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Abstract

In his seminal paper on arbitrage and competitive equilibrium

in unbounded exchange economies, Werner (Econometrica, 1987)

proved the existence of a competitive equilibrium, under a price no-

arbitrage condition, without assuming either local or global nonsa-

tiation. Werner's existence result contrasts sharply with classical
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existence results for bounded exchange economies which require, at

minimum, global nonsatiation at rational allocations. Why do un-

bounded exchange economies admit existence without local or global

nonsatiation? This question is the focus of our paper. We make two

main contributions to the theory of arbitrage and competitive equi-

librium. First, we show that, in general, in unbounded exchange

economies (for example, asset exchange economies allowing short

sales), even if some agents' preferences are satiated, the absence of

arbitrage is su�cient for the existence of competitive equilibria, as

long as each agent who is satiated has a nonempty set of useful net

trades - that is, as long as agents' preferences satisfy weak nonsa-

tiation. Second, we provide a new approach to proving existence in

unbounded exchange economies. The key step in our new approach

is to transform the original economy to an economy satisfying global

nonsatiation such that all equilibria of the transformed economy are

equilibria of the original economy. What our approach makes clear

is that it is precisely the condition of weak nonsatiation - a condition

considerably weaker than local or global nonsatiation - that makes

possible this transformation. Moreover, as we show via examples,

without weak nonsatiation, existence fails.

Keywords: Arbitrage, Asset Market Equilibrium, Nonsatiation,

Recession Cones.

JEL Classi�cation Numbers: C 62, D 50.
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1 Introduction

Since the pioneering contributions of Grandmont ((1970), (1972), (1977)),

Green (1973), and Hart (1974), the relationship between arbitrage and equi-

librium in asset exchange economies allowing short sales has been the sub-

ject of much investigation1. When unlimited short sales are allowed, agents'

choice sets are unbounded from below. As a consequence, asset prices at

which agents can exhaust all gains from trade via mutually compatible net

trades bounded in size may fail to exist. By assuming that markets admit

\no arbitrage", the economy can be bounded endogenously - but this is not

enough for existence. In addition to no-arbitrage conditions, two other con-

ditions are frequently required: (i) uniformity of arbitrage opportunities,2

and (ii) nonsatiation. Werner, in his seminal 1987 paper on arbitrage and

competitive equilibrium, assumes uniformity of arbitrage opportunities and

establishes the existence of a competitive equilibrium using a no-arbitrage

condition on prices. An especially intriguing aspect of Werner's existence

result is that it does not require local or global nonsatiation (see Werner

(1987), Theorems 1).3 This contrasts sharply with classical existence re-

sults for bounded exchange economies which require, at minimum, that

agents' preferences be globally nonsatiated at rational allocations (e.g., see

Debreu (1959), Gale and Mas-Colell (1975), and Bergstrom (1976)).4 Why

do unbounded exchange economies admit existence without local or global

nonsatiation? This question is the focus of our paper.

Our starting point is Werner's notion of useful net trades. Stated infor-

mally, a useful net trade is a net trade that, for some endowments, represents

a potential arbitrage.5 Our main contribution is to show that, in general, in

unbounded exchange economies (for example, asset exchange economies al-

1See also, for example, Milne (1976, 1980), Hammond (1983), Page (1987), Nielsen
(1989), Page and Wooders (1996), Kim (1998), Dana, Le Van, Magnien (1999), Page,
Wooders, and Monteiro (2000), and Allouch (2002).

2A vector of net trades y is said to be an arbitrage opportunity for agent i at x if
starting at any x

0 weakly preferred to x; x
0+�y is also weakly preferred to x for all � � 0:

If for each agent i an arbitrage opportunity y at x is also an arbitrage opportunity at
any other x

00, then uniformity holds (i.e., there is uniformity of arbitrage opportunities).
3Werner proves two existence results. In Theorem 1, each agent's choice set (or

consumption set) is a closed, convex (not necessarily bounded) subset of Rl. In Theorem
2, each agent's choice set is a closed, convex, bounded-from-below subset of Rl

:

4A rational allocation is an allocation such that each agent weakly prefers his piece
of the allocation to his endowment.

5In order to formally de�ne the notion of useful net trades, we must �rst de�ne the
notion of useless net trades. A vector of net trades y is said to be useless to agent i at
x if agent i starting at x is indi�erent to trading in the y or �y directions on any scale.
Thus, a vector of net trades y is useless to agent i at x if the agent is indi�erent along
the line x+�y, � 2 (�1;+1): A vector of net trades y is said to be useful to agent i at
x if y is an arbitrage opportunity for agent i at x and if y is not useless to agent i at x.
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lowing short sales), even if some agents' preferences are satiated, the absence

of market arbitrage is su�cient for the existence of competitive equilibria,

as long as each agent who is satiated has a nonempty set of useful net trades
- that is, as long as agents' preferences satisfy weak nonsatiation.

Our second contribution is to provide a new approach to proving exis-

tence in unbounded exchange economies. In addition to being a technical

innovation, our new approach makes clear the critical role played by un-

boundedness and weak nonsatiation in establishing existence in unbounded

exchange economies where neither local nor global nonsatiation is satis-

�ed. The key step in our new approach is a transformation of the original

economy to a new economy satisfying global nonsatiation and having the

property that all equilibria of the transformed economy are equilibria of the

original economy. Existence for the transformed economy is then deduced

using classical methods. It is precisely the condition of weak nonsatiation

- a condition considerably weaker than local or global nonsatiation - that

makes possible the transformation of the original economy to an equivalent

economy satisfying global nonsatiation - even if the original economy fails

to satisfy either local or global nonsatiation. Moreover, as we show via

examples, without weak nonsatiation, existence fails.

In their classic paper on abstract exchange economies, Gale and Mas-

Colell (1975) establish existence by transforming an exchange economy sat-

isfying global nonsatiation to an exchange economy satisfying local nonsatia-

tion. However, if global nonsatiation fails, then the Gale/Mas-Colell trans-

formation cannot be applied. Here, we establish existence by transforming

an exchange economy satisfying weak nonsatiation (in which global non-

satiation may fail) to an exchange economy satisfying global nonsatiation.

Thus, while our transformation is similar in motivation to the Gale/Mas-

Colell transformation, it goes beyond the Gale/Mas-Colell transformation

by addressing the problem of global satiation.

As a prerequisite to proving existence in an exchange economy satisfying

weak nonsatiation only, we must extend Werner's price no-arbitrage con-

dition to allow for weak nonsatiation - and in particular, to allow for the

possibility that some agents have empty sets of useful net trades at some

rational allocations.6 A third contribution of our paper is to show that this

extended price no-arbitrage condition is equivalent to Hart's (1974) weak

no-market-arbitrage condition.

In addition to extendingWerner's price no-arbitrage condition and show-

ing its equivalence to Hart's condition, we also extend Werner's model of

an unbounded exchange economy in two ways. First, we weaken Werner's

6Werner's price no-arbitrage condition requires that each agent have a nonempty set
of useful net trades. However, under weak nonsatiation, an agent is allowed to have
an empty set of useful net trades at some rational allocations - provided the agent's
preferences are globally nonsatiated at such rational allocations.
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uniformity of arbitrage condition by assuming only uniformity of useless

net trades (see Werner (1987), Assumption A3). We refer to our uniformity

condition as weak uniformity.7 Second, in our model we require only that

agents' utility functions be upper semicontinuous, rather than continuous

as in Werner (1987).

We shall proceed as follows: In Section 2, we present the basic ingre-

dients of our model, including the notions of arbitrage, useful and useless

net trades, weak uniformity, and weak nonsatiation. In Section 3, we dis-

cuss the weak no-market-arbitrage condition of Hart (1974) and the price

no-arbitrage condition of Werner (1987), and we extend Werner's price no-

arbitrage condition to allow for weak nonsatiation. We then present our

�rst Theorem which states that the extended price no-arbitrage condition

is equivalent to Hart's weak no-market-arbitrage condition. In Section 4,

we present our second Theorem which states that in an unbounded ex-

change economy (for example, in an asset exchange economy allowing short

sales), if weak uniformity and weak nonsatiation hold, then the extended

price no-arbitrage condition is su�cient to guarantee the existence of a

quasi-equilibrium - and therefore is su�cient to guarantee the existence of

a competitive equilibrium under the usual relative interiority conditions on

endowments. In Section 5, we present two examples which show that our

weak nonsatiation assumption is the weakest possible - without weak non-

satiation, existence fails. Finally, in Section 6, the Appendix, we present

the proofs of Theorems 1 and 2. We preface our proof of Theorem 1 with

a detailed discussion of the geometry of Hart's weak no-market-arbitrage

condition. In the proof of Theorem 2, we present our new approach.

7Thus, weak uniformity holds if for each agent i; an arbitrage opportunity y at x0 that
is useless at x0, for x0 weakly preferred to the agent's endowment, is also useless at any

other x
00 weakly preferred to the agent's endowment.
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2 The Model

We consider an economy E = (Xi; ui; ei)
m
i=1 with m agents and l goods.

Agent i has consumption set Xi �Rl, utility function ui(�); and endowment

ei. Agent i
0s preferred set at xi 2 Xi is

Pi(xi) = fx 2 Xi j ui(x) > ui(xi)g;
while the weakly preferred set at xi isbPi(xi) = fx 2 Xi j ui(x) � ui(xi)g:
The set of individually rational allocations is given by

A = f(xi) 2
mY
i=1

Xi j
mX
i=1

xi =

mX
i=1

ei and xi 2 bPi(ei);8ig:

We shall denote by Ai the projection of A onto Xi:

De�nition 1 (a) A rational allocation x� 2 A together with a nonzero

vector of prices p� 2Rl is an equilibrium for the economy E
(i) if for each agent i and x 2 Xi, ui(x) > ui(x

�

i ) implies p� � x > p� � ei;
and

(ii) if for each agent i; p� � x�i = p� � ei:
(b) A rational allocation x� 2 A and a nonzero price vector p� 2Rl is a

quasi-equilibrium

(i) if for each agent i and x 2 Xi, ui(x) > ui(x
�

i ) implies p� � x � p� � ei;
and

(ii) if for each agent i; p� � x�i = p� � ei:
Given (x�; p�) a quasi-equilibrium, it is well-known that if for each agent

i; (a) p� � x < p� � ei for some x 2 Xi and (b) Pi(x
�

i ) is relatively open in Xi;

then (x�; p�) is an equilibrium. Conditions (a) and (b) will be satis�ed if,

for example, for each agent i; ei 2 intXi; and ui is continuous on Xi: Using

irreducibility assumptions, one can also show that a quasi-equilibrium is an

equilibrium.

We now introduce our �rst two assumptions: for agents i = 1; 2; : : : ;m;

[A.1] Xi is closed and convex with ei 2 Xi,

[A.2] ui is upper semicontinuous and quasi-concave.

Under these two assumptions, the weak preferred set bPi(xi) is convex

and closed for xi 2 Xi.
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2.1 Arbitrage, Uniformity, and Nonsatiation

2.1.1 Arbitrage

We de�ne the ith agent's arbitrage cone at xi 2 Xi as the closed convex

cone containing the origin given by

O+ bPi(xi) = fyi 2 Rl j 8x0i 2 bPi(xi) and � � 0; x0i + �yi 2 bPi(xi)g:

Thus, if yi 2 O+ bPi(xi), then for all � � 0 and all x0i 2 bPi(xi), x
0

i + �yi 2 Xi

and ui(x
0

i + �yi) � ui(xi). The agent's arbitrage cone at xi, then, is the

recession cone corresponding to the weakly preferred set bPi(xi) (see Rock-

afellar (1970), Section 8).8 If the agent's utility function, ui(�); is concave,
then for any xi 2 Xi and yi 2 O+ bPi(xi); ui(xi + �yi) is nondecreasing in

� � 0: Thus, starting at xi; trading in the yi direction on any scale is utility

nondecreasing.

2.1.2 Uniformity

A set closely related to the ith agent's arbitrage cone is the lineality space,

Li(xi), of bPi(xi) given by

Li(xi) = fyi 2 Rl j 8x0i 2 bPi(xi) and 8� 2 R; x0i + �yi 2 bPi(xi)g:

The set Li(xi) consists of the zero vector and all the nonzero vectors yi such

that for each x0i weakly preferred to xi (i.e., x
0

i 2 bPi(xi)), any vector zi on

the line through x0i in the direction yi; zi = x0i+�yi; is also weakly preferred

to xi (i.e., zi = x0i+ �yi 2 bPi(xi)): The set Li(xi) is a closed subspace of Rl,

and is the largest subspace contained in the arbitrage cone O+ bPi(xi) (see

Rockafellar (1970)).

If for all agents, the lineality space Li(xi) is the same for all xi 2 bPi(ei);

then we say that the economy satis�es weak uniformity. We formalize this

notion of uniformity in the following assumption:

[A:3][Weak Uniformity] for all agents i

Li(xi) = Li(ei) for all xi 2 bPi(ei):

Under weak uniformity, we have for all xi 2 bPi(ei) and all yi 2 Li(ei);

ui(xi + yi) � ui(xi + yi � yi) � ui(xi + yi):

8Equivalently, yi 2 O
+
bPi(xi) if and only if yi is a cluster point of some sequence

f�k
x
k

i
gk where the sequence of positive numbers f�kgk is such that �

k # 0, and where

for all k, xk

i
2 bPi(xi); (see Rockafellar (1970), Theorem 8.2).

7



Thus, for all xi 2 bPi(ei) and all yi 2 Li(ei);

ui(xi + yi) = ui(xi):

Following the terminology of Werner (1987), we refer to arbitrage opportu-

nities yi 2 O+ bPi(xi) such that

ui(xi + �yi) = ui(xi) for all � 2 (�1;1)

as useless at xi: Thus, under weak uniformity, the ith agent's lineality space

at his endowment, Li(ei); is equal to the set of all net trades that are useless.

Moreover, under weak uniformity the set of useful net trades at xi is given
by

O+ bPi(xi)nLi(xi) = O+ bPi(xi)nLi(ei):

Werner (1987) makes a uniformity assumption stronger than our as-

sumption of uniformity of useless net trades (i.e., stronger than our as-

sumption of weak uniformity, [A:3]). In particular, Werner assumes that all
arbitrage opportunities are uniform. Stated formally,

[Uniformity] for all agents i

O+ bPi(xi) = O+ bPi(ei) for all xi 2 bPi(ei):

If agents have concave utility functions, then Werner's uniformity assump-

tion, and therefore weak uniformity, is satis�ed automatically.

For notational simplicity, we will denote each agent's arbitrage cone and

lineality space at endowments in a special way. In particular, we will let

Ri := O+ bPi(ei); and Li := L(ei):

2.1.3 Nonsatiation

We begin by recalling the classical notions of global and local nonsatiation:

[Global Nonsatiation] for all agents i;

Pi(xi) 6= ; for all xi 2 Ai;

[Local Nonsatiation] for all agents i;

Pi(xi) 6= ; and clPi(xi) = bPi(xi) for all xi 2 Ai:

Here, cl denotes closure. Werner assumes uniformity and then, rather than

assume global or local nonsatiation, assumes that

[Werner Nonsatiation] for all agents i

RinLi 6= ?:

8



This assumption is weaker than the classical assumptions. We will weaken

Werner's nonsatiation assumption as follows:

[A:4][Weak Nonsatiation] for all agents i

8xi 2 Ai; if Pi(xi) = ;; then O+ bPi(xi) n Li(xi) 6= ;:
Note that weak nonsatiation holds if global nonsatiation, local nonsatiation,

or Werner nonsatiation holds. Also, note that under weak nonsatiation if

xi 2 Ai is a satiation point for agent i, then, as in Werner, there is a useful

net trade vector yi such that ui(xi+�yi) = ui(xi) for all � � 0: Thus, if there

are satiation points, then the set of satiation points must be unbounded.

3 The No-Arbitrage Conditions of Hart and

Werner

Hart's (1974) no-arbitrage condition is a condition on net trades. In par-

ticular, Hart's condition requires that all mutually compatible arbitrage

opportunities be useless.9 We shall refer to Hart's condition as the weak
no-market-arbitrage condition (WNMA). We have the following de�nition:

De�nition 2 The economy E satis�es the WNMA condition ifPm

i=1 yi = 0 and yi 2 Ri for all i, then

yi 2 Li for all i:

Werner's (1987) no-arbitrage condition is a condition on prices. In par-

ticular, Werner's condition requires that there be a nonempty set of prices

such that each price in this set assigns a strictly positive value to any vector

of useful net trades belonging to any agent.10 We shall refer to Werner's

condition as the price no-arbitrage condition (PNA). We have the following

de�nition:

9Hart's condition is stated within the context of an asset exchange economy model
where uncertainty concerning asset returns is speci�ed via a joint probability distribution

function. Page (1987) shows that in an asset exchange economy, if there are no perfectly
correlated assets, then Hart's condition and Page's (1987) no-unbounded-arbitrage con-
dition are equivalent.

10Translating Werner's condition to an asset exchange economy, it is easy to show
that if there are no perfectly correlated assets and if agents are su�ciently risk averse,
then Werner's condition is equivalent to Hammond's overlapping expectation condition.
Page (1987) shows that in an asset exchange economy if there are no perfectly correlated
assets and if agents are su�ciently risk averse, then Hammond's overlapping expectations
condition and Page's no-unbounded-arbitrage condition are equivalent. Thus, in an asset
exchange economy with no perfectly correlated assets populated by su�ciently risk averse
agents, the conditions of Hart (1974), Werner (1987), Hammond (1983), and Page (1987)
are all equivalent.
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De�nition 3 In an economy E satisfying [Werner Nonsatiation], Werner's

PNA condition is satis�ed if

m\
i=1

SW
i 6= ;;

where
SW
i = fp 2 R` j p � y > 0;8y 2 Ri n Lig

is Werner's cone of no-arbitrage prices.

Here we extend Werner's condition to allow for the possibility that for

some agent the set of useful net trades is empty - that is, to allow for the

possibility that for some agent, Ri n Li = ;: More importantly, we shall

prove, under very mild conditions, that our extended version of Werner's

condition is equivalent to Hart's condition. This result extends an earlier

result by Page, Wooders, and Monteiro (2000) on the equivalence of the

Hart and Werner conditions.

We begin by extending the de�nition of Werner's cone of no-arbitrage
prices:

De�nition 4 For each agent i; de�ne

Si =

�
SW
i if Ri n Li 6= ;;

L?i if Ri n Li = ;:

Given this expanded de�nition of the no-arbitrage-price cone, the ex-

tended price no-arbitrage condition (EPNA) is de�ned as follows:

De�nition 5 The economy E satis�es the EPNA condition if

m\
i=1

Si 6= ;:

Remark Note that if the economy E satis�es Werner's nonsatiation condi-

tion, i.e., Ri n Li 6= ;; 8i; then the EPNA condition given in De�nition 5

above reduces to Werner's original condition PNA given in De�nition 3.

Page, Wooders and Monteiro (2000) show that under assumptions [A.1]-

[A.2], [Uniformity] and [Werner Nonsatiation], WNMA holds if and only ifTm

i=1 S
W
i 6= ; (i.e., Hart's condition holds if and only if Werner's condition

holds). Here, we extend this result by proving, under [A.1]-[A.2] only, that

WNMA holds if and only if
Tm

i=1 Si 6= ;:

Theorem 1 Let E = (Xi; ui; ei)
m
i=1 be an economy satisfying [A.1]-[A.2].

The following statements are equivalent:

10



1. E satis�es WNMA:

2. E satis�es EPNA.

Proof. See Appendix.

4 The Existence of Equilibrium

Our next result extends Werner's (1987) main result on arbitrage and the

existence of equilibrium in two ways:

(1) Werner assumes uniformity of arbitrage opportunities. Here, we assume

only weak uniformity of agents' lineality spaces [A.3].

(3) Werner assumes that for each agent i; O+ bPi(xi) n Li(xi) 6= ;; 8xi 2
Xi. Here, we weaken Werner's nonsatiation assumption to allow

O+ bPi(xi) = Li(xi) for some agents i and some xi 2 Ai: But in this

case we require that Pi(xi) 6= ;: In particular, we require only weak

nonsatiation [A:4]:

Theorem 2 Let E = (Xi; ui; ei)
m
i=1 be an economy satisfying [A.1]-[A.2],

weak uniformity [A.3], and weak nonsatiation [A:4]: If E satis�es Hart's
condition, WNMA, or equivalently, if E satis�es the extended Werner con-
dition, EPNA, then E has a quasi-equilibrium.

Moreover, if (x�1; : : : ; x
�

m; p
�) is a quasi-equilibrium of E such that for

each agent i;

1. infx2Xi
hx; pi < h!i; pi ; and

2. Pi(x
�

i ) is relatively open in Xi;

then (x�1; : : : ; x
�

m; p
�) is an equilibrium.

Proof. See Appendix.

In addition to extending Werner (1987), we also introduce a new method

for proving existence in exchange economies with short selling. In particu-

lar, we prove existence by �rst transforming the economy E to an economy

E 0 satisfying global nonsatiation and having the property that any equi-

librium of E 0 is an equilibrium of E. We accomplish via a modi�cation of

agents' utility functions. Our assumption of weak nonsatiation is crucial - it

allows us to modify agents' utility functions in precisely the right way. We

then prove existence for the modi�ed economy E 0 using the excess demand

approach via the Gale-Nikaido-Debreu Lemma.
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5 Examples

Weak nonsatiation [A:4] plays a critical role in our proof of existence. In

this section, we present two examples which show that our weak nonsatia-

tion assumption is the weakest possible. In example 1, the economy fails

to satisfy global nonsatiation and also fails to satisfy Werner nonsatiation.

However, the economy does satisfy weak nonsatiation, as well as all the

assumptions of our Theorem2 - and there exists a quasi-equilibrium. In

example 2, all the assumptions of Theorem2 are satis�ed except weak non-

satiation [A:4] and existence fails. In both examples, as in Werner (1987),

there is uniformity of arbitrage opportunities.

Example 1

Consider an economy with 2 agents and 2 goods. Agent 1 has con-

sumption set X1 = [0; 1] �R and endowment e1 = (1
4
; 0): Agent 1's utility

function is given by

u1(x11; x21)

8<:
x11; if x112 [0; 1

4
];

1
4
; if x112 [1

4
; 1
2
];

x11�1
4
; if x112 [1

2
; 1]:

For agent 1, Werner nonsatiation fails because R1 = L1 = f0g�R: More-

over, for agent 1

A1 = f(x11; x21) j 1
4
� x11 � 7

16
; x21 2 Rg:

Thus, global nonsatiation is satis�ed - and thus for agent 1 weak nonsatia-

tion is satis�ed.

Agent 2 has consumption set X2 =R+�R and endowment e2 = (1
4
; 0):

Agent 2's utility function is given by

u2(x12; x22)

� p
x12 if x122 [0; 1

16
];

1
4

if x12� 1
16
:

For agent 2, global nonsatiation fails because

A2 = f(x12; x22) j 1

16
� x12 � 1

4
; x22 2 Rg:

Moreover, for agent 2 the arbitrage cone is R2 =R+�R; while the space of
useless net trades (i.e., the lineality space) is given by L2 = f0g�R: Thus,
for agent 2 Werner nonsatiation is satis�ed - and thus for agent 2 weak

nonsatiation is satis�ed.

It is easy to see that Hart's condition (WNMA) is satis�ed, and it is

easy to check that

(x�1; x
�

2; p
�) = ((x�11; x

�

21); (x
�

12; x
�

22); (p
�

1; p
�

2)) = ((
1

4
; 0); (

1

4
; 0); (1; 0))
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is a quasi-equilibrium:

Example 2

In this example, again there are two agents and two goods, but agent

1's preferences do not satisfy assumption [A:4]; weak nonsatiation.

Agent 1 has consumption set X1 = [0; 1]�R and endowment e1 = (1
4
; 0):

But now agent 1's utility function is given by u1(x11; x21) = �x11: As in our

�rst example, Werner nonsatiation fails for agent 1. In particular, agent 1's

arbitrage cone is R1 = L1 = f0g�R: Thus, for agent 1; the arbitrage cone
is equal to the space of useless net trades (i.e., the lineality space).

Agent 2 has consumption set X2 =R+�R and endowment e2 = (1
4
; 0).

Agent 2's utility function is given by u2(x12; x22) = x12: For agent 2, the

arbitrage cone is R2 =R+�R; while the space of useless net trades (i.e., the
lineality space) is given by L2 = f0g�R:

It is easy to see that Hart's condition (WNMA) is satis�ed. It is also

easy to check that for agent 1

A1 = f(x11; x21) j 0 � x11 � 1

4
; x21 2 Rg:

But note that for agent 1; global nonsatiation fails at (0; x21) 2 A1; for all

x21 2 R: Thus, since for agent 1; R1 = L1 = f0g�R; weak nonsatiation

[A:4] fails for agent 1; and thus in this example weak nonsatiation does not

hold. Does there exist an equilibrium?

In this economy, for each agent i; ei 2 intXi and utility functions are

continuous. Hence any quasi-equilibrium is an equilibrium. Moreover, if an

equilibrium exists, it must be the case that p� = (1; 0): Given p�; agent 1's

choice problem is given by

maxfu1(x11; x21) j x11 2 [0;
1

4
]; x21 2 Rg:

All solutions to agent 1's choice problem are of the form: x�1 = (x�11; x
�

21) =

(0; x�21) for x
�

21 2 R. Given p�; agent 2's choice problem is given by

maxfu2(x12; x22) j x12 2 [0;
1

4
]; x22 2 Rg:

All solutions to agent 2's choice problem are of the form: x�2 = (x�12; x
�

22) =

(1
4
; x�22) for x

�

22 2 R. But x�1 + x�2 6= e1 + e2 = (1
2
; 0): Thus, in this example

weak nonsatiation fails and there does not exist a quasi-equilibrium.

6 Appendix

6.1 The Geometry of Hart's Condition

In order to better understand the weak-no-market-arbitrage condition, let

us consider the basic geometry underlying the condition. To begin, let

13



L?i := L?i (ei) denote the space orthogonal to agent i
0s lineality space Li :=

Li(ei): Recall that under weak uniformity, Li is the i
th agent's set of useless

net trades. The vector space Rl can be decomposed into the direct sum of

the lineality space Li and its orthogonal complement, L?i . Thus, we have

R
l = L?i � Li;

and thus, each vector x 2Rl has a unique representation as the sum of two

vectors, one from Li and one from L?i . In particular, for each x 2Rl; there

exists uniquely two vectors, y 2 L?i and z 2 Li; such that x = y + z: Now

let

A?be the projection of A onto

mY
i=1

L?i :

For each rational allocation x = (x1; : : : ; xm) there exists uniquely two m-

tuples, y = (y1; : : : ; ym) 2 A? and z = (z1; : : : ; zm) 2
Qm

i=1 Li, such that

x = y+ z: Thus, we can think of each rational allocation as being uniquely

decomposable into a potentially useful component and a potentially useless

component. Our �rst result, a lemma, tells us that Hart's condition holds

if and only if the set A? of all useful components of the set of rational

allocation is compact. We will use this lemma in our proof of existence.

Lemma 3 Let E = (Xi; ui; ei)
m
i=1 be an economy satisfying [A.1]-[A.2]. The

following statements are equivalent:

1. The set A? is compact.

2. E satis�es Hart's condition, weak-no-market-arbitrage.

Proof. First, we will show that A? is closed. For any xi 2 bPi(ei); write

xi = x?i +bxi for x?i 2 bPi(ei)\L?i and bxi 2 Li: Let f(x?ni )gn be a sequence in
A? such that limn!+1(x

?n
i ) = (x?i ): For each n, there exists (bxni ) 2Qm

i=1 Li;

such that
mX
i=1

x?ni +

mX
i=1

bxni = mX
i=1

ei:

Hence,

lim
n!+1

mX
i=1

bxni = � 2
mX
i=1

Li

since
Pm

i=1 Li is a �nite dimensional subspace and hence closed. Now write

� =
Pm

i=1 �i; where for each i; �i 2 Li: One can check that for each i;

x?i 2 bPi(ei) \ L?i and (x?i + �i) 2 A:

Hence (x?i ) 2 A?:

14



(1) ) (2) : Let y = (y1; : : : ; ym) be such that yi 2 Ri for all i andPm

i=1 yi = 0: For each i; write

yi = byi + y?i for byi 2 Li and y?i 2 L?i
and

ei = bei + e?i for bei 2 Li and e?i 2 L?i :

We have

(e?1 + �y?1 ; : : : ; e
?

m + �y?m) 2 A? for all � � 0:

If A? is bounded, we must have y?i = 0 for all i: Thus yi 2 Li for all i:

(2) ) (1) : In order to show that Hart's condition implies that A?

is compact, it su�ces to show that Hart's condition implies that A? is

bounded. Suppose not. Let f(x?ni )gn be a sequence in A? such that such

that
mX
i=1



x?ni 

!1:

Now let f(bxni )gn be a sequence in
Qm

i=1 Li such that

mX
i=1

x?ni +

mX
i=1

bxni = mX
i=1

ei := e:

Without loss of generality, we can assume that for all i;

x?niPm

i=1



x?ni 

+ kPm

i=1
bxni k ! x�i ; and

Pm

i=1 bxniPm

i=1



x?ni 

+ kPm

i=1
bxni k ! �:

Note that since
Pm

i=1 Li is a �nite-dimensional subspace, it is closed. Thus,
P
m

i=1
bxn
iP

m

i=1kx?ni k+kPm

i=1
bxn
i k 2

Pm

i=1 Li for all n;

implies that

� 2Pm

i=1 Li:

Write � =
Pm

i=1 �i where �i 2 Li for each i: We have

mX
i=1

x�i +

mX
i=1

�i = 0:

Since for all i; x�i + �i 2 Ri; by Hart's condition, we have x�i + �i 2 Li for

all i: Since �i 2 Li; x
�

i + �i 2 Li implies that x�i 2 Li. But x
�

i 2 L?i : Thus,

for all i; x�i = 0; so that
Pm

i=1
�i = 0: Observe that for all n;Pm

i=1



x?ni 

Pm

i=1



x?ni 

+ kPm

i=1
bxni k + kPm

i=1
bxni kPm

i=1



x?ni 

+ kPm

i=1
bxni k = 1;

and hence
mX
i=1

kx�ik+







mX
i=1

�i






 = 1:

Thus, we have a contradiction.
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6.2 The Equivalence of the Hart's Condition and the

Generalized Werner Condition

In order to prove the equivalence of Hart (WNMA) and the extendedWerner

condition (EPNA), we need two additional results.

Lemma 4 Let E = (Xi; ui; ei)
m
i=1 be an economy satisfying [A.1]-[A.2]. The

following statements are true:

1. For any i; such that Ri n Li 6= ;; we have:

Si = fp 2 L?i j p:y > 0;8y 2 (Ri \ L?i ) n f0gg:

2. 8i = 1; : : : ;m; Si = �ri(R0
i ) where (R

0
i ) is the polar cone of Ri, and ri

denotes relative interior (i.e., the interior relative to the a�ne hull,
a�(R0

i )):

Proof. (1) See Dana, Le Van and Magnien (1999, p.182).

(2) It is clear that if Ri = Li then R0
i = L?i = Si: Thus, Si = ri(�Ri

0):

Now let us suppose that Ri n Li 6= ;: First, we show that a�(R0
i ) = L?i : In-

deed, since Li � Ri we have R
0
i � L?i and then a�(R0

i ) � L?i : Furthermore,

if a�(R0
i ) is a proper vector subspace of L

?

i ; then Li is a proper vector sub-

space of (a�(R0
i ))

?: But (a�(R0
i ))

? � Ri; which contradicts the fact that

the lineality space Li is the maximal vector subspace contained in Ri:

It is easy to check that Ri = (Ri \ L?i ) + Li (also see Allouch, Le Van,

and Page (2001)): By Corollary 16.4.2 in Rockafellar (1970), we have

R0
i = (Ri \ L?i )

0 \ L?i (1)

= fp 2 L?i j p:y � 0;8y 2 (Ri \ L?i )g: (2)

We notice that the positive dual of Ri \ L?i in L?i is also R0
i , and that

Ri \ L?i is pointed cone, that is:

(Ri \ L?i )
\
�(Ri \ L?i ) = 0:

Then, it follows from (2)

riR0
i = intL?

i

R0
i = fp 2 L?i j p � y < 0;8y 2 (Ri \ L?i ) n f0gg:

From (1) of the present lemma, we get Si = �ri(R0
i ):

In addition to Lemma 4 above, we need the following lemma, a restate-

ment of Corollary 16.2.2 in Rockafellar (1970).
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Lemma 5 Let f1; : : : fm be a proper convex functions on Rm. In order that

there do not exist vectors x�1; : : : ; x
�

m such that

x�1 + : : :+ x�m = 0; (3)

f�1O
+(x�1) + : : :+ f�mO

+(x�m) � 0; (4)

f�1O
+(�x�1) + : : :+ f�mO

+(�x�m) > 0; (5)

it is necessary and su�cient that

m\
i=1

ri(domfi) 6= ;:

We recall that for a convex function domfi = fx 2 Rm j fi(x) < +1g
and f�i O

+ is the support function of domfi; that is,

f�i O
+(x�i ) = supfx�i � x j x 2 domfig:

Proof of Theorem 1 (The Equivalence of Hart and Werner)

For every i = 1; : : : ;m; let

fi(x) =

�
0 if x 2 R0

i ;

+1 otherwise.

Hence

f�i O
+(x�i ) = supfx�i � x j x 2 R0

i g: (6)

Since 0 2 R0
i ; it follows that f

�

i O
+(x�i ) � 0 for all i. Then (4) is satis�ed

if and only if f�i O
+(x�i ) = 0 for all i and therefore from (6) if and only if

x�i 2 Ri. Quite similarly, (5) is not satis�ed if and only if �x�i 2 Ri. Since

Li = Ri \ �Ri; it follows that the �rst assertion of Lemma 5 is satis�ed if

and only if the WNMA condition is satis�ed. Furthermore, from Lemma 4

one gets
m\
i=1

Si =

m\
i=1

ri(�Ri
0) = �

m\
i=1

ri(domfi):

Hence, the equivalence follows from Lemma 5.
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6.3 Existence

6.3.1 Modifying the economy

Our method of proving existence is new. Our starting point is an exchange

economy E satisfying assumptions [A.1]-[A.2] and weak nonsatiation [A:4]:

To deal with the problem of satiation, we construct a new economy E 0 in
which agents' utility functions have been modi�ed. In the new economy

E 0 agents' preferences are such that no agent is satiated at a rational al-

location. Below, we establish that if the economy E satis�es assumptions

[A.1]-[A.2] and weak nonsatiation [A:4]; then the modi�ed economy E 0 sat-
is�es assumptions [A.1]-[A.2], and global nonsatiation. Moreover, we show

that if E satis�es Hart's condition, then the modi�ed economy E 0 also sat-

is�es Hart's condition. Finally, we show that a quasi-equilibrium for the

modi�ed economy E 0 is also a quasi-equilibrium for the original economy E:
Let E = (Xi; ui; ei)

m
i=1 be an economy satisfying [A.1]-[A.2], and weak

nonsatiation [A:4]:We begin by modifying agents' utility functions. Suppose

that for some agent i there exists a satiation point x�i 2 Ai, that is,

ui(x
�

i ) = sup
xi2Xi

ui(xi):

It follows from weak nonsatiation [A:4] that there exists

ri 2 O+ bPi(x
�

i ) n Li(x
�

i ):

Using ri we de�ne the function

�i(�) : bPi(x
�

i )! R+

as follows:

�i(xi) = supf� 2 R+ j (xi � �ri) 2 bPi(x
�

i )g:
Now using the function �i(�), we can de�ne a new utility function, vi(�); for
agent i:

vi(xi) =

�
ui(xi) + �i(xi); if xi is a satiation point,

ui(xi); otherwise.

Claim 6.1 The function �i is well-de�ned. Moreover, for all xi 2 bPi(x
�

i )

we have (xi � �i(xi)ri) 2 bPi(x
�

i ):

Proof of Claim 6.1. Let

W = f� 2 R+ j (xi � �ri) 2 bPi(x
�

i )g:
We �rst notice that 0 2 W . Thus, ; 6= W � R+. We claim that W

is bounded. Suppose the contrary. Then �ri 2 O+ bPi(x
�

i ) and therefore
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ri 2 Li(x
�

i ), which contradicts ri 2 O+ bPi(x
�

i ) n Li(x
�

i ): Finally, we have

(xi � �i(xi)ri) 2 bPi(x
�

i ) since
bPi(x

�

i ) is closed:2

Claim 6.2 Let � � 0: Then

fx 2 bPi(x
�

i ) j �(x) � �g = f�rig+ bPi(x
�

i ):

Proof of Claim 6.2. First it is obvious that

f�rig+ ( bPi(x
�

i )) � fx 2 bPi(x
�

i ) j �i(x) � �g:

Furthermore, let xi 2 fx 2 bPi(x
�

i ) j �i(x) � �g. Then, (xi � �(xi)ri) 2bPi(x
�

i ) and therefore xi 2 f�rig+ bPi(x
�

i ), since
bPi(x

�

i ) is convex:2

Claim 6.3 We have sup
xi2bPi(x�i ) �i(xi) = +1:

Proof of Claim 6.3. It is obvious that (xi + �ri) 2 bPi(x
�

i ), for all � � 0,

since ri 2 O+ bPi(x
�

i ). Moreover, �i(xi+�ri) � �. Then, sup
xi2bPi(x�i ) �i(xi) =

+1:2

Consider the level set E� = fx 2 Xi j vi(x) � �g; for every � 2 R:

Claim 6.4 The function vi is upper semicontinuous and quasi-concave.
Moreover, for all xi 2 bPi(ei)

O+Evi(xi) =

(
O+ bPi(x

�

i ); if xi is a satiation point,

O+ bPi(xi); otherwise.

Proof of Claim 6.4. The function vi is upper semicontinuous and quasi-

concave if and only if E� is closed and convex for all � 2 R.
�rst case. Suppose � � ui(x

�

i ). Then, E� = fx 2 Xi j ui(x) � �g.
Thus, E� is closed and convex, since ui is upper semicontinuous and quasi-

concave.

second case. Suppose � > ui(x
�

i ). Then

E� = fx 2 Xi j vi(x) � �g

= fx 2 bPi(x
�

i ) j �i(x) � (�� ui(x
�

i ))g

= f(� � ui(x
�

i ))rig+ bPi(x
�

i ):
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Thus, E� is convex and closed.2

Now, we consider the modi�ed economy E 0 = (Xi; vi; ei)i=1::::;m. Let

A0 = f(xi) 2
mY
i=1

Xi j
mX
i=1

xi =

mX
i=1

ei and vi(xi) � vi(ei);8ig;

be the set of rational allocations of E 0:

Claim 6.5 If in addition to satisfying assumptions [A.1]-[A.2], and weak

nonsatiation [A:4]; E also satis�es weak uniformity [A.3], then the following

statement is true:

If the original economy E satis�es Hart's condition (WNMA), then the

modi�ed economy E 0 also satis�es Hart's condition.

Proof of Claim 6.5. It follows from Claim 6.4 that for all xi 2 Evi(ei) we

have

Li � O+Evi(xi) � O+Evi(ei) � Ri:

Since, Li is the maximal subspace in Ri, one gets vi has uniform lineality

space equal to Li. Furthermore,
Pm

i=1 yi = 0 with 8i, yi 2 O+Evi(ei) implies

that
Pm

i=1 yi = 0 with 8i, yi 2 Ri. Since E satis�es the WNMA condition,

yi 2 Li, 8i. Therefore, E 0 also satis�es the WNMA condition :2

Claim 6.6 We have:

(i) The modi�ed economy E 0 satis�es Global Nonsatiation.
(ii) If (x�; p�) is a quasi-equilibrium of E 0; then (x�; p�) is a quasi-

equilibrium of E:

Proof of Claim 6.6. (i) It follows from Claim 6.3.

(ii) It is clear that x� 2 A0 � A. Moreover, let xi 2 Xi be such that

ui(xi) > ui(x
�

i ). Then, x�i is not a satiation point and therefore vi(x
�

i ) =

ui(x
�

i ): Since vi(xi) � ui(xi), it follows that vi(xi) > vi(x
�

i ). Since (x
�; p�) is

a quasi-equilibrium of E 0; we can conclude that p� �xi � p� �ei: Thus, (x�; p�)
is a quasi-equilibrium of E.2

6.3.2 Proof of Theorem 2 (Existence Result)

First, it follows from Claim 6.5 that E 0 also satis�es the WNMA. From

Claim 6.6 it is su�cient to show that E 0 has a quasi-equilibrium.

We consider a sequence of truncated economies with consumption sets

Xn
i = bPi(ei) \ L?i \ clB(0; n);
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where B(0; n) is the open ball of radius n centered at 0. We choose n large

enough so that ei 2 B(0; n) for each i.

Let D = \L?i and � is the unit sphere of Rl+1:

For (p; q) 2 (D�R+) \�; we consider

'n
i (p; q) = fxi 2 Xn

i j p � xi � p � ei + qg;

and

�ni (p; q) = fxi 2 'n
i (p; q) j y 2 eP n

i (xi)) p � y � p � ei + qg;

where

eP n
i (xi) = f(1� �)xi + �zi j 0 < � � 1; vi(xi) < vi(zi) and zi 2 Xn

i g:

We have the following result:

Lemma 6.1 For n large enough, �ni is upper semicontinuous nonempty,
compact and convex valued, for every i.

Proof. First we show that �ni (p; q) is nonempty for n large enough.

For n large enough, ei 2 'n
i (p; q): Let bxi be a maximizer of vi on '

n
i (p; q):

If eP n
i (bxi) = ;; we end the proof, since bxi 2 �ni (p; q): If not, let zi 2 Xn

i ; such

that vi(zi) > vi(bxi). By the very de�nition of bxi; we have p � zi > p � ei + q:

Let ti; contained in the segment [bxi; zi] ; be such that

p � ti = p � ei + q:

By quasi-concavity of the utility function, vi(ti) � vi(bxi): By the de�nition

of bxi; vi(ti) � vi(bxi): Hence ti is another maximizer of vi on 'n
i (p; q): We

claim that ti 2 �ni (p; q): Indeed, let z
0 2 Xn

i such that vi(z
0

i) > vi(ti). We

have p � z0 > p � ei + q: Thus,

8� 2 ]0; 1] ; p � ((1 � �)ti + �z0) > p � ei + q:

Second we show that �ni (p; q) is convex valued.

Let x and x0 be contained in �ni (p; q) and let y 2 eP n
i (�x+ (1� �)x0) for

� 2 ]0; 1[ :

(a) First assume p � x < p � ei + q and p � x0 � p � ei + q: If vi(x) > vi(x
0)

then p � x � p � ei + q; which is a contradiction. Hence vi(x) � vi(x
0): If

vi(x
0) > vi(x); then p � x0 = p � ei + q: Because vi(x

0) > vi(x); we have

�x+ (1� �)x0 2 eP n
i (x) which implies that

p � (�x+ (1 � �)x0) � p � ei + q;
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Thus, we have a contradiction because

p � (�x+ (1� �)x0) < p � ei + q:

Therefore vi(x
0) = vi(x): But now by quasi-concavity, we have

vi(�x+ (1 � �)x0) � vi(x) = vi(x
0):

If vi(�x+ (1 � �)x0) > vi(x); then

p � (�x+ (1 � �)x0) � p � ei + q;

a contradiction as before. Hence,

vi(�x+ (1� �)x0) = vi(x) = vi(x
0):

Let y 2 eP n
i (�x + (1 � �)x0); i.e., y = �(�x + (1 � �)x0) + (1 � �)z for

some � 2 [0; 1[ ; and some z 2 Xn
i such that vi(z) > vi(�x+ (1� �)x0): We

have the identity

�(�x+ (1� �)x0) + (1��)z = �(�x+ (1� �)z) + (1� �)(�x0 + (1��)z):

But we have, p �(�x+(1��)z) � p �ei+q; and p �(�x+(1��)z0) � p �ei+q:

Therefore, p � y � p � ei + q:

(b) Assume now p � x = p � ei + q and p � x0 = p � ei + q: In this case

p � (�x+ (1 � �)x0) � p � ei + q: Let

y = �(�x + (1� �)x0) + (1� �)z

for some � 2 [0; 1[ and some z 2 Xn
i such that vi(z) > vi(�x + (1 � �)x0):

We have

vi(z) > vi(�x+ (1 � �)x0) � minfvi(x); vi(x0)g :
Hence p � z � p � ei + q; and p � y � p � ei + q:

Finally, we show that �ni (�; �) has a closed graph. Let

x�i 2 �ni (p
� ; q�); x�i ! x; (p� ; q�)! (p; q);

and let

z = (1� �)xi + �y;

for � 2 ]0; 1] and y 2 Xn
i such that vi(y) > vi(x). By the u.s.c. of vi; for �

large enough, vi(y) > vi(x
�
i ): Let

z� = (1� �)x�i + �y:

Clearly, z� 2 eP n
i (x

�
i ); so that

p� � z� � p� � ei + q�:
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Since lim�!+1 z� = z;

p � z � p � ei + q:

Thus, x 2 �ni (p; q):2

Now, de�ne

Zn(p; q) := [

mX
i=1

(�ni (p; q)� ei)]� f�mg:

It is clear that,

8(p; q) 2 (D �R+) \ �;8x 2 Zn(p; q); (p; q):x � 0:

We can now apply the Debreu �xed point lemma (see Florenzano and

Le Van (1986)).

Lemma 6.2 Let P � R`+1 be a convex cone which is not a linear subspace.
Let P 0 and � denote respectively the polar of P and the unit sphere of R`+1.
Let Z be an upper semicontinuous (u.s.c.), nonempty, compact and convex

valued correspondence from P \ � into R`+1 such that

8p 2 P \ �, 9z 2 Z(p) such that p � z � 0:

Then there exists �p 2 P \� such that Z(�p) \ P 0 6= ;:

Thus, it follows from the above lemma that

9(pn; qn) 2 (D �R+) \�;

9xni 2 �i(p
n; qn);8i;

and

9zn 2Pm

i=1 Li such that
Pm

i=1(x
n
i � ei) = zn:

One can write zn =
Pm

i=1 l
n
i , where l

n
i 2 Li;8i: Then one has

mX
i=1

(xni � lni ) =

mX
i=1

ei;

and therefore (xni ) 2 A?. Passing to a subsequence if necessary, it follows

from the compactness of A? and (D�R+) \� that

lim
n!+1

(xni ) = x� 2 A? and lim
n!+1

(pn; qn) = (p�; q�) 2 (D �R+) \�:

Since x� 2 A? there exists (li) 2
Qm

i=1 Li such that

mX
i=1

(x�i � li) =

mX
i=1

ei;
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and x0�i = x�i � li: By Global Nonsatiation for vi there exists zi 2 Xi; such

that

vi(zi) > vi(x
0�

i ) = vi(x
�

i ):

Then, by weak uniformity, [A.3], there exists z?i 2 Xi \ L?i ; such that

vi(z
?

i ) > vi(x
�

i ). For n large enough, z?i 2 Xn
i ; and therefore vi(z

?

i ) > vi(x
n
i )

(since vi is u.s.c.). It follows from xni 2 �ni (p
n; qn); that

pn � yni � pn � ei + qn; for yni = (1 � �)xni + �zi; � 2 ]0; 1] :

Let n!1: Then

p� � ((1� �)x�i + �zi) � p� � ei + q�:

Let �! 0: Then

p� � x�i � p� � ei + q�:

But, p� � xi � p� � ei + q�: Hence

p� � x�i = p� � ei + q�;8i;

and also

p� � x0�i = p� � ei + q�;8i;
since li 2 Li. Summing over i; one gets q� = 0; and p� � x0�i = p� � ei;8i:

We claim that (x0�i ; p
�) is a quasi-equilibrium of E 0. Thus, it remains to

check that vi(xi) > vi(x
0�

i ) implies p� �xi � p��ei: For such an xi; let x?i be the

projection of xi on L?i . For n large enough, x?i 2 Xn
i ; and vi(x

?

i ) > vi(x
n
i ):

Since xni 2 �ni (p
n; qn); we have

pn � x?i � pn � ei + qn;

which implies p� � x?i � p� � ei; and therefore p� � xi � p� � ei:2
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