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Joint Sparse Observation and Coding Design for
Multiple Phenomena Monitoring

Chengcheng Han, Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE, and
F. Richard Yu, Fellow, IEEE

Abstract—Energy-efficient designs play an important role in
the Internet of Things (IoT) that monitors multiple phenomena,
due to the limited power supply and complicated observation. In
this paper, taking into account the power consumptions of ob-
servation, coding, and communication, we propose a joint sparse
observation and coding scheme for energy-efficient monitoring of
multiple phenomena using IoT. Through the analysis of outage
performance, we find that the sparse observation and coding
scheme can achieve the performance of the full observation
scheme in which all nodes observe all phenomena with lower
power consumption due to the dynamic and selective observation
and coding. With the derived achievable rates and network power
consumption, we study the trade-off between achievable rates
and network power consumption that is determined by both
the observation matrix and the coding matrix. For given rate
constraints, we propose an optimization problem to minimize the
network power consumption by jointly designing the observation
and coding matrices. To solve this NP-hard problem efficiently,
we propose a low-complexity algorithm with the convex-concave
procedure. Moreover, to improve performance in high noise
environment, we adopt collaboration among nodes to suppress
observation noises and equalize bad observations by utilizing
observation diversity. Finally, simulation results illustrate the
superior performance of the proposed schemes.

Index Terms—Energy efficiency, multiple phenomena monitor-
ing, observation diversity, sparse observation and coding.

I. INTRODUCTION

The Internet of Things (IoT) with a huge number of battery-
powered nodes has been widely utilized to monitor diverse
phenomena [1]–[5]. Due to the limited lifetime of battery, it
is extremely important to investigate energy-efficient schemes
for IoT.

To improve the energy efficiency of IoT, node selection has
been widely used in the context of phenomenon observation,
where a subset of nodes is selected to transmit information
to the fusion center (FC) according to a certain metric. With
the help of auxiliary Boolean variables, the problem of node
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selection for sensing was studied in [6], where the Boolean
variables can determine whether or not its corresponding node
is selected. With the limited energy budget, the authors of
[7] extended one-step node selection schemes into a multi-
step node selection scheme to schedule the transmission of
observation from nodes to the FC to minimize estimation
error. For a better trade-off between information accuracy and
energy consumption, the optimal node selection scheme was
provided by optimizing the energy efficiency of nodes for a
given information utility [8], [9]. Considering the main energy
consumption of IoT, the work of [10] studied the optimal
node selection for data transmission with energy conservation.
Utilizing energy harvesting as the power supply, the node
selection approach was adopted in [11] for heterogeneous
sensor networks to achieve energy-efficient spatial field recon-
struction. To improve energy efficiency, grouping the selected
nodes into multiple clusters is an effective method [12]–[15],
which can maintain a longer life of distributed nodes by
reducing the power loss in propagation and retransmission.

Introducing collaboration into multi-cluster IoT is widely
regarded as a beneficial approach to improve energy efficiency.
A universal framework of multi-cluster IoT with collaboration
was studied in [16], where the nodes within the same cluster
performed collaboration for their observations. It was shown
that transmitting the collaborative observations over the best
available channels and assigning the power levels matched
to channel quality can use the minimum energy consumption
to achieve the minimum estimation error. This work ignored
collaboration costs. Considering the collaboration cost in
practice, the collaborative IoT to estimate phenomenon was
further studied, where the nodes were selected to update their
observations by collaborating with their adjacent nodes [17].
The optimal selection and collaboration strategy was designed
to minimize the expected mean square error (MSE) subject to
the given power constraints. With the error-free and low-cost
collaboration links, [18] provided a power allocation scheme
of distributed IoT by optimizing the collaboration coefficients
of nodes. The reason that collaboration can improve the energy
efficiency of IoT is that it can utilize the spatial diversity of
observation and transmission.

The energy efficiency of IoT can be further improved by
sparsely optimizing the selection and collaboration of nodes.
The energy-optimal collaboration scheme of IoT was studied
in [19], where only a subset of nodes was permitted to
collaborate for their observations. This optimal collaboration
strategy indicates that a partially collaborating network can
yield performance close to that of a fully collaborating network
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yet consumes much less energy. In the study of [20], a
sparsity-aware node selection problem was formulated where
the number of selected nodes was minimized subject to a
certain estimation quality. The authors of [21] further explored
the above sparsity-aware node selection problem and proposed
a relaxed sparsity-aware node selection approach with low-
complexity. With the help of promoting sparsity, the design
of node selection scheme in IoT was further studied in [22]–
[24], which reduced energy consumption. Ignoring the cost
of selection and collaboration, the authors in [25] formulated
the design of node selection and collaboration schemes as
the problem of recovering a sparse matrix. Incorporating
the cost of selection and collaboration, the authors in [26]
minimized the total energy consumption subject to a given
quality-of-service (QoS) requirement in a sparsely optimized
node selection and collaboration scheme.

Most of the aforementioned works only reduce the power
consumption of communication, while the study in [27] shows
that the power consumption of observation is roughly compa-
rable with that of communication in energy-consuming IoT.
The power consumption of coding in IoT is also counted
into the network power consumption [28]. In fact, in the IoT
monitoring multiple phenomena, observation and coding con-
sume more power than communication due to the complicated
observation and coding.

The above discussion implies that the power consumptions
of observation, coding, and communication should be fully
considered to achieve an energy-efficient IoT that moni-
tors multiple phenomena. However, this brings the following
challenges. First, the full observation scheme requiring all
nodes to observe all phenomena may no longer be optimal
for IoT due to the huge power consumption in observation
and coding. Also, the power consumptions of observation,
coding, and communication jointly determine the performance
of IoT, which leads to a more complicated trade-off between
observation performance and power consumption. To cope
with the first challenge, in this paper, we propose an energy-
efficient scheme for IoT to monitor multiple phenomena,
which utilizes the sparse observation and coding method. In
this method, nodes can dynamically choose any part of the
phenomena for observation and coding. To tackle the second
challenge, for given observation performance requirements,
we propose an optimization problem to minimize the network
power consumption by jointly designing the observed relation
of nodes to phenomena and the coding matrix of observations.
Furthermore, to improve the observation performance in high
noise environment, we study the collaboration among nodes
and propose a sparse observation and collaborative coding
scheme, which can utilize the observation diversity to suppress
the observation noise and equalize the bad observation. The
main contributions of this paper are summarized as follows.

1) Sparse observation and coding scheme. We propose
a new sparse observation and coding scheme for IoT
to achieve the energy-efficient observation of multiple
phenomena, where the nodes can dynamically choose
any part of the phenomena for observation and coding.
Through the analysis of outage performance, we find that
the sparse observation and coding scheme can achieve the

performance of the full observation scheme in which all
nodes observe all phenomena with lower power consump-
tion due to the dynamic and selective observation and
coding. With the derived achievable rates and network
power consumption, we find that there is a trade-off
between achievable performance and power consumption
that is determined by both the observation matrix and
the coding matrix. Specifically, activating more nodes to
observe and encode more phenomena can improve the
achievable rates of phenomena but leads to an increase
in network power consumption.

2) Joint optimization of observation and coding matrices.
To achieve the optimal performance trade-off, for given
rate constraints, we formulate a joint optimization prob-
lem of observation and coding matrices to minimize the
network power consumption. This optimization problem
is intractable due to the coupled observation and coding
matrices, the discontinuous and non-differentiable l0-
norm, and the non-convex objective function and con-
straints. To solve it effectively, we first decouple the cod-
ing matrix from the observation matrix and reformulate
an equivalent sparse coding optimization problem. Then,
we approximate the discontinuous and non-differentiable
l0-norm with the concave smooth function and obtain
a continuous non-convex optimization problem. Further-
more, we relax the rate constraints and equivalently
introduce the auxiliary variables to transform the non-
convex optimization problem into a solvable difference of
convex (DC) programming problem. Finally, an algorithm
with the convex-concave procedure (CCP) is proposed to
provide an effective solution to the original problem.

3) Collaboration among nodes and optimization. To fur-
ther improve the performance, we study the collaboration
among nodes and propose a sparse observation and col-
laborative coding scheme, where the nodes observing the
same phenomenon are required to share their observa-
tions. The collaboration utilizes the observation diversity
of nodes to suppress the observation noise and equalize
the bad observation, which improves the SINRs of ob-
served phenomena. The improvement of SINRs is at the
expense of increased power consumption and shortened
transmission duration, which restricts the achievable rates
of observed phenomena. Consequently, collaboration has
a complicated effect on the trade-off between achievable
rates and network power consumption. To achieve the
optimal trade-off, we formulate an NP-hard problem of
minimizing the network power consumption with given
rate constraints. To solve it effectively, a CCP based al-
gorithm with low-complexity is proposed, which requires
to solve O

(
log
(
ε−11

)
(θ0 − ε)β−1

)
convex problems.

The rest of this paper is organized as follows. In Section II,
the system model of IoT with sparse observation and coding
scheme is proposed. Section III Section provides the outage
performance analysis and derives the achievable rate. IV stud-
ies the optimization problem to minimize the network power
consumption for given rate constraints. Section V introduces
collaboration into the sparse observation and coding scheme
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Figure 1: The sparse observation and coding scheme in IoT.

and optimizes the performance. In Section VI, simulation
results are presented to illustrate the superior performance of
the proposed schemes, followed by the conclusion in Section
VII.

Notation: E{·} and <{·} denote the expectation and real
part of variables, respectively. The Hadamard product between
vector a and b is denoted by a ◦ b. Given a matrix A,
AH , AT , and rank(A) denote the conjugate transposition,
the transposition, and the rank of A, respectively. The matrix
with K rows and M columns is denoted by AK×M , and its
k-th row vector and m-th column vector are denoted by [A]k·
and [A]·m, respectively. The cardinality of set A is denoted
by |A|. For a square matrix A, A � 0 means that A is the
positive semi-definite. The a ∼ CN

(
µ, σ2

o

)
indicates that a

is a circularly symmetric complex Gaussian random variable
with mean µ and variance σ2

o .

II. SYSTEM MODEL

In this section, we first present the network model, followed
by the power consumption model.

A. Network Model

Consider an IoT system based on sparse observation
and coding scheme to monitor multiple phenomena s =
[s1, · · · , sM ]

T , as illustrated in Fig. 1. This IoT system
consists of K nodes with single-antenna and one FC with
N antennas. During each observation, nodes can dynamically
choose any part of the phenomena s for observation. Accord-
ing to the observed relation between nodes and phenomena,
K nodes naturally form M overlapped groups, denoted by
Q = {Q1, · · · ,QM} where the nodes belonging to group
Qm need to observe phenomenon sm. The nodes belonging to
multiple groups are required to linearly encode the observation
of different phenomena and concurrently transmit the coded
observation to the FC for recovery.

The IoT based on sparse observation and coding scheme
consists of three phases: sensing, coding, and transmission.
Specifically, in the sensing phase, all nodes independently
select part of the phenomena for observation. The observation
is disturbed by the additive white Gaussian noise (AWGN).
The observation of phenomenon sm at node k is given as

vk,m = ck,m (sm + nk,m) , k ∈ K,m ∈M, (1)

where ck,m ∈ {0, 1} represents the observed relation between
node k and phenomenon sm, ck,m = 1 indicates that node k
observes sm and ck,m = 0 otherwise, nk,m is the observation
noise of sm at node k and satisfies nk,m ∼ CN

(
0, σ2

o

)
,

K = {1, · · · ,K}, M = {1, · · · ,M}. The observation of
phenomena at all nodes can be given by

V = C ◦
(
ST + N

)
, (2)

where CK×M represents the observed relation of K nodes
to M phenomena and is termed as the observation matrix,
SM×K = [s, · · · , s], and NK×M represents the independent
and identically distributed (i.i.d) AWGN in the observation of
M phenomena at K nodes.

In the coding phase, the observations of different phenom-
ena are linearly encoded at nodes. Each node encodes the
observation of different phenomena and produces a coded
scalar observation by multiplying a coding vector with length
M . The coded observation of node k is given by

xk = [A]k· [V]Tk· = [A]k·
(
[C]Tk· ◦

(
s + [N]Tk·

))
, k ∈ K, (3)

where AK×M represents the coding matrix whose k-th row
vector [A]k· is the coding vector of node k. The coded
observation of all nodes is given as

x =

 [A]1·
(
[C]T1· ◦

(
s + [N]T1·

))
...

[A]K·
(
[C]TK· ◦

(
s + [N]TK·

))


=

 [A]1· ◦ [C]1·
...

[A]K· ◦ [C]K·

s+

 ([A]1· ◦ [C]1·) [N]T1·
...

([A]K· ◦ [C]K·) [N]TK·


=(A ◦C) s + no,

(4)

where no represents the coded observed noise and satisfies
no ∼ CN (0,R1), R1 is a diagonal matrix whose k-th
diagonal element is ‖[A ◦C]k·‖

2
2 σ

2
o .

In the transmission phase, all nodes concurrently transmit
their coded observations to the FC for recovery. The received
observation at the FC is given by

y = Hx + nr =

M∑
m=1

H [A ◦C]·m sm + Hno + nr , (5)

where HN×K represents the channels from K nodes to the
FC that are the i.i.d Rayleigh block fading channels, nr
represents the received noise that is the i.i.d AWGN, i.e., nr ∼
CN

(
0, σ2I

)
. We assume that the channel state information

(CSI) is known by the FC. With the known CSI, the FC can
recover phenomena s by processing the received observation
y through the linear minimum mean-square error (MMSE)
receiver. Using the linear MMSE receiver, the estimate of
phenomenon sm (m ∈M) can be calculated as

ŝm = dHm

 M∑
n6=m

dndHn + HR1H
H + σ2I

−1 y, (6)

where dm = H [A ◦C]·m ,m ∈M.
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B. Power Consumption Model

The network power consumption of IoT is composed of the
sensing power consumption, the coding power consumption,
and the transmission power consumption. These three power
consumptions are determined by the working mode of nodes,
i.e., active mode and sleep mode [29]. For active nodes, the
power is mainly consumed to observe phenomena, encode
observations, transmit coded observations, and keep basic
circuits operating. While the sleep nodes only consume a
few power to keep necessary circuits operating. Using the
empirical linear model in [30], the power consumption of node
k can be given as

Pk =

{
P ok + P ak + P tk, active mode,

P slk , sleep mode,
(7)

where P ok is the total power consumption of sensing and cod-
ing, P ak and P slk are constant circuit power consumption when
node k works in active and sleep mode respectively, and P tk
is transmission power consumption. The power consumption
of sensing and coding is proportional to the amount of data
generated [29]. The total power consumption of sensing and
coding at node k can be given by

P ok =

M∑
m=1

ck,mpmRg,m, k ∈ K, (8)

where pm is the total power consumption to generate and
encode 1-bit observation of sm. According to (3), the trans-
mission power consumption of node k (k ∈ K) is given by

P tk = E
{
xkx

H
k

}
= E

{
[A ◦C]k·

(
s+[N]Tk·

) (
s+[N]Tk·

)H
[A ◦C]Hk·

}
=
(
1 + σ2

o

)
‖[A ◦C]k·‖

2
2
.

(9)

The network power consumption is given as

P =

K∑
k=1

Pk =

M∑
m=1

‖[C]·m‖0 um+

K∑
k=1

∥∥‖ [C]k· ‖
2
2

∥∥
0
P gk

+

K∑
k=1

P slk +
(
1 + σ2

o

)
‖A ◦C‖22,

(10)

where um = pmRg,m, P gk = P ak − P slk .

III. PERFORMANCE ANALYSIS

In this section, we derive the outage probability and the
achievable rate for the sparse observation and coding scheme.

A. Outage Probability

The signal-to-interference-plus-noise ratio (SINR) of phe-
nomenon sm after the linear MMSE receiver is given by

SINRm=dHm

 M∑
n 6=m

dndHn +HR1H
H+σ2I

−1dm. (11)

Definition 1. (Outage probability.) For the received SINR γ
and its threshold γT, the outage probability can be defined by

Po = Pr (γ < γT) , (12)

which represents the probability that the QoS requirement of
the observed phenomenon is unsatisfied.

In order to derive the outage probability, we need the
probability density function (PDF) of the received SINR,
which is derived in the following Lemma 1.

Lemma 1. (The PDF of SINRm.) The PDF of SINRm can
be given by

f(γ)=
1

βm

( γ
βm

)N−1e−
ργ
βm

(N−1)!(1+ρNγ
βm

)M

[
M−1∑
k=0

(
M−1

k

)
N !

(N−k)!
ρ−k

+
γ

βm

M−1∑
k=0

(
M − 1

k

)
(N − 1)!

(N − k − 1)!
ρ−k

]
,

(13)

where βm = ‖ [A ◦C]·m ‖22, ρ=‖A◦C‖22σ2
o+σ

2, N ! is the
factorial of the non-negative integer N ,

(
M
k

)
is the number of

k-combinations from a given set with M elements.

Proof: Please refer to Appendix A.

Proposition 1. (Outage probability.) The outage probability
can be given by

Po,m=

M−1∑
k=0

(
M−1

k

)
Nγk−N0

(N−k)
I
(
N,N−M+ 1,γ−10 ,

γT

βm

)
+

M−1∑
k=0

(
M−1

k

)
γk−N0

(N−k−1)!
I
(
N+1,N−M+2,γ−10 ,

γT

βm

)
,

(14)

where γ0 = ρ−1, the function I(a, b, z, γ) can be given by

I(a, b, z, γ) =
ez

Γ(a)

a−1∑
i=0

(
a− 1

i

)[
Γ(b− i− 1, z)−

Γ
(
b− i− 1, (1 + γ)z

)]
(−1)izi−b+1,

Γ(·) is the gamma function [31, eq. (8.310.1)], and Γ(·, ·) is
the incomplete gamma function [31, eq. (8.350.2)].

Proof: Please refer to Appendix B.

Definition 2. (Diversity order.) The diversity order for the
outage probability is defined as

d = − lim
γ→∞

log(Po(γ))

log(γ)
. (15)

Proposition 2. (Diversity order.) The diversity order can be
given by

d = N −M + 1. (16)

Proof: Please refer to Appendix C.

Remark 1. (Diversity order compare.) From the diversity
order in (16) and [32, Lemma 6], we can find that the sparse
observation and coding scheme can achieve the same diversity
order as the traditional scheme [33]. It implies that the sparse
observation and coding scheme can achieve a performance
close to that of the traditional scheme with lower power
consumption.
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B. Achievable Rate

To demonstrate the achievable performance of the proposed
scheme, the achievable rates of the observed phenomena are
derived. The achievable rate of observed phenomenon sm can
be given by

Rm = log2 (1 + SINRm) ,m ∈M. (17)

To guarantee the success of observation, all the generated data
of phenomena must be successfully transmitted to the FC for
recovery. It requires that the achievable rate Rm,m ∈M must
exceed the generating rate of observed phenomena Rg,m,m ∈
M, i.e., Rm ≥ Rg,m,m ∈ M, which is termed as the QoS
requirement of phenomena. This is equivalent to SINRm ≥
γg,m,m ∈M, where γg,m = 2Rg,m − 1,m ∈M.

From (10) and (17), we find that both the derived achiev-
able rates and the network power consumption are closely
related to the observation matrix C and the coding matrix
A. Specifically, activating more nodes to observe and encode
more phenomena can improve achievable rates but leads to an
increased network power consumption. It implies that there
is a trade-off between achievable rates and network power
consumption on the joint design of C and A. Therefore,
to satisfy the given QoS requirements of phenomena, we
jointly optimize C and A to minimize the network power
consumption.

IV. POWER CONSUMPTION MINIMIZATION

In this section, we study the optimization problem to min-
imize the network power consumption by jointly optimizing
the observation matrix and the coding matrix for given QoS
requirements.

A. Problem Formulation

Without loss of generality, we ignore the constant term
of network power consumption for brevity. The minimization
problem of network power consumption subject to the given
QoS constraints can be formulated as

P0: min
C,A

M∑
m=1

‖[C]·m‖0um+

K∑
k=1

∥∥‖ [C]k·‖
2
2

∥∥
0
P gk

+
(
1 + σ2

o

)
‖A ◦C‖22

s.t. C1 : SINRm ≥ γg,m,m ∈M,

C2 : ck,m ∈ {0, 1}, k ∈ K,m ∈M,

C3 : (1−ck,m)ak,m = 0, k∈K,m∈M.

(18)

Constraint C1 is the QoS requirements of different phenomena.
Constraint C2 represents the observed relation of nodes to
phenomena during each observation. Constraint C3 reveals
the coupling relation between the observation matrix and
the coding matrix. From (18), we find that problem P0 is
intractable due to the following challenges.

1) Coupled observation and coding matrices. The obser-
vation matrix and coding matrix are coupled as nodes are
required to choose part of the phenomena for sequential
observation and coding.

2) Discontinuous and non-differentiable l0-norm. Due to
the dynamical and selective observed relation between
nodes and phenomena, the objective function naturally
contains the discontinuous and non-differentiable l0-
norm.

3) Non-convex objective function and constraints. The
objective function is still non-convex even if the l0-norm
is replaced by a certain continuous function. Due to the
inverse matrix in SINRs, the QoS constraints are non-
convex. The other constraints are also non-convex.

Considering these challenges, problem P0 is an NP-hard prob-
lem. Only an exhaustive search can find the global optimum
of P0, which requires the solution to 2KM quadratically
constrained quadratic programming (QCQP) subproblems with
semi-definite relaxation (SDR). Due to the heavy computation
of solving so many subproblems, the exhaustive search is
impractical even for small-scale optimization problems.

B. Problem Solving

To solve the intractable problem P0 efficiently, we adopt
the following approaches to cope with the aforementioned
challenges. First, we decouple the coding matrix A from the
observation matrix C by using equivalent variable substitu-
tions to rewrite P0 as a sparse coding optimization problem
without loss of optimality. Then, the discontinuous and non-
differentiable l0-norm in the objective function is approxi-
mated by the concave smooth function. Moreover, the auxiliary
variables and the lower bound of SINRm are introduced
to transform the sparse coding optimization problem into a
solvable DC programming problem. Finally, a CCP based
algorithm with low-complexity is proposed to provide an
effective solution to P0.

The following Lemma 2 decouples the coding matrix A
from the observation matrix C by utilizing the equivalent re-
lation between observation and coding of different phenomena
at nodes.

Lemma 2. (Decoupling of observation and coding matrices.)
There is an equivalent substitution between the observation
matrix C and the coding matrix A

ck,m = ‖ak,m‖0k ∈ K,m ∈M, (19)

which decouples A from C without changing optimality.

Proof: Lemma 2 can be readily proved by contradiction.
Assume that there exists a ck,m 6= 0 to obtain P ok

∗, which
is the minimum power consumption of sensing and coding at
node k. If ak,m = 0 there is ak,mvk,m = 0, which means
that the value of ck,m is no longer important. Thus, we can
set ck,m = 0 to obtain the smaller power consumption than
P ok
∗, i.e., P ok < P ok

∗. It contradicts the above assumption.
Therefore, to achieve the optimal energy efficiency, there must
be ck,m = ‖ak,m‖0.

Note that the coding matrix A has the same sparsity as the
observation matrix C when A is decoupled from C by Lemma
2. With the sparse coding matrix A, we equivalently rewrite
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problem P0 as the following sparse coding optimization prob-
lem

PSC: min
A

M∑
m=1

‖[A]·m‖0um+

K∑
k=1

∥∥‖ [A]k· ‖
2
2

∥∥
0
P gk

+
(
1 + σ2

o

)
‖A‖22

s.t. C1 : SINRm ≥ γg,m, m ∈M.

(20)

From (20), we find that problem PSC is still challenging as
the objective function contains the discontinuous and non-
differentiable l0-norm and the QoS constraints are non-convex.

To deal with the discontinuous and non-differentiable l0-
norm in the objective function, we utilize the continuous
concave smooth logarithmic function in the following Lemma
3 to approximate l0-norm.

Lemma 3. (Approximation of l0-norm [34, Eq. (21)].) The
continuous concave smooth logarithmic function is commonly
regarded as an effective approximation of l0-norm, whose
effectiveness has been proved in [34]–[36]. The continuous
concave smooth logarithmic function is given by

fθ(x) =
log(xθ + 1)

log( 1
θ + 1)

, θ > 0, (21)

where θ is termed as the smoothness factor that can control the
smoothness of approximation and the approximation error of
l0-norm. Specifically, a larger θ leads to a smoother function
but a worse approximation of l0-norm and vice versa.

With the smoothed approximation function of l0-norm in
Lemma 3, the sparse coding optimization problem PSC can be
rewritten as the following continuous optimization problem

P1: min
A

M∑
m=1

K∑
k=1

fθ
(
|ak,m|2

)
um+

K∑
k=1

fθ
(
‖[A]k·‖

2
2

)
P gk

+
(
1 + σ2

o

) M∑
m=1

‖[A]·m‖
2
2

s.t. C1 : SINRm ≥ γg,m,m ∈M.

(22)

Problem P1 is still intractable as the objective function and
QoS constraints are non-convex.

To solve the non-convex problem P1, we introduce the
auxiliary variables and the lower bound of SINRm to transform
P1 into a solvable DC programming problem1. The objective
function of P1 can be equivalently represented as the normal
DC form by introducing the auxiliary variable matrix TK×M ,
which is shown in the following Lemma 4.

Lemma 4. (Equivalent DC form of objective function.) We
replace A with T by tk,m ≥ |ak,m|2, k ∈ K,m ∈ M,
where tk,m is the element of T at the row k and column
m, i.e., T = [t1, · · · , tM ], tm = [t1,m, · · · , tK,m]

T . With this

1The DC programming problem is the optimization problem whose ob-
jective function and constraints can be represented as the difference of two
convex functions.

auxiliary variable substitution, the objective function of P1 can
be equivalently rewritten as(

1 + σ2
o

) M∑
m=1

K∑
k=1

tk,m−(
−

M∑
m=1

K∑
k=1

fθ (tk,m)um −
K∑
k=1

fθ

(
M∑
m=1

tk,m

)
P gk

)
.

(23)

Note that the objective function in (23) follows the form of
DC programming as the first and second terms are both convex
functions.

Proof: Lemma 4 can be readily proved by contradiction.
From (21), we find that the approximation function fθ (x)
is the strictly monotonically increasing function of x. Thus,
the objective function in (23) is the strictly monotonically
increasing function of tk,m. If t∗k,m > |a∗k,m|2, there must be
a tk,m satisfying |a∗k,m|2 ≤ tk,m < t∗k,m to further decrease
the objective function, which is a contradiction. Therefore, the
optimal solution must satisfy |a∗k,m|2 = t∗k,m, and introducing
auxiliary variables T does not change the optimality.

To transform the QoS constraints C1 into the normal DC
form, we relax SINRm by utilizing its lower bound γm, which
is given in the following Lemma 5.

Lemma 5. (Lower bound of SINRm.) The lower bound of
SINRm can be given by γm, i.e., SINRm ≥ γm, where

γm =

[A]
H
·m HHH [A]·m

M∑
n 6=m

[A]
H
·n HHH [A]·n+

K∑
k=1

‖[A]k·‖
2
2
hHk hkσ2

o+σ2

. (24)

Proof: The proof of Lemma 5 is given at Proof D.
Substituting γm into QoS constraints C1, we obtain the

relaxed QoS constraints γm ≥ γg,m,m ∈ M. Then we
equivalently rewrite the relaxed QoS constraints as

M∑
n 6=m

[A]
H
·n
(
HHH + σ2

oR2

)
[A]·n γg,m + γg,mσ

2

− [A]
H
·m
(
HHH− γg,mσ2

oR2

)
[A]·m ≤ 0,m ∈M,

(25)

where R2 ∈ RK×K is a diagonal matrix and its k-th diagonal
element is [H]

H
·k [H]·k. Note that the QoS constraints in (25)

follow the form of DC programming as the sum of the first
two terms and the third term are both convex functions.

Proposition 3. (DC programming problem.) The problem P1

can be relaxed as a DC programming problem

P2:min
A,T

M∑
m=1

K∑
k=1

fθ(tk,m)um+

K∑
k=1

fθ

(
M∑
m=1

tk,m

)
P gk

+
(
1 + σ2

o

) M∑
m=1

K∑
k=1

tk,m

s.t. C4 : |ak,m|2 − tk,m ≤ 0, k ∈ K,m ∈M,

C5 :

M∑
n6=m

[A]
H
·n
(
HHH+σ2

oR2

)
[A]·nγg,m+γg,mσ

2

−[A]
H
·m
(
HHH−γg,mσ2

oR2

)
[A]·m≤0,m∈M.

(26)
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Proof: With Lemma 4 and 5, the objective function and
QoS constraints of P1 can be transformed into the objective
function and constraint C5 of problem P2, which is a normal
DC form. Moreover, constraint C4 is convex. Thus, P2 is a
standard DC programming problem.

The local optimal solution to DC programming problems
can be readily provided by CCP methods [37]. Hence, we
propose a two-level loop CCP based algorithm to provide a
local optimum to P2, which contains an outer and inner loop.

In the outer loop, we update the smoothness factor θ by
θ = βθ, 0 < β < 1 to approximate l0-norm with smooth
function fθ(x). Specifically, the performance of the smoothed
l0-norm approximation fθ(x) depends on the smoothness
factor θ. When x is large, θ should be large so that the
approximation algorithm can explore the entire variable space;
when x is small, θ should be small so that fθ(x) has behavior
close to l0-norm. The update rule θ = βθ has been proved to
be effective by [38].

In the inner loop, with the fixed smoothed l0-norm, we
use CCP to provide an effective solution, which requires
several iterations. In each iteration, we transform the objective
function and constraints of the DC programming problem into
convex forms. Specifically, we replace the concave part in DC
functions with their first order Taylor expansions, which leads
to a convex subproblem. In a certain iteration of CCP, the
subproblem takes the following form in (27), as shown at the
bottom of this page, which is a convex problem. Then we
solve a sequence of convex subproblems successively during
iterations and find a local optimum to be the starting point of
the next outer loop. After multiple iterations, a local optimum
is provided to problem P2.

Moreover, the CCP based algorithm requires a feasible point
as the initial starting point. The feasible point is obtained by
solving the full observation case where all nodes observe all
phenomena2, which is a special case of P0 and is termed as
PINI. Problem PINI contains non-convex QoS constraints but
can be readily solved through the SDR method [39]. With the

2As long as problem P0 is feasible, the QoS requirements of the full
observation case are surely satisfied. In this paper, we only discuss the feasible
P0.

SDR method, problem PINI is given as

PINI: min
{Am}

(
1 + σ2

o

) M∑
m=1

tr (Am)

s.t.
tr
(
HAmHH

)
M∑
n6=m

tr(HAnHH)+
M∑
m=1

tr(AmR2)σ2o+σ2

≥ γg,m, m ∈M,

Am � 0,m ∈M,

(28)

where Am = [A]·m [A]
H
·m ,m ∈ M. We denote the optimum

of problem PINI as {A∗m} and utilize {A∗m} to deliver a
feasible point as the initial starting point. Specifically, if {A∗m}
are all rank-one matrices, the eigenvalue decomposition (EVD)
is applied on {A∗m} to generate the starting point {[A]·m}.
Otherwise, the Gaussian randomization and scaling method in
[39], [40] is used to generate the starting point. The complete
CCP based sparse observation and coding algorithm is outlined
in Algorithm 1.

Algorithm 1 The CCP Based Sparse Observation and Coding
Algorithm.

Input: Set iteration index i = 0, smoothness factor θ = θ0,
decaying factor 0 < β < 1, and small constants ε and ε1.

1: Solve PINI in (28) and denote its solution as {A∗m}.
2: If rank({A∗m}) = 1,m ∈ M, utilize EVD to obtain the

initial starting point A(0).
3: Else, utilize the Gaussian randomization and scaling

method to obtain the initial starting point A(0).
4: repeat
5: repeat
6: Solve P3 in (27) at the starting point A(i) and

denote
the solution as A∗.

7: Set A(i+1) = A∗.
8: Update iteration i = i+ 1.

9: until ‖
A(i−1)−A(i)‖

2

‖A(i−1)‖
2

< ε1.

10: Update θ = βθ, A(0) = A∗, and i = 0.
11: until θ < ε.
Output: A∗.

Remark 2. (Computational complexity of Algorithm 1.) The
worst convergence rate of CCP algorithm is linear [41], which
means that each inner loop at most solves O

(
log
(
ε−11

))

P3 : min
A,{tk,m}

M∑
m=1

K∑
k=1

(
∇fθ

(
t
(i)
k,m

)
um + 1 + σ2

o

)
tk,m +

K∑
k=1

∇fθ

(
M∑
m=1

t
(i)
k,m

)T
tmP

g
k

s.t. |ak,m|2 − tk,m ≤ 0, k ∈ K,m ∈M,

γg,m

M∑
n 6=m

[A]
H
·n
(
HHH + σ2

oR2

)
[A]·n + γg,mσ

2−(
2<
{

[A]
(i)H
·m

(
HHH− γg,mσ2

oR2

)
[A]·m

}
− [A]

(i)H
·m

(
HHH− γg,mσ2

oR2

)
[A]

(i)
·m

)
≤ 0,m ∈M.

(27)
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convex problems with 2KM variables. Furthermore, there
are (θ0 − ε)β−1 outer loops. Therefore, Algorithm 1 ap-
proximately needs to solve O

(
log
(
ε−11

)
(θ0 − ε)β−1

)
con-

vex problems with 2KM variables. Using the interior point
method with step length µ [42], the computational complexity

of Algorithm 1 is O
(

(θ0−ε) log(ε−1
1 ) log(2KM/ε1)

β log(µ)

)
, which is

much more efficient than the exhaustive search.

V. POWER CONSUMPTION MINIMIZATION IN
COLLABORATION SCHEME

In this section, we introduce the collaboration among nodes
into the sparse observation and coding scheme to further
improve the performance. The collaboration has a significant
effect on the SINR of observed phenomena, the transmission
duration, and the network power consumption, which leads
to a more complicated trade-off between achievable rates and
network power consumption. To achieve the optimal trade-off,
the minimization problem of network power consumption for
given rate constraints is studied.

A. Collaboration Scheme

Introducing collaboration, we propose a sparse observation
and collaborative coding scheme for IoT to monitor multiple
phenomena, where the observation diversity among nodes is
utilized to improve the performance. This scheme consists of
three phases: sensing, collaborative coding, and transmission.
The sensing and transmission phases are the same as before,
and we focus on the collaborative coding phase as illustrated in
Fig. 2. For clarity, the sparse observation and coding scheme
and the sparse observation and collaborative coding scheme
are referred to as the distributed scheme and the collab-
oration scheme, respectively, in the later section. Different
from the distributed scheme, the collaboration scheme requires
the nodes belonging to the same group Qm to share the
observation of phenomenon sm at the expense of increasing
power consumption and occupying part of the transmission
time3.

The observation of nodes in the sensing phase is the same
as (2). In the collaborative coding phase, the nodes in group
Qm share the observation of phenomenon sm and obtain the
corresponding collaborative observation by coherently com-
bining the shared observations. The collaborative observation
of nodes in group Qm can be given by

[Vc]·m = Wm [V]·m ,m ∈M, (29)

where Wm ∈ RK×K is the collaboration matrix of nodes
in group Qm. The element value of Wm is dependent on
the observed relation of nodes to phenomena. If node k
observes phenomenon sm, the elements of Wm at row k
are all set to ‖ [C]·m ‖0

−1, i.e., [Wm]k· = ‖ [C]·m ‖0
−1,

3The observation sharing of nodes in groups Qm can be realized through
the reliable multicast [26], where the collaboration power consumption is
directly proportional to |Qm| and the duration ratio of collaboration to
transmission is τ . The focus of the present work is on the conceptual aspects
of node collaboration and not the details of its physical implementation.
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Figure 2: The process of collaborative coding phase.

otherwise [Wm]k· = 0. The collaborative observations of
different phenomena at node k are given as

[Vc]
T
k· =


K∑
i=1

ci,1
‖[C]·1‖0

(s1 + ni,1)

...
K∑
i=1

ci,M
‖[C]·M‖0

(sM + ni,M )


= [C]

T
k· ◦ (s + nc,o) , k ∈ K,

(30)

where nc,o is the equivalent i.i.d Gaussian noise satisfying
nc,o ∼ CN (0,R3)4, R3 is a diagonal matrix and its m-th
diagonal element is σ2

o‖ [C]·m ‖0
−1. Then, each node linearly

encodes the collaborative observations of different phenomena
into a scalar for transmission. With a coding vector [A]k·, the
coded observation of node k is given by

xc,k = [A]k·

(
[C]

T
k· ◦ (s + nc,o)

)
, k ∈ K. (31)

The coded observation of all nodes is given as

xc =


[A]1·

(
[C]

T
1· ◦ (s + nc,o)

)
...

[A]K·

(
[C]

T
K· ◦ (s + nc,o)

)


= (A ◦C) (s + nc,o) .

(32)

In the transmission phase, all nodes concurrently transmit
their coded observations to the FC for recovery. The received
observation of the FC can be given by

yc =H [A ◦C]·m sm + H

M∑
n 6=m

[A ◦C]·n sn

+ H (A ◦C) nc,o + nr.

(33)

With the known CSI between nodes and the FC, the FC can
recover phenomena s by processing the received observation

4The observation noise is suppressed by collaboration, and the suppression
of noise power is directly proportional to the node number in collaboration,
i.e., ‖ [C]·m ‖0. Thus, the m-th element of suppressed noise nc,o is an
equivalent i.i.d Gaussian noise with mean 0 and variance σ2

o‖ [C]·m ‖0
−1.
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through the linear MMSE receiver. The SINR of phenomenon
sm (m ∈M) after linear MMSE receiver is given by

SINRc,m = dHm

 M∑
n 6=m

dndHn + DR3D
H + σ2I

−1 dm, (34)

where DN×M = [d1, · · · ,dM ]. The achievable rate of phe-
nomenon sm is given by

Rc,m =
1

1 + τ
log2 (1 + SINRc,m) ,m ∈M, (35)

where τ represents the duration ratio of collaboration to trans-
mission. To guarantee the QoS requirements of phenomena
s, the achievable rates should exceed their generating rate
Rg,m,m ∈ M, i.e., Rc,m ≥ Rg,m,m ∈ M. The rate
requirements are equivalent to SINRc,m ≥ γ̃g,m,m ∈ M,
where γ̃g,m = 2(1+τ )Rg,m − 1.

Due to introducing the collaboration among nodes, there is
an extra collaboration power consumption in the collaboration
scheme. Thus, the network power consumption of the collab-
oration scheme consists of four parts: sensing, collaboration,
coding, and transmission power consumption. Except for the
power consumption of collaboration and transmission, the
others are the same as that of the distributed scheme. The
collaboration power consumption is commonly regarded to
be directly proportional to the number of collaboration nodes
and the amount of collaborated data [26]. Therefore, the total
collaboration power consumption of nodes can be given by

P ct =

M∑
m=1

‖ [C]·m ‖0qmRc,m, (36)

where qm represents the collaboration power consumption
to generate 1-bit collaborative observation of phenomenon
sm. And, according to (32), the total transmission power
consumption is given as
K∑
k=1

E
{
xc,kx

H
c,k

}
=

K∑
k=1

[A ◦C]k· (I + R3) [A ◦C]
H
k·

= tr
(
A ◦C (I + R3) CH ◦AH

)
.

(37)

Thus, the network power consumption of the collaboration
scheme can be given by

P =

M∑
m=1

‖ [C]·m ‖0uc,m +

K∑
k=1

∥∥‖ [C]k· ‖
2
2

∥∥
0
P gk+

K∑
k=1

P slk + tr
(
A ◦C (I + R3) CH ◦AH

)
,

(38)

where uc,m = (pm + qm)Rg,m represents the total power
consumption of observation and collaboration of phenomenon
sm for the given generating rate Rg,m.

Remark 3. (Collaboration effects.) From (34), (35), and
(38), collaboration has a heavy effect on the network power
consumption, the received SINRs of observed phenomena,
and the transmission duration, respectively. First, collaboration
introduces an extra collaboration power consumption, which
causes an increased network power consumption. Meanwhile,

collaboration improves the received SINRs by utilizing the ob-
servation diversity of nodes to suppress observation noise and
equalize bad observations. Moreover, collaboration shortens
the transmission duration of nodes, which restricts the achiev-
able rates of observed phenomena. Consequently, compared
with the distributed scheme, introducing collaboration results
in a more complicated trade-off between achievable rates and
network power consumption.

Taking full consideration of the collaboration effects in
Remark 3, the optimal trade-off between achievable rates
and network power consumption should be studied by jointly
designing the observation and coding matrices.

B. Problem Formulation

Again, the constant terms of network power consumption
are ignored to give the optimization problem as

Pc : min
C,A

M∑
m=1

‖ [C]·m ‖0uc,m +

K∑
k=1

∥∥‖ [C]k· ‖
2
2

∥∥
0
P gk+

tr
(
A ◦C (I + R3) CH ◦AH

)
s.t. C2 : ck,m ∈ {0, 1}, k ∈ K,m ∈M,

C3 : (1− ck,m)ak,m = 0, k ∈ K,m ∈M,

C6 : SINRc,m ≥ γ̃g,m,m ∈M.

(39)

Constraints C2 and C3 represent the observed relation of
nodes to phenomena and the coupled relation of observation
matrix to coding matrix, respectively. Constraint C6 ensures
that the QoS requirements of phenomena are satisfied. Similar
to problem P0, problem Pc is intractable. Compared with P0,
Pc can be solved in a similar but more complex method.

C. Problem Solving

For brevity, we directly rewrite problem Pc as a solvable
DC programming problem in Proposition 4.

Proposition 4. (DC programming problem of Pc.) Problem Pc
can be rewritten as the following DC programming problem

P4: min
A,T

M∑
m=1

K∑
k=1

fθ(tk,m)uc,m+

K∑
k=1

fθ

(
M∑
m=1

tk,m

)
P gk

+
(
1 + σ2

o

) M∑
m=1

K∑
k=1

tk,m

s.t. C4: |ak,m|2 − tk,m ≤ 0, k ∈ K,m ∈M,

C7: γ̃g,m
(
1+σ2o

) M∑
n6=m

[A]
H
·nHHH[A]·n+γ̃g,mσ

2

−
(
1−γ̃g,mσ2

o

)
[A]

H
·mHHH[A]·m≤0, m∈M.

(40)

Proof: Please refer to Appendix E.
The CCP based sparse observation and collaborative cod-

ing algorithm to solve P4 is outlined in Algorithm 2. The
starting point of Algorithm 2 is obtained by solving the full
collaboration case where all nodes collaboratively observe all
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phenomena5, which is a special case of problem PSOC in (51)
and is termed as PC

INI. With the SDR method, problem PC
INI is

PC
INI: min
{Am}

M∑
m=1

(
1 +

σ2
o

K

)
tr (Am)

s.t.
tr
(
HAmHH

)
M∑
n6=m

tr(HAnHH)+
σ2o
K

M∑
m=1

tr(HAmHH)+σ2

≥ γg,m, m ∈M,

Am � 0,m ∈M,

(42)

where Am = [A]·m [A]
H
·m ,m ∈ M. The com-

putational complexity of Algorithm 2 is approximately
to solve O

(
log
(
ε−11

)
(θ0 − ε)β−1

)
convex problems with

2KM variables. Using the interior point method with step
length µ, the computational complexity of Algorithm 2 is

O
(

(θ0−ε) log(ε−1
1 ) log(2KM/ε1)

β log(µ)

)
, which is much more efficient

than the exhaustive search.

Algorithm 2 CCP Based Sparse Observation and Collabora-
tive Coding Algorithm.

Input: Set iteration index i = 0, smoothness factor θ = θ0,
decaying factor 0 < β < 1, and small constants ε and ε1.

1: Solve PC
INI in (42) and denote the solution as {A∗m}.

2: If rank({A∗m}) = 1,m ∈ M, utilize EVD to obtain the
initial starting point A(0).

3: Else, utilize the Gaussian randomization and scaling
method to obtain the initial starting point A(0).

4: repeat
5: repeat
6: Solve P5 in (41) at the starting point A(i) and

denote
the solution as A∗.

7: Set A(i+1) = A∗.
8: Update iteration i = i+ 1.

9: until ‖
A(i−1)−A(i)‖

2

‖A(i−1)‖
2

< ε1.

10: Update θ = βθ, A(0) = A∗, and i = 0.
11: until θ < ε.
Output: A∗.

5As long as problem PSOC is feasible, the QoS requirements of the full
collaboration case are surely satisfied.

Table I: Simulation parameters

Parameter Value

Node number K = 100

Phenomenon number M = 2 ∼ 25

Antenna number at the FC N = 30

Noise power at the FC 10−3

Observation noise power 10−2

Duration ratio of collaboration to transmission τ = 1

Power consumption to generate 1-bit data of sm pm = 10−2mJ

Circuit power consumption of active node Pa = 10−2mW

Circuit power consumption of sleep node P sl = 10−3mW

Power consumption to collaborate 1-bit data of sm qm = 0.1mJ

Initial value of θ θ0 = 103

Update factor of θ β = 0.1

Acceptable maximum of θ ε = 10−3

Acceptable maximum error ε1 = 10−3

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to show the
performances of the proposed schemes. The channels between
nodes and the FC are assumed to be the i.i.d Rayleigh block
fading channel. The parameter settings are listed in Table I
unless specified otherwise.

The network power consumptions of the IoT with con-
ventional full observation scheme and the IoT with sparse
observation and coding scheme versus the total achievable
rate are shown in Fig. 3. From Fig. 3, we can see that the
network power consumptions remain approximately constant
at first, and then sharply increase with the increase in total
achievable rate. This can be explained as follows. The IoT
with different schemes is first in the power-limited regime and
then in the bandwidth-limited regime. Moreover, for the same
total achievable rate, the network power consumption of the
IoT with full observation scheme is always greater than that
of the IoT with sparse observation and coding scheme, which
demonstrates that the sparse observation and coding scheme
can improve energy efficiency. Fig. 4 shows the performance
of the IoT with sparse observation and coding scheme for
different node numbers. For the same total achievable rate,
the network power consumption is gradually decreasing when
the node number increases. This can be explained as follows.
With sparse observation and coding scheme, IoT can select the

P5 : min
A,{tk,m}

M∑
m=1

K∑
k=1

(
∇fθ

(
t
(i)
k,m

)
uc,m + 1 + σ2

o

)
tk,m +

K∑
k=1

∇fθ

(
M∑
m=1

t
(i)
k,m

)T
tmP

g
k

s.t. |ak,m|2 − tk,m ≤ 0, k ∈ K,m ∈M,

γ̃g,m
(
1+σ2

o

) M∑
n6=m

[A]
H
·n HHH [A]·n+γ̃g,mσ

2−

(
1−γ̃g,mσ2

o

) (
2<
{

[A]
(i)H
·m HHH [A]·m

}
− [A]

(i)H
·m HHH [A]

(i)
·m

)
≤ 0,m ∈M.

(41)
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Figure 3: The comparison of network power consumption
between the IoT with traditional full observation scheme and
the IoT with sparse observation and coding scheme.
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Figure 4: The network power consumption of the IoT with
sparse observation and coding scheme for different node
numbers.

nodes with a better state of observation and channel to observe
and encode phenomena when there are more nodes. In other
words, when IoT deploys more nodes to monitor phenomena,
the sparse observation and coding scheme can provide larger
performance gains.

Fig. 5 shows the performance of the IoT with sparse
observation and coding scheme for different phenomenon
numbers. For low total achievable rates, to achieve the same
total achievable rate, the network power consumption gradu-
ally increases when the phenomenon number increases. This
can be interpreted as follows. Observing more phenomena
needs to activate more nodes, which consumes more power in
observation and coding. Moreover, the increased power con-
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Figure 5: The network power consumption of the IoT with
sparse observation and coding scheme for different phe-
nomenon numbers.
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Figure 6: The comparison of network power consumption
between the IoT with sparse observation and coding scheme
and the IoT with sparse observation and collaborative coding
scheme.

sumption due to observing more phenomena is the dominant
power consumption in the power-limited regime. For high
total achievable rates, to achieve the same total achievable
rate, the network power consumption gradually decreases as
the phenomenon number increases. This can be interpreted
as follows. Each node has more chances to choose the better
phenomena for observation according to its observation state.
As a result, the sparse observation and coding scheme can
render a larger performance gain when IoT monitors more
phenomena under high QoS requirements.

The network power consumptions of the IoT with dis-
tributed scheme and the IoT with collaboration scheme are
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Figure 7: The network power consumption of the IoT with
sparse observation and collaborative coding scheme for differ-
ent duration ratios of collaboration to transmission.

compared in Fig. 6. For low total achievable rates, to achieve
the same total achievable rate, the network power consumption
of the IoT with collaboration scheme is greater than that
of the IoT with distributed scheme. This can be explained
as follows. The collaboration scheme requires extra power
to achieve the collaboration of nodes in the same group,
which is dominant power consumption in the power-limited
regime. Moreover, the collaboration gain is not significant due
to the small number of observations at low total achievable
rates. For high total achievable rates, to achieve the same
total achievable rate, the network power consumption of the
IoT with distributed scheme is greater than that of the IoT
with collaboration scheme. This interpretation is given as
follows. The collaboration scheme can provide a significant
performance gain by utilizing the observation diversity of more
activated nodes, and the collaboration power consumption is
not dominant for high total achievable rates. It demonstrates
that compared with the distributed scheme, the collaboration
scheme is more suitable for IoT to monitor phenomena under
high QoS requirements.

Fig. 7 shows the performance of the IoT with collabora-
tion scheme for different duration ratios of collaboration to
transmission. For the same total achievable rate, the network
power consumption gradually increases when the duration
ratio increases. The reason is that the increased τ results
in the shortened transmission duration. Due to the shortened
transmission duration, the achievable rates of observed phe-
nomena are decreased. Therefore, to transmit the same number
of observations, nodes require more power for transmission,
which is used to compensate for the loss of achievable rates.

Fig. 8 shows the performance of the IoT with collaboration
scheme for different node numbers. For the same total achiev-
able rate, the network power consumption gradually decreases
when the node number increases. The interpretation is that
the IoT consisting of more nodes can select the more suitable
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Figure 8: The network power consumption of the IoT with
sparse observation and collaborative coding scheme for differ-
ent node numbers.
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Figure 9: The network power consumption of the IoT with
sparse observation and collaborative coding scheme for differ-
ent phenomenon numbers.

nodes to achieve the observation and collaborative coding of
phenomena. It also demonstrates that the collaboration scheme
can provide significant collaboration gains for large-scale IoT
to monitor multiple phenomena. Fig. 9 shows the performance
of the IoT with collaboration scheme for different phenomenon
numbers. For low total achievable rates, to achieve the same to-
tal achievable rate, the network power consumption gradually
increases when the phenomenon number increases. This can
be explained as follows. Monitoring more phenomena needs
more power consumption for observation and collaborative
coding and this power consumption is dominant in the power-
limited regime. For high total achievable rates, to achieve the
same total achievable rate, the network power consumption
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gradually decreases when the phenomenon number increases.
This can be interpreted as follows. The performance gain of the
collaboration scheme is significant and its power consumption
is not dominant for high total achievable rates. It demonstrates
that the collaboration scheme is suitable for IoT to monitor
multiple phenomena under high QoS requirements.

VII. CONCLUSION

This paper has studied a sparse observation and coding
scheme for IoT to achieve the energy-efficient observation
of multiple phenomena, where the nodes can dynamically
select part of the phenomena for observation and coding. By
analyzing outage performance, we demonstrate that the sparse
observation and coding scheme can achieve a performance
close to that of the full observation scheme with lower power
consumption. Moreover, with the derived achievable rates and
network power consumption, we find a performance trade-off
between achievable rates and power consumption, which is
closely associated with the observation and coding matrices.
To optimize the trade-off in performance, we have studied the
NP-hard optimization problem to minimize the network power
consumption for given QoS constraints by jointly designing the
observation and coding matrices. The CCP based algorithm
with low-complexity has been used to provide an effective
local optimum to this NP-hard problem. To further improve
the performance, we have adopted the collaboration of nodes,
where the observation diversity is utilized to suppress the ob-
servation noise and equalize the bad observation. Furthermore,
taking full account of the collaboration effect in performance,
the minimum power consumption of IoT to satisfy the given
QoS requirements has been achieved through optimization.

APPENDIX A
PROOF OF LEMMA 1

The SINR of phenomenon sm (m ∈M) can be written as

SINRm = dHm

 M∑
n6=m

dndHn + HR1H
H + σ2I

−1dm
= µmsm + νm.

According to the distribution of the sum of scaled exponential
random variables and eigenvalues on random matrix theory
[43], the variance of νm is σ2

νm = µm − µ2
m and SINRm is

SINRm = µm/(1− µm), where

µm =
(H [A ◦C]·m)HBmH [A ◦C]·m

1 + (H [A ◦C]·m)HBmH [A ◦C]·m
,

Bm =

 M∑
n 6=m

dndHn + HR1H
H + σ2I

−1 .
With the eigenvalue theory [44], the Hermitian matrix∑M
n 6=m dndHn can be decomposed as

∑M
n 6=m dndHn =

UH
mΛmUm, where Um is the unitary matrix and Λm is the

eigenvalue matrix defined as

Λm = diag

λ1, · · · , λM−1, 0, · · · , 0︸ ︷︷ ︸
N−M+1

 .

According to [45, eq. (10)], SINRm can be expressed as

SINRm=(UmH [A◦C]·m)H(Λm+ρIN )−1UmH[A◦C]·m

=

M−1∑
n=1

|ĥn,m|2

λn + ρ︸ ︷︷ ︸
Z

+ ρ−1
N∑

n=M

|ĥn,m|2︸ ︷︷ ︸
W

(43)

where ρ=‖A◦C‖22σ2
o+σ2, UmH[A◦C]·m= [ĥ1,m, · · ·,ĥN,m].

Since H is the circularly symmetric complex Gaus-
sian (CSCG) matrix, UmH [A ◦C]·m is a CSCG vec-
tor with variance matrix ‖ [A ◦C]·m ‖22IN , i.e., ĥn,m ∼
CN (0, ‖ [A ◦C]·m ‖22). Thus, |ĥn,m|2 is i.i.d. exponential ran-
dom variable

f (z;βm) =

{
1
βm

e−
z
βm z ≥ 0;

1 z < 0,
(44)

where βm = ‖ [A ◦C]·m ‖22. The PDF of Z can be given by

fZ(z|λ1, . . .,λM−1)=

M−1∑
n=1

(λn + ρ)
3−Me−

z(λn+ρ)
βm

M−1∏
j=1,j6=n

[(
1

λn+ρ

)
−
(

1
λj+ρ

)]
βm

.
(45)

The PDF of W can be given by [43]

fW (w) =
wN−M

(N −M)!

(
ρ

βm

)N−M+1

exp
(
−ρw
βm

)
. (46)

The joint PDF of the ordered eigenvalues is

fΛ(λ1, . . .,λM−1)=

M−1∏
m=1

λN−M+1
m e−λm

(M−i−1)(N−i)!

M−1∏
j=1,j>m

(λm−λj)2. (47)

The PDF of SINRm can be derived by marginalization as

fSINRm(γ)=

∫ ∞
0

· · ·
∫ λ3

0

∫ λ2

0

fSINRm(γ|λ1,. . .,λM−1)

· fΛ(λ1,. . .,λM−1)dλ1 · · · dλM−1

=
1

βm

( γ
βm

)N−1e−
ργ
βm

(N−1)!(1+ ρNγ
βm

)M

[
M−1∑
k=0

(
M−1

k

)
N !

(N−k)!
ρ−k

+
γ

βm

M−1∑
k=0

(
M − 1

k

)
(N − 1)!

(N − k − 1)!
ρ−k

]
.

(48)

APPENDIX B
PROOF OF PROPOSITION 1

With the integral result in [31], that

I(a, b, z, γ) =
ez

Γ(a)

γ+1∫
1

e−zt(t− 1)a−1tb−a−1dt

=
ez

Γ(a)

a−1∑
i=0

(
a− 1

i

)
(−1)i

γ+1∫
1

e−zttb−i−2dt

=
ez

Γ(a)

a−1∑
i=0

(
a− 1

i

)[
Γ(b− i− 1, z)

− Γ
(
b− i− 1, (1 + γ)z

)]
(−1)izi−b+1,
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we can obtain the outage probability

Po,m =

γT∫
0

fSINRm(t)dt

=
1

βm

M−1∑
k=0

(
M−1

k

)
Nγk−N0

(N−k)!

γT∫
0

( t
βm

)N−1e−
t

βmγ0

(1 + t
βm

)M
dt

+
1

βm

M−1∑
k=0

(
M−1

k

)
γk−N0

(N−k−1)!

γT∫
0

( t
βm

)Ne−
t

βmγ0

(1+ t
βm

)M
dt

=

M−1∑
k=0

(
M−1

k

)
Nγk−N0

(N−k)!
I
(
N,N−M+1,γ−10 ,

γT

βm

)
+

M−1∑
k=0

[(
M−1

k

)
γk−N0

(N−k−1)!

· I
(
N+1,N−M+2,γ−10 ,

γT

βm

)]
,

(49)

where γ0 = ρ−1.

APPENDIX C
PROOF OF PROPOSITION 2

Only considering dominant terms in (14), the diversity order
is given by

d = − lim
γ0→∞

log(Po(γ0))

log(γ0)

= lim
γ0→∞

log

[
γM−1−N0

(NI(N,N −M + 1, γ−10 , γT
βm

)

(N −M + 1)!

+
I(N + 1, N −M + 2, γ−10 , γT

βm
)

(N −M)!

)]/
log(γ0)

= N −M + 1.
(50)

APPENDIX D
PROOF OF LEMMA 5

The received SINRs through the MMSE receiver is greater
than the received SINRs through the maximal ratio combining
(MRC) receiver. Thus, we utilize the SINRs of MRC receiver
γMRC,m to provide the lower bounds of SINRm (m ∈ M),
which are given as ∣∣∣[A]

H
·m HHH [A]m

∣∣∣2
M∑
n6=m

∣∣∣[A]
H
·mHHH[A]n

∣∣∣2+
∣∣∣[A]

H
·mHHHno

∣∣∣2+σ2
∥∥∥[A]

H
·mH

∥∥∥2
2

.

While substituting the SINRs through MRC receiver
γMRC,m,m ∈ M into the optimization problem, the QoS
constraints are still intractable as variables are complexly
coupled with each other. In order to simplify QoS constraints,
we provide the lower bounds for γMRC,m,m ∈M by utilizing
the induced norm inequality λmin ≤ ‖Qb‖22/‖b‖22 ≤ λmax
[44], where λmin and λmax are the minimum and maximum

eigenvalue of QHQ, respectively. The lower bounds of SINRs
γm (m ∈M) are given by

[A]
H
·m HHH [A]·m

M∑
n 6=m

[A]
H
·n HHH [A]·n+

K∑
k=1

‖[A]k·‖
2
2
hHk hkσ2

o+σ2

.

APPENDIX E
PROOF OF PROPOSITION 4

In short, to solve Pc, we first decouple the coding matrix A
from the observation matrix C and equivalently rewrite Pc as
a sparse collaboration coding problem with smoothed l0-norm.
Then, we utilize the lower bounds of SINRc,m,m ∈ M and
the upper bound of objective function to transform the sparse
collaboration coding optimization problem into a solvable DC
programming problem. For brevity, we straightway provide the
sparse collaboration coding problem with smoothed l0-norm

PSOC : min
A

M∑
m=1

K∑
k=1

fθ
(
|ak,m|2

)
uc,m

+

K∑
k=1

fθ
(
‖ [A]k· ‖

2
2

)
P gk

+ tr
(
A (I + R3) AH

)
s.t. C6 : SINRc,m ≥ γ̃g,m,m ∈M.

(51)

The problem PSOC is intractable to solve due to the non-
convex objective function and QoS constraints C6. In order
to convert PSOC into a general DC programming, we first
provide the lower bounds for the SINRs through MMSE
receiver and the upper bound for the objective function. The
SINRs through MMSE receiver SINRc,m,m ∈ M in the
collaboration scheme are greater than the SINRs through MRC
receiver γcMRC,m,m ∈M, which are given as

[A]
H
·m HHH [A]·m

M∑
n 6=m

[A]
H
·m HHH [A]·n+

M∑
m=1

σ2
o[A]H·mHHH[A]·m
‖[C]·m‖0

+σ2

.

Then, we can provide the lower bound for γcMRC,m,m ∈ M
by utilizing the induced norm inequality. The lower bounds
γc,m are given as

[A]
H
·m HHH [A]·m

(1+σ2
o)

M∑
n 6=m

[A]
H
·n HHH [A]·n+σ2o [A]

H
·m HHH [A]·m+σ2

.

According to the theory of induced norm inequality, there is
an inequality

tr
(
AR3A

H
)
≤ σ2

o

M∑
m=1

‖ [A]·m ‖
2
2.

Substituting the inequality into the objective function, we can
obtain the upper bound of objective function, which is given
as

M∑
m=1

K∑
k=1

fθ
(
|ak,m|2

)
uc,m+

K∑
k=1

fθ
(
‖ [A]k· ‖

2
2

)
P gk

+
(
1 + σ2

o

) M∑
m=1

‖ [A]·m ‖
2
2.
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With the upper bound of objective function and the lower
bounds of SINRs, introducing the auxiliary variable matrix
T, the sparse collaboration coding problem PSOC is rewritten
as P4. For problem P4, its constraints C4 are convex. And the
objective function and constraints C7 are DC functions. Thus,
problem P4 falls into a general form of DC programming
problem.
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