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A Notation

For the convenience of the reader, we summarize the notation adopted in the following arguments. A
slightly more technical presentation is adopted than within the main manuscript as a little care is required
in order to obtain rigorous results.

We work on a probability space (Ω,A,P) rich enough to allow the definition of the particle system
introduced in Section 3 for all N ∈ N. All expectations and probabilities which are not explicitly
associated with some other measure are taken with respect to P.

For any H ⊆ Rd, we consider the Borel σ-algebra B(H) with respect to the Euclidean norm, and we
endow any product space with the product Borel σ-algebra.

Let the Banach space of real-valued bounded measurable functions on H, endowed with the supremum
norm, ‖ϕ‖∞ = supu∈H |ϕ(u)|, be denoted by Bb(H).

Let M(H) be the Banach space of signed finite measures on (H, B(H)) endowed with the bounded
Lipschitz norm (e.g. Dudley (2002, page 394))

β(η) := sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
η(dx)ϕ(x)

∣∣∣∣ , (25)

where ‖ · ‖BL denotes the bounded Lipschitz norm for bounded Lipschitz functions ϕ

‖ϕ‖BL := ‖ϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
‖x− y‖2

.

For ease of notation, for every measure η ∈ M(H) and every ϕ ∈ Bb(H) we denote the integral of ϕ
with respect to η by η(ϕ) :=

∫
H η(du)ϕ(u).

We denote by M+(H) ⊂ M(H) the set of (unsigned) measures of nonzero mass and by P(H) ⊂
M+(H) the set of all probability measures on (H, B(H)). For every η ∈ P(H) we have

β(η) = sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
η(dx)ϕ(x)

∣∣∣∣ ≤ sup
‖ϕ‖BL≤1

‖ϕ‖∞η(H) ≤ 1.

The β norm metrizes weak convergence (Dudley, 2002, Theorem 11.3.3) in M(X): for every µ ∈
M(H), and sequence {µn}n≥1 taking values in M(H), β(µn, µ) → 0 is equivalent to µn(ϕ) → µ(ϕ) for
all continuous bounded functions ϕ ∈ Cb(H).

For any η ∈M+(H) and any positive function G integrable with respect to η we denote by ΨG(η)(dx)
the Boltzmann-Gibbs transform

ΨG(η)(dx) =
1

η(G)
G(x)η(dx).

A Markov kernel M from H to H induces two operators. One acts upon measures inM(H) and takes
values in M(H) and is defined by

∀η ∈M(H) ηM(·) =

∫
H
η(du)M(u, ·)

and the other acts upon functions in Bb(H) and takes values in Bb(H) and may be defined as

∀u ∈ H ∀ϕ ∈ Bb(H) M(ϕ)(u) =

∫
H
M(u,dv)ϕ(v).
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For each ω ∈ Ω, we obtain a realization of the particle system with N particles at time n and a
corresponding random measure denoted by ηNn : ω ∈ Ω 7→ ηNn (ω) ∈ P(H)

ηNn (ω)(·) =
1

N

N∑
i=1

δ(Xi
n(ω),Y

i
n(ω))

(·),

where we suppress from the notation the dependence of Xi
n(ω) and Y in(ω) upon N , as we shall throughout

in the interest of readability.

B Existence of the Fixed Point

Let us formally define the EMS map as a map from the set of unsigned measures of nonzero mass to the
set of probability measures, FEMS :M+(X)→ P(X), such that

FEMS : η 7→ FEMS η :=

∫
X
η(dx′)K(x′, ·)

∫
Y

g(y | x′)h(y)∫
X η(dz)g(y | z)

dy

and the EM map, FEM :M+(X)→ P(X) as in (7), slightly more formally as:

FEM(η)(dx) =
1

η(Ḡη)
Ḡη(x)η(dx), (26)

where the normalizing constant η(Ḡη) ≡ 1 is introduced to highlight the connection with the particle
methods introduced in Section 3. We introduce the smoothing operator, K : P(X)→ P(X), corresponding
to the smoothing kernel in (A2)

K : η 7→ ηK :=

∫
X
η(dv)K(v, ·) (27)

and observe that FEMS η = K (FEM(η)) = (FEM η)K.
In order to prove that the EMS map admits a fixed point, a number of properties of the EM map,

of the smoothing operator K and of the EMS map itself must be established. We show that FEMS is
a compact operator on M+(X) (Corollary 2). To do so, we show that FEM is continuous and bounded
(Proposition 6) then we prove that K is compact (Proposition 7). Compactness is needed to prove
existence of a fixed point.

B.1 Properties of the Continuous EMS Map

Proposition 6. Under (A0) and (A1), the EM map FEM in (26) is a continuous and bounded operator
on M+(X) endowed with the weak topology.

Proof. Let η ∈ M+(X) and {ηn}n≥1 be a sequence of measures in M+(X) converging to η in the weak
topology as n→∞. For any ϕ ∈ Cb(X) consider∣∣∣∣∫

X
FEM(ηn)(dx)ϕ(x)−

∫
X

FEM(η)(dx)ϕ(x)

∣∣∣∣
=

∣∣∣∣∫
X
ηn(dx)ϕ(x)

∫
Y

g(y | x)h(dy)

ηn (g(y | ·))
−
∫
X
η(dx)ϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))

∣∣∣∣
=

∣∣∣∣∫
X

∫
Y
ϕ(x)g(y | x)h(dy)

[
ηn(dx)

ηn (g(y | ·))
− η(dx)

η (g(y | ·))

]∣∣∣∣
≤
∣∣∣∣∫

X

∫
Y

ηn(dx)ϕ(x)g(y | x)h(dy)

ηn (g(y | ·)) η (g(y | ·))
[η (g(y | ·))− ηn (g(y | ·))]

∣∣∣∣
+

∣∣∣∣∫
X

∫
Y

(ηn(dx)− η(dx))
ϕ(x)g(y | x)h(dy)

η (g(y | ·))

∣∣∣∣ ,
where the second equality follows from Fubini’s Theorem since g, ϕ are bounded functions.
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The first term can be bounded by∣∣∣∣∫
X

∫
Y

ηn(dx)ϕ(x)g(y | x)h(dy)

ηn (g(y | ·)) η (g(y | ·))
[η (g(y | ·))− ηn (g(y | ·))]

∣∣∣∣
≤‖ϕ‖∞

∫
Y

h(dy)
∫
X ηn(dx)g(y | x)

ηn (g(y | ·)) η (g(y | ·))
|η (g(y | ·))− ηn (g(y | ·))|

≤‖ϕ‖∞
∫
Y

h(dy)

η (g(y | ·))
|η (g(y | ·))− ηn (g(y | ·))| .

Under (A1), g is bounded below by 1/mg and we have

η (g(y | ·)) =

∫
X
η(dx)g(y | x) ≥ 1

mg

∫
X
η(dx) =

1

mg
η(X) > 0

since η ∈M+(X) is an unsigned measure with nonzero mass. Therefore we obtain

‖ϕ‖∞
∫
Y

h(dy)

η (g(y | ·))
|η (g(y | ·))− ηn (g(y | ·))| ≤ ‖ϕ‖∞

mg

η(X)

∫
Y
h(dy) |η (g(y | ·))− ηn (g(y | ·))|

For fixed y, g(y | ·) ∈ Cb(X), we have that

|η (g(y | ·))− ηn (g(y | ·))| → 0

as n → ∞ since ηn converges to η in the weak topology. Since g is uniformly bounded by mg, the
Dominated Convergence Theorem then gives∫

Y
h(dy) |η (g(y | ·))− ηn (g(y | ·))| → 0

as n→∞, from which we obtain∣∣∣∣∫
X

∫
Y

ηn(dx)ϕ(x)g(y | x)h(dy)

ηn (g(y | ·)) η (g(y | ·))
[η (g(y | ·))− ηn (g(y | ·))]

∣∣∣∣→ 0 (28)

as n→∞.
For the second term, consider the function

x 7→
∫
Y

ϕ(x)g(y | x)h(dy)

η (g(y | ·))
. (29)

This function is bounded by m2
g‖ϕ‖∞/η(X); to see that it is also continuous, recall that ϕ, g are continuous

functions while the continuity of y 7→ η (g(y | ·)) follows from the continuity of g and the Dominated
Convergence Theorem. The Dominated Convergence theorem and the fact that g is continuous, bounded
above and below give continuity of (29).

Using Fubini’s Theorem, whose applicability is granted by the boundedness of g, ϕ, we obtain∣∣∣∣∫
X

∫
Y

(ηn(dx)− η(dx))
ϕ(x)g(y | x)h(dy)

η (g(y | ·))

∣∣∣∣
=

∣∣∣∣∫
X

(ηn(dx)− η(dx))

∫
Y

ϕ(x)g(y | x)h(dy)

η (g(y | ·))

∣∣∣∣→ 0 (30)

as n→∞.
Combining (28) and (30) we obtain convergence of FEM ηn(ϕ) to FEM η(ϕ) for every ϕ ∈ Cb(X), and

thus convergence in the weak topology of FEM ηn to FEM η (Dudley, 2002, Theorem 11.3.3) whenever ηn
converges weakly to η, proving that the EM map is continuous inM+(X). Finally, consider boundedness.
A non-linear operator is bounded if and only if it maps bounded sets into bounded sets (e.g. Zeidler
(1985, page 757)). The EM map maps the space of positive finite measures M+(X) into the space of
probability measures P(X), whose elements have β norm uniformly bounded by 1; in particular FEM

maps any bounded subset of M+(X) into a uniformly bounded subset of P(X), showing that FEM is a
bounded operator.
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Proposition 7. Under (A0) and (A2), the smoothing operator K defined in (27) is compact on P(X)
endowed with the weak topology.

Proof. To prove that K is compact we need to prove that it maps bounded subsets into relatively compact
subsets (Kress, 2014, Definition 2.17). It is sufficient to observe that X is a complete subset of RdX (as
it is a compact subset of a metric space) from which it follows that P(X) is complete by Prokhorov’s
Theorem (e.g. Dudley (2002, Corollary 11.5.5)) and therefore P(X) is relatively compact (Dudley, 2002,
Theorem 11.5.4).

Corollary 2 (Compactness of FEMS). Under (A0), (A1) and (A2), the EMS map FEMS is compact on
M+(X) endowed with the weak topology.

Proof. The EMS map is the composition of the continuous and bounded operator FEM (by Proposition 6)
which maps bounded sets into bounded sets with the compact smoothing operator K (by Proposition 7)
which maps bounded sets into relatively compact sets. It follows that FEMS is continuous and maps
bounded sets into relatively compact sets, hence FEMS is compact (e.g. Zeidler (1985, page 54)).

B.2 Proof of Proposition 1

The proposition may be established straightforwardly using the technical results obtained in the previous
section.

Proof. Since X is a compact metric space (and therefore complete), the set of probability measures
P(X) ⊂M(X) is complete by Prokhorov’s Theorem (e.g. Dudley (2002, Corollary 11.5.5)) and therefore
P(X) is closed. Moreover, P(X) is non-empty, bounded (since all of its elements have β norm bounded
by 1) and convex: take µ, ν ∈ P(X) and t ∈ [0, 1], then for every A ∈ B(X)

tµ(A) + (1− t)ν(A) ≥ 0 tµ(X) + (1− t)ν(X) = 1,

showing that tµ+ (1− t)ν ∈ P(X) for all t ∈ [0, 1] and all µ, ν ∈ P(X).
These properties and the compactness of the EMS map (Corollary 2) give the existence of a fixed

point by Schauder’s fixed point theorem see, e.g., Zeidler (1985, Theorem 2.A).

C Convergence of the SMC Approximation

The theoretical characterization of the particle method approximating the EMS recursion is carried out
by decomposing Algorithm 1 into three steps: mutation, reweighting and resampling. This decomposition
is standard in the study of SMC algorithms (Crisan and Doucet, 2002; Chopin, 2004; Mı́guez et al., 2013)
and allows us to examine the novelty of the particle approximation introduced in Section 3 by directly
considering the contribution to the overall approximation error of the use of approximate weights GNn .

First, consider the following decomposition of the dynamics in (8) with potentials (11) and Markov
kernels (10). In the selection step, the current state is weighted according to the potential function Gn

η̂n(x1:n, y1:n) ≡ ΨGn(ηn)(x1:n, y1:n) =
1

ηn(Gn)
Gn(xn, yn)ηn(x1:n, y1:n);

then, in the mutation step, a new state is proposed according to Mn+1

ηn+1(x1:n+1, y1:n+1) ∝ η̂n(x1:n, y1:n)Mn+1(xn+1 | xn).

Each step of the evolution above is then compared to its particle approximation: the weighted distribution
ΨGn

(ηNn ) is compared with ΨGn
(ηn), the resampled distribution η̂Nn is compared with η̂n and finally ηNn

is compared with ηn.
The proof of the Lp-inequality in Proposition 3 follows the inductive approach of Crisan and Doucet

(2002); Mı́guez et al. (2013) and consists of 4 Lemmata. Lemmata 2, 4 and 5 are due to Crisan and Doucet
(2002); Mı́guez et al. (2013) and establish Lp-error estimates for the reweighting step performed with the
exact potential Gn (exact reweighting), the multinomial resampling step and the mutation step. Lemma 3
compares the exact reweighting with the reweighting obtained by using the approximated potentials GNn
and is the main element of novelty in the proof.

In the following we commit the usual abuse of notation and we denote by ηn both a measure and its
density with respect to the Lebesgue measure.
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C.1 Proof of Proposition 3

Before proceeding to the proof of Proposition 3 we introduce the following auxiliary Lemma giving some
properties of the approximated potentials GNn :

Lemma 1. Under (A0) and (A1), the approximated and exact potentials are positive functions, bounded
and bounded away from 0

‖Gn‖∞ ≤ m2
g <∞ and inf

(x,y)
|Gn(x, y)| ≥ 1

m2
g

> 0

‖GNn ‖∞ ≤ m2
g <∞ and inf

(x,y)
|GNn (x, y)| ≥ 1

m2
g

> 0.

We have the following decomposition

GNn (x, y)−Gn(x, y) = Gn(x, y)
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηNn |X(g(y | ·))

= GNn (x, y)
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηn|X(g(y | ·))

for fixed (x, y) ∈ H.

Proof. The boundedness of Gn and GNn follows from definitions (11) and (15) and the boundedness of g.
The second assertion is proved by considering the relative errors between the exact and the approximated
potential:

GNn (x, y)−Gn(x, y)

Gn(x, y)
=

hn(y)

g(y | x)

[
g(y | x)

hNn (y)
− g(y | x)

hn(y)

]
= hn(y)

[
1

hNn (y)
− 1

hn(y)

]
=
hn(y)− hNn (y)

hNn (y)

=
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηNn |X(g(y | ·))

and

GNn (x, y)−Gn(x, y)

GNn (x, y)
=
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηn|X(g(y | ·))

respectively.

Lemma 2 (Exact reweighting). Assume that for any ϕ ∈ Bb (H) and for some p ≥ 1

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

holds for some finite constant C̃p,n, then

E
[
|ΨGn(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p

]1/p ≤ C̄p,n ‖ϕ‖∞
N1/2

for any ϕ ∈ Bb (H) for some finite constant C̄p,n.

Proof. The proof follows that of Crisan and Doucet (2002, Lemma 4) by exploiting the boundedness of
Gn.
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Lemma 3 (Approximate reweighting). Assume that for any ϕ ∈ Bb (H) and for some p ≥ 1

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

holds for some finite constant C̃p,n, then

E
[
|ΨGN

n
(ηNn )(ϕ)−ΨGn

(ηNn )(ϕ)|p
]1/p ≤ C̈p,n ‖ϕ‖∞

N1/2

for any ϕ ∈ Bb (H) and for some finite constant C̈p,n.

Proof. Apply the definition of ΨGn
and ΨGN

n
and consider the following decomposition

|ΨGN
n

(ηNn )(ϕ)−ΨGn
(ηNn )(ϕ)| =

∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣
≤
∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (GNn ϕ)

ηNn (Gn)

∣∣∣∣
+

∣∣∣∣ηNn (GNn ϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣ .
Then, for the first term∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (GNn ϕ)

ηNn (Gn)

∣∣∣∣ =

∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )

∣∣∣∣ ∣∣∣∣ηNn (Gn)− ηNn (GNn )

ηNn (Gn)

∣∣∣∣
≤ ‖ϕ‖∞
|ηNn (Gn)|

ηNn (|Gn −GNn |).

For the second term ∣∣∣∣ηNn (GNn ϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣ =
1

|ηNn (Gn)|
|ηNn (GNn ϕ)− ηNn (Gnϕ)|

≤ ‖ϕ‖∞
|ηNn (Gn)|

ηNn (|GNn −Gn|).

Hence,

|ΨGN
n

(ηNn )(ϕ)−ΨGn
(ηNn )(ϕ)| ≤ 2

‖ϕ‖∞
|ηNn (Gn)|

ηNn (|GNn −Gn|) ≤ 2m2
g‖ϕ‖∞ηNn (|GNn −Gn|).

By applying Minkowski’s inequality and the decomposition of the potentials in Lemma 1

E
[∣∣ηNn (|GNn −Gn|)

∣∣p]1/p
= E

[∣∣∣∣∣ 1

N

N∑
i=1

∣∣GNn (Xi
n, Y

i
n)−Gn(Xi

n, Y
i
n)
∣∣∣∣∣∣∣
p]1/p

≤ 1

N

N∑
i=1

E
[∣∣GNn (Xi

n, Y
i
n)−Gn(Xi

n, Y
i
n)
∣∣p]1/p

≤ 1

N

N∑
i=1

E
[∣∣∣∣ GNn (Xi

n, Y
i
n)

ηn|X (g(Y in | ·))

∣∣∣∣p |ηn|X (g(Y in | ·)
)
− ηNn |X

(
g(Y in | ·)

)
|p
]1/p

≤ 1

N

N∑
i=1

m3
g E
[
|ηn|X

(
g(Y in | ·)

)
− ηNn |X

(
g(Y in | ·)

)
|p
]1/p

.

Then, consider SNn := σ
(
Y in : i ∈ {1, . . . , N}

)
, the σ-field generated by all the Y in at time n. By con-

struction, the evolution of Xi
n for i = 1, . . . , N is independent of SNn (this is due to the definition of the
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mutation kernel (10)). Conditionally on SNn , the Y in are fixed for i = 1, . . . , N and we can use the fact
that the integrals of functions from X to R with respect to ηn and ηn|X coincide as do their integrals with
respect to ηNn and ηNn |X, thus for fixed y:

E
[
|ηn|X (g(y | ·))− ηNn |X (g(y | ·)) |p

]1/p
= E

[
|ηn (g(y | ·))− ηNn (g(y | ·)) |p

]1/p
≤ mgC̃p,n

N1/2

where the last inequality follows from the hypothesis of the Lemma because g(y | ·) is a bounded and
measurable function for all fixed y ∈ Y.

Hence, since Y in is SNn -measurable and independent of ηNn |X, we have

E
[∣∣ηNn (|GNn −Gn|)

∣∣p]1/p ≤ m3
g

1

N

N∑
i=1

E
[
|ηn|X

(
g(Y in | ·)

)
− ηNn |X

(
g(Y in | ·)

)
|p
]1/p

≤ m3
g

1

N

N∑
i=1

E
[
E
[
|ηn|X

(
g(Y in | ·)

)
− ηNn |X

(
g(Y in | ·)

)
|p|SNn

]]1/p
≤
m4
gC̃p,n

N1/2
.

Therefore,

E
[
|ΨGN

n
(ηNn )(ϕ)−ΨGn(ηNn )(ϕ)|p

]1/p ≤ 2C̃p,nm
6
g

‖ϕ‖∞
N1/2

,

with the constant C̈p,n = 2C̃p,nm
6
g.

Lemma 4 (Multinomial resampling). Assume that for any ϕ ∈ Bb (H) and for some p ≥ 1

E
[
|ΨGN

n
(ηNn )(ϕ)− η̂n(ϕ)|p

]1/p
= E

[
|ΨGN

n
(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p

]1/p ≤ Ĉp,n ‖ϕ‖∞
N1/2

holds for some finite constant Ĉp,n, then after the resampling step performed through multinomial re-
sampling

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

for any ϕ ∈ Bb (H) for some finite constant Cp,n.

Proof. The proof follows that of Crisan and Doucet (2002, Lemma 5) using the Marcinkiewicz-Zygmund
type inequality in Del Moral (2004, Lemma 7.3.3) and the hypothesis.

Lemma 5 (Mutation). Assume that for any ϕ ∈ Bb(H) and for some p ≥ 1

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

holds for some finite constant Cp,n, then, after the mutation step

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p ≤ C̃p,n+1
‖ϕ‖∞
N1/2

for any ϕ ∈ Bb(H) for some finite constant C̃p,n+1.

Proof. The proof follows that of Crisan and Doucet (2002, Lemma 3), where after applying Minkowski’s
inequality

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p
= E

[
|ηNn+1(ϕ)− η̂nMn+1(ϕ)|p

]1/p
≤ E

[
|ηNn+1(ϕ)− η̂Nn Mn+1(ϕ)|p

]1/p
+ E

[
|η̂Nn Mn+1(ϕ)− η̂nMn+1(ϕ)|p

]1/p
,

we can bound the first term with the Marcinkiewicz-Zygmund type inequality in Del Moral (2004, Lemma
7.3.3) and the second term with the hypothesis.
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The proof of the Lp-inequality in Proposition 3 is based on an inductive argument which uses Lem-
mata 2-5:

Proof of Proposition 3. At time n = 1, the particles (Xi
1, Y

i
1 )Ni=1 are sampled i.i.d. from η1 ≡ η̂1 thus

E
[
ϕ(Xi

1, Y
i
1 )
]

= η1(ϕ) for i = 1, . . . , N . We can define the sequence of functions ∆i
1 : X × Y 7→ R for

i = 1, . . . , N
∆i

1(x, y) := ϕ(x, y)− E
[
ϕ(Xi

1, Y
i
1 )
]

so that,

ηN1 (ϕ)− η1(ϕ) =
1

N

N∑
i=1

∆i
1(Xi

1, Y
i
1 ),

and apply Lemma 7.3.3 in Del Moral (2004) to get

E
[
|ηN1 (ϕ)− η1(ϕ)|p

]1/p ≤ 2b(p)1/p
‖ϕ‖∞
N1/2

,

with b(p) <∞, for every p ≥ 1.
Then, assume that the result holds at time n: for every ϕ ∈ Bb(H), every p ≥ 1 and some finite

constant C̃p,n

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

.

The Lp-inequality in (19) is obtained by combining the results of Lemma 2 and Lemma 3 using
Minkowski’s inequality

E
[
|ΨGN

n
(ηNn )(ϕ)−ΨGn

(ηn)(ϕ)|p
]1/p ≤ (C̄p,n + C̈p,n)

‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constants C̄p,n, C̈p,n. Thus, Ĉp,n = C̄p,n + C̈p,n.
Lemma 4 gives

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constants Cp,n, and Lemma 5 gives

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p ≤ C̃p,n+1
‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constant C̃p,n+1.
The result follows for all n ∈ N by induction.

C.2 Proof of Proposition 4

Using standard techniques following Dudley (2002, Chapter 11, Theorem 11.4.1) and Berti et al. (2006)
and given in detail for the context of interest by Schmon et al. (2021, Theorem 4), the result of Corollary 1
can be strengthened to the convergence of the measures in the weak topology.

Proof of Proposition 4. Consider BL(H) ⊂ Bb(H), the Banach space of bounded Lipschitz functions. As
shown in Dudley (2002, Theorem 11.4.1), see also Schmon et al. (2021, Proposition 5) for a more accessible
presentation, BL(H) admits a countable dense subclass C ⊂ BL(H).

For every ϕ ∈ C define Aϕ := {ω ∈ Ω : ηNn (ω)(ϕ) → ηn(ϕ) N → ∞}. Then P (Aϕ) = 1 ∀ϕ ∈ C by
Corollary 1 and

P
(
{ω ∈ Ω : ηNn (ω)(ϕ)→ ηn(ϕ) N →∞ ∀ϕ ∈ C}

)
= P

⋂
ϕ∈C

Aϕ

 = 1.

The result follows from the fact that C is dense in BL(H) and the Portmanteau Theorem (e.g. Dudley
(2002, Theorem 11.1.1)).
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D Convergence of Density Estimates

D.1 Auxiliary Results

Using a version of the Dominated Convergence Theorem for weakly converging measures (Serfozo, 1982;
Feinberg et al., 2020), standard results on kernel density estimation (e.g. Parzen (1962); Cacoullos (1966))
and an argument based on compactness as in Newey (1991) we can establish the following result

Proposition 8. Under (A0), (A1) and (A2), if sN → 0 as N → ∞, the estimator fNn+1(x) in (17)
converges uniformly to fn+1(x) with probability 1 for all n ≥ 1.

Proof. Let us define for N ∈ N

ϕN (t, x) :=

∫
X
K(x′, x)s−dXN |Σ|−1/2S

(
(s2NΣ)−1/2(t− x′)

)
dx′,

and note that the estimator (17) is given by fNn+1(x) = ΨGN
n

(ηNn )
(
ϕN (·, x)

)
for any fixed x ∈ X. Standard

results in the literature on kernel density estimation show that ϕN (·, x) converges to K(·, x) pointwise for
all x ∈ X (e.g. Cacoullos (1966, Theorem 2.1)). Because X is compact, Assumption (A2) ensures that K is
uniformly continuous on X (e.g. Rudin (1964, Theorem 4.19)), then, as argued in Parzen (1962, Theorem
3.A), the sequence ϕN (·, x) converges uniformly to K(·, x) in X (see also Cacoullos (1966, Theorem 3.3)).
As a consequence, the sequence {ϕN (·, x)}N∈N is uniformly equicontinuous and uniformly bounded (e.g.
Rudin (1964, Theorem 7.25)). It follows that {ϕN (·, x)}N∈N is (asymptotically) uniformly integrable in
the sense of Feinberg et al. (2020, Definition 2.6).

Using an argument analogous to that in Proposition 4 we can establish that ΨGN
n

(ηNn ) converges

to ΨGn(ηn) almost surely in the weak topology, then using the fact that the sequence {ϕN (·, x)}N∈N
is asymptotically uniformly integrable and equicontinuous with continuous limit K(·, x), the Dominated
Convergence theorem for weakly converging measures (Feinberg et al. (2020, Corollary 5.2); see also
Serfozo (1982, Theorem 3.3)) implies that

fNn+1(x) = ΨGN
n

(ηNn )
(
ϕN (·, x)

)
→ ΨGn

(ηn) (K(·, x)) = fn+1(x) (31)

almost surely as N →∞ for any fixed x ∈ X.
To turn the result above into almost sure uniform convergence, i.e.

P
(

lim sup
N→∞

{
sup
x∈X
|fNn+1(x)− fn+1(x)| > ε

})
= 0

for every ε > 0, we exploit assumption (A0) and the resulting continuity properties of K.
Under (A0)–(A2), K is uniformly continuous and we have that for any ε > 0, there exists some δε > 0

such that

|fn+1(x)− fn+1(x′)| = |ΨGn
(ηn) (K(·, x)−K(·, x′)) |

≤ sup
z∈X
|K(z, x)−K(z, x′)| ≤ ε

3

whenever ‖x − x′‖2 < δε. Using the definition of ϕN and exploiting again the uniform continuity of K
we also have that for every ε > 0

|ϕN (t, x)− ϕN (t, x′)| ≤
∫
X
|K(u, x)−K(u, x′)|s−dXN |Σ|−1/2S

(
(s2NΣ)−1/2(t− u)

)
du

≤ ε

3

∫
X
s−dXN |Σ|−1/2S

(
(s2NΣ)−1/2(t− u)

)
du ≤ ε

3

if ‖x− x′‖2 < δε. It follows that fNn+1 is uniformly continuous: for any ε > 0

|fNn+1(x)− fNn+1(x′)| = |ΨGN
n

(ηNn )
(
ϕN (·, x)− ϕN (·, x′)

)
|

≤ sup
z∈X
|ϕN (z, x)− ϕN (z, x′)| ≤ ε

3
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whenever ‖x− x′‖2 < δε.
Let B(x, δε) := {x′ ∈ X : ‖x − x′‖2 < δε} denote the ball in X centred around x of radius δε.

Under (A0), X is compact and therefore there exists a finite subcover {B(xj)}Jj=1 of {B(x, δε)}x∈X. Using

the uniform continuity above and the following decomposition, we obtain for all x ∈ B(xj), j = 1, . . . , J
and for all N ,

|fNn+1(x)− fn+1(x)| ≤ |fNn+1(x)− fNn+1(xj)|+ |fNn+1(xj)− fn+1(xj)|+ |fn+1(xj)− fn+1(x)|

≤ ε

3
+ |fNn+1(xj)− fn+1(xj)|+ ε

3

≤ 2

3
ε+ max

j=1,...,J
|fNn+1(xj)− fn+1(xj)|,

from which follows

sup
x∈X
|fNn+1(x)− fn+1(x)| ≤ 2

3
ε+ max

j=1,...,J
|fNn+1(xj)− fn+1(xj)|.

Therefore, to obtain almost sure uniform convergence, it is sufficient to show that

P
({

ω ∈ Ω : max
j=1,...,J

|fNn+1(ω)(xj)− fn+1(xj)| → 0 N →∞
})

= 1.

Let us define Aj := {ω ∈ Ω : fNn+1(ω)(xj) → fn+1(xj) N → ∞}. As a consequence of (31) we have
P(Aj) = 1 for all j = 1, . . . , J and

P
({

ω ∈ Ω : max
j=1,...,J

|fNn+1(ω)(xj)− fn+1(xj)| → 0 N →∞
})

= P

 ⋂
j=1,...,J

Aj

 = 1,

which gives the result.

D.2 Proof of Proposition 5

Proof. A direct consequence of Proposition 8 is the almost sure pointwise convergence of fNn+1 to fn+1.
As both fNn+1(x) and fn+1(x) are probability densities on X, we can extend them to RdX by taking

ψNn+1(x) :=

{
fNn+1(x) x ∈ X
0 otherwise

and ψn+1(x) :=

{
fn+1(x) x ∈ X
0 otherwise

respectively. Both ψNn+1(x) and ψn+1(x) are probability densities on RdX and are measurable functions.
Moreover, ψNn+1(x) converges almost surely to ψn+1(x) for all x ∈ RdX . Hence, we can apply Glick’s
extension to Scheffé’s Lemma (e.g. Devroye and Wagner (1979)) to obtain∫

Rd

|ψNn+1(x)− ψn+1(x)| dx
a.s.→ 0

from which we can conclude∫
X
|fNn+1(x)− fn+1(x)| dx =

∫
X
|ψNn+1(x)− ψn+1(x)| dx ≤

∫
RdX
|ψNn+1(x)− ψn+1(x)| dx→ 0

almost surely as N →∞.
Convergence of the MISE is a consequence of Proposition 8, (A0) and the Dominated Convergence

Theorem

E
[∫

X
|fNn+1(x)− fn+1(x)|2dx

]
≤ λ(X)E

[
‖fNn+1 − fn+1‖2∞

]
dx→ 0

as N →∞, where λ(X) <∞ denotes the Lebesgue measure of X.
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Figure 3: Functional dependence of the variance of the resulting approximation σ2
EMS

(left) and the Kullback–Leibler divergence (33) (right) on the smoothing parameter ε.

E Additional Examples

E.1 Analytically tractable example

Here we consider a toy example involving Gaussian densities for which both the EM recursion (2) and
the EMS recursion (6) can be solved at least implicitly. The Fredholm integral equation we consider is

N (y;µ, σ2
f + σ2

g) =

∫
X
N (x;µ, σ2

f )N (y;x, σ2
g) dx, y ∈ Y

where X = Y = R. The initial distribution f1(x) is N (x;µ, σ2
EMS,1) for some σ2

EMS,1 > 0.

The fixed point fEMS of the EMS recursion (6) with Gaussian smoothing kernelK(x′, x) = N (x;x′, ε2)
is a Gaussian with mean µ and variance σ2

EMS solving

σ6
EMS + σ4

EMS(σ2
g − σ2

h)− 2σ2
EMSε

2σ2
g − 2ε2σ2

g = 0. (32)

We can compute the Kullback–Leibler divergence achieved by fEMS :

KL

(
h,

∫
X
fEMS(x)g(y | ·) dx

)
=

1

2
log

σ2
EMS + σ2

g

σ2
h

+
σ2
h

2(σ2
EMS + σ2

g)
− 1

2
, (33)

as
∫
X fEMS(x)g(y | ·) dx is the Gaussian density N (y;µ, σ2

EMS + σ2
g). The fixed point for the EM

recursion (2) is obtained setting ε = 0. The corresponding value of the Kullback–Leibler divergence is 0.
Figure 3 shows the dependence of σ2

EMS and of the KL divergence on ε.
The conjugacy properties of this model allow us to obtain an exact form for the potential (11)

Gn(xn, yn) =
g(yn | xn)

hn(yn)
=

N (yn;xn, σ
2
g)

N (yn;µ, σ2
g + σ2

EMS,n)
(34)

where σ2
EMS,n is the variance of fn(x).

We use this example to show that the maximum likelihood estimator obtained with the EM itera-
tion (4) does not enjoy good properties, and to motivate the addition of a smoothing step in the iterative
process (Figure 4).

Taking σ2
f = 0.0432 and σ2

g = 0.0452 we have |1 −
∫ 1

0
f(x)dx| < 10−30, thus we can restrict our

attention to [0, 1] and implement the discretized EM and EMS by taking B = D = 100 equally spaced
intervals in this interval. The number of iterations n = 100 is fixed for EM, EMS and SMC. The number of
particles for SMC is N = 104 and ε = 10−2. The smoothing matrix for EMS is obtained by discretization
of the smoothing kernel K(x′, x) = N (x;x′, ε2).

Figure 4 clearly shows that the EM estimate, despite identifying the correct support of the solution,
cannot recover the correct shape and is not smooth. On the contrary, both EMS and SMC give good
reconstruction of f while preserving smoothness.
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Figure 4: Comparison of EM, EMS and SMC with exact potential Gn for the analytically
tractable example.

Then we compare the deterministic discretization (5) of the EMS recursion (6) with the stochastic
one given by SMC with the exact potential (34). To do so, we consider the variance of the obtained
reconstructions, their integrated square error (23), the mean integrated square error for between h and

ĥNn+1(y) =

∫
X
fNn+1(x)g(y | x)dx

and the Kullback–Leibler divergence KL(h, ĥNn+1) (restricting to the [0, 1] interval and computing by
numerical integration) as the value of the smoothing parameter ε increases (Figure 5). We consider one
run of discretized EMS and compare it with 1,000 repetitions of SMC for each value of ε (this choice
follows from the fact that discretized EMS is a deterministic algorithm). The number of particles for SMC
is N = 103 and for each run we draw a sample Y of size 104 from h and resample from it M = min(N, 104)
particles in line 2 of Algorithm 1. Both algorithms correctly identify the mean for every value of ε while
the estimated variances increase from that obtained with the EM algorithm (ε = 0) to the variance of
a Uniform distribution over [0, 1] (Figure 5 top left). Unsurprisingly, the ISE for both fNn+1 and hNn+1

increases with ε (Figure 5 top right and bottom left), showing that an excessive amount of smoothing
leads to poor reconstructions. In particular for values of ε ≥ 0.5 the reconstructions of f become flatter
and tend to coincide with a Uniform distribution in the case of EMS and with a normal distribution
centered at µ and with high variance (≥ 0.08) in the case of SMC. This difference reflects in the behavior
of the Kullback–Leibler divergence, which stabilizes around 133 for EMS while keeps increasing for SMC
(Figure 5 bottom right).

We now consider the effect of the use of the approximated potentials GNn in place of the exact ones Gn
in the SMC scheme. We compare the ISE for fNn+1 given by the SMC scheme with exact and approximated
potentials for values of the number M of samples Y ijn drawn from h at each time step between 1 and
103 with 1,000 repetitions for each M . Through this comparison we also address the computational
complexity O(MN) of the algorithm, with focus on the choice of the value of M . Figure 6 shows the
results for N = 103 and ε = 10−2. The behavior for different values of N and ε is similar. The plot of
ISE(fNn+1) shows a significant improvement when M > 1 but little further improvement for M > 10.

To further investigate the choice of M we compare the reconstructions obtained using the exact and
the approximated potentials for M = 10, M = 102 and M = N = 103. Figure 7 shows pointwise
means and pointwise MSE (24) for 1,000 reconstructions. The means of the reconstructions with the
exact potentials (blue) coincide for the three values of M , the means of the reconstructions with the
approximated potentials (red) also coincide but have heavier tails than those obtained with the exact
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Figure 5: Estimated variance (top left), ISE(fN
n+1) (top right), ISE(hNn+1) (bottom left)

and Kullback–Leibler divergence (bottom right) as functions of the smoothing parameter
ε for the analytically tractable example. The deterministic discretization (5) (red) and
the stochastic discretization via SMC with the exact potentials (34) (blue) are compared.

potentials. The MSE is similar for reconstructions with exact and approximated potentials with the same
value of M . In particular, the little improvement of the MSE from M = 102 to M = 103 suggests that
M = 102 could be used instead of M = N = 103 if the computational resources are limited. Using
M = 102 instead of M = 103 reduces the average runtime by ≈ 80% for both the algorithm using the
exact potentials and that using the approximated potentials.

Silverman et al. (1990, Section 5.4) conjectured that under suitable assumptions the EMS map (6)
has a unique fixed point. This conjecture is empirically confirmed by the results in Figure 8. We run
EM, EMS and SMC with approximated potentials for n = 100 iterations starting from three initial
distributions f1(x): a Uniform on [0, 1], a Dirac δ centered at 0.5 and the solution N (x;µ, σ2

f ). The

number of particles is set to N = 103 and the smoothing parameter ε = 10−1. Both EMS and SMC
converge to the same value of the Kullback–Leibler divergence regardless of the starting distribution. The
speed of convergence of the three algorithms is similar, in each case little further change is observed once
4 iterations have occurred.
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Figure 7: Reconstruction of f(x) = N (x; 0.5, 0.0432) from data distribution h(y) =
N (y; 0.5, 0.0432 + 0.0452). The number of particles N is 103 and the smoothing pa-
rameter ε = 10−2. M = 10, M = 102 and M = N are compared through the pointwise
means of the reconstructions and the pointwise mean squared error (MSE).
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E.2 Motion deblurring

Consider a simple example of motion deblurring where the observed picture h is obtained while the
object of interest is moving with constant speed b in the horizontal direction (Vardi and Lee, 1993;
Lee and Vardi, 1994). The constant motion in the horizontal direction is modeled by multiplying the
density of a uniform random variable on [−b/2, b/2] describing the motion in the horizontal direction and
a Gaussian, N (v; y, σ2), with small variance, σ2 = 0.022, describing the relative lack of motion in the
vertical direction

g(u, v | x, y) = N (v; y, σ2)Uniform[x−b/2,x+b/2](u).

We obtain the corrupted image in Figure 9b from the reference image in Figure 9a using the model
above with constant speed b = 128 pixels and adding multiplicative noise as in Lee and Vardi (1994,
Section 6.2). Figure 9b is a noisy discretization of the unknown h(u, v) on a 300×600 grid. The addition
of multiplicative noise makes the model (1) misspecified, but still suitable to describe the deconvolution
problem when the amount of noise is low. For higher levels of noise, the noise itself should be taken into
account when modeling the generation of the data corresponding to h.

We compare the reconstruction obtained using the SMC scheme with that given by the deconvlucy

function in MATLAB© (The MathWorks Inc., 1993), an efficient implementation of the Richardson–
Lucy algorithm (i.e. EM for Poisson counts) for image processing which considers the data image as a
discretization of the unknown density h into bins. The same image is used to draw the samples necessary
for the SMC implementation.

The smoothing parameter is ε = 10−3, and the number of particles is N = 5, 000. These values
are chosen to achieve a trade-off between smoothing and accuracy of the reconstruction and to keep the
runtime under three minutes on a standard laptop.

The distance between the reconstructions and the original image is evaluated using both the ISE (23)
and the match distance, i.e. the L1 norm of the cumulative histogram of the image, a special case of the
Earth Mover’s Distance for gray-scale images (Rubner et al., 2000). SMC gives visibly smoother images
and is better at recovering the shape of the original image (ISE(fNn+1) is 1.4617 for SMC and 2.0863 for
RL). In contrast, the RL algorithm performs better in terms of match distance (0.0054 for RL and 0.0346
for SMC).
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(a) Original sharp image (b) Blurred image with 0.5% multi-
plicative noise

(c) Reconstruction with RL (d) Reconstruction with SMC

Figure 9: Reference image, blurred noisy data distribution and reconstructions for the
motion deblurring example. Each scheme used 100 iterations; the SMC scheme used
N = 5, 000 particles.

F Additional Results for PET Example

The reconstruction of cross-sectional images from projections given by PET scanners is modeled by the
Radon transform (Radon, 1986)

h(φ, ξ) =

∫ +∞

−∞
f(ξ cosφ− t sinφ, ξ sinφ+ t cosφ)dt, (35)

for (φ, ξ) ∈ Y = [0, 2π]×[−R,R], where the right hand side is the line integral along the line with equation
x cosφ+y sinφ = ξ. We rewrite (35) as a Fredholm integral equation (1) modelling the alignment between
the projections onto (φ, ξ) and the corresponding location (x, y) in the reference image using a Gaussian
distribution with small variance (in the experiments we use σ2 = 0.022)

h(φ, ξ) =

∫
X
N
(
x cos(φ) + y sin(φ)− ξ; 0, σ2

)
f(x, y)dxdy,

where X = [−r, r]2. The kernel g(φ, ξ | x, y) = N
(
x cos(φ) + y sin(φ)− ξ; 0, σ2

)
is not a Markov kernel

(in the sense that it does not integrate to 1 for fixed (x, y)), however, we can use the re-normalization
described in Chae et al. (2018, Section 6) to obtain the Markov kernel

g̃(φ, ξ | x, y) =
g(φ, ξ | x, y)

C(x, y, σ2)

where C(x, y, σ2) is the normalizing constant for each fixed (x, y) ∈ X

C(x, y, σ2) =

∫
Y
g(φ, ξ | x, y)dφ dξ

=

∫ 2π

0

1

2

[
erf

(
R− x cosφ− y sinφ√

2σ

)
+ erf

(
R+ x cosφ+ y sinφ√

2σ

)]
dφ

with erf the error function. Recalling that R = 92, φ ∈ [0, 2π] and (x, y) ∈ [−64, 64]2 (i.e. we want to
reconstruct a 128× 128 pixels image) and selecting σ = 0.02 gives∣∣∣∣12

[
erf

(
R− x cosφ− y sinφ√

2σ

)
+ erf

(
R+ x cosφ+ y sinφ√

2σ

)]
− 1

∣∣∣∣ < 10−17
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for all φ ∈ [0, 2π] and (x, y) ∈ [−64, 64]2. The above shows that, for σ2 sufficiently small (e.g. σ2 = 0.022

as we use in our experiments), i.e. if the Gaussian distribution appropriately describes the alignment
onto x cosφ+ y sinφ = ξ, ∣∣C(x, y, σ2)− 2π

∣∣ < 10−17

for all (x, y) ∈ X. Therefore we obtain, up to a negligible approximation, an integral equation satisfy-
ing (A0)–(A1) dividing h by 2π:

h(φ, ξ)

2π
=

∫
X

N
(
x cos(φ) + y sin(φ)− ξ; 0, σ2

)
2π

f(x, y)dxdy.

Figure 10 shows relative error and ISE for the reconstructions in Figure 2; the ISE between the original
image and the reconstructions at iteration 50 to 100 stabilizes below 0.08. The stopping criterion (18)
is a trade-off between Monte Carlo error and convergence to a fixed point. In particular, when ζ(fNk ) =∫
X |f

N
k (x)|2dx, larger values of N will make the r.h.s. of (18) smaller which corresponds to a smaller

tolerance to assess the convergence to the fixed point. On the other hand, small values of N will give
poorer reconstructions and might require more iterations n to satisfy the stopping criterion (18). For
instance, for N = 1, 000 the stopping criterion is not satisfied in 100 iterations despite the r.h.s. of (18)
being of order 10−3 against the 10−5 order when N = 20, 000.
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Iteration 1

ISE = 0.4432

Iteration 5

ISE = 0.1131

Iteration 10

ISE = 0.0708

Iteration 15

ISE = 0.0807

Iteration 20

ISE = 0.0755

Iteration 50

ISE = 0.0822

Iteration 70

ISE = 0.0782

Iteration 100

ISE = 0.0748

Figure 10: Relative error for the reconstructions in Figure 2. The ISE at each iteration
is given in the captions and stabilises below 0.08.
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G Effect of Lower Bound on Gaussian Mixture Ex-

ample

Consider the example in Section 4.1 and instead of defining the integrals on X = Y = R take X = Y =
[0.4− a, 0.4 + a] with a→∞ so that we obtain the integral equation

h̃(y) =

∫
X
f̃(x)g̃(y | x)dx

with

h̃(y) =
h(y)

1
3C(a, 0.3, 0.0452 + 0.0152) + 2

3C(a, 0.5, 0.0452 + 0.0432)

g̃(y | x) =
g(y | x)

C(a, x, 0.0452)

f̃(x) =
f(x)C(a, x, 0.0452)

1
3C(a, 0.3, 0.0452 + 0.0152) + 2

3C(a, 0.5, 0.0452 + 0.0432)

where

C(a, µ, σ) :=

∫ 0.4+a

0.4−a
N (x;µ, σ2)dx =

1

2

(
erf

(
(a+ 0.4− µ)√

2σ2

)
− erf

(
(0.4− a− µ)√

2σ2

))
.

In any of the intervals [0.4−a, 0.4 +a] assumption (A1) is satisfied, in particular g̃ is bounded below.
We study the behaviour of the reconstructions as a → ∞ to check the influence of the lower bound on
g on the accuracy of the reconstructions measured through the average ISE in (23) over 100 repetitions.
The algorithmic set up is the same of Section 4.1. Figure 11 show that for a ∈ [0.2, 1] (which corresponds
to X = Y = [0.2, 0.6] up to X = Y = [−0.6, 1.4]) the average reconstruction error is not influenced by the

lower bound on g, the behaviour for larger values of a is equivalent since |1−
∫ 1.4

−0.6 f(x)dx| < 10−30.

H Scaling with dimension

To explore the scaling with the dimension dX of the domain of f of the discretized EMS (5) and the SMC
implementation of EMS we revisit the Gaussian mixture model in Section 4.1 and extend it to higher
dimension

f(x) =
1

3
N (x; 0.3 · 1dX , 0.072IdX) +

2

3
N (x; 0.7 · 1dX , 0.12IdX),

g (y | x) =N (y;x, 0.152IdX),

h(y) =
1

3
N (y; 0.3 · 1dX , (0.072 + 0.152)IdX) +

2

3
N (y; 0.7 · 1dX , (0.12 + 0.152)IdX),

where X = Y = RdX and 1dX and IdX denote the unit function in RdX and the dX × dX identity matrix,
respectively. In particular, note that for dX up to 5 at least 97% of the mass of f is contained in [0, 1]dX .
We do not consider DKDE as these estimators approximate each marginal of f separately and then use
the product of the marginals as approximation for f . In the particular mixture model we consider, this
results in reconstructions with additional modes due to the underlying independence assumption (e.g.
reconstructions of the 2-dimensional model in Figure 12 present two additional modes at (0.7, 0.3) and
(0.3, 0.7)).

First, we take dX = 2 and investigate the minimum number of bins/particles necessary to achieve
reasonably good reconstructions. We consider three particle sizes N = 102, 502, 1002 and set the total
number of bins B ≈ N so that we obtain ≈ N1/2 equally spaced bins for each dimension. We stop iterating
after 30 steps since we observed that convergence occurs within 30 iterations, the value of ε = 10−3 is fixed
and used for both the smoothing kernel and the smoothing matrix. The initial distribution is a uniform
over [0, 1]2 and we assume we have a sample Y of size 106 from h, so that M = N . This corresponds to the
highest computational cost for Algorithm 1 but as observed in Appendix E.1 smaller values of M could
be considered and would reduce the computational cost of running the SMC implementation of EMS.
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Figure 11: Influence of the lower bound (LB) on g on average reconstruction accuracy
over 100 repetitions. The solid lines represent the average ISE(fN

n+1) for a =∞ while the
dashed lines the average ISE(fN

n+1) for finite a.

For small values of B the runtimes of EMS and SMC are similar, however the reconstructions obtained
with EMS are poor and low resolution due to the very coarse discretization (Figure 12-left panel); on the
contrary, the presence the kernel density estimator (17) guarantees smooth reconstructions even when
the particle size is small (Figure 12-middle panel). In addition, as the number of particles N increases the
accuracy of the reconstructions provided by SMC keeps increasing, while the EMS reconstructions do not
improve as quickly, a phenomenon we already observed for the one-dimensional example in Section 4.1.
For N = B ≥ 100 the runtime of SMC is roughly 30% less than that of EMS with the accuracy of SMC
being always larger than that of EMS.

Since the accuracy of kernel density estimators decreases when the dimension increases (Silverman,
1986) and is primarily used in this work for visualization and human interpretation (which becomes less
informative in higher dimension, with the exception of low dimensional projections), to compare the
performances of EMS and SMC in dimension dX ≥ 2 we focus on approximating expectations w.r.t.
ηn+1 of appropriate test functions ϕ, in this case, in fact, Proposition 3 gives the rate of convergence in
terms of the number of particles N . In particular, we consider mean, variance, the probability of the
region [0, 0.5]dX and the probability of a hyper-sphere of radius 0.3 around the mode at (0.3, . . . , 0.3).
We compare three particle sizes N = 102, 103, 104 and obtain the number of bins for each dimension as
dN1/dXe so that the total number of bins, B = dN1/dXedX , where d·e denotes the ceiling function, roughly
matches N . This choice allows us to compare EMS and SMC reconstructions which require roughly the
same runtime (Table 2). The SMC implementation in generally better at recovering the variance and
the probability of the region [0, 0.5]dX . For small values of N , B, both SMC and EMS have larger errors
with discretized EMS achieving better crude estimates. However, as N , B increase SMC is consistently
better at approximating the four quantities considered, in particular, in the case of mean and variance
the estimates are at least one order of magnitude more accurate. This is achieved at a computational
cost which is always smaller than that of EMS and that could be in principle reduced by considering
smaller values of M .
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102

EMS

runtime < 1s, ISE = 0.56

SMC

runtime < 1s, ISE = 0.91

Truth

502

runtime < 1m, ISE = 0.65 runtime < 1m, ISE = 0.33

1002

runtime ≈ 7m, ISE = 0.69 runtime ≈ 5m, ISE = 0.32

Figure 12: Reconstructions of a 2-dimensional mixture of Gaussian obtained with EMS
and SMC. The number of bins/particles increases from 102 to 1002. Runtime and accuracy
are reported too.

Table 2: Mean squared error over 100 repetitions for mean, variance, probability of the
lower quadrant and probability of a circle around the mode for the dX-dimensional Gaus-
sian mixture model. Runtimes are reported too. Best values are in bold.

mean variance P(�) P(©) log10(runtime / s)

dX = 2
EMS - B = 102 1.38e-04 4.96e-05 5.30e-02 7.04e-03 -1.71
SMC - N = 102 3.87e-04 1.26e-05 4.90e-02 1.02e-02 -2.02
EMS - B = 322 1.42e-04 5.31e-05 5.17e-02 5.86e-03 1.28
SMC - N = 103 4.29e-05 5.81e-06 4.69e-02 6.14e-03 0.94
EMS - B = 1002 1.42e-04 5.38e-05 5.15e-02 6.11e-03 5.31
SMC - N = 104 3.84e-06 4.51e-06 4.67e-02 5.68e-03 5.11

dX = 3
EMS - B = 53 2.53e-04 1.26e-04 1.46e-01 8.59e-03 -1.47
SMC - N = 102 3.76e-04 3.23e-05 7.19e-02 3.92e-03 -2.06
EMS - B = 103 2.00e-04 5.75e-05 9.00e-02 2.42e-03 1.40
SMC - N = 103 4.62e-05 8.50e-06 8.24e-02 1.36e-03 1.08
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continued from previous page
mean variance P(�) P(©) log10(runtime / s)

EMS - B = 223 2.04e-04 6.12e-05 8.83e-02 1.64e-03 5.66
SMC - N = 104 3.53e-06 6.68e-06 8.23e-02 9.24e-04 5.30

dX = 4
EMS - B = 44 1.98e-04 1.55e-05 1.22e-01 1.16e-03 -0.65
SMC - N = 102 4.77e-04 9.77e-05 7.35e-02 4.41e-03 -2.08
EMS - B = 64 2.43e-04 4.02e-05 1.09e-01 7.80e-04 1.70
SMC - N = 103 3.45e-05 1.80e-05 9.13e-02 5.47e-04 0.95
EMS - B = 104 2.60e-04 6.59e-05 1.03e-01 5.54e-04 5.32
SMC - N = 104 4.10e-06 8.58e-06 9.45e-02 2.38e-04 5.12

dX = 5
EMS - B = 35 5.66e-05 2.67e-04 2.12e-01 1.27e-02 -0.56
SMC - N = 102 6.59e-04 1.34e-04 5.10e-02 1.10e-02 -1.96
EMS - B = 45 2.42e-04 2.08e-05 1.29e-01 7.59e-04 1.51
SMC - N = 103 5.57e-05 4.54e-05 7.84e-02 4.49e-04 1.14
EMS - B = 75 2.82e-04 5.71e-05 1.36e-01 2.09e-04 6.63
SMC - N = 104 3.39e-06 1.27e-05 9.57e-02 7.43e-05 5.36
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