is to identify the signature

visually by applying a set of requirements to the dataset which are designed to accentuate the

specific background above other features of the invariant mass distribution. In this analysis, for

many peaking backgrounds that originate from particle species mis-identification, this is done by

placing a set of loose ProbNN requirements on the final-state particles which intentionally select

out background. This is then complemented by reconstructing the invariant mass combinations

of the final-state tracks under alternative mass hypotheses. Other peaking backgrounds, which

do not originate from a mis-identification, can also be seen by reconstructing the invariant mass

of a subset of the final-state particles and by applying loose PID requirements in addition to the

optimal BDT requirement.

Not all of the peaking backgrounds of relevance to the analysis can be identified in this

way. The relevance of other peaking backgrounds to the analysis can be determined by estimating

the yield of these backgrounds within the final invariant mass fits. The expected yields of these

backgrounds are estimated using a combination of branching fraction information, efficiencies

and simulated samples as

NX = NJ/ψK∗0 ×
εX

εJ/ψK∗0
×

B(X)

B(B0→ J/ψK∗0) · B(J/ψ→ µ+µ−) · B(K∗0→ K+π−)
× fq
fd
,

(5.4)

where NX represents the yield of the background mode, X; NJ/ψK∗0 represents the control

mode yield; ε represents the product of the q2, fiducial requirement, mass requirement and PID

efficiencies; B is the relevant branching fraction and fq
fd

represents a fragmentation fraction

ratio. For this exercise all branching fractions are taken from the world-values provided from

the Particle Data Group (PDG) tables [175] and, where these branching fractions are absent, the

values are estimated using ratios of similar decays.

After the calculation of the estimated yields, a conclusion can be drawn on whether the

predicted yield is large enough to be considered problematic. Unfortunately, the number of

peaking backgrounds which are considered for the analysis is too large to ensure that each of

these backgrounds can be modelled using the full LHCb simulation. Therefore, the simulated

samples used for the yield calculation exercise are generated using the RapidSim software

package.

Many backgrounds are effectively removed following the application of the full analysis

selection and so these backgrounds need not be considered further. Backgrounds which remain

96



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
µ ProbNN+µ

20

40

60

80

100

120

140
C

an
di

da
te

s 
/ (

0.
01

)

Without 𝜋!𝜋" !isMuon
With 𝜋!𝜋" !isMuon
ProbNN𝜇 PID cut

0 500 1000 1500 2000 2500 3000 3500 4000

]2c) [MeV/−µ+π(m

0
200
400
600
800

1000
1200
1400
1600
1800
2000] )2 c

C
an

di
da

te
s 

/ (
 4

0 
[M

eV
/

Figure 5.18: Left: The ProbNNµ distribution for the positive muon track taken from the Run 1
dataset, before and after the application of the !IsMuon on the final-state pions. Right: The
reconstructed π+µ− invariant mass for the Run 1 rare mode where large pion-muon swap
backgrounds can be seen before and after the !IsMuon pion condition.

post-selection need to be included within the final mass fits, or, if they are considered small

enough, can be treated as a source of systematic uncertainty within the analysis.

Yield estimates for different classes of peaking background can be found in Table 5.5 at

the end of the chapter where, for the vast majority of identified backgrounds, the estimated yields

are small enough for the peaking background to be safely disregarded. The rest of this chapter

discusses the different classes of background considered and, where applicable, demonstrates

the existence of the peaking backgrounds from the datasets. The figures included, unless stated

otherwise, are created using the Run 1 dataset. The conclusions drawn are the same for all three

datasets however as the same background features can be reproduced from any of the datasets.

5.7.2 Hadronic Decays

Fully hadronic peaking backgrounds are highly suppressed within the analysis by application of

the IsMuon condition, at stripping level, on the final-state muon tracks. However, given that there

is an approximately 2% mis-identification efficiency per track for the IsMuon condition [162],

potential backgrounds which have a branching fraction of order 10−5 or greater may prove to

be potentially dangerous given that the expected rare mode branching fractions are of the order

10−8.

The presence of hadronic backgrounds can be checked for with the data by examining

the ProbNNµ distribution of either of the final-state muon tracks. As can be seen in the left

plot of Figure 5.18, a peak can be seen in this distribution close to zero which indicates a low

level of confidence in the hypothesis that the track is in fact a muon. This peak is reduced by
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requiring that the final-state pion tracks return a negative IsMuon condition from the LHCb

muon system -- demonstrating that some of these cases are caused by the simultaneous incorrect

identification of a pion and a muon, discussed further in the next section. To further improve the

rejection of these backgrounds a PID ProbNNµ requirement of > 0.1 is made to the dataset, as

was mentioned previously.

5.7.3 π-µ Swap Backgrounds

The right plot of Figure 5.18 shows the presence of backgrounds which arise when a muon is

mis-identified as one of the final-state pions and vice versa. The background can be seen visually

in the m(µ+µ−) mass distributions after swapping the µ+ and π+ or the π− and µ−. Clear

contributions are seen from both J/ψ and ψ(2S) meson decays. This background is seen to be

heavily suppressed with the application of the !IsMuon requirements on the final-state pions

and the small level of background which survives the implementation of the requirement is then

vetoed by rejecting events where either m(π+µ−) or m(π−µ+) ∈ [3076,3116] MeV/c2.

5.7.4 Mis-identified Backgrounds

Peaking backgrounds which originate from the incorrect identification of final-state particle

species comprise some of the largest backgrounds for the analysis. These backgrounds are

heavily reduced in the data with the application of the selection PID requirements, however, some

backgrounds are seen to survive.

Backgrounds originating from K→ π mis-identification, where a kaon from the final-

state is mis-identified as a pion provides the largest source of these types of background with

B0→ K∗0(892)µ+µ− and B0→ K∗(1430)0µ+µ− the most prominent examples. An example

of the resonant version of these backgrounds can be seen in the left plot of Figure 5.19, which

shows the reconstructed dihadron mass under a (π → K)π mass hypothesis and with loose

reversed PID requirements applied. As can be seen two large peaks, corresponding to the

K∗0(892) and the K∗(1430)0 are visible and although these peaks are heavily suppressed by the

application of the full selection, some broad background structures remain. These backgrounds

are particularly problematic for the analysis as they lie almost on top of the predicted signal peak.

This means that the background cannot be safely vetoed and therefore the background needs to

be included within the final resonant and rare fits.

In addition to a single K→ π identification it is also possible to have a double K→ π

identification. A double mis-identification of this kind would lead to the existence of background

from decays such as B0
s → φµ+µ− within the dataset. By reconstructing the dipion final-

state under a (π → K)(π → K) mass hypothesis and by again applying loose reversed PID
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Figure 5.19: Left: The m((π+ → K+)π−) mass distribution taken from the Run 1 dataset
showing the presence of kaon-pion PID backgrounds before and after the signal selection. Right:
The double kaon-pion PID background originating from a φ(1020) resonance seen in the Run
1 dataset which is seen to be removed after the application of the full selection. Both plots are
made using candidates which contribute to the resonant mode datasets.
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Figure 5.20: Peaking backgrounds from Λ0
b→ pK−µ+µ− (left) and Λ0

b→ pπ−µ+µ− (right)
decays seen in the Run 1 dataset. The backgrounds can be seen to be removed after the application
of the full selection.

requirements, a clear peak in the dihadron spectrum becomes visible, as seen in the right plot of

Figure 5.19 for the resonant mode. The tight requirements placed on the pion ProbNN variables

as part of the selection lead to this background mode being double-suppressed and the background

is seen to be completely removed from the datasets after the PID requirements are imposed.

Another source of mis-identified background stems from the identification of a final-

state proton as a final-state pion, with Λ0
b → pK−µ+µ− decays that contain an additional

kaon-pion identification a prominent example. This background is identified by reconstructing

m((π+ → p)(π− → K−)µ+µ−) within the data and applying loose reversed PID requirements
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Figure 5.21: Run 1 MC samples showing the shapes of the B0
s→ J/ψη′ (Red) and B0

s→ J/ψφ
(Blue) backgrounds in the resonant mode signal window.

as is done for the other mis-identification backgrounds. A clear background peak originating

from a Λ0
b is seen in the left plot of Figure 5.20. Once again this background peak is seen to be

completely absent from the dataset following the application of the full selection.

Decays from Λ0
b→ pπ−µ+µ− also form a potential peaking background from when a

proton is mis-identified as a pion. This background is identified in a similar way to the other

Λ0
b background. It can be seen that this background appears smaller than the background from

the Λ0
b→ pK−µ+µ− decay. This is due to the branching fraction of the Λ0

b→ pπ−µ+µ− mode

being an order of magnitude smaller than that for Λ0
b → pK−µ+µ− [176, 177]. Once again,

this background is seen to be entirely removed from the dataset after the application of the full

selection, as can be seen in the right plot of Figure 5.20.

5.7.5 Partially Reconstructed Decays

Decay modes which lead to a set of final-state particles that contain π+π−µ+µ− as a subset can

form broad structures in m(π+π−µ+µ−) in the analysis where one of the additional particles

is not reconstructed. These peaking backgrounds are shifted to lower invariant masses and also

smeared out within the invariant mass distributions. In addition to decay modes where a charged

pion or kaon is not reconstructed, many potential decays exist where a neutral pion or photon is

missing and these decays are hard to identify within the invariant mass distributions due to large

variations in the four-momenta of the missing particle. For the rare mode, there is the additional

consideration of semi-leptonic cascade decays from an open charm meson which have neutrinos

in the final-state that cannot be detected by the LHCb detector.

By calculating predicted yields, the most dangerous partially reconstructed backgrounds

for the resonant mode are found to be from B0
s decays to an η′ or φ meson. As a result,
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Figure 5.22: Invariant mass distribution from the Run 1 resonant mode dataset with the full
PID, BDT and requirement selection applied. The roll-over seen within the highlighted region is
attributed to the presence of partially reconstructed B+

c decays.

B0
s (B0)→ J/ψη′ and B0

s→ J/ψφ, where η′→ ρ0γ and φ→ π+π−π0, are included as peaking

backgrounds within the final resonant fit. The predicted shape of these backgrounds, taken from

MC samples, can be seen in Figure 5.21. The equivalent decay B0 → J/ψφ which instead

originates from a B0 mother is expected to lie outside of the signal region due to the mass shift.

This background can therefore be neglected.

For the rare mode the most dangerous backgrounds arise again from a B0
s decaying into

a η′ meson with a photon which is not reconstructed. The branching fraction for this mode is

currently unknown and so the B0
s→ η′(→ ρ0γ)µ+µ− branching fraction is estimated under the

assumption that

B(B0
s→ η′µ+µ−) ≈ B(B0

s→ η′J/ψ )× B(B0
s→ φµ+µ−)

B(B0
s→ φJ/ψ )

, (5.5)

which is considered to be a good approximation due to the similar topologies (see Figure 5.1).

The number of estimated events for the B0
s→ η′(→ ρ0γ)µ+µ− background, although non-zero,

is still considered to be small enough to exclude from the final invariant mass fits. Instead, the

effect of including this background in the final rare mode mass fits is evaluated as a potential

source of systematic error on the final result.

Backgrounds from B+
c decays to a J/ψπ+π−π+ (π+π−) final-state are a source of

partially reconstructed background that are identifiable for the resonant mode invariant mass

fits. Due to the background only being present within the m(J/ψπ+π−) spectrum with the loss

of one (or three) pions, the background appears very smeared out and is relatively flat within

the signal region. The presence of the background is verified by looking at the m(J/ψπ+π−)
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Figure 5.23: Reconstructed m((π+ → K+)π−µ−) (left) and m((π+ → K+)µ−) (right) invari-
ant masses with a small peak around the D0/D± mass region seen. The background is seen to be
removed after the application of the full selection requirements.

distribution at high invariant masses where a roll-over at around 6000 MeV/c2 (as seen within

the highlighted region) is attributed to the phase space of the B+
c meson decays. The existence

of the B+
c backgrounds justifies the choice of m(π+π−µ+µ−) invariant mass window used for

the resonant mode fits of Chapter 8. Without the presence of this rollover within the mass fit,

the B+
c component, which is very flat for the majority of the signal region, competes with the

combinatorial background component leading to potential fit instability.

5.7.6 Charm Decays

Cascade b→ c→ s decays are a specific form of partially reconstructed peaking backgrounds

that are expected to impact the rare mode fits due to the relatively large rate of decays which

undergo these transitions. At low invariant masses semi-leptonic b→c processes are expected to

contribute through cascade decays such as B0→ D−µ+ν where D−→ K∗0µ−ν and where a

K+ is mis-identified as a π+.

By applying reversed PID requirements, the existence of these backgrounds can be

verified by reconstructing the m((π+ → K+)π−µ−) and m((π+ → K+)µ−) invariant masses.

This is done in Figure 5.23 using the combined Run 1 and 2015+2016 dataset as, unlike for all

other peaking backgrounds considered, the shape cannot be clearly seen from just the Run 1

dataset due to the decays being largely rejected by the BDT requirement alone. Small and narrow

peaks corresponding to open charm resonances are visible however after the application of the

full signal selection these backgrounds are seen to be completely removed. This background is

also completely removed following the application of the selection to the 2017+2018 dataset.
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Figure 5.24: The m((π+ → K+)µ+µ−) invariant mass spectrum from the Run 1 dataset for the
resonant mode where the pion track is assigned the mass of a kaon. The B+→ J/ψK+ peaking
background is clearly visible. After the application of the selection requirements the background
is removed.

5.7.7 Over Reconstructed Decays

Over reconstructed decays occur when a random particle from the event is reconstructed alongside

the final-state particles which originate from a b-hadron hadron decay. This results in a background

that is smeared towards higher invariant mass values. Within this analysis this class of decays

could appear in the upper sideband of the signal region, where they could potentially affect the fit

to the combinatorial background component.

Estimated yields for some of the potentially dangerous over reconstructed backgrounds

are given in Table 5.5. These yields are calculated using the control mode fits of Chapter 8. From

these fits the yield of B+→ J/ψK+ decays is taken and then is scaled using the mass and PID

efficiencies from Chapter 7 to calculate the expected yield in the resonant mode fits. Then, the

B+→ J/ψπ+ background and the equivalent rare mode background yields are estimated by

scaling further with branching fraction information.

The decay B+→ J/ψK+, where a K+ is mis-identified as a π+ and where a π− is

reconstructed from elsewhere within the event can be seen within the data directly by recon-

structing the invariant m(J/ψ (π+ → K+)) mass and applying a reverse a set of reversed PID

requirements. After the application of the selection PID and BDT requirements this background

is removed as can be seen within Figure 5.24. This is also seen for the rare mode sample and this

background can be safely disregarded for both the resonant and rare mode fits. However, when

performing the fit to the invariant mass distribution of the B0→ J/ψK∗0 control mode, a set of

PID requirements are made to select a K+π−µ+µ− final-state combination. Therefore, although

this over reconstructed background is not considered a problem for the resonant and rare mode
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fits it is dangerous for the control mode and it is therefore included within the final control mode

fit.

5.7.8 Summary of Peaking Backgrounds

To conclude, different sources of peaking backgrounds are considered for the resonant mode,

the rare mode and the control mode invariant mass fits. These backgrounds are either identified

visually within the data, or have predicted yields shown in Table 5.5 which are too large to be

ignored. For the resonant mode, potentially dangerous backgrounds include B0
s (B0)→ J/ψη′,

B0
s → J/ψφ, B+

c → J/ψ3π(π+π−) and the dominant background, B0→ J/ψK+π−. All of

these backgrounds are therefore included within the resonant mode mass fits. For the B0→
J/ψK∗0 control mode fit, the over-reconstructed decay B0→ J/ψK+ is determined to be an

important background and is included in the fits.

Finally, for the rare mode, the B0→ K+π−µ+µ− mode is a major source of background

however most other backgrounds which are relevant for the resonant mode are not considered

dangerous. The potential exception is the B0
s→ η′µ+µ− decay, whose inclusion in the final fit is

evaluated as a systematic uncertainty.

5.8 Final Selection Requirements

The final set of selection requirements that are used to select the candidates for the control mode,

resonant mode and rare mode invariant mass fits can be found in Table 5.6. The requirements

within the table are applied to the data in addition to the stripping requirements from Table 5.2,

the trigger requirements from Table 5.1 and the fiducial requirements of Table 5.4.

104



Background Class Decay Mode B 2011+2012 2015+2016 2017+2018

Backgrounds

B0→ ρ0ρ0 9.6× 10−7 ∼ 0 ∼ 0 ∼ 0
B0→ K∗0(→ K+π−)π+π− 5.5× 10−5 ∼ 0 ∼ 0 1
B0→ (φ→ K+K−)π+π− 8.8× 10−8 ∼ 0 ∼ 0 ∼ 0

B0→ ppπ+π− 2.9× 10−6 ∼ 0 ∼ 0 ∼ 0
B0
s→ K∗0(→ K+π−)ρ0 < 7.7× 10−4 ∼ 0 ∼ 0 ∼ 0

B0
s→ K∗0(→ K+π−)K∗0(→ K−π+) 1.1× 10−6 ∼ 0 ∼ 0 ∼ 0

B0
s→ ppπ+π− 4.3× 10−7 ∼ 0 ∼ 0 ∼ 0

B0
s→ (φ→ K+K−)π+π− 1.7× 10−6 ∼ 0 ∼ 0 ∼ 0

B0
s→ ρ0ρ0 < 3.2× 10−4 ∼ 0 ∼ 0 ∼ 0

Partially reconstructed

B0
s→ η′(→ ρ0γ)J/ψ 5.9× 10−6 340 400 890

B0
s→ J/ψη′(→ π+π−π0) 7.8× 10−8 ∼ 0 1 2

B0
s→ J/ψη′→ (ω(→ π+π−)γ) 8.3× 10−9 ∼ 0 ∼ 0 1
B0
s→ J/ψφ(→ π+π−π0) 5.6× 10−7 5 6 13
B0
s→ J/ψη(→ π+π−γ) 9.6× 10−7 7 8 18

B0
s→ ψ(2S)η(→ π+π−γ) 1.0× 10−7 ∼ 0 ∼ 0 ∼ 0
B0
s→ J/ψη(→ π+π−π0) 5.5× 10−6 ∼ 0 ∼ 0 ∼ 0

B0→ J/ψω(→ π+π−π0) 1.2× 10−6 ∼ 0 ∼ 0 ∼ 0
B0→ J/ψη(→ π+π−π0) 1.7× 10−7 ∼ 0 ∼ 0 ∼ 0
B0→ J/ψη′(→ π+π−π0) 1.7× 10−9 ∼ 0 ∼ 0 ∼ 0

B0→ ψ(2S)(→ η(→ γγ)J/ψ )π+π− 1.7× 10−5 ∼ 0 ∼ 0 ∼ 0
B+→ J/ψK+π−π+ 6.5× 10−6 ∼ 0 ∼ 0 ∼ 0
B+→ ψ(2S)K+π−π+ 1.3× 10−5 ∼ 0 ∼ 0 ∼ 0
B+→ J/ψK+K−π+ 3.6× 10−6 ∼ 0 ∼ 0 ∼ 0

B+→ J/ψω(→ π+π−π0)K+ 1.7× 10−5 ∼ 0 ∼ 0 ∼ 0
B0
s→ η′(→ ρ0γ)µ+µ− 7.5× 10−8 3 3 7

B0
s→ η(→ π+π−γ)µ+µ− 1.4× 10−9 ∼ 0 ∼ 0 ∼ 0

B0
s→ η(→ π+π−π0)µ+µ− 7.2× 10−9 ∼ 0 ∼ 0 ∼ 0

B0
s→ D−s (→ φ(→ π+π−)µ+νµ)µ−νµ 1.2× 10−7 ∼ 0 ∼ 0 ∼ 0
B0
s→ η′(→ ω(→ π+π−)γ)µ+µ− 1.1× 10−10 ∼ 0 ∼ 0 ∼ 0

B0
s→ (D−s (→ η(→ π+π−π0)µ+νµ)µ−νµ 1.1× 10−7 ∼ 0 ∼ 0 ∼ 0
B0
s→ (D−s (→ K−η(→ µ+µ−γ))π+ 1.7× 10−9 ∼ 0 ∼ 0 ∼ 0
B0
s→ η′(→ π+π−η(→ γγ))µ+µ− 4.4× 10−8 ∼ 0 ∼ 0 ∼ 0
B0
s→ φ(→ π+π−π0)µ+µ− 7.1× 10−9 ∼ 0 ∼ 0 ∼ 0

B0→ D−(→ ρ0µ−νµ)µ+νµ 5.3× 10−5 ∼ 0 ∼ 0 ∼ 0
B0→ D0(→ π+µ−νµ)π−µ+νµ 1.0× 10−5 ∼ 0 ∼ 0 ∼ 0
B0→ D−(→ (ηµ+µ−γ)π−)π+ 2.9× 10−9 ∼ 0 ∼ 0 ∼ 0

B0→ D−(→ (η′(→ µ+µ−γ)π−)π+ 3.9× 10−9 ∼ 0 ∼ 0 ∼ 0
B0→ D0(→ K+µ−νµ)π−µ+νµ 1.4× 10−4 ∼ 0 ∼ 0 ∼ 0

Over reconstructed

B+→ J/ψπ+ 2.5× 10−6 21 15 29
B+→ J/ψK+ 6.0× 10−5 9 3 8
B+→ ψ(2S)π+ 1.9× 10−7 ∼ 0 ∼ 0 ∼ 0
B+→ ψ(2S)K+ 5.0× 10−6 ∼ 0 ∼ 0 ∼ 0
B+
c → J/ψπ+ 6.8× 10−6 ∼ 0 ∼ 0 ∼ 0

B+
c → J/ψK+ 5.4× 10−7 ∼ 0 ∼ 0 ∼ 0

B+→ π+µ+µ− 1.8× 10−8 ∼ 0 ∼ 0 ∼ 0
B+→ K+µ+µ− 4.4× 10−7 ∼ 0 ∼ 0 ∼ 0

Table 5.5: Classes of different peaking backgrounds considered within the analysis with branching
fractions, B, taken from Ref. [175] or estimated using similar decays. For each background the
yields are estimated for each of three datasets separately.
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CHAPTER6
Decay Model

“ The role of the infinitely small in nature is infinitely great. ”
Louis Pasteur,

As has been mentioned throughout this thesis, the accuracy of the final branching fraction

measurement relies on an accurate estimation of sets of efficiencies that are derived from MC

simulation samples. In Chapter 5 some of the drawbacks of the LHCb simulation were discussed,

where the MC fails to accurately model certain kinematic and PID variables. The analysis then

corrects for these inaccuracies by weighting the simulation samples via data-driven methods. This

chapter is dedicated to another correction, which is made to the MC samples in order to further

improve the data-MC agreement. This correction addresses the fact that the standard LHCb

MC samples only consider a single resonance contribution to the final state hadron pair. For

example, the B0→ ρ0µ+µ− MC sample, which is used as a proxy for the B0→ π+π−µ+µ−

mode only considers the decays via a ρ0(770) resonance to the dipion final state. In reality it is

known that there are additional contributions towards the dipion final state, such as the ρ0(1410).

Although these additional resonant contributions are small, their effect on some of the calculated

efficiencies can be large enough to affect the final result.

In order to include the effect of these other resonance contributions when calculating

efficiencies, a weighting procedure is used whereby the original MC decay model used to generate

the samples is effectively replaced with a new model. To achieve this, the ith candidate receives a
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weight given by

αi =
1

αnorm

f ′i(mhh,mµµ, ~Ω)

fi(mhh,mµµ, ~Ω)
, (6.1)

where f(mhh,mµµ, ~Ω) and f ′(mhh,mµµ, ~Ω) refer to the original and new decay model. The

angular distribution of the candidate is represented by ~Ω. Finally, theαnorm term is a normalisation

factor, which satisfies
1

N

N∑
i=0

1

αnorm

f ′i(mhh,mµµ, ~Ω)

fi(mhh,mµµ, ~Ω)
= 1, (6.2)

where N is the total number of candidates in the sample.

6.1 Angular Basis

As has been done in several previous analyses, it is possible to parameterise a given pseudoscalar

B meson decay in terms of angular variables [155], [178]. An angular basis is normally used

which describes the final state in terms of three separate helicity angles, visualised in Figure 6.1.

The definition of the three helicity angles slightly varies depending upon whether the final state is

a CP eigenstate, i.e. contains a π+π− pair, or is not a CP eigenstate, e.g. contains a K+π− pair.

The decay angles are defined as follows:

• θh is the angle between the direction of the π+ in the π+π− rest-frame and the direction of

the π+π− system in the rest-frame of the B meson. In the case of a K+π− final state the

equivalent angle between the K+ in the K+π− frame and the direction of the K+π− in

the rest frame of the B meson, regardless of the charge of the kaon.

• θl is the angle between the direction of the µ+ in the dimuon rest-frame and the direction

of the µ+µ− pair in the b-hadron rest-frame for a π+π− final state. If instead the final state

contains a K+π− pair, the charge of the muon used to calculate the angle is the same as

the charge of the kaon.

• φ is the angle between the two decay planes each of which is defined using a perpendicular

vector. The first decay plane is defined as containing the π+π− (K+π−) system and

the other defined as containing the µ+µ− system. In the π+π− case the plane vector is

defined with a positive pion track crossed with a negative pion track. For the K+π− case,

the hadron plane is defined by the cross-product of the momentum of the kaon and the

momentum of the pion in the rest frame of the B meson. The dimuon plane is then defined

by the cross product of µ1 and µ2 where µ1 shares the same charge as the kaon.
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Figure 6.1: A visual representation of the three helicity angles used in the decay model angular
basis, where h refers to a final state hadron.

6.2 Resonant Mode Decay Model

For the resonant mode analysis the B0→ J/ψK+π−, B0→ J/ψπ+π− and B0
s→ J/ψπ+π−

MC samples are all corrected to include additional resonant contributions. The resonant mode

decay model is introduced by considering the time dependent decay rate for B0→ J/ψπ+π−

which is described in detail in [179]. The differential decay rate is written as

d5Γ

dt dmhh dθl dθh dφ
= Ne−Γt

(
|A|2 +

∣∣(qos/pos)A
∣∣2

2
cosh

(∆Γt

2

)
+
|A|2 −

∣∣(qos/pos)A
∣∣2

2
cos
(

∆mt
)

−Re
( qos

pos

)
A∗A

)
sinh

(∆Γt

2

)
− Im

( qos

pos

)
A∗A

)
sin(∆mt)

)
.

(6.3)
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The equivalent decay rate for the production conjugate mode is given by

d5Γ

dt dmhh dθl dθh dφ
=
∣∣∣pos

qos

∣∣∣2Ne−Γt

(
|A|2 +

∣∣(qos/pos)A
∣∣2

2
cosh

(∆Γt

2

)
− |A|

2 −
∣∣(qos/pos)A

∣∣2
2

cos
(

∆mt
)

−Re
( qos

pos

)
A∗A

)
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(6.4)

In Equation 6.3 and Equation 6.4 N is a constant; A and A are functions of mhh and the helicity

angles and are the amplitude of B0→ J/ψπ+π− and B0→ J/ψπ+π− decays respectively at

decay time t = 0; ∆m is the difference between the heavy and light B mass eigenstates; ∆Γ

is the width difference and pos and qos are the complex parameters describing the relationship

between the mass and flavour eigenstates of the B meson oscillations. By assuming that |pos/qos|
is equal to unity, summing together the contributions from the two processes and integrating out

the time dependence, the total decay rate, S(mhh, θh, θl, φ), can be expressed as

S(mhh, θh, θl, φ) = |A(mhh, θh, θl, φ)|2 +
∣∣A(mhh, θh, θl, φ)

∣∣2
− 2DRe

( qos

pos
A∗(mhh, θh, θl, φ)A(mhh, θh, θl, φ)

) (6.5)

where D is a term which accounts for both time dependent detection efficiencies and the width

difference between the light and heavy B meson mass eigenstates. The total decay rate can be

rewritten to explicitly show the summation over the different resonance contributions. Here, the

decay rate is expressed in terms of a summation over the final state dilepton helicity, λψ, defined

as the difference between the two final state muon helicities, as is done in [180]. The decay rate

is written as

S(mhh, ~Ω) = p(mhh)q(mhh)
∑

λψ=+1,0,−1

(∣∣∣∣∣∑
res

Ares,λψ(mhh, ~Ω)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
res

Ares,λψ(mhh, ~Ω)

∣∣∣∣∣
2

− 2D
( qos

pos
A∗res,λψ

(mhh, ~Ω)Ares,λψ(mhh, ~Ω)
))

(6.6)
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where ~Ω represents the helicity angle information, Ares,λψ are complex helicity amplitudes which

contain the physical dynamics of each resonance contribution and p(mhh) and q(mhh) are the

daughter momenta of the hadron pair in the b hadron and h+h− rest frames, respectively.

By assuming an isobar model where a complex amplitude can be expressed as a coherent

sum, Ares,λψ , can be expressed as

Ares,λψ = R(mhh|mres,Γres)
∑
λJ

Hres,λJd
1
λJ ,λψ

(θ`)d
J
λJ ,0

(θh)e−iλJφ , (6.7)

where J is the total angular momentum of the resonance, λJ is the meson helicity, dJλ1,λ2 are

Wigner D-functions [181] , Hres,λJ are complex helicity amplitudes and R(mhh|mres,Γres)

is a relativistic lineshape. For most resonances considered this is a relativistic Breit-Wigner

function [182]. For certain resonances a Flatté function which is a coupled, two-channel Breit-

Wigner function is particularly useful to describe broad lineshapes near thresholds [183].

For decays to a K+π− state the decay rate is given by

S(mhh, ~Ω) = p(mhh)q(mhh)
∑

λψ=+1,0,−1

(∣∣∣∣∣∑
res

Ares,λψ(mhh, ~Ω)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
z

Az,λψ(mhh, ~Ω)

∣∣∣∣∣
2)

(6.8)

which is based on the model previously used by the Belle collaboration to describe the J/ψK+π−

final state [184]. The additional term, Az,λψ , is an additional complex amplitude, which accounts

for the contribution of exotic resonances decaying to J/ψK+π− which are treated with a separate

amplitude following the method seen in [23]. As K+π− is odd under a CP transformation, no

conjugate process or interference term is included in the decay rate.

Each of the three weighted simulation samples include different resonance contributions

and the list of resonances included, along with the corresponding helicity amplitude values, are

taken from previous analyses. The helicity amplitude information is given in Table 6.1.
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Figure 6.2: Left: Comparison between the decay model described in [180], the output of the
decay model from this analysis and the result of weighting the B0→ J/ψπ+π− MC. Right: The
equivalent comparison between the decay model described in [173], the decay model output from
this analysis and the result of weighting the B0

s→ J/ψπ+π− MC.

The decay model requires mass, spin and width information for each resonant contribution.

The three MC resonant samples use the parameters shown in Table 6.3.

The decay model for the B0→ J/ψπ+π− and B0
s→ J/ψπ+π− modes can be compared

to the results from the respective LHCb analyses. This is done to check that the implementation

of the decay models within software is consistent with the original models. Figure 6.2 shows this

comparison in addition to the effect of applying the decay model weights on the MC samples. The

left-hand figure of Figure 6.2 shows the comparison for the B0 mode and the right the equivalent

for the B0
s mode. As can be seen, the implementation of the decay model within this analysis

agrees well with the models from the previous analyses. The final weighted MC distributions

also show a good agreement with these models. This check is not made for the B0→ J/ψK+π−

decay model implemented from the Belle analysis as the equivalent output of the original model

is not available for comparison.

After the application of the decay model, the dihadron mass distributions from the three

MC samples, with and without the decay model weights applied, can be compared to one another.

As can be seen from Figure 6.3 the mass distributions are altered after the application of the

weights such that the inclusion of the decay model resonances can be clearly seen.

In addition, as a check of the decay mode weighting, the m(π+π−) distribution of

the B0→ J/ψπ+π− and B0
s → J/ψπ+π− modes after the completion of the resonant mode

fits of Chapter 8 can be compared to the weighted MC distributions. In order to extract the

data m(π+π−) distribution, the sPlot [166] method is used to unfold the signal distribution by

applying a series of sPlot weights, similarly as was done within Chapter 5. Figure 6.4 shows this

comparison and shows that for the resonant mode, the weighted MC distributions agree well with

113



0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
]2c) [MeV/-p+pm(

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

N
or

m
al

is
ed

 C
an

di
da

te
s

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
]2c) [GeV/-p+pm(

0.00

0.02

0.04

0.06

0.08

0.10
N

or
m

al
is

ed
 C

an
di

da
te

s

Reweighted MC
Original MC

0 1 2 3 4 5 6 7 8 9 10
]2c) [GeV/-p+p(m

0

0.2

0.4

0.6

0.8

1 ] 
)

2 c
N

or
m

al
is

ed
 C

an
di

da
te

s 
/ (

 0
.2

5 
[M

eV
/

hist
Entries  0
Mean        0
Std Dev         0

0.5 1.0 1.5 2.0 2.5
]2c) [MeV/pm(K

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

N
or

m
al

is
ed

 C
an

di
da

te
s

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
]2c) [GeV/-p+pm(

0.00

0.02

0.04

0.06

0.08

0.10

N
or

m
al

is
ed

 C
an

di
da

te
s

0 1 2 3 4 5 6 7 8 9 10
]2c) [MeV/-p+K(m

0

0.2

0.4

0.6

0.8

1 ] 
)

2 c
N

or
m

al
is

ed
 C

an
di

da
te

s 
/ (

 0
.2

5 
[M

eV
/

hist
Entries  0
Mean        0
Std Dev         0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
]2c) [MeV/-p+pm(

0.00

0.02

0.04

0.06

0.08

0.10

0.12

N
or

m
al

is
ed

 C
an

di
da

te
s

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
]2c) [GeV/-p+pm(

0.00

0.02

0.04

0.06

0.08

0.10

N
or

m
al

is
ed

 C
an

di
da

te
s

0 1 2 3 4 5 6 7 8 9 10
]2c) [GeV/-p+p(m

0

0.2

0.4

0.6

0.8

1 ] 
)

2 c
N

or
m

al
is

ed
 C

an
di

da
te

s 
/ (

 0
.2

5 
[M

eV
/

hist
Entries  0
Mean        0
Std Dev         0

Figure 6.3: The effect of the application of the decay model weighting on the B0→ J/ψπ+π−

(top left), B0→ J/ψK+π− (top right) and B0
s→ J/ψπ+π− (bottom) samples. The inclusion of

the additional resonances on the dihadron mass after the application of the weights can be clearly
seen.

the unfolded data distributions.

6.3 Rare Mode Decay Model

A similar procedure is followed to weight the rare mode MC samples for the B0→ π+π−µ+µ−,

B0
s → π+π−µ+µ− and B0→ K+π−µ+µ− decays to include the contribution of additional

resonances. Unlike the resonant mode weighting however, the rare mode decays have a dimuon

pair which do not originate from a J/ψ meson. As a result, the decay model built for the rare

mode must also include the variation of the decay rate as a function of q2 which means that a

different approach is required. The general formulation of the rare mode decay model is taken

from previous theoretical studies such as described in [185].

The rare mode decay model uses the full angular distribution which, in it’s simplest form
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Figure 6.4: Comparison between the resonant mode MC samples weighted with the full decay
model and the π+π− distributions extracted from the resonant mode fits of Chapter 8 for the
2017+2018 dataset. The left plot shows the B0→ J/ψπ+π− comparison and the right plot the
B0
s→ J/ψπ+π− comparison. Similar plots are seen for the other datasets.

can be written as a function of q2 and the decay angles as

d4Γ

dq2 d cos(θl) d cos(θh) dφ
=

3

32π
I(q2, θl, θh, φ). (6.9)

Equation 6.9 can then be expanded in terms of different angular coefficients. This

expansion takes the form

I(q2, θl, θh, φ) = Is1 sin2 θh + Ic1 cos2 θh + (Is2 sin2 θh + Ic2 cos2 θh) cos 2θl

+ I3 sin2 θh sin2 θl cos 2φ+ I4 sin 2θh sin 2θl cosφ

+ I5 sin 2θh sin θl cosφ+ Is6 sin2 θh cos θl

+ I7 sin 2θh sin θl sinφ

+ I8 sin 2θh sin 2θl sinφ+ I9 sin2 θh sin2 θl sin 2φ.

(6.10)

Each of the individual angular coefficients are themselves a physical observable and they can be

expressed in terms of different complex polarisation amplitudes similarly to as is done for the

resonant mode decay model. The individual angular coefficients are defined, for a P-wave, state

by

Is1 =
2 + β2

µ

4
[|AL⊥|+ |AL‖ |2 + (L→ R)] + (1− β2

µ)R(AL⊥A
R∗
⊥ +AL‖A

R∗
‖ ), (6.11)
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Ic1 = |AL0 |2 + |AR0 |2 + (1− β2
µ)(2R(AL0A

R
0 )), (6.12)

Is2 =
β2
µ

4
[|AL⊥|+ |AL‖ |2 + (L→ R)], (6.13)

Ic2 = −β2
µ[|AL0 |2 + (L→ R)], (6.14)

I3 =
1

2
β2
µ[|AL⊥| − |AL‖ |2 + (L→ R)], (6.15)

I4 =
1√
2
β2
µ[R(AL0A

L∗
‖ ) + (L→ R))], (6.16)

I5 =
√

2βµ

[
R(AL0A

L∗
⊥ )− (L→ R)

]
, (6.17)

Is6 = 2βµ[R(AL‖A
L∗
⊥ )− (L→ R)], (6.18)

I7 =
√

2βµ

[
I(AL0A

L∗
‖ )− (L→ R)

]
, (6.19)

I8 =
1√
2
β2
µ[I(AL0A

L∗
⊥ ) + (L→ R)], (6.20)

I9 = β2
µ[I(AL∗‖ A

L
⊥) + (L→ R)]. (6.21)

where β2
µ is a kinematic term describing the lepton momentum in the dilepton rest frame which is

given by

β2
µ = 1−

4m2
µ

q2
(6.22)

where mµ is the muon mass and L and R refer to left and right-handed polarisation amplitudes.

These terms are further modified when including the effect of an S-wave state and this is shown

in Equation 3.1 of Ref. [186].

As was done for the resonant mode, a decay to a CP eigenstate requires a modification of

the decay rate expression. This modification is shown in Equation 6.23

d4Γ

dq2 d cos(θl) d cos(θh) dφ
=

3

32π
(I(q2, θl, θh, φ) + Ī(q2, θl, θh, φ)) (6.23)
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which neglects the small interference term between the conjugate and non-conjugate processes

and where the term with I → Ī is equivalent to the sign of the I5,6,8,9 terms flipping.

The transversity amplitudes AL,R0 , AL,R‖ , AL,R⊥ are related to the helicity amplitudes used

within the resonant mode decay model via

A0 = H0

A⊥ =
1√
2

(H+ −H−)

A‖ =
1√
2

(H+ +H−).

(6.24)

The transversity amplitudes are expressed in terms of form-factors relevant for B0→ Xµ+µ−

processes, and Wilson Coefficients. The form-factors commonly defined within the theoretical

literature, which are of relevance for a vector resonance, are A1, A2, A3, V, T1, T2, T3. The

equivalent form-factors commonly defined for scalar resonances are fT , f+, f0. These form-

factors are often transformed to make them easier to analyse and evaluate with the additional

form-factors, T23 and A12, common examples which are defined as

A12 =
(mB +mV )2(m2

B −m2
V − q2)A1(q2)− λ(q2,mB,mV )A2(q2)

16mBm2
V (mB +mV )

(6.25)

and

T23 =
(m2

B −m2
V )(m2

B + 3m2
V − q2)T2(q2)− λ(q2,mB,mV )T3(q2)

8mBm2
V (mB −mV )

(6.26)

where λ is

λ(q2,mB,mV ) = (q2)2 +m2
B +m2

V − 2(m2
Vm

2
B +m2

V q
2 +m2

Bq
2) (6.27)

and where mV refers to the pole mass of the resonance and mB the mass of the mother particle.

For a vector resonance the transversity amplitudes are

AL,R‖ ∝ (m2
B −m2

hh)
{(Ceff

9 ∓ C10)A1(q2)

mB −mhh
+

2C7mbT2(q2)

q2

}
, (6.28)

AL,R⊥ ∝
√
λM

{(Ceff
9 ∓ C10)V (q2)

mB +mhh
+

2C7mbT1(q2)

q2

}
, (6.29)
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C1 C2 C3 C4 C5

−0.257 1.009 −0.005 −0.078 0.000
C6 C7 C8 C9 C10

0.001 −0.304 −0.167 4.211 −4.103

Table 6.2: Values of the Standard Model Wilson coefficients which are used within the rare mode
decay model weighting.

AL,R0 ∝ 1

2mhh

√
q2

[
(Ceff

9 ∓ C10)((m2
B −m2

hh − q2)(mB +mhh)A1(q2)− λMA2(q2)

mB +mhh
)

+ 2mbC7((m2
B + 3m2

hh − q2)T2(q2)− λMT3(q2)

m2
B −m2

hh

)
]
,

(6.30)

where mb is the mass of the bottom quark and mB is the mass of the B0 (B0
s ) meson.

For the scalar resonances both the parallel and the perpendicular amplitudes are zero by

definition. Meanwhile the longitudinal component is given by

AL,R0 ∝ λM
q2

{
(Ceff

9 ∓ C10)f+(q2) +
2C7mbfT (q2)

mB +mhh

}
. (6.31)

Examples of the form-factor variations, as implemented within the analysis software, can

be seen in Figure 6.5 which shows examples of both vector and scalar form-factors.

The decay model used assumes that the underlying physical behaviour is well described

by the SM. As a result, the Wilson Coefficients used correspond to the current SM values which

are listed in Table 6.2. The possibility of instead performing the rare mode weighting with an

alternative set of Wilson Coefficients is evaluated as a source of systematic uncertainty as is

discussed further in Chapter 9.

The different resonances which are included for theB0→ π+π−µ+µ−,B0
s→ π+π−µ+µ−

and B0→ K+π−µ+µ− decay model weighting are included in Table 6.3. References are pro-

vided for the different theoretical papers that the specific form-factor parameterisations for each

resonance are taken from. The physical parameters, including the mass, width and spin are

included in the table. Finally, when building the model, each resonance is modelled using a

Breit-Wigner lineshape and the absolute contribution of each resonance to the decay rate is

scaled with a coupling term. The coupling term is determined from branching and fit fraction

information and replicates the relative contribution of each resonance seen in the corresponding

resonant mode decays.
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Figure 6.5: Examples of recreated vector form-factor parameters (top) and scalar form-factor
parameters (bottom) used in the decay model as a function of q2. The top plot shows the vector
form-factors for the K∗(892) resonance as described in [82]. The bottom plot shows the scalar
form-factors for the K∗0 (800) as described in [187].

The results of the decay model weighting for the rare mode MC samples can be seen in

Figure 6.6, where the effect of including the additional resonance contributions can be clearly

seen. As was mentioned previously, a possible source of systematic uncertainty resulting from

the decay model weighting could arise from the choice of Wilson Coefficients used. Two other

sources of systematic uncertainty, relating to the form-factor parameterisations used and the

possibility of weighting with only a single resonance contribution are also considered. The single

resonance weighting is motivated by the fact that the decay model for the rare mode is not yet

well known experimentally however a single resonance is expected to dominate. This is discussed

further in Chapter 9.

Given the desire to make measurements of the rare mode branching fractions in different

regions of q2 it is also useful to check the q2 distributions seen in the rare mode MC samples
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Resonance Mass Width Spin Coupling Form Factor Paper
B0→ π+π−µ+µ−

ρ(770) 0.775 0.148 1 0.693 [82]
f0(500) 0.513 0.335 0 0.975 [188]
w(782) 0.783 0.0085 1 0.623 [82]
f2(1270) 1.275 0.187 2 0.356 [189]
ρ(1450) 1.465 0.40 1 0.412 [88]
ρ(1700) 1.72 0.25 1 0.400 [88]

B0
s→ π+π−µ+µ−

f0(980) 0.990 0.070 0 0.859 [188]
f2(1270) 1.270 0.185 2 0.072 [190]
f0(1500) 1.4609 0.124 0 0.443 [188]
f ′2(1525) 1.522 0.084 2 0.081 [190]
f0(1790) 1.790 0.270 0 0.271 [188]

B0→ K+π−µ+µ−

K∗(892) 0.896 0.049 1 0.852 [82]
K∗0 (800) 0.824 0.478 0 1.000 [187]
K∗2 (1430) 1.426 0.0985 2 0.606 [190]
K∗0 (1430) 1.425 0.270 0 1.323 [187]
K1(1410) 1.414 0.232 1 0.756 [88]

Table 6.3: Resonances included for the B0 → π+π−µ+µ−, B0
s → π+π−µ+µ− and B0 →

K+π−µ+µ− decay model weighting.

before and after the weighting. This comparison can be seen in Figure 6.7
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Figure 6.6: The result of the rare mode decay model weighting on the B0→ π+π−µ+µ− MC
(top), the B0 → K+π−µ+µ− MC (middle) and the B0

s → π+π−µ+µ− MC (bottom). The
narrower width of the ρ0(770) resonance seen after the weighting is due to the different ρ0 widths
used in the LHCb MC software and within the weighting procedure.
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Figure 6.7: The q2 distributions before and after the rare mode MC weighting. The top left
plot shows the B0→ π+π−µ+µ− MC, the top right shows the B0

s→ π+π−µ+µ− MC and the
bottom plot the B0→ K+π−µ+µ− MC. The discontinuity seen at 19 GeV2/c4 in the top left
plot is a feature of the decay model software where candidates above 19 GeV2/c4 can lead to
poorly defined form-factor values and these candidates are given a weight of zero.
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CHAPTER7
Efficiencies

“ Data! Data! Data! I can’t make bricks without clay! ”
Sherlock Holmes,

In order to provide an accurate measurement of the rare mode branching fractions it is

necessary to determine a series of efficiencies that describe the fraction of signal and background

candidates which survive each step of the selection procedure. Within this analysis efficiencies

are calculated using simulated samples. In order to provide a branching fraction measurement in

a particular bin of q2, the full set of rare mode efficiencies are calculated using candidates which

exclusively fall into that particular q2 bin.

7.1 Definition, Types and Uncertainties

Within this thesis the efficiency which corresponds to a specific selection requirement is defined

as the fraction of candidates within the sample after the application of the requirement, divided

by the number of candidates within the sample before the requirement is made. Furthermore,

each candidate is weighted by the product of the various correcting weights which are mentioned

throughout this thesis. These corrections include the kinematic weighting described in Chapter 5,

the decay model weighting of Chapter 6, PID corrections applied via the LHCb PIDCalib

package and then individual corrections to the trigger efficiency, tracking efficiency and stripping-

level PID requirements with these final three corrections all discussed within this chapter. The

123



efficiency definition is written as

ε =

Ni∑
i=0

wi

Nj∑
j=0

wj

(7.1)

where Ni is the total number of candidates in the dataset after the application of the requirement,

Nj is the total number of candidates before the application of the requirement, and wi(j) are the

product of the individual correcting weights. In order for this efficiency definition to remain

meaningful, the correcting weights are applied to all of the MC samples used, including generator

level and pre-stripping MC samples where appropriate.

The total efficiency for a decay mode, ε, can be written in terms of various sub-efficiencies

as

ε = εGeo × εSel. × εPID (7.2)

where εGeo is the geometrical acceptance efficiency, εSel. is the selection efficiency and εPID

is the PID selection efficiency. The geometrical acceptance efficiency accounts for the fraction

of tracks that decay within the LHCb acceptance while the PID efficiency accounts for the PID

selection requirements. The selection efficiency is evaluated by applying all of the remaining

selection requirements simultaneously. It is possible to further divide the selection efficiency

into the product of different sub-efficiencies which describe the different steps of the selection

procedure. These additional sub-efficiencies include: the stripping and reconstruction efficiency

which is the fraction of tracks which pass the stripping level requirements and are succesfully

reconstructed into a b-hadron candidate; the trigger efficiency corresponding to the trigger lines

outlined in Chapter 5; the efficiency of the q2 requirement made on the dataset; the efficiency

which accounts for the PID fiducial requirements and the track opening angle selection; the

efficiency corresponding to the dipion mass, b-hadron mass and other invariant mass requirements

made and, finally, the efficiency corresponding to the BDT requirement made. The total efficiency

for a given mode can then be written in terms of these sub-efficiencies as

ε = εGeo. × εStrip.|Geo. × εTrig.|Strip.&Geo.

× εq2|Trig.&Strip.&Geo. × εFid.|q2&Trig.&Strip.&Geo.

× εMass|Fid.&q2&Trig.&Strip.&Geo × εBDT|Mass&Fid.&q2&Trig.&Strip.&Geo.

× εPID|BDT&Mass&Fid.&q2&Trig.&Strip.&Geo ,

(7.3)

where εStrip. is the stripping and reconstruction efficiency, εTrig. is the trigger efficiency, εq
2
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is the efficiency of the relevant q2 selection, εFid. is the efficiency of the fiducial requirements,

εMass is the efficiency of the mass requirements and εBDT is the efficiency of the BDT requirement.

As can be seen from Equation 7.3, the efficiencies are calculated sequentially so that, for example,

the PID efficiency is calculated with the rest of the selection already applied. The various sub-

efficiencies which make up the selection efficiency can be used to compare the effect of each

selection step on each decay mode of interest in the analysis. However, when evaluating the final

branching fractions, the efficiency definition used is that from Equation 7.1 where the selection

sub-efficiencies are merged together and come with a single corresponding uncertainty. This is a

preferable statistic to work with when performing final calculations because the single efficiency

avoids correlations which may arise between uncertainties of the different sub-efficiencies. The

geometrical and PID efficiencies are still kept separate as they are calculated from independent

generator level and calibration samples.

Apart from the PID efficiency, the statistical uncertainties on the efficiencies defined

within this chapter are calculated using a bootstrapping technique [191]. Using this approach,

for each individual bootstrap and prior to the application of the requirement in question, each

candidate is weighted with a randomly generated value taken from a Poisson distribution with a

mean of 1. The effect of the application of the weight is that effectively, for each bootstrap, only

a subset of the candidates are included in the calculation of the efficiency. When repeating the

efficiency calculation for n bootstraps where n is large, the resulting efficiency distribution is

expected to vary according to a Gaussian distribution. The mean of the Gaussian is taken as the

efficiency value and the width is taken as the corresponding statistical uncertainty. An example of

the bootstrapping procedure with the characteristic Gaussian distribution can be seen in Figure 7.1

which shows the results of the bootstrapping when calculating the trigger efficiency for the Run 1

B0→ π+π−µ+µ− MC sample.

To determine the uncertainty of the PID selection efficiency a slightly different approach

is taken. This alternative method involves the re-sampling of the LHCb calibration samples which

are used to determine the PID efficiency. For each re-sampling, each bin of the calibration sample

has its efficiency fluctuated within its uncertainty. Then, the total PID efficiency is recalculated

by multiplying together the individual PID efficiencies of the four separate particle tracks. This

exercise is repeated a large number of times and the resulting spread of PID efficiencies is seen to

form a Gaussian distribution. The final PID efficiency is then taken as the mean of the distribution

with the corresponding statistical uncertainty taken as the standard deviation.

In the following sections of this chapter more specific information is provided covering

some of the different methods used to evaluate some of the sub-efficiencies. In addition, the

corrections made to the MC concerning the trigger efficiencies, tracking efficiencies and stripping-

level muon PID selections are introduced and explained. At the end of this chapter, the full set
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Figure 7.1: Example of the output of the bootstrapping procedure used to evaluate the trigger
efficiency for the Run 1 B0→ π+π−µ+µ− MC sample. The trigger efficiency distribution is fit
with a Gaussian.

of calculated efficiencies are tabulated. All of the efficiency values are presented for the three

datasets separately. For a given dataset the efficiency is calculated using the two combined years

which make up the dataset meaning that, for example, the 2011 and 2012 candidates together are

used to determine the average Run 1 efficiency. This is achieved by combining the two separate

efficiencies via a weighted average using the integrated luminosity information.

7.2 Geometrical and Stripping Efficiencies

The geometrical acceptance efficiency is obtained using generator level MC samples. Following

the generation of these separate samples, the efficiency is evaluated by applying a requirement

on each final-state particle of θ ∈ [0.01, 0.4] mrad, where θ is defined as the angle between the

particle three momentum and the beam axis direction. Most LHCb physics analyses evaluate

the geometrical acceptance efficiencies using a set of collaboration-wide lookup tables which

provide this information for each specific MC sample. However, by calculating this efficiency

manually in this way it is possible to see how these numbers change for each region of q2.

Similarly to the geometrical efficiency, the stripping and reconstruction efficiency is

evaluated using a separate set of MC samples which have yet to pass through the stripping

selection. The efficiency is determined by evaluating the fraction of events found in the pre-

stripping MC samples which are also present within the post-stripping MC samples.
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7.3 Trigger Efficiency Correction

As discussed in Chapter 3, the LHCb trigger system is composed of a hardware (L0) and software

(HLT) stage. The ability of the LHCb MC samples to correctly model the efficiency attributed to

the HLT trigger lines is good, partially due to the flexibility in modelling a purely software-based

process. This is not necessarily the case however for the hardware-based L0 trigger where

simply using the default MC samples to evaluate the L0 trigger efficiencies could result in the

introduction of inaccuracies to the analysis. For example, the L0 trigger thresholds were changed

over the course of a data-taking run but have a fixed value in the Run 1 simulation samples. As

a result it is a standard practice within physics analyses to compare the L0 trigger efficiency

between the data and MC and make corrections to the MC samples if the disagreement is large.

In this analysis, in order to correct the L0 trigger efficiency, the MC samples receive a

set of correcting weights. As was done for the kinematic weighting described in Chapter 5 the

weights are calculated by comparing the L0 trigger efficiency evaluated with MC simulation to

that evaluated with the data. In order to extract the L0 trigger efficiencies from data a method

is used which exploits events that have been triggered independently of the signal (TIS). The

efficiency to trigger on the signal (TOS) is

εTOS =
NTISTOS

NTIS
, (7.4)

where NTIS is the number of TIS candidates at L0 and NTISTOS is the number of candidates

that simultaneously satisfy the L0 TOS requirements. In this analysis, the L0 requirements of

interest are the L0Muon and L0Dimuon trigger lines and the two corresponding efficiencies are

compared between MC and data in bins of maximum muon pT and the product of muon track pT
values, respectively.

To perform the study, candidates are taken from the B0→ J/ψK∗0 control mode in

the data and corresponding control mode MC samples. For the Run 1 study, for the HLT1

stage, the Hlt1TrackAllL0Decision line is required to be TOS. In addition, for the HLT

2 stage, either the Hlt2Topo2BodyBBDTDecision, Hlt2Topo3BodyBBDTDecision

or Hlt2Topo4BodyBBDTDecision lines are required to be TOS. Only these HLT1 and

HLT2 lines are used for the study because all other lines only consider events that have already

passed L0Muon, meaning that their inclusion would bias the efficiency. The equivalent HLT1

and HLT2 lines used for the Run 2 study are Hlt1TrackMVADecision for HLT1 and either

Hlt2Topo2BodyDecision, Hlt2Topo3BodyDecision or Hlt2Topo4BodyDecision

for Run 2. Furthermore, either L0HadronDecision or L0MuonDecision are required to

satisfy the TIS condition as most events which pass the L0 stage do so via one of these two
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Figure 7.2: L0 trigger efficiency calculated for 2011 using MC and data via the TISTOS method.
Left: The comparison between the data and MC L0 trigger efficiencies for the L0Muon (top) and
L0DiMuon (bottom) lines. Right: The ratio between the data and MC efficiencies.

lines. As was mentioned in Chapter 5 events with nSPDHits> 450 do not pass the L0Muon

trigger in Run 2. Ideally, when testing the L0DiMuon efficiency, L0DiMuon should also be TIS.

However, as too few candidates come through this line alone the resulting dataset is too small to

proceed with the study. Therefore, it is assumed that the L0DiMuon TOS efficiency shows the

same behaviour for nSPDHits> 450 and nSPDHits< 450.

The MC-data comparison is performed in 2D, testing both the L0Muon and L0DiMuon

agreement simultaneously. However, to provide an initial proof of concept, the MC-data agree-

ment is first checked for the L0Muon and L0DiMuon lines separately using a 1D binning

scheme. An example of the 1D study, for 2011, is shown in Figure 7.2 which shows the L0 trigger

efficiency for Run 1 for data and MC. As can be seen from this example the difference in data

and MC efficiencies is small and the correcting weights in the bins are close in value to unity.

The correcting weights are finally calculated using the full 2D binning scheme with the resultant

histograms and weights, for each year of data-taking, shown in Figure 7.3.

7.4 Tracking Efficiency Correction

Another correction is made to the MC to account for the imperfect modelling of the track

reconstruction efficiency in the simulation. These corrections are calculated centrally by the
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Figure 7.3: The L0 trigger efficiency ratio between data and MC binned in maximum muon pT

and the product of the muon pT. The figures show, from the left to right on the top row the 2011,
2012 and 2015 histograms. On the bottom row the equivalents are shown for 2016, 2017 and
2018. The size of the correcting weights is seen to be approximately unity across the different
histograms. The equivalent plots for the data and MC efficiencies can be found in Appendix C.

collaboration and are determined using a tag and probe technique with candidates originating

from the decay of a J/ψ resonance to a dimuon final state. The technique fully reconstructs

one track while partially reconstructing the other before determining how often the partially

reconstructed track can then be fully reconstructed. Any tracking efficiency differences between

hadronic and muonic tracks will be small and cancel within the final branching fraction ratio.

Additionally, any differences in tracking efficiency between pion or kaon tracks which may not

cancel within the ratio are known to be small [192].

The correcting weights are applied individually to each track in the samples. The

correcting weights are derived from 2D histograms, which are binned in the track momentum and

pseudorapidity, with the 2012, 2015 and 2016 tables shown in Figure 7.4. Due to the unavailability

of the 2011, 2017 and 2018 tables at the time of the analysis the 2011 correction procedure

uses the 2012 tables while the 2017 and 2018 corrections are made with the 2016 tables. This

assumption is based on the fact that the tracking reconstruction procedure is unchanged between

these years and so any differences are expected to be small. As can be seen from the tables the

weights are all close to unity and, therefore, the resulting correction is very small.
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Figure 7.4: Tracking efficiency correction weights in bins of track momenta and pseudorapidity.
Histograms are created centrally by the LHCb collaboration. The left most figure shows the 2012
histogram, the middle the 2015 histogram and the right the 2016 histogram.

7.5 Stripping PID Correction

An additional correction to the MC samples is also made to account for the loose muon PID

requirements which exist at stripping level. These requirements are that the muon tracks must

pass both the IsMuon and DLLµπ > −3 conditions. The procedure is entirely analogous to the

weighting of the MC samples using the PIDCalib calibration samples to determine the effect

of the PID requirements made within the selection. The correcting weights are determined by

comparing PIDCalib calibration samples containing muon tracks, which evaluate the efficiency

of the muon PID requirements, with a separate, muon MC sample. The efficiencies of these two

samples are compared using a 3D binning scheme which bins in the momentum, pseudorapidity

and the number of particle tracks per event. Figure 7.5 shows an example of the calculated

weights for Run 1, for a single slice in the occupancy variable which corresponds to nTracks ∈
[0,100]. As can be seen the weights are close to unity meaning that the correction is very small.
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Figure 7.5: Ratio of stripping-level muon PID efficiencies between data and MC as a function of
the muon momentum and pseudorapidity for 0 <nTracks< 100. The weights are close to unity
meaning that the correcting effect is small. Similar plots are seen for different slices in occupancy
and for the Run 2 process.
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7.6 Efficiency Tables

In this section the different efficiencies are presented for the control mode, resonant modes and

rare modes. The efficiencies included within the tables include both the full range of different

sub-efficiencies which are included for comparison and also the final efficiency values which are

used to perform calculations throughout the analysis. Table 7.1 shows the sub-efficiency values

for both the control mode and the resonant mode while Table 7.2 shows the corresponding final

efficiency values. Both of these tables have some values which are presented twice; once for the

case where a constraint is applied to set the dimuon mass to the mass of the J/ψ resonance, and

once where this constraint is not applied. Both of these sets of numbers are used within Chapter 8

to perform the final resonant mode fits. No J/ψ mass constraint is included for the control mode

as only a single fit is performed to this sample.

The efficiencies for the rare modes are presented under two different scenarios. Firstly,

Table 7.3 and Table 7.4 show the sub-efficiencies and total efficiency values respectively. These

values are all calculated using candidates which fall across the full m(π+π−) and q2 spectrum

and therefore include the efficiency of the m(π+π−) and q2 windows. This means, for example,

that the effect of the m(π+π−) requirement applied during the selection, only affects those

sub-efficiencies from the mass efficiency onwards in the definition from Equation 7.3 (i.e. the

mass, BDT and PID efficiencies.). These efficiency values are not used to calculate the final rare

mode branching fractions, but are instead used throughout the analysis to estimate the yield of

different modes under different sets of requirements, such as for the pseudo-experiment study

referred to in Chapter 8. As can be seen from the tables, these values are calculated for the three

different q2 regimes of interest, full q2, low q2 and high q2.

The second set of rare mode efficiencies can be found in Table 7.5 and Table 7.6 which

contain the sub-efficiency break down and the total efficiencies respectively. These values are cal-

culated using candidates which fall into the lowm(π+π−) bin (m(π+π−) ∈ [515, 1300] MeV/c2)

and relevant q2 bin exclusively. This means that all of the efficiencies are calculated with the

relevant m(π+π−) and q2 requirement already applied. This also means that the values of the

q2 efficiency requirement, for both the low and high q2 regions is, by definition, unity within

these tables. The full q2 efficiency result uses the q2 sub-efficiency to extrapolate the branching

fraction result to the full q2 range. It is this set of efficiency values which are used to provide the

final branching fraction measurements found in Chapter 10.
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CHAPTER8
Invariant Mass Fits

“ In God we trust, all others must bring data ”
W. Edwards Deming,

The final branching fraction results are calculated using yields taken from unbinned,

maximum likelihood fits to the π+π−µ+µ− mass distribution. These mass fits make use of prob-

ability density functions (PDFs) which model the different signal and background contributions

to the mass spectra. Before any fits are made to the data itself, the fitting models are tested on the

simulated MC samples to determine the optimal PDF parameters for use in the final fits. These

initial fits are completed over the same mass ranges as the final fits to ensure that the definition of

the PDF parameters remains consistent.

Three types of invariant mass fits are performed within this analysis. The first set of

fits are made to the B0→ J/ψK∗0 control mode sample. The yields from these fits are used

to scale the final branching fraction results and are also used throughout the analysis to help

estimate various background yields. The second set of fits are made to the resonant mode decays

whose purity compared to the rare modes makes them a useful proxy for testing the different

PDF shapes and validating the broader fitting strategy. Finally, the rare mode fits themselves

are performed. Unlike the case for the resonant and control mode fits, for the rare mode fits

the 2011+2012, 2015+2016 and 2017+2018 datasets are fit simultaneously to extract the two

branching fractions of interest at the same time. Before the rare mode fits are completed a series

of pseudo-experiments are run to test the fitting strategy and look for any signs of bias which may

affect the final result.
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This chapter introduces the different invariant mass fits made within the analysis. For

each fit the different PDF shapes which are used to model the signal and background components

are introduced, the parameter values after the completion of the fits are tabulated and, finally,

the fits to both MC and data samples are presented. Despite the initial fits to simulation being

performed over the same mass ranges as the final fits, they are sometimes displayed within this

chapter over a reduced range for visual clarity. Throughout this chapter reference is made to

Appendix B which contains the fit parameters to the initial MC and data fits which are included

for completeness. In addition, Appendix C contains the invariant mass fits from this chapter with

the inclusion of additional pull plots which provide more detail on the quality of each fit.

8.1 Control Mode Fit

8.1.1 Control Mode Selection

The B0 → J/ψK∗0 control mode fit is made separately for the three datasets and is se-

lected by accepting candidates with m(J/ψK+π−) ∈ [5170, 6370] MeV/c2 and m(K+π−) ∈
[822, 962] MeV/c2 where one of the final state pions is reconstructed with the known kaon mass.

The m(K+π−) requirement is specifically designed to select out K+π− candidates originating

from a K∗0(892) resonance. This is a narrower window in m(K+π−) mass than the one used for

the kinematic weighting procedure discussed in Chapter 5. The selection here is designed to align

this analysis with measurements of the S-wave fraction found in the previous literature [155] so

that this fraction can be used in the calculation of the final branching fractions as was described

in Chapter 4.

8.1.2 Control Mode Shapes

8.1.2.1 B0→ J/ψK∗0 andB0
s→ J/ψK∗0

The B0 → J/ψK∗0 signal shape is described using the sum of two Crystal Ball (CB) func-

tions [193] and a Gaussian function with the resulting PDF shown in Equation 8.1. The double

CB + Gaussian shape is used throughout the analysis and is used to describe the signal compo-

nents in the fits. The utility of the CB shape stems from the fact that the CB is a Gaussian with an

additional power law tail. A CB shape with a power law tail at low invariant masses can be used

to model the radiation emitted from final state particles. This radiation is often not reconstructed

as part of the candidate with the effect being to smear out the lower end of the invariant mass

distribution. In addition, a second CB shape with a power law tail at higher invariant mass values

can model the candidates which are not well reconstructed and not well described with a simple
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Gaussian resolution. The final Gaussian component is then included to account for the fact that

the resolution of the reconstructed B meson is not constant over all candidates present within the

dataset. The model is given by

SB0→J/ψK∗0(m) = fCB · [f1 · FCB(m;µB0 , σCB, α1, n1)

+ (1− f1) · FCB(m;µB0 , σCB, α2, n2)]

+ (1− fCB) · FG(m;µB0 , σG) .

(8.1)

From Equation 8.1 it can be seen that the two CB functions share a common width,

σCB, and have tails at opposite ends of the mass distribution that are described by the different

parameters, α1, α2 and n1, n2. The fraction of candidates that fall within the double CB shape,

i.e. are not described by the Gaussian, is included in the factor fCB. Of those candidates not

described by the Gaussian, the factor f1 describes the fraction of these candidates described by

the first CB. The Gaussian component then has a separate width σG, but shares the same mean,

µB0 , as the two CB shapes.

The values of these parameters are determined with initial fits to the B0→ J/ψK∗0 MC

sample. For the final fit to data, the fractions fCB and f1, and the ratio σG/σCB are fixed to

the MC values. In addition, the final control mode data fit initialises the α1, α2, µB0 and σCB

parameters to the values from the fits to simulation. However these parameters are allowed to

float within the final fit as this is seen to result in an improved fit stability. In addition, the CB

parameter, n, can become poorly defined at large values and it is possible to fix this parameter

with no noticeable drop in performance. The parameter n2 is therefore fixed to a value of 10 in

the fit to MC while n1 is allowed to float as before.

The PDF for the background processB0
s→ J/ψK∗0 shares the same shape and parameter

values as the B0→ J/ψK∗0 mode. The only exception is that this background mode has a

different mean, µB0
s
, which is shifted compared to µB0 by the 87.4 MeV/c2 difference between

the known B0 and B0
s masses [154].

The fits to the B0→ J/ψK∗0 MC samples for the three separate datasets is shown in

Figure 8.1 where the fit is shown up to an invariant mass of 5600 MeV/c2 for visual clarity. As

can be seen from the fits the signal is well described by the chosen PDF shape. The corresponding

parameter values can be found in Table B.1.
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Figure 8.1: Invariant mass fits to the B0→ J/ψK∗0 MC samples using the sum of two Crystal
Ball functions and a Gaussian function for the 11+12 (top left), 15+16 (top right) and 17+18
(bottom) MC samples. The candidates are weighted with the full set of analysis correcting
weights.
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Figure 8.2: Invariant mass fits to the three datasets to determine the shape and yield of B+→
J/ψK+ decays present within the final control mode fit. The top row shows the fit to the
m(K+π−µ+µ−) invariant mass using a single CB shape for the 2011+2012 (left), 2015+2016
(middle) and 2017+2018 (right) datasets to extract a background shape. The bottom row shows,
for the same three datasets, Gaussian fits to the m(K+µ+µ−) distribution to extract an estimated
background yield. Both sets of fits include an exponential component to account for any remaining
combinatorial background.

8.1.2.2 B+→ J/ψK+

As was discussed in Chapter 5, over-reconstructed background from B+→ J/ψK+ decays are

expected to be present within the control data. This source of background must be included with

a separate PDF component which takes the form of a single CB function. The parameter values

in this instance are determined using data as it is possible to identify the background directly

from the K+µ+µ− and K+π−µ+µ− mass spectra. Furthermore, the background yield can be

obtained from these fits to data and can then be scaled with PID and mass efficiencies and then

imposed as a constraint on the yield in the final control mode fit. This constraint is applied within

the final control mode fit as a Gaussian constraint.

The shape parameters for the background are determined by fitting a single CB shape to

the K+π−µ+µ− mass spectra where the K+ is mis-identified as a π+. Within this fit the CB

parameter, n, is fixed to a value of 10 as previously. The yield is determined with a separate

fit to the K+µ+µ− mass distribution where the peak is modelled with a single Gaussian shape.

Both of these fits include an exponential component which is included to model any remaining

combinatorial background present within the data. Both sets of fits can be seen in Figure 8.2 with

the corresponding fit parameters in Table B.2.
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8.1.2.3 Control Mode Total PDF

In the final control mode fits, a combinatorial background component, modelled with an expo-

nential function, is included alongside the signal and peaking background components. The

corresponding exponential parameter, λ, is allowed to float freely in the fit. Then, by combining

the PDF shapes of the signal and background components, the final control mode PDF is written

as is shown in Equation 8.2.

S(m) =
1

Ntotal

(
N(B0→ K∗0J/ψ ) · SB0→K∗0J/ψ (m)

+N(B0
s→ K∗0J/ψ ) · SB0

s→K∗0J/ψ (m)

+N(B+→ J/ψK+) · SB+→J/ψK+(m)

+Nbkg.Sbkg(m)
)
,

(8.2)

Within this PDF it is assumed that each of the individual PDFs have been normalised over the

[5170−6370] MeV/c2 fit range and all of the prior fits to MC and data are made over this range for

consistency. The final control mode fits can be seen in Figure 8.3 where the different components

are overlapped in a stacked plot to show how the total fit model is built up using the individual

components. In order to highlight the purity of the control mode, the fits can be seen again in

Figure 8.4, on a linear scale. The final fit parameters from the control mode fits can be found in

Table 8.1.

Parameter 2011+2012 2015+2016 2017+2018
α1 −2.09 ± 0.04 −1.99 ± 0.04 −1.88 ± 0.03
α2 0.45 ± 0.01 0.48 ± 0.00 0.52 ± 0.33
µB0 5284.58 ± 0.05 5279.87 ± 0.05 5280.03 ± 0.04
σCB 19.88 ± 0.06 20.91 ± 0.06 20.85 ± 0.07
λ −0.008 ± 0.001 −0.005 ± 0.002 −0.008 ± 0.006

N(B0→ K∗0J/ψ ) 134244 ± 395 139344 ± 400 287350 ± 1707
Nbkg 666 ± 143 187 ± 136 1328 ± 1686

N(B0
s→ K∗0J/ψ ) 1198 ± 62 1202 ± 62 2466 ± 129

N(B+→ J/ψK+) 210 ± 15 137 ± 12 226 ± 28

Table 8.1: Parameters from the fit to the B0 → J/ψK∗0 control mode for the 2011+2012,
2015+2016 and 2017+2018 datasets.
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Figure 8.3: The invariant mass fits to the B0→ J/ψK∗0 control mode for the 2011+2012 dataset
(top), the 2015+2016 dataset (middle) and the 2017+2018 dataset (bottom).
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Figure 8.4: The invariant mass fits to the B0→ J/ψK∗0 control mode for the 2011+2012 dataset
(top), the 2015+2016 dataset (middle) and the 2017+2018 dataset (bottom). The linear scale
makes clear the purity of the signal mode.
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8.2 Resonant Mode Fit

8.2.1 Resonant Mode Fit Selection

The resonant mode fits are performed in a mass window corresponding to

m(J/ψπ+π−) ∈ [5170, 6370] MeV/c2. The reason for the high upper boundary is to include

the turnover of the B+
c background which was shown in Chapter 5 to be clearly visible at

higher invariant mass values. The mass fits to the resonant modes are made separately for the

2011+2012, 2015+2016 and 2017+2018 datasets. In addition, for each dataset, two fits are

performed; one with, and one without the reconstructed dimuon mass set to the known J/ψ mass

value. Constraining the dimuon mass in this way reduces the width of the peak components as

experimental mass resolution smearing is artificially reduced. The narrower signal peaks are

easier to resolve from the background when applying this constraint. In addition, if the resonant

mode fits are stable, then consistency should be seen between the resonant mode fits performed

with and without a J/ψ mass constraint. It should be pointed out at this stage that this comparison

cannot be made for the final rare mode fits due to the dimuon pair in the rare mode fits not

originating from a narrow q2 region which is synonymous with the J/ψ charmonium resonance.

8.2.2 Resonant Mode Signal shape

The B0→ J/ψπ+π− and B0
s→ J/ψπ+π− signal components are described by the sum of two

CB functions and a Gaussian function, as was done for the control mode. The PDF parameters are

determined from initial fits to the B0→ J/ψπ+π− MC sample with the tail parameters n1 and

n2 fixed to a value of 10.0 as before. Within the resonant mode fits the width of the Gaussian is

not shared with the double CB shape. Instead, the ratio of the Gaussian and CB width is included

as a parameter in the fit. Furthermore, within the final resonant mode fits, the mean and CB width

parameter are initialised to the values determined from the MC fits however are allowed to float

as this is found to result in an improved fit performance.

The fits to the signal MC sample can be seen in Figure 8.5 for both the case with and

without the J/ψ mass constraint. The corresponding fit parameters can be found in Table B.3.

8.2.3 Resonant Mode Background shapes

The background B0→ J/ψK+π− resulting from particle mis-identification and the partially

reconstructed backgrounds B0
s → J/ψη′ and B0→ J/ψη′ are modelled with the sum of two

CB functions which share a common width and mean. The fits to MC for the B0→ J/ψK+π−

background fixes the n2 value as before while the fit to the B0
s→ J/ψη′ MC sample fixes both n
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Figure 8.5: Invariant mass fits to the B0→ J/ψπ+π− MC samples which are used to determine
the signal shapes for the final resonant mode fits. The fits are performed with the sum of two
CB shapes and a Gaussian shape. The left column, from top to bottom, shows the 2011+2012,
2015+2016 and 2017+2018 fits which are made without a constraint placed on the reconstructed
J/ψ invariant mass. The right column shows the equivalent fits which include the constraint on
the J/ψ mass. The candidates are weighted with the full set of analysis correcting weights.

parameters for improved fit stability. The B0→ J/ψη′ background shares the same shape as the

B0
s equivalent apart from the mean, which is shifted by the difference in the B0 and B0

s masses.
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The fits to the simulated samples for the B0→ J/ψK+π− and B0
s→ J/ψη′ modes can be found

in Figure 8.6 and Figure 8.7, where fits are shown, as before, with and without the J/ψ mass

constraint. The parameters for these fits can be found in Table B.4 and Table B.5 respectively.

Some of the parameters from these MC fits are seen to have large associated uncertainties.

This is due to the value of some of the correcting weights which are applied to the MC samples

to improve the data-MC agreement being very small. This ultimately results in a very small

effect (< 1%) on the final resonant mode mass fit yields. As the resonant mass fits are made as

a demonstrative precursor to the rare mode fits this is not considered problematic to the rest of

the analysis. The possibility of improving the B0→ J/ψK+π− and B0
s→ J/ψη′ mass fits was

explored where the shapes were instead fit with a kernel density estimator (KDE) [194, 195]. The

change in the yield of these components within the final resonant mode mass fits is smaller than

the statistical uncertainty when using the KDE method however, and so the analysis continues to

use the standard PDF shapes.

The B0
s → J/ψφ background, where φ→ π+π−π0, is modelled using a KDE. Using

a KDE makes it easier to fit this background shape which is difficult to fit with a conventional

lineshape. In addition, this background makes only a very small contribution towards the final

mass fits and so using a KDE is appropriate. The KDE fit to the MC can be found in Figure 8.8.

A final background component is included to model the presence of B+
c decays to both

the J/ψπ+π−π+ and J/ψπ+π−π+π+π− final states. These two components are modelled with

the RapidSim simulation package due to the unavailability of full LHCb MC simulation for

these modes. The simulated samples, which decay theB+
c to the two possible final states, are then

combined into a single sample in the ratio given by the branching fractions ofB+
c → J/ψπ+π−π+

and B+
c → J/ψπ+π−π+π+π− which are obtained from the Particle Data Group values [175].

When fitting the B+
c component, the mass spectrum is modelled with the combination of a

bifurcated Gaussian and a standard Gaussian. The bifurcated Gaussian is a Gaussian where

the width is different either side of the mean. The fit to the RapidSim sample can be seen in

Figure 8.9 with the resulting fit parameters found in Table B.6.

Finally, as was done for the control mode, any remaining combinatorial background

which survives the BDT selection requirement is parameterised with an exponential function.
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Figure 8.6: Invariant mass fits to the B0 → J/ψK+π− MC samples made with the sum of
two CB shapes. The left column, from top to bottom, shows the 2011+2012, 2015+2016 and
2017+2018 fits without a constraint placed on the reconstructed J/ψ invariant mass, respectively.
The right column shows the equivalent fits which include the constraint on the J/ψ mass. The
candidates are weighted with the full set of analysis correcting weights.

150



5200 5300 5400 5500 5600
]2c) [MeV/−µ+µ−π+π(m

20
40
60
80

100
120
140
160
180
200] )2 c

C
an

di
da

te
s 

/ (
 4

 [M
eV

/

5200 5300 5400 5500 5600
]2c) [MeV/−π+πψJ/(m

20
40
60
80

100
120
140
160
180
200
220] )2 c

C
an

di
da

te
s 

/ (
 4

 [M
eV

/

5200 5300 5400 5500 5600
]2c) [MeV/−µ+µ−π+π(m

200

400

600

800

1000

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5300 5400 5500 5600
]2c) [MeV/−π+πψJ/(m

200

400

600

800

1000

1200] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5300 5400 5500 5600
]2c) [MeV/−µ+µ−π+π(m

500

1000

1500

2000

2500

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5300 5400 5500 5600
]2c) [MeV/−π+πψJ/(m

500

1000

1500

2000

2500

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

Figure 8.7: Invariant mass fits to the B0
s→ J/ψη′ MC samples made with the sum of two CB

shapes. The left column, from top to bottom, shows the 2011+2012, 2015+2016 and 2017+2018
fits without a constraint placed on the reconstructed J/ψ invariant mass, respectively. The right
column shows the equivalent fits which include the constraint on the J/ψ mass. The candidates
are weighted with the full set of analysis correcting weights.
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Figure 8.8: Invariant mass fits to the B0
s→ J/ψφ MC samples implemented via a KDE. The left

column, from top to bottom, shows the 2011+2012, 2015+2016 and 2017+2018 fits without a
constraint placed on the reconstructed J/ψ invariant mass respectively. The right column shows
the equivalent fits which include the constraint on the J/ψ mass. The candidates are weighted
with the full set of analysis correcting weights.
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Figure 8.9: The invariant mass fit to the RapidSim simulated sample of B+
c background.
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When performing the resonant mode fits the different signal and background components

are combined to create the final PDF shown in Equation 8.3 where each of the individual PDF

components have been normalised over the same mass range.

S(m) =
1

Ntotal

(
N(B0→ J/ψπ+π−) · SB0→J/ψπ+π−(m)+

N(B0
s→ J/ψπ+π−) · SB0

s→J/ψπ+π−(m)+

N(B0→ J/ψK+π−) · SB0→J/ψK+π−(m)+

N(B0
s→ J/ψη′) · SB0

s→J/ψη′(m)+

N(B0
s→ J/ψφ) · SB0

s→J/ψφ(m)+

N(B+
c → J/ψ3π(ππ)) · SB+

c→J/ψ3π(ππ)(m)+

NbkgSbkg(m)
)
,

(8.3)

Within the final fit, the different background sources that lie in the low invariant mass

region compete with each other. This means that the fitting procedure may converge on several

different local minima where the yields of these different backgrounds are interchanged. In order

to help the fitting procedure converge on a consistent minima the yields of the B0→ J/ψK+π−,

B0
s (B0)→ J/ψη′, and B0

s→ J/ψφ backgrounds are each constrained.

The B0→ J/ψK+π− yield is constrained with a Gaussian function where the mean is

set to the control mode fit yield scaled to account for the mass, BDT and PID efficiencies under

the K+ → π+ hypothesis relevant for the resonant mode fit. It is possible to write this scaled

yield as is shown in Equation 8.4.

N(B0→ J/ψK+π−) = Ñ(B0→ J/ψK+π−)× ε(B0→ J/ψK+π−|K → π)

ε(B0→ J/ψK+π−|K → K)
. (8.4)

In Equation 8.4 Ñ(B0→ J/ψK+π−) is the yield of B0→ J/ψK+π− decays from the fit to the

B0→ J/ψK∗0 control mode. The width of the Gaussian constraint is taken from the uncertainty

on the control mode signal yield, propagated with the uncertainties on the efficiency ratio where

the efficiency uncertainties are taken from the bootstrapping method discussed in Chapter 7.

The yields for the B0
s→ J/ψη′, B0→ J/ψη′ and B0

s→ J/ψφ modes are constrained

relative to the B0
s→ J/ψπ+π− yield. This constraint is implemented by scaling the yield of the

B0
s mode with ratios of efficiencies and fragmentation fractions following Equation 8.5.

N(X) = N(B0
s→ J/ψπ+π−)× ε(X)

ε(B0
s→ J/ψπ+π−)

× fq
fs
, (8.5)
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Within Equation 8.5 q refers to either an s quark or a d quark as is appropriate. Due

to the lack of full LHCb MC for the B0 → J/ψη′ mode, the efficiencies for this mode are

assumed to be the same as for the B0
s→ J/ψη′ mode. The exception is the m(π+π−µ+µ−) ∈

[5170, 6370] MeV/c2 and m(π+π−) ∈ [515, 1300] MeV/c2 mass window efficiency which is

estimated from a separate RapidSim sample.

The final resonant mode fits to the data can be seen in Figure 8.10 on a logarithmic scale,

where the different components can be seen, and in Figure 8.11 on a linear scale, where the

purity of the two signal peaks is visible. The fit parameters are given in Table 8.3. Some of the

resonant mode fits show a small level of disagreement with the data in the region attributable to

the various peaking backgrounds at low invariant mass. This is caused by the constraints placed

upon the yields which are calculated using the full set of correcting weights some of which, as

has been already shown, have large values. The small discrepancies in the low invariant mass

region disappear when removing these constraints as can be seen in Figure 8.12 and Figure 8.13.

The small level of disagreement makes negligibly small difference to the signal peaks within the

fits.

Overall, the fits to the resonant mode are seen to be of good quality and consistent between

the fits with and without the J/ψ mass constraint. It can be seen from the Run 1 fit that the value

of the mean of the signal peak converges to a value slightly higher than the known B0 mass.

This is understood to be due to the lack of momentum scale correction which accounts for small

deviations in the LHCb magnetic field experienced by each particle track. These corrections are

not present within the LHCb dataset for Run 1 by default however are present by default within

the Run 2 data.

Although not the focus of this thesis, the resonant mode fits can be validated by calculating

branching fraction values from the fit yields for the B0 and B0
s for the modes and comparing

them to the known world values. The branching fractions are calculated by scaling the yield of

the resonant mode fits similarly to as is done for the rare mode as was discussed in Chapter 4.

The values of the resonant mode branching fractions for each dataset, alongside the previous

LHCb values, are shown in Table 8.2.

Within Table 8.2 two alternative values are presented for the B0
s mode branching fraction.

The first result uses the fragmentation fraction values taken from a previous LHCb analysis[138].

The second result, labelled as “Alternate” uses a second fragmentation fraction measurement

taken from a separate LHCb analysis [157]. The agreement between the 2011+2012, 2015+2016

and 2017+2018 datasets when using the alternate value in the final calculation.

When comparing the resonant mode branching fraction results found here to those from

the previous analysis it is necessary to consider any correlations between the uncertainties.

Both the statistical and systematic uncertainties from this analysis are believed to be largely
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uncorrelated with those from the previous LHCb analyses. The selection used for the Run 1 data

here is different to that used in the previous analysis meaning that the Run 1 datasets are different.

Furthermore, correlations between systematic uncertainties are not of concern primarily due to

the different control modes used in this analysis and the previous analyses. When disregarding

the possibility of large correlations between the analyses a good level of agreement between the

values of the branching fractions from this analysis and those from the previous LHCb analyses

can be seen.

Table 8.2: Branching fractions of B0→ J/ψπ+π− and B0
s→ J/ψπ+π− calculated using the

yields of the resonant mode fits. The branching fractions for the B0
s mode is provided for the two

possible Run 2 fragmentation fraction values.

Dataset B(B0→ J/ψπ+π−)[10−5] B(B0
s→ J/ψπ+π−)[10−4]

2011+2012 3.78± 0.08(stat)± 0.27(syst) 1.85± 0.03(stat)± 0.17(syst)
2015+2016 3.88± 0.10(stat)± 0.28(syst) 2.03± 0.04(stat)± 0.18(syst)
2017+2018 3.90± 0.10(stat)± 0.28(syst) 2.06± 0.04(stat)± 0.18(syst)

2015+2016 (alternative) – 1.79± 0.04(stat)± 0.17(syst)
2017+2018 (alternative) – 1.82± 0.04(stat)± 0.17(syst)

Previous LHCb value 3.94± 0.14(stat)± 0.21(syst) 2.09± 0.08(stat)± 0.21(syst)

156



5200 5400 5600 5800 6000 6200
]2c) [MeV/-µ+µ-p+p(m

2-10

1-10

1

10

210

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/-p+pyJ/(m

2-10

1-10

1

10

210

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/-p+pyJ/(m

2-10

1-10

1

10

210

C
an

di
da

te
s 

/ (
 4

 )

Combinatorial

<latexit sha1_base64="FtCsLE2plj5gmPUvE6xsdL2qMQc=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4tB8BR2JaLHYC4eI5gHJEuYnUySIfNYZnrFsObgr3jxoIhXf8Obf+Mk2YMmFjQUVd10d0UxZwZ8/9vJrayurW/kNwtb2zu7e+7+QcOoRBNaJ4or3YqwoZxJWgcGnLZiTbGIOG1Go+rUb95TbZiSdzCOaSjwQLI+Ixis1HWPOkAfQIu0qkTEJAalGeaTrlv0S/4M3jIJMlJEGWpd96vTUyQRVALh2Jh24McQplgDI5xOCp3E0BiTER7QtqUSC2rCdHb/xDu1Ss/rK21LgjdTf0+kWBgzFpHtFBiGZtGbiv957QT6V2HKZJwAlWS+qJ9wD5Q3DcPrMU0J8LElmGhmb/XIEGtMwEZWsCEEiy8vk8Z5KSiXLm7Lxcp1FkceHaMTdIYCdIkq6AbVUB0R9Iie0St6c56cF+fd+Zi35pxs5hD9gfP5AxRLlss=</latexit>

B0
s → J/ψπ+π−

<latexit sha1_base64="PyroW8CnLCQGi036jAMMFq1/aVs=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0UQ1JpIRZelbsRVBfuAJi2T6aQdOkmGmYlSQn7Cjb/ixoUibgV3/o3TNgttPXC5h3PuZeYejzMqlWV9G7mFxaXllfxqYW19Y3PL3N5pyCgWmNRxxCLR8pAkjIakrqhipMUFQYHHSNMbXo395j0RkkbhnRpx4gaoH1KfYqS01DWPq53ESruJTKEjaH+gkBDRA7w5dbik0OG0kxyl036Sds2iVbImgPPEzkgRZKh1zS+nF+E4IKHCDEnZti2u3AQJRTEjacGJJeEID1GftDUNUUCkm0yuSuGBVnrQj4SuUMGJ+nsjQYGUo8DTkwFSAznrjcX/vHas/Es3oSGPFQnx9CE/ZlBFcBwR7FFBsGIjTRAWVP8V4gESCCsdZEGHYM+ePE8aZyW7XDq/LRcr1SyOPNgD++AQ2OACVMA1qIE6wOARPINX8GY8GS/Gu/ExHc0Z2c4u+APj8wf1S56x</latexit>

B0 → J/ψπ+π−

<latexit sha1_base64="+zZW+KuLzPju8aVxA1NKX5gn/68=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0UoiDWRii5L3YirCvYBTVom00k7dJIMMxOlhPyCG3/FjQtF3Lpz5984bbPQ1gOXezjnXmbu8TijUlnWt5FbWl5ZXcuvFzY2t7Z3zN29poxigUkDRywSbQ9JwmhIGooqRtpcEBR4jLS80dXEb90TIWkU3qkxJ26ABiH1KUZKSz2zVOsmVgodQQdDhYSIHuDNqcMlhQ6n3eQ4nfWTtGcWrbI1BVwkdkaKIEO9Z345/QjHAQkVZkjKjm1x5SZIKIoZSQtOLAlHeIQGpKNpiAIi3WR6UQqPtNKHfiR0hQpO1d8bCQqkHAeengyQGsp5byL+53Vi5V+6CQ15rEiIZw/5MYMqgpN4YJ8KghUba4KwoPqvEA+RQFjpEAs6BHv+5EXSPCvblfL5baVYrWVx5MEBOAQlYIMLUAXXoA4aAINH8AxewZvxZLwY78bHbDRnZDv74A+Mzx9hYpy/</latexit>

B0 → J/ψKπ

<latexit sha1_base64="eFdVo2tYKHUZ+SFD3agretNxMSY=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqs5IRZelbkQ3FewDOmPJpJk2NJMJSUYpQ3du/BU3LhRx6y+4829M21lo64ELh3Pu5d57AsGo0o7zbeUWFpeWV/KrhbX1jc0te3unoeJEYlLHMYtlK0CKMMpJXVPNSEtIgqKAkWYwuBj7zXsiFY35rR4K4keox2lIMdJG6tj71bvUGUFP0l5fIynjB3h17AlF4TX0BO3YRafkTADniZuRIshQ69hfXjfGSUS4xgwp1XYdof0USU0xI6OClygiEB6gHmkbylFElJ9O/hjBQ6N0YRhLU1zDifp7IkWRUsMoMJ0R0n01643F/7x2osNzP6VcJJpwPF0UJgzqGI5DgV0qCdZsaAjCkppbIe4jibA20RVMCO7sy/OkcVJyy6XTm3KxUs3iyIM9cACOgAvOQAVcghqoAwwewTN4BW/Wk/VivVsf09aclc3sgj+wPn8Aed6YbQ==</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>

B0 → J/ψφ

<latexit sha1_base64="+aQaup9jggT5DYa9vVb7FdtsctE=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFc1UQquix1I64q2Ac0sUymk2boZCbMTJQSunLjr7hxoYhbv8Gdf+O0zUJbD1w4nHMv994TJIwq7Tjf1sLi0vLKamGtuL6xubVt7+w2lUglJg0smJDtACnCKCcNTTUj7UQSFAeMtILB5dhv3ROpqOC3epgQP0Z9TkOKkTZS1z6o3WXOCHqS9iONpBQP8PrESxSFXhLRrl1yys4EcJ64OSmBHPWu/eX1BE5jwjVmSKmO6yTaz5DUFDMyKnqpIgnCA9QnHUM5ionys8kbI3hklB4MhTTFNZyovycyFCs1jAPTGSMdqVlvLP7ndVIdXvgZ5UmqCcfTRWHKoBZwnAnsUUmwZkNDEJbU3ApxhCTC2iRXNCG4sy/Pk+Zp2a2Uz24qpWotj6MA9sEhOAYuOAdVcAXqoAEweATP4BW8WU/Wi/VufUxbF6x8Zg/8gfX5A0bRmGA=</latexit>

B+
c

<latexit sha1_base64="aksElpNKbikFCrZZy0SckrTXOmg=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSIIQtmVih5LvXisYD+kXUs2zbahSXZJskJZ9ld48aCIV3+ON/+NabsHbX0w8Hhvhpl5QcyZNq777aysrq1vbBa2its7u3v7pYPDlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Gbqt5+o0iyS92YSU1/goWQhI9hY6aHeT0n2mJ5n/VLZrbgzoGXi5aQMORr90ldvEJFEUGkIx1p3PTc2foqVYYTTrNhLNI0xGeMh7VoqsaDaT2cHZ+jUKgMURsqWNGim/p5IsdB6IgLbKbAZ6UVvKv7ndRMTXvspk3FiqCTzRWHCkYnQ9Hs0YIoSwyeWYKKYvRWREVaYGJtR0YbgLb68TFoXFa9aubyrlmv1PI4CHMMJnIEHV1CDW2hAEwgIeIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwCxwJBZ</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>

5200 5400 5600 5800 6000 6200
]2c) [MeV/−π+πψJ/(m

2−10

1−10

1

10

210

310] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/−µ+µ−π+π(m

2−10

1−10

1

10

210

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/−π+πψJ/(m

2−10

1−10

1

10

210

310] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/−µ+µ−π+π(m

2−10

1−10

1

10

210

310] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5400 5600 5800 6000 6200
]2c) [MeV/−π+πψJ/(m

2−10

1−10

1

10

210

310

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

Figure 8.10: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets on a logarithmic scale to show the different background
components. The left column shows the fits without the J/ψ mass constraint applied and the right
plots with the J/ψ mass constraint applied.
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Figure 8.11: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets. The left column shows the fits without the J/ψ mass
constraint applied and the right plots with the J/ψ mass constraint applied.
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s → J/ψπ+π−
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Figure 8.12: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets on a logarithmic scale to show the different background
components where no yield constraints are applied. The left column shows the fits without the
J/ψ mass constraint applied and the right plots with the J/ψ mass constraint applied.
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Figure 8.13: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets where no yield constraints are applied. The left
column shows the fits without the J/ψ mass constraint applied and the right plots with the J/ψ
mass constraint applied.
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8.3 Rare Mode Fit

In order to determine the branching fraction of the B0→ π+π−µ+µ− and B0
s→ π+π−µ+µ−

decays, the analysis uses a simultaneous fit to the 2011+2012, 2015+2016 and 2017+2018 datasets

where the B0 and B0
s branching fractions are freely varying as shared parameters between the

datasets. Equation 4.2 from Chapter 4 can be re-expressed as:

B(B0(B0
s )→ π+π−µ+µ−) = N(B0(B0

s )→ π+π−µ+µ−)× κ (8.6)

where, in Equation 8.6, κ, is referred to as the single event sensitivity and includes the control

mode fit yield, rare mode and control mode total efficiency and fragmentation fraction informa-

tion. Within the rare mode fits, both the B0 and B0
s κ factors are allowed to vary within their

uncertainties via the application of a Gaussian constraint.

To select out the rare mode datasets the full set of requirements from Table 5.6 are applied

in addition to the stripping, trigger and PID fiducial requirements, as before. The main difference

between the resonant mode and rare mode selection requirements, aside from the J/ψ mass

veto, is the upper limit on the fitting region. Within the rare mode fits the upper limit is set to

5800 MeV/c2 as candidates above this were used for the definition of the upper sideband.

As was done for the resonant mode fits, the signal shapes are modelled with the sum

of two CB functions and a Gaussian function while the K+ → π+ mis-identified background

from B0→ K+π−µ+µ− decays is modelled with a pair of CB functions. The yield for this

background is constrained using a Gaussian function. Due to the unknown S-wave composition

of the K+π− system in the rare mode fit, a separate double CB fit to the K+π−µ+µ− invariant

mass is made to the data where reversed PID requirements are made in order to extract a clear

signal peak. The yield from this fit is then scaled with both mass and PID efficiencies in order to

extrapolate the number of expected K+π−µ+µ− background candidates to the rare mode fit. The

resulting expected yield and yield uncertainty are used to set the mean and width of the Gaussian

constraint respectively. These initial fits to the K+π−µ+µ− invariant mass spectra are seen in

Figure 8.14. The fit parameters from these fits can be found in Table B.7.

Initial fits are made to the B0→ π+π−µ+µ− and B0→ K+π−µ+µ− MC samples to

determine the PDF parameters for the final fits. However, for the signal modes, only the tail

parameters are set to the values from the MC mass fits. Both the mean and width are instead

set to the values seen from the resonant mode fits as the shape parameters are expected to be

the same between rare and resonant mode decays. Any variation in these shapes is expected to

be small between q2 regions and, given the very small number of expected candidates, can be

disregarded. The fits to the B0→ π+π−µ+µ− MC samples can be found in Figure 8.15 while
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Figure 8.14: Fit to the m(K+π−µ+µ−) distribution for 2011+2012 (left), 2015+2016 (middle)
and 2017+2018 (right). The top row shows the fits to the full q2 range, the middle row the fits to
the low q2 range and the bottom row the fits to the high q2 range. The data is fit with the sum of
two CB functions and an exponential. The yield is scaled using efficiencies in order to provide a
constraint for the B0→ K+π−µ+µ− background in the final rare mode fits.

the equivalent fits to the B0→ K+π−µ+µ− MC can be found in Figure 8.16. The fit parameters

for the signal mode MC can be found in Table B.8 while the fit parameters for the background

mode MC can be found in Table B.9.

Finally, as was the case for both the control and resonant modes, a combinatorial back-

ground is included and is modelled with an exponential function. The final PDF fit to the rare

mode invariant mass fits is given by

S(m) =
1

Ntotal

(
N(B0→ π+π−µ+µ−) · SB0→π+π−µ+µ−(m)+

N(B0
s→ π+π−µ+µ−) · SB0

s→π+π−µ+µ−(m)+

N(B0→ K+π−µµ−) · SB0→K+π−µ+µ−(m)+

NbkgSbkg(m)
)
.

(8.7)
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Figure 8.15: Invariant mass fits to the B0→ π+π−µ+µ− MC samples which serves as a proxy
for the signal shapes within the rare mode fits. The fits are performed with the sum of two CB
shapes and a Gaussian shape and can be seen for the 2011+2012 sample (top left), the 2015+2016
sample (top right) and the 2017+2018 sample (bottom). The candidates are weighted with the
full set of analysis correcting weights.
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Figure 8.16: The invariant mass fits to the B0→ K+π−µ+µ− MC samples for the 2011+2012
(top left), 2015+2016 (top right) and the 2017+2018 sample (bottom). The fits are performed
using the sum of two CB shapes. The candidates are weighted with the full set of analysis
correcting weights.
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8.3.1 Fit Model Validation

Prior to the completion of the final rare mode fits a series of 100,000 pseudo-experiments are

performed where data is generated using the model from Equation 8.7. These pseudo-experiments

are run to validate the fitting strategy and detect any systematic bias in the model. The number

of generated events is randomised per pseudo-experiment using a Poisson distribution with the

mean set to the expected yield. The expected yields are calculated using Equation 4.2, where the

rare mode branching fractions are assumed to be equal to the values determined by the Run 1

LHCb analysis. After the generation of the pseudo-experiment data, the total rare mode PDF is fit

to the data and the branching fractions of the B0 and B0
s decay extracted. An example of a fit to

the pseudo-experiment data can be seen in Figure 8.17. The branching fraction pull distributions,

which is the residual of the branching fractions when compared to the previous values normalised

by the corresponding uncertainty, can be seen in Figure 8.18 for both rare modes and for the three

q2 regimes.
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Figure 8.17: Examples of a simultaneous fit to the rare mode pseudo-experiment. Top left: fit to
the 2011+2012 generated data. Top right: fit to the 2015+2016 generated data. Bottom left: fit
to the 2017+2018 generated data. Bottom right: combined fit from the three simultaneous fits,
included for visualisation.
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Table 8.4: Results from the pseudo-experiment studies where the pull distributions are fit with a
Gaussian.

q2 Range Decay Mean Standard Deviation

Full
B0 Mode −0.046±0.003 0.988 ± 0.002
B0
s Mode −0.036±0.003 0.989 ± 0.002

Low
B0 Mode −0.062±0.003 0.988 ± 0.002
B0
s Mode −0.038±0.003 0.983 ± 0.002

High
B0 Mode −0.070±0.003 0.969 ± 0.002
B0
s Mode −0.092±0.003 0.966 ± 0.002

The pull distributions are fit with Gaussian distributions. As can be seen from the results in

Table 8.4 the means are broadly consistent with zero, while the widths are close to unity, as would

be expected for unbiased fits. However, a small level of bias is seen, which is consistent across

the different sets of pseudo-experiments, suggesting that the fit model slightly underestimates

the branching fractions. This bias is caused by the small yields of the different fit components

including the background component. Although this effect is very small (a bias of O(10−10) on

a branching fraction value of O(10−8)), the final branching fraction results are corrected for this

bias. The correction is applied by shifting the final branching fraction results by the product of

the final statistical uncertainty and the mean shift seen from Table 8.4. For example, the final

shift for the B0 mode for the full q2 range is given by 4.6% multiplied by the final statistical

uncertainty.

8.3.2 Final Rare Mode Fits

The result of the simultaneous invariant mass fits for the full q2, low q2 and high q2 regimes

can be found in Figures 8.19, 8.20 and 8.21 respectively. In each of these figures, the fits to the

three datasets are shown and then combined into a fourth figure for visualisation. The final PDF

parameters for the rare mode fits are found in Table 8.5. Within Table 8.5 the yields shown in

blue are not included directly within the fits but are instead derived afterwards using the final

branching fraction and event sensitivity parameters. These are included in the tables for useful

comparison. In addition, the fits are repeated for all three q2 regimes for each of the three datasets

separately, without performing a simultaneous fit. This provides a consistency check for the

analysis. Figure 8.22 shows the results of the fits to the individual datasets, while Table 8.6 shows

the corresponding fit parameters. The results of the rare mode fits are the subject of Chapter 10.
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Figure 8.18: The distribution of the branching fraction pull (residual normalised by the branching
fraction uncertainty) for the B0 mode (left column) the B0

s mode (right column) from the pseudo-
experiment study. The top row are the results for the full q2 region while the middle row shows
the results for the low q2 region and the bottom row the results for the high q2 region. The
distributions are fit with a Gaussian to determine the presence of any fitting bias.
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Figure 8.19: The invariant mass of the π+π−µ+µ− candidates within the full q2 region from the
data. The result of the simultaneous fit is compared to the data. The top left plot shows the fit to
the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left the fit to
the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for visualisation.
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Figure 8.20: The invariant mass of the π+π−µ+µ− candidates within the low q2 region from the
data. The result of the simultaneous fit is compared to the data. The top left plot shows the fit to
the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left the fit to
the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for visualisation.
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Figure 8.21: The invariant mass of the π+π−µ+µ− candidates within the high q2 region from the
data. The result of the simultaneous fit is compared to the data. The top left plot shows the fit to
the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left the fit to
the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for visualisation.
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Figure 8.22: The invariant mass of the π+π−µ+µ− candidates from the data compared to the
invariant mass fit when fitting each dataset separately. The left column shows the fits to the
2011+2012 dataset, the middle column the fits to the 2015+2016 dataset and the right column the
fit to the 2017+2018 dataset. The top row shows the results for the full q2 region, the middle row
the results for the low q2 region and the bottom row the results for the high q2 region.
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Table 8.5: Parameters from the simultaneous fit to the 2011+2012, 2015+2016 and 2017+2018
datasets for the full, low and high q2 ranges. The rare mode yields in blue are not varied within
the fit and are calculated from the branching fraction and event sensitivity (κ) parameters. These
yields are included here for convenient comparison.

Dataset Parameter Full q2 Low q2 High q2

B(B0→ π+π−µ+µ−) 2.34 ± 0.26 1.02 ± 0.14 0.37 ± 0.07
B(B0

s→ π+π−µ+µ−) 5.33 ± 0.64 3.18 ± 0.41 0.28 ± 0.13

2011+2012

κ(B0→ π+π−µ+µ−) 0.057 ± 0.004 0.041 ± 0.003 0.041 ± 0.003
N(B0→ π+π−µ+µ−) 41 ± 5 25 ± 4 9 ± 2
κ(B0

s→ π+π−µ+µ−) 0.176 ± 0.016 0.129 ± 0.012 0.132 ± 0.012
N(B0

s→ π+π−µ+µ−) 30 ± 5 25 ± 4 2 ± 1
λ −0.006 ± 0.001 −0.007 ± 0.001 −0.004 ± 0.002

N(B0→ K+π−µ+µ−) 8 ± 1 6 ± 1 0 ± 1
Nbkg 57 ± 11 46 ± 10 7 ± 4

2015+2016

κ(B0→ π+π−µ+µ−) 0.052 ± 0.003 0.037 ± 0.003 0.033 ± 0.002
N(B0→ π+π−µ+µ−) 45 ± 6 28 ± 4 11 ± 2
κ(B0

s→ π+π−µ+µ−) 0.166 ± 0.014 0.127 ± 0.011 0.108 ± 0.010
N(B0

s→ π+π−µ+µ−) 32 ± 5 25 ± 4 3 ± 1
λ −0.007 ± 0.001 −0.007 ± 0.001 −0.005 ± 0.002

N(B0→ K+π−µ+µ−) 7 ± 1 2 ± 1 0 ± 1
Nbkg 68 ± 11 56 ± 10 10 ± 4

2017+2018

κ(B0→ π+π−µ+µ−) 0.024 ± 0.002 0.017 ± 0.001 0.017 ± 0.002
N(B0→ π+π−µ+µ−) 97 ± 14 60 ± 9 22 ± 5
κ(B0

s→ π+π−µ+µ−) 0.082 ± 0.006 0.061 ± 0.005 0.053 ± 0.005
N(B0

s→ π+π−µ+µ−) 65 ± 9 52 ± 8 5 ± 3
λ −0.006 ± 0.001 −0.006 ± 0.001 −0.003 ± 0.001

N(B0→ K+π−µ+µ−) 10 ± 1 9 ± 1 0 ± 1
Nbkg 105 ± 14 60 ± 11 22 ± 6
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Table 8.6: Parameters from the separate fits to the 2011+2012, 2015+2016 and 2017+2018
datasets for the full, high and low q2 ranges. The rare mode yields in blue are not varied within
the fit and are calculated from the branching fraction and event sensitivity (κ) parameters. These
yields are included here for convenient comparison.

Dataset Parameter Full q2 Low q2 High q2

2011+2012

B(B0→ π+π−µ+µ−) 2.51 ± 0.56 1.20 ± 0.33 0.33 ± 0.15
B(B0

s→ π+π−µ+µ−) 7.26 ± 1.53 4.69 ± 1.02 0.53 ± 0.32
κ(B0→ π+π−µ+µ−) 0.058 ± 0.004 0.041 ± 0.003 0.041 ± 0.003
N(B0→ π+π−µ+µ−) 43 ± 10 29 ± 8 8 ± 4
κ(B0

s→ π+π−µ+µ−) 0.186 ± 0.017 0.137 ± 0.012 0.133 ± 0.012
N(B0

s→ π+π−µ+µ−) 39 ± 9 34 ± 8 4 ± 2
λ −0.006 ± 0.001 −0.007 ± 0.001 −0.004 ± 0.002

N(B0→ K+π−µ+µ−) 8 ± 1 6 ± 1 0 ± 1
Nbkg 52 ± 11 40 ± 10 7 ± 4

2015+2016

B(B0→ π+π−µ+µ−) 1.98 ± 0.49 0.96 ± 0.30 0.27 ± 0.13
B(B0

s→ π+π−µ+µ−) 5.94 ± 1.34 3.80 ± 0.92 0.18 ± 0.22
κ(B0→ π+π−µ+µ−) 0.051 ± 0.003 0.037 ± 0.003 0.032 ± 0.002
N(B0→ π+π−µ+µ−) 39 ± 10 26 ± 8 6 ± 7
κ(B0

s→ π+π−µ+µ−) 0.169 ± 0.014 0.129 ± 0.011 0.108 ± 0.010
N(B0

s→ π+π−µ+µ−) 35 ± 8 29 ± 8 2 ± 2
λ −0.007 ± 0.001 −0.008 ± 0.001 −0.005 ± 0.001

N(B0→ K+π−µ+µ−) 7 ± 1 2 ± 1 0 ± 1
Nbkg 70 ± 13 55 ± 11 12 ± 5

2017+2018

B(B0→ π+π−µ+µ−) 2.44 ± 0.35 0.99 ± 0.18 0.45 ± 0.12
B(B0

s→ π+π−µ+µ−) 4.17 ± 0.79 2.29 ± 0.47 0.25 ± 0.17
κ(B0→ π+π−µ+µ−) 0.024 ± 0.002 0.017 ± 0.001 0.017 ± 0.002
N(B0→ π+π−µ+µ−) 102 ± 17 58 ± 11 26 ± 8
κ(B0

s→ π+π−µ+µ−) 0.077 ± 0.007 0.058 ± 0.005 0.053 ± 0.005
N(B0

s→ π+π−µ+µ−) 54 ± 11 39 ± 9 5 ± 3
λ −0.006 ± 0.001 −0.006 ± 0.001 −0.003 ± 0.001

N(B0→ K+π−µ+µ−) 10 ± 1 9 ± 1 0 ± 1
Nbkg 108 ± 15 64 ± 12 20 ± 7
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CHAPTER9
Systematic Uncertainties

“ If you thought that science was certain - well, that is just at error on your

part. ”
Richard Feynman,

This chapter discusses the various sources of systematic uncertainty which affect the

precision of the final branching fraction result. The motivation for performing the branching

fraction measurements relative to a control mode was that many of the major sources of systematic

uncertainty cancel in the ratio. However, some sources of systematic uncertainty are not expected

to fully cancel in this way and so these must be included in the analysis.

This chapter explains the way in which the different sources of systematic uncertainty

are estimated in the analysis. A total systematic uncertainty on the branching fraction result is

then determined by summing the separate uncertainties in quadrature. Depending on the method

of estimation, the uncertainties are calculated either for each of the three datasets separately, or,

using the three datasets simultaneously. When calculating the uncertainties for each separate

dataset, the total systematic uncertainty is determined by summing the individual uncertainties

together using a weighted average using the integrated luminosity information.

Ultimately, the rarity of the studied processes means that the dominant source of uncer-

tainty to the analysis is statistical and the uncertainty on the final results would only become

systematically dominated with the inclusion of future LHCb data.
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Figure 9.1: Resolutions from the double CB + Gaussian fit to the B0 → π+π−µ+µ− and
B0
s→ π+π−µ+µ− simulation in bins of q2. The top row shows the fits, from left to right, for

the B0→ π+π−µ+µ− simulation for the 2011+2012, 2015+2016 and 2017+2018 samples. The
bottom row shows the equivalent plots for the B0

s→ π+π−µ+µ− simulation.

9.1 Signal Line Shape Variation

The first systematic uncertainty considered arises from the line shape which is used to describe

the B0(B0
s )→ π+π−µ+µ− signal peak within the final rare mode invariant mass fits. The largest

uncertainty here is due to the variation of the resolution of the signal peak as a function of q2 and

the fact that the q2 distribution of both rare modes is not well known experimentally.

To determine the variation of the resolution with q2, invariant mass fits are performed

on the B0(B0
s )→ π+π−µ+µ− simulation samples in the different bins of q2. Then, the width

of the CB shapes which describe the signal peaks are taken as a proxy for the total resolution.

The variation of the resolution with q2, for the three datasets can be seen in Figure 9.1 where a

dependence of the resolution on q2 can be seen. This trend is due to the increasing importance of

the muon momentum resolution towards the total resolution at higher invariant masses.

To convert this dependence into a systematic uncertainty a pseudo-experiment study

is performed where the width of the signal peaks within the fit is modified and then the full

fitting model is refit to a generated dataset. The generated dataset is created using the original,
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non-modified signal width. Two sets of pseudo-experiments are then performed. The first set

increases the model width by 0.5 MeV/c, and the second set reduces the signal width by the same

amount. The resulting systematic uncertainty is then the difference between the mean of the

branching fraction distribution where the signal width was increased and the case where it was

decreased, as a percentage of the expected branching fractions. The modification of ±0.5 MeV/c

is chosen as a reasonable estimate of the average change in the resolution which is seen across the

q2 range from Figure 9.1. The overall size of the systematic uncertainty is evaluated to be 0.2%

for the B0 mode and 0.15% for the B0
s mode showing that the size of the effect is very small.

9.2 Inclusion of B0
s→ η′µ+µ−

The partially reconstructed background B0
s → η′µ+µ− was identified within Chapter 5 as a

potential source of peaking background which was potentially relevant for the analysis. However,

the expected yield of this background was judged to be small enough to neglect this component

from the final invariant mass fits. Here, the systematic effect of including the background in the

final mass fits is considered and is estimated using a pseudo-experiment study.

To perform the study 1000 pseudo-experiments are generated. For each, the generated

dataset is created using the final rare mode PDF and the corresponding expected yields. The

η′ component is then added to the pseudo-experiment dataset by generating new candidates

using the shape of the B0
s→ J/ψη′ component taken from the resonant mode fits. The number

of generated candidates is taken from the expected B0→ η′µ+µ− yield. The total generated

dataset is then fit with the model which does not include the η′ process component. After

running the pseudo-experiments the difference between the mean of the resulting branching

fraction distribution and the expected branching fraction provides an estimation of the systematic

uncertainty. The systematic uncertainties are estimated to be 1.46%, 2.98% and 2.32% for the

2011+2012, 2015+2016 and 2017+2018 datasets respectively for the B0 mode and 1.05%, 0.93%

and 0.08% respectively for the B0
s mode.

9.3 Efficiency Variations

The statistical uncertainties on the different efficiency values which are used within the analysis

were calculated using a bootstrapping technique as was discussed in Chapter 7. The total selection

efficiency uncertainty, in addition to the geometrical acceptance efficiency and PID efficiency

uncertainty, are added in quadrature to determine the total uncertainty. A systematic uncertainty

is assigned to account for the size of the effect of the variation of this total efficiency on the final

branching fraction results.
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Figure 9.2: Cumulative distribution function for the B0→ π+π−µ+µ− MC sample in red and
the sWeighted control mode sample in blue. The comparison is made with the 2017+2018 sample
with similar plots seen for the other two datasets.

Using Equation 4.2 from Chapter 4 the efficiency ratio term is fluctuated within its

uncertainty while the yields, fragmentation fractions and control mode branching fractions within

the equation are held constant. This is repeated 1000 times to re-evaluate the branching fractions

for each fluctuation. The standard deviation of the resulting branching fraction distribution is

then taken as the systematic uncertainty.

The size of the effect of the efficiency variation on the final results are found to be very

small. For the B0 mode the resultant systematic uncertainty is estimated to be 0.29% for the

2011+2012 dataset, 0.68% for the 2015+2016 dataset and 0.61% for the 2017+2018 dataset. For

the B0
s mode the equivalent systematics are evaluated to be 0.36%, 0.81% and 0.91% for the

2011+2012, 2015+2016 and 2017+2018 datasets respectively.

9.4 Vertex χ2 Re-sampling

Within the analysis differences in the B0 vertex fit χ2 distribution between data and MC are

addressed using the kinematic weighting procedure from Chapter 5. An alternative method to

deal with this discrepancy is investigated which involves re-sampling the B0 vertex fit χ2 variable

using a data-driven method. This method compares the normalised cumulative distribution

function (CDF) of the B0 vertex fit χ2 variable between data and MC. The data distribution is

extracted by applying sWeights to the control mode data sample. Then, for each candidate in

the MC sample, the value of the B0 vertex fit χ2 variable is used to look up the corresponding

CDF which is mapped to the CDF for the data to obtain a new value to be used in the MC sample.

Examples of the CDF distributions for data and MC can be seen in Figure 9.2 while the results of

the re-sampling can be seen in Figure 9.3.
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Figure 9.3: Results of the re-sampling procedure for the B0→ π+π−µ+µ− MC (left column),
B0
s→ π+π−µ+µ− (middle column) andB0→ J/ψK∗0 (right column) for 2011+2012 (top row),

2015+2016 (middle row) and 2017+2018 (bottom row). The original distributions are shown in
blue and the re-sampled distributions in red.

This alternative method of correction mainly affects the performance of the BDT within

the analysis as the BDT uses this variable to help in the classification of signal and background

candidates. Therefore, the BDT efficiency is re-evaluated for the rare mode samples and the

control mode samples with both the re-sampling and BDT classifier re-applied. The difference in

the calculated BDT efficiency between the two methods is then propagated through Equation 4.2

to estimate a systematic uncertainty on the final branching fraction results. The size of the effect

is small with uncertainties of 0.12%, 0.25%, 1.62% estimated for the 2011+2012, 2015+2016

and 2017+2018 datasets for the B0 mode. The equivalent uncertainties for the B0
s mode are also

small and are found to be 0.49%, 0.20%, 0.08%.

9.5 Decay Model Variations

The decay model weighting from Chapter 6 is a potential source of systematic uncertainties

within the analysis and several different sources are considered. These include the values of the

Wilson coefficients used within the model, the value of the form factors used within the model and

the inclusion of different resonances within the model. In order to estimate these uncertainties,

the decay model is run twice, once with the default model and once with an alteration. The full
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set of efficiencies is then estimated for both these scenarios with the difference in the efficiencies

propagated through Equation 4.2 to extract an estimated uncertainty on the rare mode branching

fractions.

The Wilson coefficient uncertainties are evaluated by considering two alternative sets of

coefficient values. The first varies the value of C9, setting C9 to 3.211 instead of the default value

of 4.211. The second varies both the value of C9 and C10, setting C9 to 3.511 and C10 to −3.403

instead of −4.103. These variations are driven by global fits which show that C9NP = −1.0

and C9NP = −C10NP = −0.7 [116] is best able to explain the measurements of b→ sµ+µ−

observables. These two forms of Wilson coefficient variation are not independent of one another.

Therefore, to prevent the double counting of systematic uncertainties, it is the C9 variation which

is ultimately chosen as the final systematic as this normally results in the larger uncertainty.

The uncertainty from the form factors is evaluated by fluctuating the form factors within

their uncertainties. These uncertainties are taken from the relevant papers in Chapter 6.

The final uncertainty is evaluated by applying the decay model including a single reso-

nance contribution, instead of multiple resonance contributions. This single resonance is taken

to be the ρ(770) for the B0 mode and the f0(980) for the B0
s mode. The inclusion of a single

resonance mainly affects the mass and q2 efficiencies within the analysis by altering the shape of

the m(π+π−) and q2 distributions and this is expected to result in a relatively large systematic

uncertainty value compared to some of the other variations made.

The systematic uncertainties relevant to the decay model can be found in the tables at the

end of this chapter. All other sources of systematic uncertainty evaluated within this chapter are

evaluated only for the full q2 regime and the assumption is made that the size of the uncertainty

should be generally invariant across the different q2 regions of interest. This assumption is not

made for the decay model uncertainties however. This is because the decay model mainly effects

the size of the calculated mass and q2 efficiencies and these values vary between the different q2

regimes. Therefore, the decay model systematic uncertainties are recalculated for both the high

and low q2 regimes and these values are also found at the end of this chapter.

9.6 Kinematic Weighting

The kinematic weighting from Chapter 5 is evaluated as a potential source of systematic uncer-

tainty in two ways. Firstly, a discrete check is made to test the impact of using a particular binning

scheme when weighting the three variables. Within the analysis the pT distribution weighting is

performed with 51 bins whilst the vertex χ2 weighting uses 50 bins and the occupancy uses 44

bins for nLongTracks and 50 bins for nSPDHits. These bins are of varying sizes to ensure that

each bin has a large enough number of candidates and that there is a smooth variation between
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adjacent bins. An alternative binning scheme is used to evaluate the systematic which uses 20 bins

for each weighted variable where each bin is of the same size. Then, the weighting is repeated

and the efficiency values, and subsequent branching fraction estimates, recalculated to determine

the systematic. The systematic effect is found to be small with the B0 mode showing a 0.15%,

1.69% and 0.91% effect, and the B0
s mode showing a 0.41%, 1.18% and 0.91% effect for the

11+12, 15+16 and 17+18 samples respectively.

A second check is made to account for any correlations between the three kinematic

variables. This check is made using a bootstrapping technique whereby the calculation of the

individual weights for the three variables is repeated a large number of times where different

variations of the data and MC distributions are used to calculate the weights with each bootstrap.

Here, the bootstrapping is performed by giving each candidate within the data and MC samples

a weight generated from a Poisson distribution with a mean of 1. The analysis efficiencies

are re-evaluated for each bootstrap sample and the width of the resulting branching fraction

distribution is taken as the uncertainty. The size of this systematic effect is very small and is

evaluated to be 0.04%, 0.09% and 0.09% for the B0 mode and 0.03%, 0.09% and 0.06% effect

for the B0
s modes for the 11+12, 15+16 and 17+18 datasets respectively.

9.7 B0
s Lifetime Weighting

Due to the fast nature of B0
s meson oscillations and the non-zero width difference between the

light and heavy mass eigenstates, theB0
s lifetime seen within the data lies between the lifetimes of

the two mass eigenstates. This could present a source of uncertainty for the B0
s branching fraction

measurement. To estimate the size of this uncertainty each candidate is weighted to rescale the

B0
s lifetime distribution to either the light or heavy mass eigenstate lifetime distribution. The

efficiencies are then recalculated for the weighted datasets and the new efficiency is propagated

through to obtain a difference in the predicted branching fraction measurement. This difference

is then taken as the systematic uncertainty with the resulting values found in the tables at the end

of the chapter.

9.8 Systematic Uncertainties Summary

Tables showing the systematic uncertainties for the B0 and B0
s rare modes as a percentage of the

branching fraction results are given in Table 9.1. These uncertainties are estimated for the full q2

range. The systematic uncertainties for the low and high q2 range are assumed to be the same

apart from the decay model systematic uncertainties. These are reevaluated for the low and high

q2 regimes and these values are shown in Table 9.2 and Table 9.3 respectively.
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The largest source of systematic uncertainty on the full q2B0 branching fraction comes

from the decay model when weighting with a single resonance. This is understandable as the

decay model weighting changes the fraction of candidates falling into the J/ψ and ψ(2S) mass

windows. Within both the low and high q2 regions the size of this uncertainty is seen to be much

smaller.

The largest source of systematic uncertainty on the B0
s branching fraction originates from

the weighting of the lifetime to match either the heavy or light eigenstate lifetimes. The lifetime

information is used to train the BDT classifier during the selection and it is this aspect of the

analysis which drives the variation.

The largest systematic uncertainty calculated, at 7.7%, for the full q2 range of the B0

decay, is still much smaller than the statistical uncertainty on the final branching fraction results

which are approximately 12% for both B0 and B0
s mode. The size of the asymmetry between

the systematic and statistical uncertainties results in almost complete statistical uncertainty

domination when adding the two sources in quadrature. Therefore, if trying to repeat this analysis

with the aim of improving the precision of the final result, the first priority would be to increase

the size of the datasets used. This is achievable in the future with new LHCb data-taking runs.
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Table 9.2: Decay model systematic uncertainties estimated for low q2. All other sources of
systematic uncertainties are assumed to be the same as for the full q2 range and the total systematic
uncertainty includes these values.

Decay Systematic Error 11+12 15+16 17+18

B0→ π+π−µ+µ−

Alternate C9 2.33% 2.39% 2.21%
Alternate C9, C10 1.96% 1.88% 1.93%

Form Factor Variation 1.89% 1.85% 0.97%
Single Resonance 1.47% 0.27% 0.99%
Total Systematic: 3.84%

B0
s→ π+π−µ+µ−

Alternate C9 1.20% 1.15% 1.22%
Alternate C9, C10 1.23% 1.12% 1.20%

Form Factor Variation 0.28% 0.38% 0.21%
Single Resonance 1.74% 0.70% 1.09%
Total Systematic: 4.71%

Table 9.3: Decay model systematic uncertainties estimated for high q2. All other sources of
systematic uncertainties are assumed to be the same as for the full q2 range and the total systematic
uncertainty includes these values.

Decay Systematic Error 11+12 15+16 17+18

B0→ π+π−µ+µ−

Alternate C9 0.10% 0.03% 0.16%
Alternate C9, C10 0.10% 0.23% 0.08%

Form Factor Variation 2.31% 2.23% 3.31%
Single Resonance 0.61% 0.54% 1.68%
Total Systematic: 3.85%

B0
s→ π+π−µ+µ−

Alternate C9 1.02% 1.08% 0.85%
Alternate C9, C10 1.04% 1.01% 0.87%

Form Factor Variation 1.96% 1.76% 3.06%
Single Resonance 0.12% 0.20% 2.23%
Total Systematic: 4.63%
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CHAPTER10
Results and Conclusions

“ However beautiful the strategy, you should occasionally look at the results ”
Winston Churchill,

10.1 Invariant Mass Fit Results

The final results of the rare mode invariant mass fits can be found in Table 10.1 where the

uncertainties are statistical and the significances are calculated using Wilk’s theorem [171]. The

results of the fits are presented for all three of the q2 regions and for both the simultaneous fits

and the individual fits to the three datasets. The likelihood profiles from the final invariant mass

fits can be found in Figure 10.1. The changes in likelihood are seen to show a parabolic behaviour

which have minima corresponding to the branching fraction values from Table 10.1, indicating

that the values converged upon are accurate.

The branching fraction results are visualised in Figure 10.2, Figure 10.3 and Figure 10.4.

For the full q2 range, the branching fraction results from the previous LHCb analysis are included

for comparison. As can be seen from the figure, a good level of agreement is found between the

individual fits to the different datasets. This is seen to be true for all of the q2 regions. When

comparing to the previous LHCb values, the most suitable sets of results for comparison are the

Run 1 results from this thesis across the full q2 range. As the candidate selection is different

between this analysis and the previous analysis, the uncertainties are not completely correlated

and it can be seen that both the B0 and B0
s branching fraction values are seen to agree with the
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Figure 10.1: The change in log-likelihood,−2∆logL, from the best fit point from the simultaneous
fits to the three datasets for the full q2 range (top), the low q2 range (middle) and the high q2 range
(bottom) when varying the B0 branching fraction (left column) and the B0

s branching fraction
(right column).
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Figure 10.2: Branching fraction results from the rare mode invariant mass fits for the full q2

region, separated by data-taking period. The results of the fits to the individual datasets are shown
as data points while the result of the simultaneous fit is shown as a grey band. The uncertainties
are the result of adding the statistical and systematic uncertainties in quadrature. The red data
points correspond to the previous LHCb measurements.

previous LHCb values to within 1 σ. Comparing the previous LHCb results to the full

Run 1 + Run 2 results from this analysis shows a 0.3 σ tension between the two B0 mode results

and a 1.6 σ tension between the two B0
s mode results.

The low and high q2 information can be combined into a single plot showing the binned

branching fraction results as a function of q2. This can be seen in Figure 10.5, where the branching

fraction for the B0
s mode is shown in red and the equivalent for the B0 mode in black. The

relative drop in the branching fraction from low to high q2 is seen to be far larger for the B0
s

mode than for the B0 mode. This is due to the main resonance through which the π+π− system

originates. The B0
s decay primarily proceeds via the f0(980) resonance which is significantly

heavier than the ρ0(770) resonance. As a result, when measuring the branching fraction at high

q2, the possible phase space is smaller for the B0
s mode than for the B0 mode. In addition there

is an enhancement of vector form-factors at high values of q2 which is not present within the

equivalent scalar form-factors.

Referring back to Table 10.1, the statistical significance of the different fits show that the
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Figure 10.3: Branching fraction results from the rare mode invariant mass fits for the low q2

region of q2 ∈ [0.1− 8.0] GeV2/c4. The results of the fits to the individual datasets are shown as
data points while the result of the simultaneous fit is shown as a grey band. The uncertainties are
the result of adding the statistical and systematic uncertainties in quadrature.

existence of the B0→ π+π−µ+µ− mode is confirmed with a statistical significance of 12.5 σ in

the full q2 range, a significance of 9.5 σ in the low q2 range and a significance of 6.7 σ in the

high q2 range. These are therefore the first confirmed observations for this decay mode in all

three q2 regions. The B0
s→ π+π−µ+µ− mode has already been confirmed to exist within the

full q2 region by the previous LHCb result. However the level of statistical significance has now

increased from 7.2 σ to 12.6 σ. In addition, this analysis provides a first measurement of the

B0
s mode in the low q2 range, with a significance of 11.8 σ. The significance of the B0

s mode

branching fraction within the high q2 bin is 2.8 σ, falling short of the 5 σ criterion for evidence.

The pseudo-experiment study from Chapter 8 showed that a very small level of bias was

detected in the fitting procedure prior to the completion of the final rare mode invariant mass

fits. This bias, albeit small, was consistent and so the final branching results should account for

this small effect. When applying this shift and also including the systematic uncertainties to the

branching fractions, the final results, as seen in Table 10.2 are obtained.

By assuming that the B0→ π+π−µ+µ− signal is dominated by B0→ ρ0(770)µ+µ−

and that B0
s → π+π−µ+µ− is dominated by B0

s → f0(980)µ+µ− decays a brief, qualitative
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Figure 10.4: Branching fraction results from the rare mode invariant mass fits for the low q2

region of q2 ∈ [15.0− 19.0] GeV2/c4. The results of the fits to the individual datasets are shown
as data points while the result of the simultaneous fit is shown as a grey band. The uncertainties
are the result of adding the statistical and systematic uncertainties in quadrature.

discussion can be had comparing the branching fraction results to theoretical predictions. The

branching fraction result across the full q2 range for the B0 mode is seen to agree well with the

SM predictions taken from [84] which predicts B(B0→ ρ0µ+µ−) ∼ 2.4 × 10−8 with a 30%

uncertainty. The B0 mode branching fraction result for the low q2 region is seen to also broadly

agree with the SM predictions taken from [86] where the prediction is given for the narrower q2

range q2 ∈ [0.0− 6.0] GeV2/c4.

The branching fraction result for the B0
s mode is seen to disfavour the SM prediction

taken for the full q2 range from [123] but shows no significant tension with the leading order

SM prediction from [188]. The B0
s mode branching fraction also shows broad agreement with

the SM predictions for the full, low and high q2 regions taken from [125]. A more complete

comparison with theoretical predictions requires the identification of which states contribute

towards the π+π− system, which is further discussed in Section 10.2. Furthermore, the precision

of the theoretical predictions are dominated by large hadronic form-factor uncertainties. A future

comparison of the rare modes to theory would benefit from a reduction within these uncertainties

in addition to additional experimental data to reduce the statistical uncertainty which dominates
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Figure 10.5: Branching fraction results for the B0→ π+π−µ+µ− decay (black) and the
B0
s→ π+π−µ+µ− decay (red) mode in bins of q2. The uncertainties are calculated by adding

the statistical and systematic uncertainties in quadrature.

Decay q2 range Branching Fraction [10−8] Significance

B0→ π+π−µ+µ−
q2 ∈ [0.1− 19.0] GeV2/c4 2.35 ± 0.26 (stat) ± 0.18 (syst) 12.5 σ
q2 ∈ [0.1− 8.0] GeV2/c4 1.03 ± 0.14 (stat) ± 0.04 (syst) 9.5 σ
q2 ∈ [15.0− 19.0] GeV2/c4 0.37 ± 0.07 (stat) ± 0.01 (syst) 6.7 σ

B0
s→ π+π−µ+µ−

q2 ∈ [0.1− 19.0] GeV2/c4 5.35 ± 0.64 (stat) ± 0.24 (syst) 12.6 σ
q2 ∈ [0.1− 8.0] GeV2/c4 3.19 ± 0.41 (stat) ± 0.15 (syst) 11.8 σ
q2 ∈ [15.0− 19.0] GeV2/c4 0.30 ± 0.13 (stat) ± 0.01 (syst) 2.8 σ

Table 10.2: Final branching fraction results for B0→ π+π−µ+µ− and B0
s→ π+π−µ+µ−. The

significance is calculated using Wilk’s theorem.

the uncertainty on the experimental results.
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10.2 Evidence for B0→ ρ0(770)µ+µ− and B0
s→ f0(980)µ

+µ−

As was discussed in both Chapters 2 and 4, a confirmation of the rare b → d and b → s

processes requires a demonstration that the π+π− final state originates from the ρ0(770) for the

B0→ π+π−µ+µ− decay and from the f0(980) for the B0
s→ π+π−µ+µ− decay. In order to do

this it is necessary to separate different states which contribute towards the π+π− system using

a dedicated analysis. This analysis would fit both the helicity angle distribution, cos(θh), and

the invariant m(π+π−) distributions with different resonance contributions which have different

quantum numbers. Within this thesis a quick visual inspection of the cos(θh) and m(π+π−)

distributions is made. A visual inspection of the q2 distributions is also made, where features such

as the presence of a photon pole are indicative of a vector resonance (with J > 0) contribution

due to the lack of a longitudinal photon polarisation within nature.

Figure 10.6 shows the m(π+π−), q2 and cos(θh) distributions from the data. These

distributions are obtained by extracting a set of sPlot weights [166] from the final mass fits. These

weights are then applied to the data distributions to unfold the signal before being compared to

the simulated samples with the decay model weights applied. The simulated samples contain a

mixture of states as was listed in Table 6.3 however are dominated by the ρ0(770) and f0(980)

contributions.

The m(π+π−) distributions from Figure 10.6 show that the agreement between the data

and the B0
s → π+π−µ+µ− simulation is good. The main structure visible within the π+π−

spectrum is attributable to the f0(980) resonance. The equivalent plot for the B0 mode shows the

prominent structure from the ρ0(770) but the level of agreement between the data and simulation

is worse. Specifically, it can be seen that the relative contributions of the different resonances to

the π+π− system differs between data and simulation. The data shows a larger contribution at

higher invariant mass values above 1000 MeV/c2 compared to that predicted by simulation. This

contribution may be attributable to the f2(1270) resonance. This suggests that the decay models

from Chapter 6 do a good job of describing the B0
s decay but underestimate the contribution

from the higher mass resonances for the B0 mode. This conclusion can also be drawn from the

equivalent q2 plots where the level of agreement appears good for the B0
s mode showing that

the π+π− system is dominated by scalar resonance contributions. The B0 mode shows poorer

agreement between data and simulation in the q2 region attributable to the photon pole. The data

shows a larger contribution towards the photon pole than replicated in simulation suggesting that

the J > 0 resonance contribution is underestimated. Future studies of the rare mode processes

with more data could confirm the size of the contributing amplitudes within the π+π− spectrum.

This would allow for the construction of a more accurate decay model that would improve the

agreement between data and simulation.
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Only a limited discussion can be had regarding the helicity angle information due to

the limited size of the data samples available to the analysis. The agreement seems broadly

good between data and simulation however, without additional data the shape and corresponding

quantum numbers cannot be clearly determined. In addition, the shapes seen are warped by the

detector acceptance, by efficiencies and also by the interference between the various contributing

resonances. This means that the naive shapes shown in Figure 4.2 cannot be easily identified.

Within the B0
s mode distribution the helicity angle shows a drop off towards the +1 and −1

values of cos(θh). This distribution is expected to be flat due to the major resonance contributions

relevant to the B0
s mode being scalar in nature. There appears to be a slight discrepancy between

data and simulation towards the −1 value. This is not believed to be a genuine effect as this angle

should be symmetric and so this is expected to disappear in a future analysis with more data. The

different shape between the B0 and B0
s helicity angle distributions is caused by the larger vector

resonance contribution into the B0 mode.

10.3 Final Conclusions

To conclude, the analysis presented within this thesis succesfully provides a set of branching

fraction measurements for the decays B0(B0
s )→ π+π−µ+µ−. The B0

s mode measurement in

the full q2 range is updated with the LHCb Run 2 data for the first time and the first confirmed

observation of the B0 mode in the full q2 range is made using the combined Run 1 and Run 2

LHCb datasets. Furthermore, the analysis provides a statistically significant measurement of the

branching fraction of both modes within the low q2 region for the first time whilst providing

an equivalent statistically significant measurement for the B0 mode in the high q2 region. To

achieve a 5 σ confirmation of the B0
s mode within the high q2 region, additional data will be

required from future LHC runs. A larger dataset would also help to significantly reduce the size

of the uncertainties on the experimental results as the largest systematic uncertainty relevant for

the analysis is only around half the size of the statistical uncertainty. The results do not show

any significant tensions with either the previous LHCb measurements nor with the theoretical

predictions. The total uncertainty on the theoretical predictions is dominated by large form factor

uncertainties and efforts within the theory community to reduce the size of these is of paramount

importance to enable these results to be better compared to the SM predictions in the future.

The measurements performed make extensive use of a decay model to describe the

different resonant contributions to the π+π− final state. The accuracy of the models is checked

after the completion of the analysis. The ability of the decay model to predict the distributions

expected for the B0
s mode is seen to be very good. The B0 mode decay model is seen to perform

relatively well but systematically underestimates the vector resonance contributions to the system.
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This is something which can be improved within a future analysis once the relative contributions

to the π+π− system are well known experimentally.

Confirmation of the rare mode requires the demonstration that the π+π− pair originates

from a ρ0(770) for the B0 mode and a f0(980) for the B0
s mode. The data does indeed show

large contributions from these two intermediate resonances. Nevertheless, a final confirmation of

the rare modes requires the validation of the quantum numbers of the contributing resonances.

This is something only possible with the inclusion of further data.
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Figure 10.6: Comparisons between the unfolded signal data distributions (black) and equivalent
simulated distributions (red) where the simulated samples have the decay model weights of
Chapter 6 applied to include contributions from the resonances listed in Table 6.3. The left
column applies to the B0 mode while the right column to the B0

s mode. The top row shows the
m(π+π−) distributions, the middle row the q2 distributions, and the bottom row the distribution
of the cosine of the pion helicity angle.
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APPENDIXA
LHCb Simulation Software and

Service Task

“ To err is human, but to really foul things up you need a computer ”
Paul R. Ehrlich,

This appendix provides a brief description of how Monté Carlo simulation is generated

within the context of the LHCb data flow. In addition, a short discussion of service work

completed for the collaboration is provided.

A.1 Monté Carlo Simulation and the LHCb data flow

Almost every analysis performed by LHCb, including the analysis presented within this thesis,

makes extensive use of Monté-Carlo (MC) simulation samples. Simulated samples are used to

evaluate efficiencies, model both signal shapes and yields and evaluate systematic uncertainties.

LHCb MC samples are generated using a multi-step process with each step involving the applica-

tion of software which fulfills a particular function. The entire generation process is encapsulated

within LHCb’s Gauss framework [196] and fits into the overall LHCb data flow, represented by

the schematic shown in Figure A.1.

The first step in the GAUSS framework involves the generation of proton-proton collision

events with the PYTHIA program [198] which initially generates a “hard” gg→ qq̄ process.

Then, the momenta of the different partons is determined using parton distribution functions
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Figure A.1: The LHCb data flow with the path that the simulation takes in red before joining the
same path as the data in blue. The LHCb drawing in the top left is taken from [197]

and this information is used to model the parton-parton interactions. The modelling of the

parton interactions results in a realistic outgoing partonic structure which is then used to generate

showers. These showers are subsequently organised into colour neutral “string” objects in order

to fulfill the colour neutrality demanded by QCD. Finally, PYTHIA fragments the different string

objects into hadrons. The LHCb-specific implementation of the software then repeats this process

until a hadron emerges of the desired flavour which, for an LHCb analysis, is normally a beauty

or charm hadron.

Once the hadronisation is completed the hadron needs to be decayed. The decay of heavy

hadrons is achieved using the C++ EvtGen software package [199] which makes use of full

amplitude models. Using amplitude information has the distinct advantage that the resulting

models can describe complex physical phenomena, such as CP violation or angular correlations.

EvtGen includes in excess of 70 different physics models and, due to it’s modularity, it is easy

for an analyst to write new physics models which can be merged into the code easily if the need

arises. In the absence of a suitable decay model, EvtGen can be run with a simple phase space

description which only takes into account kinematic information.

The final state particles which emerge after the application of EvtGen are then passed

onto the next stage of the software chain, the GEANT4 package [200]. This step includes the

effect of the particle interactions with the materials of the LHCb detector itself and outputs the

location of any charge deposits in sensitive sub-detectors. GEANT4 includes electromagnetic,
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hadronic and optical processes and is able to calculate the effect of these interactions in a wide

variety of highly complex geometries.

The final output of GAUSS is passed through the Boole, Brunel and Moore software

packages which simulate the digitisation of an electronic signal, the reconstruction of particle

tracks and then both the software and hardware trigger decisions respectively. More information

on these packages can be found in [201–203]. Finally, as is done with data, the simulated

samples undergo a stripping selection and are converted into ROOT ntuples for off-line physics

analysis using the DaVinci package [204]. In order to ensure that the simulated samples are as

representative of reality as possible, the simulated samples are treated by the Brunel, Moore

and DaVinci software packages almost identically to the way that the data is treated.

A.2 The DecFile package

For the LHCb analyst the interaction with EvtGen is primarily limited to the writing of a

so-called DecFile [205]. A DecFile allows for the customisation of the EvtGen execution,

providing a simulation sample tailored for a specific physics analysis. These customisations

include forcing the mother particle to decay to a particular set of final state particles, via either a

single or multiple decay trees. Branching fractions of the decay trees are either left as a parameter

for the user to edit, or, by default, set to values taken from the Particle Data Group [154]. It is

also possible within the DecFile for the user to overwrite physical parameters of the decay,

such as the masses and widths of different particles. This can be useful for decays including

particles where these properties are not currently well known or if the world values change with

time. Users are also able to specify which decay model, if any, is required for the decay. The

parameters of the model are specified as arguments to the model in the same order as they are in

the EvtGen implementation.

Upon completion of a new DecFile the Gauss framework generates an options file

which translates the decay in the DecFile into a format which is compatible with an execution

of EvtGen. However, due to the large number of files used by the collaboration, and due to

the extensive functionality of EvtGen, the supply of additional information which clarifies the

nature of both the decay and the decay model is useful. This is achieved using a unique identifier

for each file which comprises 8 separate flags – together known as the “Event Type”.
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The different flags of the Event Type include:

• “g” The general flag – Indicates general information about the type of process, such as

whether or not it contains a b quark

• “s” The selection flag – Indicates which particles are required to be present within the

event, such as the assertion that a B0
s be included

• “d” The decay flag – Indicates whether the mother is forced to decay to a particular state,

multiple states, or left to decay according to information from the Particle Data Group

• “c” The charm and lepton flag – Indicates how many charmonium, open charm, electrons

or muons there are within the decay. This is necessary to determine whether a tertiary

vertex from a charm hadron is expected and also to indicate the presence of particles

relevant for the triggering process

• “t” The track flag – Indicates the number of charged tracks in the decay which are

considered stable within the LHCb acceptance

• “n” The neutral flag – Indicates the number of neutral particles which can decay to final

states, such as γγ which are relevant to the ECAL triggering decisions

• “x” The extra flag – Used to distinguish the DecFile from other, similar files. Also used

to specify which resonance is to be produced if an excited beauty of charm resonance is

requested

• “u” The user flag – Used to distinguish similar files when all other flags are the same as

another DecFile

An example of an Event Type used within the analysis presented within this thesis is

11114022 which describes B0→ ρ0(770)µ+µ− decays where ρ0(770)→ π+π−. Here, the

general flag value of 1 indicates that the simulated sample contains a b quark. The selection flag

is set to 1 to specifically select a B0 mother while the decay flag is also set to 1 to force the decay

of the ρ0(770) to a π+π− final state. The charm and lepton flag is set to 1 to indicate the presence

of muons within the final state and the track flag is set to 4 as there are four charged final state

tracks. Finally, the neutral flag is set to 0 as their are no neutral particles in the forced part of the

decay chain. The final two tracks are set to values to distinguish the decay from other, already

existing configurations.

A second example is the Event Type 13144014 which is used within the analysis for

the simulated sample of B0
s→ J/ψf0(980) decays where J/ψ→ µ+µ− and f0(980)→ π+π−.
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In this case the general flag is as before however the selection flag is set to a value of 3 to specify

the B0
s mother. The decay flag is also set to the previous value whereas the charm and lepton flag

takes the value of 4 to specify the existence of the charmonium J/ψ resonance. The remaining

flags are set in the same way as previously.

Due to the reliance of LHCb physics analyses on simulated samples, the process of writing

a sensible DecFile is a crucial step within the analysis procedure. As part of my service task

for the LHCb collaboration I helped to maintain the DecFile software package. This involved

checking all new DecFiles written by analysts and running tests on them to ensure that they

successfully generated test samples. These tests included making sure that the CPU time for

the generation was appropriate, ensuring that the content of the DecFile was compatible with

the chosen Event Type, ensuring that particular selection and acceptance cuts were as intended

for the analysis, and ensuring that the documentation provided by the proponent was complete

and comprehensive. Once a DecFile was complete and successfully passed all tests, I would

merge the new file with the existing software package. Over the course of my service task several

hundred new files were added to the software package.
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APPENDIXB
Invariant Mass Fit Parameters

“ If you have a procedure with 10 parameters, you probably missed some. ”
Alan Perlis,

This appendix includes parameter values, not included within the main body of this thesis,

resulting from the invariant mass fits to the MC and data samples used within the analysis. Fit

parameters relevant for the control mode include the double Crystal Ball + Gaussian fit to the

MC B0→ J/ψK∗0 mode which can be found in Table B.1 and the two separate Gaussian and

single Crystal Ball fits to data to extract the fit parameters for the B0→ J/ψK+ mode which can

be found in Table B.2. Fit parameters relevant for the resonant mode include the double Crystal

Ball + Gaussian fit to the MC B0→ J/ψπ+π− mode found in Table B.3; the double Crystal

Ball fit to the MC B0→ J/ψK+π− mode found in Table B.4; the double Crystal Ball fit to the

MC B0
s → J/ψη′ mode found in Table B.5 and the Bifurcated Gaussian + Gaussian fit to the

RapidSim B+
c mode found in Table B.6. Fit parameters relevant for the rare mode include the

double Crystal Ball fits to the B0→ K+π−µ+µ− mode within the data found in Table B.7; the

double Crystal Ball + Gaussian fit to the MC B0→ π+π−µ+µ− mode found in Table B.3 and

the double Crystal Ball fit to the MC B0→ K+π−µ+µ− mode found in Table B.9.
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Table B.1: Parameters from the fit to the B0→ J/ψK∗0 MC to determine the signal lineshape
for the control mode invariant mass fits. The parameters are shown for 2011+2012, 2015+2016
and 2017+2018.

Parameter 2011+2012 2015+2016 2017+2018
α1 −2.13± 0.06 −2.10± 0.23 −2.00± 0.20
α2 0.41± 0.02 0.44± 0.07 0.47± 0.06
n1 3.27± 0.14 3.26± 0.32 3.41± 0.29
f1 0.74± 0.04 0.69± 0.19 0.62± 0.16
fG 0.64± 0.10 0.54± 0.28 0.48± 0.18
σCB 17.35± 0.68 18.37± 2.37 18.75± 1.74
σG 0.67± 0.01 0.69± 0.01 0.69± 0.02
µB0 5280.70± 0.06 5281.12± 0.16 5281.13± 0.12

Fit Parameter 2011+2012 2015+2016 2017+2018

m(J/ψK+π−) Shape fit

αCB −0.44± 0.08 −0.50± 0.10 −0.47± 0.08
µB+ 5480.65± 9.19 5481.72± 10.24 5471.90± 8.70
σCB 41.90± 6.12 46.43± 7.04 47.11± 5.88
λ −0.01± 0.02 −0.01± 0.02 −0.01± 0.02

N(B+→ J/ψK+) 246.00± 15.37 165.00± 12.47 301.02± 17.07
Nbkg 0.000± 0.002 0.000± 0.000 0.000± 0.001

m(J/ψK+) Yield fit

µB+ 5282.77 ± 1.323 5280.43 ± 1.61 5281.24 ± 1.40
σG 17.49 ± 1.10 16.61 ± 1.29 18.23 ± 1.14
λ −0.012 ± 0.002 −0.014 ± 0.002 −0.010 ± 0.001

N(B+→ J/ψK+) 220 ± 16 136 ± 13 232 ± 17
Nbkg 48 ± 9 56 ± 9 114 ± 13

Table B.2: Parameters from the fits to the invariant J/ψK+π− and J/ψK+ mass distributions
to determine the shape and yield of the B+→ J/ψK+ background within the control mode
invariant mass fits.
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Table B.3: Parameters from the fit to the B0→ J/ψπ+π− MC for 2011+2012, 2015+2016 and
2017+2018 with and without the J/ψ mass constraint. The parameters are used within the final
resonant mode invariant mass fits.

Fit Parameter 2011+2012 2015+2016 2017+2018

No J/ψ Constraint

α1 −2.39 ± 0.17 −2.37 ± 0.17 −2.14 ± 0.51
α2 0.41 ± 0.10 0.50 ± 0.15 0.40 ± 0.10
f1 0.74 ± 0.17 0.69 ± 0.15 0.70 ± 0.32
f2 0.69 ± 0.40 0.71 ± 0.21 0.66 ± 0.64
σCB 17.78 ± 2.49 18.00 ± 1.74 17.23 ± 3.09

σG/σCB 0.66 ± 0.11 0.59 ± 0.06 0.73 ± 0.14
µB0 5280.76 ± 0.22 5281.18 ± 0.23 5281.39 ± 0.30

J/ψ Constraint

α1 −1.21 ± 0.34 −1.55 ± 0.60 −0.70 ± 0.79
α2 0.40 ± 0.11 0.43 ± 0.16 0.55 ± 0.14
f1 0.68 ± 0.15 0.75 ± 0.29 0.41 ± 0.34
f2 0.25 ± 0.06 0.45 ± 0.51 0.24 ± 0.09
σCB 12.60 ± 1.56 10.39 ± 4.52 11.60 ± 3.28

σG/σCB 0.53 ± 0.06 0.59 ± 0.10 0.60 ± 0.16
µB0 5279.97 ± 0.05 5280.48 ± 0.13 5280.33 ± 0.10

Fit Parameter 2011+2012 2015+2016 2017+2018

No J/ψ Constraint

α1 −1.84 ± 0.04 −0.14 ± 1.18 −1.58 ± 4.72
α2 0.001 ± 0.772 0.715 ± 0.421 0.000 ± 0.010
n1 0.02 ± 65.24 0.02 ± 0.20 0.01 ± 0.01
f1 0.33 ± 0.65 0.00 ± 0.01 0.00 ± 0.00
σCB 22.75 ± 1.44 23.92 ± 7.16 35.62 ± 10.39
µB0 5219.34 ± 12.32 5214.42 ± 10.07 5198.62 ± 17.06

J/ψ Constraint

α1 −0.52 ± 0.13 −0.57 ± 0.85 −1.13 ± 1.92
α2 0.14 ± 0.06 0.33 ± 3.09 0.14 ± 1.69
n1 9.99 ± 18.31 0.74 ± 13.60 0.01 ± 0.01
f1 0.06 ± 0.02 0.05 ± 0.11 0.13 ± 0.56
σCB 12.09 ± 0.89 11.50 ± 9.65 19.51 ± 10.99
µB0 5226.74 ± 1.53 5222.61 ± 17.49 5218.02 ± 13.87

Table B.4: Parameters from the fit to the B0→ J/ψK+π− MC for 2011+2012, 2015+2016 and
2017+2018 for the case with and without a J/ψ mass constraint. The parameters are used within
the final resonant mode invariant mass fits.
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Fit Parameter 2011+2012 2015+2016 2017+2018

No J/ψ Constraint

α1 −0.40 ± 0.24 −0.72 ± 0.06 −0.53 ± 0.06
α2 0.11 ± 0.02 0.08 ± 0.01 0.08 ± 0.01
f1 0.001 ± 0.001 0.007 ± 0.001 0.004 ± 0.001
σCB 35.00 ± 1.30 33.07 ± 0.57 33.82 ± 0.42
µB0 5281.11 ± 2.49 5284.93 ± 1.05 5283.84 ± 0.79

J/ψ Constraint

α1 −0.73 ± 0.10 −0.77 ± 0.03 −0.62 ± 0.05
α2 0.10 ± 0.02 0.07 ± 0.01 0.08 ± 0.00
f1 0.010 ± 0.000 0.020 ± 0.000 0.010 ± 0.000
σCB 30.26 ± 1.62 28.16 ± 0.57 28.86 ± 0.41
µB0 5286.18 ± 2.90 5289.12 ± 0.96 5288.52 ± 0.71

Table B.5: Parameters from the fit to the B0
s → J/ψη′ MC for 2011+2012, 2015+2016 and

2017+2018 with and without the J/ψ mass constraint. The parameters are used within the final
resonant mode mass fits.

Table B.6: Parameters from the fit to the B+
c RapidSim sample. The L and R subscripts denote

the left and right components of the bifurcated Gaussian which correspond to side of the Gaussian
lower than, and higher than the mean respectively. The parameters are used within the final
resonant mode invariant mass fits.

Parameter Value
fG 0.38 ± 0.01
µG 4800.00 ± 4.02
µBG 6076.69 ± 1.66
σG 347.11 ± 7.10
σL 500.53 ± 17.71
σR 32.17 ± 0.96
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Dataset Parameter Full q2 Low q2 High q2

2011+2012

µCB 5284.94 ± 0.76 5284.64 ± 0.92 5285.22 ± 1.97
σCB 16.7 ± 0.8 15.7 ± 1.0 17.8 ± 2.0
aCB1 −1.65 ± 0.34 −1.53 ± 0.36 −0.16 ± 0.29
aCB2 0.85 ± 0.26 0.65 ± 0.45 1.00 ± 0.23
nCB1 0.78 ± 0.55 1.58 ± 0.91 2.56 ± 0.92
nCB2 0.85 ± 0.26 0.65 ± 0.45 1.00 ± 0.23
fCB1 0.36 ± 0.24 0.52 ± 0.26 0.13 ± 0.09
λ −0.029 ± 0.041 −0.050 ± 0.013 −0.050 ± 0.001

Nbkg 30 ± 38 8 ± 13 2 ± 2
N(B0→ K+π−µ+µ−) 1202 ± 51 840 ± 31 218 ± 15

2015+2016

µCB 5278.80 ± 0.69 5278.49 ± 0.84 5279.88 ± 0.57
σCB 16.6 ± 0.7 16.3 ± 1.0 15.7 ± 0.6
aCB1 −0.39 ± 0.28 −1.36 ± 0.56 −1.47 ± 0.29
aCB2 1.41 ± 0.26 1.28 ± 0.55 0.97 ± 0.28
nCB1 1.47 ± 0.87 1.46 ± 1.00 2.40 ± 1.32
nCB2 1.83 ± 0.76 1.89 ± 1.42 1.42 ± 1.13
fCB1 0.13 ± 0.12 0.40 ± 0.36 0.47 ± 0.26
λ −0.018 ± 0.042 −0.050 ± 0.003 −0.012 ± 0.009

Nbkg 49 ± 67 7 ± 9 0 ± 1
N(B0→ K+π−µ+µ−) 1188 ± 115 856 ± 30 202 ± 24

2017+2018

µCB 5280.33 ± 0.51 5279.88 ± 0.57 5282.76 ± 1.43
σCB 15.9 ± 0.5 15.7 ± 0.6 15.3 ± 1.2
aCB1 −1.48 ± 0.31 −1.47 ± 0.29 −5.92 ± 4.91
aCB2 1.02 ± 0.21 0.97 ± 0.28 0.97 ± 0.18
nCB1 1.32 ± 0.77 2.40 ± 1.38 2.28 ± 1.22
nCB2 2.45 ± 1.27 2.61 ± 0.45 4.21 ± 2.82
fCB1 0.31 ± 0.19 0.47 ± 0.26 0.02 ± 0.13
λ −0.014 ± 0.012 −0.012 ± 0.009 −0.004 ± 0.004

Nbkg 166 ± 103 154 ± 83 25 ± 9
N(B0→ K+π−µ+µ−) 2479 ± 114 1707 ± 92 392 ± 21

Table B.7: Parameters from the fit to the m(K+π−µ+µ−) distribution for the different datasets
and the different q2 regimes. The yield is scaled using efficiencies and used to constrain the
B0→ K+π−µ+µ− background within the final rare mode invariant mass fits.
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Table B.8: Parameters from the fit to the B0→ π+π−µ+µ− MC for 2011+2012, 2015+2016 and
2017+2018. The parameters are used within the final rare mode invariant mass fits.

Parameter 2011+2012 2015+2016 2017+2018
α1 −1.57 ± 0.13 −0.62 ± 0.05 −2.15 ± 0.04
α2 1.16 ± 0.06 1.61 ± 0.07 0.64 ± 0.09
n1 3.76 ± 0.21 6.80 ± 0.79 3.14 ± 0.19
n2 1.56 ± 0.08 1.35 ± 0.14 1.71 ± 0.56
f1 0.44 ± 0.05 0.06 ± 0.02 0.79 ± 0.00
f2 0.69 ± 0.10 0.73 ± 0.16 0.82 ± 0.05
µB0 5280.48 ± 0.06 5280.56 ± 0.09 5281.10 ± 0.09
σCB 13.94 ± 0.18 14.05 ± 0.13 14.76 ± 0.20

σG/σdCB 1.33 ± 0.08 1.32 ± 0.26 1.43 ± 0.02

Table B.9: Parameters from the fit to the B0→ Kπµ+µ− MC fit for 2011+2012, 2015+2016 and
2017+2018. The parameters are used within the final rare mode invariant mass fits.

Parameter 2011+2012 2015+2016 2017+2018
α1 −0.63 ± 0.67 −2.37 ± 3.58 −0.03 ± 0.53
α2 0.25 ± 0.20 7.39 ± 2.40 0.27 ± 0.02
f1 0.021 ± 0.099 0.270 ± 0.835 0.001 ± 0.024
σ1 25.14 ± 6.37 32.36 ± 6.31 15.78 ± 9.72
σ2 20.70 ± 1.82 32.64 ± 2.69 22.17 ± 0.93
µB0 5227.59 ± 3.17 5204.17 ± 2.87 5224.00 ± 0.44
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APPENDIXC
Additional Figures

“ Mankind invented a system to cope with the fact that we are so intrinsically

lousy at manipulating numbers. It’s called the graph. ”
Charlie Munger,

This appendix contains additional material not included within the main body of the thesis.

These include figures which add additional details to the trigger efficiency correction discussion

from Chapter 7 and versions of the invariant mass fits from Chapter 8 where the goodness of fit is

included via residual pull plots.

C.1 Trigger Efficiency Correction - Additional Material

The L0 trigger efficiency corrections are determined in Chapter 7 using the TISTOS method. The

final correcting weights are shown in Figure 7.3 where the values of the correcting weights are

shown to be approximately unity. From Figure 7.3 it can be seen that some adjacent bins within

the 2D histograms show quite different values to one another. This is particularly seen in the

largest bin of maximum muon pT. This effect results from the binning scheme used whereby

certain bins cover areas of phase space with a relatively small number of candidates meaning that

a fine binning scheme can result in noticeable efficiency jumps between adjacent bins. This effect

can be seen in the equivalent plots containing the MC L0 trigger efficiency (Figure C.1) and data

L0 trigger efficiency (Figure C.2) values which together are used to determine the correction

weights. This effect could be removed by absorbing some of the smaller bins in this region of
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phase space into larger bins which would subsequently reduce the difference between adjacent bin

values. However, as the L0 trigger correction values are almost unity, and because the corrections

largely cancel within the ratio between the rare mode and control mode measurements, this effect

is small enough to be ignored.
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Figure C.1: The L0 trigger efficiency evaluated from the MC samples in bins of maximum muon
pT and the product of muon pT values. The figures show, from the left to right on the top row the
2011, 2012 and 2015 histograms. On the bottom row the equivalent histograms are shown for the
2016, 2017 and 2018 samples.

C.2 Invariant Mass Fits - Goodness of Fit

This section presents the invariant mass fits from Chapter 8 with additional pull plots. The pull

plots show the difference between the fitted shape and the data/MC, divided by the corresponding

uncertainty. The pulls therefore provide a visual way of determining the goodness of fit. The

pull plots are not included within the main body of the thesis to conserve space, however are

presented here for completeness.

Figure C.3 shows the fit to the B0→ J/ψK∗0 MC samples to model the control mode

signal shape, Figure C.4 shows the fits to the B+→ J/ψK+ mode within the data and Figure C.5

shows the final control mode fits.

For the resonant mode Figure C.6 shows the fits to the B0→ J/ψπ+π− MC, Figure C.7

shows the fits to the B0→ J/ψK+π− MC, Figure C.8 shows the fits to the B0
s→ J/ψη′ MC,
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Figure C.2: The L0 trigger efficiency evaluated from the data samples in bins of maximum muon
pT and the product of muon pT values using the TISTOS method. The figures show, from the left
to right on the top row the 2011, 2012 and 2015 histograms. On the bottom row the equivalent
histograms are shown for the 2016, 2017 and 2018 samples.

Figure C.9 shows the fits to the B0
s→ J/ψφ MC, Figure C.10 shows the fit to the B+

c background

RapidSim sample, Figure C.11 shows the final resonant mode fits and Figure C.12 shows the

final resonant mode fits without the background yield constraints applied.

Finally, Figure C.13 shows the fits to the B0→ π+π−µ+µ− MC, Figure C.14 shows

the fits to the B0→ K+π−µ+µ− MC, Figure C.15 shows the final rare mode fits for the full q2

range, Figure C.16 shows the final rare mode fits for the low q2 range, Figure C.17 shows the

final rare mode fits for the high q2 range and finally, Figure C.18 shows the final rare mode fits

performed separately on the Run 1 and two Run 2 datasets.

209



5200 5300 5400 5500 5600
]2c) [MeV/-µ+µ-p+K(m

2-10

1-10

1

10

210

310

410] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

520052505300535054005450550055505600
]2c) [MeV/pKym(J/

2000
4000
6000
8000

10000
12000
14000
16000
18000

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5300 5400 5500 5600
]2c) [MeV/-µ+µ-p+K(m

2-10

1-10

1

10

210

310

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

520052505300535054005450550055505600
]2c) [MeV/pKym(J/

1000
2000
3000
4000
5000
6000
7000
8000

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5300 5400 5500 5600
]2c) [MeV/-µ+µ-p+K(m

2-10

1-10

1

10

210

310

410] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

520052505300535054005450550055505600
]2c) [MeV/pKym(J/

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

Figure C.3: Invariant mass fits to the B0→ J/ψK∗0 MC samples using the sum of two Crystal
Ball functions and a Gaussian function for the 11+12 (top left), 15+16 (top right) and 17+18
(bottom) MC samples. The candidates are weighted with the full set of analysis correcting
weights.
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Figure C.4: Invariant mass fits to the three datasets to determine the shape and yield of B+→
J/ψK+ decays present within the final control mode fit. The top row shows the fit to the
m(K+π−µ+µ−) invariant mass using a single CB shape for the 2011+2012 (left), 2015+2016
(middle) and 2017+2018 (right) datasets to extract a background shape. The bottom row shows,
for the same three datasets, Gaussian fits to the m(K+µ+µ−) distribution to extract an estimated
background yield.
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Figure C.5: The invariant mass fits to the B0→ J/ψK∗0 control mode for the 2011+2012 dataset
(top left), the 2015+2016 dataset (top right) and the 2017+2018 dataset (bottom).
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Figure C.6: Invariant mass fits to the B0→ J/ψπ+π− MC samples which are used to determine
the signal shapes for the final resonant mode fits. The figures are the same as shown in Figure 8.5
with pull plots included.

213



5200 5250 5300 5350 5400
]2c) [MeV/-µ+µ-p)+p®+K((m

10
20
30
40
50
60
70
80
90] )2 c

C
an

di
da

te
s 

/ (
 4

 [M
eV

/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

10
20
30
40
50
60
70
80
90

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5250 5300 5350 5400
]2c) [MeV/-p)+p®+K(yJ/(m

20

40

60

80

100

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

20

40

60

80

100

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5250 5300 5350 5400
]2c) [MeV/-µ+µ-p)+p®+K((m

2

4

6

8

10

12

14] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

2

4

6

8

10

12

14

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5250 5300 5350 5400
]2c) [MeV/-p)+p®+K(yJ/(m

2
4
6
8

10
12
14
16
18
20] )2 c

C
an

di
da

te
s 

/ (
 4

 [M
eV

/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

2
4
6
8

10
12
14
16
18
20

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5250 5300 5350 5400
]2c) [MeV/-µ+µ-p)+p®+K((m

5

10

15

20

25] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

5

10

15

20

25

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5250 5300 5350 5400
]2c) [MeV/-p)+p®+K(yJ/(m

5

10

15

20

25] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5250 5300 5350 5400
]2c)) [MeV/+p®(Kym(J/

5

10

15

20

25

Ev
en

ts
 / 

( 4
 )

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

Figure C.7: Invariant mass fits to the B0→ J/ψK+π− MC samples made with the sum of two
CB shapes. The figures are the same as shown in Figure 8.6 with added pull plots.
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Figure C.8: Invariant mass fits to the B0
s→ J/ψη′ MC samples made with the sum of two CB

shapes. The plots are the same as shown in Figure 8.7 with added pull plots.
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Figure C.9: Invariant mass fits to the B0
s→ J/ψφ MC samples implemented via a KDE. The fits

are the same as shown in Figure 8.8 with added pull plots.
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Figure C.10: The invariant mass fit to the RapidSim simulated sample of B+
c background.
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<latexit sha1_base64="FtCsLE2plj5gmPUvE6xsdL2qMQc=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4tB8BR2JaLHYC4eI5gHJEuYnUySIfNYZnrFsObgr3jxoIhXf8Obf+Mk2YMmFjQUVd10d0UxZwZ8/9vJrayurW/kNwtb2zu7e+7+QcOoRBNaJ4or3YqwoZxJWgcGnLZiTbGIOG1Go+rUb95TbZiSdzCOaSjwQLI+Ixis1HWPOkAfQIu0qkTEJAalGeaTrlv0S/4M3jIJMlJEGWpd96vTUyQRVALh2Jh24McQplgDI5xOCp3E0BiTER7QtqUSC2rCdHb/xDu1Ss/rK21LgjdTf0+kWBgzFpHtFBiGZtGbiv957QT6V2HKZJwAlWS+qJ9wD5Q3DcPrMU0J8LElmGhmb/XIEGtMwEZWsCEEiy8vk8Z5KSiXLm7Lxcp1FkceHaMTdIYCdIkq6AbVUB0R9Iie0St6c56cF+fd+Zi35pxs5hD9gfP5AxRLlss=</latexit>

B0
s → J/ψπ+π−

<latexit sha1_base64="PyroW8CnLCQGi036jAMMFq1/aVs=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0UQ1JpIRZelbsRVBfuAJi2T6aQdOkmGmYlSQn7Cjb/ixoUibgV3/o3TNgttPXC5h3PuZeYejzMqlWV9G7mFxaXllfxqYW19Y3PL3N5pyCgWmNRxxCLR8pAkjIakrqhipMUFQYHHSNMbXo395j0RkkbhnRpx4gaoH1KfYqS01DWPq53ESruJTKEjaH+gkBDRA7w5dbik0OG0kxyl036Sds2iVbImgPPEzkgRZKh1zS+nF+E4IKHCDEnZti2u3AQJRTEjacGJJeEID1GftDUNUUCkm0yuSuGBVnrQj4SuUMGJ+nsjQYGUo8DTkwFSAznrjcX/vHas/Es3oSGPFQnx9CE/ZlBFcBwR7FFBsGIjTRAWVP8V4gESCCsdZEGHYM+ePE8aZyW7XDq/LRcr1SyOPNgD++AQ2OACVMA1qIE6wOARPINX8GY8GS/Gu/ExHc0Z2c4u+APj8wf1S56x</latexit>

B0 → J/ψπ+π−

<latexit sha1_base64="+zZW+KuLzPju8aVxA1NKX5gn/68=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0UoiDWRii5L3YirCvYBTVom00k7dJIMMxOlhPyCG3/FjQtF3Lpz5984bbPQ1gOXezjnXmbu8TijUlnWt5FbWl5ZXcuvFzY2t7Z3zN29poxigUkDRywSbQ9JwmhIGooqRtpcEBR4jLS80dXEb90TIWkU3qkxJ26ABiH1KUZKSz2zVOsmVgodQQdDhYSIHuDNqcMlhQ6n3eQ4nfWTtGcWrbI1BVwkdkaKIEO9Z345/QjHAQkVZkjKjm1x5SZIKIoZSQtOLAlHeIQGpKNpiAIi3WR6UQqPtNKHfiR0hQpO1d8bCQqkHAeengyQGsp5byL+53Vi5V+6CQ15rEiIZw/5MYMqgpN4YJ8KghUba4KwoPqvEA+RQFjpEAs6BHv+5EXSPCvblfL5baVYrWVx5MEBOAQlYIMLUAXXoA4aAINH8AxewZvxZLwY78bHbDRnZDv74A+Mzx9hYpy/</latexit>

B0 → J/ψKπ

<latexit sha1_base64="eFdVo2tYKHUZ+SFD3agretNxMSY=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqs5IRZelbkQ3FewDOmPJpJk2NJMJSUYpQ3du/BU3LhRx6y+4829M21lo64ELh3Pu5d57AsGo0o7zbeUWFpeWV/KrhbX1jc0te3unoeJEYlLHMYtlK0CKMMpJXVPNSEtIgqKAkWYwuBj7zXsiFY35rR4K4keox2lIMdJG6tj71bvUGUFP0l5fIynjB3h17AlF4TX0BO3YRafkTADniZuRIshQ69hfXjfGSUS4xgwp1XYdof0USU0xI6OClygiEB6gHmkbylFElJ9O/hjBQ6N0YRhLU1zDifp7IkWRUsMoMJ0R0n01643F/7x2osNzP6VcJJpwPF0UJgzqGI5DgV0qCdZsaAjCkppbIe4jibA20RVMCO7sy/OkcVJyy6XTm3KxUs3iyIM9cACOgAvOQAVcghqoAwwewTN4BW/Wk/VivVsf09aclc3sgj+wPn8Aed6YbQ==</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>

B0 → J/ψφ

<latexit sha1_base64="+aQaup9jggT5DYa9vVb7FdtsctE=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFc1UQquix1I64q2Ac0sUymk2boZCbMTJQSunLjr7hxoYhbv8Gdf+O0zUJbD1w4nHMv994TJIwq7Tjf1sLi0vLKamGtuL6xubVt7+w2lUglJg0smJDtACnCKCcNTTUj7UQSFAeMtILB5dhv3ROpqOC3epgQP0Z9TkOKkTZS1z6o3WXOCHqS9iONpBQP8PrESxSFXhLRrl1yys4EcJ64OSmBHPWu/eX1BE5jwjVmSKmO6yTaz5DUFDMyKnqpIgnCA9QnHUM5ionys8kbI3hklB4MhTTFNZyovycyFCs1jAPTGSMdqVlvLP7ndVIdXvgZ5UmqCcfTRWHKoBZwnAnsUUmwZkNDEJbU3ApxhCTC2iRXNCG4sy/Pk+Zp2a2Uz24qpWotj6MA9sEhOAYuOAdVcAXqoAEweATP4BW8WU/Wi/VufUxbF6x8Zg/8gfX5A0bRmGA=</latexit>

B+
c

<latexit sha1_base64="aksElpNKbikFCrZZy0SckrTXOmg=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSIIQtmVih5LvXisYD+kXUs2zbahSXZJskJZ9ld48aCIV3+ON/+NabsHbX0w8Hhvhpl5QcyZNq777aysrq1vbBa2its7u3v7pYPDlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Gbqt5+o0iyS92YSU1/goWQhI9hY6aHeT0n2mJ5n/VLZrbgzoGXi5aQMORr90ldvEJFEUGkIx1p3PTc2foqVYYTTrNhLNI0xGeMh7VoqsaDaT2cHZ+jUKgMURsqWNGim/p5IsdB6IgLbKbAZ6UVvKv7ndRMTXvspk3FiqCTzRWHCkYnQ9Hs0YIoSwyeWYKKYvRWREVaYGJtR0YbgLb68TFoXFa9aubyrlmv1PI4CHMMJnIEHV1CDW2hAEwgIeIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwCxwJBZ</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>
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Figure C.11: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets on a logarithmic scale to show the different background
components. The left column shows the fits without the J/ψ mass constraint applied and the right
plots with the J/ψ mass constraint applied.
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<latexit sha1_base64="FtCsLE2plj5gmPUvE6xsdL2qMQc=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4tB8BR2JaLHYC4eI5gHJEuYnUySIfNYZnrFsObgr3jxoIhXf8Obf+Mk2YMmFjQUVd10d0UxZwZ8/9vJrayurW/kNwtb2zu7e+7+QcOoRBNaJ4or3YqwoZxJWgcGnLZiTbGIOG1Go+rUb95TbZiSdzCOaSjwQLI+Ixis1HWPOkAfQIu0qkTEJAalGeaTrlv0S/4M3jIJMlJEGWpd96vTUyQRVALh2Jh24McQplgDI5xOCp3E0BiTER7QtqUSC2rCdHb/xDu1Ss/rK21LgjdTf0+kWBgzFpHtFBiGZtGbiv957QT6V2HKZJwAlWS+qJ9wD5Q3DcPrMU0J8LElmGhmb/XIEGtMwEZWsCEEiy8vk8Z5KSiXLm7Lxcp1FkceHaMTdIYCdIkq6AbVUB0R9Iie0St6c56cF+fd+Zi35pxs5hD9gfP5AxRLlss=</latexit>

B0
s → J/ψπ+π−

<latexit sha1_base64="PyroW8CnLCQGi036jAMMFq1/aVs=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0UQ1JpIRZelbsRVBfuAJi2T6aQdOkmGmYlSQn7Cjb/ixoUibgV3/o3TNgttPXC5h3PuZeYejzMqlWV9G7mFxaXllfxqYW19Y3PL3N5pyCgWmNRxxCLR8pAkjIakrqhipMUFQYHHSNMbXo395j0RkkbhnRpx4gaoH1KfYqS01DWPq53ESruJTKEjaH+gkBDRA7w5dbik0OG0kxyl036Sds2iVbImgPPEzkgRZKh1zS+nF+E4IKHCDEnZti2u3AQJRTEjacGJJeEID1GftDUNUUCkm0yuSuGBVnrQj4SuUMGJ+nsjQYGUo8DTkwFSAznrjcX/vHas/Es3oSGPFQnx9CE/ZlBFcBwR7FFBsGIjTRAWVP8V4gESCCsdZEGHYM+ePE8aZyW7XDq/LRcr1SyOPNgD++AQ2OACVMA1qIE6wOARPINX8GY8GS/Gu/ExHc0Z2c4u+APj8wf1S56x</latexit>

B0 → J/ψπ+π−

<latexit sha1_base64="+zZW+KuLzPju8aVxA1NKX5gn/68=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0UoiDWRii5L3YirCvYBTVom00k7dJIMMxOlhPyCG3/FjQtF3Lpz5984bbPQ1gOXezjnXmbu8TijUlnWt5FbWl5ZXcuvFzY2t7Z3zN29poxigUkDRywSbQ9JwmhIGooqRtpcEBR4jLS80dXEb90TIWkU3qkxJ26ABiH1KUZKSz2zVOsmVgodQQdDhYSIHuDNqcMlhQ6n3eQ4nfWTtGcWrbI1BVwkdkaKIEO9Z345/QjHAQkVZkjKjm1x5SZIKIoZSQtOLAlHeIQGpKNpiAIi3WR6UQqPtNKHfiR0hQpO1d8bCQqkHAeengyQGsp5byL+53Vi5V+6CQ15rEiIZw/5MYMqgpN4YJ8KghUba4KwoPqvEA+RQFjpEAs6BHv+5EXSPCvblfL5baVYrWVx5MEBOAQlYIMLUAXXoA4aAINH8AxewZvxZLwY78bHbDRnZDv74A+Mzx9hYpy/</latexit>

B0 → J/ψKπ

<latexit sha1_base64="eFdVo2tYKHUZ+SFD3agretNxMSY=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqs5IRZelbkQ3FewDOmPJpJk2NJMJSUYpQ3du/BU3LhRx6y+4829M21lo64ELh3Pu5d57AsGo0o7zbeUWFpeWV/KrhbX1jc0te3unoeJEYlLHMYtlK0CKMMpJXVPNSEtIgqKAkWYwuBj7zXsiFY35rR4K4keox2lIMdJG6tj71bvUGUFP0l5fIynjB3h17AlF4TX0BO3YRafkTADniZuRIshQ69hfXjfGSUS4xgwp1XYdof0USU0xI6OClygiEB6gHmkbylFElJ9O/hjBQ6N0YRhLU1zDifp7IkWRUsMoMJ0R0n01643F/7x2osNzP6VcJJpwPF0UJgzqGI5DgV0qCdZsaAjCkppbIe4jibA20RVMCO7sy/OkcVJyy6XTm3KxUs3iyIM9cACOgAvOQAVcghqoAwwewTN4BW/Wk/VivVsf09aclc3sgj+wPn8Aed6YbQ==</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>

B0 → J/ψφ

<latexit sha1_base64="+aQaup9jggT5DYa9vVb7FdtsctE=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFc1UQquix1I64q2Ac0sUymk2boZCbMTJQSunLjr7hxoYhbv8Gdf+O0zUJbD1w4nHMv994TJIwq7Tjf1sLi0vLKamGtuL6xubVt7+w2lUglJg0smJDtACnCKCcNTTUj7UQSFAeMtILB5dhv3ROpqOC3epgQP0Z9TkOKkTZS1z6o3WXOCHqS9iONpBQP8PrESxSFXhLRrl1yys4EcJ64OSmBHPWu/eX1BE5jwjVmSKmO6yTaz5DUFDMyKnqpIgnCA9QnHUM5ionys8kbI3hklB4MhTTFNZyovycyFCs1jAPTGSMdqVlvLP7ndVIdXvgZ5UmqCcfTRWHKoBZwnAnsUUmwZkNDEJbU3ApxhCTC2iRXNCG4sy/Pk+Zp2a2Uz24qpWotj6MA9sEhOAYuOAdVcAXqoAEweATP4BW8WU/Wi/VufUxbF6x8Zg/8gfX5A0bRmGA=</latexit>

B+
c

<latexit sha1_base64="aksElpNKbikFCrZZy0SckrTXOmg=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSIIQtmVih5LvXisYD+kXUs2zbahSXZJskJZ9ld48aCIV3+ON/+NabsHbX0w8Hhvhpl5QcyZNq777aysrq1vbBa2its7u3v7pYPDlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Gbqt5+o0iyS92YSU1/goWQhI9hY6aHeT0n2mJ5n/VLZrbgzoGXi5aQMORr90ldvEJFEUGkIx1p3PTc2foqVYYTTrNhLNI0xGeMh7VoqsaDaT2cHZ+jUKgMURsqWNGim/p5IsdB6IgLbKbAZ6UVvKv7ndRMTXvspk3FiqCTzRWHCkYnQ9Hs0YIoSwyeWYKKYvRWREVaYGJtR0YbgLb68TFoXFa9aubyrlmv1PI4CHMMJnIEHV1CDW2hAEwgIeIZXeHOU8+K8Ox/z1hUnnzmCP3A+fwCxwJBZ</latexit>

B0 → J/ψη′

<latexit sha1_base64="+AP2d3cHWFIlihpg9/8lIt5BkZg=">AAACDHicbVC7SgNBFJ2NrxhfUUubwSBYxV2JaBliI1YRzAOya5id3CRDZh/M3FXCkg+w8VdsLBSx9QPs/Bsnj0ITDwwczjmXO/f4sRQabfvbyiwtr6yuZddzG5tb2zv53b26jhLFocYjGammzzRIEUINBUpoxgpY4Eto+IPLsd+4B6VFFN7iMAYvYL1QdAVnaKR2vlC5S+0RdZXo9ZEpFT3Q6xM31oK6gMyNlQjApOyiPQFdJM6MFMgM1Xb+y+1EPAkgRC6Z1i3HjtFLmULBJYxybqIhZnzAetAyNGQBaC+dHDOiR0bp0G6kzAuRTtTfEykLtB4GvkkGDPt63huL/3mtBLsXXirCOEEI+XRRN5EUIzpuhnaEAo5yaAjjSpi/Ut5ninE0/eVMCc78yYukflp0SsWzm1KhXJnVkSUH5JAcE4eckzK5IlVSI5w8kmfySt6sJ+vFerc+ptGMNZvZJ39gff4AIJObDg==</latexit>
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Figure C.12: The final resonant mode invariant mass fits for the 2011+2012 (top), 2015+2016
(middle) and 2017+2018 (bottom) datasets on a logarithmic scale to show the different background
components where no yield constraints are applied. The left column shows the fits without the
J/ψ mass constraint applied and the right plots with the J/ψ mass constraint applied.

219



5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+p(m

2-10

1-10

1

10

210

310

410] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+pm(

2000

4000

6000

8000

10000

12000

14000

16000

Ev
en

ts
 / 

( 1
2 

)

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+pm(

500

1000

1500

2000

2500

3000

Ev
en

ts
 / 

( 1
2 

)

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+p(m

2-10

1-10

1

10

210

310

] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+pm(

2000

4000

6000

8000

10000

12000

Ev
en

ts
 / 

( 1
2 

)

5-
4-
3-
2-
1-
0
1
2
3
4
5

  

5200 5300 5400 5500 5600 5700 5800
]2c) [MeV/-µ+µ-p+p(m

2-10

1-10

1

10

210

310

410] )2 c
C

an
di

da
te

s 
/ (

 4
 [M

eV
/

Figure C.13: Invariant mass fits to the B0→ π+π−µ+µ− MC samples which serves as a proxy
for the signal shapes within the rare mode fits. The fits are performed with the sum of two CB
shapes and a Gaussian shape and can be seen for the 2011+2012 sample (top left), the 2015+2016
sample (top right) and the 2017+2018 sample (bottom). The candidates are weighted with the
full set of analysis correcting weights.
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Figure C.14: The invariant mass fits to the B0→ K+π−µ+µ− MC samples for the 2011+2012
(top left), 2015+2016 (top right) and the 2017+2018 sample (bottom). The fits are performed
using the sum of two CB shapes. The candidates are weighted with the full set of analysis
correcting weights.
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Figure C.15: The invariant mass of the π+π−µ+µ− candidates within the full q2 region from the
data. The result of the simultaneous fit is compared to the data. The top left plot shows the fit to
the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left the fit to
the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for visualisation.
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Figure C.16: The invariant mass of the π+π−µ+µ− candidates within the low q2 region from the
data. The result of the simultaneous fit is compared to the data. The top left plot shows the fit to
the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left the fit to
the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for visualisation.
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Figure C.17: The invariant mass of the π+π−µ+µ− candidates within the high q2 region from
the data. The result of the simultaneous fit is compared to the data. The top left plot shows the
fit to the 2011+2012 dataset, the top right the fit to the 2015+2016 dataset and the bottom left
the fit to the 2017+2018 dataset. The bottom right plot combines the datasets and the fits for
visualisation.
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Figure C.18: The invariant mass of the π+π−µ+µ− candidates from the data compared to the
invariant mass fit when fitting each dataset separately. The left column shows the fits to the
2011+2012 dataset, the middle column the fits to the 2015+2016 dataset and the right column the
fit to the 2017+2018 dataset. The top row shows the results for the full q2 region, the middle row
the results for the low q2 region and the bottom row the results for the high q2 region.
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[136] E. Norrbin and T. Sjöstrand, Production and hadronization of heavy quarks, Eur. Phys. J.

C 17 (2000) 137.

[137] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189.

[138] LHCb collaboration, R. Aaij et al., Measurement of b-hadron fractions in 13 TeVpp

collisions, arXiv:1902.06794, submitted to Phys. Rev. Lett.

[139] LHCb material for presentations, https://lhcb.web.cern.ch/lhcb/

speakersbureau/html/Material_for_Presentations.html. Accessed:

2019-01-10.

235

https://doi.org/10.1103/PhysRevD.80.016009
https://doi.org/10.1140/epjc/s2005-02263-4
http://arxiv.org/abs/hep-ph/0501105
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1142/S0217751X15300227
https://doi.org/10.1142/S0217751X15300227
http://arxiv.org/abs/1412.6352
https://doi.org/10.1088/1748-0221/3/08/S08001
http://arxiv.org/abs/1902.06794
https://lhcb.web.cern.ch/lhcb/speakersbureau/html/Material_for_Presentations.html
https://lhcb.web.cern.ch/lhcb/speakersbureau/html/Material_for_Presentations.html


[140] C. Abellan Beteta et al., Monitoring radiation damage in the LHCb Tracker Turicensis,

arXiv:1809.05063.

[141] R. Arink et al., Performance of the LHCb Outer Tracker, JINST 9 (2014) P01002,

arXiv:1311.3893.

[142] LHCb collaboration, LHCb reoptimized detector design and performance: Technical

Design Report, CERN-LHCC-2003-030.

[143] LHCb collaboration, R. Aaij et al., Design and performance of the lhcb trigger and full

real-time reconstruction in run 2 of the lhc, Journal of Instrumentation 14 (2019) P04013.

[144] LHCb Outer Tracker Group, P. d’Argent et al., Improved performance of the LHCb outer

tracker in LHC run 2, arXiv:1708. 00819 (2017).

[145] LHCb collaboration, A. Papanestis and C. D’Ambrosio, Performance of the LHCb

RICH detectors during the LHC Run II, Nucl. Instrum. Meth. A876 (2017) 221,

arXiv:1703.08152.

[146] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013) P02022,

arXiv:1211.1346.

[147] LHCb collaboration, LHCb trigger system: Technical Design Report, CERN-LHCC-2003-

031.

[148] T. Head, The LHCb trigger system, JINST 9 (2014) C09015. 8 p.

[149] LHCb collaboration, B. Sciascia, LHCb Run 2 trigger performance, PoS BEAUTY2016
(2016) 029.

[150] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a

bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.

[151] V. V. Gligorov, M. Williams, and C. Thomas, The HLT inclusive B triggers, tech. rep.,

2011.

[152] LHCb collaboration, R. Aaij et al., Evidence for the decay B0
s → K∗0µ+µ−, J. High

Energy Phys. 2018 (2018).

[153] Belle collaboration, K. Chilikin et al.Phys. Rev. D 90 (2014).

[154] Particle Data Group, C. Patrignani et al., Review of particle physics, Chin. Phys. C40
(2016) 100001.

236

http://arxiv.org/abs/1809.05063
https://doi.org/10.1088/1748-0221/9/01/P01002
http://arxiv.org/abs/1311.3893
http://cdsweb.cern.ch/search?p=CERN-LHCC-2003-030&f=reportnumber&action_search=Search&c=LHCb+Reports
https://doi.org/10.1016/j.nima.2017.03.009
http://arxiv.org/abs/1703.08152
https://doi.org/10.1088/1748-0221/8/02/P02022
http://arxiv.org/abs/1211.1346
http://cdsweb.cern.ch/search?p=CERN-LHCC-2003-031&f=reportnumber&action_search=Search&c=LHCb+Reports
http://cdsweb.cern.ch/search?p=CERN-LHCC-2003-031&f=reportnumber&action_search=Search&c=LHCb+Reports
https://doi.org/10.22323/1.273.0029
https://doi.org/10.22323/1.273.0029
https://doi.org/10.1088/1748-0221/8/02/P02013
http://arxiv.org/abs/1210.6861
http://pdg.lbl.gov/
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001


[155] LHCb collaboration, R. Aaij et al., Measurement of the polarization amplitudes in

B0→ J/ψK∗(892)0 decays, Phys. Rev. D88 (2013) 052002, arXiv:1307.2782.

[156] LHCb collaboration, Updated average fs/fd b-hadron production fraction ratio for 7 TeV

pp collisions, LHCb-CONF-2013-011.

[157] LHCb collaboration, R. Aaij et al., Measurement of fs/fu variation with proton-proton

collision energy and b-meson kinematics, Phys. Rev. Lett. 124 (2020).

[158] LHCb collaboration, R. Aaij et al., Analysis of the resonant components in B0 →
J/ψπ+π−, Phys. Rev. D 87 (2013) 052001.

[159] LHCb collaboration, R. Aaij et al., Analysis of the resonant components in B0
s →

J/ψπ+π−, Phys. Rev. D 86 (2012) 052006.

[160] J. Albrecht, L. collaboration et al., The LHCb trigger system: Present and future, in

Journal of Physics: Conference Series, vol. 623, p. 012003, IOP Publishing, 2015.

[161] M. Williams et al., The HLT2 Topological Lines, Tech. Rep. LHCb-PUB-2011-002.

CERN-LHCb-PUB-2011-002, CERN, Geneva, Jan, 2011.

[162] F. Archilli et al., Performance of the muon identification at lhcb, Journal of Instrumentation

8 (2013) P10020.

[163] M. De Cian, S. Stahl, P. Seyfert, and S. Farry, Fast neural-net based fake track rejection in

the lhcb reconstruction, cern public note: Cern-lhcb-pub-2017-011, tech. rep., 2017.

[164] G. A. Cowan, D. C. Craik, and M. D. Needham, Rapidsim: An application for the fast

simulation of heavy-quark hadron decays, Computer Physics Communications 214 (2017)

239–246.

[165] M. Cacciari, M. Greco, and P. Nason, The pT spectrum in heavy-flavour hadroproduction,

J. High Energy Phys. 1998 (1998) 007–007.

[166] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl.

Instrum. Meth. A 555 (2005) 356–369.

[167] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees,

CRC press, (1984).

[168] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the

22Nd ACM SIGKDD International conference on knowledge discovery and data mining,

KDD ’16, p. 785, 2016, arXiv:1603.02754. doi: 10.1145/2939672.2939785.

237

https://doi.org/10.1103/PhysRevD.88.052002
http://arxiv.org/abs/1307.2782
http://cdsweb.cern.ch/search?p=LHCb-CONF-2013-011&f=reportnumber&action_search=Search&c=LHCb+Conference+Contributions
https://doi.org/10.1088/1126-6708/1998/05/007
http://arxiv.org/abs/1603.02754
https://doi.org/10.1145/2939672.2939785


[169] D. Derkach et al., Machine-learning-based global particle-identification algorithms at the

lhcb experiment, in Journal of Physics: Conference Series, vol. 1085, p. 042038, IOP

Publishing, 2018.

[170] L. Anderlini et al., The PIDCalib package, tech. rep., 2016.

[171] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite

hypotheses, Ann. Math. Stat. 9 (1938) 60.

[172] LHCb collaboration, R. Aaij et al., Analysis of the resonant components in

B0→ J/ψπ+π−, Phys. Rev. D87 (2013) 052001, arXiv:1301.5347.

[173] LHCb collaboration, R. Aaij et al., Measurement of resonant and CP components in

B0
s→ J/ψπ+π− decays, Phys. Rev. D89 (2014) 092006, arXiv:1402.6248.

[174] LHCb collaboration, R. Aaij et al., Evidence for the decay B0
s→ K∗0µ+µ−, JHEP 07

(2018) 020, arXiv:1804.07167.

[175] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev. D98
(2018) 030001.

[176] LHCb collaboration, R. Aaij et al., Observation of the Λ0
b→ J/ψpπ− decay, JHEP 07

(2014) 103, arXiv:1406.0755.

[177] LHCb collaboration, R. Aaij et al., Observation of the suppressed decay Λ0
b→ pπ−µ+µ−,

JHEP 04 (2017) 029, arXiv:1701.08705.

[178] LHCb collaboration, R. Aaij et al., Measurement of CP violation parameters and polari-

sation fractions in B0
s→ J/ψK∗0 decays, JHEP 11 (2015) 082, arXiv:1509.00400.

[179] L. Zhang and S. Stone, Time-dependent dalitz-plot formalism for B0
q→ J/ψh+h−, Phys.

Lett. B 719 (2013) 383.

[180] LHCb collaboration, R. Aaij et al., Measurement of the resonant and CP components in

B0→ J/ψπ+π− decays, Phys. Rev. D90 (2014) 012003, arXiv:1404.5673.

[181] E. P. Wigner, Gruppentheorie und ihre anwendungen auf die quantenmechanik der atom-

spektren. friedr. vieweg und sohn akt, Ges. Braunschweig (1931).

[182] G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49 (1936) 519.

[183] S. M. Flatte, Coupled-channel analysis of the πη and kk systems near kk threshold, Phys.

Lett. B 63 (1976) 224.

238

https://doi.org/10.1103/PhysRevD.87.052001
http://arxiv.org/abs/1301.5347
https://doi.org/10.1103/PhysRevD.89.092006
http://arxiv.org/abs/1402.6248
https://doi.org/10.1007/JHEP07(2018)020
https://doi.org/10.1007/JHEP07(2018)020
http://arxiv.org/abs/1804.07167
http://pdg.lbl.gov/
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1007/JHEP07(2014)103
https://doi.org/10.1007/JHEP07(2014)103
http://arxiv.org/abs/1406.0755
https://doi.org/10.1007/JHEP04(2017)029
http://arxiv.org/abs/1701.08705
https://doi.org/10.1007/JHEP11(2015)082
http://arxiv.org/abs/1509.00400
https://doi.org/10.1103/PhysRevD.90.012003
http://arxiv.org/abs/1404.5673


[184] Belle collaboration, K. Chilikin et al., Observation of a new charged charmoniumlike state

in B→ J/ψK−π+ decays, Phys. Rev. D. 90 (2014).

[185] W. Altmannshofer et al., Symmetries and Asymmetries of B → K∗µ+µ− Decays in the

Standard Model and Beyond, JHEP 01 (2009) 019, arXiv:0811.1214.

[186] T. Blake, U. Egede, and A. Shires, The effect of s-wave interference on the B0→ K∗0l+l−

angular observables, Journal of High Energy Physics 2013 (2013).

[187] T. M. Aliev, K. Azizi, and M. Savci, Analysis of rare B0→ K∗(1430)l+l− decay within

QCD sum rules, Phys. Rev. D76 (2007) 074017, arXiv:0710.1508.

[188] P. Colangelo, F. De Fazio, and W. Wang, Bs → f0(980) form factors and Bs decays into

f0(980), Phys. Rev. D81 (2010) 074001, arXiv:1002.2880.

[189] M. Emmerich, M. Strohmaier, and A. Schäfer, B→ f2(1270) form factors with light-cone
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