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Abstract

Endogenous uncertainty concerns uncertainty which is dependent of deci-
sions such as link failure in the retrofitting planning application. We propose
a marginal-based distributionally robust optimization framework for integer
stochastic optimization with decision-dependent discrete distributions that
can be applied for the retrofitting planning application. We show that the
resulting model can be formulated as a mixed-integer linear optimization
problem. In order to solve the problem, we develop a constraint generation
algorithm given the exponentially large number of constraints. Numerical
results for the retrofitting planning application show that the proposed algo-
rithm once tailored can solve the problem efficiently.

Keywords: Stochastic programming, distributionally robust optimization,
endogenous uncertainty, retrofitting planning

1. Introduction

Optimization under uncertainty concerns how to make (optimal) deci-
sions when there is uncertainty in problem parameters and data (Diwekar
[6]). Uncertainty is traditionally represented with distributional informa-
tion of random parameters in stochastic optimization (see, e.g., Birge and
Louveaux [3]). They could be stock prices in the application of portfolio
management, customer demands in revenue management, or wind speed in
energy management. In general, these random parameters are exogenous,
i.e., they are not affected by decisions. However, there are cases when deci-
sions can influence (distributional) information of these random parameters,
which implies endogenous or decision-dependent uncertainty. For example,
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if a bridge is retrofitted (planning decisions), its survivability, i.e., the prob-
ability that it has no damage after a natural disaster, increases. This is the
first type of endogenous uncertainty where decisions affect the probability
distribution of random parameters such as the survival probabilities in the
above example. The second type of endogenous uncertainty happens when
decisions affect the resolution of uncertainty, i.e, when random parameters
are realized. This type of endogenous uncertainty usually occurs in the multi-
stage setting in which different decisions result in the realization of different
parameters at different stages. For example, complete information of an oil
field is only obtained when a facility is installed at that field as an invest-
ment decision in one particular period (stage) while the information of other
unexplored oil fields remains unknown (see, e.g., Goel and Grossmann [13]).

Stochastic optimization models with endogenous uncertainty are more
difficult to handle in general due to various technical difficulties introduced
by the dependence of distributions of random parameters on decisions such
as the potential loss of convexity in these models (see, e.g., Dupačová [9]).
Jonsbr̊aten et al. [17] were among the first to investigate stochastic opti-
mization with endogenous uncertainty, which initially focuses mainly on the
second type of endogenous uncertainty. They developed implicit enumeration
algorithms for the models in which the realization of random parameters only
depends on first-stage decisions. More recently, Goel and Grossmann ([12])
and Gupta and Grossmann ([14, 15]) have investigated further this type of en-
dogenous uncertainty and proposed different solution approaches including
non-anticipativity constraint relaxation and decomposition-based approxi-
mation algorithms. Vayanos et al. [32] studied decision rules for multi-stage
stochastic optimization problems with endogenous uncertainty. As for the
first type of endogenous uncertainty, Peeta et al. [26] handled the resulting
highly non-linear models with linear approximation while Flach and Poggi
[11] applied other convexification techniques to approximate them. Prest-
wich et al. [27] used the idea of distribution shaping and scenario bundling
to handle potentially large scenario sets in these models and they were able
to solve them efficiently without any approximation. More recently, Hellemo
[16] considered a combined type of decision-dependent uncertainty and ap-
plied it in the context of oil field exploration.

In addition to stochastic optimization, robust optimization is another re-
search area in optimization under uncertainty which follows the principle
of “immunized against worst case” (see, e.g., Ben-Tal et al. [1]) instead of
expected performance. Robust optimization assumes uncertain parameters
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belong to uncertainty sets without any distributional information. Distribu-
tionally robust optimization, on the other hand, makes the assumption that
random parameters follow unknown probability distributions which belong
to ambiguity sets. Distributionally robust optimization or robust/minimax
stochastic optimization was first investigated by Žáčková [34], and has been
studied extensively more recently within the research communities of both
stochastic and robust optimization. With respect to endogenous uncertainty,
there are only few very recent research publications discussing decision-
dependent uncertainty sets for robust optimization models (see, e.g., No-
hadani and Sharma [22], Lappas and Gounaris [18] and references therein).
Similarly, there has not much research focussing on distributionally robust
optimization with endogenous uncertainty. Royset and Wets [29] investi-
gated the approximation of general optimization problems under stochastic
ambiguity (which includes both endogenous and exogenous uncertainty) us-
ing cummulative distribution functions and their hypo distance as a metric
to establish convergence results. Zhang et al. [35] analyzed the stability
of a general distributionally robust optimization problem under endogenous
uncertainty with parametric ambiguity sets. Noyan et al. [23] studied the
earth mover’s distance-based ambiguity sets for decision-dependent distribu-
tions while Luo and Mehrotra [19] extended the framework of distributionally
robust optimization with decision-dependent parametric ambiguity sets. In
this paper, motivated by the stochastic optimization problem under the first
type of endogenous uncertainty considered by [26], we focus on a different dis-
tributionally robust optimization model under endogenous uncertainty which
focuses on probability dependence of decision-dependent distributions.

Contributions and paper outline

Specifically, our contributions and the structure of the paper are as fol-
lows.

(1) We propose a new model of distributionally robust optimization un-
der the first type of endogenous uncertainty for integer stochastic op-
timization problems in Section 2. More specifically, we are going to
use Fréchet classes of distributions, i.e., classes of distributions defined
by known marginal distributions, as ambiguity sets in the proposed
model. We show that the resulting model can be reformulated as a
mixed-integer linear optimization problem.
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(2) We provide a general constraint generation algorithm to solve the pro-
posed distributionally robust optimization model in Section 3 to han-
dle exponentially large number of constraints. Numerical results are
reported for the retrofitting planning application in Section 4 with a
tailored algorithm which can generate constraints efficiently by exploit-
ing some structural properties of the retrofitting problem.

2. Mathematical Model

Stochastic optimization problems with the first type of endogenous un-
certainty concerns decision making with decision-dependent probability dis-
tributions. In the retrofitting planning application studied by Peeta et al.
[26], the survival probability of links in a transport network depends on
retrofitting decisions. More concretely, let us consider a network G = (N , E),
where N is the set of nodes and E is the set of links. We are concerned about
the traversal cost between origin-destination (OD) pairs (o, d) ∈ OD within
the network after a natural disaster happens, where OD is the set of all OD
pairs in the network. The traversal cost between two nodes o and d in the
network is computed as the total travel cost on the shortest path connected o
and d. The uncertainty is represented by the state of the transport network
after a disaster happens. Each link in the network is either operational or
non-operational with complete damage, which in general, affects the traver-
sal costs between OD pairs. Retrofitting a particular link would increase its
survival probability, which in turn would affect the probability distribution
of the random post-disaster state of the transport network. We aim to de-
termine which links in the network to retrofit so as to minimize the expected
traversal cost given the random post-disaster network state. This retrofitting
planning problem can be written as the following integer stochastic optimiza-
tion problem with decision-dependent discrete probability distributions:

min
x

EP (x) [f(x, ξ)]

s.t. x ∈ X ,
(1)

which will be explained in detail next.
The decision variables x ∈ X n

0 , where X0 = {0, 1} and n = |E|, indicate
whether to retrofit links in a transport network or not. The feasible set
X ⊆ X n

0 , which is defined by additional constraints. For example, if there
is a retrofitting budget B and each link i, i = 1, . . . , n, needs a cost bi to
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retrofit, the budget constraint
n∑
i=1

bixi ≤ B would be used to define X in the

retrofitting planning application. The set X0 can be extended to a finite set
of more than two options to indicate different levels of investment.

The uncertainty ξ is represented by scenarios s ∈ Sn0 , where S0 = {0, 1},
which indicates whether a link is operational (s = 1) or not (s = 0) after
a natural disaster. The set S0 can be generalized to a finite set of possible
states including different levels of damages caused by a natural disaster (see,
e.g., Chang et al. [4]).

Given a scenario s ∈ Sn0 , for the retrofitting planning application with a
single OD pair, f(x, s) is the traversal cost between the origin and destination
of the OD pair within the transport network given the network state s. (Note
that for multiple OD pairs, it is straightforward to generalize the objective to
be the weighted sum of traversal costs of all OD pairs and it will be discussed
in detail later.) The traversal cost between two nodes in the network is the
travel cost on the shortest path connecting these two nodes, which can be
computed using the following network flow problem:

f(x, s) = min
0≤w≤w̄

n∑
i=1

ci(xi, si) · wi

s.t. w ∈ W ,

(2)

where w are flow decision variables, w ∈ [0, 1]n if the links are directed. If
the links are undirected, the cost function f(x, s) can also be formulated
as shown in (2), which will be discussed in detail later. The feasible set
W is defined by flow conservation constraints, which can be represented
explicitly as Aw = b, and the cost ci(xi, si) is the travel cost of link i ∈ E
given its post-disaster state. In retrofitting planning application, when the
link i is non-operational (si = 0), ci(xi, 0) is set to be large enough, which
implies ci(xi, 0) ≥ ci(xi, 1), where ci(xi, 1) is the travel cost when the link i
is operational (si = 1). We therefore make the following formal assumption:

Assumption 1. The cost function ci(x, ·), x ∈ X0, is non-increasing in
s ∈ S0, i.e., ci(x, 0) ≥ ci(x, 1) for all i = 1, . . . , n.

The probability distributions of the random state of each individual link
i, i = 1, . . . , n, are decision-dependent or endogenous. Let pi(xi, si) ≥ 0 be
the probability of link i to be in state si ∈ S0 if xi ∈ X0 has been selected
as the decision, which constitutes the decision-dependent distribution Pi(xi)
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of the random state of link i, i = 1, . . . , n. Clearly,
∑
s∈S0

pi(x, s) = 1 for all

x ∈ X0 and i, i = 1, . . . , n. Naturally, one should have pi(0, 1) ≤ pi(1, 1) in
this application, i.e., retrofitting actions (x = 1) increase link survivability,
the probability of a link to be operational after a natural disaster (s = 1).

In the retrofit planning application, link survivability is normally assumed
to be known as it can be computed by structural engineers for each and ev-
ery link using domain-specific information (see, e.g., [26]). Given the known
decision-dependent probability distributions Pi(x) of individual items, one
still need to define the (decision-dependent) joint probability distribution
P (x) of the random network state s. Peeta et al. [26] and subsequently,
Prestwich et al. [27], assume that P (x) is an independent joint probability
distribution, i.e., P (x) = ×ni=1Pi(xi), which makes Problem (1) highly non-
linear and difficult to solve due to the computation of the expectation with
respect to this joint probability distribution. Peeta et al. [26] had to use
linear approximation while Prestwich et al. [27] used distribution shaping
and scenario bundling to solve Problem (1) with independent P (x). The in-
dependence assumption is also quite a strong assumption for the retrofitting
planning application given that the survival probability of an individual link
not only depends on its own structure but also the properties of the hap-
pening natural disaster. For example, damages caused by an earthquake
depend on its magnitude and where its epicenter is within the transport net-
work (Chang [4]), which implies the survival provabilities of individual links
are not completely independent. In this paper, we relax the independence
assumption and consider a distributionally robust optimization model with
Fréchet classes of joint probability distributions whose decision-dependent
marginal distributions are known. This ambiguity model is chosen given
its inherent ability to handle dependence ambiguity when the independence
assumption is relaxed for the retrofitting planning application. For applica-
tions with decision-dependent uncertainty in which independence assumption
holds such as the application of network interdiction, the proposed model
might not be relevant. The proposed model is indeed different from the
stochastic network interdiction models which concerns random OD pairs in-
stead of the ambiguity of decision-dependent probability distributions (see,
e.g., [24] and references therein). On the other hand, the proposed model is
different from other disrtributionally robust optimization models ([23, 19])
which require different assumptions such as the availability of a known nom-
inal joint probability distribution P0(x) to construct the corresponding am-
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biguity sets. The proposed model is instead motivated by the assumption
that individual link survival probabilities are known, which is appropriate for
the retrofit planning application. We now focus on the development of the
proposed distributionally robust optimization model with Fréchet classes of
joint probability distributions.

The Fréchet classes of distributions have been investigated by Rüschendorf
[30] among others and they are used to evaluate bounds on the cumulative
distribution function of a sum of random variables (see, e.g., Embretchs and
Puccetti [10]). The related multimarginal optimal transportation problem is
also studied extensively (see, e.g., Pass [25]). Distributionally robust opti-
mization models with Fréchet classes of distributions under exogenous un-
certainty have been investigated in many applications (see, e.g., [8, 7, 28]).
Mathematically, let P(x) be the Fréchet class of distributions with known
decision-dependent marginals Pi(xi) for i = 1, . . . , n, i.e.,

P(x) = {P ∈M(Sn0 ) | proji(P ) = Pi(xi), i = 1, . . . , n}, (3)

where M(Sn0 ) is the set of probability measures defined on the (finite) dis-
crete set Sn0 of random network state s and proji(P ) is the i-th marginal
distribution of the joint probability distribution P . The robust counterpart
of Problem (1) can be written as follows:

min
x

max
P∈P(x)

EP [f(x, ξ)]

s.t. x ∈ X .
(4)

A joint probability distribution P ∈ P(x) can be characterized by the proba-

bilities ps of scenarios s ∈ Sn0 . Clearly, ps ≥ 0 for all s ∈ Sn0 and
∑
s∈Sn0

ps = 1.

The information of marginal distribution Pi(xi), i = 1, . . . , n, can be repre-
sented by the following constraints:∑

s:si=1

ps = pi(xi, 1).

We do not need to impose the above constraint for pi(xi, 0) as
∑
s∈S0

pi(xi, s) = 1

for all i = 1, . . . , n. Given this presentation of P ∈ P(x), we are ready
to reformulate Problem (4). The inner optimization problem is a linear
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optimization problem with ps as decision variables:

max
ps

∑
s∈Sn0

f(x, s) · ps

s.t.
∑
s∈Sn0

ps = 1,∑
s:si=1

ps = pi(xi, 1), ∀ i = 1, . . . , n,

ps ≥ 0, ∀ s ∈ Sn0 ,

(5)

whose dual problem can be written as follows:

min
u,v

u+
n∑
i=1

pi(xi, 1) · vi

s.t. u+
∑
i:si 6=0

vi ≥ f(x, s), ∀ s ∈ Sn0 ,
(6)

where u and vi for i = 1, . . . , n, are dual decision variables. Note that the
total number of dual decision variables is only n+1 while the number of dual
constraints is 2n, which is exponential large. Given strong linear duality, we
obtain the following reformulation of Problem (4):

min
x,u,v

u+
n∑
i=1

pi(xi, 1) · vi

s.t. u+
∑
i:si 6=0

vi ≥ f(x, s), ∀ s ∈ Sn0 ,

x ∈ X .

(7)

Problem (7) has a non-linear objective function due to the terms pi(xi, 1) · vi
which involve both decision variables xi and vi. To further reformulate the
problem, we need the following lemma which provides bounds for the dual
decision variables v and in turn allows us to linearize the objective function.

Lemma 1. There exist optimal solutions of Problem (7) such that −∆fi ≤
vi ≤ 0 for all i = 1, . . . , n, where

∆fi = max
x∈X ,s−i∈Sn−1

0

{f(x, (0, s−i))− f(x, (1, s−i))}, (8)

with s−i denoting the vector of all elements of s except si.
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Proof. We first show that there exist optimal solutions such that vi ≤ 0
for all i = 1, . . . , n . We fix the (optimal) solution x and let us consider an
optimal solution (u,v) with vi > 0 for all i ∈ Ip ⊆ {1, . . . , n}. We construct
another solution (u′,v′) with u′ = u, v′i = 0 for all i ∈ Ip and v′i = vi
otherwise. For all s ∈ Sn0 , let consider s′ ∈ Sn0 such that s′i = 0 for all i ∈ Ip
and s′i = si otherwise, we have:

u+
∑

i 6∈Ip:s′i 6=0

vi ≥ f(x, s′).

Thus we have:
u′ +

∑
i:si 6=0

v′i ≥ f(x, s′) ≥ f(x, s).

The second inequality is due to the monotonicity of the cost function ci(xi, ·)
stated in Assumption 1 and how f(x, s) is computed in (2). It shows the
modified solution (u′,v′) is feasible. In addition, given that pi(xi, si) ≥ 0 for
all xi and si, the new solution (u′,v′) (together with x) is also optimal. It
implies that there exist optimal solutions such that vi ≤ 0 for all i = 1, . . . , n.

Now, among optimal solutions with non-positive vi, we will show that
there exist solutions such that vi ≥ −∆fi for all i = 1, . . . , n. Let consider
an optimal solution with vī < −∆fī ≤ 0 for some ī. We will construct
another optimal solution (u′,v′) as follows. Let u′ = u + ∆fī + vī < u and
v′ī = −∆fī. Clearly vī ≤ v′ī ≤ 0. Finally, let v′i = vi for all i 6= ī. For all
s ∈ Sn0 , let consider s′ ∈ Sn0 such that s′ī = 0 and s′i = si for i 6= ī. Similarly,
let s′′ ∈ Sn0 such that s′′ī = 1 and s′′i = si for i 6= ī. We have

u+
∑

i 6=ī:s′i 6=0

vi ≥ f(x, s′),

and
u+ vī +

∑
i 6=ī:s′′i 6=0

vi ≥ f(x, s′′).

If sī = 1, i.e., s = s′′, then

u′ + v′ī +
∑

i 6=ī:si 6=0

v′i = u+ vī +
∑

i 6=ī:si 6=0

vi ≥ f(x, s).
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Now, if sī = 0, then s = s′ and we have:

u′ +
∑

i 6=ī:si 6=0

v′i = u+ ∆fī + vī +
∑

i 6=ī:si 6=0

vi

≥ ∆fī + f(x, s′′)
≥ f(x, s),

where the second inequality comes from the definition of ∆fi. It shows that
the new solution (u′,v′) is feasible in both cases. In addition, we have:
u − u′ = v′ī − vī and pī(xī, 1) ≤ 1. It implies that the new solution (u′,v′)
(together with x) is also optimal. The lemma is then proved. �

Lemma 1 shows the relationship between the dual decision variable vi and
∆fi, which can be interpreted as the highest potential increase in cost due
to the failure of link i given any scenario and any retrofitting decision in this
retrofitting planning application. We now use this result to reformulate the
robust problem (4) as stated in the following theorem.

Theorem 1. Under Assumption 1, the robust problem (4) can be reformu-
lated as the following mixed-integer linear optimization problem:

min
x,u,v,y,w,q

u+
n∑
i=1

[pi(0, 1) · vi + (pi(1, 1)− pi(0, 1)) · yi]

s.t. yi ≥ vi, ∀ i = 1, . . . , n : pi(1, 1) ≥ pi(0, 1),
yi ≥ −∆fi · xi, ∀ i = 1, . . . , n : pi(1, 1) ≥ pi(0, 1),
yi ≤ 0, ∀ i = 1, . . . , n, : pi(1, 1) < pi(0, 1),
yi ≤ vi + ∆fi · (1− xi), ∀ i = 1, . . . , n, : pi(1, 1) < pi(0, 1),
−∆f ≤ v ≤ 0,

u+
∑
i:si 6=0

vi ≥
n∑
i=1

[ci(0, si) · wi(s) + (ci(1, si)− ci(0, si)) · qi(s)] ,

∀ s ∈ Sn0 ,
qi(s) ≥ 0, ∀ i = 1, . . . , n, s ∈ Sn0 : ci(1, si) ≥ ci(0, si),
qi(s) ≥ wi(s) + w̄i · (xi − 1),
∀ i = 1, . . . , n, s ∈ Sn0 : ci(1, si) ≥ ci(0, si),

qi(s) ≤ wi(s), ∀ i = 1, . . . , n, s ∈ Sn0 : ci(1, si) < ci(0, si),
qi(s) ≤ w̄i · xi, ∀ i = 1, . . . , n, s ∈ Sn0 : ci(1, si) < ci(0, si),
w(s) ∈ W , ∀ s ∈ Sn0 ,
0 ≤ w(s) ≤ w̄, ∀ s ∈ Sn0 ,
x ∈ X .

(9)
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Proof. Given that xi ∈ X0 = {0, 1}, we have:

pi(xi, 1) = pi(1, 0) · (1− xi) + pi(1, 1) · xi,

which means the terms pi(xi, 1) · vi of the objective function can be written
as

pi(xi, 1) · vi = pi(1, 0) · vi + (pi(1, 1)− pi(1, 0)) · xi · vi.
The non-linearity of the objective function is expressed through the products
xi · vi. Given Lemma 1, we can focus on the solutions which satisfy the
condition −∆fi ≤ vi ≤ 0 for all i = 1, . . . , n. Given this condition, the
non-linear term xi · vi in the minimization problem (4) can be reformulated
with an auxiliary decision variable yi. If pi(1, 1) ≥ pi(1, 0), we impose the
following constraints: {

yi ≥ vi,
yi ≥ −∆fi · xi.

Clearly, if xi = 0, yi ≥ max{vi, 0} = 0; otherwise, yi ≥ max{vi,−∆fi} = vi
or equivalently, (pi(1, 1)− pi(0, 1)) · yi ≥ (pi(1, 1)− pi(0, 1)) ·xi · vi. Similarly,
if pi(1, 1) < pi(1, 0), we impose the following constraints:{

yi ≤ vi + ∆fi · (1− xi),
yi ≤ 0.

If xi = 0, yi ≤ min{vi + ∆fi, 0} = 0; otherwise, yi ≤ min{vi, 0} = vi or
equivalently, yi ≤ xi · vi, which implies (pi(1, 1) − pi(0, 1)) · yi ≥ (pi(1, 1) −
pi(0, 1)) · xi · vi.

Now consider the main constraints u+
∑
i:si 6=0

vi ≥ f(x, s), we have:

f(x, s) = min
0≤w≤w̄

n∑
i=1

ci(xi, si) · wi

s.t. w ∈ W .

Thus, in order to satisfy these constraints, there should be a feasible solution
w(s), i.e., w(s) ∈ W and 0 ≤ w(s) ≤ w̄, for all s ∈ Sn0 such that

u+
∑
i:si 6=0

vi ≥
n∑
i=1

ci(xi, si) · wi(s).
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Again, we have:

ci(xi, si) = ci(0, si) · (1− xi) + ci(1, si) · xi,

which means the terms ci(xi, si) · wi(s) can be written as

ci(xi, si) · wi(s) = ci(0, si) · wi(s) + (ci(1, si)− ci(0, si)) · xi · wi(s).

Similar to the reformulation of xi · vi, the non-linear terms xi · wi(s) can
be reformulated with the auxiliary decision variables qi(s) given that 0 ≤
wi(s) ≤ w̄i. If ci(1, si) ≥ ci(0, si), we impose the following constraints:{

qi(s) ≥ 0,
qi(s) ≥ wi(s) + w̄i · (xi − 1).

If ci(1, si) < ci(0, si), the following constraints will be imposed:{
qi(s) ≤ wi(s),
qi(s) ≤ w̄i · xi.

It shows that the robust problem (4) is equivalent to the mixed-integer
linear optimization problem (9) with the introduction of additional decision
variables y, w(s), and q(s). �

Remark 1. i) The mixed-integer linear optimization problem (9) requires
the lower bounds −∆fi of vi for all i = 1, . . . , n. The reformulation
would remain the same for other lower bounds; therefore, instead of
using ∆fi defined in (8), which is difficult to compute in general, we
are going to use

∆f̄ = max
x∈X

f(x,0)−min
x∈X

f(x, e), (10)

where e is the vector of all ones, for numerical case studies later. In-
deed,

∆fi = max
x∈X ,s−i∈Sn−1

0

{f(x, (0, s−i))− f(x, (1, s−i))}

≤ max
x∈X ,s−i∈Sn−1

0

f(x, (0, s−i))− min
x∈X ,s−i∈Sn−1

0

f(x, (1, s−i))

≤ max
x∈X

f(x,0)−min
x∈X

f(x, e) = ∆f̄ .

The second inequality is due to the definition of f(x, s) given in (2) and
Assumption 1. ∆f̄ can be computed more easily as compared to ∆fi
given that max

x∈X
f(x, s) and min

x∈X
f(x, s) can be solved using (2) together

with linear duality and the reformulation of the non-linear terms xi ·wi.
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ii) The results in Theorem 1 (and Lemma 1) are showed for X0 = {0, 1}
and S0 = {0, 1} for clarity of exposition. They can be generalized when
X0 and S0 are extended to finite discrete sets under the assumption of
the monotonicity of ci(x, ·) as shown in Assumption 1. The properties
of dual decision variables v in Lemma 1 remain valid and the refor-
mulation of non-linear terms can be handled by introducing additional
binary decision variables to represent finite discrete sets.

The result in Theorem 1 shows that the robust problem (4) can be re-
formulated as a mixed-integer linear optimization problem. The number of
decision variables w(s) is proportional to the number of scenarios, which is
2n. If ci(xi, si) ≡ ci(si) for all i = 1, . . . , n, there is no need to introduced
w(s) if f(s) can be computed upfront and used as the right-hand sides of the

main constraints u +
∑
i:si 6=0

vi(si) ≥ f(s) for all s ∈ Sn0 . Even in this case of

decision-independent cost function f(s), the high computational complexity
of the robust problem (4) remains with the exponential number of these main
constraints. In the next section, we are going to discuss how to solve this
mixed-integer linear optimisation reformulation of the robust problem (4).

3. Computational Framework

The robust problem (4) has an exponential number of the main con-
straints, one for each scenario s ∈ Sn0 . Note that these main constraints are
constructed based on the pair of primal-dual linear optimization problems (5)
and (6). It is well-known that given a solution x, there exist optimal distribu-
tions P ∗(x) with small supports based on the theory of linear programming
(see, e.g., Dantzig [5]). It implies that one only requires the main constraints
for a small number of scenarios s ∈ Sn0 . However, finding the active set of
scenarios without knowing the solution x is difficult. A common approach
to handle optimization problems with a large number of constraints is the
constraint generation method. It has been used to solve large-scale robust
optimization problems (see, e.g., [20, 31] and references therein). The key
idea of the constraint generation method is to solve the master problem with
a subset of scenarios and iteratively add violated scenarios by solving the
separation problem. More precisely, in each iteration k, the master problem
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is a relaxed problem of (9) in which Sn0 is replaced by a subset S(k) ⊂ Sn0 :

(MP)k : min
x,u,v,y

u+
n∑
i=1

[pi(0, 1) · vi + (pi(1, 1)− pi(0, 1)) · yi]

s.t. yi ≥ vi, ∀ i = 1, . . . , n : pi(1, 1) ≥ pi(0, 1),
yi ≥ −∆fi · xi, ∀ i = 1, . . . , n : pi(1, 1) ≥ pi(0, 1),
yi ≤ 0, ∀ i = 1, . . . , n, : pi(1, 1) < pi(0, 1),
yi ≤ vi + ∆fi · (1− xi), ∀ i = 1, . . . , n, : pi(1, 1) < pi(0, 1),
−∆f ≤ v ≤ 0,

u+
∑
i:si 6=0

vi ≥ f(x, s), ∀ s ∈ S(k),

x ∈ X .
(11)

Given the optimal solution
(
x(k), u(k),v(k)

)
obtained from (MP)k, the sepa-

ration problem is used to determine whether there is any violated constraint:

(SP)k : Vk = min
s∈Sn0

{
u(k) +

∑
i:si 6=0

v
(k)
i − f(x(k), s)

}
. (12)

If Vk ≥ 0, there is no violated constraint, which means the current solution
is optimal. Otherwise, add the optimal scenario sk obtained from (SP)k to
the set of scenarios, S(k+1) = S(k) ∪{sk} and repeat. The detailed algorithm
is written as Algorithm 1. In order to execute Algorithm 1, we need to

Algorithm 1 Constraint Generation Algorithm for Problem (9)

1: Initialize with k ← 0 and S(0).
2: loop
3: Solve the master problem (11) with S(k) to obtain an optimal solution(

x(k), u(k),v(k)
)
.

4: Solve the separation problem (12) with
(
x(k), u(k),v(k)

)
to obtain an

optimal solution sk and the optimal value Vk.
5: if Vk < 0 then
6: Update k ← k + 1 and S(k) ← S(k) ∪ {sk}.
7: else
8: Stop. Return x(k) as the optimal solution obtained.

solve the master problem (11), which is formulated as a mixed-integer linear
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optimization problem. The separation problem (12) can also be formulated
as a mixed-integer linear optimization problem using linear duality. Without
loss of generality, let us assume that W is explicitly represented as W =
{w |Aw = b}. The following proposition shows how to reformulate the
separation problem.

Proposition 1. Given a solution
(
x(k), u(k),v(k)

)
, the separation problem

(12) can be reformulated as the following mixed-integer linear optimization
problem:

(SP)k : Vk = min
s,d,e

u(k) +
n∑
i=1

v
(k)
i · si −

(
bTd+ w̄Te

)
s.t. AT

i d+ ei ≤ ci(x
(k)
i , 0) + (ci(x

(k)
i , 1)− ci(x(k)

i , 0)) · si,
∀ i = 1, . . . , n,

e ≤ 0,
s ∈ Sn0 ,

(13)
where Ai is the i-th column of the matrix A, i = 1, . . . , n.

Proof. Given that s ∈ Sn0 , where S0 = {0, 1}, we can rewrite
∑
i:si 6=0

v
(k)
i

as
n∑
i=1

v
(k)
i · si. The function f(x(k), s) is the optimal objective value of the

linear optimization problem (2) whose dual problen can be written as follows
if W = {w |Aw = b}:

f(x(k), s) = max
d,e

bTd+ w̄Te

s.t. AT
i d+ ei ≤ ci(x

(k)
i , si), ∀ i = 1, . . . , n,

e ≤ 0.

(14)

Finally, we can computeci(x
(k)
i , si) = ci(x

(k)
i , 0) + (ci(x

(k)
i , 1)− ci(x(k)

i , 0)) · si.
The main constraint AT

i d+ ei ≤ ci(x
(k)
i , si) in (14) can then be written as

AT
i d+ ei ≤ ci(x

(k)
i , 0) + (ci(x

(k)
i , 1)− ci(x(k)

i , 0)) · si,

which indicates that (13) is indeed a reformulation of the separation problem
(12). �
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The result stated in Proposition 1 shows that the separation problem (12)
can be reformulated as a mixed-integer linear optimization problem. Note
that one can reformulate the separation problem using the same approach for
general finite discret set S0 by introducing addition binary decision variables
to represent S0. Next, we are going to discuss numerical experiments using
Algorithm 1.

4. Numerical Case Studies

We consider the retrofitting planning application studied by Peeta et al.
[26]. As discussed in Section 2, there are n = |E| links in a transport network
G = (N , E), which are considered to be retrofitted (xi = 1) or not (xi = 0),
where x ∈ {0, 1}n denote the decision variables. The retrofitting cost for
each link i is bi, which is used to formulate the budget constraint:

n∑
i=1

bixi ≤ B,

where B is a retrofitting budget. The uncertainty is represented by whether
a link i survives (si = 1) or fails (si = 0) after a natural disaster such as an
earthquake. Given a scenario s ∈ {0, 1}n, the total cost is a weighted sum
of traversal costs on the shortest path between several OD pairs j ∈ OD,

f(s) =
∑
j∈OD

ωj · f j(s), where ωj > 0, j ∈ OD, are the weights. Without

loss of generality, we can assume that
∑
j∈OD

ωj = 1. The actual traversal cost

on link i is ci(1), i.e., when si = 1. If the link i fails, i.e., si = 0, we set
ci(0) = M , where M is a large number. By adding a special link between the
origin and destination of each OD pair with M as its fixed traversal cost, it is
clear that if the origin and destination of an OD pair j is not connected in a
scenario s, f j(s) = M . Under the setting of multiple OD pairs, the weighted
sum of traversal costs still can be computed as a network flow problem with
the supply and demand of ωj at the origin and destination of OD pair j,
j ∈ OD, respectively. When the network G is undirected as set in Peeta et
al. [26], the network flow problem can be modified with w = |wu|, where
wu are actual flow decision variables on undirected links which might be
negative depending on the direction of the flows (see, e.g. [21] and references
therein). The problem is still convex and it can be reformulated as an linear
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optimization problem, with which strong linear duality can be applied as
normal.

4.1. Istanbul Networks

Similar to Peeta et al. [26], we consider the case studies based on highway
networks in Istanbul, Turkey. We start with 9-link network on the Asian side
of Istanbul with two OD pairs as shown in Figure 1. All information including
retrofitting costs, traversal costs, and survival probabilities are provided in
[26, Table 1] except for the survival probability of the added link 31 if it is
not retrofit, which we will set at 0.5. The total retrofitting cost is 4260 and
we will set the budget B to 50% of the total cost, which is B = 2130. The
penalty cost M when there is no connection between an OD pair is set to be
30.

Figure 1: Highway network on the Asian side of Istanbul ([26])

We implement the robust formulation using IBM CPLEX 12.7.1 in C with
Microsoft Visual Studio 16.1.5 on a Windows 10 computer with 3.70 GHz
CPU and 32.0 GB RAM. As discussed, instead of ∆fi, we use ∆f̄ as de-
fined in (10), which can be computed efficiently in this retrofitting planning
application. The number of scenarios in this instance is 29 = 512, which is
small enough for us to solve the mixed-integer linear optimization formula-
tion (9) directly. The optimal solution x∗ of the robust problem is to retrofit
5 links, 22, 25, 27, 29, and 30 with the worst-case expected traversal cost
C(x∗) = EPwc(x∗)[f(x∗, ξ)] = 20.8505, where Pwc(x

∗) is the worst-case distri-
bution given the optimal solution x∗. The total computational time for this
instance is 6.00 seconds with less than 0.01 seconds used to compute ∆f̄ .
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If the distribution is independent as assumed in [26], we solve the problem
by enumerating all feasible solutions in 0.01 seconds given the size of the
instance. The optimal solution xind is to retrofit 5 links, 22, 25, 26, 28, 29,
and 30, which is different from x∗. Table 1 shows the expected traversal costs
for different distributions given these two solutions. It is clear that xind is
better if the distribution is independent while x∗ performs better in hedging
against the worst-case scenario if the distribution is not know exactly.

Solution Independent Distribution Worst-Case Distribution
x∗ 19.5240 20.8505
xind 18.8201 21.3435

Table 1: Expected traversal costs for different distributions

In order to demonstrate further the performance of the solution x∗ of the
robust problem (as compared to that of xind), we conduct the stress test with
contaminated probability distributions following the approach proposed by
Dupačová [9]. Similar to the procedure discussed in Bertsimas et al. [2], we
setup the stress-test experiment as follows.

1. Generate Np scenarios from the contaminated probability distribution
Pλ = (1 − λ)Pind + λPwc(x

∗) for some λ ∈ [0, 1], where Pind is the
independent distribution given the original link survival probabilities
(without retrofitting decisions) and Pwc(x

∗) is the worst-case distribu-
tion given the optimal solution x∗.

2. Compute the link survival probabilities, i.e., marginal distributions,
from the generated scenarios and obtain the robust solution x∗λ as well
as xλind under the independence assumption together with the corre-
sponding worst-case traversal costs C(x∗λ) and C(xλind) using the pro-
posed model.

3. Generate No additional scenarios from Pλ and compute the average
traversal costs Cavg(x

∗
λ) and Cavg(x

λ
ind) by considering all scenarios that

could happen if x∗λ and xλind are implemented, respectively.

With the described procedure, one can assume that data used in the pro-
posed model is generated from the actual probability distribution, which is
the contaminated distribution Pλ and the solutions obtained will be tested
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with out-of-samples data generated from the same distribution. In this exper-
iment, we set Np = 100 and No = 10, 000, which allows us to obtain reliable
average traversal costs. We start by setting λ = 0.5 and repeat the procedure
10 times to obtain the mean traversal costs and their corresponding standard
deviations.

Solution Worst-Case Cost Average Cost
x∗λ 17.3760 (0.4414) 15.0422 (0.2240)
xλind 17.6344 (0.8428) 15.5854 (0.7955)

Table 2: Means (standard deviations) of worst-case and average traversal costs for λ = 0.5

The results in Table 2 show that the mean worst-case cost obtained from
x∗λ is better than that from xλind as expected. Furthermore, the mean average
cost from 10, 000 scenarios drawn from the same contaminated Pλ for x∗λ is
also better than xλind in this case with λ = 0.5. Note that for these 10 runs,
the average cost for x∗λ is always strictly better than that of xλind when two
solutions are different. Another observation is that standard deviations for
both costs when x∗λ is implemented are also smaller, which indicates that
the performance x∗λ is more stable in terms of traversal cost. We now vary λ
from 0 to 1 and analyze the performance of these two solutions given different
levels of contamination. The resulting worst-case and average traversal costs
are plotted in Figure 2.

The worst-case cost C(x∗λ) is indeed strictly smaller than C(xλind) as ex-
pected in all cases when two solutions are different. Note that for these
runs, x∗λ = xλind when λ = 1, i.e., Pλ = Pwc(x

∗), and λ = 0.6, 0.7, and
0.8, which results in the same performance in both worst-case and average
costs for x∗λ and xλind as shown in Figure 2. With respect to the average
cost, when Pind is less contaminated with λ ≤ 0.2, xλind performs better with
Cavg(x

λ
ind) < Cavg(x

∗
λ). On the other hands, for λ ≥ 0.3, x∗λ becomes better,

i.e., Cavg(x
∗
λ) < Cavg(x

λ
ind)), when the two solutions are different. The results

show that the proposed model is suitable for the retrofitting planning appli-
cation in which it is important to pay attention to the worst-case scenario
given incomplete distributional information.

Next, we study the performance of Algorithm 1, which is also imple-
mented in C with IBM CPLEX solver used to solve instances both master
and separation problems. We use Nmax = 100 as the maximum number of
iterations and ε = 10−6 as the numerical tolerance, i.e., the algorithm will
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Figure 2: Worst-case and average traversal costs for different levels of contamination

stop if Vk ≥ −ε instead of Vk ≥ 0. We start the algorithm with S(0) = {0},
i.e., the worst-case scenario when all links fail. Running the algorithm for the
same instance, we obtain the optimal solution x∗ after N = 37 iterations. It
shows that one does not need to consider all 512 scenarios and the constraint
generation method allows us to select a smaller number of necessary scenar-
ios to find the optimal solution. For this instance, the computational time
is 3.06 seconds as compared to 6.00 seconds needed to solve the complete
formulation with 512 scenarios as mentioned previously.

We now consider the complete 30-link network with 5 OD pairs, which
is shown in Figure 3. All information are again provided in [26, Table 1].
We are going to consider three budget levels, B1 = 1164, B2 = 2328, and
B3 = 3492, which are 10%, 20%, and 30%, respectively, of the total budget
needed to invest in all links. To start with, the penalty cost M when there
is no connection between an OD pair is set to 120 as in [26].

The total number of scenarios is 230, which makes it impossible to solve
the mixed-integer linear optimization formulation (9) directly. In order to
solve this instance, we use Algorithm 1 and limit the computational time
to Tmax = 1 hour. The computational results with the budget B1 show
that the algorithm does not converge after 165 iterations within one hour
limit, i.e., there are still violated constraints that need to be added to the
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Figure 3: The complete 30-link highway network in Istanbul ([26])

master problem. One of the issues is that in mixed-integer optimization
formulation (13) of the separation problem, the traversal costs are computed
with a linked-based network flow problem in which all paths are considered
and it requires substantial computational time. Facing the same issue, Peeta
et al. [26] consider the practical setting when only a subset of (shortest)
paths is considered. Let Πj be the set of considered paths of the OD pair
j ∈ OD. Each path π ∈ Πj is represented by a subset of links and the path

cost is cπ(s) =
∑
i∈π

ci(si). The cost function f j(s) is now can be written as

f j(s) = min
π∈Πj

cπ(s), or equivalently,

f j(s) = min
w

cπ(s) · wπ
s.t.

∑
π∈Πj

wπ = 1,

0 ≤ wπ ≤ 1, ∀π ∈ Πj,

(15)

which is in the form of (2). We can again consider (9) and Algorithm 1 with
the path-based cost function. Given the path information provided in [26,
Table 2] with 4, 6, 4, 4, and 6 paths, respectively, for five given OD pairs, we
now test Algorithm 1 again for the 30-link network instance using the path-
based cost function. We run Algorithm 1 with the budget B1 and after 9584
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iterations within one hour limit, it still does not converge. Even though it is
easier to solve the sub-problem with the path-based formulation, it appears
that there are several unnecessary scenarios added to the master problem
in Algorithm 1, which makes the algorithm less efficient. We attempt to
improve the convergence of the algorithm next by exploiting some structural
properties of the underlying problem.

4.2. Constraint Generation Algorithm with Dominant Scenarios

We focus on Problem (7), which is the reformulation of the original prob-
lem (4) with S = {0, 1} considered in the application of retrofitting planning.
The total number of main constraints is exponential but most of them are
not needed. We would like to identify redundant constraints (or unnecessary
scenarios) by considering different classes of scenarios based on their resulting
shortest paths. Two scenarios s1 and s2 belong to a same class C of scenarios
if Πj(s1) ∩ Πj(s2) 6= ∅, where Πj(s) ⊆ Πj is the set of shortest paths of the
OD pair j when the scenario s is realized. Clearly, if s1, s2 ∈ C for a class
C, f j(s1) = f j(s2) for all j ∈ OD. We can now define dominant scenarios as
follows.

Definition 1. A scenario s2 dominates another scenario s1 in the same
class C of scenarios if I(s1) ( I(s2), where I(s) = {i : si = 1}. A scenario
s2 is dominant in a class C if s2 ∈ C and there does not exist s1 ∈ C such
that s1 dominates s2.

The following claim shows that we only need to consider dominant sce-
narios.

Claim 1. If a scenario s1 is not dominant in a class S, then the constraint
corresponding to s1 in (7) is redundant.

Proof. Since scenario s1 is not dominant in C, there exists a scenario
s2 in the same class C such that s2 dominates s1. We shall show that the
constraint for s2 in (7) implies the constraint for s1. Indeed, I(s1) ( I(s2),
thus

u+
∑

i∈I(s2)

vi ≥ f(x, s2) ⇒ u+
∑

i∈I(s1)

vi ≥ f(x, s2)

⇒ u+
∑

i∈I(s1)

vi ≥ f(x, s1).
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The first inequality is due to the non-positivity of vi and the second inequal-
ity is due to s1 and s2 are in a same class of scenarios, i.e., f(x, s1) = f(x, s2).
�

Given Claim 1, we only need to consider constraints that correspond
to dominant scenarios given that others are redundant. Even though the
problem size is reduced, finding all dominant scenarios is still difficult. Let
us now focus on classes of scenarios as discussed above. For each OD pair
j, we assume that the paths in Πj are ordered according to their traversal

costs when all links are operational, the shortest first, as π1
j , . . . , π

|Πj |
j . We

define Cι1,...,ιJ , J = |OD|, be the class of all scenarios s with which the ιj-th
path in Πj is set as the shortest path for the OD pair j when s is realized.
Given a scenario s, it is straightforward to determine which class it belongs
to by determining the shortest path(s) for each OD pair. The total number

of these scenario classes is Nc =
∏
j∈OD

|Πj|; however, in general, there will

be many empty scenario classes that do not need to be considered as shown
later in numerical examples. Note that a scenario s can belong to multiple
classes if there are paths with the same traversal cost for some OD pairs.
Given the definition of dominant scenarios in Definition 1, it is clear that s
is a dominant scenario if I(s) is maximal with respect to inclusion in some
scenario class C, i.e, there is no scenario s′ ∈ C such that I(s) ( I(s′). Given
a scenario class Cι1,...,ιJ , finding all dominant scenarios is still difficult but one
can find a dominant scenario s by maximizing |I(s)|. The following binary
optimization problem can be used to find such a dominant scenario:

sι1,...,ιJ ∈ arg max
n∑
i=1

si

s.t. si = 1, ∀ i ∈ πιjj , j ∈ OD,∑
i∈πιj

si ≤ |πιj| − 1, ∀ ι = 1, . . . , ιj − 1, j ∈ OD,

si ∈ {0, 1}, ∀ i = 1, . . . , n.

(16)

The first constraint is used to make sure that all links of the path π
ij
j

are operational for all OD pairs j ∈ OD. The second constraint implies
that no path with smaller traversal cost is completely operational if the
scenario s is realized. We are going to use these dominant scenarios in the
constraint generation algorithm, i.e., S0 = {sι1,...,ιJ : ιj = 1, . . . , |Πj|, j ∈
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OD}. In addition, in each iteration of the algorithm, instead of finding only
one violated scenario using (12), we now plan to find one violated scenario for
each scenario class Cι1,...,ιJ using the following binary optimization problem

SPι1,...,ιJ
k : V ι1,...,ιJ

k = min u(k) +
n∑
i=1

v
(k)
i · si −

∑
j∈OD

ωj · cπιjj (e)

s.t. si = 1, ∀ i ∈ πιjj , j ∈ OD,∑
i∈πιj

si ≤ |πιj| − 1, ∀ ι = 1, . . . , ιj − 1, j ∈ OD,

si ∈ {0, 1}, ∀ i = 1, . . . , n,
(17)

where e is the vector of all one’s. Similar to (16), the constraints in (17)

implies that s ∈ Cι1,...,ιJ and the traversal cost is fixed, i.e., f(s) =
∑
j∈OD

ωj ·

c
π
ιj
j

(e). The resulting scenario obtained from (17) is likely to be dominant

given that v
(k)
i ≤ 0 for all i = 1, . . . , n. More precisely, if v

(k)
i < 0 for all

i = 1, . . . , n, one can show that the resulting scenario is a dominant scenario
within the scenario class Cι1,...,ιJ given its optimality. We can now modify
Algorithm 1 using dominant scenarios as Algorithm 2. The computational
complexity of the algorithm depends on the number of feasible, i.e., non-
empty, scenario classes, which can be pre-determined.

Algorithm 2 Constraint Generation Algorithm with Dominant Scenarios

1: Initialize with k ← 0 and S(0).
2: loop
3: Solve the master problem (11) with Sk to obtain an optimal solution(

x(k), u(k),v(k)
)
.

4: Solve the separation problem (17) with
(
x(k), u(k),v(k)

)
to obtain op-

timal solution sι1,...,ιJk and the optimal value V ι1,...,ιJ
k for ιj = 1, . . . , |Πj|,

j ∈ OD. Set Vk = min
ι1,...,ιJ

V ι1,...,ιJ
k .

5: if Vk < 0 then
6: Update k ← k + 1 and S(k) ← S(k) ∪ {sι1,...,ιJk : V ι1,...,ιJ

k < 0}.
7: else
8: Stop. Return x(k) as the optimal solution obtained.
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Remark 2. The notion of dominant scenarios reinforces the underlying mo-
tivation of constraint generation algorithms, i.e., to introduce only necessary
constraints in each iteration. In addition to the common idea of finding vi-
olated constraints (necessary) using (12) to add to the master problem, here
we incorporate the idea of explicitly excluding unnecessary/redundant con-
straints, i.e., constraints that can be satisfied automatically if others are in-
cluded. This idea indeed can be applied to other applications. Having said
that, the definition of dominant scenarios/constraints and how to find them
are problem-dependent, which requires different analyses for different appli-
cations.

Now, using Algorithm 2, we can solve the 30-link network with the budget
B1 after 14 iterations with the computational time of 36.08 seconds. We start
with 980 dominant scenarios, one for each feasible scenario class (out of 6125
scenarios classes). The final number of scenarios used in the algorithm is
1657 as compared to the total number of scenarios of 230. Figure 4 shows
the optimal objective value of the master problem (MP)k and the number of
scenarios added in each iteration k. The results demonstrate the significant
effect of dominant scenarios on the efficiency of the constraint generation
algorithm.

The optimal solution x∗ obtained from Algorithm 2 with the bugdet B1

is to retrofit 7 links, 4, 7, 9, 12, 21, 22, and 25 with the worst-case expected
traversal cost of 63.3535. Under the assumption of independent distributions,
the optimal solution xind is to retrofit 6 links, 10, 17, 21, 22, 23, and 25 with
the expected traversal cost of 42.4826 ([27]). We run Algorithm 2 again
with the fixed solution xind and obtain its worst-case expected traversal cost
of 67.6508. It is indeed higher than the worst-case expected traversal cost
obtained from x∗. This worst-case expected cost is also much higher than
the expected traversal cost under the independence assumption.

We can run Algorithm 2 for different budgets and Table 3 show their
results with Ni as the total number of iterations, Ns as the total number of
scenarios used and T as the total computational time. These results show
that the problem is less difficult to solve when the budget is increased.

Next we vary the penalty cost M when there is no connection between an
OD pair from 40 to 120 given the budget B1. The optimal solution is changed
to to retrofit 5 links, 10, 17, 21, 22, and 25, when M is no more than 100
while the worst-case expected traversal cost decreases as expected (see Table
4). The total number of scenarios used is increased when M increases, which
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Figure 4: Optimal objective values of master problems and numbers of scenarios added

Budget x∗ C(x∗) Ni Ns T (secs)
B1 4 7 9 12 21 22 25 63.3535 14 1657 36.08
B2 4 10 12 17 20 21 22 25 37.5329 6 1207 20.64
B3 3 4 7 10 12 13 17 20 21 22 23 25 20.4009 5 1137 17.82

Table 3: Computational results for different budgets

implies that the problem is likely more difficult when the penalty cost M is
high.

M 40 60 80 100 120
C(x∗) 22.0506 29.0506 36.0506 43.0506 63.3535
Ns 1341 1376 1380 1470 1657

Table 4: Computational results for different penalty costs

We now consider the effect of number of paths considered in the path-
based formulation. Using the k-shortest path algorithms proposed by Yen
[33], one can compute all (loop-less) shortest paths for each OD pairs. For
this 30-link network instance, the numbers of shortest paths for five given
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OD pairs are 14, 30, 10, 12, and 12, respectively. We run Algorithm 2 using
8 different options of numbers of paths for five given OD pairs used in the
path-based formulation of the 30-link network instance.

Path option Number of paths C(x∗) Ns T (secs)
1 [1 1 1 1 1] 67.6508 92 0.74
2 [1 3 1 1 3] 66.1442 457 4.89
3 [2 4 2 2 4] 63.3535 589 5.46
4 [3 5 3 3 5] 63.3535 918 11.33
5 [4 6 4 4 6] 63.3535 1657 36.08
6 [8 10 8 8 10] 63.3535 2203 165.43
7 [10 12 10 10 12] 63.3535 2262 353.68
8 [14 30 10 12 12] 63.3535 2490 1234.83

Table 5: Computational results for different penalty costs

Table 5 shows that the worst-case expected traversal cost C(x∗) remains
the same for most path options. It implies that in the worst case, scenarios
with which the OD pairs are disconnected are likely more important than
scenarios with longer paths as their shortest paths in determining the total
expected traversal cost. The problem is more difficult when the numbers
of paths considered increase, which reflects in the total number of scenarios
used. The total computational time is increased exponentially; however, the
increase is mainly due to the pre-processing time that one needs to find all
feasible classes out of all scenario classes generated by different paths from
the given OD pairs. Figure 5 shows that the number of potential scenario
classes increases exponentially from 32 to almost 900,000 while the number of
feasible classes, which is more important for the implementation of Algorithm
2, only increases to 1500. It also shows that the pre-processing time to find all
feasible scenario classes increases exponentially from 0.08 to 1188.46 seconds
while the execution time of Algorithm 2 only increases from 0.66 to 46.37
seconds. Note that with the path-based formulation, the computational time
used to compute ∆f̄ is actually reduced significantly, which is less than 10−4

seconds for these 30-link network instances.

4.3. Random Networks

In order to test the proposed algorithm further, we now generate networks
randomly as follows. We start with m nodes and generate an m×m adjacency
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Figure 5: Numbers of scenario classes and computational times for different path options

matrix with approximately α×m2 (undirected) links, where α ∈ (0, 1) is the
link density. The actual traversal costs on operational links are randomly
generated using the uniform distribution on the interval (0, 1). The penalty
cost M is set to twice the total traversal cost of all links. The survival
probabilities of the links (with and without being retrofitted) are randomly
set between 0.5 and 1. The retrofitting costs of the links are also generated
randomly using the uniform distribution on the interval (0, 1). The budget
is set at 10% of the total retrofitting cost of all links. Similar to 30-link
network instance, we generate randomly five OD pairs and for each OD
pair, we generate five (loop-less) shortest paths to be used in the path-based
information. We shall focus mainly on the computational performance of
Algorithm 2 with respect to the network size.

We set m = 25 as in the previous 30-link instance. We vary α from 5% to
25% and generate 10 instances for each value of α. Figure 6 shows compu-
tational results for these different network densities. The average number of
links increases more or less linearly as expected from 35 (for α = 5%)to 119
(for α = 25%). It means that the total number of scenarios can be around
2100. All instances are solved within the one-hour limit with the maximum
average computational time of approximately 900 seconds for α = 15%. The
largest computation time is approximately 2500 seconds for a network in-
stance with α = 20%. As discussed previously, computational time might
depend on the number of feasible scenario classes, which affects the total
number of scenarios used to find optimal solutions. It shows in Figure 6 that
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both the maximum average number of feasible classes (3600) and the maxi-
mum average number of scenarios used (6800) happen when α = 15%. The
highest number of scenarios used to find optimal solutions is approximately
14000 for an instance with α = 20%, which is still a tiny fraction of the total
number of scenarios of 2104 ∼ 2× 1031 for that particular instance.

Figure 6: Computational results for different network densities

We also generate network instances with larger m, m = 50, 75, and 100
while keeping α = 5%. For m = 50, 6 out of 10 instances reach the maxi-
mum computational time of one hour. In order to check whether Algorithm
2 can handle larger networks, we remove the one-hour limit and run the al-
gorithm again with one random network instance for each value of m. The
computational results for these instances are shown in Table 6. Even though
the computational time is high (almost 20 hours for the network instance
of 462 links), the number of scenarios needed to find the optimal solution
is again only a tiny fraction of the total number of scenarios (32,000 versus
2462 ∼ 10139), which shows the efficiency of Algorithm 2.

m 25 50 75 100
n 35 124 280 462
Ns 4253 10369 37048 32539

T (seconds) 401.63 2967.74 27776.60 71124.30

Table 6: Computational results for different network sizes
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5. Conclusion

We propose a marginal-based distributionally robust optimization frame-
work to handle probability dependence of decision-dependent discrete distri-
butions which can be applied for the retrofitting planning application. The
proposed constraint generation algorithm with the notion of dominant scenar-
ios works well with several case studies. As future research directions, one can
investigate multivariate marginal ambiguity models of decision-dependent
distributions for relevant applications.
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