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Abstract

We revisit in-sample asymptotic analysis extensively used in the realized volatility litera-

ture. We show that there are gains to be made in estimating current realized volatility from

considering realizations in prior periods. The weighting schemes also relate to Kalman-Bucy

filters, although our approach is non-Gaussian and model-free. We derive theoretical results for

a broad class of processes pertaining to volatility, higher moments and leverage. The paper also

contains a Monte Carlo simulation study showing the benefits of across-sample combinations.
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1 Introduction

Substantial progress has been made on in-sample asymptotics, against the backdrop of

increasingly available high frequency financial data. The asymptotic analysis pertains to

statistics based on samples over finite intervals involving data observed at ever increasing

frequency. The prime example is measures of increments in quadratic variation, see Jacod

(1994), Jacod (1996) and Barndorff-Nielsen and Shephard (2002b) as well as the survey by

Barndorff-Nielsen and Shephard (2007) and monographs by Jacod and Protter (2012), Myk-

land and Zhang (2012) and Aı̈t-Sahalia and Jacod (2014).1 The empirical measures attempt

to capture volatility of financial markets, including possibly jumps. Moreover, a richly devel-

oped mathematical theory of semi-martingale stochastic processes provides the theoretical

underpinning for measuring volatility in the context of arbitrage-free asset pricing models

based on frictionless financial markets.

The aforementioned literature of measuring volatility has been the motivation for a now

standard two-step modeling approach. The first step consists of measuring past realizations

of volatility accurately over non-overlapping intervals - typically daily - and the second is to

build models using the so called realized measures.

While persistence in volatility has been exploited extensively to predict future outcomes,

it has not been exploited to improve upon the measurement of current and past realized

volatility. It is shown in this paper that the in-sample asymptotics can be complemented

with observations in prior intervals, that is in-sample statistics can benefit from across-sample

observations.

While volatility is a lead example, our theory applies to many empirical processes that are

important for financial analysis. First, we can easily extend our analysis to higher moments,

beyond realized variances, such as kurtosis-related quarticity. The latter is used for feasible

asymptotic distribution theory of high frequency data statistics. Since higher moments

are known to be less precisely estimated, our analysis becomes even more relevant with

finitely sampled data. Another prominent example is the estimation of realized betas. Our

simulation results indeed indicate that substantial improvements can be made - more so than

for realized volatility - by exploiting information about beta in prior intervals.

1Other examples include measure of bi-power and power variation as well as other functional transfor-
mations of returns sampled at high frequency (see again Barndorff-Nielsen and Shephard (2007), Jacod and
Protter (2012), Mykland and Zhang (2012) or Aı̈t-Sahalia and Jacod (2014)for relevant references).
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We derive conditional filtering schemes, dependent on the path of the volatility process. Our

filtering is therefore time-varying, meaning it is more efficient than unconditional filters, and

most importantly cannot be by-passed or absorbed as part of a fixed parameter prediction

model. Despite being conditional, our filtering scheme remains model-free and is based on

prediction errors, rather than linear combinations of past and present realized volatilities.

The model-free aspect is something our approach shares with Foster and Nelson (1996) and

Andreou and Ghysels (2002). The analysis in this paper is quite similar in spirit to Kalman-

Bucy filtering, with some important differences as we do not deal with a Gaussian system, yet

to remain model-free, use linear projections. Our analysis is also in the spirit of ideas having

to do with forecast combination for nested models, see in particular Clark and McCracken

(2009).

The paper is organized as follows. We start in Section 2 by deriving all our results using

a simple framework. The example is stylized for illustrative purpose - yet turns out to be

surprisingly comprehensive. Section 3 covers the asymptotic theory for a general setting.

Alternative weighting schemes are covered in Section 4. Section 5 reports simulation evi-

dence on the efficiency and forecasting gains in a controlled environment of stylized diffusion

processes and realized betas. Section 6 concludes the paper. Supplementary material is

provided in the Online Appendix. The Online Appendix (a) covers the proof of Proposition

3.1, (b) furnishes additional volatility examples as well as examples beyond volatility, (c)

provides insights on the connection of our analysis with the Kalman filter and (d) discusses

a forecasting example.

2 Derivations with a Simplified yet Comprehensive Ex-

ample

The purpose of this section is to start with a relatively simple example that contains the

core ideas of our analysis. Hence, the example is stylized for illustrative purpose - yet as

we will show later it turns out to be a surprisingly comprehensive example. We start with

a time index t, which we think of as daily, or weekly, monthly etc. For simplicity we will

assume a daily process, although the reader can keep in mind that ceteris paribus all the

derivations apply to any level of aggregation. Henceforth, we will use “day” and “period”

t interchangeably, although the former will only be used for convenience. Moreover, while
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we consider exclusively equally spaced discrete sampling, one could also think of unequally

spaced data.

Within every period t, we consider returns over short equal-length intervals (i.e. intra-daily).

The return denoted as:

Xn
t,j = pt−(j−1)/n − pt−j/n (2.1)

where 1/n is the (intra-daily) sampling frequency and pt−(j−1)/n is the log price of a financial

asset at the end of the jth interval of day t, with j = 1, . . . , n. For example, when dealing

with typical stock market data we will use n = 78 corresponding to a five-minute sampling

frequency. We start with the following assumption about the data generating process:

Assumption 2.1 Within a day (period) t, given a sequence σ2
t,j, j = 1, . . . , n, the return

process in equation (2.1) is distributed independently Gaussian for all j = 1, . . . , n :

Xn
t,j ∼ N

(
0,

1

n
σ2
t,j

)
. (2.2)

For every period t the parameter of interest is:

σ2
n,t ≡ V ar(

n∑
j=1

[Xn
t,j]) ≡

1

n

n∑
j=1

σ2
t,j (2.3)

and consider the following ML estimators for each t :

σ̂2
n,t =

n∑
j=1

[Xn
t,j]

2. (2.4)

Then conditional on the volatility path σ2
t,j, j = 1, . . . , n, we have, under Assumption 2.1, the

following properties for the ML estimators: Eσ[σ̂2
n,t] = σ2

n,t, V arσ[σ̂2
n,t] = (2/n2)

∑n
j=1 σ

4
t,j =

(2/n)σ
[4]
n,t where σ

[4]
n,t = 1/n

∑n
j=1 σ

4
t,j, Eσ[·] =E[·|σ2

t,j, ∀j] and similarly V arσ[·] = V ar[·|σ2
t,j,∀j].

2.1 Optimal weighting scheme in finite samples

The ML estimator σ̂2
n,t of σ2

n,t defined in equation (2.4) is obviously endowed with several

optimal properties, both in finite samples and asymptotically when the number n of intraday

data goes to infinity. However, for a given sample size n, we may revisit the intuition
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put forward by Barndorff-Nielsen, Nielsen, Shephard, and Ysusi (2004) that more precise

estimators could be obtained by pooling neighboring time series observations for realized

variances.

It is worth keeping in mind that our goal is to improve upon a conditional MLE σ̂2
n,t of σ2

n,t

given the volatility path and, therefore, the pooling issue must also be addressed given the

volatility path. In other words, even if we follow the linear filtering strategy of Barndorff-

Nielsen, Nielsen, Shephard, and Ysusi (2004), we will be looking for an estimator σ̄2
n,t of

σ2
n,t that would be an affine function of past and current realized volatilities: σ̄2

n,t = an,t +∑H
h=0 bn,t−hσ̂

2
n,t−h where the coefficients an,t, bn,t−h, h = 0, 1, . . . , H are possibly functions of

the volatility path. In contrast, the filtering procedures put forward by Barndorff-Nielsen,

Nielsen, Shephard, and Ysusi (2004) only involve constant coefficients. Of course, it would

be an ill-posed problem to search for coefficients that would be arbitrary functions of the

volatility path as an obvious choice would certainly be: an,t = σ2
t , bn,t−h = 0, ∀ h = 0, 1, . . . ,

H. The challenge is to look for functions an,t, bn,t−h, h = 0, 1, . . . , H of the volatility path

which would yield feasible estimators of σ2
n,t knowing that the various realizations of the

volatility path, using their sample counterparts, leave some room for accuracy improvements

with respect to the naive estimator σ̂2
n,t. In other words, some kind of shrinkage is called for

with respect to the aforementioned ill-posed problem. In the spirit of forecast combinations,

it is then natural to look for a convex combination of two possible “forecasts”: σ̂2
n,t(ωt) =

(1− ωt)σ̂2
n,t + ωtσ̆

2
n,t|t−1 where only the weight ωt would depend on the volatility path while

the alternative forecast σ̆2
n,t|t−1 would be a feasible function of past observations (the use of

the index t|t− 1 will be explained shortly). The optimal weight ω∗n,t should then be chosen

such that it minimizes the conditional mean square error of prediction:

ω∗n,t = Argmin
ωt

Eσ[σ̂2
t (ωt)− σ2

n,t]
2 = Argmin

ωt

MSEσ(ωt) (2.5)

= Argmin
ωt

Eσ
{
σ̂2
n,t − σ2

n,t − ωt(σ̂2
n,t − σ̆2

n,t|t−1)
}2
.

Note that since σ2
n,t = Eσ(σ̂2

n,t), we do not want σ̆2
n,t|t−1 to be a forecast of σ2

n,t−1 but of σ2
n,t

which explains why we index it by t|t − 1. To make it feasible, it is then natural to define

σ̆2
n,t|t−1 as a forecast of σ̂2

n,t based on past return observations xτ,j, τ < t, j = 1, . . . , n.

Many forecasting strategies may be worth considering, including MIDAS regressions to use

past high frequency information to ”nowcast” the current realized volatility σ̂2
n,t. While these

relevant extensions would not introduce any specific difficulty for practical implementation,
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we will stick, just for the sake of notational simplicity, to a more conventional linear projection

approach for the definition of σ̆2
n,t|t−1 :

σ̆2
n,t|t−1 = cn +

H∑
h=1

ϕn,hσ̂
2
n,t−h (2.6)

where the coefficients c, ϕh, h = 1, . . . , H are defined as linear regression coefficients of σ̂2
n,t

on H lagged values:

ϕ(H)
n = (ϕn,h)1≤h≤H =

(
V ar[(σ̂2

n,t−h)1≤h≤H ]
)−1

Cov
[
(σ̂2

n,t−h)1≤h≤H , σ̂
2
n,t

]
,

cn =

(
1−

H∑
h=1

ϕn,h

)
E(σ̂2

n,t). (2.7)

Note that formulas (2.7) implicitly involve a stationarity assumption:

Assumption 2.2 The n-dimensional process (σ2
t,j)1≤j≤n, t ∈ Z, is weakly stationary.

The above Assumption implies that the estimated process (σ̂2
n,t), t ∈ Z, is itself weakly

stationary. In particular:

E(σ̂2
n,t) = E(σ2

n,t) = σ2

Cov
[
σ̂2
n,t−h, σ̂

2
n,t

]
= Cov[σ2

n,t−h, σ
2
n,t] = γσ(h), h > 0

V ar(σ̂2
n,t) = V ar(σ2

n,t) +
2

n
E
(
σ

[4]
n,t

)
= γσ(0) +

2

n
νσ,4

where V ar(σ2
n,t) = γσ(0) and E

(
σ

[4]
n,t

)
=νσ,4, so that formulas (2.7) can be rewritten:

ϕ(H)
n = (ϕn,h)1≤h≤H = Σ−1

n,H [γσ(h)]1≤h≤H

Σn,H = V ar[(σ2
n,t−h)1≤h≤H ] +

2

n
νσ,4IdH

cn =

(
1−

H∑
h=1

ϕn,h

)
σ2.

Hence, we are interested in the minimization program (2.5) for the definition (2.6) of σ̆2
n,t|t−1.
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A straightforward derivation yields:

ω∗n,t =
Covσ

[
σ̂2
n,t, σ̂

2
n,t − σ̆2

n,t|t−1

]
Eσ

[
σ̂2
n,t − σ̆2

n,t|t−1

]2 =
V arσ[σ̂2

n,t]

Eσ

[
σ̂2
n,t − σ̆2

n,t|t−1

]2 . (2.8)

To summarize, our preferred estimator is:

σ̂2
n,t(ω

∗
n,t) = (1− ω∗n,t)σ̂2

n,t + ω∗n,tσ̆
2
n,t|t−1, (2.9)

where: (i) σ̆2
n,t|t−1 is defined by regression on H lagged values: σ̆2

n,t|t−1 = cn +
∑H

h=1 ϕn,hσ̂
2
n,t−h

and (ii) optimal weights ω∗n,t are computed according to (2.8).

It is worth keeping in mind that, given the volatility path, the consecutive estimators σ̂2
n,t−h,

h = 0, 1, 2, . . . are serially independent. This explains the second equality in (2.8) and will

be repeatedly used in computations below. Note that ω∗n,t is in general smaller than the

conditional regression coefficient bn,t of (σ̂2
n,t − σ2

n,t) on (σ̂2
n,t − σ̆2

n,t|t−1), due to the fact that

the alternative estimator σ̆2
n,t|t−1 for σ2

n,t is biased:

ω∗n,t =
V arσ

[
σ̂2
n,t

]
V arσ

[
σ̂2
n,t − σ̆2

n,t|t−1

]
+
[
Eσ(σ̆2

n,t|t−1)− σ2
n,t

]2 ≤ bn,t =
V arσ

[
σ̂2
n,t

]
V arσ

[
σ̂2
n,t − σ̆2

n,t|t−1

] .
This shrinkage of the coefficients of control variables when they are biased is well-known

in the Monte Carlo literature (see e.g. Glynn and Iglehart (1989)) and easy to understand:

(1) on the one hand, we want to replace our initial estimator σ̂2
n,t = σ̂2

n,t(0) by σ̂2
n,t(ωn,t)

for some positive weight ωn,t because we think that some variance reduction is allowed by

combining our initial estimator σ̂2
n,t for σ2

n,t with another one σ̆2
n,t|t−1, while (2) on the other

hand, the price to pay for this variance reduction is the introduction of some bias since our

alternative estimator σ̆2
n,t|t−1 of σ2

n,t is biased: Eσ(σ̆2
n,t|t−1) - σ2

n,t = cn +
∑H

h=1 ϕn,hσ
2
n,t−h−σ2

n,t

=
∑H

h=0 ϕn,h(σ
2
n,t−h − σ2), with ϕn,0 = −1, so that:

Eσ(σ̂2
n,t(ωn,t))− σ2

n,t = ωn,t

H∑
h=0

ϕn,h(σ
2
n,t−h − σ2). (2.10)

However, the optimal weight ω∗n,t will become arbitrarily close to zero when the bias in

the estimator σ̆2
n,t|t−1 is large. Hence, there is little cost to applying our optimal weighting
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strategy since, if the bias is not as small as one may have hoped, the optimal weight brings

us back to standard MLE. It is actually worth noting that optimal weight ω∗n,t is a decreasing

function of the variation coefficient kn,t of the estimation error (σ̆2
n,t|t−1 − σ2

n,t) :

V arσ
[
σ̂2
n,t − σ̆2

n,t|t−1

]
= V arσ

[
σ̂2
n,t

]
+ V arσ

[
σ̆2
n,t|t−1

]
= V arσ

[
σ̂2
n,t

]
+

H∑
h=1

ϕ2
n,hV arσ

[
σ̂2
n,t−h

]
=

[
1 +

H∑
h=1

ψ2
n,h,t

]
V arσ

[
σ̂2
n,t

]
,

whereas: ψ2
n,h,t = ϕ2

n,h[V arσ[σ̂2
n,t−h]]/V arσ[σ̂2

n,t]. Letting ψ
(H)
n,t = (ψn,h,t)1≤h≤H :

1

ω∗n,t
=

V arσ

[
σ̂2
n,t − σ̆2

n,t|t−1

]
+
[
Eσ(σ̆2

n,t|t−1)− σ2
n,t

]2

V arσ[σ̂2
n,t]

= 1 +
∥∥∥ψ(H)

n,t

∥∥∥2
+

[
Eσ(σ̆2

n,t|t−1)− σ2
n,t

]2

V arσ[σ̂2
n,t]

= 1 + (1 + k2
n,t)
∥∥∥ψ(H)

n,t

∥∥∥2
where k2

n,t =

[
Eσ(σ̆2

n,t|t−1)− σ2
n,t

]2[∥∥∥ψ(H)
n,t

∥∥∥2
V arσ[σ̂2

n,t]

] =

[
Eσ(σ̆2

n,t|t−1 − σ
2
n,t)
]2

V arσ

(
σ̆2
n,t|t−1 − σ

2
n,t

) .
Through the underlying forecasting problem, parsimony matters. Increasing the number H

of lags in the regression (2.6) may allow to reduce the variation coefficient of the estimation

error of our alternative estimator σ̆2
n,t|t−1 but will have a cost in terms of increasing the

norm of the vector ψ
(H)
n,t of (rescaled) regression coefficients. Note however that the initial

regression coefficients ϕn,h, h = 1, ..., H have been rescaled to take into account the fact

that daily variance estimators may have different precisions. As always, the cost of lack

of parsimony will be magnified when it comes to feasible forecasting, that is when substi-

tuting estimators into theoretical formulas. Note that the theoretical gain in conditional

MSE provided by the replacement of σ̂2
n,t by σ̂2

n,t(ω
∗
n,t) is given by: Gσ(ω∗n,t) = V arσ[σ̂2

n,t] -

Eσ[σ̂2
n,t(ω

∗
n,t)−σ2

n,t]
2 = (ω∗n,t)

2Eσ

[
(σ̂2

n,t − σ̆2
n,t|t−1)2

]
. If we have to use an estimator ω̂∗n,t of the

theoretically optimal weight ω∗n,t instead of the optimal one, we will modify the quadratic

estimation error by an amount of: [σ̂2
n,t(ω̂

∗
n,t) − σ2

n,t]
2- [σ̂2

n,t(ω
∗
n,t) − σ2

n,t]
2 = (ω∗n,t − ω̂∗n,t)(σ̂2

n,t

- σ̆2
n,t|t−1)

(
σ̂2
n,t(ω̂

∗
n,t) + σ̂2

n,t(ω
∗
n,t)− 2σ2

n,t

)
. Roughly speaking, the cost of estimation error will

not exceed the benefit in MSE as long as the estimation error (ω̂∗n,t − ω∗n,t) on the optimal

weight ω∗n,t will not exceed the level of this weight. In other words, the improvement pro-
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posed in estimation of σ2
n,t that we propose in this section will be real insofar as: (1) on the

one hand, the optimal weight ω∗n,t to assign to past information (as conveyed by σ̆2
n,t−1) is not

too small, in particular due to the bias in σ̆2
n,t−1, and (2) on the other hand, the estimation

error (ω̂∗n,t − ω∗n,t) on this optimal weight is not too large.

It is of course an empirical issue that will be properly assessed by our simulation study in

section 5. However, in the next subsection, we put forward a set of arguments, based on

asymptotic theory, that may enhance the likelihood of the required property.

2.2 Asymptotic feasibility of the optimal weighting scheme

Following the discussion in the previous subsection, we want to study asymptotic conditions

such that the optimal weight ω∗n,t is not too small and the estimation error on this weight is

not too large, in order to leave room for a possible improvement. We will denote by ω̂∗n,t,T , t =

1, 2, ...T, the estimated weights obtained from a time series σ̂2
n,t, t = 1 − H, ..., 1, 2, ...T of

daily observations. We will consider that the above required conditions (optimal weight ω∗n,t

not too small and estimation error not too large) may be fulfilled when these quantities are

bounded in probability. In other words, the purpose of this subsection is to provide primitive

assumptions ensuring the conjunction of the two following conditions: (a) 1/ω∗n,t= OP (1),

and (b)
∣∣ω̂∗n,t,T − ω∗n,t∣∣ = OP (1).

It is then worth rewriting the optimal weight as follows:

1

ω∗n,t
= 1 +

∥∥∥ψ(H)
n,t

∥∥∥2

+

[
Eσ(σ̆2

n,t|t−1)− σ2
n,t

]2

V arσ[σ̂2
n,t]

(2.11)

= 1 +
∥∥∥ψ(H)

n,t

∥∥∥2

+
nB2

I,n(t)

2σ
[4]
n,t

+
n
[
B2
F,n(t)−B2

I,n(t)
]

2σ
[4]
n,t

,

where BF,n and BI , n stand respectively for feasible and infeasible bias:

BF,n(t) = σ2
n,t −

H∑
h=1

ϕn,hσ
2
n,t−h −

(
1−

H∑
h=1

ϕn,h

)
σ2

ϕ(H)
n = (ϕn,h)1≤h≤H =

(
V ar[(σ̂2

n,t−h)1≤h≤H ]
)−1

Cov
[
(σ̂2

n,t−h)1≤h≤H , σ̂
2
n,t

]

8



while:

BI,n(t) = σ2
n,t −

H∑
h=1

ϕ0
n,hσ

2
n,t−h −

(
1−

H∑
h=1

ϕ0
n,h

)
σ2

ϕ0,(H)
n = (ϕ0

n,h)1≤h≤H =
(
V ar[(σ2

n,t−h)1≤h≤H ]
)−1

Cov
[
(σ2

n,t−h)1≤h≤H , σ
2
n,t

]
. (2.12)

Note that we use the word ”feasible” with some abuse of language since the formula above for

BF,n(t) still entails some unknown parameters that will have to be estimated. However, we

will note later on that this estimation part is straightforward. Moreover, standard regularity

conditions will obviously ensure that:
∥∥∥ψ(H)

n,t

∥∥∥2

= OP (1).

Then, we deduce from the decomposition (2.11) that a pair of sufficient conditions for the

required property 1/ω∗n,t = OP (1) is given by the following. First,

BI,n(t)−BF,n(t) = −
H∑
h=1

(ϕ0
n,h − ϕn,h)(σ2

n,t−h − σ2) = OP (1/
√
n). (2.13)

Second:

BI,n(t) = OP (1/
√
n). (2.14)

Note that the conjunction of these two conditions implies in particular that:

B2
F,n(t)−B2

I,n(t) = (BF,n(t)−BI,n(t)) (2BI,n(t) +BF,n(t)−BI,n(t)) = OP (1/n).

We know that by definition: Σn,Hϕ
(H)
n = [γσ(h)]1≤h≤H , Σn,H = Γ(H) + 2

n
νσ,4IdH ,Γ(H) =[

V ar(σ2
n,t−h)1≤h≤H

]
, and Γ(H)ϕ

0,(H)
n = [γσ(h)]1≤h≤H . Similarly, for ϕ

0,(H)
n = (ϕ0

n,h)1≤h≤H .

Therefore, by difference:

Γ(H)
[
ϕ(H)
n − ϕ0,(H)

n

]
+

2

n
νσ,4ϕ

(H)
n = 0

and hence ϕ
(H)
n - ϕ

0,(H)
n = (−2/n)νσ,4[Γ(H)]−1ϕ

(H)
n = O(1/n) and by (2.13) the required

bound follows:|BI,n(t)−BF,n(t)| ≤ ‖ϕ(H)
n − ϕ0,(H)

n ‖ ‖
(
σ2
n,t−h − σ2

)
1≤h≤H ‖ = OP (1/n).

Regarding the second condition (2.14), let us illustrate it in the caseH = 1 : σ2
n,t = (1− ϕ0

n)σ2

+ ϕ0
nσ

2
n,t−1 + BI,n(t). By definition: E[(BI,n(t))2] = V ar(BI,n(t)) = [1 − (ϕ0

n)2]V ar[σ2
n,t].

Therefore, we will ensure that BI,n = OP (1/
√
n) if we assume that:

9



Assumption 2.3 Let H = 1 and ϕ0
n, defined in (2.12) satisfy:

1− (ϕ0
n)2 = O(1/n). (2.15)

Assumption 2.3 should be interpreted as a sufficient condition for BI = Op(1/
√
n). According

to (2.11), a violation of this condition may imply that on some specific days, 1/ω∗ is not

upper bounded, so that it will sometimes be optimal to overlook information about volatility

from previous days. There is widely documented evidence of the existence of days with jumps

in price and/or in volatility. Obviously, for these days, Assumption 2.3 is not realistic and

pooling information about the volatility process across past days might be inappropriate.

The logic for our belief that Assumption 2.3 should be relevant for most of days rests upon

the new framework of near integration as formulated by Phillips, Moon, and Xiao (2001)

(PMX hereafter) and described in the next subsection. Note that a similar conclusion would

be easily obtained for H > 1 at the cost of more complicated notation.

We would like to emphasize that volatility jumps may come in the form of many small jumps,

possibly of infinite activity. See, in particular, Jacod and Todorov (2010), Todorov and

Tauchen (2011), Jacod and Protter (2012), and Aı̈t-Sahalia and Jacod (2014). This situation

represents an intermediate scenario between a single jump and a continuous volatility process.

As shown in Zhang (2007), there may be contiguity between the probability distribution of

a continuous (in this case volatility) process and one that has infinite activity jumps, thus

strengthening the idea that such frequent jumps may in many cases be more like continuous

evolution that the situation of a single free-standing jump. A proper characterization of this

problem would be of substantial interest but is beyond the scope of this paper.

Regarding the estimation error, we have: |ω̂∗n,t,T − ω∗n,t| = (ω∗n,t)(ω̂
∗
n,t,T )|(ω∗n,t)−1 − (ω̂∗n,t,T )−1|

≤ |(ω∗n,t)−1 − (ω̂∗n,t,T )−1|. Since: (ω∗n,t)
−1 = 1 + ‖ψ(H)

n,t ‖2 + [Eσ(σ̆2
n,t|t−1)− σ2

n,t]
2/V arσ[σ̂2

n,t] =

1 + ‖ψ(H)
n,t ‖2 + [

∑H
h=0 ϕn,h(σ

2
n,t−h − σ2)]2/[(2/n)σ

[4]
n,t], we will define an estimator as:

1

ω̂∗n,t,T
= 1 +

∥∥∥ψ̂(H)
n,t,T

∥∥∥2

+

[
ĉn,T +

∑H
h=1 ϕ̂n,h,T σ̂

2
n,t−h − σ̂2

n,t

]2

2
n
σ̂

[4]
n,t

= 1 +
∥∥∥ψ̂(H)

n,t,T

∥∥∥2

+
n

2

ν̂2
n,t,T

σ̂
[4]
n,t

, (2.16)

where, from a time series (σ̂2
n,t)1−H≤t≤T , we can compute the OLS estimator (ĉn,T , ϕ̂

(H)
n,T ) in
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the regression equation:

σ̂2
n,t = cn +

H∑
h=1

ϕn,hσ̂
2
n,t−h + vn,t, t = 1, 2, ..., T

and ν̂n,t,T = σ̂2
n,t - ĉn,T −

∑H
h=1 ϕ̂n,h,T σ̂

2
n,t−h stands for the residual of this regression. Note

that we never assume in this section that the processes σ2
t and σ̂2

t are AR(H) processes. The

error term vn,t is not assumed to be a white noise, but only the residual of a regression of

σ̂2
n,t on H lagged values. We will discuss later the way to efficiently compute an estimator

σ̂
[4]
n,t of σ

[4]
t , but obviously, the corresponding estimation error will be OP (1/

√
n). Note

that this estimation strategy will also be relevant to compute the coefficients of the vector

ψ̂
(H)
n,t,T , h = 1, ..., H: ψ̂2

n,h,t,T = (σ̂
[4]
n,t−h/σ̂

[4]
n,t)ϕ̂

2
n,h,T .

The key issue is now to assess the long-range asymptotics estimation error
∣∣ω̂∗n,t,T − ω∗n,t∣∣ as

a function of the sample size T . By an argument similar to the one used to get (2.11),

we can write with obvious notations: (ω̂∗t,T )−1 = 1+ ‖ψ̂(H)
n,t,T‖2 + nB̂2

I,n,T (t)/(2σ̂
[4]
n,t) and

therefore: (ω̂∗n,t,,T )−1 -(ω∗n,t)
−1 = ‖ψ̂(H)

n,t,T‖2 - ‖ψ(H)
n,t ‖2 + nB̂2

I,n,T (t)/(2σ̂
[4]
n,t) - nB2

I,n(t)/(2σ
[4]
n,t)

-n
[
B2
F,n(t)−B2

I,n(t)
]
/(2σ

[4]
n,t).

From long range asymptotics: |‖ψ̂(H)
n,t,T‖2 - ‖ψ(H)

n,t ‖2| = OP (1/T )+OP (1/n). In order to control

the difference
[
nB̂2

I,n,T (t)− nB2
I,n(t)

]
, we will refer again to the near integration argument

(as we did for condition (2.14)), with the illustrative case H = 1 : B̂I,n,T (t) = σ̂2
n,t - ĉn,T -

ϕ̂n,T σ̂
2
n,t−1, so that:|B̂I,n,T (t) − BI,n(t)| = OP (1/

√
T ) + OP (1/

√
n). Moreover: |B̂I,n,T (t) +

BI,n(t)| = |2BI,n(t) + B̂I,n,T (t) − BI,n(t)| ≤ 2|BI,n(t)| + |B̂I,n,T (t) − BI,n(t)| = OP (1/
√
T )

+ OP (1/
√
n). Hence: n|B̂2

I,n,T (t) − B2
I,n(t)| = n|B̂I,n,T (t) − BI,n(t)||B̂I,n,T (t) + BI,n(t)| =

OP (1) + OP (n/T ) + OP

(√
n/
√
T
)
. Therefore, if we assume n = O(T ), we will obtain the

required condition:

n
∣∣∣B̂2

I,n,T (t)−B2
I,n(t)

∣∣∣ = OP (1).

In other words, if one uses five-minute returns in a 24-hour financial market (n = 288), we

assume that more than 288 observation days are available.

11



2.3 A block local to unity framework for volatility

For the sake of expositional simplicity, we focus in this subsection on the case where only

H = 1 lag is used to compute the forecast σ̆2
n,t−1 and the weighted estimator. The goal is

to show that a natural block-local-to-unity framework for volatility in the spirit of PMX

allows us to see the daily volatility persistence parameter ϕ0
n as a function of n, such that

the wished condition (2.15) is fulfilled:

n[1− (ϕ0
n)2] = O(1). (2.17)

To get the main intuition, let us imagine that within each “block” or “day” t, the volatility

process σ2
t,j, j = 1, ..., n, can be embedded into a continuous time diffusion process with linear

drift:

dσ2
t = κ

[
σ2 − σ2

t

]
dt+ γtdWt, k > 0

where Wt is a Wiener process and the length of a block (a day) is one unit of time. Note

that an Ornstein-Uhlenbeck-like process as put forward by Barndorff-Nielsen and Shephard

(2001) would also do the job. Indeed, our argument of embedding a discrete time volatility

process of interest into a continuous time one is only for the purpose of studying second

order moments when the sampling frequency n goes to infinity. It does not depend on

higher order characteristics of the underlying stationary continuous time process. In par-

ticular we can apply formulas (44) and (45) of Barndorff-Nielsen and Shephard (2001) to

conclude that the correlation coefficient between
∫ t
t−1

σ2(u)du and
∫ t−1

t−2
σ2(u)du is given by:

.5 [1− exp(−κ)]2 / [exp(−κ)− 1 + κ] . Note that by a Riemann integration argument: σ2
n,t =

1
n

∑n
j=1 σ

2
t,j −→

n→∞

∫ t
t−1

σ2(u)du. Therefore, under standard regularity conditions, we have for

large n (see e.g. Andersen, Bollerslev, and Meddahi (2004)): ϕ0
n = Corr

[
σ2
n,t, σ

2
n,t−1

]
≈ 0.5

[1 − exp(−κ)]2/[exp(−κ) − 1 + κ]. The idea of block local to unity is that within each day,

volatility is highly persistent so that the mean reversion parameter κ is close to zero that the

n daily observations can hardly detect its discrepancy from zero: κ ≈ c/n, c > 0. In other

words, the correlation coefficient between two values of the (squared) volatility process sepa-

rated by ∆ units of time is equivalent to exp(−c∆/n) ≈ 1 - (c∆/n). Then, the correlation be-

tween two consecutive daily integrated variances will be: 0.5 [1−exp(−κ)]2/[exp(−κ)−1+κ]

≈
[
1− κ

2

]2 ≈ 1− c
n
. Then we obtain the result put forward in equation (2.17): ϕ0

n ≈ 1− c
n

⇒ 1 − (ϕ0
n)2 ≈ 1 −

[
1− c

n

]2 ≈ 2 c
n
⇒ n [1− (ϕ0

n)2] = O(1). Therefore, our maintained as-

sumption appearing in equation (2.15) is implied by the block-local-to-unity assumption of
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PMX. Note however an important difference between the original local-to-unity asymptotics

and our use of it which is conformable to PMX. While the former near-to-unit root literature

(see Bobkoski (1983), Chan and Wei (1987), Phillips (1987), Elliott, Rothenberg, and Stock

(1996), among others) focuses on persistence parameters going to one at rate 1/T, where T

is the length of the time series, the rate of convergence in (2.17) is governed by n, i.e. the

number of intradaily data. In this respect, what is really required for our approach is in fact:

[1− (ϕ0
n)2] = O(ϕ0

n − ϕn) (2.18)

where the notation O(.) must be understood as an upper bound. Note that [1− (ϕ0
n)2] and

(ϕ0
n − ϕn) are two different objects and there is no obvious reason why they would converge

at the same rate. In the sequel, the rate of convergence of (ϕ0
n − ϕn) will sometimes be

slower than 1/n. It will notably depend on the quality of the volatility process estimator

which may for example be corrupted by exogenous phenomena such as microstructure noise.

The key assumption driving equation (2.18) is that, roughly speaking, the level of volatility

persistence is at least as good as the quality of our intradaily volatility estimator. It ensures

that the squared infeasible bias:

B2
I,n(t) = O([1− (ϕ0

n)2]) = O(ϕ0
n − ϕn) (2.19)

does not dominate the conditional variance V arσ(σ̂2
n,t − σ̆2

n,t|t−1). Note also that for given n,

the time series (σ2
n,t) and (σ̂2

n,t) are still stationary processes, albeit highly persistent when

n is large. In particular, a long time series (σ̂2
n,t), t = 1, ..., T allows to consistently estimate

(at standard rate
√
T ) the unconditional mean σ2 and the correlation coefficient ϕn. We

will always consider that the time span is large enough to make (1/T ) small compared to

(1/n) (or at least O(ϕ0
n − ϕn)) in order to make negligible the time series estimation error

in the parameters σ2 and ϕn. For all practical purpose, our Monte Carlo experiments have

confirmed that the time series estimation error on the parameters σ2 and ϕn is negligible in

front of O(ϕ0
n − ϕn).

2.4 Estimating Optimal Weights

The optimal weighting scheme ω∗n,t depends on σ
[4]
n,t and ϕn. Because of the maintained

practical assumption discussed above, we do not need to worry about the latter, hence our
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focus will be on the former. The sample counterpart of σ
[4]
n,t, the so-called realized quarticity

(see below), is known to be a very noisy estimator and therefore, albeit root-n consistent,

may be detrimental regarding our search for efficiency gain.

Following a suggestion by Mykland and Zhang (2009), we rather consider the MLE estimation

of V arσ̂2
n,t = 2σ

[4]
n,t/n where: σ

[4]
n,t = 1

n

∑n
j=1 σ

4
t,j, and efficiency gains are made possible by the

following assumption:

Assumption 2.4 Assume that n is a multiple of m ≥ 1, and for (i − 1)m < j ≤ im, we

have:

σtj = σti i = 1, . . . , n/m.

Given Assumption 2.4 the MLE σ̂2
n,t,[i] of σ2

ti
is: σ̂n,t,[i]=

n
m

∑mi
j=m(i−1)+1X

2
t,j. Then the MLE

of σ4
n,t,[i] is such that:

σ̂4
n,t,[i]

σ4
n,t,[i]

=
1

m2

[n
∑mi

j=m(i−1)+1X
2
t,j]

2

σ4
n,t,[i]

v
[χ2(m)]2

m2

with expectation (1 + 2/m). Hence, an unbiased estimator of σ
[4]
n,t is defined as:

σ̂
[4]
n,t =

m

n

n/m∑
i=1

σ̂4
n,t,[i]

1 + 2/m
=

n

m+ 2

n/m∑
i=1

 mi∑
j=m(i−1)+1

X2
t,j

2

(2.20)

whereas an estimator not taking advantage of m > 1 would be the realized quarticity:

σ̃
[4]
n,t =

n

3

n∑
j=1

X4
t,j =

n

3

∑
i

σ4
n,t,[i]

∑
j

(
Xt,j

σn,t,[i]
)4 v

1

3n

∑
i

σ4
n,t,[i]

∑
j

(χ2(1))2. (2.21)

In Appendix A we compare the efficiency of the estimators σ̂4
n,t and σ̃4

n,t, showing that when

m > 1, the former will be more efficient. This efficiency gain by grouping has a much

more general validity (see Mykland and Zhang (2009)) and has been shown to be arbitrarily

close to semiparametric efficiency in a very general setting (see Renault, Sarisoy, and Werker

(2017)).

Finally, let us recall that we try to improve the estimation of σ2
n,t using prior day information,

and in particular using σ̂2
n,t−1. This argument is not confined to volatility measures. In par-

ticular, we can use the arguments spelled out so far to improve upon σ̂
[4]
n,t by using estimates
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from prior observation intervals. Namely, we can also consider the correlation coefficient ψn

of σ̂
[4]
n,t on σ̂

[4]
n,t−1:

ψn =
Cov(σ̂

[4]
n,t, σ̂

[4]
n,t−1)

V ar(σ̂
[4]
n,t)

(2.22)

and develop a filtering procedure for σ
[4]
n,t similar to the one proposed above for σ2

n,t.

Finally, it should also be noted that our way to take advantage of past information is quite

similar in spirit to the Kalman-Bucy filter but with a couple of important differences which

are explained in Online Appendix Section OA.4.

3 Asymptotic Analysis for General Estimators

The example in the previous section - where we started with a relatively simple case of a

piecewise constant volatility process - is surprisingly comprehensive. The purpose of the

present section is to aim for generality.

3.1 The case of no leverage and drift

We start by replacing the specification of the data generating process in Assumption 2.1

with:

Assumption 3.1 We suppose that Xs is an Itô-semimartingale, either without jumps

dXs = µ(s)ds+ σ(s)dW (s),

or with jumps that are removed (see Footnote 2). We also assume for the moment - but relax

later - that µ(s) ≡ 0 and that the volatility σ(s), is independent of the Brownian motion

W (s).

In the case of jump diffusions, we will leave unspecified how a researcher goes about removing

jumps.2 Next, we consider the generic setting examined by Mykland and Zhang (2017),

2 Such as, for example, by (1) using bi- and multi-power methods (Barndorff-Nielsen and Shephard
(2004b, 2006), Mykland, Shephard, and Sheppard (2012), or (2) by truncation (Mancini (2001), Aı̈t-Sahalia
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namely one seeks to estimate:

Θt =

∫ t

t−1

θ(s)ds, (3.1)

where {θ(s)} is a spot parameter process, such as squared spot volatility, leverage, an in-

stantaneous regression parameter, among others.

Similar to the analysis in the previous section, we have n discretely sampled data points

which yield an estimator Θ̂n,t, for which we have the following properties:

Assumption 3.2 As n → ∞ :

(i) The estimator Θ̂n,t is consistent

(ii) A CLT applies, namely nα(Θ̂n,t − Θt)
L→ V

1/2
t N(0, 1) in law, conditionally on the

process σ(s), and Vt is a measurable function of the process (θ(s))t−1<s≤t.

In the remainder of this section we consider various estimators Θ̂n,t proposed in the literature,

which we intend to generalize to estimators of the type appearing in equation (2.9), denoted

Θ̂n,t(ω
∗
t ), using the arguments advanced in the previous section. In addition to Assumptions

3.1 and 3.2, we also need an assumption akin to the block local to unity framework discussed

in section 2.3. Because the generic setting for Θt covers a wide variety of cases, we cannot

state this as a generic assumption. For example, in the case of volatility related applications,

it will require that the volatility process is sufficiently persistent (not specified in Assumption

3.1). In other applications, such as leverage, the persistence actually applies to µ(s) in

Assumption 3.1.3

Throughout, we study the case of equidistant sampling, ti − ti−1 = ∆ ti = 1/n. We may ob-

serve Xti at times ti, i = 0, · · · , n spanning (t−1, t].4 Alternatively, if there is microstructure

noise, the observations are of the form

Yti = Xti + εti , (3.2)

and Jacod (2007, 2008, 2009, 2012), Jacod and Todorov (2010), Lee and Mykland (2008, 2012), Jing, Kong,
Liu, and Mykland (2012)), or (3) with the help of the empirical characteristic functions (Jacod and Todorov
(2014, 2018)).

3For specific cases we will discuss the equivalence of equation (2.18). See for example equations (3.9)
(3.24) and later in this section.

4Note that henceforth we use notation slightly different from equation (2.1) and the previous section - as
it is more convenient to do so henceforth.
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where the noise is either i.i.d., or is stationary with fast mixing dependence.

To provide a few initial examples of estimators satisfying Conditions [i], and [ii], consider

the following (non-exhaustive list of) volatility estimators. Here, θ(s) = σ2(s).

Example 1 (Realized Volatility, No Microstructure Noise) The convergence

rate is α = 1/2. If X is continuous case, the baseline estimator for the
∫ t
t−1

θ(s)ds is the

standard realized volatility (RV),
∑

t−1<ti+1≤t(Xti+1
−Xti)

2 (Andersen, Bollerslev, Diebold,

and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and

Shephard (2002a)). The consistency and stable convergence has been shown by Jacod and

Protter (1998) using discretization. �

Example 2 (Bipower Variation, No Microstructure Noise) The bipower varia-

tion Θ̂n,t = π
2

∑
t−1<ti≤t |∆Xti−1

||∆Xti | (and more generally, multipower variation, Barndorff-

Nielsen and Shephard (2004b), Barndorff-Nielsen and Shephard (2006)) estimates the inte-

grated volatility in a way that is robust to jumps (where we specify that dXs = µ(s)ds +

σ(s)dW (s) + dJ(s), where J(s) is a pure jump semimartingale). The convergence rate is

α = 1/2. Consistency and stable convergence has been shown in the papers by Barndorff-

Nielsen and Shephard (2004b), Barndorff-Nielsen and Shephard (2006), Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard (2006a), and Barndorff-Nielsen, Graversen, Ja-

cod, Podolskij, and Shephard (2006b). �

Starting with Example 1, when the sampling frequency increases, i.e. n → ∞, then the

realized variance converges uniformly in probability to the increment of the quadratic varia-

tion i.e. limn→∞ Θ̂n,t →p
∫ t
t−1

θ(s)ds. The criterion to minimize will be the conditional mean

squared error:

Eσ

[
Θ̂n,t(ωt)−Θt

]2

= Eσ

{
Θ̂n,t −Θt − ωt

(
Θ̂n,t − Θ̆n,t|t−1

)}2

. (3.3)

Then, the problem to solve is obviously nearly identical to the one considered in Section 2,

so that:

Θ̂n,t(ω
∗
n,t) = Θ̂n,t − ω∗n,t

(
Θ̂n,t − Θ̆n,t|t−1

)
(3.4)

will be an optimal improvement of Θ̂n,t if ω∗n,t is defined according to the following control
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variable formula:

ω∗n,t =
CovΘ

[
Θ̂n,t, Θ̂n,t − Θ̆n,t|t−1

]
EΘ

[
Θ̂n,t − Θ̆n,t|t−1

]2 =
V arΘ[Θ̂n,t]

EΘ

[
Θ̂n,t − Θ̆n,t|t−1

]2 . (3.5)

Note that ω∗n,t has been shrunk with respect to the conditional regression coefficient Θ̂n,t

on (Θ̂n,t - Θ̆n,t|t−1). This is due to the need to take into account the non-zero mean of

(Θ̂n,t − Θ̆n,t|t−1) given the volatility path.

Proposition 3.1 For Example 1, the standard realized volatility (RV), obtained by summing

squared intra-daily returns, yielding the so called realized variance, namely:

Θ̂n,t =
∑

t−1<ti+1≤t

(Xti+1
−Xti)

2. (3.6)

Then, under Assumptions 3.1 and 3.2, in analogy with equation (2.11), the optimal weight

can be written as:

1

ω∗n,t
= 1 + ϕ2

n

Vt−1

Vt
+ n

B2
F,n(t)−B2

I (t)

Vt
+ n

B2
I (t)

Vt
+ o

(
1

n

)
(3.7)

BI(t) = Θt − ϕ0Θt−1 − (1− ϕ0)E [Θt]

ϕ0 =
Cov [Θt,Θt−1]

V ar (Θt)
= ϕn +O

(
1√
n

)
where Vt = 2

∫ t
t−1

σ(s)4ds is called (twice) the integrated quarticity and BF,n(t) = Θt -

ϕnΘt−1 − (1− ϕn)E [Θt] with ϕn = Cov(Θ̂n,t, Θ̂n,t−1)/V ar(Θ̂n,t−1), in the case of an AR(1)

prediction model. For Example 2, using bi-power variation (BPV) defined as:

Θ̂n,t(k) =
π

2

n∑
j=k+1

∣∣Xn,tj

∣∣ ∣∣Xn,tj−k

∣∣ , (3.8)

without loss of generality, setting k = 1, it will be an optimal improvement of Θ̂n,t when

ω∗t is again defined according to the control variable formula (3.5) where QV is replaced by

BPV. Note that we do not assume the same temporal dependence for QV and BPV, as the

projection of QV on its past (one lag) and that of BPV on its own past (one lag) in general

do not coincide.
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Given the similarity with the analysis in the previous section, we skip the details here, as

they appear in the Online Appendix. In order to estimate volatility on day t, we attach

a non-zero weight ω∗t to volatility information on day t − 1. This weight increases as the

relative size of the asymptotic variance Vt/n of Θ̂n,t is large in comparison to both (1) the

asymptotic variance Vt−1/n of Θ̂n,t−1 as well as (2) the squared forecast bias B2
F,n(t). However,

for a given non-zero asymptotic bias BI(t), the term n B2
I (t) goes to infinity when n goes to

infinity, likely pushing to zero the optimal weight ω∗n,t. The reason is fairly straightforward:

since Θ̂n,t is a consistent estimator of
∫ t
t−1

θ(s)ds, forecasting
∫ t
t−1

θ(s)ds from Θt−1 becomes

irrelevant when n becomes infinitely large: even a small forecast error has more weight than

a vanishing estimation error. However, in practice, n is never infinitely large and there likely

is a sensible trade-off between estimation error as measured by the asymptotic variance Vt

and the asymptotic bias BI(t). Similarly to the formal analysis developed in subsection 2.3,

we can capture this trade off by considering that volatility is so highly persistent that a block

local to unity model may be relevant. In this case, as seen in subsection 2.2, we will have:

BI(t) = OP

(
1/
√
n
)

(3.9)

so that 1/ω∗n,t = OP (1).

So far we presented the limit theorems and main results in terms of the infeasible estimators.

There are various ways this can be converted into a feasible limit theory. For example, in the

absence of jumps a feasible asymptotic distribution is obtained by replacing Vt with a sample

equivalent, namely, V̂n,t = 2
∑

t−1<ti+1≤t(Xn,ti+1
−Xn,ti)

4. Improved estimation of integrated

quarticity can be derived in the spirit of section 2.4 (see Mykland and Zhang (2009)).5

Besides the estimation of integrated quarticity, we face another problem, namely the esti-

mation of the forecast bias. We do not only observe the infeasible bias BI(t) , but we even

do not observe the feasible bias BF,n(t). The only thing we can actually compute is the

following sample counterpart of BF,n(t):

B̂F,n(t) = Θ̂n,t − ϕ̂n,T Θ̂n,t−1 − ĉn,T (3.10)

5It should also parenthetically be noted that Vt can be estimated via several methods, including bootstrap
proposed by Gonçalves and Meddahi (2009), subsampling by Kalnina and Linton (2007) and Kalnina (2011),
or the observed AVAR approach of Mykland and Zhang (2017) as well as the examples discussed in section
7 of the latter paper.
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where ϕ̂n,T and ĉn,T are OLS estimators in the time series regressions: Θ̂n,t = cn + ϕnΘ̂n,t−1

+ un,t, t = 1, . . . , T.

Note that the estimator (3.10) is essentially identical to the estimator considered in subsec-

tion 2.2, which implies that our implied estimated optimal weights ω̂∗n,t should be of sensible

use, under similar assumptions regarding sample sizes n and T as well as volatility persis-

tence (block local to unity). Strict application of the formulas developed in subsection 2.2

suggests the following natural sample counterpart of (3.7): (ω̂∗n,t)
−1 = 1 + [ϕ̂2

n,T V̂n,t−1]/V̂n,t

+ n
[
B̂F,n(t)

]2

/V̂n,t. However, it is worth keeping in mind that our block local to unity

framework leads us to consider that:

1− (ϕ0)2 = O(1/n).

In these circumstances, there is no point to use the estimator ϕ̂2
n,T for the estimated optimal

weights since the associated estimation error is of the same order of magnitude as the dis-

tance to unity. This is the reason why our preferred (approximated) optimal weight will be

throughout:

1

ω̂∗n,t
= 2 +

V̂n,t−1 − V̂n,t
V̂n,t

+ n

[
B̂F,n(t)

]2

V̂n,t
. (3.11)

As noted before, the optimal weights are time varying. This sets our analysis apart from

previous work only involving time invariant, or unconditional weighting schemes.6 The

comparison with unconditional schemes will be discussed at length in the next section. The

fact that Vt is a stationary process implies that ω∗t is stationary as well. It is also worth

noting that the weight increases with Vt (relative to Vt−1). This is also expected as the

measurement error is determined by Vt. High volatility leads to high Vt in fact. Hence, on

high volatility days we expect to put more weight on the past to extract volatility.

To conclude, it should be noted that so far we confined our analysis to projections on one

lag. We may consider higher order projections. In particular, it may be useful to think of

the Beveridge-Nelson representation to accommodate the local-to-unity asymptotics (see e.g.

Phillips and Solo (1992, Lemma 2.1) among others). We leave this for future research.

Finally, in Online Appendix Section OA.2 we discuss some additional volatility estimator

6In the context of volatility forecasting, Bollerslev, Patton, and Quaedvlieg (2016) have recently proposed
time-varying weights that are pretty much conformable with our strategy of increasing the weight ω∗

n,t of
past observation when current estimation error Vt is high with respect to the former one.
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examples, including Two-Scales Realized Volatility and Multi-Scale and Kernel Realized

Volatility, among others. Moreover, in Online Appendix Section OA.3 we discuss a set of

examples which go beyond measures of quadratic variation, in particular: (a) estimation

of Covariance from Asynchronous Observations, (b) block estimation of higher powers of

volatility, and high frequency regression, and ANOVA.

3.2 The case with leverage effect, and nonzero µ

We consider the question of how to build a theory in the case where there is leverage effect.

This means that the caveats at the beginning of Section 3.1 can be removed. In particular

Assumptions 3.1 and 3.2 are replaced by:

Assumption 3.3 We suppose that Xs is an Itô-semimartingale, either without jumps

dXs = µ(s)ds+ σ(s)dW (s),

or with jumps removed (see Footnote 2 in Section 3.1). The drift µ can vary quite freely (see

Remark 1 below), and we allow for dependence between σ(s) and (a) the jump sizes on the

one hand, and (b) the driving Brownian motion and Poisson process on the other.

Assumption 3.4 As n → ∞ :

(i) The estimator Θ̂n,t is consistent;

(ii) A CLT applies, namely nα(Θ̂n,t − Θt)
L→ V

1/2
t N(0, 1) stably in law, where Vt is a

(potentially random) asymptotic variance, and where Vt is adapted to the filtration Ft,
which represents the history of underlying processes, including X, σ and θ.

In the no-leverage case, i.e. under Assumptions 3.1-3.2, one can condition on the σt process

and then find the optimal estimator in terms of mean squared error. In the case with

leverage, i.e. under Assumption 3.4, there is no general way of doing the conditioning for a

fixed sample size. However, we show below that the asymptotic MSE (conditionally on the

data, where the conditioning is done after the limit-taking) only depends on the σt process.

The post-limit conditioning, therefore, gives rise to exactly the same formula that comes out
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of the quite different procedure used in the no-leverage case. Therefore stable convergence

saves the no-leverage result for the general setting.

The approach below can be used in many other settings, see, in particular, the results on

estimation of the leverage effect in Example 4.

Remark 1 (Nonzero µ.) Once one is in the domain of stable convergence, all arguments go

through for locally bounded drift process µ(s), cf. Mykland and Zhang (2009, p. 1407-1409).

We can therefore assume that µ ≡ 0 in Assumption 3.1. �

To proceed without conditioning, the point of departure is that the convergence in Assump-

tion 3.2 remains valid even under leverage effect, as documented in our examples in Section

3.1. The underlying filtration is generated by a p-dimensional local martingale (χ(1), . . . ,

χ(p)). It is then the case that

nα/2(Θ̂n,t −Θt)
d→ Zt

√
Vt, (3.12)

where Zt is standard normal, and the convergence is joint with (χ(1), . . . , χ(p)) (where this is

a constant sequence). Zt is independent of (χ(1), . . . , χ(p)) (the latter also occurs in the limit,

since the sequence is constant as a function of n). This is known as stable convergence, see

the papers cited, and also Rényi (1963), Aldous and Eagleson (1978), and Hall and Heyde

(1980). It permits, for example, Vt to appear in the limit, while being a function of the data.

As discussed in Section 5 of Zhang, Mykland, and Aı̈t-Sahalia (2005), the convergence also

holds jointly for days t = 0, . . . , T. In this case, Z0, . . . , ZT are i.i.d.

With the convergence appearing in (3.12) in hand, one can now condition the asymptotic

distribution on the data (i.e., (χ(1), . . . , χ(p)) ), and obtain that Zt
√
Vt is (conditionally)

normal with mean zero and variance Vt. One can then develop the further theory based on

asymptotic rather than small sample variances and covariances. Recall that it is convenient

to make the persistence a function of n, hence ϕ(n) (cf. equation (2.17) and the analogy

with PMX). To distinguish small sample and asymptotic results, let us denote Ut by Ut(n)

as well and write:

Θt = ϕ0
nΘt−1 +

√
1− (ϕ0

n)2Ut(n) + (1− ϕ0
n)E(Θt). (3.13)

One supposes that in the limit as n → ∞, Θ̂n,t−1 and Ut(n) are uncorrelated. A similar,
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feasible, equation is then written as

Θ̂t = ϕ(n)Θ̂n,t−1 +
√

1− ϕ(n)2U t(n) + (1− ϕ(n))E(Θt). (3.14)

Specifically, in analogy with (2.17),

nα(1− (ϕ0
n)2) = γ2

0 and nα(1− ϕ(n)2) = γ2. (3.15)

Note that

1− ϕ(n) = n−α
1

2
γ2(1 + op(1)) = Op(n

−α). (3.16)

Under the stationarity assumption, both Ut(n) and U t(n) have limits in law, which we denote

by Ut and U t. If one subtracts (3.13) from (3.14), and then multiplies by nα/2, (3.12) yields

nα/2(Θ̂n,t −Θn,t) = ϕnn
α/2(Θ̂n,t−1 −Θn,t−1) + nα/2(ϕn − ϕ0

n)Θn,t−1 + nα/2
√

1− ϕ2
nUn,t

− nα/2
√

1− (ϕ0
n)2Un,t − nα/2(ϕn − ϕ0

n)E(Θn,t)→
√
Vt−1Zt−1 + γU t − γ0Ut, (3.17)

whence

γU t +
√
Vt−1Zt−1 = γ0Ut +

√
VtZt, (3.18)

hence Ut is not even asymptotically observable. Under this setup, from (3.16),

nα/2(Θ̂n,t − ϕ(n)Θn,t−1)→ γU t. (3.19)

Consider the best linear forecast of Θ̂n,t using (only) Θ̂n,t−1 : Θ̆n,t|t−1 = ϕnΘ̂n,t−1 + (1 −
ϕn)E(Θ), so that from (3.16)

nα/2(Θ̂n,t − Θ̆n,t|t−1)→ γU t.

The final estimate is now Θ̂n,t(ωt) = Θ̂n,t − ωt(Θ̂n,t − Θ̆n,t|t−1), hence

nα/2(Θ̂n,t(ωt)−Θn,t) = nα/2(Θ̂n,t −Θn,t)− ωtnα/2(Θ̂n,t − Θ̆n,t|t−1) (3.20)

→
√
VtZt − ωtγU t = (1− ωt)

√
VtZt − ωt

[
−
√
Vt−1Zt−1 + γ0Ut

]
by (3.18). Hence, the asymptotic mean squared error (AMSE; conditional on the data; the

conditioning is done after taking the limit, which is the sequence consistent with stable
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convergence) is AMSE = (1− ωt)2Vt + ω2
t [Vt−1 + γ2

0U
2
t ] .

The stable convergence (3.12) remains valid even in this triangular array setup (where Θn,t

depends on n). For realized volatility, this is explicitly proved in Mykland and Zhang (2006,

p. 1951-1952). For our other examples, the validity in the triangular array setting follows

because all the cited papers use martingale central limit theorems which remain valid for

triangular arrays.7

Using equation (3.13), one can therefore do the same calculations as before, but on asymp-

totic quantities. The asymptotic mean squared error (conditional on the data) of the overall

estimate QVt(ωt) is minimized by ω∗t = Vt/[Vt +Vt−1 + γ2
0U

2
t ]. This is the same expression as

equation (3.4). The further development is the same as in the no-leverage case.

3.3 Realized Betas

Another application of our theory would be to the case of realized betas, see in particular

Barndorff-Nielsen and Shephard (2004a), Mykland and Zhang (2009, Section 4.2), and Aı̈t-

Sahalia, Kalnina, and Xiu (2020). To streamline the discussion we assume that there are

equidistant synchronous observations, no microstructure noise, and no jumps (hence no need

for truncation). Absent jumps, the methodologies of the two latter papers are similar; both

use non-overlapping blocks, the former fixed size blocks, the latter asymptotically increasing

size blocks. We here use a fixed block size M .8 Mykland and Zhang (2009) provides a small

sample interpretation under a contiguous probability distribution.

We are concerned with processes X
(1)
t,s , ..., X

(p)
t,s and Yt,s observed on each day t at equidistant

times 0 = tn,0 < tn,1 < ... < tn,n1 = T , and related through

dYt,s =

p∑
i=1

β
(k)
t,s dX

(k)
t,s + dZt,s, with 〈X(k), Z〉t,s = 0 for all t, s and k, (3.21)

where we let s be time s on day t. To relate to the notation of the current paper, the

7See, for example, Theorem IX.7.19 or Theorem IX.7.28 of Jacod and Shiryaev (2003), Theorem B.4
of Zhang (2001) or Theorem 2.28 of Mykland and Zhang (2012). See also the books by Jacod and Protter
(2012), and Aı̈t-Sahalia and Jacod (2014). A summary discussion of technical tools can be found in Mykland
and Zhang (2017, Section 7.2).

8The extension of the estimator to rolling blocks is straightforward, but would complicate the presentation
given the already complex nature of the current setup.
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integrated β
(k)
t,s is Θ

(k)
t =

∫ t
t−1

β
(k)
t,s . Blocks are defined by τn,i−1 < tn,j ≤ τn,i,

9 where the τn,i

correspond to every M th observation time tn,Mi. The estimator (β̂
(1)
t,n,τn,i−1

, ..., β̂
(p)
t,n,τn,i−1

) of

(β
(1)
t,τn,i−1

, ..., β
(p)
t,τn,i−1

) is the the regular least squares estimator (without intercept) based on

the observables (∆X
(1)
t,n,tn,j

, ...,∆X
(p)
t,n,tn,j

,∆Yt,n,tn,j
) inside the block from τn,i−1 to τn,i. The

overall estimate of the vector of Θ
(k)
n,t ’s is then

Θ̂
(k)
n,t =

∑
i

β̂
(k)
t,n,τn,i−1

M∆t. (3.22)

The asymptotic covariance matrix is given by Vt = MT
M−p−1

∫ T
0
〈Z,Z〉′s(〈X,X〉′s)−1dt, for s-

values on day t (so Z = Zt,·, and similarly for X), and where T is the notional length of the

time period from t− 1 to t, often one day. This is from Mykland and Zhang (2009, eq. (72),

p. 1426). It is consistent with Aı̈t-Sahalia, Kalnina, and Xiu (2020, Theorem 2, p. 91), with

correction for fixed M and for normalization by n1/2 rather than ∆t−1/2.

Depending on taste (and with the same outcome), the estimator of covariance is obtained

from regression considerations, or as approximations to the asymptotic values. Let RSSt,n,i

be the residual sum of squares in the (no-intercept) regression in block i on day t with sample

size n, i.e.,

RSSt,n,i =
∑

τn,i−1<tn,j≤τn,i

(∆̂Zt,n,tn,j
)2.

Similarly, let RVi be the realized volatility (sum of squares) matrix in block # i. Since

RSSt,n,i ≈ 〈̂Z,Z〉t,τn,i
− 〈̂Z,Z〉t,τn,i−1

and RVt,n,i ≈ 〈̂X,X〉t,τn,i
− 〈̂X,X〉t,τn,i−1

(or following

the cited papers),

V̂t,n =
MT

M − p− 1
M∆t

∑
i

RSSt,n,iRVt,n,i
−1.

Once again, recall that there is a different block i for each time period t. The remaining

coefficients follow from equations (3.10)-(3.11), where we recall that ϕ̂n,T and ĉn,T are OLS

estimators in the time series regressions: Θ̂n,t = cn + ϕnΘ̂n,t−1 + un,t, t = 1, . . . , T.

9On each day t. We have not marked the dependence of τn,i−1 and tn,j on day t, to reflect an idealized
situation where the times are the same on each day. In a more realistic situation, these quantities depend
also on day number; we have avoided this here in the interest of simplicity of notation. On the other hand,

β̂
(1)
t,n,τn,i−1

will differ depending on day t and sample size n, and is marked accordingly.
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3.4 Ill-Posed Estimation Problems

We have so far considered the relatively well-posed problem of estimating volatility from

high frequency data. The use of multi-day data, however, really comes even more into play

when trying to estimate less well-posed quantities. In particular, we consider:

the volatility of volatility: Θt = 〈σ, σ〉t − 〈σ, σ〉t−1

the (instantaneous) leverage effect: Θt = 〈p, σ〉t − 〈p, σ〉t−1. (3.23)

Estimators of the volatility of volatility have been proposed by Mykland, Shephard, and

Sheppard (2012), whereas instantaneous leverage effect estimators are covered by Wang and

Mykland (2014). Such estimators can account for leverage effects at multiple horizons, and

are closely related to news impact curves (Engle and Ng (1993), Chen and Ghysels (2011)).

Nonparametric estimation of the leverage effect is developed in Wang and Mykland (2014).10

For brevity, we give a summary account of how our theory extends to such situations. The

generalization is straightforward but the details would be notationally heavy. For simplicity,

we consider the no-jump case, which can be undone as in Aı̈t-Sahalia, Fan, Laeven, Wang,

and Yang (2017). Specifically, dWt = ρtdW1t +
√

1− ρ2
tdW2t, and the system is given by dpt

=µtdt + σtdWt and dσ2
t = νtdt + γtdW1t.

To define estimators for the parameters in (3.23), we need a block size Mn, determined

by the econometrician, held to satisfy n−1/2Mn → c, as n → ∞. Let τi = τn,t,i be the

iMnth observation time on day t. The number of blocks on the form (τi−1, τi] is given by

nM = bn/Mnc. For each block, define a local realized volatility as RVi =
∑

τi−1<tj≤τi(∆ptj)
2,

i = 1, . . . , nM . In the absence of microstructure noise, σ̂2
τn,i

= [Mn×∆t]−1RVi is a consistent

estimator of spot volatility (Foster and Nelson (1996), Comte and Renault (1998), Mykland

and Zhang (2008)).

Example 3 Estimation of Volatility of Volatility (No Microstructure Noise)

We follow Mykland, Shephard, and Sheppard (2012) (MSS), in particular their Section 6.11

10The concept of leverage effect is used to cover several concepts, cf the review in the Introduction to the
cited papers.

11An alternative estimator can be found in (Vetter 2015).
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Define blocked bipower variation and edge corrected realized volatility as, respectively,

BVM,n =
n

(nM − 1) (E(χ2
Mn

)1/2)2

nM∑
i=2

(RVi−1RVi)
1/2

ECRV (2)
n =

1

2
RV1 +

nM−1∑
i=2

RVi +
1

2
RVnM

where χ2
M is a χ2 random variable with M degrees of freedom. Define the intra-day based

estimator as Θ̂n,t = 〈̂σ, σ〉
(n)

= c−1 3
K−1

n1/2
(
ECRV (2)n −BVM,n

)
. Following Corollary 2 (Sec-

tion 6.2) in MSS, (3.12) is now valid with α = 1/4 and Vt=
27
16

∫ t
t−1

c−3
(
2σ2

s + c2〈σ, σ〉′s
)2
ds.

The discussion in MSS also extends to estimators of 〈σ, σ〉 based on multipower variation.

�

Example 4 Estimation of Leverage Effect (No Microstructure Noise) We fol-

low Wang and Mykland (2014) (WM), in particular their Sections 2.2-2.3.12 Define the intra-

day based estimator as θ̄t = 〈̂X, σ〉
(n)

= 2
∑Mn−2

i=0 (Xτn,i+1
−Xτn,i

)((σ̂2
τn,i+1

)1/2 − (σ̂2
τn,i

)1/2).

Following Theorem 1 (Section 2.3) in WM, (3.12) is now valid with α = 1/4 and Vt =
4
c

∫ t
t−1

σ4
t dt + c

∫ t
t−1

σ2
t (

44
3
f 2
t + 32

3
g2
t )dt where ft = γtρt and gt = γt(1− ρ2

t )
1/2. �

Example 5 Estimation In the Presence of Microstructure. We refer to the more

complex discussions in Sections 6.1.3-6.1.4 of MSS (Volatility of Volatility) and Section 4.1

of WM (Leverage Effect). With suitable definitions of Θt and Vt, (3.12) remains valid with

α = 1/8. �

As seen from our examples, the following is typically the case. When there is no microstruc-

ture, variances, covariances, regression coefficients, etc, can be estimated as rate α = 1/2,

whereas more ill-posed quantities (such as leverage effect and volatility of volatility) will at

best be estimable at rate α = 1/4. When there is microstructure noise, both of these rates

are halved, to α = 1/4 and α = 1/8, respectively.

Recall that α is the convergence rate in Conditions [ii] in Assumption 3.2 and [ii] in Assump-

tion 3.4. The closer α is to zero, the more ill-posed the problem, and hence the greater the

12WM’s F function is here chosen as F (x) = x1/2. Other choices of F provide estimators of skewness
(F (x) = x) and regression of σ2 on X (F (x) = log(x)). In both these cases, our theory of across-day
estimation remains valid.
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gains of our proposed procedure. To see this replace Assumption (2.18) by

n2β(1− (ϕ0
n)2) = γ2

0 and n2β(1− ϕ(n)2) = γ2, (3.24)

where we can think of β as measuring the persistence of the underlying system. Note that

so far we have identified the two rates to get a balanced asymptotic expression.

As documented in our simulations, there is gain for volatility estimation from across-day

inference, and so the choice β = 1/2 is meaningful for the most well-posed case when

α = 1/2. For the estimators with slower convergence, α < 1/2, and with the same choice

β = 1/2, the across-day information dominates the intraday information. Therefore, for ill-

posed estimators, our theory is at its most effective. This is consistent with the comment in

Wang and Mykland (2014, p. 205-207), to the effect that a day was thought to be a slightly

too short time period to estimate leverage effect.

4 Alternative Weighting Schemes

The topic of this paper was originally considered in earlier work by Andreou and Ghysels

(2002) who tried to exploit the continuous record asymptotic analysis of Foster and Nelson

(1996) for the purpose of improving realized volatility measures. At the time the paper

by Andreou and Ghysels (2002) was written the in-sample asymptotics was not taken into

account by the authors, as their paper was concurrent to that of Barndorff-Nielsen and Shep-

hard (while the early work of Jacod was discovered only much later). Therefore Andreou

and Ghysels (2002) failed to recognize that increased accuracy of in-sampling will diminish

the need to use past data. This does not occur in the context of Foster and Nelson (1996)

who study instantaneous or spot volatility. In the latter case persistence will remain relevant

to filter current spot volatility, which is the key difference between continuous record and

in-sample asymptotics. An early draft of Meddahi (2002) included a section which discussed

the same question and where it was recognized that optimal filter weights should depend on

the in-sample frequency and ultimately become zero asymptotically. There are many impor-

tant differences between the analysis in the current paper and the filtering approach pursued

by Andreou and Ghysels and Meddahi. The most important difference is that we derive con-

ditional filtering schemes, dependent on the path of the volatility process, whereas Andreou

and Ghysels and Meddahi only consider unconditional, that is time-invariant, filtering.
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In this section we walk step-by-step from the unconditional to the optimal model-free weight-

ing scheme we introduced in the previous section. We start by noting that equations (3.10)-

(3.11) suggest two feasible weighting schemes: (ω∗vt)
−1 = 2 + .5[n2αV ar(Θ̂t − Θ̂n,t|t−1)]/V̂n,t

+ [V̂n,t−1 − V̂n,t]/V̂n,t = 2 + .5[n2αV ar(Ut)]/V̂n,t + [V̂n,t−1 − V̂n,t]/V̂n,t, where we use the v

subscript to refer to the unconditional variance of U, and the subscript u relates to the actual

value of Ut, yielding: (ω∗ut)
−1 = 2 + .5[n2α(Θ̂t − Θ̂n,t|t−1)2]/V̂n,t + [V̂n,t−1 − V̂n,t]/V̂n,t = 2 +

.5[n2α(U t)
2]/V̂n,t+ [V̂n,t−1 − V̂n,t]/V̂n,t. When α = 1/2, in the case of quadratic variation, we

have:

(ω∗vt)
−1 = 2 +

nV ar(Θ̂n,t − Θ̂n,t|t−1)

2V̂n,t
+
V̂n,t−1 − V̂n,t

V̂n,t
(4.1)

(ω∗ut)
−1 = 2 +

n(Θ̂n,t − Θ̂n,t|t−1)2

2V̂n,t
+
V̂n,t−1 − V̂n,t

V̂n,t
(4.2)

where V̂n,t = n(π/2)2
∑n

j=4 |Xn,tjXn,tj−1
Xn,tj−2

Xn,tj−3
| in the case of BPV. The distinction

between (4.1) and (4.2) will be important when we turn to processes with leverage effect, as

will be discussed in Online Appendix Section 3.2.

These two weighting schemes will be compared with unconditional schemes at first and a

conditional scheme, while sub-optimal, provides a natural link between the unconditional

and conditional schemes (4.2) and (4.1). To discuss unconditional weighting schemes we

drop time subscripts to the weights ω∗t in equation (3.4) and consider the generic class of

estimators:

Θ̂n,t(ω) = Θ̂n,t − ω(Θ̂n,t − Θ̂n,t|t−1). (4.3)

Recall that
∫ t
t−1

θ(s)ds - Θt|t−1 =
√

1− (ϕ0
n)2Ut and that the relevant trade-off is captured

by the product nα(1− (ϕ0
n)2), which resulted in the local-to-unity asymptotics. The analysis

of Andreou and Ghysels (2002) did not recognize these trade-offs and it is perhaps useful

to start with their rule-of-thumb approach which consisted of setting ϕ0 = ϕ = 1, de facto

a unit root case, and therefore Θ̆n,t|t−1 = Θ̂n,t−1. Moreover, their approach is unconditional

and therefore overlooks the difference between Vt and Vt−1. The unit root case yields the

weighting scheme ωr−th = .5 (substituting ϕ0 = ϕ = 1 in equation (4.2) with Vt = Vt−1),

and the rule-of-thumb estimator:

Θ̂n,t(ω
r−th) = .5Θ̂n,t + .5Θ̂n,t−1. (4.4)
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This is the first of two unconditional weighting schemes. Unlike Andreou and Ghysels (2002),

Meddahi recognized the trade-off captured by the product nα(1 − (ϕ0
n)2), and constructed

a model-based weighting scheme, denoted by ωunc and which is characterized as ωunc =

[2 + 2λ]−1 with:

λ = nα[1− ϕ2
n]
V ar[Θt|t−2]

E(Vt)
' γ2

4

V ar[Θt|t−1]

E(Vt)
. (4.5)

It should be noted that Meddahi used the unconditional variance of the estimation error

of quadratic variation, that is using our notation E(Vt/2)/nα.13 Moreover, he assumed an

explicit data generating process to compute the weights, hence a model is needed to be

specified (and estimated) to compute the weights.14 To obtain a feasible scheme, we will use

unconditional sample means of Θt and Vt. In this respect we deviate from the model-based

approach of Meddahi, namely we do not use any explicit model to estimate the weighting

schemes. The above derivation suggests the second unconditional scheme:

(ωunc)−1 = 2 +
nV ar(Θt −Θt|t−1)

2E(Vt)
= 2 + γ2V ar[Ut]

2E(Vt)
,

which again does not depend on t, and where in practice the term (γ2V ar[QV ])/E(Q) will

be computed as the ratio of (1− ϕ2)V ar[QV ] and the asymptotic (unconditional) variance

E(Q/(nα)) of the estimation error for integrated volatility.

To appraise the differences between conditional and unconditional weighting schemes we also

compare:

(ωunc)−1 ' 2 + γ2V ar[Ut]

2E(Vt)
(4.6)

with our optimal estimator slightly rewritten as:

[ω∗t ]
−1 ' (2 + γ2V ar(Ut)

2Vt
) +HVt (4.7)

where HVt = (V̂n,t−1− V̂n,t)/V̂n,t which we referred to as a heteroskedasticity correction. An

approach intermediate between (4.7) and (4.6), that is unconditional up to heteroskedasticity

13It should be noted that Andersen, Bollerslev, and Meddahi (2005, footnote 9) provided a solution for a
model-free estimation.

14To clarify the difference between our model-free approach and Meddahi, it should be noted that the
weights in our analysis are not based on a specific model. Moreover, the prediction formula in our analysis
is nothing but a projection and does not involve any AR model.
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Table 1: Inverse weighting schemes

QV BPV

(ωunc)−1 2 + γ2 V ar[Ut]
2E(Vt)

2 +
nV ar[Θ̂n,t−Θ̂n,t|t−1]

νE(Vt)

(ωhct )−1 2 +HVt + γ2 V ar[Ut]
2E(Vt)

2 +
nV ar[Θ̂n,t−Θ̂n,t|t−1]

νE(Vt)
+ V̂n,t−1−V̂n,t

V̂n,t

(ω∗vt)
−1 2 +HVt + γ2 V ar[Ut]

2Vt
2 +

nV ar[Θ̂n,t−Θ̂n,t|t−1]

νV̂n,t
+ V̂n,t−1−V̂n,t

V̂n,t

(ω∗ut)
−1 2 +HVt + γ2 U

2
t

2Vt
2 +

n(Θ̂n,t−Θ̂n,t|t−1)2

νV̂n,t
+ V̂n,t−1−V̂n,t

V̂n,t

Notes: In addition to the above weighting schemes ωr−th = 1/2. Moreover, in the above U t = Θ̂n,t - Θ̂n,t−1.

correction yields:

(ωhct )−1 = 2 +
V̂n,t−1 − V̂n,t

V̂n,t
+ γ2V ar[Ut]

E(Vt)
= 2 +HVt + γ2V ar[Ut]

2E(Vt)
. (4.8)

The above weighting schemes provide a progression towards the optimal (conditional) weight-

ing scheme. Starting with the rule-of-thumb scheme ωr−th, we progress to ωunc where uncon-

ditional moments are used, followed by the heteroskedasticity correction embedded in ωhct .

To summarize, we have five possible weights, focusing only on QV and BPV appearing in

Table 1.

From the above analysis we can make several observations:

� The unconditional formula of Meddahi gives a weight to past realized volatility smaller

than the rule-of-thumb weight of (1/2).15

� This unconditional formula does not take into account the conditional heteroskedastic-

ity that is due to the (asymptotic) estimation error of realized volatility. For instance,

when V̂n,t > V̂n,t−1 that is a larger estimation error on current integrated volatility esti-

mation than on the past one, we may be led to choose a weight larger than (1/2) for past

realized volatility. Typically, taking the term HVt into account should do better in the

same way WLS are more accurate than OLS in case of conditional heteroskedasticity.

15Moreover, as noted before, the weight diminishes with n.
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� Besides the heteroskedasticity correction HVt we also observe that V ar[Ut]/E(Vt) is

replaced by V ar[Ut]/Vt in optimal weighting schemes.

Finally, in the same spirit as the rule-of-thumb approach we also consider a common industry

practice, known as RiskMetrics, which is characterized as:

Θ̂n,t(ω
rm) = ωrmΘ̂n,t + (1− ωrm)Θ̂n,t−1 (4.9)

where |ωrm| < 1. Note that the Andreou and Ghysels rule-of-thumb estimator is a special

case with ωrm = .5. We will consider ωrm = .9 in our analysis, although we also experimented

with slightly higher and low values in the [.8, .95] range.

5 A simulation study

The purpose of the simulation is two-fold. First, we want to assess the efficiency gains of

the optimal weighting schemes. This will allow us to appraise how much can be gained from

filtering. Second, we would like to compare the feasible optimal weighting schemes ω∗t with

the rule-of-thumb scheme ωr−th, the unconditional scheme ωunc and the heteroskedasticity

correction embedded in ωhct . This will allow us to appraise the difference between conditional

and unconditional filtering as well as the relative contribution of the natural progression

towards the optimal (conditional) starting with the rule-of-thumb scheme ωr−th, to ωunc,

followed by the heteroskedasticity correction embedded in ωhct . Finally, we also consider the

RiskMetrics approach featuring ωrm discussed in equation (4.9). While the simulations used

empirically plausible data generating processes, we also conducted a small empirical study

that yielded similar results. An extensive empirical study is beyond the scope of the present

paper and left for future research.

5.1 Simulation design

We consider 1,000 replications of samples each consisting of 500 and 1,000 ’days’ with in-

sample (intra-daily sampling) sizes n = 288 and 144 (following a first 500 days burn-in

pre-sample). These correspond to the use of five-minute and ten-minute returns in a 24-hour

financial market. We treat the one-minute quantities as the “truth”, hence they provide us
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with a benchmark for comparison. Every simulation has a 1000 days burn-in pre-sample

period to eliminate starting value problems.

The simulations pertain to respectively (a) volatility and (b) betas. A subsection is devoted

to each separately.

5.1.1 Volatility

The first class of models we simulate is based on Andersen, Bollerslev, and Meddahi (2005)

and consists of:

d logSt = µdt+ σt

[
ρ1dW1t − ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

]
. (5.1)

When µ = ρ1 = ρ2 = 0, we obtain:

d logSt = σtdW3t. (5.2)

The dynamics for the instantaneous volatility is one of the following (with the specific pa-

rameter values taken from Andersen, Bollerslev, and Meddahi (2005)):

dσ2
t = .035(.636− σ2

t )dt+ .144σ2
t dW1t, (5.3)

which is a GARCH(1,1) diffusion, or a two-factor affine model:

dσ2
1t = .5708(.3257− σ2

1t)dt+ .2286σ2
1tdW1t, (5.4)

dσ2
2t = .0757(.1786− σ2

2t)dt+ .1096σ2
2tdW2t,

with σ2
t = σ2

1t + σ2
2t. All of the above models satisfy the regularity conditions of the Jacod

(1994) and Barndorff-Nielsen and Shephard (2002b) asymptotics. We also considered cases

with nonzero µ, ρ1, and/or ρ2. Hence, these are diffusions with drift and leverage. We do

not report those results as they were similar to the no-drift/leverage results.

We also include a third class of processes involving jump diffusions based on Huang and
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Tauchen (2006). They analyze a stochastic volatility jump diffusion model, labeled as SV1FJ:

d logSt = µdt+ exp (β0 + β1σt)(ρdW1t + (1− ρ)dW2t + dLt, (5.5)

dσt = αvdt+ dW2t,

where Lt is a Compound Poisson Process with constant jump intensity λ and random jump

size distributed as N(0, σ2
jmp). The model SV1FJ has one stochastic volatility factor and a

jump, hence the acronym. The parameter values are taken from Huang and Tauchen (2006,

Table 1) and are based on prior empirical results, most notably Chernov, Gallant, Ghysels,

and Tauchen (2002) and Andersen, Benzoni, and Lund (2002). In particular, we select the

empirically most plausible values from Huang and Tauchen (2006, Table 1), and set αv =

−0.1 and λ = 0.058 and σ2
jmp = 1.50. The simulation of the jump process is exactly as it is

described in Huang and Tauchen (2006).16

For the continuous-path process simulations we consider weights for QV, with (ω∗vt)
−1 appear-

ing in equation (4.1), (ω∗ut)
−1 appearing in equation (4.2), and (ωhct )−1 from equation (4.8),

and (ωunc)−1 from equation (4.6). For the jump diffusion we consider the BPV weighting

schemes as specified in Table 1.

Finally, for the purpose of constructing the weights, AR(1) prediction schemes are used.

Hence, all our simulations consider looking at the previous day’s QV only. To assess esti-

mation uncertainty we also consider cases where (ω∗vt)
−1, (ωhct )−1 and (ωunc)−1 are based on

sample moments which are perturbed by extra noise.

5.1.2 Betas

Our final simulation design pertains to CAPM betas. We start from equation (3.21) and

assume that the single factor is the market return process which we assume to obey the law

of motion of the process appearing in equation (5.2) with instantaneous volatility dynamics

appearing in (5.4).

To complete the model we need to specify the beta dynamics. Here we follow Aı̈t-Sahalia,

Kalnina, and Xiu (2020) and use an Ornstein-Uhlenbeck process for the time variation of

the market betas, namely:

dβt = κ(µ− βt)dt+ σbdWt, (5.6)

16We are grateful to Xin Huang for sharing the simulation code with us.
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where we take the parameter values similar to those in Aı̈t-Sahalia, Kalnina, and Xiu (2020,

Table 1). In particular, we take for DGP1 κ = 2, µ = 1.0, with σb = 3, for DGP2 κ = 2,

µ = 0.10 and σb = 0.03, for DGP3 κ = 1, µ = 1.0 and σb = 0.03. The DGPs are different

with respect to (a) persistence, i.e. κ, (b) unconditional betas, i.e. µ and (c) noise of the

innovations represented by σb. The CAPM equation has no intercept, meaning it pertains

to excess returns, and the idiosyncratic error variance equals one. All returns are sampled

at 1 and 5 minute intervals with sample size T = 500.17 The weighting schemes are those

appearing in Table 2.

5.2 Simulation results

Table 2 reports the first set of simulation results. The table consists of three panels, corre-

sponding to respectively the GARCH diffusion, two-factor SV diffusion and Jump diffusion.

For each we report the mean of the gains in MSE relative to a standard QV or BPV estimator

using the same frequency data. The results in the table pertain to 5 and 10 minute sam-

pling. We focus our analysis in particular on the 10 minute sampling as this is arguably the

most relevant one regarding across-sample efficiency gains. We consider three time-varying

weighting schemes, namely those driven by ω∗ut, ω
∗
vt and ωhct , and the fixed weighting schemes,

namely ωunc and ωrm. We also report the mean and variance of the weights obtained from

the simulations. We report the results for T = 500 as they are representative for the two

sample sizes (T = 500 and 1000) we considered.

We observe that overall the weighting schemes based on ω∗ut and ω∗vt appear to be consistently

among the best weighting schemes in terms of MSE improvement across all three DGPs

considered and the difference between schemes ω∗ut and ω∗vt is insignificant. It is worth

recalling that ω∗vt is more closely related to what would be the Kalman filter weights.

The results for the GARCH diffusion indicate that the optimal weighting scheme is the

best, in terms of average MSE improvements. The two-factor diffusion and jump diffusion

cases yield less impressive MSE gains for the optimal weighting schemes, and the latter

are particularly challenged by the RiskMetrics approach which in both cases does either

marginally better (two-factor DGP) or substantially better (jump-diffusion). The other

weighting schemes do not perform very well in comparison to the optimal and the RiskMetrics

one.

17We also considered T = 1000 but are not reported due to the similarity to those reported here.
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Finally, we turn to Table 3 where we report the results pertaining to realized betas. The

entries are the ratios of MSE of the various estimators vis-à-vis the MSE of a standard

realized beta and the mean of the weights. The gains in terms of MSE improvements are

much more substantial this time compared to the volatility examples - particularly the two-

factor SV and jump diffusion cases. Starting with the 5 minute sampling we see gains of

about 25 % for the first DGP and 20 % when we look at the high volatility of beta innovations

in the third GDP. Not surprisingly, we note from the second DGP that the level of beta has

very little impact. Among the weighting schemes we note that ω∗vt appears to be consistently

the best, with only small differences between ω∗ut, ω
hc
t , and ωunc. It is interesting to note that

even at the 1 minute sampling scheme we still see gains that are substantial. The mean of

the weights are as high as 20%, as reported in Panel B of the table, for the 5 minute sampling

scheme.

6 Conclusions

We revisited the widely used in-sample asymptotic analysis extensively used in the realized

volatility literature and showed that there are gains to be made in estimating current realized

volatility from considering realizations in prior periods. The main focus on the paper was

establishing the theory and showing its potential importance. There are still many implica-

tions of our results for hypothesis testing which were not covered in our paper. In particular,

discriminating between jumps-diffusions and diffusions, i.e. testing for the presence of jumps

is an important example. Since such tests rely on various data-driven high frequency statis-

tics, including higher order moment-based ones, there is scope for improving their sampling

properties with our approach. We leave this topic for future research.
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Appendix

A A Comparison of Two Estimators

The unbiased estimator defined in equation (2.20) can be rewritten as,

σ̂
[4]
n,t =

m

n

m/n∑
t=1

σ̂4
n,t,[i]

1 + 2/m
=

n

m+ 2

n/m∑
i=1

[

j=mi∑
j=m(i−1)+1

X2
t,j ]

2. (A.1)

The above estimator can be compared with the naive estimator appearing in (2.21). To do so we

need to derive the conditional variance of σ̂
[4]
n,t. Note that we can rewrite the estimator (2.20) as:

σ̂
[4]
n,t =

1

(m+ 2)n

∑
i

σ4
n,t,[i][

∑
j

(
Xt,j

σn,t,[i]/
√
n

)2]2 =
1

(m+ 2)n

∑
i

σ4
n,t,[i][χ

2
i (m)]2.

Since E
[
[χ2
i (m)]p/2

]
= 2p/2Γ((p+m)/2)/Γ(m/2), therefore E[χ2

i (m)]4 = 24 Γ(4 +m/2)/Γ(m/2) =

24 (3+m/2) (2+m/2) (1+m/2) m/2. Consequently, E[χ2
i (m)]4 = (m+6)(m+4)(m+2)m. Along

similar lines, one has E[χ2
i (m)]2 = m(m+ 2). Therefore, V ar[χ2

i (m)2] = (m+ 6)(m+ 4)(m+ 2)m

- m2(m+ 2)2 = 8m(m+ 2)(m+ 3). This yields:

V arσ[σ̂
[4]
n,t] =

1

n2(m+ 2)2

∑
i

σ8
n,t,[i]8m(m+ 2)(m+ 3) =

8m(m+ 3)

n2(m+ 2)

∑
i

σ8
n,t,[i].

We now turn our attention to the naive estimator written as in equation (2.21):

σ̃
[4]
n,t =

1

3n

∑
i

σ4
n,t,[i]

∑
j

(
Xt,j

σn,t,[i]
)4 =

1

3n

∑
i

σ4
n,t,[i]

∑
j

(χ2(1))2.

Therefore, V ar(σ̃
[4]
n,t) = 1

9n2

∑
i σ

8
n,t,[i]V ar((χ

2(1))2)×m = 32m
3n2

∑
i σ

8
n,t,[i]. From these results we can

deduce that there will be efficiency improvements provided that (m+ 3)/(m+ 2) < 4/3, or 3m+ 9

< 4m+ 8, that is m > 1.

To conclude, we compute the unconditional variance of σ̂4
n,t. First, note that

σ̂4
n,t =

1

n(m+ 2)

m/n∑
i=1

σ4
n,t,[i]ε

2
i (A.2)
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with ε2
i ∼ χ2(m). Therefore the unconditional variance of σ̂4

n,t can be written as:

V ar[σ̂4
n,t] =

n2

n2(n+ 2/n)2

m/n∑
i=1

V ar[σ4
n,t,[i]](E[ε2

i ])
2 + 2(V ar[ε2

i ])E[σ8
n,t,[i]]. (A.3)

Given the definition of ε2
i , we have that Eε2

i = 1 + 2/m, and V ar[ε2
i ] = 8 m (m+ 2)(m+ 3)/m4.

Therefore,

V ar[σ̂4
n,t] =

m2

n2

m/n∑
i=1

V ar[σ4
n,t,[i]] + 2

8m(m+ 3)

n2(m+ 2)

m/n∑
i=1

E[σ8
n,t,[i]]

= V ar[σ4
n,t] + 2

8m(m+ 3)

n2(m+ 2)

m/n∑
i=1

E[σ8
n,t,[i]] (A.4)

and hence, ψ = ψ0/

[
1 + 16

n2
m(m+3)
m+2

∑m/n
i=1 E[σ8

n,t,[i]
]

V ar(σ4)

]
.

B Supplementary Material

Eric Ghysels, Per Mykland and Eric Renault (2021), In-sample Asymptotics and Across-

sample Efficiency Gains for High Frequency Data Statistics, Econometric Theory Supple-

mentary Material. To view, please visit: https://doi.org/XXXXXX
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Table 2: MSE improvements and weights for GARCH, Two Factor and Jump Diffusion
Models

The design is detailed in section 5. The data generating processes appear in equations (5.1) through (5.4). More specifically,
they are respectively referred to as a GARCH diffusion, two-factor SV diffusion and Jump diffusion. For the former two, the
entries pertain to QV, with (ω∗ut)

−1 appearing in equation (4.2), (ω∗vt)
−1 appearing in equation (4.1) and (ωhc

t )−1 taken from
equation (4.8), whereas (ωunc)−1 is taken from equation (4.6). For the data generating process involving jumps the entries
pertain to BPV and the weighting schemes appear in Table 1. The entries in the top panels are the ratios of MSE of the
various estimators vis-à-vis the MSE of a standard RV/BPV estimator using the same frequency data. The lower panels report
statistics of the weighting schemes (inverse to be more precise).

GARCH Diffusion

ω∗ut ω∗vt ωhc ωunc ωrm ωr−th

Mean
MSE Impr.

5 Min 0.87 0.85 0.95 0.95 0.86 0.87
10 Min 0.82 0.82 0.93 0.93 0.83 0.83

ω

5 Min
Mean 0.04 0.05 0.17 0.01 - -
Ave. Var 0.02 0.01 0.01 0.00 - -
10 Min
Mean 0.07 0.07 0.23 0.01 - -
Ave. Var 0.03 0.01 0.03 0.00 - -

Two-factor SV model
Mean
MSE Impr.

5 Min 0.91 0.91 0.96 0.96 0.88 1.13
10 Min 0.87 0.87 0.94 0.94 0.85 1.19

ω

5 Min
Mean 0.03 0.02 0.14 0.11 - -
Ave. Var 0.01 0.00 0.01 0.00 - -
10 Min
Mean 0.06 0.06 0.19 0.18 - -
Ave. Var 0.01 0.00 0.03 0.02 - -

Jump Diffusion
Mean
MSE Impr.

5 Min 0.99 0.99 0.99 0.99 0.89 0.94
10 Min 0.98 0.98 0.99 0.99 0.87 0.89

ω

5 Min
Mean 0.01 0.01 0.04 0.03 - -
Ave. Var 0.00 0.00 0.00 0.01 - -
10 Min
Mean 0.01 0.01 0.08 0.07 - -
Ave. Var 0.00 0.00 0.02 0.01 - -
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Table 3: MSE improvements and weights for Realized Betas

The design detailed in section 5 pertains to CAPM betas as in equation (3.21) with the market return process
according to equation (5.2) with instantaneous volatility dynamics appearing in (5.4). The betas follow an
Ornstein-Uhlenbeck process as in equation (5.6). We consider three DGPs. In particular, we take for DGP1
κ = 2, µ = 1.0, with σb = 3, for DGP2 κ = 2, µ = 0.10 and σb = 0.03, for DGP3 κ = 1, µ = 1.0 and σb =
0.03. The weighting schemes are those appearing in Table 2. All entries pertain to 1 and 5 minute sampling
schemes with sample size T = 500. The entries are the ratios of MSE of the various estimator vis-à-vis the
MSE of a standard realized beta. In Panel B we report the mean of the weights.

ω∗
ut ω∗

vt ωhc ωunc ωrm

Panel A: MSE improvements

DGPs Sampling

1 1 min 0.82 0.75 0.80 0.80 0.83

5 min 0.74 0.71 0.74 0.75 0.82

2 1 min 0.82 0.75 0.80 0.79 0.80

5 min 0.77 0.71 0.75 0.76 0.81

3 1 min 0.81 0.75 0.80 0.80 0.83

5 min 0.80 0.72 0.75 0.75 0.82

Panel B: Mean weighting schemes

1 1 min 0.16 0.11 0.12 0.13 -

5 min 0.21 0.13 0.15 0.15 -

2 1 min 0.17 0.11 0.11 0.12 -

5 min 0.20 0.13 0.14 0.15 -

3 1 min 0.18 0.10 0.11 0.11 -

5 min 0.20 0.13 0.14 0.15 -
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