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Abstract

What normative constraints should bind parents (or policy makers) if they inter-
vene in the choices of children (or constituencies) whose preferences evolve over
time? For a sophisticated child who anticipates correctly his preference change,
we prove that generically there exist parental interventions that are Pareto im-
proving over the backward induction path that the child will follow on his own.
If, in contrast, the child misperceives his future preferences, Pareto improving in-
terventions might not exist, and even nudges might be painfully sobering. The
parent may then choose to minimize the maximal disappointment along time that
her benevolent intervention would cause.



1 Introduction

Parents, in the wide sense of the term, should want their children to be happy.
This is so within nuclear families, as well as between governments and their con-
stituencies. To this effect, parents may convey to their children information that
the children do not have in the first place. But after all is said, should parents, if
they can, intervene in their children’s choices to make them happier?

If children’s preferences over action paths do not change over time, there is no
such need: by the principle of optimality in dynamic programming, a child will
follow from one period to the next the same overall plan that already from the
very start he would like there to be implemented, and in particular no parental
intervention can further enhance the child’s happiness.

But what if the child’s preferences over action paths do change over time? In
each period, based on his current belief about his future preferences and beliefs,
the child would anticipate his own future reactions1 to any choice he can make to-
day, and then make a choice that together with these anticipated reactions would
be optimal according to his current preferences. With a finite horizon, like when
choosing education or vocational training before adulthood, or saving up to re-
tirement, this is done, implicitly if not explicitly, by backward induction. In other
words, the choices along time would constitute a Strotz-Pollak equilibrium (Strotz
1956, Pollak 1968, Goldman 1980), i.e. a subgame-perfect equilibrium (SPE) in
the ‘intrapersonal game’ (Laibson 1997) among the selves of the child across the
time periods.

The mature and experienced parent, in contrast, may forecast the preference
evolution more accurately than the child. In addition, she may have her own
perspective on how to ‘responsibly’ average or aggregate the child’s evolving pref-
erences along time into one preference relation over action plans, so as to balance
youthful vivacity with adult thriving. The optimal plan according to this aggre-
gated preference relation may very well differ from the path that the child will
follow by backward induction on his own.

So the normative question poses itself once again2: if the parent can, should she
intervene and induce the optimal plan according to her overall, aggregate view of
the child’s evolving preferences? The question is accentuated by the fact that if the
parent can intervene, non-intervention becomes one out of many possible decisions
that the parent can make, and as such non-intervention need not necessarily be
considered to be normatively neutral.

Some of the literature thus far (Phelps and Pollak 1968, Laibson 1997, Jackson
and Yariv 2014, 2015, Kang 2019, Kang and Ye 2019) suggests that the parent

1Or, more generally, when the future is uncertain, the distribution of his own future reactions.
2See e.g. Ericson and Laibson 2019, open question 9.
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should restrict herself to interventions that are Pareto-improving, i.e. to inducing
action paths that the child deems at least as good as the backward induction
path in each and every period, and strictly better in at least one period. Such an
intervention may be thought of as normatively non-controversial, because in all
periods the child will welcome such a change, enforced by the commitment power
of the parent that the child himself lacks. The parent may then decide to induce
the plan which is optimal according to her aggregated preferences subject to the
Pareto-improvement constraint.

With this perspective, it is important to know whether Pareto-improving in-
terventions exist in the first place. In section 2 we therefore present a framework
that makes explicit that even though bygones are bygones, current well-being may
well depend also on remembered, past experience. In this framework we present
a general result: when the child is sophisticated, i.e. when in each period he
anticipates correctly his own future preference change, then Pareto-improving in-
terventions generically exist. That is, if for some preference evolution along time,
the subgame-perfect equilibrium path that a sophisticated child will follow on his
own so happens to be Pareto optimal, then with slightly perturbed preferences his
subgame-perfect equilibrium path will no longer be Pareto optimal, and, moreover,
neither will it be with further, smaller perturbations of the child’s preferences. In
other words, a sophisticated child chooses Pareto optimally by himself only with
knife-edge profiles of preferences3.

A more realistic assumption, though, is that a child with evolving preferences
is not perfectly sophisticated, but rather at least partially naive (O’Donoghue and
Rabin 1999), that is uncertain about his own future preferences, if not outright
wrong about them. In section 3 we therefore define a simple but general type-
space framework to encompass also such forms of naivité. Nudges (Thaler and
Sunstein 2008), or more generally interventions that are purely informational, are
modeled in this type-space framework by a change in the state of the world that
expresses the new beliefs the child would then hold across the time periods.

We then show by example that with at least some naivité, even when the opti-
mal path from the parent’s perspective differs from the backward induction path,
a Pareto-improving intervention might not exist, neither by inducing a different
path nor by a nudge. What should the parent do in such cases?

In section 4 we propose one possible answer, namely a normative approach
by which the parent should only intervene in a way that minimizes the maximal
disappointment of the child across the time periods, relative to the backward
induction benchmark. We show by way of example that subject to this minimax
constraint, there may indeed exist such an intervention that enhances the child’s

3In particular, stable preferences which do not change over time is one such knife-edge case,
in which by the principle of optimality a sophisticated child does choose Pareto optimally.
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aggregated well-being from the parent’s perspective.
In fact, this normative approach may be applied also to cases in which Pareto-

improving interventions do exist. In these cases, the normative criterion would call
the parent to choose only among interventions that maximize the minimal well-
being enhancement across the time periods. We show, again by way of example,
how this may (not surprisingly) alter the optimal path that the parent would induce
given this additional constraint, in comparison with her intervention subject only
to the Pareto-improvement constraint.

We conclude in section 6 with a discussion. The genericity proofs and the
example details appear in the appendix.

2 Sophisticated children rarely choose Pareto op-

timally on their own

For each period i = 1, ..., n, let Xi ⊂ Rki be the compact, convex choice set of the
child at period i, henceforth dubbed ‘self i’. A current self cannot ‘pre-program’
future selves’ choices.4

Denote X = X1× ...×Xn, and X≤i =
∏

j≤iXj the space up-to-i initial paths.5

Let ui : X → R be the utility function of self i, where ui ∈ C∞ (X,R) , endowed
with the Whitney topology. The space of utility profiles

u = (u1, ..., un) ∈ U ≡ (C∞ (X,R))n

is endowed with the product topology. Sophistication means that with a utility
profile u, implicitly each self i anticipates correctly the future selves’ utility func-
tions ui+1, ..., un, knows that each future self j > i will also anticipate correctly its
own future selves’ utility functions uj+1, ..., un, etcetera.6

Without intervention, a sophisticated child is assumed to choose by backward
induction, i.e. to follow the path x̂ = (x̂1, ..., x̂n) induced by a Strotz-Pollak
equilibrium of best replies (bi : X≤i−1 → Xi)

n
i=1, which is a subgame-perfect equi-

4Put differently, whatever device a particular self does have, if at all, for influencing future
selves’ behavior, choosing to influence future behavior in such a way is encoded within the
available choices xi ∈ Xi, and by the utility functions (as defined next) of future selves j̇ > i,
that depend in particular on xi. We restrict attention to a finite-horizon analysis – for the
infinite-horizon case see e.g. Mertens and Rubinchik (2017), Strulik (2021).

5Or, more generally, X ⊆ X1 × ... ×Xn and X≤i ⊆
∏
j≤iXj – in case the past choice path

(x1, ..., xj−1) of the selves k < j may limit the feasible choices of self j.
6In section 3 below we will present an extended framework where this assumption can be made

explicit, a framework that also allows for various deviations from such perfect sophistication.
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librium of the perfect-information dynamic game between the selves.7 At such an
equilibrium

bn (x≤n−1) ∈ arg max
Xn

un (x≤n−1, ·)

bn−1 (x≤n−2) ∈ arg max
Xn−1

un−1 (x≤n−2, ·, bn (x≤n−2, ·))

bn−2 (x≤n−3) ∈ arg max
Xn−2

un−2 (x≤n−3, ·, bn−1 (x≤n−3, ·) , bn (x≤n−3, ·, bn−1 (x≤n−3, ·)))

...

b1 (∅) ∈ arg max
X1

u1 (·, b2 (·) , b3 (·, b2 (·)) , ...)

The corresponding backward induction path x̂ = (x̂1, ..., x̂n) is then defined induc-
tively by

x̂1 = b1 (∅)
x̂2 = b2 (x̂1)

x̂3 = b3 (x̂1, x̂2)

...

x̂n = bn (x̂1, x̂2, ..., x̂n−1)

It yields the utility levels û = (û1, ..., ûn) where ûi = ui (x̂) .
The parent has an average/aggregation function V : Rn → R over the utility

levels of the different selves i = 1, ..., n. This defines, indirectly, the utility function
of the parent v : X → R over choice paths, v (x) = V (u1 (x) , ..., un (x)).

For simplicity we assume that the parent can oblige the child to follow any
path x ∈ X that the parent likes.8 Still, the parent may like to limit herself to a
subset of paths with some normatively desirable properties.

A path x ∈ X is a called a Pareto improvement over a path x̄ ∈ X if ui (x) ≥
ui (x̄) for every i = 1, ..., n, and uj (x) > uj (x̄) for some 1 ≤ j ≤ n. Suppose,
first, that the parent would like to limit herself to inducing the child only to choice
paths x that are Pareto improvements over the backward induction path x̂ that
the child would follow on his own.

7For proofs of equilibrium existence see Harris (1985), Hellwig and Leininger (1987), Hellwig
et al. (1990), Alós-Ferrer and Ritzberger (2016). If best replies are not unique, breaking ties in
different ways may lead to multiple equilibria.

8We note that leading the child to follow a particular path x need not necessarily involve
direct coercion by the parent. Instead, the parent may be able to provide incentives for the child
to follow x, e.g. via taxes or subsidies accompanied by an unconditional lump-sum transfer, as
in Kang (2019).
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Example 1. A sophisticated child has to finish a chore of size 3 in three days
i = 1, 2, 3. Carrying out quantity xi of the chore on day i takes x2i hours, and
the child enjoys his remaining leisure time 24 − x2i .9 The child’s time preference
is captured by β − δ quasi-hyperbolic discounting, with β = 1

2
and δ = 1. At

days 2, 3 the child’s memory of his past leisure augments his well-being, with no
discounting. Thus, if the child’s division of the chore along days i = 1, 2, 3 is
x = (x1, x2, x3), his corresponding selves’ utility functions are

u1 (x1, x2, x3) =
(
24− x21

)
+

1

2

(
24− x22

)
+

1

2

(
24− x23

)
u2 (x1, x2, x3) =

(
24− x21

)
+
(
24− x22

)
+

1

2

(
24− x23

)
u3 (x1, x2, x3) =

(
24− x21

)
+
(
24− x22

)
+
(
24− x23

)
Across the three days the parent values equally the child’s happiness10, leading to
the parent’s utility function

v (x1, x2, x3) =
1

3

3∑
i=1

ui (x1, x2, x3) =
(
24− x21

)
+

5

6

(
24− x22

)
+

2

3

(
24− x23

)
With the constraint x3 = 3 − x1 − x2, one can verify (see the details in the

appendix) that
x̄ = arg max

x1,x2
v (x1, x2, 3− x1 − x2)

is not a Pareto improvement over the backward induction path x̂.
However, Pareto improvements over x̂ do exist:
(a) The child would be happy to work somewhat more on day 1 if only he could

know that he will be bound to work somewhat more also on day 2, and not leave
so much of the chore to the last day, as he correctly anticipates on day 1 that he
would be doing on day 2 without intervention;

(b) On day 2 the child would be happy to be committed to a package deal in
which he works somewhat more on both days 1 and 2; and

(c) On day 3 the child would definitely be happy if less of the largest share of
the chore is left for him to finish.

Moreover, the Pareto improving path x̆ that maximizes v satisfies v (x̆) > v (x̂) ,
so the parent would like to intervene and induce x̆ (even though implementing the
non-Pareto improving x̄ would entail an even higher utility, v (x̄) > v (x̆)).

9This example is similar to the ‘cake-eating’ problem under changing tastes, as analyzed e.g.
in Goldman (1979). Here, in contrast, the felicity from the good (leisure) is linear whereas the
’cost’ of leisure (time put aside for the chore) is convex.

10Not the child’s leisure time – that would have amounted to a complete identification of the
parent with the child’s perspective on day 3, waving off the child’s perspectives on days 1 and 2.
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A path x̃ ∈ X is called Pareto optimal if there does not exist a Pareto im-
provement x ∈ X over x̃.

Theorem. There is an open and dense subset of utility profiles U0 ⊆ U of so-
phisticated children, for whom no interior backward induction path x̂ is Pareto
optimal.

The proof, based on a transversality argument, appears in the appendix.

Thus, for sophisticated children with typical or generic utility profiles, namely
utility profiles in U0, there exists a Pareto improving path x ∈ X over any interior
backward induction path x̂. If the parent can induce the child to follow a Pareto
improving x instead of x̂, this will be weakly preferred by the child in all time
periods, and strictly preferred in some time period(s). Moreover, if the parent’s
utility is some weighted average of the child’s utility levels at the different time
periods, then also the parent will prefer to induce x instead of letting the child
follow the backward induction path x̂ on his own.11

Remark 1. Dubey (1986) proved that in generic simultaneous-move games,
no Nash equilibrium is Pareto optimal. Our proof is more involved, because the
sequential nature of the interaction between the selves implies that a self’s choice
affects its utility not only directly, but also indirectly via its influence on future
selves’ best replies. Our proof thus applies to perfect-information extensive form
games in which every player acts once. We restricted our attention to interior
equilibria, whereas Dubey (1986) addressed also equilibria on the boundary of the
strategy sets; such an extension for our case awaits future investigation.

11Kang and Wang (2019) proved that Pareto improvements are preferred as well by the parent
also in a related but different setting, in which each self’s myopic utility depends only on the
present and the future, while the normative perspective of the parent is based on aggregation
from the fictitious period 0.
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3 A type space for possible misperceptions about

future preferences

But children are not always sophisticated, and might anticipate their future pref-
erences, and therefore their future choices, differently than they will actually be.
Examples of such naivité or partial naivité were discussed e.g. by O’Donoghue
and Rabin (1999). The following type space framework is intended to capture
such states of affairs in general.

For each self i = 1, ..., n, let Ti be a measurable space of self i’s types. Types
τi ∈ Ti are measurably associated with

1. a belief (i.e. a probability measure) βτi on the states of the world T ⊆∏n
j=1 Tj, where βτi features perfect recall, i.e. has the property that in each

state τ = (τ1, ..., τn) ∈ T , βτi

(
{(τ1, ..., τi)} ×

∏n
j=i+1 Tj

)
= 1;12,13

2. a measurable utility function uτi : X → R, that not only represents pref-
erences over choice paths x ∈ X, but also meaningfully expresses well-being
comparably across selves;14,15 and

3. a measurable best-reply function bτi : X≤i−1 → Xi, where

12So when no confusion may arise, we will interchangeably refer to βτi as a belief on
∏n
j=i+1 Tj .

13The space of beliefs µ on a measurable space Y is endowed with the σ-algebra generated by
the sets of the form {µ : µ (E) ≥ p} for p ∈ [0, 1] and measurable events E ⊆ Y .

14To the latter effect, in the background there may e.g. be for each type τj of self j an
instantaneous felicity function fτj : Xj → R, so that

uτi (x1, ..., xn) =

n∑
j=1

ωτi (j)

(∫
T

(
fτj (xj)

)
dβτi

)

for some positive weights ωτi (j) (these weights may represent, for example, time discounting by
the type τi); or, more generally

uτi (x1, ..., xn) =

n∑
j=1

(∫
T

∫
Xj

ωτi (x̃j ;xj) fτj (x̃j) dµτi (x̃j ;xj) dβτi

)

where for x̃j = xj the weight ωτi (xj ;xj) for experienced felicity is positive, and for x̃j 6= xj the
weight ωτi (x̃j ;xj) for forgone or counterfactual, unexperienced felicity is non-positive (represent-
ing regret); and where the probability measure µτi (·;xj) on Xj expresses the relative importance
that τi attaches to the experienced felicity of xj by self j versus the unexperienced, forgone felicity
of other x̃j 6= xj by self j.

15The space of utility functions is endowed with the Borel σ-algebra of the topology of pointwise
convergence.
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bτn (x≤n−1) ∈ arg max
Xn

uτn (x≤n−1, ·)

bτn−1 (x≤n−2) ∈ arg max
Xn−1

∫
Tn

uτn−1 (x≤n−2, ·, bτ̃n (x≤n−2, ·)) dβτn−1 (τ̃n)

bτn−2 (x≤n−3) ∈ arg max
Xn−2

∫
Tn−1×Tn

uτn−2

(
x≤n−3, ·, bτ̃n−1 (x≤n−3, ·) , bτ̃n

(
x≤n−3, ·, bτ̃n−1 (x≤n−3, ·)

))
dβτn−2 (τ̃n−1, τ̃n)

...

bτ1 (∅) ∈ arg max
X1

∫
T2×...×Tn

uτ1 (·, bτ̃2 (·) , bτ̃3 (·, bτ̃2 (·)) , ...) dβτ1 (τ̃2, ..., τ̃n)

for i = n, ..., 1.16,17

For (a particularly simple) example, each utility profile u = (u1, ...un) of a
sophisticated child, together with a Strotz-Pollak equilibrium (bi : X≤i−1 → Xi)

n
i=1

defines a type space with a single state τ = (τ1, ..., τn) where uτi = ui, βτi ({τ}) = 1
and bτi = bi for i = 1, ..., n.

In the state of the world τ = (τ1, ..., τn) the backward induction path x̂τ =
(x̂τ,1, ..., x̂τ,n) is defined inductively by

x̂τ,1 = bτ1 (∅)
x̂τ,2 = bτ2 (x̂τ,1)

x̂τ,3 = bτ3 (x̂τ,1, x̂τ,2)

...

x̂τ,n = bτn (x̂τ,1, x̂τ,2, ..., x̂τ,n−1)

Since each type remembers correctly past types and choices, the (expected) well-

16We need to specify bτi explicitly for each type τi ∈ Ti, because uτi and βτi on their own (i)
might sometimes be compatible with several best reply functions (when ties can be broken in
several ways), and (ii) might sometimes be compatible with no best reply function at all, when
uτi has discontinuities, or when for some j > i discontinuities in the best replies bτj of types τj in
the support of βτi hinder the expectation of uτi with respect to βτi from attaining a maximum
in Xi (see examples of such situations in Hellwig and Leininger 1987 and Hellwig et al. 1990).
Thus, τi being measurably associated with (βτi , uτi , bτi) means in particular that βτi , uτi , bτi are
mutually compatible.

17The space of best-reply functions is endowed with the Borel σ-algebra of the topology of
pointwise convergence.
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being levels at τ under backward induction are

ûτ = (ûτ1 , ..., ûτi , ..., ûτn)

=

 ∫
T2×...×Tn

uτ1
(
x̂(τ1,τ̃2,...τ̃n)

)
dβτ1 (τ̃2, ..., τ̃n) , ...,

∫
Ti+1×...×Tn

uτi
(
x̂(τ1,...τi,τ̃i+1,...τ̃n)

)
dβτi (τ̃i+1, ..., τ̃n) , ..., uτn (x̂τ )


We assume, for simplicity, that the parent knows the true, prevailing state of

the world τ , i.e. the parent knows how the beliefs, preferences and best replies of
the child are about to evolve.18 We further assume that if the parent intervenes
and induces a path x ∈ X, the parent is open and honest to the child from the
very start about the path that the child is henceforth about to follow,19 which
would therefore induce the well-being levels

uτ1 (x) , ..., uτn (x) .

At the state of the world τ = (τ1, ..., τn) ∈ T , a path x ∈ X that the parent
may induce is a Pareto improvement over backward induction if uτi (x) ≥ ûτi for
i = 1, ..., n, and uτj (x) > ûτj for some 1 ≤ j ≤ n.

The state τ represents the utilities and beliefs of the child’s selves after any
information exchange between the parent and the child has already taken place.
Ex ante information exchange, to the extent that it influences the beliefs of the
child, amounts to altering the prevailing state of the world to some other state τ ′

∈ T .
As before, the parent has an average/aggregation function V : Rn → R over the

utility levels of the different selves i = 1, ..., n, that the parent wants to maximize.
In each state of the world τ = (τ1, ..., τn) ∈ T , this induces a utility function of the
parent vτ : X → R over choice paths, defined by

vτ (x) = V (uτ1 (x) , ..., uτn (x))

4 With misperceptions, Pareto-improving inter-

ventions might resiliently lack

For naive or partially naive types, who misperceive their future preferences, there
might exist no path that all selves will at least weakly prefer over (their anticipation

18See the discussion in section 6 on relaxing this assumption.
19In section 6 we will discuss an extension, where even though the parent actually knows the

prevailing state of the world τ = (τ1, ..., τn), she can openly and honestly announce a state-
contingent policy, by which the induced action xi in period i may depend on the realized type
τ̃i in that period.
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from) backward induction choices, with strict preference for some self. This is
demonstrated in the following example.

Example 2. With the feasible action paths and utility functions specified in
example 1 above, consider a type space with two states of the world, (τ̇1, τ̇2, τ̇3)
and (τ̇1, τ̈2, τ̈3), with the beliefs

βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

and the utility functions

uτ̇1 = u1

uτ̇2 = u2, uτ̈2 = u3

uτ̇3 = uτ̈3 = u3

The best replies of the types are uniquely determined by these beliefs and utilities,
and are computed in the appendix.

In state (τ̇1, τ̇2, τ̇3) the selves have the same utility functions as in the previ-
ous example, but self 1 naively believes that as of tomorrow the present bias will
miraculously disappear (uτ̈2 = u3); he moreover wrongly believes that this is com-
monly known: the state (τ̇1, τ̈2, τ̈3) , in which τ̇1 believes, is common knowledge at
(τ̇1, τ̈2, τ̈3).

Moreover, in state (τ̇1, τ̈2, τ̈3) the selves of all three periods, uτ̇1 , uτ̈2 and uτ̈3 ,
value equally the leisure time at periods 2 and 3. Therefore, by the principle of
optimality, the backward induction path x̂(τ̇1,τ̈2,τ̈3) already maximizes uτ̇1 over all
possible paths. Since uτ̇1 is strictly concave, any other path x 6= x̂(τ̇1,τ̈2,τ̈3) would
actually decrease uτ̇1 , i.e. uτ̇1 (x) < ûτ̇1 . In other words, there exists no intervention
by the parent which would not decrease the well-being of τ̇1 in the state (τ̇1, τ̈2, τ̈3).

But this means that also in the state (τ̇1, τ̇2, τ̇3) there exists no Pareto-improving
parental intervention, because in period 1 type τ̇1 is mistakenly certain there that
the state is (τ̇1, τ̈2, τ̈3) and expects the backward induction path there x̂(τ̇1,τ̈2,τ̈3).
However, if the parent attaches equal importance to the well-being of the child
in all three periods, i.e. has the same utility v as in example 1, there do exist
x 6= x̂(τ̇1,τ̈2,τ̈3) with which v (x) > v

(
x̂(τ̇1,τ̇2,τ̇3)

)
(see the details in the appendix).

Nevertheless, as long as the parent confines herself to interventions that all selves
would consider to be Pareto-improving given their (possibly misguided) beliefs,
the parent’s hands are tied.

This is not a knife-edge phenomenon. Rather, it is resilient to some perturba-
tions of self 1’s beliefs. For example, for ε > 0 small enough (in fact, for ε ≤ 1

2
),

even if τ̇1 ascribes probability ε to the prevailing state of the world (τ̇1, τ̇2, τ̇3), i.e.
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βτ̇1 {(τ̇1, τ̇2, τ̇3)} = ε, βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1− ε
βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

there still do not exist parental interventions which would be Pareto-improving
over backward induction. The details are elaborated in the appendix.

4.1 Nudge

Instead of influencing the choice path given the misperceptions of the child, the
parent can try to intervene ex ante with information, by drawing the attention of
the child at the state (τ̇1, τ̇2, τ̇3) to the actual utilities there (uτ̇1 , uτ̇2 , uτ̇3). That
would amount to altering the belief βτ̇1 of the type τ̇1, by increasing the probability
ε that it ascribes to (τ̇1, τ̇2, τ̇3).

Such informational, non-coercive interventions are a particular form of a nudge
(Thaler and Sunstein 2008). In case the nudge is fully successful, ε = 1, the child
becomes sophisticated and anticipates correctly his forthcoming preference change.

However, as ε increases, τ̇1 becomes more disillusioned, and as a result its
expected backward-induction well-being ûτ̇1 decreases (see the details in the ap-
pendix). Thus, even though the nudge does not interfere with the choice x of the
child by coercion or incentives, the sobering effect of the nudge causes a backlash
to the well-being of the child in period 1, and for no ε > 0 would the nudge induce
a Pareto improvement.

5 Minimally disappointing interventions

Situations as in example 2 put the parent in a very frustrating position: due to
the child’s misperceptions about his future preferences, there is no way for the
parent to ameliorate the aggregate well-being of the child without upsetting him
at least in one period. This raises the question whether the Pareto-improvement
constraint is not too stringent under such misperceptions.

A path x which is Pareto-improving at a state of the world τ vis-à-vis backward
induction satisfies, by definition, uτi (x)− ûτi ≥ 0 for i = 1, ..., n. A natural way
to minimally relax this constraint is to require

uτi (x)− ûτi ≥ −δ, i = 1, ..., n (])

for the minimal δ with which a path x satisfying (]) exists.
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Then, if for this

δmin (τ) ≡ min {δ : ∃x s.t. uτi (x)− ûτi ≥ −δ, i = 1, ..., n}

it is the case that

max
{x: mini=1,...,n(uτi (x)−ûτi)≥−δmin(τ)}

v (x) > v (x̂τ )

then the parent may find it legitimate to intervene and induce

x̃ ∈ arg max
{x: mini=1,...,n(uτi (x)−ûτi)≥−δmin(τ)}

v (x)

in order to augment the aggregate well-being of the child, even though at some
period the child will be minimally disappointed, by δmin (τ).

Example 2 (continued). In the state of the world (τ̇1, τ̇2, τ̇3) there turns out to
be a unique path x̃ satisfying

uτ̇i (x)− ûτ̇i ≥ −δmin (τ̇1, τ̇2, τ̇3) i = 1, 2, 3

(see the details in the appendix). With this path x̃,

uτ̇1 (x̃)− ûτ̇1 = −δmin (τ̇1, τ̇2, τ̇3)

uτ̇2 (x̃)− ûτ̇2 = −δmin (τ̇1, τ̇2, τ̇3)

but
uτ̇3 (x̃)− ûτ̇3 > 2δmin (τ̇1, τ̇2, τ̇3)

Thus,
v (x̃) > v

(
x̂(τ̇1,τ̇2,τ̇3)

)
i.e. in terms of average well-being across the three periods, which is the parent’s
perspective, the minimally disappointing intervention is superior to backward in-
duction.

The approach proposed here may actually be applied also when Pareto im-
proving interventions over backward induction do exist. With this approach, δmin

would have the opposite sign and measure the minimal utility enhancement across
the periods. The parent would then consider inducing only Pareto improving paths
that maximally improve the minimal well-being enhancements across the differ-
ent periods. In the appendix we demonstrate how this idea is made operative in
example 1.
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6 Discussion

Parent uncertainty. We assumed, for simplicity, that the parent knows correctly
the state of the world, i.e. that the parent knows the child’s preferences and beliefs
in all periods. We saw that even under such a simplifying assumption, Pareto
improving interventions might not be available to the parent. A fortiori, a parent
who, more realistically, only has some belief about the states of the world, might
have an even narrower scope for interventions which would be Pareto improving
or minimally disappointing in all the states that she considers possible. How
this scope narrows down with the parent’s uncertainty remains open for follow-up
inquiry.

State-contingent parental interventions. We assumed, again for simplicity,
that if the parent induces the child to follow a particular path x, this forthcoming
path becomes known to the child, and that very fact might upset the child in some
periods. Such upsetting could be potentially attenuated if the parent were allowed
to make state-contingent empty promises, like

‘I know you are certain that tomorrow your present bias will disappear.
I am certain that you are too optimistic about this, but if it so happens
that I was wrong and you were right, then as of tomorrow I will alter
the path so as to make it up for you as much as possible.’

Notice, though, that comes tomorrow, it might be costly or even impossible to
verify the time preference of the child, and in such case such a promise would be
not only empty (under our assumption that the parent anticipates correctly the
future preferences of the child), but also not credible in the first place.

Alternative normative guidelines. When Pareto improving interventions are
lacking, we proposed one possible normative constraint, namely minimizing the
disappointment of the child across the time periods relative to the benchmark of
its (expected) utility under the backward induction path, that he would follow
absent of any parental intervention. An alternative normative constraint could
be maximizing the minimal overall well-being across the time periods. Or one
could even claim that in the absence of Pareto improving interventions, the parent
should simply take the lead and induce a path that maximizes the parent’s own
view of how to balance the considerations of the child’s well-being across the time
periods, without imposing on herself any further normative constraints.

To conclude, we introduced a type-space framework for beliefs (and beliefs
about beliefs, etc.) about one’s future preferences, with the implied backward
induction choice that each type will make given its belief. We proved that with
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sophistication, i.e. when the state of the world is common knowledge, with all types
agreeing with one another about future preferences and beliefs, then generically a
parent has room for committing to induce paths which will Pareto-improve well-
being across the time periods.

In contrast, with misperceptions about future preferences, such Pareto-improving
interventions need not exist, and even informational nudges might be necessarily
disillusioning at least in some time period. For such cases we proposed a possi-
ble normative alternative to the Pareto criterion, namely minimizing the maximal
disappointment that the intervention entails across the time periods.

7 Appendix

7.1 Proof of the Theorem

For simplicity, we first present the proof for the case where the choice set of each
self is one-dimensional, Xi ⊂ Rki with ki = 1, i = 1, ..., n, and then elaborate on
how to read the same proof for the case of any finite ki ≥ 1.

If x̂ = (x̂1, ..., x̂n) is an interior subgame-perfect equilibrium path, then at x̂
the following n first-order conditions obtain:

∂un
∂xn

= 0

∂un−1
∂xn−1

+
∂un−1
∂xn

∂bn
∂xn−1

= 0

∂un−2
∂xn−2

+
∂un−2
∂xn−1

∂bn−1
∂xn−2

+
∂un−2
∂xn

(
∂bn
∂xn−2

+
∂bn
∂xn−1

∂bn−1
∂xn−2

)
= 0

...

where for k < `, the derivatives of the best reply functions ∂b`
∂xk

at x̂ involve second

(cross) derivatives of u1, ...un.
To simplify notation in the sequel, define the matrix of direct and indirect
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effects

h =



1 · · ·
0 1

...
...

. . .

0 0 1 ∂bn−1

∂xn−2

(
∂bn
∂xn−2

+ ∂bn
∂xn−1

∂bn−1

∂xn−2

)
0 · · · 0 1 ∂bn

∂xn−1

0 · · · 0 1


so that the above system becomes at x̂

∂un
∂xn

= 0

∂un−1
∂xn−1

+
∂un−1
∂xn

hn−1,n = 0

∂un−2
∂xn−2

+
∂un−2
∂xn−1

hn−2,n−1 +
∂un−2
∂xn

hn−2,n = 0

...

If x̂ is also Pareto optimal, then at x̂ the rows of the Jacobian

Du =

 ∇u1...
∇un

 =


∂u1
∂x1

· · · ∂u1
∂xn

...
. . .

...
∂u1
∂xn

· · · ∂un
∂xn



are linearly dependent – otherwise one can find a direction

 δ1
...
δn

 such that

 ∇u1...
∇un


 δ1

...
δn

 =

 1
...
1

 , so that perturbing x̂i in the direction δi for i =

1, ..., n improves all of u1, ...un, thus constituting a Pareto improvement. Hence,

if x̂ is Pareto optimal there exists θ̂ =
(
θ̂1, ..., θ̂n

)
6= 0 such θ̂Du (x̂) = 0. The

vector θ̂ therefore belongs to one of the two following families of cases:
i) There exists a subset of indices 1 ≤ `1 < ... < `k ≤ n such that θ̂`1 6=

0, ..., θ̂`k 6= 0.

ii) There exists a unique index 1 ≤ c ≤ n such that θ̂c 6= 0.

To account for the first family of cases, for each subset of indices 1 ≤ `1 < ... <
`k ≤ n consider the map(

F1, ..., Fn, G1, ...Gn, G{`1,...,`k}
)

: X × Rn × U → R2n+1

15



defined by

Fn (x, θ;u) ≡ ∂un (x)

∂xn
(BIn)

Fn−1 (x, θ;u) ≡ ∂un−1 (x)

∂xn−1
+
∂un−1 (x)

∂xn
hn−1,n (x) (BIn-1)

Fn−2 (x, θ;u) ≡ ∂un−2 (x)

∂xn−2
+
∂un−2 (x)

∂xn−1
hn−2,n−1 (x) +

∂un−2 (x)

∂xn
hn−2,n (x) (BIn-2)

...

G1 (x, θ;u) ≡
n∑
i=1

θi
∂ui (x)

∂x1
(PO1)

...

Gn (x, θ;u) ≡
n∑
i=1

θi
∂ui (x)

∂xn
(POn)

G{`1,...,`k} (x, θ;u) ≡ θ2`1 · · · θ
2
`k
− 1 (PO{`1,...,`k})
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Since the best-reply functions bi and hence the indirect effects hik involve up-to
second order cross-derivatives of ui, we can view the map

(
F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}

)
as defined20 on the image of the 2-jet extensions

j2(x,θ)u =

(
x, θ, ui (x, θ) ,

∂ui (x, θ)

∂xk
,
∂ui (x, θ)

∂θk
,
∂u2i (x, θ)

∂xk∂x`
,
∂u2i (x, θ)

∂xk∂θm
,
∂u2i (x, θ)

∂θk∂θ`

)
i,k,`,m=1,...,nk≤`

∈ J2
(
R2n,Rn

)
We will show below that 0 ∈ R2n+1 is a regular value of the map

(
F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}

)
.

By the preimage theorem (see e.g. Nagata 2004, theorem 2.1), that 0 ∈ R2n+1 is a

regular value of
(
F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}

)
implies that

(
F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}

)−1
(0)

is a closed submanifold of J2 (R2n,Rn). Therefore,by the strong (Thom) transver-
sality theorem (see e.g. Arnold et al. 1985, p. 38) there is an open and dense set
U{`1,...,`k} ⊆ U such that for every u ∈ U{`1,...,`k},

j2u : R2n → J2
(
R2n,Rn

)
that maps (x, θ) 7→ j2(x,θ)u is transversal to the submanifold

(
F1, ..., Fn, G`1 , ...G`k , G{`1,...,`k}

)−1
(0),

and hence 0 ∈ R2n+1 is a regular value of the composed map(
F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}

)
◦ j2u : R2n → R2n+1

Since dim (R2n+1) > dim (R2n) , that 0 ∈ R2n+1 is a regular value then means that
for every u ∈ U{`1,...,`k},(

F1, ..., Fn, G1, ..., Gn, G{`1,...,`k}
) (
x̂, θ̂;u

)
6= 0

for every
(
x̂, θ̂
)
∈ R2n.

To account for the second family of cases, for every 1 ≤ c ≤ n consider the
map (

F1, ..., Fc−1, Fc+1, ...Fn, G1, ..., Gn, G{c}
)

: Rn+1 × U → R2n

where Fc does not appear (because when c is the unique index for which θ̂c 6= 0 in
the vector θ̂ satisfying θ̂Du (x̂) = 0, notice that θ̂c∇uc (x̂) = 0, and hence a fortiori

Fc

(
x̂, θ̂;u

)
= 0 as well), and θ` ≡ 0 for ` 6= c. We will show below that 0 ∈ R2n is

a regular value of the map
(
F1, ..., Fc−1, Fc+1, ...Fn, G1, ..., Gn, G{c}

)
, implying that

there is an open and dense subset U{c} ⊆ U such that for every u ∈ U{c}, 0 ∈ R2n

is a regular value of(
F1, ..., Fc−1, Fc+1, ...Fn, G1, ..., Gn, G{c}

)
◦ j2u : Rn+1 → R2n

20Where, with a slight abuse of notation, we consider u ∈ U as functions not only of x, but
also of θ ∈ Rn, where u does not vary with θ, and U thus considered as a submanifold of
C∞

(
R2n,Rn

)
.
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Since dim (R2n) > dim (Rn+1) , that 0 ∈ R2n is a regular value means that for every
u ∈ U{c}, (

F1, ..., Fc−1, Fc+1, ...Fn, G1, ..., Gn, G{c}
) (
x̂, θ̂c;u

)
6= 0

for every
(
x̂, θ̂c

)
∈ Rn+1.

The intersection
U0 =

⋂
S∈2{1,...,n}\∅

US

is thus open and dense, and for every u ∈ U0 and every interior subgame-perfect
equilibrium x̂ (satisfying F1 (x̂, ·;u) = ... = Fn (x̂, ·;u) = 0 ) there exists no θ̂ 6= 0
for which θ̂Du (x̂) = 0 (i.e. satisfying, for the set of indices S of θ̂’s non-zero

entries, G1

(
x̂, θ̂;u

)
= ... = Gn

(
x̂, θ̂;u

)
= GS

(
x̂, θ̂;u

)
= 0 ). That is, for every

u ∈ U0, no interior subgame-perfect equilibrium x̂ is Pareto optimal, as required.

In the first family of cases, to prove that 0 ∈ R2n+1 is indeed a regular value of
the map(
F1, ..., Fn, G1, ...Gn, G{`1,...,`k}

)
, we will show that for every j2

(x̂,θ̂)
û ∈

(
F1, ..., Fn, G1, ...G{`1,...,`k}

)−1
(0)

and for every perturbation direction (π1, ..., πn, p1, ..., pn, pn+1) of 0 ∈ R2n+1 there
exist

Y =

 y11 · · · y1n
...

...
yn1 · · · ynn

 ∈ Rn2

, z =

 z1
...
zn

 ∈ Rn

such that with the paths of utility profiles and parameter values

ut =

 ut1
...
utn

 ≡ û+ tY

 x1
...
xn

 , θt =

 θt1
...
θtn

 ≡ θ̂ + t

 z1
...
zn
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defined for t ∈ [−ε, ε] for some ε > 0, at t = 0 we have

∂F1

(
j2(x̂,θt)u

t
)

∂t |t=0
= π1

...

∂Fn

(
j2(x̂,θt)u

t
)

∂t |t=0
= πn

∂G1

(
j2(x̂,θt)u

t
)

∂t |t=0
= p1

...

∂Gn

(
j2(x̂,θt)u

t
)

∂t |t=0
= pn

∂G{`1,...,`k}

(
j2(x̂,θt)u

t
)

∂t |t=0
= pn+1

To this effect, denote a = `1, b = `k and choose z to be

z =


0
...
zb
...
0


with zb = pn+1

2θ̂bθ̂
2
`1
···θ̂2`k−1

, and Y to be

Y =



π1 0 · · · 0 · · · 0

0
. . . 0 0

...
. . .

...
...

p1−zb
∂ub(x̂)

∂x1
−θ̂1π1

θ̂a
· · · · · · πa −ni=a+1

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
ha,i · · ·

pb−zb
∂ub(x̂)

∂xb
−θ̂bπb

θ̂a
· · · pn−zb

∂ub(x̂)

∂xn
−θ̂nπn

θ̂a
...

...
. . .

...
...

0 · · · · · ·
pa−θ̂a

πa−ni=a+1

pi−zb
∂ub(x̂)
∂xi

−θ̂iπi
θ̂a

ha,i


θ̂b

0 πb 0
...

...
. . .

...
0 · · · · · · 0 0 πn
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In words,

(0) set zb = pn+1

2θ̂bθ̂
2
`1
···θ̂2`k−1

, thus perturbing G{`1,...,`k} at t = 0 by pn+1.

(1) for i 6= a set yii = πi, thus perturbing Fi at t = 0 by πi for i 6= a;

(2) for i 6= a, (0) and (1) perturb Gi at t = 0 by zb
∂ub(x̂)
∂xi

+ θ̂iπi, so set yai =

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
in order to eventually end up perturbing Gi at t = 0 by pi;

(3) Together over all i 6= a, (2) upsets Fa at t = 0 by
∑

i>a

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
ha,i (only,

ha,i itself was not perturbed, because it depends on partial cross-derivatives
of ur w.r.t. xs for r > s > a, and these were not perturbed); so in order to

eventually perturb Fa at t = 0 by πa, set yaa = πa −
∑

i>a

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
ha,i;

(4) finally, (3) upsets Ga at t = 0 by θ̂a

(
πa −

∑
i>a

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
ha,i

)
, so in

order to eventually perturb Ga at t = 0 by pa, set

yba =

pa − θ̂a
(
πa −

∑
i>a

pi−zb
∂ub(x̂)

∂xi
−θ̂iπi

θ̂a
ha,i

)
θ̂b

(This does not upset Fb, which only depends on partial derivatives of uib
w.r.t. xs for s ≥ b, whereas a < b.)

(5) All the remaining entries of Y are zero.

As for cases of the second family, to prove that 0 ∈ R2n is a regular value of(
F1, ..., Fc−1, Fc+1, ...Fn, G1, ..., Gn, G{c}

)
, for every corresponding rates of pertur-

bation
(

(πk)k 6=c , (pi)
n+1
i=1

)
∈ R2n, choose zc = pn+1

2θ̂c
so as to perturb G{c} at t = 0

by pn+1, and

Y =



π1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · πj · · · 0 · · · 0
...

...
. . .

...
...

p1−zc ∂uc(x̂)∂x1

θ̂c
· · ·

pj−zc ∂uc(x̂)∂xj

θ̂c
· · · pc−zc ∂uc(x̂)∂xc

θ̂c

pn−zc ∂uc(x̂)∂xn

θ̂c
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · πn
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Then at t = 0 we have ∂Fk
∂t |t=0

= πk for k 6= c, ∂Gi
∂t |t=0

= pi for i = 1, ..., n, and
∂G{c}
∂t |t=0

= pn+1, as required.

When choice variables are multi-dimensional, xi = (xi,1, ..., xi,ki) , i = 1, ..., n,

the same proof applies verbatim with the following caveats: ∂ui
∂xj

=
(

∂ui
∂xj,1

, ... ∂ui
∂xj,kj

)
,

∂bi
∂xj

=


∂bi,1
∂xj,1

· · · ∂bi,1
∂xj,kj

...
...

∂bi,ki
∂xj,1

· · · ∂bi,ki
∂xj,kj

, Fi = (Fi,1, ..., Fi,ki),
∂Fi
∂xj

=


∂Fi,1
∂xj,1

· · · ∂Fi,1
∂xj,kj

...
...

∂Fi,ki
∂xj,1

· · · ∂Fi,ki
∂xj,kj

 ,

πi = (πi,1, ..., πi,ki), Gi = (Gi,1, ..., Gi,ki),
∂Gi
∂xj

=


∂Gi,1
∂xj,1

· · · ∂Gi,1
∂xj,kj

...
...

∂Gi,ki
∂xj,1

· · · ∂Gi,ki
∂xj,kj

 , pi =

(pi,1, ..., pi,ki), δi = (δi,1, ..., δi,ki); θi remains a scalar. R2n is replaced by Rk1+...+kn+n,
and R2n+1 by Rk1+...+kn+n+1. �

Remark 2. Our theorem is phrased in terms of generic utility profiles, but it
holds also for generic preference profiles: The projection Φ from utility functions
to the preference relations that they represent is a continuous, open map (Mas
Colell 1985, p. 70, definition 2.4.1 and proposition 2.4.2), and therefore it maps U0
to an open and dense set of preference profiles with which no interior equilibrium
is Pareto optimal.

7.2 Example 1 analysis

7.2.1 Backward induction

Self 3 has no effective choice but to complete what its preceding selves haven’t
done, b3 (x1, x2) = 3− x1 − x2. By backward induction, self 2 solves

max
x2

u2 (x1, x2, b3 (x1, x2)) = max
x2

((
24− x21

)
+
(
24− x22

)
+

1

2

(
24− (3− x1 − x2)2

))
leading to

b2 (x1) = 1− 1

3
x1

Accordingly, self 1 solves

max
x1

u1 (x1, b2 (x1) , b3 (x1, b2 (x1)))

= max
x1

((
24− x21

)
+

1

2

(
24−

(
1− 1

3
x1

)2
)

+
1

2

(
24−

(
3− x1 −

(
1− 1

3
x1

))2
))
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leading it to choose

x̂1 =
15

23
= 0.652 2

Consequently,

x̂2 = b2 (x̂1) =
18

23
= 0.782 6

and

x̂3 = b3 (x̂1, x̂2) =
36

23
= 1. 565 2

Altogether, the backward induction path is x̂ =
(
15
23
, 18
23
, 36
23

)
. The corresponding

utilities are

û1 = u1 (x̂) = 46.044

û2 = u2 (x̂) = 57.737 (∗)
û3 = u3 (x̂) = 68.512

whose average is
V (û) = v (x̂) = 57.431 (♣)

7.2.2 The parent’s problem

With no normative constraints on interventions, the parent would maximize the
average utility of the three selves

v (x1, x2, x3) =
1

3

3∑
i=1

ui (x1, x2, x3) =
(
24− x21

)
+

5

6

(
24− x22

)
+

2

3

(
24− x23

)
subject to the physical constraint x1 + x2 + x3 = 3. This yields

x̄ ≡ (x̄1, x̄2, x̄3) =

(
30

37
,
36

37
,
45

37

)
= (0.811, 0.973, 1. 216)

The utility levels are

u1 (x̄) = 46.13

u2 (x̄) = 57.656 (∗∗)
u3 (x̄) = 68.917

whose average
v (x̄) = 57.568 (♣♣)

is higher than without intervention, (♣).
However, comparing (∗∗) to (∗) reveals that x̄ is not a Pareto improvement

relative to the backward induction path without intervention x̂, because u2 (x̄) <
û2.
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7.2.3 Pareto-improving interventions

If the parent restricts herself to interventions that are Pareto-improving relative
the backward induction path x̂, the parent solves

max
x1+x2+x3=3

v (x1, x2, x3) s.t. ui (x1, x2, x3) ≥ ûi, i = 1, 2, 3

yielding the unique solution

x̆ ≡ (x̆1, x̆2, x̆3) = (0.780, 0.828, 1. 392)

accruing the utility levels

u1 (x̆) = 46. 080

u2 (x̆) = 57. 737 (∗ ∗ ∗)
u3 (x̆) = 68. 768

with the lower average
v (x̆) = 57.528 < v (x̄) (♣♣♣)

In particular, along the choice path x̆ self 1 does more of the chore relative to
the backward induction path x̂, but (comparing (∗) with (∗ ∗ ∗) ) self 1 is more than
happy to do so knowing that self 2 will also work harder; self 2 is just indifferent
working harder given that self 1 works harder; and self 3 is happier that less of the
largest share of the chore is left for it to complete.

7.2.4 Maximin intervention

If the parent restricts herself further, to an intervention that maximizes the min-
imal utility enhancement across the three selves relative to the no-intervention
backward induction path x̂,

max
x1+x2+x3=1

min
i=1,2,3

[ui (x1, x2, x3)− ûi]

The maximin is attained at

x̃ ≡ (x̃1, x̃2, x̃3) = (0.739, 0.784, 1. 477)

with utility levels

u1 (x̃) = 46. 056

uı̂τ2 (x̃) = 57. 748 (∗ ∗ ∗∗)
uı̂τ3 (x̃) = 68. 657
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accruing a utility increment of 0.0115 to both self 1 and self 2 relative to the no-
intervention backward induction path, even if with an average utility across the
selves

v (x̃) = 57.487 (♣♣♣♣)

which is lower than (♣♣♣). Nevertheless, comparing with (♣) the parent realizes
that v (x̃) > v (x̂), so she judges the maximin intervention as preferable to no
intervention at all.

7.3 Example 2 analysis

7.3.1 Backward induction

Both τ̇3 and τ̈3 have no choice but to complete the part of the chore that the
previous selves haven’t completed,

bτ̇3 (x1, x2) = bτ̈3 (x1, x2) = 3− x1 − x2

As for self 2, type τ̈2, who has no present bias and the same utility function u3 as
that of τ̈3, will divide the remaining chore equally among them,

bτ̈2 (x1) =
3− x1

2

whereas type τ̇2, who does have a present bias with the utility function u2 will,
like self 2 in example 1, choose only

bτ̇2 (x1) = 1− 1

3
x1

The naive type τ̇1, who is certain that the subsequent types are τ̈2,τ̈3 will solve

max
x1

u1 (x1, bτ̈2 (x1) , bτ̈3 (x1, bτ̈2 (x1)))

= max
x1

((
24− x21

)
+

1

2

(
24−

(
3− x1

2

)2
)

+
1

2

(
24−

(
3− x1

2

)2
))

leading him to choose

bτ̇1 (∅) = x̂τ̇1 =
3

5

believing that τ̈2 and τ̈3 will divide the remaining chore equally, each choosing 6
5
.

However, at the state (τ̇1, τ̇2, τ̇3) , type τ̇2 will actually choose

x̂τ̇2 = bτ̇2 (x̂τ̇1) = 1− 1

3
· 3

5
=

4

5
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leaving

x̂τ̇3 =
8

5

of the chore to τ̇3. At (τ̇1, τ̇2, τ̇3) the (expected) utilities will therefore be

ûτ̇1 = uτ̇1

(
3

5
,
6

5
,
6

5

)
= 46.2

ûτ̇2 = uτ̇2

(
3

5
,
4

5
,
8

5

)
= 57. 72 (∗ ∗ ∗ ∗ ∗)

ûτ̇3 = uτ̇3

(
3

5
,
4

5
,
8

5

)
= 68. 44

Thus, with no intervention by the parent, the resulting average utility at
(τ̇1, τ̇2, τ̇3) will then be

V (ûτ̇1 , ûτ̇2 , ûτ̇3) =
ûτ̇1 + ûτ̇2 + ûτ̇3

3
= 57.453 (♣♣♣♣♣)

7.3.2 There exists no Pareto improving intervention

At state (τ̇1, τ̇2, τ̇3) no intervention can be Pareto improving over the backward
induction utility profile (ûτ̇1 , ûτ̇2 , ûτ̇3), because τ̇1 believes that the state is (τ̇1, τ̈2, τ̈3)
in which there is (common knowledge of) time consistency of preferences, and
therefore by the principle of optimality in dynamic programming any alteration of
the action profile

(
3
5
, 6
5
, 6
5

)
chosen sequentially by τ̇1, τ̈2, τ̈3 would be in particular

unbeneficial from the perspective of τ̇1. Moreover, since u1 is strictly concave, any
such alteration would actually decrease u1.

The absence of Pareto improvements does not hinge on the fact that τ̇1 is
(wrongly) certain of (common knowledge of) the selves’ time consistency. To see
this, amend the above example so that type τ̇1 does assign probability ε > 0 that
there is time inconsistency, thus:

βτ̇1 {(τ̇1, τ̇2, τ̇3)} = ε, βτ̇1 {(τ̇1, τ̈2, τ̈3)} = 1− ε
βτ̇2 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈2 {(τ̇1, τ̈2, τ̈3)} = 1

βτ̇3 {(τ̇1, τ̇2, τ̇3)} = 1, βτ̈3 {(τ̇1, τ̈2, τ̈3)} = 1

The maximization problem of τ̇1 will now be

max
x1

(εuτ̇1 (x1, bτ̇2 (x1) , bτ̈3 (x1, bτ̇2 (x1))) + (1− ε)uτ̇1 (x1, bτ̈2 (x1) , bτ̈3 (x1, bτ̈2 (x1))))

= max
x1

 ε
(

(24− x21) + 1
2

(
24−

(
1− 1

3
x1
)2)

+ 1
2

(
24−

(
3− x1 −

(
1− 1

3
x1
))2))

+ (1− ε)
(

(24− x21) + 1
2

(
24−

(
3−x1
2

)2)
+ 1

2

(
24−

(
3−x1
2

)2))
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leading τ̇1 to choose

x̂τ̇1 =
3ε+ 27

ε+ 45

and subsequently

x̂τ̇2 = bτ̇2 (x̂τ̇1) = 1− 1

3

3ε+ 27

ε+ 45
=

36

ε+ 45

x̂τ̈2 = bτ̈2 (x̂τ̇1) =
3− 3ε+27

ε+45

2
=

54

ε+ 45

leaving to the last self

x̂τ̇3 =
72

ε+ 45

x̂τ̈3 =
54

ε+ 45

Accordingly, the backward induction expected utilities at (τ̇1, τ̇2, τ̇3) will be

ûτ̇1 = εuτ̇1

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
+ (1− ε)uτ̇1

(
3ε+ 27

ε+ 45
,

54

ε+ 45
,

54

ε+ 45

)
=

39ε+ 2079

ε+ 45

ûτ̇2 = uτ̇2

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
=

3 (17ε2 + 1746ε+ 38 961)

(ε+ 45)2

ûτ̇2 = uτ̇2

(
3ε+ 27

ε+ 45
,

36

ε+ 45
,

72

ε+ 45

)
=

9 (7ε2 + 702ε+ 15 399)

(ε+ 45)2

Then one can verify that for ε ≤ 1
2

there exist no Pareto improvements (x1, x2, 3− x1 − x2)
over this utility tuple.

Nudge One can interpret an increase in ε as the result of an ex ante nudge,
that sobers up self 1 at least partially, and makes it consider the possibility that
its present bias need not disappear tomorrow (type τ̈2 has no present bias), but
might rather persist (type τ̇2) with probability ε.

Such a nudge, though, will decrease the well-being ûτ̇1 of self 1 at the no-
intervention backward induction path, because

dûτ̇1
dε

= − 324

(ε+ 45)2
< 0

Thus, even such an informational intervention, involving no coercion or incentives,
is not Pareto improving.
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7.3.3 Minimax intervention

With the lack of Pareto-improvements, it may still be the case, though, that by
disappointing some of the selves while cheering up others the parent can improve
upon the average utility (♣♣♣♣♣) at (τ̇1, τ̇2, τ̇3). One possibility is to use the
same criterion as before, that amounts in this case to choosing a path that will
minimize the maximal disappointment vis-a-vis (∗ ∗ ∗ ∗ ∗) across the 3 selves:

min
x1+x2+x3=3

max
i=1,2,3

[ûτ̇i − uτ̇i (x1, x2, x3)]

The solution is
(
x̃τ̇1 , x̃τ̇2 , x̃τ̇3

)
= (0.673 4, 0.979 8, 1. 346 8) , with which τ̇1 and τ̇2

lose 0.04 04 of their utility, each, but τ̇3 gains 0.333, overall leading to the higher
average utility

v
(
x̃τ̇1 , x̃τ̇2 , x̃τ̇3

)
= 57. 537 > v

(
x̂τ̇1 , x̂τ̇2 , x̂τ̇3

)
as comparing with (♣♣♣♣♣) reveals. Thus, from the parent’s perspective this
is a worthwhile intervention.

This intervention is in some sense even more ‘benign’ than the informational
nudge considered above, because it makes sure to smooth as much as possible the
sobering pain of disillusionment across the different periods, rather than weighing
its entire toll on the child in the first period only.
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