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The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic scale structure of matter and its properties,
involves transforming the Cartesian coordinates of the atoms into a suitable representation. The
development of atomic-scale representations has played, and continues to play, a central role in the
success of machine-learning methods for chemistry and materials science. This review summarizes
the current understanding of the nature and characteristics of the most commonly used structural
and chemical descriptions of atomistic structures, highlighting the deep underlying connections
between different frameworks, and the ideas that lead to computationally efficient and universally
applicable models. It emphasizes the link between properties, structures, their physical chemistry
and their mathematical description, provides examples of recent applications to a diverse set of
chemical and materials science problems, and outlines the open questions and the most promising
research directions in the field.
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I. INTRODUCTION

The last decade has seen a tremendous increase
in the use of data-driven approaches for the model-
ing of molecules and materials. Atomistic simulation
has been a particularly fertile field of use; applications
range from the analysis of large databases of materials
properties,1 to the design of molecules with the desired
behavior for a given application.2 Machine learning
techniques have been applied to devise coarse-grained
descriptions of complex molecular systems,3–9 to build
accurate and comparatively inexpensive interatomic
potentials,10–18 and more generally to predict, or ra-
tionalize, the relationship between a specific atomic
configuration and the properties that can be com-
puted by electronic-structure calculations19–26.

All of these applications to atomic-scale systems
share the need to map an atomic configuration A –
identified by the positions and chemical identity of its
N atoms {ri, ai}, and possibly by the basis vectors of
the periodic repeat unit h – into a more suitable rep-
resentation. This mapping associates A with a point
in a feature space, which is then used to construct
a machine-learning model to regress (fit) a structure-
property relation, to cluster (group together) config-
urations that share similar structural patterns, or to
further map the conformational landscape of a data
set onto a low-dimensional visualization.

The terms descriptor or fingerprint are used, usu-
ally interchangeably, in chemical and materials infor-
matics to indicate heuristically-determined properties
that are easier to compute than the quantities one
ultimately wants to predict, but correlate strongly
with them, facilitating the construction of transfer-
able and accurate models.27 Examples of descriptors
include the fractional composition of a compound, the
electronegativity of its atoms, a low-level-of-theory de-
termination of the HOMO-LUMO gap of a molecule.
In this review we focus on a more systematic class
of mappings that use exclusively atomic composition
and geometry as inputs, and aim to characterize pre-
cisely the instantaneous arrangement of the atoms, for

which we use the term representation. We will be es-
pecially interested in those representations that apply
geometric and algebraic manipulations to the Carte-
sian coordinates, to transform them in a way that
fulfills physically-informed requirements: smoothness
and symmetry with respect to isometries. Commonly
used representations include atom-centered symmetry
functions10,28, Coulomb matrices19, and the smooth
overlap of atomic positions (SOAP)29. It is important
to note that representations can be expressed using
different mathematical entities. In the most straight-
forward realisation, the space of features takes the
form of a vector space, in which each configuration
is associated with a finite-dimensional vector whose
entries are explicitly computed by the mapping pro-
cedure. Depending on the application, however, it
may be simpler or more natural to describe the re-
lationship between pairs of configurations. Such rela-
tionship can be expressed in terms of a kernel function
k(A,A′) (e.g. the scalar product between feature vec-
tors), or in terms of a distance between configurations
d(A,A′) (e.g. the Euclidean distance between associ-
ated features). As we will see, distance or kernel-based
formulations implicitly define a feature space, that in
most cases can be expressed (at least approximately)
in terms of a vector of features, and so can be seen as
equivalent to a representation of individual structures,
even in cases in which the distance or the kernel are
not explicitly computed from a pair of feature vectors.

While one can trace the origins of different repre-
sentations to specific subfields of computational chem-
istry and materials science, the fact that representa-
tions should describe precisely the nature and posi-
tions of each atom means that they often are not spe-
cialized to a given application, but can be used with
little modification for any atomistic system, from gas-
phase molecules to bulk solids30–32. This generality,
however, does not mean that representations are com-
pletely abstract or disconnected from physical and
chemical concepts. Over the past few years, it has
become clear that representations that reflect more
closely some fundamental principles – such as locality,
the multi-scale nature of interactions, the similarities
in the behavior of elements from the same group in the
periodic table – usually yield models that are more ro-
bust, transferable and data-efficient. The link between
a representation and the physical concepts it incorpo-
rates is usually mediated by the strategy one uses to
fit the desired structure-property relations: it is often
possible to show an explicit relationship between lin-
ear regression models built on the representation of
a structure and well-known empirical forms of inter-
atomic potentials (such as body-ordered, or multipole
expansions), and more complex, non-linear machine-
learning schemes built on the same features improve
the flexibility in describing structure-property rela-
tions, albeit at the price of a less transparent inter-
pretation of their behavior.
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Given the central role of structural representations
in the application of data-driven methods to atomistic
modeling, it is perhaps not surprising that consider-
able effort is being dedicated to understanding and
improving their properties. These efforts follow sev-
eral directions. First, the efficient, scalable, and par-
allel implementation of the construction of a given set
of features is essential to ensure computational effi-
ciency. Second, reduction in the number of features
that is used to describe the system reduces the com-
putational effort, and often improves the robustness
of the model: feature selection aims at identifying the
most expressive, yet concise, description of the system
at hand. Third, it is often desirable to fine-tune a rep-
resentation so that it facilitates training a model on a
small number of reference structures, by incorporating
more explicitly the available prior knowledge.

This review aims to summarize recent work on
the construction of efficient and mathematically sound
representations of atomic and molecular structures,
with a particular focus on the use for the regres-
sion of atomic-scale properties. It is part of a spe-
cial issue that covers the many facets of the appli-
cation of machine learning to chemical simulations,
and the interested reader may find, among others, dis-
cussions of machine learning models based on Gaus-
sian process regression, using some of the descriptors
we discuss here33, of the construction of potentials
for molecules34,35 and materials36, the description of
excited states37, and of unsupervised machine learn-
ing schemes38. Rather than focusing on a historical
overview, we intend to provide a snapshot of the cur-
rent insights on what makes a good representation,
supporting our considerations with recent publica-
tions, and providing a perspective of the most promis-
ing research directions in the field.

II. LIST OF SYMBOLS

A An atomic structure
Ai An environment centered on the i-th atom of

the structure A
ri Position of the i-th atom
rji Vector separating the i-th atom and its j-th

neighbor, rj − ri
Q Generic continuous index enumerating the

components of an atomic representation
q Generic discrete index enumerating the com-

ponents of an atomic representation
〈Q|A〉 A representation of a structure A indexed by

an unspecified label or set of labels Q
ξ(Ai) Feature vector (with elements indexed by q) as-

sociated with an atom-centered environment,
ξq(Ai) = 〈q|Ai〉

Ξ Feature matrix combining the features associ-
ated with multiple structures/environments

χq A column in a feature matrix, where (χq)i =
ξq(Ai)

y(Ai) An atom-centered property, or its systematic
approximation in terms of an atom-centered
representation |Ai〉

ỹ(ξ) A non-linear model that approximates y(Ai)
using the feature vector ξ(Ai)

k(A,A′) A (non-)linear kernel computed between two
structures or environments, represented by the
corresponding feature vectors ξ(A)

d(A,A′) A distance computed between two structures
or environments

|ρ〉 Structure representation based on a smooth
atom density

|ρi〉 Representation of an environment centered on
atom i, that can be obtained by symmetrizing
|ρ〉 over translations

|ρ⊗νi 〉 Symmetrized ν-point correlation of the atomic
density built on the atom-centered representa-
tion |ρi〉

|δ〉 Dirac-δ limit of the smooth atom density |ρ〉.
Analogous symmetrized versions are indicated

as |δi〉 and |δ⊗νi 〉
|V 〉 Atom-density field representation, suitable to

describe long-range correlations

III. REPRESENTATIONS FOR MATERIALS
AND MOLECULES

Even though this review has no intention of pro-
viding an exhaustive historical account of the de-
velopment of descriptors for atomic structures, it is
worth providing a brief overview. A “data-driven”
philosophy emerged early in the field of chemical
and molecular science, where the combinatorial ex-
tent of the space of possible molecules,39 and the
possibility of accessing this space with comparatively
simple synthetic strategies, encouraged the devel-
opment of quantitative structure/property relation-
ships (QSPR) techniques, attempting to map40 de-
scriptors of molecular structure – based on chem-
informatics fingerprints,41,42chemical-intuition driven
descriptors43, molecular graphs,44 or indicators ob-
tained from quantum chemical calculations45 – to the
behavior of a selected compound, usually focusing on
properties of direct applicative interest46–48 such as
solubility, toxicity,49 or pharmacological activity.50,51

This approach should be contrasted with that of
“bottom-up” predictions, that aim to use models of
the interactions between the atomic constituents of a
material to simulate the behavior of the system on an
atomic time and length scale. Starting from the early
days of molecular simulations52–55 the objective was
to predict the energy, the forces, or any other observ-
able of interest, for a specific molecular configuration,
and use them to search for (meta-)stable configura-
tions, or to simulate the evolution of the system by
molecular dynamics56,57. In the absence of reliable
reference values for the properties of specific atomic
configurations, interatomic potentials (also called em-
pirical force fields) were built using physically-inspired
functional forms, combining harmonic terms to de-
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FIG. 1. A schematic overview of the requirements for
an effective structural representation. The mapping be-
tween structures and feature space should obey fundamen-
tal physical symmetries (equivalent structures should be
mapped to the same features); should be complete (in-
equivalent structures should be mapped to distinct fea-
tures); should be smooth (continuous deformations of a
structure should map to a smooth deformation of the as-
sociated features). Furthermore, whenever dealing with
datasets that are not homogeneous in molecular size, the
representation should be additive: a structure should be
decomposed in a sum of local environments (usually atom-
centered), ensuring transferability and extensivity of pre-
dictions.

scribe chemical bonds with Coulomb and 1/r6 terms
to describe electrostatics and dispersion. Their (few)
parameters were determined by matching the values
of experimental observables, such as cohesive energies,
lattice vectors and elastic constants. The continuous
increase in computational power, and the availability
of electronic-structure techniques with a better cost-
accuracy ratio58–60 has made it possible to compute
extremely accurate energies and properties of specific
configurations. This has opened the way to ab initio
simulations of materials55, but also provided a viable
alternative to empirical functional forms for the con-
struction of interatomic potentials. Starting from the
simplest compounds61, and then gradually increasing
in complexity62, molecular potential energy surfaces
fitted by interpolating between a comparatively small
number of ab initio reference calculations provided the
first practical applications of this idea. The possibility
of combining very accurate calculations of the elec-
tronic structure of atomic systems with sampling of
the statistics and dynamics of the nuclei on the elec-
tronic potential energy surface has allowed theoretical
predictions that do not only agree with experimental
results61 – they can predict experiments63 two decades
before measurements become precise enough to verify
the theoretical values.64

Even though the ultimate goal of QSPR models

and machine-learned potentials is the same – predict-
ing scientifically and/or technologically relevant prop-
erties of molecules and materials – the approaches
they follow to achieve this goal are quite different,
which is reflected in the way an atomic structure is
translated into an input for a machine-learning model.
Cheminformatics descriptors, or fingerprints, are built
ad hoc, incorporating both descriptors of molecu-
lar structure and composition, and easy-to-estimate
molecular properties. They usually rely on a con-
siderable amount of prior knowledge, are often sys-
tem and problem specific, and are meant to label a
compound rather than a specific configuration of its
atoms. This is a logical consequence of the fact that
QSPR aims for an end-to-end description of a thermo-
dynamic property, which is not an attribute of an indi-
vidual configuration, but of a thermodynamic state of
matter. In the case of bottom-up modeling, instead,
one aims first at building a very accurate surrogate
model that is capable of reproducing precisely and in-
expensively the outcome of quantum calculations for
a specific configuration of the atoms. The end goal
of predicting thermodynamic properties is achieved
by coupling these prediction with statistical sampling
methods56,57,65 aimed at computing averages over the
appropriate classical (or quantum66,67) distribution of
atomic configurations. As a consequence, the rep-
resentations used as inputs of these surrogate quan-
tum models are usually rather generic, constructed
based exclusively on atomic coordinates and chemical
species. They aim to establish a precise mapping be-
tween a specific structure and the associated atomic-
scale quantities, and for this reason have also proven
very useful to analyze atomistic configurations68–70,
an application we discuss in detail in Section VII.
Even though we focus our discussion on this latter
class of features, it is worth mentioning the recent,
and rather successful, attempts to use descriptors that
incorporate information from electronic-structure cal-
culations, that we briefly summarize in Section IX G.

In the rest of this section, we discuss the properties
that are desirable for a representation used in atom-
istic machine learning, which are graphically summa-
rized in Figure 1. The mapping between structures
and features should be consistent with basic symme-
tries – i.e. reflect the fact that the properties asso-
ciated with a structure do not change when the ref-
erence system or the labelling of identical atoms are
modified; be smooth, so that models built on the fea-
tures inherit a regular behavior with changing atomic
coordinates; be complete, so that fundamentally dis-
tinct configurations are never mapped to the same
set of features. Furthermore, many machine-learning
tasks benefit greatly from being based on local fea-
tures, which describe atoms or groups of atoms. Even
though this is a less stringent requirement and, as
we discuss below, global descriptors have been used
very successfully, representations based on local en-
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FIG. 2. A phylogenetic tree of structural representations for materials and molecules. Arrows indicate the relationship
between different groups of features. Lists of names, in gray, indicate the most common implementations for each class.
Classes that appear as “leaves” of the tree are fully symmetric.

vironments are usually associated with higher trans-
ferability, reflecting a “divide and conquer” approach
to materials modeling71,72. Finally, less fundamen-
tal but not less important requirements are the nu-
merical stability and computational efficiency of the
structure-representation mapping, which we discuss in
Section VIII.

A. Symmetry

The Cartesian coordinates of the atoms encode all
the information that is needed to reconstruct the ge-
ometry of a structure. Yet, it is obvious that they
cannot be used directly as the input of a regression
model. The fact that the Cartesian description of a
molecule depends on its absolute position and orienta-
tion in space, and the order by which atoms are listed,
means that configurations that are completely equiv-
alent can be represented by many different Cartesian
values, which makes any regression, classification or
clustering scheme inefficient and potentially mislead-
ing. Over the years, many different approaches have
been proposed by which translations, rotations, in-
version and atom permutation symmetries can be en-
forced, which is reflected in the variety of alternative

frameworks to achieve an effective representation to
be used of the input of an atomistic machine-learning
scheme. In fact, symmetry is such a central princi-
ple underpinning these efforts that it can be used to
construct a “phylogenetic tree” of representations, or-
ganized according to the strategy that is used to in-
corporate symmetry in their construction, as shown
in Figure 2.

The need to remove the trivial symmetries, namely
the dependency of the Cartesian coordinates on the
origin and orientation of the reference system, has
been recognized very early in the field of chemi-
cal and materials modeling. Different sets of inter-
nal coordinates73 (bonds, angles, torsions) have been
proposed, based on chemical intuition, as invariant
descriptors of molecular geometry, and most of the
molecular forcefields that have been so effective in the
modeling of biological systems74–77 rely on internal co-
ordinates to define bonded interactions. A collection
of internal coordinates that is sufficient to fully char-
acterize the geometry of a structure, often referred-to
as the Z-matrix, is a paradigmatic example of this
class of representations. Even though the efficiency of
this approach has often been questioned78,79, particu-
larly because there is no unique way to define the Z-
matrix, internal coordinates are still ubiquitous, and
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are effective whenever the system being studied has a
well-defined, persistent bonding pattern (see Ref. 80
for a recent review). In these cases, internal coordi-
nates can be seen as the initial step in the construc-
tion of discretized molecular representations, such as
a molecular graph. Even though very widely used
in chemical machine learning2,81, these graph based
schemes are not meant to describe the exact arrange-
ment of the atoms, but just their bonding pattern,
and so fall outside the scope of this review.

The limitations of an internal-coordinates descrip-
tion become most apparent when one wants to model
a chemically-active system, as the bonding patterns
can change during the course of a simulation, and
therefore the invariance to atom index permutations
becomes crucial to achieve a consistent model. The
Empirical Valence Bond (EVB) method82 has been
used to simulate bond-breaking events, but the gen-
erality of the EVB approach is limited as the possi-
ble assignments need be pre-determined. This led to
the development of representations that are intrinsi-
cally independent on the ordering of the atoms, such
as permutation-invariant polynomials (PIPs)11,83–86

which are obtained by summing functions of the in-
ternal coordinates over all possible orderings. In their
original implementation, the exponentially increasing
cost of evaluating these sums limited their applicabil-
ity to molecules with a small number of degrees of
freedom. It is worth mentioning that the problem of
fitting molecular potential energy surfaces, particu-
larly for applications to gas-phase physical chemistry,
has led to approaches that anticipate several of the
ideas that have become central to modern machine-
learning techniques: the need to symmetrize appro-
priately atomic structures,87 the systematic fitting to
databases of configurations computed with high levels
of quantum chemistry,61 and even the use of “neural
network potentials”88,89 are just a few examples of the
pioneering contributions from this field.

In the condensed phase, a similar pioneering role
was played by the construction of systematic expan-
sions of the potential energy of alloys90, and of bond
order potentials based on the moments of the density
of states91–93. Both anticipate the use of an atom-
centered description of the energy, the role of symme-
try, and the notion of building a systematic expansion
of the target property in terms of a convergent hierar-
chy of terms of increasing complexity. The first suc-
cessful attempt of explicitly bringing machine-learning
ideas to the construction of interatomic potentials for
condensed-phase materials can be attributed to Behler
and Parrinello, who in Ref. 10 introduced the con-
cept of atom-centered symmetry functions (ACSF),
which rely on a local expansion of the energy and on
the construction of a symmetric description of atomic
environments. Similarly to PIPs, ACSF are trans-
lationally and rotationally invariant because they are
functions of angles and distances, and permutationally

invariant because they are summed over all possible
atomic pairs and triplets within an atomic environ-
ment. The computational cost of ACSF is kept under
control by restricting the range of interactions (which
we discuss further in subsection III C) and the body
order of the correlations considered. Despite these re-
strictions, ACSF models have been shown to achieve
comparable accuracy to that reached by PIPs94. In-
deed, the recently proposed atomic PIPs95 use the
same polynomial basis as global PIPs, but avoid the
unfavorable scaling with increasing molecule size by
combining locality (via a distance cutoff) and a trun-
cation of the order of the expansion.

Internal coordinates are also the fundamental
building block of molecular matrix representations,
which are based on functions of the interatomic dis-
tances within a structure. Coulomb matrices, which
list the formal electrostatic interactions qiqj/rji be-
tween each atomic pair in a structure, have been ex-
tensively explored in early applications of the machine
learning of molecular properties19, with the main lim-
itation being connected to the lack of permutation
invariance96, which has also been tackled by approx-
imate symmetrization, summing over a manageable
number of randomized orderings of the atoms97,98.
We discuss alternative approaches to symmetrizing
Coulomb matrices, as well as other representations
based on molecular matrices, in Subsection III B.

The phylogenetic tree in Fig. 2 shows that a large
number of existing representation take a different
strategy to achieve symmetrization: rather than us-
ing internal coordinates that are inherently invariant
to rotations and translations, they first – implicitly
or explicitly – describe the system as an atom den-
sity

∑
i g(x− ri), obtained by summing over localized

functions centered on the positions ri of all atoms in
the system. Such a density is naturally invariant to
permutations, and only at a later stage one proceeds
to symmetrize it over translations and rotations. We
discuss in great detail this second approach in Sec-
tion IV. It suffices to say, at this point, that even if the
construction of symmetrized density representations is
conceptually very different from those based on inter-
nal coordinates, there are many direct and indirect
links between the two branches, sketched in Figure 2,
which we will discuss when reviewing specific classes
of representations.

B. Smoothness

The overwhelming majority of atomic-scale prop-
erties are continuous, smooth functions of the atomic
coordinates. Function regularity is crucial for creat-
ing efficient ML models, and is therefore one of the re-
quirements for a good structural representation. Fea-
tures constructed from a symmetrized atom density
are naturally smooth functions of atomic coordinates,
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and it is usually not a problem to maintain this regular
behavior upon symmetrization over translations and
rotations. The level of smoothness can be adjusted by
smearing the atomic density, or by expanding it on a
smooth basis (effectively a Fourier smoothing), as we
discuss more extensively in Section IV. Internal co-
ordinates are also usually smooth, but the process of
manipulating them to achieve a permutation invari-
ant representation can affect the smoothness of the
mapping.

One way to obtain permutation invariance with-
out incurring the exponential scaling of the cost as-
sociated with enumerating all possible permutations
of atomic indices involves sorting the entries in a dis-
tance or Coulomb matrix97,99, an approach that has
also been used with permutation invariant vectors
(PIV)100, “bag of bonds” features (BoB)101. Similar
descriptors based on sorted distances have been also
used to identify recurring structures in structure opti-
mization algorithms102,103, and more recently gener-
alized to lexicographically-sorted lists of k-neighbors
distances104. Computing the eigenvalues of (func-
tions of) interatomic distances, which underlies the
SPRINT method105 as well the overlap matrix eigen-
value fingerprints68,106, also effectively achieves per-
mutation invariance by similar means, since the vec-
tor of eigenvalues is taken to be sorted in ascending
or descending order. The earliest implementation of
the DeepMD scheme107 also relied on sorting a lo-
cal distance matrix. However, the sorting operation
introduces derivative discontinuities in the mapping
between Cartesian coordinates and features, because
the order of the distance vector changes as atoms are
displaced in the structure.

Figure 3 illustrates the discontinuity of the deriva-
tives of a function that is built from an ordered list
of features. Consider a system of 3 atoms that is
uniquely defined by the 3 interatomic distances ri,
where the index i denotes the position of the inter-
atomic distance ri in the ordered list of distances.
We define a smooth function of the sorted distances,

f =
∑
i ci
(
ri − r0

i

)2
parameterized by c and r0. The

function f is indeed invariant to the permutations of
the atom order in the trimer, but at the price of in-
troducing kinks in f and discontinuities in its deriva-
tive when the distance ordering changes. Fitting any
smooth function of the trimer geometry by optimiz-
ing the parameters c and r0 would necessarily lead to
poor approximation accuracy.

The lack of regularity has implications for the ac-
curacy and stability of machine-learning models built
on such features, as has been shown recently by using
a Wasserstein metric to compare Coulomb matrices in
a permutation-invariant manner108. In this context it
is worth noting the remarkable connection linking the
Euclidean distance between vectors of sorted distances
and the Wasserstein distance between radial distribu-
tion functions (Section III.F in Ref. 109), which builds

FIG. 3. Toy model demonstrating a non-smooth property
(solid line) and its discontinuous derivative (dashed line)
that are defined as functions of the ordered list of inter-
atomic distances for a three-atom cluster.

a formal bridge between conceptually unrelated fami-
lies of atomic-scale representations.

C. Locality and additivity

The overwhelming majority of empirical inter-
atomic potentials are expressed as an additive combi-
nation of local terms, or of long-range pairwise contri-
butions. Early models built to fit molecular potential
energy surfaces were built explicitly as a function of
the coordinates of all atoms in the system.61,110,111

Besides the issues of computational cost, this ap-
proach is problematic, as it hinders the application of
the potential to a molecule with a different number of
atoms, or chemical composition. The work of Behler
and Parrinello10 did not only have the merit of empha-
sizing the importance of symmetries in atomistic ma-
chine learning, but it also applied to ML interatomic
potentials an additive expansion of the molecular en-
ergy E(A), writing it as a sum of atom-centered con-
tributions, E(A) ≈

∑
i∈AE(Ai).

The notion of an additive decomposition of prop-
erties, which is implicit in the functional forms of
most interatomic potentials, has far reaching conse-
quences in terms of the data efficiency of the model,
as discussed in Subsection VIII C. Combined with the
requirement that the atomic contributions only de-
pend on the position of atoms within a finite range
of distances, which is needed for the method to be
computationally practical and is supported by funda-
mental physical principles112, the additivity assump-
tion breaks down the problem of predicting the prop-
erties of a complex structure into simpler, short-
range problems. An additive decomposition is also
the most straightforward way to ensure extensivity of
predictions113, i.e. that the prediction of a property
for two copies of a molecule at infinite distance from
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each other is equal to twice the prediction for a single
molecule.

It is not by chance that also in the field of
molecular machine learning, for which many of
the early representations aimed at a global de-
scription of a molecule19,31,114,115, most of the re-
cent approaches have moved to additive, atom-
centered representations116,117, that yield more accu-
rate and transferable models, at least for extensive
properties118. Oftentimes it is possible, and relatively
straightforward, to modify a global representation
to describe an atom-centered environment68,95,119, or
to combine atom-centered representations to build
a global description69, e.g. by summing or averag-
ing the values of all the atom-centered features that
are present in the structure, as we discuss in Sec-
tion VII B. In fact, one could regard the list of atom-
centered features for all the atoms in a structure as
an equivariant global representation of the structure
– one in which the entries in the feature vector trans-
form according to the permutation of the atomic in-
dices. This notion underlies for instance the concept
of self-attention120,121, which has been very fruitfully
applied in the construction of neural networks and
models for cheminformatics. The connection between
symmetry, locality, additivity, and the nature of the
structure-property relation that one wants to model
is essential to the construction of effective and trans-
ferable machine-learning models.

D. Completeness

The requirements of symmetry, smoothness and lo-
cality can be seen as geared towards reducing the com-
plexity of the structural representation, eliminating
redundant structures, reducing the resolution to the
intrinsic length scale over which the target property
exhibits substantial variations, and breaking down
complicated compounds into simple fragments. This
simplification should not, however, come at the ex-
pense of the completeness of the representation, mean-
ing that the mapping between Cartesian and feature
spaces should keep inequivalent structures distinct.
For example, it has been known for some time that
a histogram of interatomic distances (discarding the
identity of the connected atoms) is insufficient to fully
characterize a structure composed of more than three
atoms29,122,123. More recently, counterexamples have
emerged showing that atom-centered correlations – at
least those of low order – are also insufficient to pre-
serve the injectivity of the structure-feature mapping
(see Ref. 124 and Section VI B for a more thorough
discussion).

Besides completeness in terms of the geometric
structure-feature mapping, one should also consider
whether for a chosen regression scheme the feature-
property mapping can be converged to arbitrary ac-

curacy. More complex, non-linear models can often
provide good results even when using a representa-
tion that involves excessive smoothing, or an highly
truncated version of a family of features. The inter-
play between model and features is discussed in more
detail in Section V, and the (largely open) problem of
completeness in Section VI.

IV. SYMMETRIZED ATOMIC FIELD
REPRESENTATIONS

As discussed in the previous Section, a multitude
of representations have been introduced over the past
decade, attempting to incorporate basic principles
of symmetry and locality at the very core of atom-
istic machine learning. The differences between them
are much less fundamental than it appears at a first
glance, and in fact several works have recently pointed
at the existence of a unified framework, in which an
explicit formal connection can be established between
the vast majority of representations.109,125–127 In this
Section we summarize the construction of a class of
features, that we refer to as “symmetrized atomic field
representations”, emphasizing the role played by sym-
metry and locality, as well as hint to the connection
between this class of features and a linear mapping
between structure and properties, which is discussed
in more detail in Section V.

A. Dirac notation for atomic representations

We formalize a notation, that extends the one in-
troduced in Refs. 109,125 and used in Ref. 128 to
compare different kinds of local and global represen-
tations, which expresses the feature vectors associated
with the representation of a structure in a way that
mimics Dirac notation in quantum mechanics. At the
most basic level, this notation can be seen as a way
to indicate expressively the nature of the representa-
tion used, and to tidily enumerate the components of
the associated feature vector. Much like in the quan-
tum case, the real value of the formalism is that it
emphasizes the basis-set independence of the class of
representations we concentrate on, and that it pro-
vides visual cues that help recognizing at a glance the
linear operations that occur in the construction and
manipulation of the feature vectors, and of the mod-
els built on them.129 We will use this notation consis-
tently throughout this review as a neutral medium to
express general results that reflect concepts shared by
many of the most widespread representation, but oc-
casionally make a link to the different notations that
have become established to describe specific frame-
works.

Representations in bra-ket notation We use a ket
|A〉 to indicate an abstract feature vector associated
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FIG. 4. Top: overview of the notation we use to indicate
the features that represent an atomistic structure; bottom:
summary of the steps in a symmetrized field construction.

with a structure A, and – when necessary – comple-
ment the indication of the structure with one or more
symbols and indices (e.g. |A;α〉) that describe the na-
ture of the representation. These indices might specify
the portion of the structure the representation refers
to, its symmetry properties, or serve as a reminder of
the way the representation was constructed. When
we need to explicitly enumerate the elements of the
feature vector, we use one or more indices in the bra,
leading to expressions of the form 〈Q|A〉. In this re-
view, we use Q to indicate a generic continuous index,
and q to indicate a discrete feature index.

Both the ket and the bra indices can (and will)
be used with some looseness, to emphasize the most
relevant elements of a representation while keeping
the notation slim. For instance, as shown in Fig. 4,
one can indicate explicitly multiple bra indices when
their meaning in the definition of a representation is
important, separating with a semicolon groups of in-
dices that are conceptually related, or condense them
in a compound index when the substructure is irrel-
evant. Occasionally, e.g. when juxtaposing different

choices of basis functions, one may also include quali-
fiers in the bra, e.g. 〈n; GTO| to indicate that Gaus-
sian type orbitals are used as a basis. Moreover, when
discussing the construction of a representation, the
reference structure is not important, and so one may
drop the structure index from the notation and write
|α〉 instead of |A;α〉. Conversely, when the represen-
tation of choice is well-established – e.g. when writing
expressions that describe the regression scheme after
having discussed the choice of representation – one
may omit the specifics of the representation and write
simply |A〉.

The indices and the qualifiers that are associated
with the structure index (typically in the ket) describe
the essential nature of the representation and will be
reflected in the architecture of a model built on it. The
indices in the bra, instead, simply enumerate features
that are of homogeneous nature, are usually manipu-
lated together in the construction of the model, and
can be transformed, contracted or sub-selected in a
way that does not change the fundamental properties
of the representation. In many cases, it is possible
to describe the construction of a representation as a
combination of kets, without indicating explicitly the
use of a particular basis.

This notation can be applied in a way that yields
usage patterns that are very similar to those that are
common in quantum mechanics, e.g. bra and ket
can be interchanged using the convention 〈A|Q〉 =
〈Q|A〉?. However, much as in the case of the formal-
ism we take inspiration from, a rigorous characteriza-
tion of the mathematical relations between bras and
kets is problematic130. It is better to see this notation
as a form of symbolic calculus that facilitates memo-
rizing and applying correctly recurring operations and
transformations. Let us give a few examples, which
also provide a reference of how the notation will be
applied in this review.

Change of basis. A change in the basis that is
used to practically compute a representation can be
written as a linear transformation,

〈T |A〉 =

∫
dQ 〈T |Q〉 〈Q|A〉 , (1)

where 〈T |Q〉 indicates the coefficients that enact the
change of basis. This kind of manipulations will be
used in Section IV E to convert between a real-space
description of the atom-centred density and one based
on radial functions and spherical harmonics.131 All of
the expressions discussed here as integrals over a con-
tinuous index can be formulated as sums over (finitely
or infinitely) countable, discrete indices∫

dQ |Q〉 〈Q| ∼
∑
q

|q〉 〈q| . (2)

Scalar product and kernels. The scalar product
between the features of two structures A and A′ can



10

FIG. 5. To obtain features that are invariant to inversion with respect to the vertical dotted line, Haar integration
over the symmetry group in this case just corresponds to summing over two symmetry related images. Starting from
two distinct functions |f〉 (left panels, red) and |g〉 (right panels, blue), the functions (full lines) and their mirror
transformation (dotted lines) are summed to obtain invariant features (bottom row). Direct symmetrization is depicted
in the central panels, yielding |f⊗1〉, while the external panels visualize the construction of tensor-product features, their
symmetrization and summation, yielding |f⊗2〉.

be written using a complete basis indexed by Q as

〈A|A′〉 =

∫
dQ 〈A|Q〉 〈Q|A′〉 , (3)

where one recognizes an expression that is reminiscent
of a completeness relation

∫
dQ |Q〉 〈Q| = 1. This

definition only holds for a complete, orthogonal basis
and might entail an approximation when computed
with a finite basis. The notation 〈A|A′〉 can also be
used to refer to a kernel k(A,A′) that expresses the
similarity between two configurations; this is obvious
when considering a linear kernel, but can also be used
for non-linear kernels, keeping in mind that it might
not be possible to write explicitly the features that
correspond to the Hilbert space that reproduces the
kernel.132

Linear models. The bra-ket notation implicitly
assumes linearity in the transformation between dif-
ferent choices of basis, and in the modeling of target
properties. Even though the features can be used as
an input of an arbitrarily complex nonlinear regression
scheme (see Section V D), we will often investigate
their behavior in the context of linear models, because
they reveal more transparently how a given represen-
tation reflects structure-property relations. When us-
ing a representation |A;α〉 to describe structures, a
linear model for a property y(A) can be written as

y(A) ≡ 〈y|A〉 ≈
∫

dQ 〈y;α|Q〉 〈Q|A;α〉 , (4)

where 〈y;α|Q〉 indicates the regression weights for a
model based on |A;α〉. Leaving aside (important)
issues related to regularization, this expression em-
phasizes that one can transform simultaneously the

weights and the features to a different basis, and the
predicted value is unchanged. The expression 〈y|A〉
can also be seen as a hint of the fact that a collection
of properties could be used as descriptors for a struc-
ture A, although this is an approach we only discuss
briefly in this review.

Tensor product. A pattern we use frequently in
what follows, and that mimics a construction used in
quantum mechanics, is the combination of multiple
kets to build a tensor-product space, e.g.

|(A;α)⊗ (A′;α′)〉 = |A;α〉 ⊗ |A′;α′〉 . (5)

The construction of a tensor-product representation
is well-defined even without indicating explicitly the
basis used to describe either side of Eq. (5), and it is
often possible to use either an explicit Cartesian prod-
uct of the bases on the right-hand side, or a combined
basis

〈Q1;Q2|A⊗A〉 ≡ 〈Q1|A〉 〈Q2|A〉 → 〈T |A⊗A〉 ,
(6)

using only |A〉 as a special case of Eq. (5) in which
A ≡ A′, and α ≡ α′ can be omitted.

Operators and symmetry averages. Finally, we
can consider the action of an “operator” on a ket, that
is to be interpreted as a linear map that transforms
the atomic structure. Taking for instance the operator
î associated with inversion symmetry, î |A〉 indicates
the representation associated with structure A after
the coordinates of all atoms have been reflected rela-
tive to the origin. Much as in quantum mechanics, the
operator can also be applied to the bra, where it cor-
responds to a transformation of the basis. In terms of
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symmetry operations, this corresponds to the active
or passive transformations, acting on the structure or
on the reference frame. By summing over the opera-
tors associated with a symmetry group, an operation
which is also referred to as Haar integration133, one
can build symmetrized representations that are covari-
ant under the actions of the elements of the group, e.g.
for the Ci point group,

|〈A⊗A〉Ci ;σ〉 = |A〉 ⊗ |A〉+ σ(̂i |A〉 ⊗ î |A〉). (7)

The index σ takes the value −1 for representations
that change sign under inversion, and +1 for invari-
ant features; in the invariant case, σ may be omit-
ted. When the resulting symmetric representation
is used often, and the symmetry group is clear from
the context, we indicate the averaging with an over-
line and omit the explicit indication of the group
it has been symmetrized over, e.g., | 〈A⊗A〉Ci〉 →
|A⊗A〉 → |A⊗2〉. Figure 5 illustrates the no-
tation and the Haar integration in one dimension.
Two distinct functions, f and g are plotted using
their usual real-space features, f(x) ≡ 〈x|f〉 and
g(x) ≡ 〈x|g〉. Applying inversion yields 〈x| î |f〉 =
f(−x). An inversion-invariant feature can be cre-
ated by symmetrizing: |f⊗1〉 = |f〉 + î |f〉, but our
choice of f and g leads to a degenerate description,
as |f⊗1〉 = |g⊗1〉. A second order feature may be ob-
tained by generating the tensor product of the func-
tions, e.g. |f〉 ⊗ |f〉, which in real space results in
〈x1;x2|f ⊗ f〉 ≡ f(x1)f(x2). Symmetrizing this ten-
sor product yields features |g⊗2〉 and |f⊗2〉 that are
also inversion-invariant, but are still able to distin-
guish between the two functions.

An example: SOAP in bra-ket notation To give
a concrete example of the use of this formalism, let us
compare the functional notation used in Refs. 29,69
to indicate the components of a SOAP feature vector
with the corresponding bra-ket notation. The reader
who is unfamiliar with the SOAP construction will
find the remainder of this Section, and in particu-
lar Section IV E, to give a very detailed account of
this family of features, and might better skip this
brief overview, that assumes knowledge of the deriva-
tion from Ref. 29. The SOAP power spectrum de-
scribes the two-point correlations between the atom
density centered around the i-th atom of structure A,
expanded in terms of atomic species (labeled by the
indices a1,2), radial basis functions (labeled by n1,2)
and angular momentum channels (labeled by l). The
density expansion coefficients can be written as

〈anlm|A; ρi〉 =

∫
dx 〈n|x〉 〈lm|x̂〉 〈ax|A; ρi〉

≡

ci,anlm =

∫
dxRn(x)?Y ml (x̂)?ρai (x).

(8)

In this expression, 〈ax|A; ρi〉 ≡ ρi,a(x) indicates the
atom-centred density, 〈x|n〉 ≡ Rn(x) an orthonormal

set of radial functions, and 〈x̂|lm〉 ≡ Y ml (x̂) the spher-
ical harmonics.

The SOAP features for the environment Ai can be
written as

〈a1n1; a2n2; l|A; ρ⊗2
i 〉 ∝∑

m

〈A; ρi|a2n2lm〉 〈a1n1lm|A; ρi〉

≡

pi,a1a2n1n2l
∝
∑
m

ci,a1n1lm
(ci,a2n2lm

)?. (9)

In the functional notation, one relies on the conven-
tion that c corresponds to the density expansion co-
efficients and p to the power spectrum, while the
Dirac notation uses the more expressive symbols ρi
to indicate the i-centered atom density, and ρ⊗2

i as
a reminder that SOAP features can be derived as a
symmetry-averaged 2-point correlation of |ρi〉. This
expanded notation is indicative of the place of the
SOAP powerspectrum in the hierarchy of density-
correlation features, and is useful to distinguish be-
tween different kinds of features (radial correlations,
power spectrum, bispectrum . . . ). When it is clear
that one is only using one type of representation, the
compact (and generic) form |Ai〉 can be used instead.
When it comes to the indices labelling different fea-
tures, the functional notation mixes the indices (a)
associated with the chemical species of the neighbors
and the index i of the central atom, separating them
from those associated with the radial channel (n).
This reflects how SOAP was originally introduced to
describe single-element systems. In the Dirac nota-
tion, on the other hand, the (a1n1) and (a2n2) indices
are grouped together to indicate that they are concep-
tually linked in the construction as a tensor product
of two densities, and the index indicating the identity
of the central atom is associated with the ket.

B. Global field representations

The starting point for the construction of a
symmetry-adapted field representation is a field that
describes the structure in terms of the distribution of
its atoms – or, more generally, of points that are as-
sociated with the building blocks of the material, as
one would have in a coarse-grained model. In the sim-
plest possible case, one would take localized functions
g centered on each atomic position ri and define

〈x|A; ρ〉 ≡
∑
i∈A
〈x|ri; g〉 , (10)

where 〈x|ri; g〉 ≡ g(x−ri) is a localized function (e.g.
a Gaussian) centered on the i-th atom, and the ρ in
the ket indicates the kind of field used to describe
the structure. As we discuss in more detail in Sec-
tion IV E, the atomic density functions can be either
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finite-width Gaussians, which leads to representations
akin to SOAP features29, or Dirac δ distributions,
which recovers representations similar to the current
implementation of moment tensor potentials134 or the
atomic cluster expansion126. To indicate the g → δ
limit, we use the notation |ρ〉 → |δ〉. Atoms, or more
generally, “point particles” such as those one could
associate to a coarse grained description of a molec-
ular system, can be further characterized by internal
attributes, that could be discrete (e.g. the chemical
nature of an atom, or a molecule, which we indicate as
ai) or continuous (e.g. an atomic or molecular dipole
ui)

〈aux|A; ρu〉 ≡
∑
i∈A

δaai 〈u|ui; g〉 〈x|ri; g〉 . (11)

In this form, Eq. (11) can be seen as an abstrac-
tion of the many real-space “voxel” representations
of materials,135,136 that are used often in the context
of generative models and reinforcement learning137.
The ket |A; ρ〉 defined by expressions like (10) or (11)
could be equally well expressed in a different basis,
e.g. expanded in plane waves

〈k|A; ρ〉 =
1

(2π)3/2

∫
dx e−ik·x 〈x|A; ρ〉 =

∑
i∈A
〈k|ri; g〉 ,

(12)
which also shows how the change of basis can be ap-
plied directly to the atom-centred density contribu-
tions. Eqs. (10) and (12) contain the same amount of
information, and can be seen as special cases of a for-
mal definition of the representation for the structure
A as a sum of atomic representations,

|A; ρ〉 =
∑
i∈A
|ri; g〉 . (13)

Even though the choice of a basis can be very im-
portant to simplify analytical derivations or practical
implementation, representations can be regarded as
abstract objects that can be defined independently of
the basis set, much as it is the case for the wavefunc-
tion in quantum mechanics.

C. Translational invariance and atom-centered
features

One way to make 〈x|ρ〉 translationally invari-
ant is to sum over the continuous translation group,∫

dt̂ 〈x| t̂ |ρ〉. Summing directly over the atom den-
sity eliminates all structural information, because∫

dt̂ 〈x| t̂ |ri; g〉 =
∫

dt g(t− ri) = 1. Information loss
is a usual issue with Haar integration, as exemplified
in Figure 5. One can avoid or reduce it by summing
over tensor products of the atom density field. Con-
sidering the case in which atoms are described only by
their position and chemical identity, integrating over

translations t̂ yields a two-point density correlation
function

〈a1x1; a2x2| 〈ρ⊗ ρ〉R3〉 ≡ 〈a1x1; a2x2|ρ⊗2〉

=

∫
dt̂ 〈a1x1| t̂ |ρ〉 〈a2x2| t̂ |ρ〉

=
∑
ij

δa1ajδa2ai

∫
dt̂ 〈x1 − t|rj ; g〉 〈x2 − t|ri; g〉

∝
∑
ij

δa1ajδa2ai 〈(x1 − x2)|(rj − ri); g̃〉 (14)

where g̃ indicates the cross-correlation of two of the
localized density functions. In the case of a Gaussian
density, g̃ is simply a Gaussian with twice the vari-
ance, and outside this section we will use just g to
indicate the atomic density both in |ρ〉 and |ρi〉. As
a remindet that the representation has been obtained
by averaging over translations the tensor product of
two density fields, we use the superscript notation ρ⊗2,
and we separate with a semicolon groups of feature in-
dices that are associated with each factor in the tensor
product, as discussed in Section IV A. Note that the
representation in Eq. (14) has a large null space, as it
depends only on x1 − x2. One could then re-define it
by labelling features using a single position vector, or
transform it in a plane wave basis:

〈a1; a2; k|ρ⊗2〉 =

∫
dx e−ik·x 〈a10; a2x|ρ⊗2〉

= 〈a1k|ρ〉? 〈a2k|ρ〉 (15)

where the second equality is a consequence of the con-
volution theorem. One sees that the translationally-
symmetrized density is essentially equivalent to the
diffraction pattern of the atomic structure I(k), that
has been already used as a descriptor to classify crys-
talline configurations.138

This construction can be taken as an inspiration
to introduce an atom-centered representation

〈ax|A; ρi〉 =
∑
j∈A

δaaj 〈x|rji; g̃〉 , (16)

where rji = rj−ri. The fact that |A; ρi〉 is atom cen-
tered (and hence translationally invariant) is hinted at
by the subscript notation ρi, and so in what follows we
only use this subscript to distinguish it from its non-
symmetrized counterpart (10) and simultaneously to
indicate the central atom index. When expressing a
representation centered around atom i without em-
phasis on its precise nature, we will use the notation
|Ai〉.

Writing the symmetrized two-point density cor-
relation in terms of Eq. (16) clarifies how an atom-
centered representation is a natural consequence of
the translational symmetrization:

〈a1x1; a2x2|A; ρ⊗2〉 =
∑
i∈A

δa2ai 〈a1(x1 − x2)|A; ρi〉 .

(17)
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FIG. 6. Graphical scheme of the construction of a SO(3)-
symmetrized tensor product representation. Copies of the
atom-centered density are evaluated at ν separate points,
and the tensor product is averaged by simultaneously ro-
tating all densities.

When building a linear model, this expression implies
an additive decomposition of the target property, as
well as the use of separate models depending on the
nature of the central atomic species:

〈y|A〉 ≈
∑
i∈A
〈y; ai|Ai〉

=
∑
i∈A

∑
a

∫
dx 〈y; ai|ax〉 〈ax|A; ρi〉 .

(18)

Note that in this case we assume that only the regres-
sion weights depend on the nature of the central atom,
but one might as well fine-tune the atom-centred fea-
tures depending on the central atom. As discussed
in Section V A, this expression can be taken as the
prototype of all pair potentials, and higher-order of
many-body interaction can be incorporated by taking
higher tensor powers before symmetrization, or in the
subsequent step of rotational averaging. Localization
can be enforced by introducing a cutoff function in the
definition (16). This is far from being an inconsequen-
tial operation, as it introduces an error: atomic ener-
gies and properties cannot depend on neighbors far-
ther than this limit, as one can measure in terms of the
locality of the response of forces to atomic displace-
ments of neighbors15. However, introducing a rela-
tively short-range cutoff often results in more robust
models, which perform better in the data-poor regime.
We discuss this in more detail in Section VIII C.

D. Rotational invariance and body-ordered
representations

The atom-centered representation (16) is transla-
tionally invariant, but does depend on the orientation
of the structure. One should then proceed to perform
Haar integration over the rotation group and (possi-
bly) over inversion.

We can define the (ν+1)-body order symmetrized

field representation as

|ρ⊗νi 〉 ≡ | 〈ρi ⊗ · · · ⊗ ρi︸ ︷︷ ︸
ν times

〉O(3)〉

=
∑
k=0,1

∫
SO(3)

dR̂ îkR̂ |ρi〉 ⊗ . . .⊗ îkR̂ |ρi〉 . (19)

This can be expanded on an explicit position basis

〈a1x1; . . . aνxν |ρ⊗νi 〉

=
∑
k=0,1

∫
SO(3)

dR̂ 〈a1x1| îkR̂ |ρi〉 . . . 〈aνxν | îkR̂ |ρi〉 ,

(20)

emphasizing that |ρ⊗νi 〉 corresponds to a sym-
metrized, ν-point correlation of the atom density cen-
tered on the i-th atom (Fig. 6) – a (ν + 1)-point cor-
relation function, in the language used in statistical
mechanics to describe the structure of liquids139,140.
Similar to the case of Eq. (14), this object has a large
null space (e.g. in the ν = 1 case it only depends on
x1 = |x1|). As discussed in Ref. 109, one can choose
a more concise enumeration of the real-space correla-
tions in terms of distances and angles, that reduces in
the limit g → δ to a sum over distances and angles
between atoms. For instance, for the ν = 2 case one
can write

〈a1r1; a2r2;ω|δ⊗2
i 〉

∝
∑
jj′

δa1ajδa2aj′ δ(r1−rji)δ(r2−rj′i)δ(ω−r̂ji ·r̂j′i),

(21)

where we use ρ → δ to indicate that the correlation
function is built on the Dirac-δ limit of the atom den-
sity field. Expressions of this kind reveal the close
connection between symmetrized-field representations
and atom-centered symmetry functions10,20,141, as
well as equivalent constructions such as those used
in the ANI20 and DeepMD142 frameworks, and the
FCHL features116,117. Features that describe a chem-
ical environment are written as a sum over tuples of
neighbors of appropriate functions of their distances
and angles, and can be seen as just a different choice
of basis set for Eq. (21)

〈a1a2k|δ⊗2
i 〉 =

∫
dr1 dr2 dω

× 〈k;G3|r1r2ω〉 〈a1r1; a2r2;ω|δ⊗2
i 〉

≡∑
jj′

δa1ajδa2aj′G
3
k(rji, rj′i, r̂ji · r̂j′i), (22)

that demonstrates the connection between density
correlations and atom-centered symmetry functions
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computed as a sum over groups of neighbors following
the notation used in Ref. 141.

Note that we choose to symmetrize the atom-
centered description |ρi〉 – given that this is the pro-
cedure that recovers most of the existing representa-
tions – but one could as well proceed by averaging
over tensor products of the translationally invariant
representation of the full structure |ρ⊗2〉

| 〈 〈ρ⊗ ρ〉R3 ⊗ 〈ρ⊗ ρ〉R3〉SO(3)〉 ∼∫
SO(3)

dR̂
∑
ii′

R̂ |ρi〉 ⊗ R̂ |ρi′〉 , (23)

as it was done for instance in Ref. 143. Doing so
results in the appearance of cross terms involving
correlations between densities centered on different
atoms, which could be used to systematically incor-
porate in this framework machine-learning approaches
based on convolutional, and message-passing, neural
networks that combine information centered on neigh-
boring atoms.21,144

E. Density correlations in an angular
momentum basis

More concise (and easier to evaluate) expressions
for the density correlation representations can be ob-
tained with a change of basis. Using orthonormal ra-
dial functions Rn(x) ≡ 〈x|n〉 and spherical harmonics
Y ml (x̂) ≡ 〈x̂|lm〉 yields a discrete set of coefficients
that transform as spherical harmonics

〈anlm|A; ρi〉 =

∫
dx 〈n|x〉 〈lm|x̂〉 〈ax|A; ρi〉

=
∑
j∈Ai

δaaj

∫
dx 〈n|x〉 〈lm|x̂〉 〈xx̂|rji; g〉

=
∑
j∈Ai

δaaj 〈nlm|rji; g〉 , (24)

where 〈nlm|rji; g〉 corresponds to the expansion in ra-
dial functions and spherical harmonics of a Gaussian
centered on the interatomic vector rji. These expan-
sion coefficients can be seen as functions of rji, enu-
merated by the indices (n, l,m), that can be evaluated
numerically or analytically, depending on the choice of
basis (see Section VIII D for a few examples).

The use of spherical harmonics |lm〉 for the angu-
lar basis is natural, and makes it easy to evaluate the
rotational integral of Eq. (19) analytically, because
the matrix elements 〈lm|R̂|l′m′〉 = δll′D

l
m′m(R̂) cor-

respond to Wigner-D matrices, an irreducible repre-
sentation of SO(3). Well-known results from the the-
ory of angular momentum,145 such as the orthonor-
mality and the product reduction formula for Wigner-
D matrices, allow deriving explicit expressions for the

symmetrized field representations of order ν = 1, 2, 3

〈a1n1l1m1|ρ⊗1
i 〉 =

8π2

2l1 + 1
〈a1n1l1m1|ρi〉 δl10δm10

(25)

〈a1n1l1m1; a2n2l2m2|ρ⊗2
i 〉 = δl1l2δm1m2

8π2

2l1 + 1∑
s

(−1)s−m1 〈a1n1l1s|ρi〉 〈a2n2l2(−s)|ρi〉 , (26)

〈a1n1l1m1; a2n2l2m2; a3n3l3m3|ρ⊗3
i 〉 =

8π2

2l1 + 1
(−1)−m1 〈l2m2; l3m3|l1(−m1)〉∑

s1s2s3

(−1)−s1 〈l2s2; l3s3|l1(−s1)〉 〈a1n1l1s1|ρ1〉

〈a2n2l2s2|ρ2〉 〈a3n3l3s3|ρ3〉 , (27)

where 〈l1m1; l2m2|LM〉 is a Clebsch–Gordan coeffi-
cient.

Much as it was the case for the real-space versions
of the density correlation representations, there are
several redundant indices in these expressions, result-
ing from the rotational averaging that leaves some of
the mi as free parameters. We can then re-label the
invariant features, in a way that emphasizes the con-
nection to existing representations, by coupling the
angular basis and absorbing some of the inconsequen-
tial constant factors. For the case ν = 1 one can define

〈an|ρ⊗1
i 〉 = 〈an00|ρi〉 (28)

which corresponds to a discretized version of a pair
correlation function

〈an|ρ⊗1
i 〉 =

∫
dx 〈n|x〉 〈00|x̂〉 〈a(xx̂)|ρi〉

∝
∫

dxx2 〈n|x〉
∫

dx̂ 〈a(xx̂)|ρi〉

∼
∫

dr r2Rn(r)?ga(r), (29)

in which we use the usual notation ga(r) to indicate
the distribution of a atoms (although in this case it
is restricted to an i-centered environment rather than
averaged over an equilibrium distribution). For the
ν = 2 case, Eq. (26) can be redefined as

〈a1n1; a2n2; l|ρ⊗2
i 〉 =

(−1)l√
2l + 1∑

m

(−1)m 〈a1n1lm|ρi〉 〈a2n2l(−m)|ρi〉 (30)

This corresponds – modulo irrelevant constants – to
the rotation invariant 3D shape descriptor146 and to
the SOAP features, which would be written, in the
notation of Refs. 29,69 as

pi,a1a2n1n2l
=

1√
2l + 1

∑
m

ci,a1n1lm
(ci,a2n2lm

)?, (31)
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where ci,anlm = 〈anlm|ρi〉 indicate the density expan-
sion coefficients following the same notation. The
ν = 2 representation can also be written on a real-

space basis as 〈a1r1; a2r2;ω|ρ⊗2
i 〉, emphasizing its na-

ture as three-body density correlation function that
depends on two distances r1, r2 and the cosine ω of
the angle between the directions along which they are
evaluated. The 4-body order invariant representation
becomes

〈a1n1l1; a2n2l2; a3n3l3|ρ⊗3
i 〉 =

(−1)l3√
2l3 + 1∑

m1m2m3

(−1)m3 〈l1m1; l2m2|l3m3〉 〈a1n1l1m1|ρi〉

〈a2n2l2m2|ρi〉 〈a3n3l3(−m3)|ρi〉 (32)

corresponding to the SOAP bispectrum29

bi,a1a2a3n1l1n2l2n3l3
=

1√
2l + 1

∑
m1m2m3

〈l1m1; l2m2|l3m3〉

ci,a1n1l1m1
ci,a2n2l2m2

(ci,a3n3l3m3
)?, (33)

and closely related to the bispectrum used in the spec-
tral neighbor analysis method147,148, which is essen-
tially equivalent to a different choice of basis. As
discussed in more detail in Ref. 149 and in the next
sections, the relationship between the redundant ex-
pressions (25, 26, 27) that arise from the integral over
rotations, and the more concise versions (28, 30, 32)
can be seen as a transformation from the uncoupled
to the coupled angular momentum basis, and starting
from the ν = 4 additional indices kν must be included
to account for the different ways the coupling can be
realized. A practical implementation of these higher
body order features is given by the the atomic cluster
expansion (ACE), which is usually computed based
on the g → δ limit of ρ. The coefficients of the atom
density are indicated as 〈nlm|δi〉 ≡ Ainlm following
the notation of Ref. 126, and

〈n1l1k1 · · ·nν lνkν |δ⊗νi 〉 ≡ B
(ν)
in1···nν
l1···lν

(34)

correspond to the features associated with ν-order

neighbor clusters. Note that each B
(ν)
in1···nν
l1···lν

indicates

a group of basis functions indexed by k1, . . . , kν . An
equivalent construction, that emphasizes the connec-
tion with angular momentum theory, is provided by
the N-body iterative contraction of equivariants149,
that is discussed in Section IV G. Through a further
linear transformation (change of basis) made explicit
in Refs. 127,150 the moment tensor potential (MTP)
of Ref. 134 can also be related to this construction.
The philosophy behind the density correlation features
is different from that behind MTPs and ACE, in that
these methods were at least originally thought of as
bases for polynomial regression. While these basis
functions can be equally used as symmetry-adapted

features there are subtleties to be considered that we
discuss in Sec. VI and in Sec. VIII B. Note that even
though the contracted basis 〈(ainiliki)i=1...ν | elimi-
nates some of the redundant indices that are present
in the tensor-product basis, the indices do not label a
set of linearly independent features. Symmetries and
selection rules – some of which, listed in Ref. 149,
can be derived from results of angular momentum
theory151 – restrict greatly the number of indepen-
dent entries that need to be computed. However, the
non-trivial interaction between the radial and angular
basis component makes this list incomplete. A mixed
algebraic/numerical precomputation step can further
reduce the required features127.

Finally, the global SOAP-like descriptors intro-
duced in Ref. 143, corresponding to Eq. (23), can be
readily expressed in an angular momentum basis as

〈a1n1; a2n2; l|A; ρ⊗2 ⊗ ρ⊗2〉 =
(−1)l√
2l + 1∑

m

(−1)m 〈a1n1lm|ρ⊗2〉 〈a2n2l(−m)|ρ⊗2〉 , (35)

where we recall that 〈anlm|A; ρ⊗2〉 =∑
i∈A 〈anlm|ρi〉.

F. The density trick

A crucial point in comparing different represen-
tations is that with an appropriate discretization of
the angular basis one can evaluate symmetrized high-
order correlations as sum of products of the density
coefficients defined in Eq. (24). This ensures that the
cost of computing all coefficients of a given order ν,
scales only linearly with the number of neighbors in-
cluded within the cutoff around atom i, even though
it scales exponentially with ν in terms of the num-
ber of basis functions, at least with a naive choice of
basis. This is to be contrasted with atom-centered
symmetry functions (ACSF),20,141,142 and permuta-
tion invariant polynomials (PIP),11 in which function
are evaluated over all possible tuples composed of ν
neighbors of the central atom (or on all the possible
tuples in a structure to yield a global descriptor). In
these frameworks, the cost depends linearly on the
number of basis functions, but exponentially with ν
in terms of the number of neighbors. This crucial
difference makes density-expansion frameworks more
convenient when one wants to ramp up the value of
ν, and there are many neighbors. A-priori sparsifica-
tion schemes, exemplified in (106), and feature selec-
tion schemes, discussed in Section VIII B, allow one
to keep only the most important basis functions, and
eliminate the exponential scaling with ν altogether.

Despite this rather fundamental difference in phi-
losophy and computational cost, the two families of
representations compute entities that are essentially
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equivalent, which we see by writing explicitly Eq. (30)
in the g → δ limit as a sum over neighbors j and j′

〈a1n1; a2n2; l|δ⊗2
i 〉 ∝

∑
jj′

δa1ajδa1aj′√
2l + 1

〈n1|rji〉 〈n2|rj′i〉

×
∑
m

(−1)m 〈lm|r̂ji〉 〈l(−m)|r̂j′i〉 . (36)

By using the addition formula of the spherical har-
monics we get the equivalent formulation

〈a1n1; a2n2; l|δ⊗2
i 〉 ∝

√
2l + 1∑

jj′

δa1ajδa1aj′ 〈n1|rji〉 〈n2|rj′i〉 〈l|r̂ji · r̂j′i〉 , (37)

in which 〈ω|l〉 ≡ Pl(ω) is a Legendre polynomial of
order l. In Eq. (37), the ν = 2 density correla-
tion coefficients are computed as a function of the
distances and angles between triplets of atoms in-
cluding the central atom i. By plugging this ex-

pression for 〈a1n1; a2n2; l|δ⊗2
i 〉 into Eq. (22), that

evaluates the value of an arbitrary atom-centered
symmetry function, one sees that this result is not
specific to the choice of Pl as angular functions:
in the limit of a complete basis set, it is equally
possible to compute any ACSF using a sum over
neighbor tuples or a contraction of density coeffi-
cients, drawing an explicit link between the SOAP
power spectrum features,29,69 Behler-Parrinello sym-
metry functions,20,152 the DeepMD framework,142 and
FCHL features116. Similar expressions could be de-
rived for higher-order atom-centered symmetry func-
tions, showing the complete equivalence – but dramat-
ically different computational scaling with the number
of neighbors – of the two frameworks.

G. Equivariant representations and tensorial
features

The previous construction is suitable to represent
any rotationally-invariant atomic property. In many
circumstances, however, one is interested in represent-
ing vector-valued or general tensorial quantities y. In
this case, the prescribed transformations that the ten-
sor undergoes under the symmetry operations of the
O(3) group (e.g. y(R̂A) = R̂y(A)) have to be incorpo-
rated into the atomic representation in the form of co-
variant, rather than simply invariant, features, so that
the representation follows the same transformation as
the target property, |R̂A〉 = R̂ |A〉. Equivariance (the
general concept that indicates symmetry-adapted be-
havior, encompassing both invariance and covariance)
can be enforced by comparing environments and defin-
ing the local contribution to the target relative to a
pre-defined local reference frame, which has been used
to build machine-learning models of tensorial proper-
ties in molecular systems153–156. A more general ap-
proach for achieving this goal consists in endowing the

* **

FIG. 7. Graphical scheme of the construction of a SO(3)
equivariant tensor product representation. Copies of the
atom-centered density are evaluated at ν separate points,
together with a set of spherical harmonics that provide
a basis to expand the components of a tensorial property.
The tensor product is averaged by simultaneously rotating
all densities and the |λµ〉 term.

representation with the symmetries of spherical har-
monics 〈x̂|λµ〉 = Y µλ (x̂), as well as the desired parity

under the action of the inversion operator î, which we
associate with a ket |σ〉 such that î |σ〉 = σ |σ〉. The
eigenvalue σ is 1 for polar tensors, and −1 for pseu-
dotensors. Features that transform as |σ〉 ⊗ |λµ〉 can
be achieved by including two additional fields109,157

within the symmetrized tensor product of Eq. (19),
i.e.,

| 〈ρ⊗νi ⊗ σ ⊗ λµ〉O(3)〉 ≡ |ρ
⊗ν
i ;σ;λµ〉

=
∑
k=0,1

∫
SO(3)

dR̂ îk |σ〉 ⊗ îkR̂ |λµ〉

⊗ îkR̂ |ρi〉 ⊗ · · · ⊗ îkR̂ |ρi〉 . (38)

The operation is depicted in Fig. 7, showing how the
λµ ket corresponds to the evaluation of a set of spher-
ical harmonics that anchors the atom-centered den-
sity to a reference frame. The scalar and rotationally-
invariant case is recovered by taking |σ;λµ〉 = |1; 00〉.

This construction represents a particularly con-
venient framework to target the prediction of any
Cartesian tensor y in terms of its irreducible spheri-
cal components,158 namely yσλµ , that transform under
rotation and inversion as

yσλµ (R̂A) =
∑
m

Dλ
µm(R̂)yσλm (A),

yσλµ (̂iA) =σ(−1)λyσλm (A).

(39)

Within a linear regression model, they can be writ-
ten as the combination of equivariant representations
of the proper order λ and parity σ with a set of
rotationally-invariant weights 〈Q|y;σ;λ〉:

yσλµ (A) = 〈y|A;σ;λµ〉

≈
∑
i

∫
dQ 〈y;σλ;|Q〉 〈Q|A; ρ⊗νi ;σ;λµ〉 . (40)

Each irreducible spherical component of y gives rise
to a separate equivariant model, and the appropri-
ate transformation rules are ensured by the fact that
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each equivariant feature 〈Q|A; ρ⊗νi ;σ;λµ;〉 separately
transforms as the spherical harmonics |lm〉 and the
parity function |σ〉. Much like the case of invari-
ant symmetrized fields features, Eq. (38) can be most
effectively computed by first expanding the atom-
centered field on a basis of spherical harmonics, and
is equivalent to an equivariant extension of the atomic
cluster expansion150 or the moment tensor potentials,
that are usually evaluated in the g → δ limit.

A concrete example of these features is given by
the density coefficients themselves: in fact, one can
see that the ν = 1 equivariant reads simply

〈n|ρ⊗1
i ;σ;λµ〉 ≡ 〈nλ(−µ)|ρi〉 δσ1. (41)

Note how in the bra-ket notation the (λ, µ) indices on
the two sides of this equation carry a different mean-
ing. When used in the bra of the local density expan-
sion 〈nλµ|ρi〉, they identify one of many components
that are translationally invariant, but are not required
to be rotationally equivariant; there is no explicit link
to their behavior under rotation, and one could build
a model by selecting only some of the µ values for a
given (n, λ). When used in the ket of an equivariant

feature 〈n|ρ⊗1
i ;σ;λµ〉, they label groups of features

that should be taken together, because they transform
in a specific way under the symmetries of the O(3)

group. By using 〈n|ρ⊗1
i ;σ;λµ〉 features in Eq. (40)

one obtains a model that fulfills (39) (with the caveat
that pseudotensors cannot be described by ν = 1 fea-
tures) because acting on the spherical harmonics with
R̂ yields a product with the associated Wigner matrix∑

n

〈y;λ|n〉 〈n|R̂A; ρ⊗1
i ;λµ〉 =

=
∑
n

〈y;λ|n〉 〈nl(−µ)|R̂A; ρi〉

=
∑
n

〈y;λ|n〉
∑
m

Dλ
µm(R̂) 〈nl(−m)|A; ρi〉

=
∑
m

Dλ
µm(R̂)

∑
n

〈y;λ|n〉 〈n|A; ρ⊗1
i ;λm〉 . (42)

The same covariant property applies to all density-
correlation features,

|R̂A; ρ⊗νi ;σ;λµ〉 =
∑
m

Dλ
µm(R̂) |A; ρ⊗νi ;σ;λm〉 .

(43)
Scalar products of these equivariant features gen-

erate matrix-valued kernels, that are suitable for
symmetry-adapted Gaussian process regression – for
example λ-SOAP kernels159,160. Each entry in the
kernel describes the coupling between the µ channels
associated with the two environments,

kσλµµ′(Ai, A
′
i′) =

∫
dQ

× 〈A; ρ⊗νi ;σ;λµ|Q〉 〈Q|A′; ρ⊗νi′ ;σ;λµ〉 . (44)

The symmetry properties of the features translate into
the a kernel that transforms under rotations of the
environments as

kσλµµ′(R̂Ai, R̂
′A′i′) =∑

mm′

Dλ
µm(R̂) kσλmm′(Ai, A

′
i′)D

λ
µ′m′(R̂

′)?, (45)

which generalizes the covariant property for kernels
introduced by Glielmo et al. for the case of Cartesian
vectors.161

The fact that equivariant features of the form (38)
follow O(3) transformation rules means that they can
be combined using established relationships in the
quantum theory of angular momentum. In particu-
lar, the coupled-basis representation used in the def-
inition of Eqs. (28–32) can be formulated for an ar-
bitrary value of ν, and in this form it is possible to
express succintly149 a recursive formula to evaluate

|ρ⊗νi ;σ;λµ〉 based on lower order terms:

〈. . . nν lνkν ;nlk|ρ⊗(ν+1)
i ;σ;λµ〉 ∝ δsσ((−1)l+k+λ)×∑

m

〈lm; k(µ−m)|λµ〉 〈n|ρ⊗1
i ; lm〉

〈. . . ;nν lνkν |ρ⊗νi ; s; k(µ−m)〉 . (46)

For ν = 2, the recursion yields the original expression
for λ-SOAP equivariants159

〈n1l1;n2l2|ρ⊗2
i ;σ;λµ〉 =

δσ(−1)l1+l2+λ

√
2λ+ 1

∑
m

〈l1m; l2(µ−m)|λµ〉

× 〈n1l1(−m)|ρi〉 〈n2l2(m− µ)|ρi〉 . (47)

Similar recursive expressions have been indepen-
dently proposed to efficiently compute invariant
features127,134, that can be obtained by taking
|σ;λµ〉 = |1; 00〉 in Eq. (46). The possibility of com-
bining equivariant features using angular momentum
rules is also exploited in the construction of covariant
neural networks144,162

One can also build models that are imbued with
the appropriate transformation properties in an in-
direct fashion, by learning atom-centered scalars and
combining them with the atomic positions to evaluate
formal (or actual) molecular multipoles. This is eas-
ily seen for the case of the dipole moment of a neutral
molecule, that can be computed as

µ(A) =
∑
i∈A

q(Ai)ri. (48)

Models of this form have been used since the early
days of the construction of molecular potential and
dipole moment surfaces62,164, combined with neural-
network potentials to compute IR spectra in the con-
densed phases165, and more recently combined with
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FIG. 8. Relationship between Cartesian coordinates, local and long-range fields. The top row shows a 1D cartoon,
and the second row a more realistic, hypothetical “doped graphene” system in 2D. Left: Reference structure; middle:
atom-density field, divided in three elemental channels, color-coded; right: atom-density potential, color-coded. Adapted
with permission from Ref. 163. Copyright 2020 Royal Society of Chemistry.

tensorial models, to describe the interplay of atomic
charges and polarization contributing to the total
dipole moment166. Assigning constant formal charges
qi to atoms has also been used to derive covariant
kernels, in the so-called operator machine learning
framework167, which is also similar in spirit to the
tensorial embedded atom neural network168. The gist
of the idea (although expressed in a feature rather
than kernel (or NN) language) is that one can define a
translationally-invariant representation that depends
formally on an applied electric field, e.g.

〈x|Ai; E〉 =
∑
j∈A
〈x|rji; g〉 (rji ·E)qj (49)

Deriving with respect to one of the components of E
brings a dependency on the corresponding component
of rji, that upon rotational averaging (keeping in mind

that R̂ acts on atomic coordinates and not on the ex-
ternal field) plays the same role as |λµ〉 in Eq. (38),
providing a basis of features that can be used to learn
vectors covariantly. The use of local interatomic vec-
tors to build a covariant reference system is similar to
the approach adopted in Ref. 169 to define a general
atomic neighborhood fingerprint, and in Ref. 170 to
learn the position of electronic Wannier centers. De-
spite the superficial similarity with the environment-
dependent point-charge model of Eq. (48), this scheme
more closely resembles a framework based on atomic
dipoles, since its predictions can be decomposed as a
sum of atom-centered equivariant terms.

H. Long-range features

Introducing a cutoff in the definition of the local
density is not only necessary to reduce the cost of

evaluating the expansion coefficients, or the number
of terms that have to be included to obtain a con-
verged expansion of the density correlations. Increas-
ing the range of the environment makes the model
more complex, which often results in slower learning
when limited training data is available.30 The prob-
lem is particularly evident when studying systems
with a prominent electrostatic component159,173, but
long-range physics is ubiquitous174, and ultimately
limits the accuracy and transferability of machine-
learning models24,166,173. One pragmatic solution is to
build models that explicitly incorporate a physically-
motivated functional form as a baseline, which could
take the form of an existing model175,176, an elec-
trostatic scheme based on machine-learned partial
charges165,177,178 or atomic multipoles154,179. Alter-
natively, one may attempt to construct representa-
tions that are multi-scale in nature, and are therefore
suitable to describe, in a data-driven manner, prop-
erties that depend on multiple length scales. This
idea has been implemented by combining local rep-
resentations with different cutoffs30, scaling atomic
contributions according to distance116,125 (see also
Section VIII C), treating separately intra- and inter-
molecular correlations180,181, as well as by building
global structural representations based on an intrinsi-
cally multi-scale wavelet scattering transform182.

A recently-proposed, more radical take to the
problem, extends the symmetrized atomic field con-
struction beyond the use of the atomic density as the
starting point. In order to describe more naturally
the long-range behavior that is typical of electrostatic
interactions, it defines a Coulomb-like potential field
based on the smoothed atomic density (Figure 8)

〈ax|A;V 〉 =

∫
dx′
〈ax|A; ρ〉
|x− x′|

. (50)
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FIG. 9. Median-error binding curves for six different classes of intermolecular interactions, involving charged, polar and
apolar molecules extracted from the BioFragment Database171. (black lines) reference quantum-mechanical calculations.

(green lines) predictions of a local ( |ρ⊗2
i 〉-based) model. (blue lines) predictions of a multi-scale ( |ρi ⊗ Vi〉-based) model.

The shaded area indicates the confidence interval for the prediction estimated from a committee model172. Reproduced
from Ref. 163.

This is a global operation, which can however be per-
formed efficiently by transforming the density in plane
waves, using one of the many different schemes that
are routinely used to model electrostatics. Symmetriz-
ing |V 〉 in the same way as for |ρ〉 leads to an atom-
centered potential,

〈ax|A;Vi〉 =

∫
dx′
〈ax|A; ρ<i 〉
|x− x′|

+

∫
dx′
〈ax|A; ρ>i 〉
|x− x′|

≡ 〈ax|A;V <i 〉+ 〈ax|A;V >i 〉 , (51)

where we introduce the short-range density |ρ<i 〉, re-
stricted to the region within the cutoff, and the far-
field density |ρ>i 〉, restricted outside the cutoff, and
the corresponding local and non-local fields |V <i 〉 and
|V >i 〉. Crucially, these features incorporate informa-
tion on atoms outside the cutoff, yet their complexity
can be kept under control by restricting the range of
the spherical environment over which they are com-
puted. Just as for |ρi〉, the ket can be discretized by

** *

FIG. 10. A multi-scale equivariant representation combin-
ing atom-centered density fields |ρi〉, long-range fields |Vi〉
and a set of spherical harmonics.

expanding it on an orthogonal basis of radial functions
and spherical harmonics to obtain 〈anlm|Vi〉.

One can then build features that are fully equiv-
ariant by averaging |Vi〉 over the symmetry opera-
tions of the O(3) group, leading to ν-point correla-
tions analogous to those discussed above. Further-
more, one can combine local and long-range fields,
as in Figure 10, constructing a family of multi-
scale long-distance equivariants (LODE) features163,
that in the most general form can be written as

|ρ⊗νi ⊗ V
⊗ν′
i ;σ;λµ〉:

| 〈ρ⊗νi ⊗ V
⊗ν′
i ⊗ σ ⊗ λµ〉O(3)〉 =

∑
k=0,1

∫
SO(3)

dR̂ îk |σ〉⊗

îkR̂ |λµ〉⊗îkR̂ |ρi〉 · · · ⊗ îkR̂ |ρi〉︸ ︷︷ ︸
ν times

⊗ îkR̂ |Vi〉 · · · ⊗ îkR̂ |Vi〉︸ ︷︷ ︸
ν′ times

.

(52)

The simplest multi-scale representation |ρi ⊗ Vi〉 can
be linked to physics-based models using an atom-
centered multipole expansion of electrostatic interac-
tions, as we discuss further in Section V C, but are
effective to learn a multitude of long-ranged interac-
tions, from permanent electrostatics, to polarization
and dispersion. When trying to represent long-range
interactions between molecular fragments, a model

based on local |ρ⊗2
i 〉 features produces a completely

unphysical behavior, with the interaction reaching a
plateau when the molecules are separated by more
than the cutoff distance (Figure 9). Multi-scale LODE
features, instead, can describe the asymptotic tail
even when using a 3Å cutoff in the definition of the
atom-centered environments, and are capable of repre-
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senting interactions of very different chemical nature.
Using a non-local field as the starting point of the
symmetrization procedure provides interesting oppor-
tunities to incorporate long-range, many-body inter-
actions in atomistic machine learning.

V. REPRESENTATIONS AND MODELS

Even though this review focuses on the prob-
lem of representing atomic structures in terms
of a vector of features, one cannot ignore the
intimate connection between the choice of fea-
tures and how they are used to construct mod-
els of symmetric properties, such as site energies,
which are then used in the context of regression
schemes.10,21,81,95,126,134,144,159,163,183–185 The pur-
pose of this section is therefore to discuss the interplay
between representations and models. Given a set of
symmetric features 〈q|Ai〉 of an atomic environment
Ai, we explore how to use it to represent a symmetric
property y(Ai). We discuss linear approximations,

y(Ai) ≈
∑
q

〈y|q〉 〈q|Ai〉 (53)

and show that the family of features we introduced
in Section IV lead to natural generalisations of well-
established models of interactions between atoms
and molecules in terms of a body-ordered expansion.
These relatively simple models put stringent require-
ments on the quality of the feature sets. We then go on
to review how highly non-linear models may provide
more flexibility in describing the relationship between
a structure and its properties, and yield satisfactory
results even with a rather simple, imperfect choice of
features. Here, and in the following, we always under-
stand implicitly that equality in these approximations
can only be attained in the limit of an infinite cutoff
radius and suitably converged parameterisation.

A. Linear models and body-order expansion

An advantage of linear models is that they can of-
ten be connected to classical physics-inspired frame-
works, and bring to light physical-chemical insights
on the nature of the underlying representations An
example of this connection involves the construction
of interatomic potentials in terms of a body-ordered
hierarchy of atom-centered energy terms

E(A) =
∑
i∈A

E(Ai) =
∑
ν

∑
i∈A

E(ν+1)(Ai), (54)

in which each term can be written as a sum over ν
neighbors of the central atom

E(ν+1)(Ai) =
∑

j1<···<jν

v(ν+1)(rji1 , . . . rjiν ). (55)

This kind of expansion underlies the vast majority of
empirical force fields, that are customarily written as
a combination of pair potentials, and short-range 2, 3,
and 4-body bonded terms.

Most potentials truncate this expansion at body-
order three, i.e. ν = 2 – a notable exception being the
dihedral angle potentials used in force fields, that are
four-body but involve selected groups of atoms rather
than a sum over all possible triplets. This is because
the cost of a naive evaluation of the sum

∑
j1<···<jν

scales exponentially with the body order ν, i.e. as
O(Nν

i ) for an environment containingNi atoms. More
sophisticated ways of symmetrizing the body-ordered
terms, such as those discussed in Refs. 186 and 95, al-
leviate this behavior. In the following paragraphs we
demonstrate, in particular, how this exponential scal-
ing can be overcome by using the density correlation
representations discussed in Section IV.

The three-body case. It is illuminating to first
discuss in full detail the representation of a 3-body
site potential, written traditionally in internal coordi-
nates, in the form

E(Ai) =
∑
j

v(2)(rji) +
∑
j<j′

v(3)(rji, rj′i, ωijj′), (56)

where ωijj′ := r̂ji · r̂j′i. In order to connect to the
atomic density correlations we first rewrite this as

E(Ai) =
∑
j

(
v(2)(rji)−

1

2
v(3)(rji, rji, 0)

)
+

1

2

∑
jj′

v(3)(rji, rj′i, ωijj′)

=:
∑
j

u(2)(rji) +
∑
jj′

u(3)(rji, rj′i, ωijj′), (57)

adding and subtracting a self-interaction from the 3-
body term.

Approximating u(2)(r) in terms of a radial basis
〈r|n〉 ≡ Rn(r) yields

E(2)(Ai) =
∑
j

u(2)(rji)

≡
∑
j

〈u(2)|rji〉 ≈
∑
j

∑
n

〈u(2)|n〉 〈n|rji〉

=
∑
n

〈u(2)|n〉
∫

dr 〈n|r〉
∑
j

δ(r − rji)

=
∑
n

〈u(2)|n〉 〈n|δ⊗1
i 〉 (58)

where |δi〉 is the g → δ limit of the atom-centered
density |ρi〉. As in Eq. (4), the use of the Dirac
notation to express the pair potential highlights the
fact that (atom-centered) properties can be seen as a
type of representation, and that in this sense a linear
model is nothing but an expansion in a discrete basis
of 〈u(2)|r〉 ≡ u(2)(r).
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For the three-body term we revisit (22): first, we
approximate u(3) in terms of the radial basis 〈r|n〉 ≡
Rn(r) and the Legendre polynomials 〈ω|l〉 ≡ Pl(ω),

u(3)(rji, rj′i, ωijj′)

≈
∑
nn′l

〈u(3)|nn′l〉 〈n|rji〉 〈n′|rj′i〉 〈l|ωijj′〉 . (59)

Applying Legendre’s addition theorem to expand the
Pl in terms of spherical harmonics 〈r̂|lm〉 ≡ Y ml (r̂),

〈l|ωijj′〉 =
4π

2l + 1

l∑
m=−l

(−1)m 〈lm|r̂ji〉 〈l(−m)|r̂ji〉 ,

absorbing the 4π
2l+1 into the weights

〈
u(3)

∣∣nn′l〉 and
reordering the summation yields

u(3)(rji, rj′i, ωijj′) =
∑
nn′l

〈u(3)|nn′l〉 〈n|rji〉 〈n′|rj′i〉

×
l∑

m=−l

(−1)m 〈lm|r̂ji〉 〈l(−m)|r̂j′i〉

=
∑
nn′l

〈u(3)|nn′l〉
∑
m

(−1)m 〈nlm|rji〉 〈n′l(−m)|rj′i〉 .

(60)

Finally, we sum over all (j, j′) and reorder the sum-
mation to arrive at∑

jj′

u(3)(rji, rj′i, ωijj′) =
∑
nn′l

〈u(3)|nn′l〉

∑
m

(−1)m
∑
j

〈nlm|rji; δ〉
∑
j′

〈n′l(−m)|rj′i; δ〉

=
∑
nn′l

〈u(3)|nn′l〉
∑
m

(−1)m 〈nlm|δi〉 〈nl(−m)|δi〉

=
∑
nn′l

〈u(3)|nn′l〉 〈nn′l|δ⊗2
i 〉 . (61)

In summary, we have written an arbitrary 3-body
site potential in terms of 1- and 2-correlations of the
atomic density,

E(Ai) =
∑
n

〈u(2)|n〉 〈n|δ⊗1
i 〉

+
∑
nn′l

〈u(3)|nn′l〉 〈nn′l|δ⊗2
i 〉

(62)

Aside from connecting classical body-ordered inter-
atomic potentials and ν-correlations of the atomic
density this formulation has significant advantages in
terms of computational complexity which we discuss
below after generalising the argument to arbitrary
body-order.

General (ν + 1)-body order potentials. The sys-
tematic expansion to arbitrary body orders has been
applied to the description of alloys in terms of a
cluster expansion, a procedure that was very early
shown to provide a complete description of the

problem90, to the rationalization of fragment-based
electronic structure methods187, and to the construc-
tion of last-generation potentials for water and aque-
ous systems175.

We adopt the generalisation of (57) that includes
self-interaction,

E(ν+1)(Ai) =
∑

j1,...,jν

u(ν+1)(rj1i . . . rjν i), (63)

which can be obtained from the more natural formu-
lation (55) by incorporating the self-interaction terms
into the ν-body-order energy similarly to Eq. (57).

To connect (63) to the density correlations we rep-
resent the rotationally invariant (ν+1)-body function
u(ν+1) as

u(ν+1)(rj1i, . . . , rjν i)

=

∫
O(3)

dR̂

∫
dQ 〈u(ν+1)|Q〉 〈Q| R̂ |rj1i, . . . , rjν i〉 ,

(64)

where we use Q as a shorthand for (x1; . . .xν), so that
〈Q|rj1i, . . . , rjν i〉 ≡

∏ν
k=1 δ(xk − rjki). The rotation

can be made to act on the atomic positions or on the
basis, depending on convenience. The (ν + 1)-order
site energy is obtained by summing over clusters of
neighbors

E(ν+1)(Ai)

≈
∑

j1,...,jν

∫
O(3)

dR̂

∫
dQ 〈u(ν+1)|Q〉 〈Q| R̂ |rj1i · · · rjν i〉

=

∫
dQ 〈u(ν+1)|Q〉

∫
O(3)

dR̂
∑

j1,...,jν

〈Q| R̂ |rj1i · · · rjν i〉 .

(65)

The symmetrized sum can be reordered to show that
it corresponds to the ν-point density correlation∫

O(3)

dR̂
∑

j1,...,jν

〈x1; . . .xν | R̂ |rj1i · · · rjν i〉

=

∫
O(3)

dR̂
∑
j1...jν

∏
k

δ(R̂xk − rjki)

=

∫
O(3)

dR̂
∏
k

∑
jk

δ(R̂xk − rjki)

=

∫
O(3)

dR̂
∏
k

〈R̂xk|δi〉 = 〈x1; . . .xν |δ⊗νi 〉 , (66)

which is precisely Eq. (20) written in the g → δ limit.
Thus we have explicitly represented E(ν+1) in terms of
the symmetry-adapted density correlations. We em-
phasize again that this calculation required the inclu-
sion of the self-interactions as the starting point (63)
– even though, if one wishes so, they can be removed
from the final result188.
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Linear completeness. For a practical implemen-
tation we can choose a finite, discrete basis, approxi-
mating E(ν+1) as

E(ν+1)(Ai) ≈
∑
q

〈u(ν+1)|q〉 〈q|δ⊗νi 〉 . (67)

Any complete implementation of ν-order density cor-
relation features126,127,134,149 provides a basis to ex-
pand u(ν+1) and approximate the (ν + 1)-order term,
that contributes to the body-ordered expansion of
E(A). The foregoing discussion shows that these bases
are complete in the following sense. An (infinite) col-
lection of symmetrized features {〈q|Ai〉}q∈qtotal

is a
complete linear basis if there exists a sequence of fi-
nite subsets q ⊂ qtotal such that

y(Ai) ≈ yq(Ai) :=
∑
q∈q
〈y|q〉 〈q|Ai〉 , (68)

i.e. yq approximates y to within arbitrary accuracy
in the limit as the number of features tends to in-
finity. We stress here that the weights 〈y|q〉 depend
on the entire choice of feature set q and not just the
single index q. Therefore the density correlation fea-
tures provide a universal, complete linear basis to ap-
proximate body-ordered potentials and, more gener-
ally, body-ordered expansions of properties that can
be meaningfully written as a sum of atom-centered
contributions.

For the specific choice

〈q| = ⊗να=1 〈nαlαmα| (69)

Eq. (67) is the ACE model126,127. Note that the sym-

metrized correlations 〈q|δ⊗νi 〉 can be efficiently and
conveniently evaluated as already hinted at in Sec-
tion IV E. Since MTPs provide an alternative basis
set for the same space, they are complete as well, and
in the same sense. We also emphasize that a rigorous
proof of completeness of MTPs was already given by
Shapeev 134 , and the essence of the idea can be traced
back to the cluster expansion theory of alloys90. The
“density trick”, i.e., expanding in terms of the den-
sity correlations, ensures linear scaling in terms of the
number of neighbors Ni rather than the

(
Ni
ν

)
scaling

of the naive representation (55), which enables mod-
eling very high body-orders. A recursive evaluation
of the ν-correlations implemented by the MTP and
ACE bases, or by the NICE formalism, avoids an un-
favorable scaling of the evaluation of the high-order
terms (see Section VIII D for a summary of these tech-
niques).

B. Density smearing.

The real-space view of the density correlation fea-
tures may be more intuitive when considering finite
smearing of the atomic contributions to |ρi〉, that

gives rise to a smooth function that can be seen as
a proxy for the electronic density, and is reminiscent
of the atoms-in-molecules189 description of the elec-
tronic structure of a molecule or a condensed-phase
system as a collection of atom-centered densities. In
the literature using SOAP features, the width of the
atom-centrered Gaussians has been often indicated
as a hyperparameter with an important influence on
the robustness190 and accuracy191,192 of the resulting
machine-learning models. Since we derived the link
between density correlations and body-ordered poten-
tials, and in particular the proof of the completeness
of the linear expansion, only in the limit of a sharp
density we now discuss whether a similar formal guar-
antee holds for a general |ρi〉, admitting in particular
smearing of the atomic contributions. With tensor-
product bases, all statements derived for higher cor-
relation orders can eventually be reduced to a one-
dimensional description, that is sufficient to reveal the
essential features of the problem. Note that the fol-
lowing discussion provides only theoretical guarantees;
we explain below that excessive smearing creates se-
vere numerical ill-conditioning which must be care-
fully considered in practical implementations.

We begin by noting that the expansion of a
smeared density in a basis 〈x|n〉 is identical to
the expansion of a δ-like density in the correspond-
ing smeared (a.k.a. mollified) basis 〈x|n; g〉 ≡∫

dx′ 〈n|x′〉 g(x− x′):

〈n|ρ〉 =

∫
dx 〈n|x〉

∑
i

g(x− xi)

=

∫
dx
∑
i

δ(x− xi)
∫

dx′ 〈n|x′〉 g(x− x′)

=

∫
dx
∑
i

δ(x− xi) 〈n; g|x〉 = 〈n; g|δ〉 . (70)

With this observation in hand showing that 〈x|n; g〉
inherits completeness from 〈x|n〉 is sufficient to ensure
that all our results apply also to smeared densities.

We first consider the case of standard monomi-
als. Any continuous function f(x) can be expanded
to within arbitrary accuracy into polynomials xn :

f(x) ≈ fnmax
(x) =

nmax∑
n=0

cnx
n →
nmax→∞

f(x). (71)

We want to check whether we can also represent f in
terms of smeared polynomials,

pgn(x) = g ∗xn =

∫
(t−x)ne−t

2/2σ2

/
√

2σ2π dt . (72)

For the particular choice of Gaussian smearing we can
evaluate this expression explicitly and obtain

pgn(x) = xn + lower order terms, (73)

i.e., pgn is in fact still a polynomial with leading-order
term xn and this means it forms a basis. In particular
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we can now again represent fnmax
(x) exactly as

fnmax(x) =

nmax∑
n=0

c′np
g
n(x) (74)

And in the limit nmax →∞ we recover f .
In the more general case, suppose that we have an

arbitrary complete basis 〈x|j〉. Then we can approx-
imate xn ≈

∑
j bnj 〈x|j〉. The smearing operator g ∗ ·

is bounded, which allows us to write

pgn(x) = g ∗ xn ≈
∑
j

bnj

∫
dx′ g(x− x′) 〈x′|j〉

=
∑
j

bnj 〈x|j; g〉 . (75)

Given that pgn are dense, it follows that also the
smeared basis functions 〈x|j; g〉 ≡ g ∗ 〈x|j〉 are dense.
From these arguments it is reasonable to conclude that
the smeared density correlations also form a complete
linear basis.

As already mentioned above, this is a purely the-
oretical statement, and there is an important caveat:
The inverse of the smearing operator is unbounded,
which implies that the coefficients of the expansion of
f in terms of the smoothed polynomial basis neces-
sarily blow up when the size of the basis is increased,
even if f has a stable expansion in a polynomial ba-
sis. Therefore, in practice, the smoothing of the den-
sity, the truncation of the basis, and the regularisation
of the regression, must be carefully coordinated and
adapted to the natural scale of the variations of the
target function f , i.e. to its “natural” smoothness.
Failure to do so may result in a representation that
has insufficient resolution to describe the response of
the target property to structural deformations, or vice
versa to one that contains redundant information and
is prone to overfitting.

C. Long-range features and potential tails

A similar formal correspondence with well-
established functional forms of physical interactions
can be derived when using (scalar) multiscale LODE
features (52) within an additive, linear learning model,
using as target the electrostatic energy U(A),

U(A) =
∑
i∈A

U(Ai) =
∑
i∈A

∫
dQ 〈U |Q〉 〈Q|A; ρi ⊗ Vi〉 .

(76)
The fact that the representation is linear both in the
density and in the potential fields allows one to de-
rive rigorous asymptotic relationships for the inter-
action between two distant portions of the system,
that resemble the electrostatic interactions between
the multipoles of a localized charge density distribu-
tion and any other charge that is located arbitrarily

FIG. 11. Extrapolated asymptotic interaction profiles for
a given configuration of H2O and CO2 at different angu-
lar cutoff values lmax. Top and bottom panels show the
results of the asymptotic extrapolation when centring the
representation (a) on the oxygen atom of H2O and (b) on
the carbon atom of CO2. Adapted with permission from
Ref. 163. Copyright 2020 Royal Society of Chemistry.

far away.163 Focusing only on the long-range contri-
bution U> to U(Ai), that is associated with the part
of |A;Vi〉 generated by the far-field density, |A;V >i 〉,
one can write

U>(Ai) =

lmax∑
l=0

∫
dr1 dr2 〈U |r1r2l〉 〈r1r2l|ρ<i ⊗ V >i 〉

=

lmax∑
l=0

+l∑
m=−l

∫ ∞
rcut

dr
1

rl+1
〈lm|M<

i (U)〉 〈ρ>i |rlm〉 .

(77)

In this expression, in which the reader can recognize
the similarity with the multipole expansion of the elec-
trostatic potential,158 |ρ>i 〉 indicates the atom density
outside the cutoff, which is not computed explicitly
but is encoded in the expansion of the local atomic
potential (50). The coefficients 〈lm|M<

i (U)〉 can be
written as a combination of the regression weights
〈r1r2l|U〉 and the local density coefficients 〈rlm|ρ<i 〉,
and can be interpreted as adaptive multipole coeffi-
cients that depend in a general manner on the atomic
distribution within the environment.

Given that the atomic densities and potentials are
not the physical charge density and electrostatic po-
tential of the system, it is the role of the regression
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procedure to modulate the multipoles so as to re-
produce the reference data for the electrostatic en-
ergy. In Fig. 11 we report an example where this is
demonstrated by extrapolating the long-range interac-
tion between a pair of rigid H2O and CO2 molecules,
upon training the multiscale LODE model on the long-
range, yet not asymptotic, interaction profiles associ-
ated with 33 different reciprocal orientations of the
two molecules. The figure compares the asymptotic
extrapolation performance upon centering the repre-
sentation on different atoms, as well as by truncating
the angular expansion at different lmax. It is appar-
ent that the angular cutoff chosen reflects the number
of multipoles introduced in the expansion of Eq. (77)
and thus determines sharp crossovers of the prediction
accuracy across critical lmax values. For instance, a
model that uses only features centered on the oxygen
atom of H2O improves dramatically its performance
when lmax is increased from zero to one. A model us-
ing the carbon atom of CO2 as the only environment
shows a similar, sharp improvement in accuracy when
going from lmax = 1 to lmax = 2. This is consistent
with the primarily dipolar nature of the electrostatic
field generated by a water molecule, and with the
quadrupolar nature of the center-symmetric carbon
dioxide. Even though this example showcases the link
between a linear model based on |ρi ⊗ Vi〉 and mul-
tipole electrostatics, the representation is sufficiently
flexible to describe also other kinds of interactions, as
demonstrated in Figure 9.

D. Non-linear models

Historically, linear representations used basis sets
in internal coordinates (typically interatomic dis-
tances or simple transformations of them) that ex-
ploded in size with body order, see e.g. Refs. 87,186,
and with exponential scaling in their computational
cost of prediction due to the need to sum over all
ν-clusters in a configuration or atomic environment.
Moreover, it is clear that high body orders would
be needed to obtain the desired accuracy, especially
for models of materials. About a decade ago, non-
linear fits using low body order (ν = 2) descrip-
tors appeared, with the surprising result that a few
hundred degrees of freedom were enough to get good
potentials10,12. Contrary to linear modeling where the
symmetry-adapted features 〈q|Ai〉 are used as a ba-
sis, in the context of non-linear regression they are
best thought of as a coordinate transformation. In
a linear setting the choice of a basis, and the details
of the implementation, are a matter of computational
performance but can be converged to a well-defined,
basis-set independent limit. When taken as the in-
put of a non-linear model, instead, the entries of the
feature vector must always be precisely defined, be-
cause there is no complete basis set limit in which

the models become equivalent. To emphasize that
many of the formal manipulations that are possible
in a linear context take on a different meaning when
features are used for a non-linear model, we abandon
the Dirac notation and indicate as ξ(Ai) the feature
vector that describes the atom-centred environment
Ai, whose components are ξq(Ai) = 〈q|Ai〉. If y(Ai)
is a symmetric property such as a site energy, we aim
to construct approximations of the general form

y(Ai) ≈ ỹ
(
ξ(Ai)

)
. (78)

The two most commonly used
models for ỹ are artificial neural
networks20,21,35,36,107,152,165,184,193,194 (ANN) and
kernel ridge regression22,23,30,34,116,179,185,191,195,196

(KRR) models. In KRR models,197 one builds a
kernel matrix K with elements

Kij = k(ξ(Ai),ξ(Aj)), (79)

which provides a similarity measure between the en-
vironments Ai and Aj , measured in terms of the simi-
larity between the corresponding feature vectors ξ(Ai)
and ξ(Aj). Useful kernel functions, k, are nonlinear,
e.g. polynomials, Gaussians, etc.198. The kernel in-
herits the symmetry of the feature vectors, and there-
fore a model for a symmetry-invariant property y(Ai)
can be obtained as

ỹ(Ai) =
∑
j∈M

bj k(ξ(Ai),ξ(Mj)), (80)

where, in the simplest setting, the Mj are scat-
tered interpolation points, but more generally are
simply a collection of “centers” which induce a ba-
sis {k(·,ξ(Mj))}j in the symmetrized feature space.
The weights bj are then obtained by a linear regres-
sion. Kernel models have two main advantages over
“naive” linear regression using the same features. (1)
They introduce implicitly a non-linear mapping be-
tween the inputs and a “reproducing kernel Hilbert
space” |Ai〉 → |Ai; k〉, which has a larger (often infi-
nite) dimensionality, allowing for a more flexible ap-
proximation of y(Ai). (2) Given that the basis is cen-
tered on the training points, it is adapted to the geom-
etry of the data set in feature space. For example, if
the centers |Ai; k〉 in feature space fall on (or close to)
a low-dimensional manifold then the KRR model nat-
urally exploits this. For a comprehensive discussion
of the use of kernel methods in atomistic modeling,
see Ref. 33. In the context of body ordered features
discussed above, the non-linearity in the kernel effec-
tively increases the body order of the features used
in the regression model, but in a rather special way:
only those high body order terms are present that can
be obtained as functions of low body order features.
See Section VI on completeness for a more detailed
discussion.
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FIG. 12. Learning curves for the formation energy of
CH4 structures using linear models based on NICE fea-
tures truncated to increasing body order ν (rcut = 6Å,
nmax = 10, and lmax = 10, up to 3200 invariants retained
at each body order) and an ANN model using NICE fea-
tures up to ν = 4. Errors are expressed both in absolute
terms and as a percentage of the standard deviation of the
dataset. The models are trained using features centered on
both C and H. Reproduced with permission from Ref. 149.
Copyright 2020 American Institute of Physics.

While nonlinear models are by their very na-
ture more flexible in representing complex high-
dimensional features, linear models come with differ-
ent advantages. As we have shown in Section V A
and Section V C, they tend to be more easily “inter-
pretable”, e.g. in terms of a body-ordered expansion
of the target properties, or in terms of physically-
motivated asymptotic forms of the interactions. But
are nonlinear models necessary to achieve high accu-
racy? This notion is challenged by the SNAP,147,148,
the MTP,134, the ACE126 and the NICE149 represen-
tations: the “density trick” and its generalisations to
higher body-orders, replacing polynomials with corre-
lations of the atom-centered density, circumvents both
the explicit symmetrization as well as the summation
of all ν-clusters of traditional body ordered expan-
sions. Particularly when using density correlations
above ν = 2, it is critical to fully exploit the com-
putational cost gains offered by permutation symmet-
ric properties. Even if one were to initially specify
a model in terms of the “natural” body-order expan-
sion (55), one should convert it for computationally
efficient evaluation to one of the many representation
built in terms of ν-correlations. By employing the
recursive evaluations introduced in Refs. 127,134,149,
this transformation makes it possible to truncate at
very high body-orders without significant penalty in
computational cost, as discussed in more detail in Sec-
tion VIII D. As an illustration of how a linear fit
based on high-quality density-correlation representa-
tions can compete with non-linear models we show
in Fig. 12 the learning curves resulting from the re-
gression of the atomization energy for a very large
and geometrically diverse database of CH4 configura-

tions (generated by randomly displacing the H atoms
around the central carbon, in a sphere with a ra-
dius of 3.5Å). The plot reflects a tradeoff between
model complexity and the availability of training data.
Saturation of the learning curves indicates that the
model does not have sufficient flexibility to describe
fully the underlying structure-property relations.30,123

Thus, linear models based on NICE features incorpo-
rating higher and higher body order are capable of
describing the structure-property relations to a higher
degree of accuracy, which is apparent in the delayed
saturation of the learning curve. One sees that a ν = 4
model starts saturating around ntrain = 105, even
though the system is composed of 5 atoms, and so
the body-ordered expansion should be fully converged.
This is because a linear model requires a complete ba-
sis, while here we select only a few 1000s invariants at
each body order. A NN model can be designed to be
more flexible and beat this saturation, at the expense,
however, of performance in the small data set limit -
which, in a more chemically and structurally diverse
regression exercise, usually translates to poorer trans-
ferability.

VI. ALTERNATIVE NOTIONS OF
COMPLETENESS

Suppose we are given a finite collection of sym-
metry adapted features ξ(A) = { 〈q|A〉}q which we
wish to use as a descriptor for atomic structures or
environments, for example symmetrized correlations
of the density as described in the foregoing sections.
In Section V we discussed two classes of models built
from such equivariant features: linear models,

A 7→
∑
q

〈y|q〉 〈q|A〉 , (81)

for which the representation ξ(A) plays the role of
a basis to expand the target property; and nonlinear
models,

A 7→ ỹ(ξ(A)), (82)

where the representation plays the role of a coordinate
transformation generating a finite-dimensional feature
vector used as the argument of a non-linear function
ỹ. In order to guarantee systematic convergence of
these models to an arbitrary target, in suitable limits,
we require that the employed set of features is com-
plete. We already hinted in Section V D that these two
scenarios lead to different requirements on the notion
of completeness. In this section we provide a more
in-depth discussion of the completeness issue in the
nonlinear setting, and point out open problems.

Recall from Section V D that for linear models the
correct notion of completeness is the well-known and
well-understood concept of a complete (linear) basis
from linear algebra. In the context of a nonlinear
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model ỹ(ξ(A)) it is instructive to think of ỹ as a uni-
versal approximator in feature space (e.g., an ANN,
GP, etc). We then ask the question whether (in a
suitable limit) the model can represent an arbitrary
symmetric property y(A), i.e., whether

y(A) = ỹ(ξ(A)), (83)

is achievable. This is the case if and only if the map-
ping A 7→ ξ(A) is injective: this means that any two
atomic configurations that are not related by symme-
try are mapped to different descriptors. In particular
knowledge of ξ would then enable us in principle to re-
construct the configuration A. When this is the case,
we say that the descriptor ξ is geometrically complete.

A. A pedagogical example

The ideal goal would be to have complete finite
feature sets, that allow to approximate any symmetric
function of the coordinates to arbitrary accuracy. As
an elementary introduction to how such a construction
might be achieved in principle, we consider a collection
of N particles in 1D, {xi}Ni=1. As a concrete example,
one can take two particles with positions (x1, x2). In
the absence of an angular component, we only need to
consider the projection of the density ρ(x) =

∑
i δ(x−

xi) onto the monomial basis xn:

〈n|ρ〉 =

N∑
i=1

xni , n ∈ N (84)

For example, if N = 2, 〈1|ρ〉 = x1 + x2, 〈2|ρ〉 =
x2

1 + x2
2, etc. In this simple setting, one sees easily

how the ν-point density correlations form a basis of
symmetric polynomials

〈n1 · · ·nν |ρ⊗ν〉 =
∑
i1...iν

xn1
i1
· · ·xnνiν =

ν∏
k=1

〈nk|ρ〉 (85)

which is complete (in the sense of a linear basis) be-
cause it contains all possible symmetrized monomi-
als. In analogy to what we did in Section V A, we
use the “self-interaction” formulation in which the
sum extends over all the tuples of particle indices.
For the case of two particles, linear combinations of
〈n1n2|ρ⊗2〉 = xn1+n2

1 + xn1
1 xn2

2 + xn1
2 xn2

1 + xn1+n2
2 are

sufficient to write any symmetric polynomial of the
particle positions.

Thus, if we allow for algebraic operations on the
〈n|ρ〉, it is clear that the ν = 1 coefficients pro-
vide a sufficient basis, because the elements of the
linear basis (85) can be obtained as a product, e.g.
〈n1n2|ρ⊗2〉 = 〈n1|ρ〉 〈n2|ρ〉. In fact, well-established
results from the theory of symmetric polynomials199

allow making an even stronger statement. The first
N power sum polynomials ( 〈n|ρ〉)Nn=1 provide an
algebraically-complete basis to write any symmetric

polynomial function of the coordinates of N particles.
For instance, for N = 2 we can express the n = 3 term
as a polynomial of 〈1|ρ〉 and 〈2|ρ〉

〈3|ρ〉 = x3
1 +x3

2 =
3

2
(x1 +x2)(x2

1 +x2
2)− 1

2
(x1 +x2)3

=
3

2
〈1|ρ〉 〈2|ρ〉 − 1

2
〈1|ρ〉3 (86)

This result implies, in general, that the mapping

{xi}Ni=1 7→ ξ = { 〈n|ρ〉}Nn=1 (87)

is injective: knowledge of the first N features 〈n|ρ〉 al-
lows us to uniquely reconstruct the configuration (but
not the index of the atoms). That is, this minimal
feature set ξ(A) is indeed geometrically complete. It
is not too difficult to construct similar complete and
finite feature sets for finitely many particles in two
and three dimensions as long as only permutational
symmetry is considered. However, incorporating also
rotational symmetry into the equivalence of particle
configurations makes this much more challenging as
we discuss next.

B. Geometric completeness of density
correlations

In general, for three-dimensional atom configura-
tions it is clear that taking all ν-correlations provides
a complete set of features (after all, they are even com-
plete in the sense of forming a complete linear basis),
however, as we explained at the beginning of Sec. VI,
this is not a practically useful property when consider-
ing nonlinear regression schemes. As we explain next,
it remains an open problem how to construct a mini-
mal complete feature set in this general setting.

It is clear just based on dimensionality arguments
that a descriptor that has fewer than 3N − 6 compo-
nents (the number of elements in the Cartesian posi-
tion vectors, subtracting the degrees of freedom asso-
ciated to translations and rotations) cannot be com-
plete for N particles. On the other hand, the descrip-
tors based on ν-point correlations have a number of
components that scales with Nν . But having more
than the necessary minimum number of components
does not ensure that a descriptor is complete.

Although it was appreciated for a long time that
symmetrized two-correlations for entire structures are
not complete, i.e. knowing the set of distances be-
tween points is not enough to reconstruct the point
set29,122,200, it was not until recently that the connec-
tion to environment descriptors was made124. The
fact that degenerate pairs of inequivalent environ-
ments mapping to the same descriptor exist for two-
correlation (distance-angle) representations came as a
surprise because so many “successful” models for po-
tential energy surfaces have been published based on
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FIG. 13. A pair of environments that are not distinguished
by two-correlations (sets of distances from the origin and
central angles), formed from the blue atoms (1-3) and ei-
ther one of 4 or 4’. The angle α is arbitrary. The tables on
the right show the angles (or equivalently, distances) be-
tween the numbered particles in each configuration. The
two environments are not related by symmetry, but the
sets of distances are identical, only a pair are swapped,
that are highlighted with the gray background.

such descriptors in the past decade14,33. An exam-
ple of such “degenerate pair” is given in Figure 13.
The construction involves an environment with four
neighbors on the unit circle, with the two structures
corresponding to the labels (1, 2, 3, 4) and (1, 2, 3, 4′)
being different, but having the same unordered list of
distances and angles. The total number of degrees of
freedom for this layout is three (because one neighbor
can be fixed on the x axis), and there is one degree
of freedom in the construction of the degenerate pair
(the angle labelled α in Fig. 13). Thus, this mani-
fold of pairs of degenerate configurations has a codi-
mension of two, i.e. it has a dimensionality that in-
volves two fewer degrees of freedom than the total.
A more general construction, that yields a family of
3D degenerate pairs including an arbitrary number of
neighbors, is discussed in Ref. 124. The fact that the
degenerate pairs form a manifold does not mean that
there is a degenerate manifold, i.e. a manifold of con-
figurations all mapping to the same descriptor. This
type of degeneracy occurs between pairs of configura-
tions which are typically far from one another, and so
this degeneracy problem differs from that of assess-
ing the sensitivity of a representation to small atomic
displacements201,202.

As was shown in Ref. 124, in order to break this
degeneracy, the correlation order has to be increased.

Three-correlations ( |ρ⊗3
i 〉, equivalent to the unordered

set of central tetrahedra, and the bispectrum of the
atomic density) indeed distinguish environments such
as those in Fig. 13. It is however possible to build
pairs of environments, composed of 7 or more neigh-
bors, which are distinct but have the same three-
correlations. This example, also discussed in Ref. 124,
raises a number of open mathematical questions: (i)
is the ν = 3 descriptor complete for N < 7 neigh-

bors, (ii) are all ν-correlations degenerate for suffi-
ciently many neighbors, (iii) what is the codimension
of the manifold of degenerate configurations for ν > 2?

The concept of completeness applies both to repre-
senting entire structures and to atomic environments,
but the relationship between these two cases is sub-
tle. Given an entire structure, it can be considered
to be the “environment” of the point at the origin,
and the same symmetries apply. However, specific
representations appear differently in the two views.
For example, the ν = 2 correlations around a central
atom contain information on the full set of interparti-
cle distances between the neighbors, and so any pair

of environments that are degenerate in terms of |ρ⊗2
i 〉

is also (removing the particle at the origin) a pair of
structures with a degenerate description in terms of
distances.203 Note that the problem of completeness
for entire structures is exactly the same as the prob-
lem of reconstructing point sets122.

One way to break the degeneracy between the rep-
resentations of two entire structures involves combin-
ing information on different environments. For in-
stance, one can describe the entire structure using an
additive combination of atom-centered features anal-
ogous to Eq. (17). Following the above reasoning, a
pair of environments that are degenerate in terms of
the list of distances and angles are also (removing the
central atom) structures that are degenerate in terms
of the list of distances. However, these structures
are not necessarily degenerate in terms of the com-
bined list of distance and angle histograms of each
local environment. Thus, taking non-linear transfor-
mations of atom-centered features cannot resolve the
environment-level degeneracies, but can provide a way
to differentiate entire structures.124 The construction
of injective yet concise representations for environ-
ments and structures is still an open problem, whose
solution may help to improve the accuracy and com-
putational efficiency of machine-learning models.

Note that in this discussion we are implicitly tak-
ing atomic structures related by symmetry as identi-
cal, and we focus on whether the injectivity holds for
the domain of the descriptor map being the original
atomic structures. The case of whether the same con-
sideration hold for general scalar fields (e.g. those aris-
ing in the LODE construction) is a separate problem.
For the case of translation symmetry (torus geometry)
it is well-known that no finite correlation order suf-
fices to reconstruct all signals204, however most signals
can be reconstructed already from the bi-spectrum
(ν = 3). To the best of our knowledge it is an open
problem whether analogous results hold for the case of
rotational symmetry of 3D spherical geometry205,206.
See also Uhrin 207 for an excellent review connecting
3D signal processing and reconstruction of atomic con-
figurations.
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C. Spectral representations

As we explained above the set of all (N − 1)-
correlations is complete for N particles, because it
is equivalent to the completeness of polynomial basis
sets such as MTP134, PIP186, aPIP95, ACE126,208 and
NICE149 (see also Section V A). Any of these bases
can be expressed in terms of the ν-correlations via a
linear transformation, and vice-versa. Even for fixed
maximum polynomial degree, these are enormous rep-
resentations. Depending on how ν-correlation fea-
tures are chosen their number might scale as rapidly
as
(
qmax+ν

ν

)
, where qmax is the number of one-particle

features.
There is a class of much lower-dimensional de-

scriptor maps based on the eigenspectra of overlap
matrices68,106 that lifts the degeneracy for the known
examples, although their actual completeness is un-
known. A simplified construction of these “spectral
representations” proceeds as follows: First, one con-
structs an artificial overlap matrix based on the posi-
tions of atoms within the i-centered environment Ai:

Tjj′ = fcut(rji)fcut(rij′)t(rjj′), (88)

where t : R → R. Then, one computes the ordered
spectrum {τk}Nk=1 of T . If T is invariant (or covari-
ant) {τk}k is an invariant descriptor of Ai. Due to
eigenvalue crossings, the mapping Ai 7→ {τk}k is non-
smooth, hence one may wish to project it on a smooth
basis, e.g. polynomials,

〈n|Ai; T〉 :=
∑
k

(τk)n. (89)

The spectral features (or, fingerprints as they are also
called106) { 〈n|T〉}Nn=1 correspond to the moments of
the histogram of eigenvalues, and contain precisely the
same information.

An alternative way to write 〈n|T 〉 is

〈n|T〉 = Tr Tn, (90)

which is not computationally more efficient, but high-
lights the close connection between { 〈n|T〉}n and the
body-ordered features we discussed in previous sec-
tions. From (90) we observe that

〈1|T〉 = Nt(0),

〈2|T〉 =
∑
j1,j2

t(rj1j2)2 · fcut(rij1)fcut(rij2)

〈3|T〉 =
∑

j1,j2,j3

t(rj1j2)t(rj2j3)t(rj3j1) ·
3∏

α=1

fcut(rijα),

(91)
and so forth. That is, 〈n|T〉 contains the projection of
the histogram of n-simplices onto a single basis func-
tion. In other words, for n = 2, the cutoff function
fcut and the overlap function t play the role of Rn

and Pl in (37). More in general, 〈n|T〉 describes n-
neighbors correlations, and so it could be written, in
principle, as a linear combination of a complete set

of |ρ⊗ni 〉 features. Thus, the 〈n|T〉 provide invariant
high body-order features at relatively low computa-
tional cost, even though each scalar overlap matrix
T contains information on a single feature per body
order.

If one takes t to be scalar (as we have done here)
then there are at most N invariant features for N
neighbors, but 3N − 6 independent coordinates – so
that the spectral features (89) must be grossly un-
dercomplete. This source of incompleteness is eas-
ily lifted by simply taking multiple overlap matrices
with different t functions, or taking t to be matrix-
valued, as done in Ref. 106. However, even with
that modification in mind, it is not at all understood
whether these features are complete or can be made
complete with limited modifications. For example it
can be shown127,149 that most high-body order fea-
tures are actually polynomials of low body-order fea-
tures, which means that they do not contain genuine
high correlation information. This can be observed
very easily with a seemingly trivial modification to the
spectral representation construction. Consider N par-
ticles on the unit-circle at positions rji, as in Fig. 13.
In particular we then have only N − 1 independent
variables, which means that a scalar t is in princi-
ple sufficient to identify the configuration. However,
choosing

Tjj′ := cos θijj′

it is straightforward to see that the two overlap ma-
trices T for the two configurations of Figure 13 have
eigenvalues {0, 0, 1, 3}. That is, this particular choice
of spectral descriptor is unable to distinguish them
nor any two configurations for different α.

Even for a general atomic environment, Tjj′ =
rjirj′i cos θijj′ is the Gram matrix of the interatomic
distance vectors, which has at most three non-zero
eigenvalues – and hence the collection ( 〈n|T〉)Nn=1 con-
tains at most three independent features even though
formally, 〈n|T〉 has body-order n. For a configura-
tion in which the neighbors lie on a sphere, this case
can be written as an overlap matrix by choosing an
appropriate, monotonically decreasing t(rjj′), and for
the general case with an appropriate (albeit contrived)
choice of fcut and t. The purpose of these examples is
to highlight that, although spectral descriptors offer
some attractive features such as their computation-
ally cheap high body-order nature, understanding un-
der which conditions they are complete is subtle and
requires a much deeper investigation.

D. Completeness: summary and open challenges

To conclude our discussion of completeness of rep-
resentations we briefly review and contrast the two
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key notions of completeness that we introduced and
also mention a third concept that we implicitly en-
countered in Sec. VI A. In the following, let ξ(A) =
{ 〈q|A〉}q again denote a finite or infinite collection of
equivariant features of a configuration or environment
A.

Complete linear basis: This is the correct notion of
completeness of ξ for linear models,

∑
q 〈y|q〉 〈q|A〉,

such as PIPs, aPIPs, MTP, ACE, NICE. It is now
well-understood how to systematically generate such
a complete linear basis in a variety of different ways.
This is the strongest requirement one can make on a
feature set.

Geometric completeness: This is the correct no-
tion of ξ completeness for nonlinear models, ỹ(ξ(A)),
i.e., it is the minimal requirement to ensure systematic
convergence of such a model. Ensuring only injectiv-
ity of the mapping A 7→ ξ(A), means it is a much
weaker requirement than being a complete linear ba-
sis. We therefore expect that complete feature vectors
are generally significantly sparser, which is important
for the performance of nonlinear regression schemes.
At present, there is no systematic construction of min-
imal geometrically complete feature sets.

Algebraic completeness: We say that ξ is alge-
braically complete if every element of a complete linear

basis 〈q|A; ρ⊗νi 〉 can be written as a polynomial of the
entries of ξ, pq(ξ(Ai)). This is precisely the concept
we used to construct a geometrically complete fea-
ture set in the pedagogical example of Sec. VI A. The
set of invariants used to construct PIP186 and aPIP95

potentials form a minimal algebraically complete de-
scriptor. The concept was also proposed as part of
the NICE framework149 as a mechanism to reduce the
size of descriptor set.

In general, algebraic completeness is strictly
stronger than geometric completeness and an alge-
braically complete feature set will be larger than a
minimal geometrically complete one. It is neverthe-
less an interesting and useful concept: (i) it provides
a stepping stone towards a theoretical understanding
of geometric completeness; (ii) for the purpose of ef-
fective regression schemes it may in fact prove to be
more important since it preserves polynomials, while
inverting a minimal geometrically complete descrip-
tor is likely to introduce singularities. Indeed, re-
ducing algebraic dependence is a common technique
in the signal processing literature. Uhrin 207 reviews
those techniques and modifies them for the construc-
tion of descriptors with relatively few entries, that can
in principle be made complete.

VII. REPRESENTATIONS, STRUCTURES,
PROPERTIES AND INSIGHTS

A mathematical representation of the structure
of an atomic configuration is not only useful as

the starting point of supervised-learning algorithms,
aimed at predicting its energy and properties. It
can also be used, in combination with unsupervised
learning schemes, to compare structures in search
for repeating atomic patterns210–221, to obtain low-
dimensional projections that help visualize complex
datasets1,4,6,222–226, and more generally to describe
the lie of the land in (free)energy landscapes and
interpret structure-property relationships in complex
systems38,227–230. There is a long-standing tradi-
tion of developing domain-specific descriptors to use
in the automatic analysis of structural data. For
instance, simulations of polypeptides have been in-
terpreted in terms of backbone dihedral angles231,
discrete secondary-structure categories232,233, as well
as sophisticated continuous fingerprints of secondary
structure and backbone chirality234,235. Simulations
of clusters and condensed-phase systems have often
used more general indicators, such as Steinhardt order
parameters236, cubic harmonics237,238, radial distri-
bution functions (either directly239,240 or in the form
of entropy-inspired fingerprints241), histograms of co-
ordination numbers4, that can be seen as precursors
of the atom-density correlation representations that
we discuss in Section IV D. More broadly, general-
purpose descriptors that can be understood, more or
less transparently, as a special case of the density-

correlation features |ρ⊗νi 〉 have been developed and
used in unsupervised-learning contexts as much as
in the context of regression models. A few exam-
ples include the diffraction-based fingerprints of Ziletti
et al.138, the local order metric of Martelli et al.242,
the spectral representations of Sadeghi et al.68, the
Minkowski structure metric of Mickel et al.243 (that
closely resembles and anticipates the construction of
the moment tensor potentials), and the use of SOAP
features to analyze materials and molecules69,70,244.

Understanding the way a representation converts
the Cartesian coordinates of atoms into features is
necessary to make sense of any subsequent analysis,
because any explicit or implicit assumption made in
the structure-feature map will be reflected in the un-
supervised analyses based on those features245. An
example of this is given in Figure 14, that shows the
effect of using rotationally variant or invariant fea-

tures (respectively, 〈nlm|ρi〉 and 〈n1n2l|ρ⊗2
i 〉) to an-

alyze a simulation of undercooled iron209. Atoms are
colored according to a two-dimensional projection de-
scribing the associated environments, in this case ob-
tained using a kernel principal component analysis246

built on the feature vectors ξ(Ai). Using orientation-
dependent features makes it possible to distinguish
more clearly the presence of multiple grains, and
would be useful, for instance, to investigate the tex-
ture of the nanocrystalline sample, much like one
would do with an electron backscattering diffraction
analysis. Using invariant features highlights that all
nanocrystals have the same structure, and makes it
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FIG. 14. Visualizing crystallization in a million-atoms simulation of undercooled iron (data from Ref. 209). The inset
shows a KPCA map of the environments, and the atoms are color-coded following the same scheme. Top: map and

coloring based on translationally-invariant 〈nlm|ρi〉. Bottom: map and coloring based on fully-invariant 〈n1n2l|ρ⊗2
i 〉.

FIG. 15. Comparison of distances between local minimum-energy configurations of various clusters (rows) constructed
based on the sorted eigenvalues of the Kohn-Sham Hamiltonian matrix (first row), the overlap matrix (second row), and
the Lennard-Jones Hessian matrix, and plotted against a permutation-invariant RMSD. For the overlap matrix, results
are shown for matrices based only on s-type orbitals (red) and both s and p orbitals (green). Details of the different
systems and the fingerprint construction are discussed in Ref. 68. Reproduced with permission from Ref. 68. Copyright
2013 American Institute of Physics.

possible to recognize the disordered environments at
the grain boundaries. This kind of analysis can also
be used to elucidate the properties of different repre-
sentations, investigating the effect of different choices
on the unsupervised analysis of a well-understood sys-
tem to better appreciate the relation between struc-

ture and features.
In this Section we summarize recent developments,

and identify clear insights, related to the use of repre-
sentations to determine the similarity between struc-
tures, to perform clustering and dimensionality reduc-
tions analyses, and to build models that go beyond the
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injective structure-property map that we have used
this far.

A. Features, distances, kernels

Before delving into the use of structural repre-
sentations to visualize and classify atomic configu-
rations, let us recall the link between feature vec-
tors ξ(Ai), that are associated to structures or en-
vironments, and distances or kernels, that express
the relationship between two of these entities. For
example, given a feature vector ξ, it is possible to
define a distance using e.g. a Euclidean metric,
d(Ai, A

′
i′)

2 = ‖ξ(Ai)− ξ(A′i′)‖
2
, and use as a kernel

the scalar product k(Ai, A
′
i′) = ξ(Ai) · ξ(A′i′), or a

non-linear function, e.g. an exponential of a squared
distance k(Ai, A

′
i′) = exp−γ d(Ai, A

′
i′)

2.
The opposite is also true: for a given set of con-

figurations M , and any (negative definite) distance or
(positive definite) kernel247 it is possible to construct
a set of features that generate the kernel by taking
their scalar product – a practical implementation of
the concept of reproducing kernel Hilbert space that
underlies kernel methods. One only needs to construct
the kernel matrix Kij = k(Mi,Mj), and find its eigen-
values and eigenvectors Ku(j) = λju

(j). It is easy to
see that the scalar product between the reproducing
features

φKj (A) =
∑
i∈M

k(A,Mi)u
(j)
i /
√
λj (92)

computed for two members of the reference dataset
yields exactly the value of the kernel function between
the two configurations.246 It is also possible to define
a kernel-induced distance

d(A,A′)2 = k(A,A) + k(A,A′)− 2 k(A,A′). (93)

Even though different techniques may be formulated
more naturally in terms of features, distances or ker-
nels, it is always possible to translate – at least ap-
proximately – one description into another.

B. Measuring structural similarity

Most unsupervised learning algorithms rely on the
definition of a metric to tell apart structures depend-
ing on their similarity. A metric that is capable
of identifying identical structures is extremely use-
ful in all the applications that aim at automating
the search of materials or molecules with desirable
properties248–252. This is not an entirely trivial task:
in molecular searches, a mismatch in the simple order-
ing of atomic indices can lead to the failure of metrics
based on the alignment of conformers, such as the root
mean square distance (RMSD), and the exact calcula-
tion of a permutation invariant version would involve

combinatorially increasing computational effort.68. In
the case of condensed phases, one needs to deal with
the problem that the same periodic structure can be
described by different choices of unit cell size and
orientation. The requirements for a metric to com-
pare atomic structures are similar to those discussed
in Section III, and have been discussed in great de-
tail in Ref. 68: a good metric needs to be invariant
to rotations, translations, and permutations253, and
still be capable of telling distinct structures apart106.
The comparison between the resolving power of differ-
ent metrics has been often determined using distance-
distance correlation maps68,69,124,202, such as those
shown in Figure 15, that compare the distance be-
tween pairs of structures in a reference dataset, as
computed by two metrics. In the most extreme case,
one observes pairs structures that are identical based
on a metric, and distinct based on another – indicat-
ing the presence of a manifold of degenerate structures
that are distinct, but cannot be told apart by one of
the distances124.

An important aspect when defining a metric for
structural comparison is the fact one is often in-
terested in measuring the dissimilarity between en-
tire structures, d(A,A′). Most of the representations
we discussed this far are designed to compare atom-
centered environments, and therefore yield d(Ai, A

′
i′).

As a practical example, we define d as the Euclidean
distance between the feature vectors,

d2(Ai, A
′
i′) ≡ ‖ξ(Ai)− ξ(A′i′)‖

2
. (94)

Different ways of combining atom-centered represen-
tations to obtain a structure-level comparison are dis-
cussed and benchmarked in Ref. 69, using a construc-
tion based on the definition of global kernels. Here
we present the same strategies, but express them di-
rectly in terms of distances. The two formulations are
equivalent when using the kernel-induced distance.

The simplest global distance can be defined as a
mean over all environment pairs,

d̄
2
(A,A′) =

1

NANA′

∑
i∈A,i′∈A′

d2(Ai, A
′
i′). (95)

Using the abstract notation |Ai〉 rather than ξ(Ai)
to highlight the connection with the definition of the
global representation |A; ρ⊗2〉 as the sum of environ-
mental |A; ρi〉 (see Section IV C) it is easy to see that

d̄
2
(A,A′) =

1

NANA′

∑
i∈A,i′∈A′

‖ |A′i′〉 − |Ai〉 ‖2 =

[∑
i∈A

|Ai〉
NA

−
∑
i′∈A′

|A′i′〉
NA′

]2

≡ ‖ |A′〉 − |A〉 ‖2, (96)

i.e. that the average environment distance d̄
2
(A,A′)

can be computed by taking the Euclidean distance
between the mean of the environment’s features in
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FIG. 16. Distance-distance correlation plots compar-
ing the average environment distance (95) to the best-
match (97) and REMatch (98) distances, with different
values of the entropy regularization parameter γ. The
reference structures are taken from the QM7b dataset
of small organic molecules254, and the environments are

described by SOAP features 〈a1n1; a2n2; l|ρ⊗2
i 〉. Repro-

duced with permission from Ref. 69. Copyright 2016
PCCP Owner Societies.

the two structures. This construction is very natu-
ral, and consistent with an additive decomposition of
properties in a regression model, but potentially lacks
resolving power: two structures with very different en-
vironments could end up having a similar value of the
average feature vector.

An alternative way to determine a global metric
involves finding the best match between the environ-
ments of the two structures, defining

d̂
2
(A,A′) = argmin

P∈UNA×NA′

∑
i∈A,i′∈A′

d2(Ai, A
′
i′)Pii′ (97)

where UNA×NA′ is the set of NA × NA′ doubly-
stochastic matrices, i.e. matrices with positive entries
such that sums of rows and columns all equal 1/NA
and 1/NA′ respectively. When NA = NA′ , the opti-
mal P contains only zeros and 1/NA, and the prob-
lem can be construed as a linear assignment prob-
lem, and solved in O(N3

A) time using the Hungar-
ian algorithm257. Much like the case of the use of
sorted interatomic distances as a structural represen-
tation (Section III B), the process of matching entries
in the environment distance matrix introduces discon-
tinuities in the derivatives of the distance metric. One
can solve this problem, obtaining at the same time a
scheme with a cost that scales as O(N2

A) and that can
be applied to the comparison of structures of differ-
ent sizes, by introducing an entropy regularization in
Eq. (97)

d̂
γ
(A,A′)2 = argmin

P∈UNA×NA′

∑
i∈A,i′∈A′

Pii′(d
2(Ai, A

′
i′)+γ lnPii′),

(98)
controlled by the magnitude of the parameter γ. This
approach was introduced in Ref. 258 for the general
problem of solving optimal transport problems and of
evaluating the Wasserstein distance between proba-
bility distributions, and was first applied in Ref. 69
to atomistic problems in terms of regularized entropy
match (REMatch) kernels. By introducing a non-
additive combination of the environments, REMatch
kernels and the associated distances offer an increased
resolving power compared to the plain average dis-
tance (95), as demonstrated in Figure 16. The figure
also shows that Eq. (98) interpolates between the av-
erage and the best-match metrics, to which it tends
respectively for γ →∞ and γ → 0.

C. Representations for unsupervised learning

As stressed in the introduction of this Section, in
performing cluster analysis or dimensionality reduc-
tion, the choice of featurization is not a neutral one,
but introduces a bias that will be visible in the end
result of the analysis.245. While sometimes this bias
is desirable, such as in Fig. 14 in which a judicious
choice of features makes it possible to emphasize, or
ignore, the orientation of grains in a polycrystalline
sample, one should resist the temptation to fine-tune
parameters that do not have an obvious meaning to
obtain a result that reflects a preconceived interpre-
tation of the data. The top row of Fig. 17 shows how
different choices of the hyperparameters of the SOAP
powerspectrum (cutoff radius rcut, density smearing
σa, and the types of atoms that are used as environ-
ment centers) change unpredictably the distribution of
the points on the 2D map obtained by principal com-
ponents analysis of a dataset that consists in different
polymorphs of a family of molecular materials255. In
the first panel, in particular, one can recognize a de-
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FIG. 17. Each map describes a set of 156 low-energy polymorphs of 21 different isomers of azaphenacene. The config-
urations are the same subset of the structures from Ref. 255 that was used in Ref. 256. Each point corresponds to a
structure, color-coded based on its lattice energy, and with a symbol that indicates the number of hydrogen bonds per
molecule, identified with a self-consistent definition214. The top row reports the first two principal components from a

principal component analysis of SOAP |ρ⊗2
i 〉 structures. The bottom row shows maps obtained using KPCovR256. Each

column is computed using different SOAP hyperparameters, as indicated in the plot titles.

gree of correlation between the position of the points,
and intuitive structural and energetic properties, such
as the number of H-bonds, and the lattice energy. The
correlation is however far from perfect, and with other
reasonable choices of hyperparameters it disappears
almost completely.

One possible approach to make unsupervised mod-
els less dependent on the details of the underlying fea-
turization is to combine them with an element of su-
pervised learning. This includes, for instance, com-
bining or contrasting density-based clustering with
(kernel) support vector machines classification259.
Even more explicitly, one can combine a variance-
maximization scheme analogous to PCA with the re-
gression of a target property, as in principal covari-
ates regression (PCovR)260. In PCovR one minimizes
a loss built as a mixture of a PCA and a linear regres-
sion loss, weighted by a mixing parameter α

` =
∑
i

α ‖Ξ−ΞPΞTPTΞ‖2

+ (1− α) ‖Y −ΞPΞTPTY ‖2 . (99)

The matrix PΞT projects from the feature space to
a low-dimensional latent space, PTΞ reconstructs an
approximation of the full-dimensional feature vector
based on its latent-space embedding, and PTY re-
gresses the property matrix Y using the latent-space
coordinates as inputs. By explicitly looking for a
latent-space projection that allows to regress linearly
a target property, one forces the dimensionality reduc-
tion to identify a subspace of the chosen features that
correlates well with one or more quantities of interest.

The lower row of Fig. 17 is obtained using a recent ker-
nel extension of this method (KPCovR256) attempt-
ing simultaneously to maximise the spread of data and
the kernel regression of the lattice energy, giving equal
weight to the two components (α = 0.5). Not only
points on the resulting map correlate very well with
the target: one observes that also structural param-
eters such as the H-bond counts are now clearly sep-
arated between different regions, and the appearance
of further groups of well-clustered structures that cor-
respond to similar isomers of azaphenacene256. What
is perhaps more important, introducing an explicit su-
pervised learning target leads to maps that are more
consistent across different choices of hyperparameters.
Thus, (K)PCovR reduces the arbitrariness of the de-
scription, and mitigates the risk of implicitly intro-
ducing an unknown bias by deliberate or accidental
tuning of the hyperparameters of the representation.

D. Analyzing representations and datasets

The unsupervised analysis of a dataset helps
building an intuitive understanding of complicated
structure-property relations for a material or a class
of materials. Given the “black box” nature of many
machine-learning models (and the fact that even the
rigorously-defined density correlation features we fo-
cus on in this review have a high-dimensional nature
and non-trivial relationship to the actual atomic struc-
ture) low-dimensional projections of the feature space
can also be useful to gain a better understanding of
the structure of feature space. For example, Fig. 18a
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FIG. 18. (a) A sketch-map4 representation of the QM7
molecular dataset254 based on a SOAP kernel distance.
Each point corresponds to one molecule. Left: points are
colored according to the atomization energy; right: points
are colored according to composition. Adapted with per-
mission from Ref. 69. Copyright 2016 PCCP Owner Soci-
eties. (b) Principal component analysis (PCA) on the mul-
tiple layers of a deep NN learning simultaneously the 14
properties of the QM7 molecular dataset, using Coulomb
matrix features as representation. Each point (molecule)
is colored according to the rule: E and HOMO (highest oc-
cupied molecular orbital energy) large→ red; E large and
HOMO small→ blue; E small and HOMO large→ green;
E and HOMO small→ black. The NN extracts, layer after
layer, a representation of the chemical space that better
captures the multiple properties of the molecule. Repro-
duced from Ref. 254. Copyright 2013 American Chemical
Society.

tells us less about the QM7 dataset254 (that contains
small organic molecules containing C, H, N, O, S,
Cl) than about the SOAP features that underlie the
representation: the unsupervised analysis shows that
the chemical composition is the most clear-cut differ-
entiating characteristic when looking at this dataset
through SOAP lenses. Fig. 18b visualizes the same
QM7 data using a different representation, based on
the Coulomb matrix, and shows how successive layers
of a neural network transform these features into non-
linear combinations that correlate very well with the
target properties. Thus, this visualization helps un-
derstand how a highly-nonlinear function transforms
a description of the system into combinations that can
be more easily used for regression, and diagnose the
inner workings of the deep neural network.

A final “introspective” application of this kind of
analysis involves examining the structure of a dataset
– not as a way to learn about the atomistic configu-
rations it contains, but about its makeup, or the rela-
tionship with other datasets. An example is given in
Fig. 19, showing the comparison between the chemical
space covered by three databases of organic molecules,
with QM9 and AA being mostly disjoint, and the more
diverse OE molecules encompassing both the other

FIG. 19. 2D maps obtained applying the t-SNE di-
mensionality reduction algorithm261 to three different
molecular datasets – the systematic enumeration of 9-
non-H-atoms molecules in QM9262, the conformers of
aminoacids in the Berlin aminoacid dataset AA263 and
the large molecules extracted from the Cambridge struc-
tural dataset of the OE dataset264 . Panel (a) uses a
Coulomb matrix representation, panel (b) uses the MBTR
features31. Reproduced with permission from Ref. 115.
Copyright 2019 American Institute of Physics.
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FIG. 20. A schematic overview of the process of using
atomic structure representations to predict properties that
are not directly associated with the starting structure. (a)
prediction of the properties of the minimum-energy con-
figuration of a structure; the problem can be made well-
posed by using a cheap approximate method to optimize
the structure, and taking the representation of this ap-
proximate structure as the input to regress accurate en-
ergy and geometry. (b) prediction of a property that is
associated with a thermodynamic average; the minimum
energy structure can be taken as a proxy for the ensemble,
but a more formally precise “ensemble representation” is
also possible.

sets. Other examples of this kind of analysis are dis-
cussed in Section IX.
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E. Indirect structure-property relationships

The one-to-one mapping between an atomic struc-
ture and its representation is one of the key require-
ments to achieve accurate “surrogate quantum mod-
els” of atomic-scale properties. However, it can also be
a limitation whenever one wants to describe properties
that are not strictly associated with the specific config-
uration at hand. For example, consider the databases
of molecular properties (e.g. the QM9 dataset262) that
have been extensively used as a benchmark, and have
been a powerful driving force behind the development
of the representations we describe here. The typical
benchmark involves taking a structure whose geom-
etry has been optimized at the DFT level and use
it to predict the DFT energy – an exercise that is
manifestly of little practical utility. A more useful
approach, instead, would be using a non-optimized
structure to predict the properties of the nearest lo-
cal configurational optimum. As shown in Fig. 20a,
this is conceptually problematic, because we are now
trying to achieve a many-to-one mapping. A possi-
ble solution is to map each distorted geometry to an
idealized one, or to use a lower level of theory to deter-
mine an unique structure Ã0. Thus, the many-to-one
mapping is realized by the local optimization proce-
dure, and the corresponding representation |Ã0〉 can
be used to uniquely identify the entire basin of at-
traction of the local minimum. Only for the train-
ing structures, this geometry is optimized further at a
higher level of theory, obtaining the structure A0 for
which properties are meant to be computed. When
the model is fitted, the relationship between Ã0 and
its high-quality counterpart is learned implicitly. This
kind of “indirect” model has been used, for instance,
in Ref. 30, where structures optimized at the semiem-
pirical PM7265 level were used to predict CCSD ener-
getics computed for a DFT-optimized version of the
same compound. While the error was almost twice as
large as a model using directly |A0〉 as input, chemical
accuracy could be reached when discarding from the
training set structures for which the DFT-optimized
structure was too different from the PM7-optimized
geometry.

A similar conceptual problem arises when one
wants to build models for properties that are asso-
ciated with a thermodynamic state rather than a pre-
cise structure, such as a melting point or solubility
of a material. The problem is very well understood
in the context of cheminformatics, where molecular-
graph descriptors can be thought as representing the
entire set of molecular conformers. In the technique
known as 4D-QSAR, “ensembles” of conformers are
used to build fingerprints that encompass explicitly
the structural variability of each compound266. These
two approaches can also be applied while using the
kind of representations discussed in the present re-
view. Typically, and particularly if the ensemble con-

sists in relatively small fluctuations around equilib-
rium, one might take a representative structure (e.g.
the minimum energy configuration) and use its |Ã0〉
as a proxy of the thermodynamic state (Fig. 20b). The
case in which the target property can be estimated as
an ensemble average can be formulated very elegantly
in the case of a linear model. Consider for instance the
mean of a property y over the Boltzmann distribution
at inverse temperature β, P (A) = e−βE(A)/Z,

〈y〉β ≡
1

Z

∫
dAe−βE(A)y(A) (100)

where Z =
∫

dAe−βE(A) is the canonical partition
function. Exploiting the linear nature of the repre-
sentation one can define an “ensemble ket”

|A;β〉 ≡ 1

Z

∫
dAe−βE(A) |A〉 . (101)

With this definition, one could use a linear model for
y(A) with weights 〈q|y〉 and see that

〈y〉β ≈
∑
q

〈y|q〉 〈q|A;β〉 , (102)

which is convenient because it allows using properties
of configurations and of ensembles on the same foot-
ings – and possibly combining them in a single train-
ing exercise. The same approach can also be applied
in a kernel setting, computing the ensemble average of
the reproducing kernel Hilbert space vector associated
with the structures.

VIII. EFFICIENCY AND EFFECTIVENESS

We have discussed in Section III how most of the
existing choices of representations share profound sim-
ilarities, and shown, in Section IV, that many alter-
native schemes can be formally related to each other
by means of a linear transformation, smoothening or
a limit operation. However, this is not to say that
in practical applications they are entirely equivalent.
The computational cost of evaluating them, and their
performance in classifying structures, and in regress-
ing their properties, is determined by the choice of
basis functions. Even for formally equivalent represen-
tations, the condition number of the linear transfor-
mation between them and their corresponding bases
have significant impact on the numerical behavior of
the computed coefficients and the quantities derived
from these coefficients.

A. Comparison of features

A preliminary question when comparing alterna-
tive choices of features for the description of atomic
structures and/or environments is that of establish-
ing an objective way of assessing their relative merits.
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a b c

FIG. 21. (a) a 4 × 4 × 4 Si cell, that is taken as the reference structure for radial and tangential perturbation of the
neighbors of the central atom. (b,c) Norm of difference of atomic descriptors on atom i as a neighboring atom j is
perturbed from its reference position. (b) A radial perturbation yields a linear change in the features; (c) a tangential
perturbations in a high symmetry direction for the first shell yields a quadratic change in the features. Reproduced with
permission from Ref. 201. Copyright 2020 American Institute of Physics.

The performance when used in the regression of use-
ful atomic-scale properties is an obvious criterion, but
such a comparison is intimately intertwined with the
target property and the regression algorithm.94,267,268.
Very recent efforts have attempted to characterize dif-
ferent representations in terms of their information
content – for instance through the eigenvalue spec-
trum of the covariance or kernel matrix associated
with a dataset, the decrease in accuracy when reduc-
ing the number of features201, or the sensitivity of the
features to atomic displacements.

This latter approach can be realized by directly
comparing the separation in feature space against fi-
nite displacements of the atoms201, or through an
analysis of the Jacobian Jjk = ∂ 〈k|Ai〉 /∂rj

202. The
sensitivity of the features to small changes of the
atomic positions indicates their usability and per-
formance in regression of classification tasks. Onat
et al. 201 analysed the effect of random perturbations
in crystalline environments, finding that, for features
based on atomic density correlations, displacements
of atoms in the environment usually cause a linear
response. One notable deviation from this trend
are perturbations along some high-symmetry direc-
tions in atomic environments carved from perfect crys-
tals, where the response to displacements is second-
order, implying that the representations cannot cap-
ture these types of deformations (Fig. 21). However,
as discussed in reference 201 the types of symmet-
ric deformations applied in the study correspond to
reflection operations. Due to the body-correlation or-
der considered, features are invariant to mirror sym-
metry, and so the observed loss of sensitivity is not
unexpected. Analizing the response of the features to
perturbations in terms of the Jacobian, as in Ref. 202,
has the advantage of characterizing fully the sensitiv-

ity at a given point. The Jacobian should have six
zero principal values, corresponding to rigid rotations
and translations of the environment. Additional zeros
could be associated with the presence of a continuous
manifold of degenerate structures. In some cases, as
demonstrated by the finite-displacement deformation
in Fig. 21b, high-symmetry configurations can result
in directions with zero gradient that have no adverse
effect on the accuracy of a model built on the density
correlation features.

Another comparison between different bases is to
analyse the landscape defined by the similarity or dis-
tance between environments, d(Ai, A

′
i′) where the en-

vironment Ai is kept fixed. The distance between the
atom-centered environments Ai and A′i′ can be de-
fined as the Eucledian distance between feature vec-
tors, Eq. (94). Written as a function of the Cartesian
coordinates of A′i′ , d(Ai, A

′
i′) is a scalar field which

will have a global minimum manifold where the field
is exactly zero, corresponding to equivalent environ-
ments Ai and A′i′ that are related by symmetry oper-
ations. Whether there are other manifolds at exactly
d(Ai, A

′
i′) = 0, corresponding to the same features

resulting from symmetrically nonequivalent environ-
ments is related to the question of completeness (Sec-
tion VI B). In practical applications, the shape of the
global minimum manifold has also implications for the
numerical evaluation. In particular, one could exam-
ine how different Ai and A′i′ may be for d(Ai, A

′
i′) < ε

where ε is a small number. Using a random search ap-
proach, the numerical sensitivity of the feature land-
scape has been analysed in Ref 29. Reference struc-
tures Ai were perturbed and then reconstructed by
minimising the distance d(Ai, A

′
i′), and the optimised

structures compared to the reference ones. For small
numbers of neighbors in the reference environment,
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FIG. 22. (a) Schematic depiction of the interpretation of
the error (GFRE, Eq. (103)) and the distortion (GFRD,
Eq. (104)) that describe the relationship between two fea-
ture spaces. (b) Comparison between density correlation
features of different order, as well as the NICE features149

up to ν = 4, computed in terms of the GFRE and GFRD,
for a data set of random CH4 configurations269 and hy-
pothetical carbon allotropes predicted by AIRSS250,270.
Adapted from Ref. 271. Copyright 2021 IOP Publish-
ing under Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.

0/.

all the examined representations performed similarly
well, but only SOAP was capable of accurately recon-
structing the reference environments of more than 12
neighbors. As we have seen in earlier sections, this dif-
ferences can be attributed to the choice of basis func-
tions other representations use, although it should be
noted that SOAP distances and similarities converge
in the limit of a complete basis, therefore the actual
form of the basis might affect the convergence, and the
computational cost of the representation, but does not
impact its resolving power.

A more explicit comparison between pairs of rep-
resentations can be obtained by evaluating the error
one incurs when using a set of features, arranged in a
feature matrix Ξ in which each row corresponds to a

sample in a reference dataset, to linearly reconstruct
a second featurization of the same structures or en-
vironments Ξ′, defining a global feature space recon-
struction error

GFRE(Ξ,Ξ′) = min
P

√
‖Ξ′test −ΞtestP‖2/ntest.

(103)
P is a linear regression weight matrix obtained on a
training subset of the rows of Ξ and Ξ′, and both
sets of features are assumed to be standardised.271

The GFRE can be extended to also incorporate non-
linearity in the mapping, either by a locally-linear
approach, or by using a kernelized version. Loosely
speaking, it measures the relative amount of infor-
mation encoded by the two feature spaces, and is
not symmetric. GFRE(Ξ,Ξ′) � GFRE(Ξ′,Ξ) in-
dicates that the featurization underlying Ξ is more
informative than that used to build Ξ′, and vice
versa. GFRE(Ξ,Ξ′) ≈ GFRE(Ξ′,Ξ) ≈ 0 implies
that the two featurizations contain similar informa-
tion (Fig. 22a). A similar asymmetric measure of
similarity between feature spaces can be defined by
comparing the resolving power of the corresponding
metrics272, translating the information that is present
in distance-distance correlation plots (Sec. VII B) into
a quantitative measure of information content.

Having GFRE(Ξ,Ξ′) ≈ GFRE(Ξ′,Ξ) ≈ 0 does
not mean that Ξ and Ξ′ they are equivalent and can
be used interchangeably. One could emphasize more
some structural correlations than others: imagine for
instance multiplying by a large constant the entries of
one column. This kind of distortions, which can have
a substantial impact on the performance of models
built on Ξ or Ξ′, can be measured by defining a global
feature space distortion (GFRD)

GFRD(Ξ,Ξ′) = min
Q∈U

√
‖ΞtestP−ΞtestQ‖2/ntest.

(104)
P is the same projection matrix that enters the def-
inition of the GFRE (so that ΞP ≈ Ξ′), and Q is
the unitary transformation that best aligns Ξ and the
best linear approximation of Ξ′.

If both GFRE and GFRD are zero, then the lin-
early independent components of Ξ and Ξ′ are re-
lated by a unitary transformation, which implies that
distances and scalar products between feature vectors
are equal in Ξ and in Ξ′. Figure 22 demonstrates the

use of these measures to compare |ρ⊗νi 〉 features of
different body order. The asymmetry is very clear,
with higher-order features containing more informa-
tion than their lower-order counterparts. Note that
– in view of the linear nature of the mapping – this
is not entirely obvious: formally, ν = 1 features are
not linearly dependent on higher-ν features, and so
these observations reflect the specific nature of the
atom-density field whose correlations are being repre-
sented, and the nature of the structures in the bench-
mark datasets. The figure also includes invariants

https://creativecommons.org/licenses/by/4.0/
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FIG. 23. Test-set error in the prediction of a linear regression (left) and kernel ridge regression (right) model of the
nuclear chemical shieldings of atoms in a set of molecular materials, as a function of the number of features used in
the model. Features are selected using the FPS and CUR methods (full lines) from a set of 2520 SOAP features. The
shaded areas indicate the range of values obtained varying the mixing parameter α in a principal covariate-augmented
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built with the N-body iterative contraction of equiv-
ariants (NICE) framework, that are designed to cap-
ture most of the information up to high body orders.
The truncation of the expansion, that is necessary to
keep the evaluation of ν = 4 order features affordable,
leads to a small residual GFRE when reconstructing
the full ν = 3 features. The GFRD is rather large be-
tween all featurizations, indicating that – even though
higher-order features contain sufficient information to
describe lower-order correlations – they weight the in-
formation differently, which is why it is often beneficial
to treat different orders of correlation separately in the
construction of interatomic potentials.15,180,183,195

B. Feature selection

Numerical feature vectors ξ(Ai) are the result of a
basis set expansion of the abstract atom-centered rep-
resentations, which are, for practical purposes, trun-
cated. A concrete discretization of the symmetrized
ν-correlations is obtained by choosing a finite subset
from the set of all possible features,

q ⊂ qtotal :=
{

(nαlα)να=1, ν ∈ N
}
. (105)

(A choice of (nα, lα)α naturally induces a choice of
mα and symmetrized features.) The role of the dis-
cretization q is very different for linear and nonlinear
models and therefore warrants a brief comment: For
nonlinear models we typically only require geometric
completeness (see Section VI), which means that the
feature set can be chosen to be minimal but in a way
so that all possible configurations, or at least all con-
figurations of interest (e.g. from a training set) can
be distinguished in a stable and smooth way. While
it is an open problem to characterize precisely what

this entails, we generally expect that relatively small
feature sets on the order of hundreds for single-species
scenarios could be sufficient.

On the other hand, converging a linear model
requires eventually letting the discretisation q con-
verge to the full feature set qtotal, which in practice
leads to a much larger set q and in particular higher
correlation-orders ν to achieve a desired accuracy, e.g.
on the orderO(10′000) features for single-species mod-
els. The additional cost in training and evaluating the
features is of course offset by the fact there is no addi-
tional cost in evaluating the nonlinear models. Due to
the large feature sets the selection of effective subset
of q may be even more important in the linear setting.
In particular it will be crucial to a priori choose sparse
subsets of qtotal rather than tensor-product sets due to
the combinatorial explosion of the number of features
with high ν (curse of dimensionality). For example, a
total-degree D discretisation,

q(νmax, D) =
{

(nαlαmα)να=1 : ν ≤ νmax∑
α

nα + lα ≤ D
} (106)

was used by Bachmayr et al. 127 , while closely related
a priori sparsifications were used by Braams and Bow-
man 11 , Shapeev 134 in all cases demonstrating accu-
racy/performance competitive with or outperforming
nonlinear models.

Data-driven selections When using high-body or-
der features, some of the components can be related by
non-trivial linear dependencies, that can be enumer-
ated numerically127,149. The construction does not
ensure that there is no other linear dependence that
is specific to a given dataset, meaning that feature
vectors could potentially be compressed even further
without noticeable deterioration in the quality of the
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representation. The benefits of the compression are
clear: if only a few components need to be evalu-
ated, significant efficiency gains may be realised both
in computational effort and storage requirements.

Thus, the objective of feature selection or trunca-
tion is to find a subset of features that retain the infor-
mation content of the original, untruncated represen-
tation. This is to be contrasted with dimensionality
reduction techniques, that apply a linear transforma-
tion on the full feature vector to generate a lower di-
mensional representation. These only reduce the com-
putational cost of operations that are applied on the
reduced feature vectors: the whole feature vector must
be evaluated first, before being able to determine its
projections.

A simple example of a feature selection strategy is
the farthest point sampling (FPS) technique274. One
chooses an initial column χc0 (indexed by c0) of the
feature matrix, and then iterates selecting the columns
that maximize the Haussdorf distance to the previ-
ously selected columns

cm+1 = argmaxj

{
min
i∈cm

∥∥χi − χj
∥∥} , (107)

effectively identifying the indices c of the features that
have the most diverse values across the data set. FPS
has also been used in a similar manner, but on the
rows of Ξ in order to select a representative set of data
points.30,69,275 The CUR matrix decomposition276, in-
stead, generates a low-rank approximation of the fea-
ture matrix Ξ, in the form

Ξ ≈ CUR. (108)

Unlike singular value decomposition, CUR uses the
actual columns (C) and rows (R) of Ξ. To make
the selection, a leverage score is associated with each
feature c

πc =
1

k

k∑
i=1

(vi)
2
c , (109)

based on the right singular vectors vi of the singular
value decomposition of Ξ. k is usually taken to be the
approximate rank of Ξ. Features may be selected in a
probabilistic procedure or simply based on their score.
Imbalzano et al.277 argued that the scores associated
with feature vector components which are linearly de-
pendent are close, therefore the selection can easily re-
sult in a redundant set. Instead, in Ref. 277 a greedy
algorithm based on the CUR decomposition was sug-
gested, where features were selected iteratively. The
feature with the highest score is selected, and the
columns of Ξ are orthogonalised relative to the col-
umn corresponding to the selected feature. The scores
are updated in each step, so the linear dependence of
already selected features are removed. This iterative
scheme often performs better when using a very small
value of k in constructing the πc, Eq. (109).

Fig. 23 shows that a data-driven selection of the
most relevant/diverse features makes it possible to
achieve models with an accuracy that approaches that
of the full model while reducing the number of com-
ponents by a factor of about 3 (for linear regression)
or 10 (for KRR). Particularly for intermediate sizes
of the selection, the improvement in accuracy with
respect to a random selection can be dramatic. Both
FPS and CUR methods can be improved further by in-
corporating information on the properties associated
with the structures,273 as in Eq. (99). Including a su-
pervised component by setting α < 1 in the feature
selection usually leads to more performing models, as
shown in Fig. 23. Feature selection methods can be
applied to any flavor of density correlation features.
Imbalzano et al.277 used a reference data set on liquid
water278 and a large set of systematically generated
ACSFs. Evaluating the RMSE of the predicted ener-
gies and forces revealed that automatic selections per-
formed by a CUR or FPS approach may achieve simi-
lar performance to features selected based on chemical
intuition and heuristics, while keeping approximately
the selection size. A dramatic reduction in numbers
of features is also possible for the SOAP power spec-
trum, and a data-driven selection of the most impor-
tant components has quietly become commonplace to
accelerate SOAP-based ML models24,279,280. A more
systematic investigation of the effectiveness of feature
selection for many commonly used atomic descriptors
has been recently reported by Onat et al. 201 , who
analysed how accurately the original feature vector
can be reconstructed from the reduced set, as well as
the performance on a practical regression task.

C. Feature optimization

As discussed in Section V D, non-linear models op-
timize the description of their inputs by generating
new features that are best correlated with the tar-
get property, or that are adapted to the structure
of the dataset. For instance, taking products of 2-
body features results in an effective representation
that incorporates some, but not all, features of body
order 3, 4. . . In some cases it is possible to find an
expression for the effective representation associated
with a kernel model29,117,195, while other cases (most
notably deep neural network models) put less focus
on the interpretability of the intermediate features,
and act largely as data-driven ‘black boxes’. Alterna-
tively, feature optimization can be performed explic-
itly on the representations presented in Section IV E.
Such optimization could take the form of the choice of
basis functions. In the Behler-Parrinello framework,
it is customary to select a small number of atom-
centered symmetry functions based on experience and
heuristics141. An optimization of the hyperparame-
ters by gradient descent has also been proposed281 to
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FIG. 24. Learning curves for the atomization energy
of molecules in the QM9 data set262. Four of the lines
show the MAE on the test set for kernel regression mod-

els based on SOAP ( |ρ⊗2
i 〉) features with different cut-

off radii (dashed lines graduating from red to blue). The
other lines show the MAE on the test set for the opti-
mal radially-scaled (RS) and multiple-kernel (MK) SOAP
models (black and grey lines respectively). In every model,
the features were constructed with very converged hyper-
parameters, nmax = 12 and lmax = 9. The inset shows
the radial-scaling function u(r) from r = 0Å to r = 5Å
with the parameters that were found to minimize the ten-
fold cross validation MAE on the optimization set through
a grid search, r0 = 2Å and m = 7. The multiple-kernel
model combines the rcut = 2, 3, 4 and RS kernels in the ra-
tio 100’000 : 1 : 2 : 10’000, and the learning curve agrees
with the RS result to within graphical accuracy. Error bars
are omitted because they are as small as the data point
markers. Note that errors are expressed on a per-atom ba-
sis. Error per molecule expressed in kcal/mol can be ob-
tained approximately by multiplying the scale by 0.4147,
that is computed based on the average size of a molecule
in the QM9 database. Reproduced with permission from
Ref. 125. Copyright 2018 PCCP Owner Societies.

obtain more accurate models based on atom-centered
symmetry functions.

When considering systematically-convergent im-
plementations of density-correlation features, the op-
timization of the basis set is less crucial, although
one may want to reduce the size of the basis for the
sake of computational efficiency, as discussed in Sec-
tion VIII B. That is not to say that the details of
the practical implementation of the features does not
change the behavior of a model built upon them. Op-
timizing hyperparameters such as cutoff radius, den-
sity smearing, basis set cutoff, affects how naturally
the features correlate with the target property, which
is one of the factors determining how quickly a regres-
sion model becomes capable of performing accurate
predictions123. For example, the smearing of the atom
density, or the truncation of the basis set, should re-
flect the natural scale over which the target properties
vary. Similarly, the size of the local environment de-

b

a

FIG. 25. Optimization of the exponents in scaling power
laws. a) Out-of-sample MAE for atomization/formation
energy predictions as a function of training set size on the
QM9 dataset. Learning curves are generated using KRR
with a 2-body FCHL representation. The legends indi-
cate the exponent n2 used in the scaling power law, ξ2(d).
Leftb) Out-of-sample MAE for atomization/formation en-
ergy predictions as a function of training set size on the
QM9 dataset. Learning curves are generated using KRR
with a 3-body FCHL representation. The legends indicate
the exponent n3 used in the scaling power law, ξ3(d). In
order to compare results to Fig. 24, the ordinates must be
divided by 18. Adapted from Ref. 116.

termined by rcut relates to the typical decay length of
interactions, as mentioned in Section III C, but it also
changes the effective dimensionality of feature space,
which affects the accuracy of the model in a non-trivial
way. Consider the learning curves shown in Fig. 24,
that report on the prediction accuracy, as a function of
the train set size, for a kernel ridge regression model of
molecular atomization energies, based on SOAP fea-
tures that differ by the value of rcut. A very large
cutoff rcut = 5Å does not yield the best performance,
despite providing information on a wider range of dis-
tances. In fact, one observes the need to balance the
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complexity of the model and the available data: a
very short-range rcut = 2Å yields the most effective
description in the data-poor regime, but the accuracy
of the corresponding model saturates due to lack of
information on non-covalent interactions. Combin-
ing multiple representations in a “multi-kernel” model
(which is effectively equivalent to concatenating mul-
tiple feature vectors, each scaled separately) yields
consistently better performances22,30. The weighting
of different components – that can be optimized by
cross-validation – indicates the relative importance of
correlations on various length-scales. The fact that
large-rcut features carry low weight in the optimal
combination suggests that an improvement of perfor-
mance can be obtained by calibrating the distance-
dependent contributions of neighbors to the environ-
ment description. This can be achieved by intro-
ducing a radial scaling function (indicated as u(r) in
Ref. 125, as f(r, rj , rcut) in Ref.191 and as ξν(d) in
Ref. 116) that downweights the contributions of atoms
in the far field. As shown in Fig. 25 for the FCHL
representation116, the choice of the form of this scal-
ing can change the accuracy of the model by more
than a factor of 2. A similar effect is seen in Fig. 24
for the case of SOAP features. It is also worth noting
that the cutoff function usually adopted in Behler-
Parrinello-like frameworks decays rapidly well before
reaching rcut – suggesting that a similar optimization
is implicitly at play.152 Optimization of a radial scal-
ing function has become commonplace, and most re-
cent applications based on the SOAP power spectrum
rely on it to achieve consistently optimal performance
in both the data-poor and data-rich regime.

Rather than optimizing the correlations between
geometric features and the target properties, one can
attempt to build features that incorporate a notion of
chemical similarity between different elements. The
idea was introduced in terms of an alchemical similar-
ity kernel in Ref. 69, that is also a core component of
the FCHL framework116, but has been implemented in
different forms in the context of atom-centered sym-
metry functions283–285 and of generic atom-density
correlation features125. In general terms, the idea is to
achieve a reduction of the dimensionality of the chem-
ical space, writing formally a (linear) projection of the
elemental features

〈ã| =
∑
a

〈ã|a〉 〈a| , (110)

where the coefficients 〈ã|a〉 enact the projection be-
tween the elemental and the “alchemical” basis. The
reduction in the dimensionality of the feature space
can be substantial: for powerspectrum (ν = 2) fea-
tures, the number of components scales quadratically
with the number of species, and so even just halv-
ing the dimension of the chemical space reduces the
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FIG. 26. Learning curves for a model of the cohesive
energy of a database of elpasolite structures, each con-
taining a random selection of four elements chosen among
39 main group elements.282 The standard SOAP curve is
shown in black, the best curve from Ref. 282 is shown
in bright red (REF) and the curves obtained with an al-
chemical model with reduced dimensionality dJ are shown
in dark red (dJ = 1), purple (dJ = 2) and blue (dJ =
4). The multiple-kernel model (shown in grey) combines
three standard SOAP kernels with different cutoff and one
alchemically optimized kernel with dJ = 4. Reproduced
with permission from Ref. 125. Copyright 2018 PCCP
Owner Societies.
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FIG. 27. Data-driven representations of the chemical
space. (a) A 2D map of the elements contained in the el-
pasolite data set,282 with the coordinates corresponding to
〈1|a〉 and 〈2|a〉 for the case with dJ = 2 (see also Fig. 26).
Points are colored according to the group. (b) A periodic
table colored according to the coordinates in the 2D chem-
ical space. 〈1|a〉 corresponds to the red channel and 〈2|a〉
to the blue channel. (c) A periodic table colored accord-
ing to 〈1|a〉 (red channel) for a 1D chemical space. (d)
A periodic table colored according to 4D chemical coor-
dinates ( 〈1|a〉: red channel, 〈2|a〉: green channel, 〈3|a〉:
blue channel, 〈4|a〉: hatches opacity) Reproduced with
permission from Ref. 125. Copyright 2018 PCCP Owner
Societies.



42

number of powerspectrum features by 75%:

〈ã1n1; ã2n2; l|ρ⊗2
i 〉 =∑

a1a2

〈ã1|a1〉 〈ã2|a2〉 〈a1n1; a2n2; l|ρ⊗2
i 〉 . (111)

Figure 26 demonstrates how reducing the dimen-
sionality of chemical space helps achieving a transfer-
able, accurate model with a small number of training
structures. By comparing learning curves with differ-
ent degrees of compression, one sees that there is a
similar data/complexity interplay as observed for ra-
dial correlations. A low-dimensional alchemical space
is beneficial in the data-poor regime, as it allows the
model to make an educated guess about the inter-
actions of pairs of elements that are not represented
in the training set. Learning curves with low chemi-
cal complexity, however, saturate in the limit of large
training set, because they generate features that are
not sufficiently flexible, and cannot describe the dif-
ferences between elements.

The optimization of both geometrical and com-
positional components of the density-correlation fea-
tures can be construed as a linear transformation of
the kets (or, when seen in terms of the linear kernels
built on such features, as the action of a Hermitian
operator109). The requirement that such transforma-
tions do not affect the symmetry properties of the
features restricts form they can take – for instance,
they cannot mix different l or m dependent channels.
These observations imply that (1) linear feature op-
timizations do not change the nature of the represen-
tations, and can be applied equally well to any imple-

mentation of |ρ⊗νi 〉 features, (2) as long as the linear
transformation is full rank, there is no loss of informa-
tion, which means that the observed change in perfor-
mance is linked to the details of the regression scheme,
such as regularization in linear or kernel models.

As a final remark, let us mention that a critical
analysis of a feature-optimization effort often reveals
insights into the physical-chemical properties of the
system being studied and the target properties. For
instance comparing models of the energy using differ-
ent rcut can be used to infer relationships between the
length and energy scales30, and the inspection of the
chemical mapping coefficients in Eq. (110) can be used
to construct a data-driven periodic table of the ele-
ments (see Fig. 27). The use of interpretable, physics-
inspired features can also be used to provide intu-
itive chemical insights by the construction of knock-
out models286 in which for instance correlations are
restricted to 2-bodies, the cutoff reduced to first or
second neighbors. The impact of these artificial re-
strictions on the features information content, and
therefore on the asymptotic performance of the model,
indicates how important 3 or higher-body order inter-
actions are, or how much long-range effects are rele-
vant to determine the value of the target property.230

D. Efficient implementation

Despite encoding similar information content, the
differences in formulation of competing structural rep-
resentations may lead to large variations in imple-
mentation and performance. A first fundamental di-
vide is between evaluation of features by summing
over clusters of ν neighbors and computing ν ten-
sor products of atomic densities (see Section IV F).
Consider the case of evaluating “SOAP-like” ACSF
by cluster sum (cost nmax

2lmaxn
2
neigh) and by den-

sity expansion (cost nneighnmaxlmax
2 for the density,

and nmax
2lmax

2 for the SOAP evaluation). Despite
the adverse scaling of ACSF computed as a sum over
clusters of neighbors, these representations can be im-
plemented efficiently94,268,288 by relying on a careful
selection of the features (discussed in Section VIII B),
reuse of parts of the computations, parallelism and
GPU acceleration.289–291 In fact, when computing a
linear model which is explicitly equivalent to a (ν+1)-
body order potential, the low-order terms can be more
efficiently evaluated as a sum over neighbors195,292

In line with the general focus of this review, we
concentrate in particular on the efficient implementa-
tion of atom-density representations. As we shall see,
roughly the same considerations apply to both those
representations that are usually built on a smooth
atom density,109,125,149 that generalize the construc-
tion of the SOAP powerspectrum and bispectrum,29

and those that are usually computed in a way that cor-
responds to a δ-like density, such as ACE126,150 and
MTP.134,293 Indeed, both families of representations
rely on three steps: (i) expansion of the local atom
density on a suitable basis, e.g. Eq. (24), (ii) compu-
tation of ν tensor products of the expansion, and then
(iii) contraction over the correlations to obtain equiv-
ariant features (Fig. 28). While these three steps have
been implemented in different ways, their efficient im-
plementation relies on similar considerations.

Atomic density expansion Equation (20) pro-
vides the blueprints for a broad class of (ν + 1)-body
atom-density representation. Practical implementa-
tions differ by the type of localized function used to
construct the local atom density (see Eq. (16)), and
by the radial and angular basis used for its expansion.
As discussed in Section IV E, spherical harmonics are
a natural angular basis, but other choices are possi-
ble. For instance, the MTP representation projects
the atomic density onto a tensor product of direction
vectors leading to the covariant moment tensor134,243

M⊗ν
n (ρi) =

∑
j∈Ai

Pn,ν(rji) r̂ji ⊗ r̂ji . . .⊗ r̂ji︸ ︷︷ ︸
ν times

(112)

where Pµ,ν is a radial function. Invariant components
can be obtained by combining and contracting prod-
ucts of the elements of these tensors. The tensor prod-
uct basis is directly related to spherical harmonics, as
shown in appendix B.2 of Ref. 127. The performance
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FIG. 28. Schematic
overview of the process
of expanding the density
in a radial and angular
basis set, and recombining
those to form spherical
invariants (or covariants).
Reproduced with per-
mission from Ref. 287.
Copyright 2021 American
Institute of Physics.

of the MTP representation,268 which relies on an effi-
cient recursive evaluation of the basis functions134, are
a testament to the effectiveness of this basis choice.

As shown in Section IV E, the choice of an an-
gular basis of spherical harmonics simplifies greatly
the evaluation of Eq. (20), that can be written in
terms of contractions of density coefficients 〈nlm|ρi〉
(cf. Eq. (24)). If the environment-centered density
is written in terms of a sum of density functions
g(x − rji) ≡ 〈x|rji; g〉, peaked at the neighbors po-
sitions, the expansion coefficients can be written as
the accumulation

〈nlm|ρi〉 =
∑
j∈i

fcut(rji) 〈nlm|rji; g〉 (113)

of terms that correspond to an expansion over a ba-
sis of radial functions 〈x|nl〉 and spherical harmonics
〈x̂|lm〉 of contributions coming from Gaussians cen-
tered on each neighbor

〈nlm|rji; g〉 =

∫
dx 〈nl|x〉 〈lm|x̂〉 〈x|rji; g〉 . (114)

In the g → δ limit, the contribution from the j-th
neighbor amounts simply to a product of the radial
and angular functions evaluated at rji,

〈nlm|rji; δ〉 = 〈nl|rji〉 〈lm|r̂ji〉 . (115)

Similar to the 1D case discussed in Sec. V B, for a
given choice of radial basis the smearing of the density

can be achieved by a mollification of the basis:

〈nlm|rji; g〉 =∫
dx 〈nl|x〉 〈lm|x̂〉

∫
dx′ g(x− x′) 〈x′|rji; δ〉

=

∫
dx′ 〈x′|rji; δ〉

∫
dx 〈nl|x〉 〈lm|x̂〉 g(x− x′)

=

∫
dx′ 〈x′|rji; δ〉 〈lm|x̂′〉 〈nl; g|x′〉

≡ 〈nlm; g|rji; δ〉 , (116)

where we use 〈nl; g| to indicate the radial term that
results from the Gaussian convolution. Each of these
terms can be computed very efficiently, exploiting in
particular the fact that all orders of the spherical har-
monics and their derivatives can be computed using
recursion relations.126,127,294

It might appear that using a smooth atom den-
sity g complicates substantially the evaluation of
Eq. (114). However when g is a spherical Gaussian
with standard deviation σ, the integral over dx̂ can
be computed analytically295∫

dx̂ 〈lm|x̂〉 〈xx̂|rji; g〉 = 〈x; l;|rji; g〉 〈lm|r̂ji〉 .

(117)
where the radial integral reads

〈x; l;|r; g〉 = 4πe−r
2/2σ2

x2e−x
2/2σ2

il
(
xr/σ2

)
, (118)

so one gets

〈nlm|rji; g〉 = 〈lm|r̂ji〉
∫

dx 〈nl|x〉 〈l;x|rji; g〉 .

(119)
The radial part of the integral∫

dx 〈nl|x〉 〈l;x|rji; g〉 = 〈nl|rji; g〉 (120)
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can be computed numerically for any form of the ra-
dial basis resulting in nmaxlmaxngrid evaluations of
special functions. For instance, the original implemen-
tation of the SOAP representation uses a numerically
orthogonalized, equispaced Gaussian basis.29 Alterna-
tively, this integral might also be performed analyti-
cally by using Gaussian type orbitals (GTO) as the
radial basis159,296, 〈x|nl; GTO〉. This choice makes
it possible to compute the coefficients of the smeared
density as easily as for the g → δ case

〈nlm; GTO|rji; g〉 = 〈lm|r̂ji〉 〈nl; GTO|rji; g〉 ,
(121)

where the only overhead comes from having to com-
pute O(nmaxlmax) terms for the radial part and its
orthonormalization. This is asymptotically cheaper
than combining radial and angular terms – which re-
quires O

(
nmaxlmax

2
)

multiplications per neighbor –
but can be substantial in practical cases, because the
analytical integrals in Eqs. (117) and (120) yield non-
standard special functions.

To reduce this overhead, one can choose a form of
the atomic density that is symmetric about ri instead
of rji

191

〈x|rji; ĝ〉 = exp

[
− (x− rji)2

2σ2
r

−
r2
ji

σ2
⊥

(1− r̂ji · x̂)

]
.

(122)
Together with a choice of radial functions that do not
depend explicitly on l, this allows factorizing the ra-
dial integral (120) as∫

dx 〈n|x〉 〈x; l|rji; ĝ〉 = 〈n|rji; ĝ〉 〈l|rji; ĝ〉 . (123)

Coupled with the polynomial basis proposed in
Ref. 29, these expansion coefficients can be computed
efficiently using recurrence relations in the radial and
angular coefficients. More in general, the cost of eval-
uating the radial integrals 〈nl|r; g〉 can be made neg-
ligible by using splines to approximate the value of
the special functions resulting from the integrals, or
the numerical integration of basis functions for which
there is no analytical expression. Another aspect that
does not affect the asymptotic scaling of the expan-
sion, but can significantly influence the prefactor, in-
volves the evaluation of spherical harmonics.150,294

Several well-established techniques can be used to
speed up the calculation of Y ml , including the use of
real-valued spherical harmonics, the use of recurrence
relations, and the use of formulations that are entirely
written in terms of the Cartesian components of r̂ji.

Symmetrized n-body correlations The density co-
efficients 〈anlm|ρi〉 are then combined to compute in-
variant (or covariant) features. Formally, the evalu-
ation of the symmetry-adapted features – both those
built using only local |ρi〉 features, and the multi-scale
features that combine |ρi〉 and |Vi〉 – involves a tensor
product of ν sets of density coefficients to yield density

body-order
iteration

contraction

FIG. 29. A schematic representation of the NICE frame-
work. A hierarchy of N -body equivariant features is built
by iterative combination with the atom density coeffi-
cients, and the exponential increase in feature space size is
kept at bay by successive contractions. Reproduced with
permission from Ref. 149. Copyright 2020 American In-
stitute of Physics.

correlations in the uncoupled basis 〈(ainilimi)
ν
i=1|,

and then a contraction along the mi indices, that
generates the equivariant features expressed in the
coupled basis 〈(ainiliki)νi=1|. A technical difficulty
one has to keep in mind when implementing the cal-
culation of equivariant features is that the angular
(l,m) indices have an irregular memory layout, with
−l ≤ m ≤ l. Depending on the hardware architec-
ture, it might be beneficial to store the coefficients in
a regular (lmax + 1)× (2lmax + 1) array, padded with
zeros.

A more substantial challenge associated with the
increase of the body order is that both the number of
linearly independent features and the cost of evaluat-
ing each of them based on a naive contraction of the
tensor products of density coefficients (e.g. based on
the expressions in Ref.126) increase exponentially with
ν. Even though the exponential scaling is related to
the expansion parameters lmax and nmax, and not on
the number of neighbors, as it would be the case for
the calculation of the features as a sum over clusters of
ν atoms (see Sec. IV F and V A), it makes the enumer-
ation of a complete linear basis prohibitively expen-
sive. The recurrence relations149 of Eq. (46) (or the
equivalent ones for the invariant features proposed in
Ref.127) make it possible to evaluate individual equiv-
ariant features with a cost that scales only linearly
with ν. To beat completely the exponential scaling,
these recursive expressions should be combined with
feature selection schemes such as those discussed in
Section VIII B. For example, the n-body iterative con-
traction of equivariant (NICE) features incorporates
a selection/contraction step at each level of the itera-
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tion. For each equivariant component 〈q′|ρ⊗νi ;σ;λµ〉,
one determines (e.g. by principal component analy-
sis, or just by dropping some components) a set of

coefficients Uν;σλ
q′q that can be used to reduce the di-

mensionality of the features

〈qν;σλ|ρ⊗νi ;σ;λµ〉 =
∑
q′

Uν;σλ
qq′ 〈q

′|ρ⊗νi ;σ;λµ〉 . (124)

Given that this operation only mixes features with
the same equivariant behavior, it is then possible to
perform an iteration equivalent to Eq. (46) to increase
the body order further

〈q|ρ⊗(ν+1)
i ;σ;λµ〉 ≡ 〈qν;τk;nlk|ρ⊗(ν+1)

i ;σ;λµ〉 =

δσ(τ(−1)l+k+λ)

∑
m

〈lm; k(µ−m)|λµ〉

× 〈n|ρ⊗1
i ; lm〉 〈qν;τλ|ρ⊗νi ; τ ; k(µ−m)〉 . (125)

Note that in the first line we use the loose definition of
the indices in the bra-ket notation (Section IV A): the
ν + 1 term can be indexed explicitly, with a notation
that recalls the lower-order terms that are combined
to obtain it; once it is computed, the granularity of
the indexing becomes irrelevant, and a flat index can
be used to streamline the notation. With this com-
bination of expansion and contraction only the com-
ponents that contribute significantly to the descrip-
tion of the structural diversity of the dataset, or to
the prediction of the target properties, are retained to
evaluate higher-order correlations.

An alternative perspective for developing efficient
implementations is to represent invariant or equivari-
ant properties y(Ai) in terms of the unsymmetrized
correlations,

y(Ai) ≈
∑

n1l1m1...nν lνmν

〈y|n1l1m1 . . . nν lνmν〉

× 〈n1l1m1 . . . nν lνmν |ρ⊗νi 〉 ,

with the desired symmetries imposed through con-
straints on the coefficients 〈y|n1l1m1 · · ·nν lνmν〉.
While this perspective imposes additional complexity
on regression schemes it is convenient for fast evalua-
tion of a fitted model (with coefficients now ensuring
the correct symmetries) since the coupling coefficients
need not be stored or evaluated anymore. An efficient
evaluation now requires a recursion for the unsym-
metrized correlations

〈n1l1m1; . . . nν lνmν |ρ⊗νi 〉 =

ν∏
α=1

〈nαlαmα|ρi〉 ,

which is relatively straightforward to construct,127 the
key challenge being to retain only the (nα, lα,mα)α
features that give rise to non-zero coefficients.
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FIG. 30. (a) Single-core timings for the evaluation of
radial expansion, angular expansion, and SOAP vector
construction for an atomic structure containing 10’000
randomly-placed atoms, using the implementation dis-
cussed in Ref. 191 and as a function of (nmax, lmax). Re-
produced with permission from Ref. 191. Copyright 2019
American Physical Society. (b) Single-core timings for
the evaluation of SOAP features for a dataset of molec-
ular crystals172, using the implementation in librascal297,
as a function of (nmax, lmax); to compare with panel (a),
consider that the presence of 4 distinct chemical elements
corresponds roughly to a fourfold increase of nmax. The
breakdown of the total timing in the different steps of the
calculation is shown for a few representative sizes of the
expansion. (c) As in (b), including also the calculations of
the gradients of the features with respect to atomic posi-
tions. Reproduced with permission from Ref. 287. Copy-
right 2021 American Institute of Physics.
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basis
FIG. 31. The panels demonstrate
the convergence of SOAP features
as computed for 10’000 random CH4

configurations269 using the radial bases
implemented in different codes, and mea-
sured in terms of the error one incurs
when linearly predicting fully-converged
features Ξfull (nmax = 24, lmax = 12,
computed with the GTO implementation
in librascal) using features with lmax = 8
and growing values of nmax (left) and
with nmax = 14 (16 for librascal) and
growing values of lmax (right). Top pan-
els show the linear reconstruction error
(GFRE) which measures the amount of
information that cannot be linearly de-
coded from the coarser features. Bot-
tom panels show the reconstruction dis-
tortion (GFRD) which measures the ad-
ditional error one makes when limit-
ing the reconstruction to an orthogonal
transformation.271

E. Packages to evaluate atom-density
representations

To provide a practical example of the use of
software to compute representations, we compare
three packages, namely quippy298, dscribe296 and
librascal287,297, that are open source, and can be eas-
ily used in a Python code. We do not discuss the
internals of the implementations, but show code snip-
pets that can be readily used to evaluate descriptors
of atomic structures, primarily focusing on the SOAP
powerspectrum. All examples use the Atomic Simu-
lation Environment299, and atomic structures are as-
sumed to be stored in the variable structures, an
instance of ASE’s Atoms object. In all of these im-
plementations, the descriptor vectors are returned as
numpy.array objects, from which kernel values may
be obtained by computing the dot products between
descriptor vectors. We also do not discuss the com-
putational efficiency of the different codes, which is
still the subject of very active development. Fig. 30
provides some representative timings from librascal,
and from a recent implementation of SOAP that uses
non-Gaussian atomic densities191. The wildly differ-
ent breakdown of the computational effort as a func-
tion of the basis set size, and the large overhead as-
sociated with the evaluation of the gradients of the
features highlight some of the implementation chal-
lenges.

The quippy python package is based on the QUIP
suite with the GAP extension, which provides the
descriptors module. QUIP must be downloaded and
built using a Fortran compiler before quippy, which
uses f90wrap to access the compiled functions in QUIP
via python interfaces. In the GAP implementation,
Gaussian radial basis functions are used, placed at

equal intervals, and orthogonalized.

from quippy.descriptors import Descriptor

soap = Descriptor("soap cutoff=3.5 

cutoff_transition_width=0.0 atom_sigma=0.3 

n_max=8 l_max=6")

# returns a dictionary containing the features

and connectivity information

features = soap.calc(structures)

# features["data"] is a numpy array with the

shape (\n_environments,n_features)

The Descriptor object is initialised using a string
containing the kernel parameters in a key=value for-
mat, with some keys being mandatory.

The dscribe package296 implements multiple de-
scriptors, including SOAP, MBTR31 and ACSF. A
python interface is used to interact with calculator
functions written in C/C++, ensuring efficient eval-
uation. The main difference between the SOAP im-
plementation of quippy and dscribe are the choice
of radial basis functions, which are spherical primi-
tive Gaussian Type Orbitals (GTOs), orthogonalised
using the method suggested by Löwdin300. Alterna-
tively, cubic or higher order polynomials may also be
chosen. In analogy with the definition of GTOs used
in quantum chemistry, the radial basis has an explicit
dependence on l.

from dscribe.descriptors import SOAP

soap = SOAP(

rcut=3.5,

nmax=8,

lmax=6,

sigma=0.3,

species=["H","C"]

)

# returns a (n_environments,n_features) numpy

array
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X = soap.create(structures)

The the python object providing the descriptor is con-
structed from the class SOAP and specifying the pa-
rameters in the initialisation arguments.

The package librascal also provides a variety of
descriptors, but chiefly focuses on the calculation of
density-based representations, including SOAP and
the ν = 1 and ν = 3 correlations. The back-end,
written in C++, can be accessed from python inter-
faces. Exploiting the spirit of the general construc-

tion of |ρ⊗νi 〉 features, librascal implements two kinds
of radial functions, namely a family of GTO-like ra-
dial functions157 as well as a discrete variable repre-
sentation (DVR) basis, corresponding to a real-space
evaluation of the symmetrized density using a Gauss-
Legendre quadrature rule.

from rascal.representations import

SphericalInvariants

hypers = {

’soap_type’: ’PowerSpectrum’,

’interaction_cutoff’: 3.5,

’radial_basis’: ’GTO’, # or ’DVR’

’max_radial’: 8,

’max_angular’: 6,

’gaussian_sigma_constant’: 0.3,

’gaussian_sigma_type’: ’Constant’,

’cutoff_smooth_width’: 0.0,

’normalize’ : False

}

soap = SphericalInvariants(**hypers)

# returns a (n_environments,n_features) numpy

array

X = soap.transform(structures).get_features(soap)

The SphericalInvariants object uses the
transform method to compute SOAP features,
that are stored internally in a sparse format, in
which each dense block corresponds to a (a, a′)
pair of elemental densities. These features can be
used to compute scalar-product kernels between two
environments, or cast to a dense array through the
get_features method.

These three packages all compute “SOAP” fea-
tures, but differ in the choice of basis functions. Much
as with electronic structure codes, that often yield re-
sults that differ significantly despite performing nom-
inally the same type of calculations,301 one cannot ex-
pect to be able to combine the features computed by
one package with the regression weights computed by
another. It is however important to assess whether
the features are equivalent in a less stringent sense,
e.g. whether they contain analogous information, and
whether they converge to the same limit when the
expansion parameters (nmax, lmax) are increased. Fig-
ure 31 demonstrates the convergence of the GFRE
and GFRD (see Section VIII A and Ref. 271) be-
tween small-(nmax, lmax) features and a highly con-
verged Ξfull featurization. In all cases we consider
GFRE(Ξfull,Ξ) is at least one order of magnitude

smaller than GFRE(Ξ,Ξfull). One sees that, reas-
suringly, in all cases the feature reconstruction errors
converge towards zero. For nmax = 16 all choices of
radial bases are essentially converged, and the residual
error is due to the convergence of the angular chan-
nels. Since all implementations use equivalent spher-
ical harmonics expansions, the convergence with the
angular cutoff lmax is nearly identical. The conver-
gence rate of the radial bases, however, is not the
same. The GTO bases in librascal and dscribe have
similar amounts of information (although they are
not fully equivalent, as they are parameterized dif-
ferently), and converge faster than the bases used in
quippy and the librascal DVR implementation. The
GFRD also converges to zero for most implementa-
tions – meaning that in the complete basis set limit the
corresponding features become equivalent. The imple-
mentation in dscribe is an exception, with a GFRD
saturating at approximately 0.1, suggesting that im-
plementation details lead to persistent differences in
the weighting of different kinds of correlations even
when (nmax, lmax) increase beyond the values that are
typically used in practice.

IX. APPLICATIONS AND CURRENT
TRENDS

In this Section we report some representative ap-
plications that highlight different aspects of the rep-
resentations discussed in this Review – demonstrating
how an understanding of the nature and properties of
the structure/features mapping can be used to con-
struct efficient and insightful machine-learning mod-
els.

A. Best match kernels for ligand binding

Contrary to the problem of predicting interatomic
potentials, or other extensive properties, the affinity
between a protein and a small drug-like molecule does
not fit well into the mold of an additive property
model. The structure of the ligand must allow for
the active portion of the molecule to fit in the bind-
ing pocket of the target protein, and the nature of the
chemical groups in this “warhead” portion are more
important to determine the strength of the interaction
than peripheral portions of the molecule. Figure 32
shows the accuracy of a classifier based on SOAP fea-
tures, that aims to distinguish active components from
decoys for a given target protein. The targets and the
ligands, as well as their “ground truth” binding be-
havior are taken from the database of useful decoys,
enhanced (DUD-E)51. The performance of the clas-
sifier is represented in terms of the receiver operat-
ing characteristic (ROC) curves (the ROC curve of
a perfect classifier would run along the left and top
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FIG. 32. ROCs of binary classifiers based on a SOAP
kernel, applied to the prediction of the binding behavior
of ligands and decoys taken from the DUD-E51, trained
on 60 examples. Each ROC corresponds to one specific
protein receptor, and plots the fraction of true positives
p(+|+) against the fraction of false negatives p(+|−). The
red curve is the average over the individual ROCs. The
dashed line corresponds to receptor FGFR1, which con-
tains inconsistent data in the version of the DUD-E at
the time of the original publication30. Inset: AUC per-
formance measure as a function of the number of ligands
used in the training, for the “best match”-SOAP kernel
(MATCH) and average molecular SOAP kernel (AVG).
Reprinted with permission from Ref. 30. c© The Authors,
some rights reserved; exclusive licensee AAAS. Distributed
under a Creative Commons Attribution License 4.0 (CC
BY-NC).

margins of the plot, while a classifier that is as good
as random would run along the diagonal), and their
area under the curve (AUC) (the AUC is the integral
of the ROC, and roughly corresponds to the fraction
of molecules that are classified correctly). The AUC
plot, in the inset of Fig. 32 shows that a model based
on an average metric – that describes each molecule
as the average of its environments, Eq. (95) – per-
forms rather poorly, which is unsurprising given the
highly non-additive nature of the binding affinity. Us-
ing a “best-match” kernel (equivalent to the distance
in Eq. 97, and implemented in practice as the small-
γ limit of the REMatch kernel69) improves dramati-
cally the accuracy of the classifier, bringing the AUC
to well above 0.95. A judicious choice of the training
structures, based on farthest point sampling, acceler-
ates even further the convergence of the classifier with
train set size. This application provides an example of
how local representations can be combined in a non-
additive way, resulting in a dramatic improvement of
the machine-learning performance for a problem in
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FIG. 33. Predicted atomic contributions to the total
CCSD polarizability tensor for a selection of the show-
case dataset as reported in Refs. 24,302. The ellipsoids
are aligned along the principal axes of αi, and their ex-
tent is proportional to the square root of the corresponding
eigenvalue. The principal axes are shown, and are colored
based on whether the corresponding eigenvalues are pos-
itive (black) or negative (red). Reproduced with permis-
sion from Ref. 24. Copyright 2019 National Academy of
Sciences.

which non-additive behavior is to be expected.

B. Tensorial features and polarizability

Some of the early examples of machine-learning
models leveraging covariant features focused on the
prediction of dielectric response functions, such as the
dipole moment µ (and the equivalent bulk quantity,
polarization), polarizability α (and the closely-related
electronic dielectric constant) as well as higher-order
terms, such as the first hyperpolarizability β. We dis-
cuss the case of the static dipole polarizability α as
a representative case that highlights many of the cur-
rent ideas and applications. In its Cartesian form, α
is a symmetric tensor, fully determined by six compo-
nents (αxx, αyy, αzz, αxy, αxz, αyz). In order to build
a machine-learning model based on equivariant den-
sity correlation features, it is more convenient to ap-
ply a unitary transformation that casts it into its ir-
reducible spherical components (ISCs). The spheri-

cally symmetric term, α
(0)
0 , corresponds to the trace

of the tensor, while the 5 anisotropic components,

α
(2)
{−2,−1,0,+1,+2} transform collectively as λ = 2 spher-

ical harmonics, and can be computed using recursive
relationships that are explicitly reported in Ref. 158.
A clear advantage of this construction is that, unlike
the components of the Cartesian tensor, the two ISCs
of α can be independently represented by the equiv-
ariant density-based features corresponding to λ = 0
and λ = 2, relying on a linear prediction model similar
to the one reported in Eq. (40).24,157,159

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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FIG. 34. Polarizability per carbon atom (α/nC) vs. num-
ber of carbons (nC) for the series of s-trans alkenes (from
C6H8 to C22H24, full line) and acenes (from benzene to
pentacene, dotted line), as well as fullerene (C60). The
green squares (and error bars) indicate the experimental
measurements for C60

303. Results are provided from DFT
(blue) and CCSD (red) calculations, as well as the corre-
sponding AlphaML models. Reproduced with permission
from Ref. 24. Copyright 2019 National Academy of Sci-
ences.

The inherent locality of the model means that
the tensor prediction can be broken down in the
sum of individual atomic contributions α =

∑
iαi.

These local components can be combined to make
predictions on larger, and more complex molecules
than those included in the training set. This trans-
ferability was exploited in the AlphaML model24,304

to fit against coupled-clusters (CCSD) reference val-
ues, computed on small organic molecules from the
QM7b dataset254,302, and predict on 52 larger “show-
case” molecules that are at the limit of what is
computable with state-of-the-art quantum chemistry
methods. On these molecules, the error of AlphaML
against the CCSD reference (0.24 a.u./atom) was less
than half the discrepancy between CCSD and DFT
(0.57 a.u./atom).

An additive model also provides predictions for
the local contributions to α, which are represented
in Fig. 33, in terms of ellipsoids aligned along the
principal axes of α(Ai). Even though these compo-
nents do not have to be physically meaningful – given
that the only training target is given by total polar-
izabilities – the local α(Ai) reflect some chemical in-
sights, e.g. the model predicts large components when
centering the representation on the highly-polarizable
sulfur atoms, as well as along the directions where
the molecules are highly polarizable. Highly conju-
gated molecules are also interesting because they ex-
hibit a non-additive behavior of the polarizability, due
to the vanishing HOMO-LUMO gap. Due to the spa-
tial nearsightedness of the representation, the model
breaks down when asked to predict the polarizabil-
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FIG. 35. (black line) Raman spectrum prediction of parac-
etamol form-I averaged over 16 different training models.
Each training model is obtained by a random subselection
of 2000 configurations over a total of 2500. (shaded area)
Standard deviation of the predicted spectra over the 16
models, calibrated with a likelihood maximization proce-
dure described in Ref. 172. (blue line) Reference ab ini-
tio Raman spectrum. Adapted from Ref. 160. Copyright
2019 IOP Publishing under Creative Commons Attribu-
tion 4.0 International License https://creativecommons.

org/licenses/by/4.0/.

ity of large polyenes and polyacenes based on the in-
formation learned on simpler and smaller molecular
units. This is well represented in Fig. 34, where the
prediction of α is tested for conjugated carbon-based
molecules of increasing size, including fullerene24.

The prediction of α using equivariant features can
also be extended to the condensed phase and provides
a crucial ingredient to compute Raman spectra. An
example of this is reported in Ref. 160, where the
polarizability of crystal polymorphs of paracetamol
are predicted along a full molecular dynamics tra-
jectory, thus allowing for the calculation of the Ra-
man intensity in terms of the polarizability correla-
tion spectrum. As shown in Fig. 35, given the local
nature of the polarizability response in this kind of
systems, accurate Raman intensities and lineshapes
can be predicted for the entire range of frequencies.
The low cost associated with computing dielectric
response functions by ML models using symmetry-
adapted features makes it possible to routinely eval-
uate condensed-phases infrared and Raman spectra
including also a description quantum mechanical na-
ture of the nuclei305 – a task that until very recently
required enormous computational effort306.

C. Long-range and non-local responses

The clear breakdown of a ML model based on lo-
cal features that is apparent in Fig. 34 is representa-
tive of a general limitation of density-based features.
There are essentially two approaches one can take to
tackle the issue of the non-locality of the structure-
property relations, both of which are illustrated in
Figure 36. One approach is to learn a proxy of the
target property, which has a more localized nature,
and which can then be easily manipulated to obtain
the end result. The top panel of Fig. 36, adapted

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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FIG. 36. (a) Learning curves of the λ = 0 and λ = 2
components of the dielectric response tensor ε∞ of water,
through direct learning (red and green lines, respectively)
and indirect learning going through the Clausius-Mossotti
relation (blue and gray). The testing data set consists of
500 independent configurations. Arrows indicate the in-
trinsic standard deviation of the testing samples. Crosses
show the predictions for 5 hexagonal ice structures using
the ML model trained on liquid water. Adapted with per-
mission from Ref. 159. Copyright 2018 American Physical
Society (b) Absolute RMSE in learning the λ = 0 spheri-
cal tensor of polarizability of polypeptides as a function of
the peptide length. The model was trained on 27428 sin-
gle amino acids and 370 dipeptides. The error was com-
puted on 30 dipeptides, 20 tripeptides, 16 tetrapeptides
and 10 pentapeptides respectively. The curves correspond
to a LODE model (blue) a squared-kernel SOAP model
(green) and a hybrid model mixing the two kernels (red).
Adapted with permission from Ref. 163. Copyright 2020
Royal Society of Chemistry.

from Ref. 159, is an example of this approach. The
electronic dielectric response ε∞ of bulk water is af-
fected by a collective, macroscopic electrostatic effect
that is captured, in the continuum limit, by well-
known expressions such as the Clausius-Mossotti re-
lation, α = V (ε − 1)/(ε + 2), that links ε∞ to an
effective molecular polarizability. This effective α is
more readily learnable by a local model, leading to

better accuracy and transferability in predicting ε∞.
A different approach is needed when there is no ob-

vious transformation of the target property to a more
local version, as is the case for the polarizability of
conjugated hydrocarbons. In these cases, one needs
a model that is able to describe arbitrary non-local
correlations. Long-range representations such as mul-
tiscale LODE features (Section IV H and V C) are par-
ticularly attractive, in that they combine a long-range
character (coming from the potential field) with an ad-
ditive decomposition that provides the transferability
needed to extend the prediction to systems of increas-
ing size. This is demonstrated in Fig. 36, where the
multiscale LODE model is tested for predicting the
isotropic component of the polarizability of a series of
polypeptides of increasing length. While the predic-
tion at small peptides lengths share a similar accuracy
as that obtained using a pure density-based represen-
tation, the inclusion of the potential field greatly de-
creases the prediction error when considering longer
molecular chains. A large, overall improvement of
the prediction accuracy is observed when adopting an
optimized, weighted combination between local and
LODE features. These result suggests that the inclu-
sion of long-range features within the regression model
provides a better description of the intermediate-range
interactions, and that by adjusting the relative impor-
tance of local and delocalized terms the model can be
trained only on small molecules, and extrapolate re-
liably across systems of increasing size. Very similar
findings were reported on the transferability of models
of molecular dipoles166 – where however the splitting
between local and long-range physics was achieved by
combining different regression models rather than by
different choices of features.

D. Electronic charge densities

Another relevant scenario where the data-driven
prediction of a quantum property benefits from a rep-
resentation that relies on the use of local and equivari-
ant features is the electron density ρ̃(r) of an atomic
structure.307 The density is a scalar field, and has
been modeled with some success by predicting its
value at a specific point by an invariant representa-
tion centered on that point308,309. Given that (par-
ticularly in the case of an all-electron calculation)
atomic nuclei are a natural vantage point to decom-
pose the overall electron density, one may want in-
stead to model ρ̃(r) as a sum of atom-centered con-
tributions, ρ̃(r) =

∑
i ρ̃(Ai; r). These atom-centered

terms can then be conveniently decomposed as a sum
of local functions, at the price of adopting a multi-
centered non-orthogonal basis for the expansion i.e.,

ρ̃(Ai, r) =
∑
nλµ

c̃nλµ(Ai)Rn(|r− ri|)Y λµ
(
r̂− ri

)
(126)
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where Rn represent some suitably optimized radial
functions (for instance those used in resolution of
the identity methods in quantum chemistry310) and
c̃nλµ(Ai) correspond to the non-orthogonal expansion
coefficients, that depend on the arrangement of atoms
in the environment Ai. These coefficients must trans-
form in a covariant fashion with a rotation of the envi-
ronment, and each λ-component can be independently
predicted using equivariant features of the correspond-
ing order – for instance with a linear model

c̃nλµ(Ai) ≈
∑
q

〈c̃nλ|Q〉 〈Q|Ai; ρ⊗νi ;σ;λµ〉 , (127)

even though current implementations use a kernel re-
gression scheme23,311. The non-orthogonality of the
basis used to represent ρ̃(r), implies that the learn-
ing phase has now to be performed considering all the
different density components at the same time23,311.
While this may sound as a computational drawback
of the model, it also improves the locality of the coef-
ficients, which underlies its remarkable transferability
across vast conformational and chemical spaces, since
the electron density can be effectively learned as a
collection of local contributions. This is well exempli-
fied in Figs. 37, where the electron density prediction
of C(8) hydrocarbons23 is tested upon having trained
the model on much smaller compounds, with only 4
carbon atoms. This approach has since been applied
to more complex systems, such as oligopeptides311,

FIG. 37. Extrapolation results for the valence electron
density of one octane (left) and one octatetraene (right)
conformer, using a model trained on butadiene and bu-
tane. (top) DFT/PBE density isosurface at 0.25, 0.1, 0.01
Bohr−3, (middle) machine-learning prediction isosurface
at 0.25, 0.1, 0.01 Bohr−3, (bottom) machine-learning error,
red and blue isosurfaces refer to ± 0.005 Bohr−3 respec-
tively. Reproduced from Ref. 23. Copyright 2018 Ameri-
can Chemical Society.

and to the prediction of other scalar fields such as the
on-top density312.

E. Structural classification and structural
landscapes

As discussed in Section VII, the choice of a rep-
resentation to describe atomic structures determines
the “lens” through which they are interpreted, which
in turns has a strong impact on the way unsupervised
learning schemes, such as clustering and dimension-
ality reduction, bring to light recurring patterns, and
structure-property relations. The potential of general-
purpose, atom-density correlation features for these
tasks has been recognized rather early. Figure 38,
adapted from Ref. 313 shows a classification of snap-
shots taken from simulations of different phases of wa-
ter, based on Steinhardt order parameters236, which

are closely related to |ρ⊗2
i 〉 features, and make it

possible to partly differentiate between phases. In
the same study it is shown how a neural network
based on atom-centered symmetry functions can be
trained to achieve near-perfect classification accuracy.
An even more comprehensive mapping of the phase
diagram of water – in which crystalline and amor-
phous phases from across the phase diagram, as well as
transition pathways between them were considered –
was produced in Ref. 218, using permutation-invariant
vectors316 as global descriptors for the different config-
urations. Abstract structural descriptors are particu-
larly useful when applied to datasets that contain hy-
pothetical structures, generated by a high-throughput
procedure1. In combination with a dimensionality-
reduction scheme4, and with a generalized convex hull
construction that attempts to estimate the synthesiz-
ability of materials by considering jointly their pre-
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FIG. 39. Sketch map of
the structural similarity
of 15,869 distinct PBE-
DFT geometry-optimised
ice structures, as com-
puted by the Euclidean
distance in SOAP space.
The sketch-map coordinates
are obtained by minimizing
the error in reproducing
this similarity in terms of
distances between points
on a 2D projection. The
density and static lattice
energy of each structure
are encoded by the size
and colour of the respective
point, and correlate strongly
with the position on the
map. Known ice phases are
labelled in blue. 34 new
candidates are labelled in
black and numbered in order
of increasing dressed energy
relative to a generalized
convex hull314 construc-
tion. Reproduced from
Ref. 315. Copyright 2018
Springer Nature under Cre-
ative Commons Attribution
4.0 International License
https://creativecommons.

org/licenses/by/4.0/.

dicted stability, and the structural similarity to other
potential candidates314, a SOAP representation has
been able to rediscover all known (meta)stable ice
phases, as well as to propose another 34 structures
which might be also stabilizable by pressure, doping,
or co-crystallization315 (see Fig. 39).

An incomplete list of applications that use general-
purpose features for structural analysis and classifica-
tion includes: the construction of structure-property
maps for small organic molecules244,318, molecular
materials255,319,320, inorganic perovskites321, corro-
sion inhibitors322; the identification and characteri-
zation of defects in solids323–325 and self-assembled
polymers326,327; the classification of secondary-
structure patterns in polypeptides259 and the build-
ing blocks of zeolites230,328 and porous materials329;
the classification of different phases in multi-phase
materials330,331; the characterization of amorphous
systems18,332–335; the search of stable phases of
materials336; the determination of the convergence of
microsolvation studies of the hydration free energy337.

There are also several examples, besides those
given in Section VII where low-dimensional maps have
been used as a tool to understand the structure of
a data set or the nature of a representation. In
Ref. 98 a PCA map was used to understand the ef-

FIG. 40. Sketch-map describing the makeup of the struc-
tures included in the train set of an accurate and transfer-
able potential for carbon. Selected structures are identified
for graphite, diamond, hexagonal diamond (Lonsdaleite),
amorphous carbon and fullerenes. Points are coloured ac-
cording to their energy, while contours indicate the density
of the database population in a particular region. Adapted
with permission from Ref. 317. Copyright 2020 American
Institute of Physics.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


53

fect of randomizing the atom ordering on the fea-
ture space associated with a Coulomb matrix descrip-
tion of molecules, emphasizing the information loss
associated with sorting of the elements – an alter-
native route to achieve permutation invariance. In
Ref. 69, maps based on different kinds of SOAP ker-
nels provided an understanding of the effect of differ-
ent approaches to combining environment-level ker-
nels, and of different definitions of an alchemical ker-
nel between chemical elements, on the similarity be-
tween molecules as measured by the representation.
In Ref. 94, maps of a dataset of water oligomers
were used to compare the performance of different ML
scheme to build 2 and 3-body models of the energy of
water clusters.

The use of low-dimensional representations to vi-
sualize the structure of a dataset, showing the re-
lationship between different kinds of training struc-
tures, identifying regions that are poorly sampled,
and determining how new configurations relate to the
data the ML model has been fitted, is also gain-
ing traction.30,69,114,115,280,338–340 An example of such
map is given in Fig. 40, showing the diversity of
the structures used to train a transferable machine-
learning potential for carbon.317 Adopting the same
type of representations used for the regression model
as the basis of this kind of analysis ensures that the
maps describe the same feature space that underlies
the fit.

F. 3D representations for QSPR and reaction
predictions

Even though the focus of this review is on de-
scriptors of the 3D structure of materials applied to
the construction of surrogate models of quantum me-
chanical properties, there is also growing interest in
their application to QSPR tasks. As we briefly dis-
cuss in Section III, the descriptors that have been
traditionally used in cheminformatics are based on
a collection of molecular properties, or on molecular
graph descriptors that do not depend on the particu-
lar conformation.341 From a conceptual point of view,
their coarsness is an advantage, because it is compat-
ible with the definition of thermodynamic properties
that are not associated with a single specific configu-
ration, such as solvation and ligand binding free en-
ergies. Nevertheless, there is growing evidence that
the use of descriptors incorporating information on
the 3D geometries can improve the accuracy of QSPR
models, especially for difficult cases that involve very
flexible molecules,342,343 as well as for data analytics
approaches for materials informatics344. One of the
core challenges in these efforts is the determination of
the conformer geometries that should be used to evalu-
ate the 3D descriptors, an operation for which several
strategies have been explored to enhance the accu-

racy of QSPR models.345,346 As we briefly discuss in
Section VII E, one of the most promising research di-
rections involves combining the high fidelity of density
based representations with a well-principled construc-
tion of ensembles of features. This is still a very active
subject of research, with very encouraging results hav-
ing been recently demonstrated for the prediction of
the solubility of small molecules347, the computational
screening for antiviral drugs348, and the prediction of
enantioselectivity of organocatalysts349.

G. Descriptors from electronic-structure theory

Another growing trend that is worth a brief men-
tion involves the use of information from electronic-
structure calculations in the construction of structural
representations. The idea has been applied in differ-
ent forms. At the simplest level, electronic-structure-
based indicators of chemical similarity, obtained for
bulk elements, have been used in the construction of
elemental similarity kernels,69 to obtain models that
are more predictive across chemical space350. Alter-
natively, electronic-structure indicators, such as the
local density of states, can be used side-by-side with
purely structural representations, yielding a substan-
tial improvement of the accuracy of the model351,352.

Elements of an electronic structure calculation,
such as the charge density353, the electron density of
states354 or the elements of the Fock matrix355 can
be used directly as the basis for a molecular repre-
sentation. This approach requires an electronic struc-
ture calculation in order to make predictions for each
new structure, which implies a substantial overhead
in comparison with methods using as inputs only
the atomic positions. However, the increase in the
transferability of the models may well justified the
greater computational effort, particularly when using
descriptors based on low levels of quantum mechan-
ical theory to predict high-end, accurate molecular
properties.356,357

CONCLUSIONS AND OUTLOOK

The description of atomic structures in terms
of mathematically sound, computationally efficient,
and physically-inspired representations has largely
driven the extraordinarily successful application of
machine-learning schemes to atomic-scale modeling.
Independently-developed representations have under-
gone a process of convergent evolution to fulfill a
concurrent set of requirements, such as symmetry
with respect to translations and rotations, smoothness
and injectivity – a clear indication of the importance
of these criteria to obtain efficient machine-learning
models. Over the past few years, a more systematic
study of the problem of representing atomic structures
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has clarified the connections between most of the suc-
cessful representations, and between these and well-
established concepts in the statistical physics of liq-
uids (ν-point density correlations) and of alloys (the
cluster expansion), as well as with the construction of
potential energy surfaces for molecules and the con-
densed phase.

A formal treatment of symmetries enabled the de-
velopment of equivariant features that are suitable to
build models that automatically obey the same trans-
formation rules as vectors and tensors, making it pos-
sible to learn efficiently properties such as dipole mo-
ments, polarizability and density fields. This equiv-
ariant formulation can also be used to iteratively in-
crease the body order of a structural representation:
An important open question is how to best treat these
high-body-order terms, whether by linear models that
explicitly include dedicated high-order features, or by
non-linear models that generate (some of) them alge-
braically. The answer rests both on practical consider-
ations and on the very fundamental, highly non-trivial
issue of whether a representation of limited body or-
der provides a complete (injective) description of an
atomic structure. Even though it is possible to build
systematically a complete basis to expand in a linear
fashion any structure-property relation, it is not clear
how to build a minimal set of features that guarantees
an injective mapping when used as the input of a gen-
eral non-linear model, or how to reduce in an effective
manner the size of a complete linear basis. A better
understanding of the mathematical properties of rep-
resentations is likely to lead, in the near future, to
more robust and better performing implementations,
and might also help design better “deep” models, by
identifying the algebraic manipulations that increase
most effectively the expressive power of the features
used as inputs.

Another open challenge is how to deal with non-
additivity, and with properties that depend on long-
range interactions between far-away atoms. Particu-
larly promising is a long-distance equivariant frame-
work, that can be formulated as as a rather straight-
forward extension of the same density-correlations
scheme that underlies local features, and can be re-
lated to a multipole expansion of interactions. It is yet
to be seen whether it can describe more subtle physi-
cal phenomena such as quantum delocalization, polar-
ization and charge transfer, and how it compares with
more explicitly physically-motivated “hybrid” models.
A better control of the multi-scale nature of the inter-
actions, including the use of “multi-resolution” fea-
tures, is likely to be one of the focal point of feature-
engineering efforts, which may lead to an incremental
– but nevertheless important – increase of the accu-
racy of ML models of matter. The optimization of
features for a specific problem may however impact
their general applicability, which is one of the critical
advantages of the class of abstract, generic represen-

tations we focus on in this review, that can be seen as
the point of convergence of molecular potential energy
surfaces and condensed-phase potentials. The quan-
titative assessment of the mutual information content
of alternative descriptors, of their sensitivity to struc-
tural deformations, and to the degree to which they
correlate with the target properties may serve as a
guide to strike a balance between these conflicting
goals, and to make better informed choices between
alternative frameworks.

One of the most recent research directions aims
at extending even further the reach of the class of de-
scriptors we discuss in this review, by resolving the di-
vide between three dimensional continuous represen-
tations and discrete fingerprints, for applications to
quantitative structure-property relations. The chal-
lenge here is to reconcile the superior resolving power
of 3D, atom-density-correlation representations with
the fact that traditional cheminformatics tasks aim
to predict macroscopic properties, such as solubility
or toxicity, that are not associated with an individual
configuration, but rather with the ensemble of con-
formers corresponding to a specific thermodynamic
state point. Another traditional application of chem-
informatics is the inverse design of molecules with pre-
scribed (or optimized) properties, and the construc-
tion for generative models. While one could envisage
to use 3D representations for this task, a substantial
hurdle would be the fact that the map between struc-
ture and density-correlation features is not bijective:
there are feature vectors that do not correspond to
any structure, and even feature vectors that cannot be
obtained as a symmetrized correlation of an arbitrary
scalar field. Thus, the unconstrained search for the
“optimal feature vector” might result in a set of fea-
tures that do not correspond to an actual structure.
Until this issue is better understood, efforts to use
atom-density representations for inverse design should
rely on approaches that do not require an inverse fea-
ture map.

In the quest for more accurate and efficient
machine-learning models of the structure and prop-
erties of atomistic systems, physically-motivated con-
cepts have been incorporated into the mathematical
representation of atomic configurations, resulting in
striking connections with traditional modeling frame-
works. When treading the fine line between data-
driven and physics-based approaches, the core ques-
tion is how to achieve a natural description of well-
understood phenomena without giving up the flexibil-
ity to model unexpected, complex effects – and how
to build features that can be optimized for a specific
application, while still being universally applicable. A
definitive answer to this question is still lacking, but
we believe that the general principles that we have
summarized in this review may indicate the direction
to follow, and provide some guidance to the practition-
ers who seek to make an informed choice among the
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ever increasing number of representations for atomic-
scale modeling.
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chine Learning of Coarse-Grained Molecular Dynamics
Force Fields. ACS Central Science 2019, 5, 755–767.

10 Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy
Surfaces. Phys. Rev. Lett. 2007, 98, 146401.

11 Braams, B. J.; Bowman, J. M. Permutationally Invari-
ant Potential Energy Surfaces in High Dimensionality.
Int. Rev. Phys. Chem. 2009, 28, 577–606.
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21 Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.;
Tkatchenko, A.; Müller, K.-R. SchNet – A Deep Learn-
ing Architecture for Molecules and Materials. J. Chem.
Phys. 2018, 148, 241722.

22 Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ce-
riotti, M.; Emsley, L. Chemical Shifts in Molecular
Solids by Machine Learning. Nat. Commun. 2018, 9,
4501.

23 Grisafi, A.; Fabrizio, A.; Meyer, B.; Wilkins, D. M.;
Corminboeuf, C.; Ceriotti, M. Transferable Machine-
Learning Model of the Electron Density. ACS Cent.
Sci. 2019, 5, 57–64.

24 Wilkins, D. M.; Grisafi, A.; Yang, Y.; Lao, K. U.; DiS-
tasio, R. A.; Ceriotti, M. Accurate Molecular Polar-
izabilities with Coupled Cluster Theory and Machine

Learning. Proc. Natl. Acad. Sci. U. S. A. 2019, 116,
3401–3406.
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60 Booth, G. H.; Grüneis, A.; Kresse, G.; Alavi, A. To-
wards an Exact Description of Electronic Wavefunc-
tions in Real Solids. Nature 2013, 493, 365–370.

61 Partridge, H.; Schwenke, D. W. The Determination of
an Accurate Isotope Dependent Potential Energy Sur-
face for Water from Extensive Ab Initio Calculations
and Experimental Data. J. Chem. Phys. 1997, 106,
4618.

62 Huang, X.; Braams, B. J.; Bowman, J. M. Ab Ini-
tio Potential Energy and Dipole Moment Surfaces for
$H 5O 2+̂$. J. Chem. Phys. 2005, 122, 44308.

63 Russell, C. L.; Manolopoulos, D. E. How to Observe
the Elusive Resonances in F + H2 Reactive Scattering.
Chemical Physics Letters 1996, 256, 465–473.

64 Kim, J. B.; Weichman, M. L.; Sjolander, T. F.; Neu-
mark, D. M.; K os, J.; Alexander, M. H.; Manolopou-
los, D. E. Spectroscopic Observation of Resonances in
the F + H2 Reaction. Science 2015, 349, 510–513.

65 Tuckerman, M. Statistical Mechanics and Molecular
Simulations; Oxford University Press, 2008.

66 Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and
Path Integrals; McGraw-Hill: New York, 1964.

67 Markland, T. E.; Ceriotti, M. Nuclear Quantum Ef-
fects Enter the Mainstream. Nat. Rev. Chem. 2018,
2, 0109.

68 Sadeghi, A.; Ghasemi, S. A.; Schaefer, B.; Mohr, S.;
Lill, M. A.; Goedecker, S. Metrics for Measuring Dis-
tances in Configuration Spaces. J. Chem. Phys. 2013,
139, 184118.
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Drabold, D. A.; Elliott, S. R.; Deringer, V. L.
Quantifying Chemical Structure and Machine-
Learned Atomic Energies in Amorphous and Liquid
Silicon. Angew. Chem. Int. Ed. 2019, 58, 7057–7061.

71 Yang, W. Direct Calculation of Electron Density in
Density-Functional Theory. Phys. Rev. Lett. 1991, 66,
1438–1441.

72 Galli, G.; Parrinello, M. Large Scale Electronic Struc-
ture Calculations. Phys. Rev. Lett. 1992, 69, 3547–
3550.

73 Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. Sys-
tematic Ab Initio Gradient Calculation of Molecu-
lar Geometries, Force Constants, and Dipole Moment
Derivatives. J. Am. Chem. Soc. 1979, 101, 2550–2560.

74 Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREID-
ING: A Generic Force Field for Molecular Simulations.
J. Phys. Chem. 1990, 94, 8897–8909.

75 Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.;
Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Gu-
vench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D.
CHARMM General Force Field: A Force Field for
Drug-like Molecules Compatible with the CHARMM
All-Atom Additive Biological Force Fields. J. Comput.
Chem. 2009, NA–NA.



58

76 Halgren, T. A. Merck Molecular Force Field. I. Basis,
Form, Scope, Parameterization, and Performance of
MMFF94. J. Comput. Chem. 1996, 17, 490–519.

77 Damm, W.; Frontera, A.; Tirado–Rives, J.; Jor-
gensen, W. L. OPLS All-Atom Force Field for Car-
bohydrates. J. Comput. Chem. 1997, 18, 1955–1970.

78 Baker, J.; Hehre, W. J. Geometry Optimization in
Cartesian Coordinates: The End of theZ-Matrix? J.
Comput. Chem. 1991, 12, 606–610.

79 Baker, J.; Chan, F. The Location of Transition States:
A Comparison of Cartesian, Z-Matrix, and Natural In-
ternal Coordinates. J. Comput. Chem. 1996, 17, 888–
904.

80 Harrison, J. A.; Schall, J. D.; Maskey, S.; Mikul-
ski, P. T.; Knippenberg, M. T.; Morrow, B. H. Re-
view of force fields and intermolecular potentials used
in atomistic computational materials research. Applied
Physics Reviews 2018, 5, 031104.

81 Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.;
Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.;
Adams, R. P. Convolutional Networks on Graphs for
Learning Molecular Fingerprints. Advances in Neural
Information Processing Systems. 2015; pp 2224–2232.

82 Kamerlin, S. C. L.; Warshel, A. The Empirical Va-
lence Bond Model: Theory and Applications. WIREs
Comput Mol Sci 2011, 1, 30–45.

83 Brown, A.; McCoy, A. B.; Braams, B. J.; Jin, Z.; Bow-
man, J. M. Quantum and Classical Studies of Vibra-
tional Motion of CH5 on a Global Potential Energy
Surface Obtained from a Novel Ab Initio Direct Dy-
namics Approach. J. Chem. Phys. 2004, 121, 4105–
4116.

84 Bowman, J. M.; Braams, B. J.; Carter, S.; Chen, C.;
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Bombarelli, R. Graph Similarity Drives Zeolite Diffu-
sionless Transformations and Intergrowth. Nat. Mater.
2019, 18, 1177–1181.

329 Nicholas, T. C.; Goodwin, A. L.; Deringer, V. L.
Understanding the Geometric Diversity of Inorganic
and Hybrid Frameworks through Structural Coarse-
Graining. Chem. Sci. 2020, 11, 12580–12587.

330 Dietz, C.; Kretz, T.; Thoma, M. H. Machine-Learning
Approach for Local Classification of Crystalline Struc-
tures in Multiphase Systems. Phys. Rev. E 2017, 96,
011301.

331 Fulford, M.; Salvalaglio, M.; Molteni, C. DeepIce: A
Deep Neural Network Approach To Identify Ice and
Water Molecules. J. Chem. Inf. Model. 2019, 59,

http://www.libatoms.org/
http://www.libatoms.org/
http://www.libatoms.org/
http://alphaml.org
http://alphaml.org


66

2141–2149.
332 Deringer, V. L.; Caro, M. A.; Jana, R.; Aarva, A.; El-

liott, S. R.; Laurila, T.; Csányi, G.; Pastewka, L. Com-
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