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Computation Offloading for Edge-Assisted
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Abstract—When applying machine learning techniques to the
Internet of things, aggregating massive amount of data seriously
reduce the system efficiency. To tackle this challenge, a distributed
learning framework called federated learning has been proposed.
Due to the parallel training structure, the performance of
federated learning suffers from the straggler effect. In this
paper, to mitigate the straggler effect, we propose a novel
learning scheme, edge-assisted federated learning (EAFL), which
utilizes edge computing to reduce the computational burdens for
stragglers in federated learning. It enables stragglers to offload
partial computation to the edge server, and leverages the server’s
idle computing power to assist clients in model training. The
offloading data size is optimized to minimize the learning delay
of the system. Based on the optimized data size, a threshold-based
offloading strategy for EAFL is proposed. Moreover, we extend
EAFL to a dynamic scenario where clients may be offline after
several update rounds. By grouping clients into different sets, we
formulate the new EAFL delay optimization problem and derive
the corresponding offloading strategy for the dynamic scenario.
Simulation results are presented to show that EAFL has lower
system delay than the original federated learning scheme.

Index Terms—Computation offloading, delay analysis, edge
computing, federated learning.

I. INTRODUCTION

To analyze data and extract useful information for intelligent
applications, machine learning techniques have been widely
applied in the Internet of things (IoT) scenarios [1], [2].
However, the data distributed at the network edge is exploding
exponentially. It has been predicted that there will be 30 billion
networked devices by 2023, generating nearly 100 zettabytes
of distributed data [3]. This will incur a huge system delay for
centralized machine learning schemes, which aggregate data
from a massive number of distributed devices for training.

To cope with the delay problem, a novel distributed learning
framework called federated learning has been proposed in [4].
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In federated learning, each participating device (referred to as
client) performs model training based on its local dataset, and
only the model parameters are uploaded, which avoids the
raw data aggregation. Many research efforts have been made
in federated learning. In [5], the authors provided an effective
strategy to improve the learning performance on non-IID data
by distributing a small subset of globally shared data among
clients. The convergence bound of federated learning was ana-
lyzed in [6], based on which an adaptive parameter aggregation
frequency control algorithm was proposed. The work of [7]
presented a scalable production system for federated learning
to tackle the practical problems, such as client availability
and unreliable client connectivity. In [8], to address statistical
challenges (e.g., unbalanced data) and system challenges (e.g.,
fault tolerance) of federated learning, the authors proposed
a system-aware optimization method based on the multi-task
learning framework. In [9], the authors applied federated learn-
ing to vehicular networks, where a selective model aggregation
approach was proposed to abandon vehicular clients with low
data quality and power capability. To further improve the
federated learning efficiency, various methods for reducing the
communication overhead of parameter aggregation were pro-
vided in [10]–[12]. To optimize the learning performance given
a fixed resource budget, different client scheduling policies for
federated learning were proposed in [13]–[15]. Since the client
dataset information can still be revealed through analyzing
the distributed model, some privacy preservation strategies for
federated learning like differential privacy were investigated
in [16]–[18].

Although the parallel training structure greatly improves
the system efficiency, the performance of federated learning
is constrained by slow clients, i.e., the straggler effect [19],
[20]. To mitigate the straggler effect in federated learning,
researchers have proposed two approaches: asynchronous up-
date [21], [22] and coded computation [23], [24]. For the
asynchronous update approach, each client uploads the model
parameter to the server immediately after training without
waiting for other clients. In [21], the authors proposed an
asynchronous online federated learning framework, where
clients performed learning with continuous streaming local
data in an asynchronous way. In [22], the authors designed
a novel asynchronous federated optimization algorithm and
provided some strategies to reduce the error caused by the
asynchronous update. For the coded computation approach, the
core idea is to embed computation redundancy to compensate
the performance degradation caused by stragglers. The work
in [23] applied coded computation to federated learning and
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proposed to share the coded training data with the server to
compensate the delayed straggler updates, while also preserv-
ing the data privacy well. To against straggling communication
links for the gradient aggregation in distributed learning, a
hierarchical aggregation structure was proposed in [24], where
the authors also applied two coding approaches: repetition
coding and minimum distance separable coding.

On the other hand, multi-access edge computing (MEC),
formerly mobile edge computing, has attracted great attention
from both academia and industry. MEC is defined as a
platform that harvests the idle edge computation power to
perform computing tasks for mobile devices [25]. With the
MEC technology, stragglers in federated learning can offload
computation to the edge server to relieve their computational
burdens and reduce their update delay. Various works of
MEC have discussed the computation offloading strategy for
different application scenarios [26]–[30]. In [26], the authors
proposed a one-dimensional computation offloading policy
searching algorithm based on the task buffer queueing state
and the channel characteristic. In [27], the authors extended
the offloading problem to a multi-user scenario and adopted
a game theoretic approach for achieving efficient offloading.
The partial offloading problem was investigated in [28], where
the authors provided both energy-optimal and delay-optimal
offloading strategies using dynamic voltage scaling. The partial
offloading problem was also extended to a multi-user scenario
in [29], where the authors presented energy-efficient resource
allocation policies for TDMA and OFDMA systems. The
offloading for practical asynchronous MEC systems with non-
identical task-arrivals and deadlines was investigated in [30],
where the authors derived the optimal data-partitioning and
time-division policies for energy minimization.

Many existing works have applied federated learning in
different aspects of the MEC system, such as guiding the
network resource allocation [31], optimizing the network
routing [32], or reducing the communication overhead of
learning tasks [33]. However, in existing works, applying MEC
offloading to federated learning for straggler effect mitigation
is largely ignored. This will bring up two challenges. Firstly,
an edge-assisted federated learning design in which the server
also performs model training is missing. Related works on
federated learning usually take the edge server as a parameter
aggregator or a scheduler. The powerful computing ability
of the server has not been applied in the model training.
Secondly, the existing offloading strategy is not suitable for
edge-assisted federated learning, as they are mainly derived
based on the general computing task model, which is different
from federated learning due to the additional iterative process.

Motivated by the above observations, we propose a novel
edge-assisted federated learning (EAFL) scheme. In EAFL,
clients offload partial computation to an edge server, and the
server then participates in the model training together with
all clients. By offloading, the straggler effect caused by the
parallel training structure is mitigated, which improves the
overall efficiency of federated learning. The performance of
EAFL is analyzed in terms of system delay. We formulate an
EAFL delay minimization problem to optimize the offloading
data size for each client. According to the solution of the

problem, we derive a threshold-based offloading strategy for
EAFL. The strategy determines non-offloading and optimal
partial offloading for clients with offloading decision indicator
below and above a given threshold, respectively. Furthermore,
considering the unstable nature of clients in federated learning,
we also extend EAFL to a dynamic scenario where some
clients may be offline after several update rounds. Using
grouping, an offloading strategy for the dynamic scenario is
also derived by solving the corresponding delay minimization
problem. The main contributions of this paper are summarized
as follows:
• The EAFL design and delay analysis: A new EAFL

design is proposed from the perspectives of training
procedure and loss function. For the new design, we
analyze its system delay.

• Offloading strategy for EAFL: A delay minimization
problem is formulated under the EAFL framework. By
solving the minimization problem, a threshold-based of-
floading strategy is proposed for EAFL.

• EAFL for dynamic scenarios: We extend EAFL to a
dynamic scenario. By grouping dynamic clients to dif-
ferent client sets, we formulate the delay minimization
problem for dynamic EAFL and derive the corresponding
offloading strategy.

The rest of the paper is organized as follows. Section II will
introduce the system design of EAFL. Section III will present
the EAFL delay optimization problem and the offloading
strategy for EAFL. The extension to dynamic scenarios will
be analyzed in Section IV. Simulation results will be given in
Section V, followed by the conclusion in Section VI.

II. EDGE-ASSISTED FEDERATED LEARNING

Consider a distributed machine learning scenario with a
server at the network edge and K clients, denoted by a set
K = {1, 2, · · · ,K}. Each client k stores a local dataset Dk
and its size is denoted by Dk. In the dataset, a data sample i
usually consists of the input vector xi (e.g., the pixels of an
image) and the output scalar yi (e.g., the label of the image). In
a typical machine learning problem, for sample i, the task is to
find the model parameter w that characterizes the relationship
between xi and yi by minimizing the loss function fi(w). The
loss function captures the error of the model on the training
data, for example, 1

2 ||yi − wTxi||2 for linear regression and
max{0, 1− yiwTxi} for support vector machine.

Due to the inherent complexity of most machine learning
models, minimizing the loss function is usually performed
by using gradient-descent techniques. In this paper, following
the method in [4], we take the mini-batch gradient descent
algorithm as our model training algorithm. In the distributed
scenario, to get a final trained model, there are two existing
learning schemes: edge learning and federated learning. In this
section, we will briefly discuss these two learning schemes
before proposing edge-assisted federated learning design.

A. Edge Learning

As illustrated in Fig. 1(a), edge learning requires all clients
to offload their local datasets to the edge server, who will
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Fig. 1. Two learning schemes in distributed scenarios.

then perform model training based on the aggregated dataset.
We define D = ∪kDk and D =

∑
k∈KDk. The global loss

function at the server is defined as

F (w) =
1

D

∑
i∈D

fi(w). (1)

The learning problem in this scheme is to find

w∗ = arg min
w

F (w). (2)

From the procedure of edge learning, its system delay
consists of the data offloading delay and the model training
delay. The communication links from K clients to the server
are assumed to be orthogonal. Then the system delay of edge
learning can be denoted as

TEL = max
k∈K

Dk

B log2(1 + pkgk)
+
W

es
, (3)

where the first expression on the right side of the equation
is the data offloading delay and the second expression on the
right side denotes the model training delay in the server. In the
data offloading delay, B denotes the bandwidth for each link,
pk denotes the transmission power allocated to client k, gk =
g̃k/N0, N0 is the variance of complex white Gaussian channel
noise, g̃k = ν|hk|2 is client k’s channel gain, ν is large-scale
fading path loss parameter and hk is the channel response
that is assumed to be constant during the data offloading. In
the model delay, W denotes the total computation (i.e., the
number of CPU cycles) of the server during the model training
phase and es is the CPU’s frequency of the sever. According
to the mini-batch gradient descent algorithm used in [4], the
computation W is proportional to the dataset size D and is
given as

W = NeBnCBs = Ne

(
D

Bs

)
CBs = NeCD, (4)

where Ne is the total epoch number, Bn denotes the iteration
number (mini-batch number) in one epoch, Bs is the mini-
batch size (training data size of one iteration) and the constant
C denotes the number of CPU cycles required for training 1-
bit data.

B. Federated Learning

In federated learning, as illustrated in Fig. 1(b), clients
perform local updates based on their local datasets and only
their model parameters are uploaded to the server. The server

Data Offloading Model Update

Global Model

Local Update

Update

Fig. 2. Illustration of the EAFL design.

aggregates these updated parameters to obtain a global model
and then broadcasts it back to clients for the next local
update. Before the parameter aggregation, each client may
perform one or multiple epochs of model training during the
local update phase and we define this duration as a round.
For client k, the loss function is

Fk(wk) =
1

Dk

∑
i∈Dk

fi(wk), (5)

where wk denotes client k’s local model parameter. According
to the FedAvg algorithm proposed in [4], the global model
parameter is defined as

w =
1

D

∑
k∈K

Dkwk. (6)

For federated learning, the system delay is composed of the
local update delay, the parameter aggregation delay and the
model broadcast delay. After each round of local update, we
reserve a fixed time slot tw for parameter aggregation and
model broadcast. The time slot can be adjusted according
to the chosen model size. Since each client independently
performs local update, the system delay of federated learning
can be denoted as:

TFL = N max
k∈K

Wk

ek
+Ntw, (7)

where N denotes the total rounds in federated learning, Wk

denotes the computation of client k per round, ek is the CPU’s
frequency of client k and the first expression on the right
side of the equation denotes client k’s total update delay. The
computation of client k in a round is proportional to its dataset
size and is given as

Wk = τBknCBs = τ

(
Dk

Bs

)
CBs = τCDk, (8)

where τ denotes the epoch number per round and Bkn is the
batch number of client k.

C. The Proposed Scheme: EAFL

From the perspective of system delay, the performance of
the above two schemes is mainly limited by communication or
computation. For edge learning, uploading the whole datasets
requires huge communication resources and relies on the
communication environment. For federated learning, the client
with low computational capability or large dataset size will
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TABLE I
SUMMARY OF MAIN NOTATIONS IN EAFL.

Notation Description

K, K Total client set, size of K
Ki, Ki Client set in the i-th update segment of

dynamic EAFL, size of Ki

Dk, Lk Dataset size of client k, offloaded data size of
client k

Dk,i, Lk,i Dataset size of client k in set Ki, offloaded
data size of client k in set Ki

w, wk, ws Global model parameter, model parameter of
client k, model parameter of the server

f(i), Fk, F Loss function of sample i, loss function in
client k, loss function in the server

P , C, B Total power constraint, number of CPU
cycles required for training 1-bit data,
transmission bandwidth for each link

τ , ε epoch number per round, target training loss
tok, tuk , ts, tw Offloading delay of client k, update delay of

client k, server update delay, time slot for
parameter aggregation and model broadcast

N , Ni Total training rounds, offline round of
segment i in dynamic EAFL

pok, puk Transmission power, computational power
allocated to client k

pok,i, p
u
k,i Transmission power, computational power

allocated to client k in set Ki

gk, ζk Equivalent channel gain, effective capacitance
coefficient of client k

gk,i, ζk,i Equivalent channel gain, effective capacitance
coefficient of client k in set Ki of dynamic
EAFL

ek, es CPU frequency of client k, CPU frequency of
the server

α, β Parameters related to the federated learning
configurations and data distribution

a, b, d Variables related to the offloading data size
â, b̂, d̂j Variables related to the offloading data size in

dynamic EAFL
ϕk, Π Offloading decision indicator of client k,

offloading decision threshold
ϕk,i, Πi Offloading decision indicator of client k,

offloading decision threshold in set Ki in
dynamic EAFL

slow down the overall performance, i.e., there exists the
straggler effect. These observations motivate us to propose
edge-assisted federated learning (EAFL), which achieves a
tradeoff between edge learning and federated learning.

As shown in Fig. 2, EAFL consists of two phases: data
offloading and model update. Each client k first offloads partial
data Lk (Lk denotes its size) to the server for processing.
During the model update phase, the remaining data in each
client will be used to update the local model. Meanwhile, the
server will utilize the aggregated data to update the model
in itself. Note that the model update in the server needs to
wait until the data offloading phase is completed. Hence, the
model update phase is set to be performed after the data
offloading in the proposed EAFL. Although the client model
update in the first round can be performed in parallel with
the data offloading, we ignore the slight delay changes caused

by the parallel processing and assume that the local update is
performed after the computation offloading.

For the model in the server, the loss function defined on the
offloaded data is given as

F (ws) =
1

L

∑
i∈L

fi(ws), (9)

where ws denotes model parameter in the server, L = ∪kLk
denotes the set of all offloaded data and L =

∑
k∈K Lk is its

size. For the local model in client k, the loss function defined
on its remaining data is

Fk(wk) =
1

Dk − Lk

∑
i∈Dk\Lk

fi(wk). (10)

After the local update in clients and the sever, there also exists
a global aggregation process, where the server aggregates all
client parameters and its own model parameters to obtain a
global model and broadcast it to all clients. We define the
global model parameter as

w =
1

D

(∑
k∈K

(Dk − Lk)wk + Lws

)
. (11)

Under the EAFL framework, the server and all clients are
required to perform the model training during the model
update phase. Compared with the original federated learning
proposal, EAFL adds the training data offloading and the
model training in the server.

Remark 1 (The Convergence Performance of EAFL). In
our EAFL design, the server assists clients to update model
together, which is similar to adding a new client on the basis
of the original federated learning (ignoring communication
aspects such as data offloading). Hence, the convergence per-
formance of EAFL is close to federated learning. In particular,
for the case of τ = 1 and full-batch size, the convergence
performance of EAFL is equivalent to the centralized gradient
descent algorithm. After the parameter broadcast in each
global aggregation phase, we have wk(t) = ws(t) = w(t),
where t = 0, 1, 2 · · · denotes the local update index. According
to (11) and the linearity of the gradient operator, we have

w(t) =
1

D

[∑
k∈K

(Dk − Lk)wk(t) + Lws(t)

]

=

∑
k∈K(Dk − Lk)(wk(t− 1)− η∇Fk(wk(t− 1)))

D

+
L(ws(t− 1)− η∇Fs(ws(t− 1)))

D

=

∑
k∈K(Dk − Lk)w(t− 1) + Lw(t− 1)

D

−
η
[∑

k∈K(Dk − Lk)∇Fk(w(t− 1)) + L∇Fs(w(t− 1))
]

D

=

∑
k∈KDkw(t− 1)

D

− η∇
[∑

k∈K(Dk − Lk)Fk(w(t− 1)) + LFs(w(t− 1))

D

]
=w(t− 1)− η∇F (w(t− 1)).

(12)
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Fig. 3. Illustration of EAFL delay.

One can observe that the above recurrence relation is same
as that in the centralized gradient descent algorithm.

Remark 2 (The Advantages of EAFL). On the one hand,
by offloading partial data to the server, EAFL can effectively
relieve the computational burdens at clients and mitigate the
straggler effect in federated learning. On the other hand,
unlike edge learning, EAFL does not need to offload the
whole dataset, avoiding the large communication overhead.
Therefore, EAFL can achieve a tradeoff between edge learning
and federated learning to take advantage of their respective
benefits.

III. OFFLOADING STRATEGY FOR EAFL
In this section, we will first analyze the system delay of

EAFL. Based on the analysis, we will formulate a power-
constrained delay minimization problem. By solving the op-
timization problem, we will derive an offloading strategy for
EAFL. Note that the analysis of EAFL delay is based on the
assumptions in edge learning and federated learning discussed
in Section II.

A. Problem Formulation

As illustrated in Fig. 3, EAFL delay TEAFL consists of two
kinds of delay, i.e., data offloading delay To and model update
delay Tu. We have

TEAFL = To + Tu. (13)

The offloading delay is denoted as

To = max
k∈K

tok, (14)

where tok is the offloading delay of client k. Referring to (3),
we have

tok =
Lk
Rk

=
Lk

B log2(1 + pokgk)
, (15)

where pok is the transmission power allocated to client k. The
model update delay in EAFL is given as

Tu = N max

{
max
k∈K

tuk , ts

}
+Ntw, (16)

where tuk is client k’s update delay, ts is the server update delay
and tw denotes the fixed time slot for parameter aggregation
and model broadcast. Referring to (8), we have

tuk =
τC(Dk − Lk)

ek
(17)

and
ts =

τC
∑
k∈K Lk

es
, (18)

where ek denotes client k’s CPU frequency and es denotes the
server’s CPU frequency.

For client k, as in [34], the relationship between computa-
tional power puk and frequency ek can be calculated as

ek =

√
puk
ζk
, (19)

where ζk > 0 is client k’s effective capacitance coefficient
depending on chip architecture. As shown in [35], the number
of rounds N required to attain a certain training loss ε in
federated learning can be calculated as N = r(ε), where r(ε)
is defined as

r(ε) =

[(
1 +

1

K

)
τα+

β

τ

]
1

ε
. (20)

α and β are parameters related to the federated learning
configurations and data distribution. According to [35], the
magnitude of β reflects the heterogeneity of the data distri-
bution. A large β means a large degree of non-IID. Since the
values of α and β can not be derived during the EAFL process,
we refer to [36] and obtain the parameters by extrapolation.
More specifically, based on the historical data of federated
learning, we establish the relationship between the learning
rounds and data characteristics, and then perform curve fitting
to derive the values of α and β.

Assume the total transmission power and the total compu-
tational power of clients in EAFL are both constrained by
P . According to (13)-(20), we can formulate the EAFL delay
minimization problem as follows.

P1 : min
Lk,pok,p

u
k

{
max
k∈K

Lk
B log2(1 + pokgk)

+ r(ε)tw

+r(ε)τC max

{
max
k∈K

(Dk − Lk)

√
ζk
puk
,

∑
k∈K Lk

es

}}
s.t. C1 :

∑
k∈K

pok ≤ P,

C2 :
∑
k∈K

puk ≤ P,

C3 : pok ≥ 0, ∀k ∈ K,
C4 : puk ≥ 0, ∀k ∈ K,
C5 : 0 ≤ Lk ≤ Dk, ∀k ∈ K.

(21)

It can be verified that P1 is a non-convex optimization
problem since the objective function in P1 is not jointly convex
with respect to the optimization variables. For tractability, we
decouple P1 into a master problem and two subproblems. We
take Lk as the coupling variable and derive two subproblems
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by fixing Lk. The subproblem P(1)
sub optimizes the transmission

power pok as

P(1)
sub : min

pok
max
k∈K

Lk
B log2(1 + pokgk)

s.t. C1,C3.

(22)

The subproblem P(2)
sub optimizes the computational power puk

as

P(2)
sub : min

puk
max

{
max
k∈K

(Dk − Lk)

√
ζk
puk
,

∑
k∈K Lk

es

}
s.t. C2,C4.

(23)

The master problem only needs to optimize Lk and is de-
scribed as

Pmaster : min
Lk

{T ∗1 (Lk) + r(ε)tw + r(ε)τCT ∗2 (Lk)}

s.t. C5,
(24)

where T ∗1 (Lk) and T ∗2 (Lk) are calculated using the derived
pok and puk from P(1)

sub and P(2)
sub, respectively.

B. Solution to the Subproblems
In what follows, we will solve the two above subproblems.
1) : The objective function of P(1)

sub is the pointwise max-
imum of convex functions. Combining it with linear con-
straints, P(1)

sub is a convex optimization problem. To solve it,
we first convert it into a epigraph form as

min
pok,T

T

s.t.
Lk

B log2(1 + pokgk)
≤ T, ∀k ∈ K,

C1, C3,

(25)

where T is an auxiliary variable and T ∗1 (Lk) = T ∗. Since the
converted problem is convex, we define the Lagrange function
as

F = T+
∑
k∈K

λk

(
Lk

B log2(1 + pokgk)
− T

)
+µ

(∑
k∈K

pok − P

)
,

(26)
where λk and µ are the non-negative Lagrange multiplier.
Then applying the Karush-Kuhn-Tucker (KKT) conditions
leads to the following equations:
∂F
∂po∗k

= − λ∗kLkgk

B(1 + po∗k gk) log2(1 + po∗k gk)
+ µ∗ = 0, ∀k ∈ K,

(27)
∂F
∂T ∗

= 1−
∑
k∈K

λ∗k = 0, (28)

∑
k∈K

po∗k ≤ P,
Lk

B log2(1 + po∗k gk)
≤ T ∗, (29)

µ∗

(∑
k∈K

po∗k − P

)
= 0, (30)

λ∗k

(
Lk

B log2(1 + po∗k gk)
− T ∗

)
= 0, ∀k ∈ K. (31)

From (27) and (28), we can derive that µ∗ > 0 and λ∗k >
0,∀k ∈ K. Then, according to (30) and (31), the optimal power
allocation satisfies∑

k∈K

po∗k = P, po∗k =
1

gk

(
2

Lk
BT∗ − 1

)
,∀k ∈ K. (32)

Then we have ∑
k∈K

1

gk

(
2

Lk
BT∗ − 1

)
= P. (33)

Note that the relationship between T ∗ and Lk does not have
an explicit expression. Therefore, we perform a second-order
Taylor approximation to the exponential term in the optimal
power po∗k as

2
Lk

BT∗ − 1 ≈ Lk
BT ∗

ln 2 +
1

2

(
Lk
BT ∗

ln 2

)2

. (34)

We define R̂k

B = Lk

BT∗ as the spectral efficiency, where R̂k
denotes the average transmission rate of client k. Then, we
assume that the spectral efficiency in EAFL is small and insert
(34) into (33):

b

T ∗
+

a

T ∗2
= P, (35)

where

a =
∑
k∈K

(
Lk ln 2

B
√

2gk

)2

, b =
∑
k∈K

Lk ln 2

Bgk
. (36)

Solving the quadratic equation above and taking its positive
root as the approximated solution of P(1)

sub, we have

T ∗1 (Lk) = T ∗ =

√
b2 + 4aP + b

2P
. (37)

2) : It can also be verified that P(2)
sub is a convex optimiza-

tion problem due to its convex objective function and linear
constraints. Since the optimization variable of P(2)

sub is puk , we
only need to solve the problem:

min
puk

max
k∈K

(Dk − Lk)

√
ζk
puk

s.t. C2,C4.

(38)

We introduce the variable T and convert this problem into its
epigraph form.

min
puk ,T

T

s.t. (Dk − Lk)

√
ζk
puk
≤ T, ∀k ∈ K,

C2, C4.

(39)

This problem is convex. We define the Lagrange function as

F =T +
∑
k∈K

θk

(
(Dk − Lk)

√
ζk
puk
− T

)
+ η

(∑
k∈K

puk − P

)
,

(40)
where θk and η are the non-negative Lagrange multiplier.
Applying KKT conditions, we can get the following equations:∑

k∈K

pu∗k = P, pu∗k =
ζk(Dk − Lk)2

T ∗2
,∀k ∈ K. (41)
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Based on (41), we derive the solution:

T ∗ =

√
d

P
, (42)

where
d =

∑
k∈K

ζk(Dk − Lk)2. (43)

Based on (42), we derive the solution to P(2)
sub, i.e.,

T ∗2 (Lk) = max

{√
d

P
,

∑
k∈K Lk

es

}
. (44)

C. Solution to the Master Problem

Inserting (37) and (44) into the objective function in
Pmaster, we derive

P2 : min
Lk

{√
b2 + 4aP + b

2P
+ r(ε)tw

+r(ε)τC max

{√
d

P
,

∑
k∈K Lk

es

}}
s.t. C5.

(45)

To solve P2, we introduce an auxiliary variable T > 0 and
convert P2 into an equivalent problem P3 as

P3 : min
Lk,T

{√
b2 + 4aP + b

2P
+ r(ε)τCT + r(ε)tw

}

s.t. C6 :

√
d

P
≤ T,

C7 :

∑
k∈K Lk

es
≤ T,

C5.

(46)

Since the objective function in P3 is the summation of a convex
function (37) and a linear function, the objective function is
convex. Combining it with the convex constraint C6 and the
linear constraint C7, P3 is a convex optimization problem.
Therefore, the KKT conditions are necessary and sufficient
for the optimal value of this problem. To obtain the KKT
conditions, we first obtain the Lagrangian function of P3,
which is written as

F =

√
b2 + 4aP + b

2P
+ r(ε)τCT + r(ε)tw

+ ρ

(√
d

P
− T

)
+ δ

(∑
k∈K Lk

es
− T

)
,

(47)

where ρ ≥ 0 and δ ≥ 0 are the Lagrange multipliers associated
with the constraint C6 and C7, respectively.

For simplicity, we define

f1(Lk) =
∂

∂Lk

(√
b2 + 4aP + b

2P

)

=
B(b+

√
b2 + 4aP ) ln 2 + 2PLk ln2 2

2PB2gk
√
b2 + 4aP

(48)

f2(Lk) =
∂

∂Lk

(√
d

P

)
= −ζk(Dk − Lk)√

Pd
. (49)

Then applying KKT conditions, we have

∂F
∂L∗k

= f1(L∗k) + ρ∗f2(L∗k) +
δ∗

es


> 0, L∗k = 0

= 0, L∗k ∈ (0, Dk)

< 0, L∗k = Dk,∀k ∈ K
,

(50)
∂F
∂T ∗

= r(ε)τC − ρ∗ − δ∗ = 0, (51)√
d

P
≤ T ∗,

∑
k∈K L

∗
k

es
≤ T ∗, (52)

ρ∗

(√
d

P
− T ∗

)
= 0, δ∗

(∑
k∈K L

∗
k

es
− T ∗

)
= 0. (53)

We define the computation delay difference of each iteration
between the server and clients as

Ts−c =

∑
k∈K Lk

es
−
√
d

P
. (54)

Inserting f2(Dk) = 0 into (50), we note that L∗k 6= Dk.
According to (51), we have δ∗ = r(ε)τC − ρ∗. Combining
it with (52) and (53) leads to

ρ∗


= 0, if Ts−c > 0

∈ (0, r(ε)τC) , if Ts−c = 0

= r(ε)τC, if Ts−c < 0

. (55)

According to the value of Ts−c, the optimal solution to P3 can
be characterized as follows.

1) Case 1: If Ts−c > 0, i.e., ρ∗ = 0, we have

∂F
∂L∗k

= f1(L∗k) +
r(ε)τC

es
> 0. (56)

According to (50), we have L∗k = 0.
2) Case 2: If Ts−c < 0, i.e., ρ∗ = r(ε)τC > 0, we have

∂F
∂L∗k

= f1(L∗k) + r(ε)τCf2(L∗k). (57)

According to (50), we have

L∗k =


0, ζkgkDk <

c2
√
d

c1r(ε)τC

Lcase2k , ζkgkDk ≥
c2
√
d

c1r(ε)τC

, (58)

where

Lcase2k =
c1r(ε)τCζkgkDk − c2

√
d

c1r(ε)τCζkgk + 2P
√
d ln2 2

(59)

and

c1 = 2B2
√
P
√
b2 + 4aP , c2 = B(b+

√
b2 + 4aP ) ln 2.

(60)
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Fig. 4. Illustration of the offloading strategy for EAFL.

3) Case 3: If Ts−c = 0, i.e., 0 < ρ∗ < r(ε)τC, we have

∂F
∂L∗k

= f1(L∗k) + ρ∗f2(L∗k) +
r(ε)τC − ρ∗

es
(61)

According to (50), we have

L∗k =


0,

(
ζkDk −

√
Pd(r(ε)τC − ρ∗)

esρ∗

)
gk <

c2
√
d

c1ρ∗

Lcase3k ,

(
ζkDk −

√
Pd(r(ε)τC − ρ∗)

esρ∗

)
gk ≥

c2
√
d

c1ρ∗

,

(62)
where

Lcase3k =
c1ρ
∗
(
ζkDk −

√
Pd(r(ε)τC−ρ∗)

esρ∗

)
gk − c2

√
d

c1ρ∗ζkgk + 2P
√
d ln2 2

. (63)

D. Offloading Strategy

Based on the analysis of the above three cases, we propose
a corresponding offloading strategy for EAFL. To facilitate the
description, we first define two function f3(ρ∗) and f4(ρ∗) as

f3(ρ∗) =


√
Pd(r(ε)τC − ρ∗)

esρ∗
, ρ∗ 6= 0

+∞, ρ∗ = 0

,

f4(ρ∗) =


c2
√
d

c1ρ∗
, ρ∗ 6= 0

+∞, ρ∗ = 0

.

(64)

Proposition 1 (The Offloading Strategy for EAFL). The
optimal offloading data size of client k is denoted as L∗k. For
each client, we define an offloading decision indicator ϕk as:

ϕk = (ζkDk − f3(ρ∗))gk, (65)

where the optimal Lagrange multiplier ρ∗ is defined in (55).
We also define an offloading decision threshold Π as

Π = f4(ρ∗). (66)

Then the offloading strategy for EAFL has the following
structure, which is illustrated in Fig. 4.

1) If ϕk < Π, client k should not offload any data to the
server, i.e., L∗k = 0.

2) If ϕk ≥ Π, client k requires to offload partial data to the
server and L∗k = Lok, where

Lok =
c1ρ
∗(ζkDk − f3(ρ∗))gk − c2

√
d

c1ρ∗ζkgk + 2P
√
d ln2 2

. (67)

Proof: According to (56), (58) and (62), we have the
proposition.

Remark 3 (Offloading or Not). We find that there always
exists ϕk < Π and L∗k = 0 for each client when Ts−c > 0
(ρ∗ = 0). In this case, offloading can not bring any delay
reduction but to increase the computation burden of the server
and total system delay. Therefore, we should give up offloading
when the update delay of the server is larger than that of all
clients. When Ts−c ≤ 0, the offloading decision indicator ϕk
determines whether to offload data for client k. Offloading is
not necessary except for two cases. First, ζk of client k is
so large that local computing fails to meet the local power
constraint. Second, some client has a large dataset size Dk

or a high channel gain gk, indicating that latency shortening
can be achieved by offloading its partial data to the server.

Remark 4 (The Offloading Data Size). Note that Lok in (67)
is a monotonous increasing function with respect to ζk and gk
and can be expressed as

Lok = ψ1(ζk, gk)Dk − ψ2(ζk, gk), (68)

where ψ1 is a monotonous increasing function and ψ2 is a
monotonous decreasing function. For the client with a larger
ζk or gk, it requires to offload larger proportion of data to the
server. Further, for the clients having almost equal Dk, the
clients with a larger ζk or gk require to offload larger data to
the server.

Remark 5 (The Case of Ts−c < 0). When Ts−c < 0,
we note that it actually corresponds to the case where the
server has a high computing capability. In this case, the
optimal Lagrangian multiplier ρ∗ = r(ε)τC, which makes
the offloading related parameter ϕk and Π determined values.
Therefore, if the edge server in EAFL is equipped with multiple
high performance GPUs and the model training delay in
the server is negligible, Proposition 2 will degenerate into
a more simple offloading strategy with determined offloading
parameters.

Based on the offloading strategy in Proposition 1, the
corresponding algorithm is proposed in Algorithm 1. Each
client’s offloading data size is first given as an initial value.
Then multiple rounds of size update are performed according
to Proposition 2 until convergence.

Referring to [37], we take a learning-based autonomous
driving system as a use case of EAFL. In this system, each
vehicular client is configured with a learning model and the
roadside server has powerful computing ability. The learning
model takes on-board sensor data as input, and decisions
like braking and steering as output. To fuse the information
of multiple vehicular clients for better trained model while
avoiding large communication overhead, federated learning
is applied. Due to the existence of vehicular clients with
weak computing ability, we utilize EAFL to mitigate the
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Algorithm 1: Iterative algorithm for the offloading
strategy

Input: K, C, B, P , τ , ε, α, β, ζk, gk, Dk

Output: L∗k
1 Initialize iteration round n = 0.
2 Initialize L(0)

k = 0.5 ∗Dk for all k.
3 Initialize ρl = 0, ρh = r(ε)τC.
4 repeat
5 Calculate a(n), b(n), d(n) and T (n)

s−c.
6 for k = 1 to K do
7 if T (n)

s−c > 0 then
8 L

(n+1)
k = 0

9 else if T (n)
s−c < 0 then

10 ρ∗ = r(ε)τC.
11 Calculate ϕk and Π(n).
12 if ϕk < Π(n) then L

(n+1)
k = 0 ;

13 else L
(n+1)
k = Lok ;

14 else
15 ρm = (ρl + ρh)/2.
16 ρ∗ = ρm.
17 Calculate ϕk and Π(n).
18 if ϕk < Π(n) then L

(n+1)
k = 0 ;

19 else L
(n+1)
k = Lok ;

20 if L(n+1)
k > L

(n)
k then ρl = ρm;

21 if L(n+1)
k < L

(n)
k then ρh = ρm;

22 n = n+ 1.
23 end
24 until L(n+1)

k = L
(n)
k for all k;

Result: L∗k = L
(n+1)
k .

straggler effect. Assume that Algorithm 1 is executed on the
roadside server and the server has perfect knowledge of related
parameters, which can be obtained by feedback. After running
Algorithm 1, the server will send the optimal offloading data
size to clients. During the model update phase, each vehicular
client updates its local model and the roadside server utilizes
the aggregated data to update the model in itself. After multiple
rounds of training, vehicular clients can finally obtain the
model that guides their decision-making.

IV. EAFL WITH DYNAMIC CLIENTS

In practice, we also need to consider the device discon-
nection during the model training. Due to the preemption
of other tasks or equipment network failures, some clients
can only participate in the model training within a certain
round. For example, in the federated learning of the internet
of vehicles scenarios, vehicular clients are likely to exceed the
range that the server can cover during the training process.
In this section, we investigate a dynamic scenario for EAFL,
where some clients may disconnect from the system after
several rounds of updates. For simplicity, we refer to such
clients as dynamic clients and the EAFL with dynamic clients
as dynamic EAFL. Compared with the original EAFL, the
introduction of dynamic clients changes the delay modeling

N1

...
...

...
...

...
...

...

N2

...

...

...

...

...

Nm

...

... ...

...

Server

Fig. 5. Delay analysis for dynamic EAFL.

and the delay minimization problem, which requires a new
offloading strategy.

A. Problem Formulation

As depicted in Fig. 5, we assume that all clients can be
grouped into m sets according to their offline round. The local
update process can be divided into m update segments and
each segment i contains Ni rounds of updates. The clients
belonging to set K1 keep online until the update process is
finished and the clients in set Ki, 2≤i≤m will be offline after∑m−i+1
j=1 Nj rounds. The size of client sets in the i-th update

segment is denoted as Ki =
∑m−i+1
j=1 |Kj |.

The data offloading delay of dynamic EAFL is defined as

T do = max
{k∈Ki,1≤i≤m}

Lk,i
B log2(1 + pok,igk,i)

, (69)

where Lk,i, pok,i, gk,i denote the offloading data size, the
allocated transmission power and the channel gain of client
k in set Ki, respectively. The model update delay of dynamic
EAFL consists of m segments of update delay and is defined
as

T du =

m∑
j=1

NjτC max

{∑m−j+1
i=1

∑
k∈Ki

Lk,i

es
,

max
k∈Ki,1≤i≤m−j+1

(Dk,i − Lk,i)
√

ζk,i
puk,i,j

}
+

m∑
j=1

Njtw,

(70)

where puk,i,j is the allocated computational power of client k
in set Ki during the j-th segment of update, Dk,i is the client’s
dataset size and ζk,i denotes the client’s effective capacitance
coefficient.

We assume that the proportion of stable clients is large in
dynamic EAFL, which is reasonable in the federated learning
settings. Therefore, the dynamic change of the client number
has little effect on the parameter α and β in (20) and we
ignore the change of them in this paper. Based on (20),
the relationship among the number of clients, the number of
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rounds and the learning accuracy in dynamic EAFL can be
determined as

Ni =


[(

1 +
1

K1

)
τα+

β

τ

]
1

ε1
, i = 1[(

1 +
1

Ki

)
τα+

β

τ

](
1

εi
− 1

εi−1

)
, 2 ≤ i ≤ m

,

(71)

where εi denotes the learning accuracy after i segments of
updates and εm = ε. We assume that dynamic clients can give
their expected offline rounds based on the current task carrying
capacity or device network status. Then, we can derive the last
segment update rounds Nm based on (71):

Nm =

[(
1 +

1

Km

)
τα+

β

τ

]1

ε
−
m−1∑
i=1

Ni(
1 + 1

Ki

)
τα+ β

τ

 .
(72)

The delay minimization problem with dynamic client sets
can be formulated as follows.

P4 : min
{Lk,i,pok,i,p

u
k,i,j}

{
T do + T du

}
,

s.t. C8 :

m∑
i=1

∑
k∈Ki

pok,i ≤ P,

C9 :

m−j+1∑
i=1

∑
k∈Ki

puk,i,j ≤ P, 1 ≤ j ≤ m,

C10 : pok,i ≥ 0, ∀k ∈ Ki, 1 ≤ i ≤ m,
C11 : puk,i,j ≥ 0, ∀k ∈ Ki, 1 ≤ i ≤ m,
C12 : 0 ≤ Lk,i ≤ Dk,i, ∀k ∈ Ki, 1 ≤ i ≤ m.

(73)

To solve P4, we take similar steps in solving P1. Given Lk,i,
P3 can be decomposed into one offloading delay minimization
subproblem (P(3)

sub) and m model update delay minimization
subproblems (P(4,j)

sub , 1 ≤ j ≤ m). P(3)
sub and P(4,j)

sub are described
as follows.

P(3)
sub : min

pok,i

max
{k∈Ki,1≤i≤m}

Lk,i
B log2(1 + pok,igk,i)

,

s.t. C8,C10.

(74)

P(4,j)
sub : min

puk,i,j

max

{∑m−j+1
i=1

∑
k∈Ki

Lk,i

es
,

max
k∈Ki,1≤i≤m−j+1

(Dk,i − Lk,i)
√

ζk,i
puk,i,j

}
,

s.t. C9,C11.

(75)

The master problem is described as

Pmaster : min
Lk

T ∗3 (Lk) +

m∑
j=1

NjτCT
∗
4,j(Lk) +

m∑
j=1

Njtw


s.t. C12,

(76)

where T ∗3 (Lk) and T ∗4,j(Lk) are optimal objective functions
of P(3)

sub and P(4,j)
sub , respectively.

B. Solution

According to the solutions in Section III B, we can easily
derive the similar solutions to the m+ 1 subproblems above.
Then, by inserting the optimal values in the m+1 subproblems
into the master problem, we can formulate P4 as follows.

P5 : min
Lk,i


√
b̂2 + 4âP + b̂

2P
+

m∑
j=1

Njtw

+

m∑
j=1

NjτC max


√
d̂j
P
,

∑m−j+1
i=1

∑
k∈Ki

Lk,i

es




s.t. C12,
(77)

where

â =

m∑
i=1

∑
k∈Ki

(
Lk,i ln 2

B
√

2gk,i

)2

, b̂ =

m∑
i=1

∑
k∈Ki

Lk,i ln 2

Bgk,i
,

d̂j =

m−j+1∑
i=1

∑
k∈Ki

ζk,i(Dk,i − Lk,i)2.

(78)

To solve P5, we introduce the auxiliary variable Tj > 0 and
convert P5 into an equivalent problem P6 as

P6 : min
Lk,i,Tj


√
b̂2 + 4âP + b̂

2P
+ τC

m∑
j=1

NjTj +

m∑
j=1

Njtw


s.t. C13 :

√
d̂j
P
≤ Tj , 0 ≤ j ≤ m,

C14 :

∑m−j+1
i=1

∑
k∈Ki

Lk,i

es
≤ Tj , 0 ≤ j ≤ m,

C12.
(79)

Since the objective function and the constraints are both
convex, P6 is a convex optimization problem. Therefore, the
KKT conditions are necessary and sufficient for the optimal
value of this problem. The Lagrangian function of P6 is written
as

F =

√
b̂2 + 4âP + b̂

2P
+ τC

m∑
j=1

NjTj +

m∑
j=1

Njtw

+

m∑
j=1

ρj

√ d̂j
P
− Tj


+

m∑
j=1

δj

(∑m−j+1
i=1

∑
k∈Ki

Lk,i

es
− Tj

)
,

(80)

where ρj ≥ 0 and δj ≥ 0 are the Lagrange multipliers
associated with the constraint C13 and C14, respectively. Then
we apply KKT conditions, which is similar to the procedure
in Section III C. And we have

ρ∗j


= 0, if Ts−c,j > 0

∈ (0, NjτC) , if Ts−c,j = 0

= NjτC, if Ts−c,j < 0

, (81)
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Fig. 6. Illustration of the offloading strategy for dynamic EAFL.

where Ts−c,j is defined as

Ts−c,j =

∑m−j+1
i=1

∑
k∈Ki

Lk,i

es
−

√
d̂j
P
. (82)

Then for all the above three cases of Ts−c,j , we have

L∗k,i =

{
0, if (ζk,iDk,i − f5,i(ρ̂∗i ))gk,i < f6,i(ρ̂

∗
i )

Lok,i, if (ζk,iDk,i − f5,i(ρ̂∗i ))gk,i ≥ f6,i(ρ̂∗i )
,

(83)
where

Lok,i =
c1ρ̂
∗
i (ζk,iDk,i − f5,i(ρ̂∗i ))gk,i − c2
c1ρ̂∗i ζk,igk,i + 2P ln2 2

(84)

and

f5,i(ρ̂
∗
i ) =


√
P

esρ̂∗i

m−i+1∑
j=1

(NjτC − ρ∗j ), ρ̂∗i 6= 0

+∞, ρ̂∗i = 0

,

f6,i(ρ̂
∗
i ) =


c2
c1ρ̂∗i

, ρ̂∗i 6= 0

+∞, ρ̂∗i = 0.
, ρ̂∗i =

m−i+1∑
j=1

ρ∗j√
dj
.

(85)

C. Offloading Strategy

Proposition 2 (The Offloading Strategy for Dynamic EAFL).
For client k ∈ Ki, the optimal offloading data size is denoted
as L∗k,i. For client set Ki, we define the offloading decision
indicator as

ϕk,i = (ζk,iDk,i − f5,i(ρ̂∗i ))gk,i (86)

and the offloading decision threshold Πi as

Πi = f6,i(ρ̂
∗
i ), (87)

where ρ̂∗i , f5,i(ρ̂∗i ) and f6,i(ρ̂
∗
i ) are defined in (85). The

offloading strategy for client k ∈ Ki has the following
structure.

1) If ϕk,i < Πi, client k should not offload any data to the
server, i.e., L∗k,i = 0.

2) If ϕk,i ≥ Πi, client k requires to offload partial data to
the server and L∗k,i = Lok,i.

Proof: According to (83) and (84), we have the proposi-
tion.

Remark 6 (Offloading Decision Threshold). The offloading
strategy for dynamic EAFL also has a threshold-based struc-
ture that determines the optimal offloading data size in each

Algorithm 2: Iterative algorithm for the offloading
strategy in dynamic EAFL
Input: m, K1∼m, N1∼m−1, C, B, P , τ , ε, α, β, ζk,i,

gk,i, Dk,i

Output: L∗k,i
1 Initialize iteration round n = 0.
2 Initialize L(0)

k,i = 0.5 ∗Dk,i.
3 Calculate Nm based on (72).
4 Initialize ρl,i = 0, ρh,i = NiτC.
5 repeat
6 Calculate â(n), b̂(n) and d̂(n)1 ∼ d̂(n)m .
7 for i = 1 to m do
8 Calculate T (n)

s−c,i.
9 for k = 1 to |Ki| do

10 if T (n)
s−c,i > 0 then

11 L
(n+1)
k,i = 0.

12 else if T (n)
s−c,i < 0 then

13 ρ∗i = NiτC.
14 Calculate ϕk,i and Π

(n)
i .

15 if ϕk,i < Π
(n)
i then L

(n+1)
k,i = 0 ;

16 else L
(n+1)
k,i = Lok,i ;

17 else
18 ρm,i = (ρl,i + ρh,i)/2.
19 ρ∗i = ρm,i.
20 Calculate ϕk,i and Π(n).
21 if ϕk,i < Π

(n)
i then L

(n+1)
k,i = 0 ;

22 else L
(n+1)
k,i = Lok,i ;

23 if L(n+1)
k,i > L

(n)
k,i then ρl,i = ρm,i;

24 if L(n+1)
k,i < L

(n)
k,i then ρh,i = ρm,i;

25 n = n+ 1.
26 end
27 end
28 until L(n+1)

k,i = L
(n)
k,i for all k and i;

Result: L∗k = L
(n+1)
k .

client set, which is depicted in Fig. 6. According to (87), we
note that the threshold of client set Ki is determined by ρ̂∗i .
For the client set with fewer update rounds, i.e., with a smaller
ρ̂∗i , the offloading threshold is larger and the clients prefer to
update locally instead of offloading. The explanation is that
for the client set with fewer update rounds, the straggler effect
they bring has a little impact on the system delay, which makes
local update a better choice.

The algorithm for the offloading strategy in Proposition 2 is
summarized in Algorithm 2. The algorithm gives an iterative
framework to perform the optimal offloading in dynamic
EAFL. It is assumed that the server can obtain the expected
offline round of each client through feedback. Compared with
Algorithm 1, dynamic EAFL requires iterative update for
multiple sets of dynamic clients.
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Fig. 7. Learning performance for the MNIST datasets with different data
distributions (IID and non-IID) and different epoch number per round (τ ).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulation results to evaluate
the performances of EAFL on both real datasets and synthetic
datasets. Real datasets allow us to evaluate the convergence
rate and the learning accuracy of EAFL, while synthetic
datasets allow us to manipulate the heterogeneity of data more
precisely and evaluate the EAFL delay performance more
comprehensively. For real datasets, we choose MNIST dataset
[38] due to its widely academic use. For synthetic datasets,
the dataset size among clients follows the uniform distribution
with Dk ∈ [100, Dmax]Mb.

A. Learning Performance of EAFL

We distribute the MNIST dataset (400Mb total data size)
and vary the number of samples among K = 50 clients. We
follow the experimental settings in [4], where the learning
model structure is a CNN with two 5× 5 convolution layers,
a fully connected layer with 512 units and ReLu activation,
and a final softmax output layer (40Mb model size). Following
the method in [4], we also perform the unbalanced partition of
the MNIST data into IID and non-IID. For IID, the total data
is shuffled and then partitioned into 50 clients each receiving
1200 examples. And for non-IID, we first sort the data by
digit label, divide it into 200 shards of size 300, and assign
each of 50 clients 4 shards. This is a pathological non-IID
partition of the data, as most clients will only have examples
of 4 digits. In order to explore the learning performance of
the EAFL scheme, we randomly select a certain number of
clients to send random-sized data to the server for training. The
reference scheme is the original federated learning scheme.

Fig. 7 depicts the learning performance (i.e., train loss and
test accuracy) of federated learning and the proposed EAFL.
It can be observed that under different data distributions and
different number of epochs per round, the learning perfor-
mance of these two schemes is close, which is consistent with
the analysis in Remark 1. One can also observe that when
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Fig. 8. System delay versus power constraint with different client numbers.

the data is IID or τ is larger, the two schemes have a faster
convergence rate and can achieve a higher test accuracy within
100 aggregation rounds. The explanation for this is that, the
IID training data is easier to get a better fitting model than
non-IID data. And reasonably selecting a larger number of
epochs per round brings more local iterations, which will help
improve the convergence rate.

B. Delay Performance of EAFL

The simulation settings for delay performance evaluation are
as follows unless specified otherwise. The total client number
is set as K = 50. The system power constraint is set as P =
10W. All the channels are assumed to follow Rayleigh slow
fading with path loss parameter ν set as 10−3. The channel
bandwidth is set as B = 20 MHz. The variance of complex
white Gaussian channel noise is N0 = 10−6 W. The number of
CPU cycles required for training 1-bit data is set as C = 500.
The CPU frequency of the server es is set as 1010 cycles
per second. The effective capacitance coefficient ζ is fixed
to 10−18, consistent with the measurements in [39]. We set
Dmax = 1000. The model parameter size is set as 40Mb, close
to the CNN model size used in [4]. We reserve a fixed time
slot 200ms for parameter aggregation and model broadcast.
The number of iterations per round is set as τ = 1. We set the
parameter α = 1 and β = 40. The target model training loss
is set as ε = 0.5. All results are averaged over 103 Monte-
Carlo simulations and include 95% confidence intervals. In
the following results, “FL” and “EAFL” represent federated
learning and the proposed EAFL, respectively. Since coded
computation is another method to mitigate the straggler effect,
we also evaluate its delay performance by referring to [23].
The corresponding delay curve is represented as “CFL”. Since
we perform the Taylor approximation in the power allocation
to obtain the explicit expression of T ∗1 (Lk), we derive the
delays under the optimal power allocation and denote it as
“OPA”.

Fig. 8 depicts the system delay of different schemes versus
the system power constraint. Several observations can be
made. First, the delays of federated learning and the proposed
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Fig. 9. System delay versus target model train loss with different numbers
of epochs per round.
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Fig. 10. System delay versus dataset size with different data distribution
characteristics.

EAFL both decrease as the system power grows. This is be-
cause a larger power allocated for transmission or computation
increases the processing efficiency of clients. Second, the delay
increases as the number of clients increases. The explanation is
that, although the system with more clients require less update
rounds, the power allocated for transmission or computation is
reduced, resulting in a larger delay. Next, the delay of EAFL
is lower than federated learning with the proposed offloading
strategy and is close to the EAFL performance under the
optimal power allocation.

Fig. 9 shows the delay curves of three federated learning
schemes versus the model train loss. One can observe that the
delays of the three schemes reduce as the train loss ε grows.
The reason is that, a larger training loss requires less update
rounds for machine learning, resulting in a lower delay. It can
be observed that the delay is smaller when τ = 5 for the three
schemes. This is because that the system with more epochs
of update per round reduces the communication overhead of
the aggregation and improves the convergence rate, resulting
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Fig. 11. System delay in the dynamic scenario versus dynamic ratio.
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Fig. 12. System delay in the dynamic scenario versus the offline round of
dynamic clients.

in the smaller total delay. In addition, we find that EAFL
outperforms the coded computation method. The explanation
is that, although the coded computation method only needs
to wait for partial clients during each round, the update delay
difference among these clients is larger than EAFL.

Fig. 10 illustrates the effect of dataset size and data dis-
tribution characteristics on the delay of the three schemes.
We set Dmax to vary from 600 to 1500. It can be observed
that the system delay increases as the dataset size grows. The
explanation is that, the growth of dataset size increases the
computational or offloading burdens for clients, resulting in
a larger system delay. Furthermore, in the figure, we choose
two different values for β. One can observe that, a larger β
(i.e., larger degree of non-IID) consumes a larger delay since
more training rounds are required. Under different dataset sizes
and data distribution characteristics, EAFL always achieves a
lower system delay compared with federated learning and the
coded computation method.

For the dynamic scenario, we analyze a simple case where
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the client group number is set as m = 2. We define the
dynamic ratio as the ratio of dynamic client number to the total
client number. We set the offline round of the dynamic clients
as N1 = 30. The curves of system delay versus the dynamic
ratio for different total client numbers is plotted in Fig. 11.
One can observe that, the system with high dynamic ratio has
less delay for both federated learning and EAFL. The reason
is that, the higher proportion of dynamic clients enables stable
clients to gain more power in the subsequent update rounds.
As can be seen from the figure, EAFL has smaller system
delay for different dynamic ratios or client numbers.

Fig. 12 evaluates the performance of federated learning and
EAFL with dynamic clients under different offline rounds. It
can be observed that the earlier offline round will reduce the
system delay. This is because a reasonably reduced number of
clients for distributed learning will not significantly increase
the number of update rounds, but gives each client more
allocated power, thereby increasing the update speed.

VI. CONCLUSION

In this paper, we have proposed EAFL to mitigate the
straggler effect in federated learning. In EAFL, stragglers
offload partial computation to the edge server to reduce their
computational burdens, which greatly improves the system
efficiency. The performance of EAFL has been analyzed in
terms of system delay. To optimize the offloading data size for
each client, the delay optimization problem of EAFL has been
formulated and solved. According to the problem solution, we
have provided a threshold-based offloading strategy for EAFL.
We have also extended EAFL to a more practical scenario with
dynamic clients and have given the corresponding offloading
strategy for this dynamic scenario. Extensive simulation results
confirm the effectiveness of EAFL and the proposed offloading
strategies.
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B. Agüera y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” arXiv preprint arXiv:1602.05629, 2016.

[5] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[6] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp.
1205–1221, 2019.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[8] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proc. Conf. Neural Inf. Process. Syst., 2017, pp.
4424–4434.

[9] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23 920–23 935, 2020.
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