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Abstract. We prove an asymptotically tight bound on the extremal
density guaranteeing subdivisions of bounded-degree bipartite graphs
with a mild separability condition. As corollaries, we answer several ques-
tions of Reed and Wood. Among others, (1 + o(1))t2 average degree is
sufficient to force the t× t grid as a topological minor; (3/2 + o(1))t av-
erage degree forces every t-vertex planar graph as a minor, furthermore,
surprisingly, the value is the same for t-vertex graphs embeddable on any
fixed surface; average degree (2 + o(1))t forces every t-vertex graph in
any nontrivial minor-closed family as a minor. All these constants are
best possible.

Keywords: graph minors, subdivisions, extremal function, average de-
gree, sparse graphs

1 Introduction

Classical extremal graph theory studies sufficient conditions forcing the ap-
pearance of substructures. A seminal result of this type is the Erdős–Stone–
Simonovits theorem [5, 4], determining the asymptotics of the average degree
needed for subgraph containment. We are interested here in the analogous prob-
lem of average degree conditions forcing H as a minor. A graph H is a minor
of G, denoted by G � H, if it can be obtained from G by vertex deletions, edge
deletions and contractions.

The study of this problem has a long history. An initial motivation was
Hadwiger’s conjecture that every graph of chromatic number t has Kt as a
minor, which is a far-reaching generalisation of the four-colour theorem. Since
every graph of chromatic number k contains a subgraph of average degree at least
k−1, a natural angle of attack is to find bounds on the average degree which will
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guarantee a Kt-minor. The first upper bounds for general t were given by Mader
[13, 14]. In celebrated work of Kostochka [10] and, independently, Thomason [20],
it was improved to the best possible bound Θ(t

√
log t), Thomason subsequently

determining the optimal constant [21].
For a general graph H, denote

d�(H) := inf{c : d(G) ≥ c⇒ G � H}.

Myers and Thomason [16] determined this function when H is polynomially
dense, showing that again d�(H) = Θ(|H|

√
log|H|) and determining the opti-

mal constant in terms of H. However, for sparse graphs their results only give
d�(H) = o(|H|

√
log|H|), similar to the way that the Erdős–Stone–Simonovits

theorem gives a degenerate bound for bipartite subgraphs, and so it is natural
to ask for stronger bounds in this regime.

Reed and Wood [17] gave improved bounds for sparser graphs, and in par-
ticular showed that if H has bounded average degree then d�(H) = Θ(|H|).
They asked several interesting questions about the precise asymptotics in this
regime. Among sparse graphs, grids play a central role in graph minor theory,
and Reed and Wood raised the question of determining d�(Gt,t), where Gt,t is
the t× t grid. That is, what is the minimum β > 0 such that every graph with
average degree at least βt2 contains Gt,t as a minor. Trivially β ≥ 1 in order for
the graph to have enough vertices, and their results give a bound of β ≤ 6.929.

This question provides the motivating example for our results. However, we
shall focus on a special class of minors: subdivisions or topological minors. A
subdivision of H is a graph obtained from subdividing edges of H to pairwise
internally disjoint paths. The name of topological minor comes from its key role
in topological graph theory. A cornerstone result in this area is Kuratowski’s
theorem from 1930 that a graph is planar if and only if it does not contain a
subdivision of K5 or K3,3. Again it is natural to ask what average degree will
force Kt as a topological minor, and we define analogously

dT(H) := inf{c : d(G) ≥ c⇒ G contains H as a topological minor}.

Clearly, for any H, d�(H) ≤ dT(H). However, there can be a considerable gap
between the two quantities; Komlós and Szemerédi [9] and, independently, Bol-
lobás and Thomason [2] showed that dT(Kt) = Θ(t2), meaning that clique topo-
logical minors are much harder to guarantee than clique minors. Furthermore,
the optimal constant is still unknown in this case, and in general much less is
known for bounds on average degree guaranteeing sparse graphs as topological
minors.

1.1 Main result

Our main result offers the asymptotics of the average degree needed to force sub-
divisions of a natural class of sparse bipartite graphs, showing that a necessary
bound is already sufficient. It reads as follows.
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Theorem 1. For given ε > 0 and ∆ ∈ N, there exist α0 and d0 satisfying the
following for all 0 < α < α0 and d ≥ d0. If H is an α-separable bipartite graph
with at most (1 − ε)d vertices and ∆(H) ≤ ∆, and G is a graph with average
degree at least d, then G contains a subdivision of H.

Here a graph H is α-separable if there exists a set S of at most α|H| vertices
such that every component of H−S has at most α|H| vertices. Graphs in many
well-known classes are o(1)-separable. For example, large graphs in any nontrivial
minor-closed family are o(1)-separable [1, 15].

As an immediate corollary, our main result answers the above question of
Reed and Wood in a strong sense by showing that any β > 1 is sufficient to force
the k-dimensional grid Gk

t,...,t not only as a minor but as a topological minor,
and so

dT(Gk
t,...,t) = d�(Gk

t,...,t) = (1 + ot(1))tk.

We remark that the optimal constant 1 in Theorem 1 is no longer sufficient
if H is not bipartite. Indeed, if e.g. H is the disjoint union of triangles, then the
Corrádi–Hajnal theorem [3] implies that d�(H) = 4

3 |H| − 2.

2 Applications

Reed and Wood [17] raised several other interesting questions on the average
degree needed to force certain sparse graphs as minors. In particular, they asked
the following.

– What is the least constant c > 0 such that every graph with average degree
at least ct contains every planar graph with t vertices as a minor?

– What is the least function g1 such that every graph with average degree at
least g1(k) · t contains every graph with t vertices and treewidth at most k
as a minor?

– What is the least function g2 such that every graph with average degree at
least g2(k) · t contains every Kk-minor-free graph with t vertices as a minor?

In applying our results to answer these questions, there are two obstacles to
overcome. First, the graph classes considered have bounded average degree, but
our main result only covers graphs of bounded maximum degree. Secondly, and
more significantly, these classes include non-bipartite graphs. Both issues may be
overcome by first constructing a suitable graph H ′ containing the target graph
H as a minor, ensuring that H ′ is bipartite with bounded average degree but still
inherits a suitable separability condition from the original target graph. We then
find a subdivision of H ′ in the host graph. In order to ensure H ′ has bounded
degree it cannot necessarily be a subdivision of H, and so this procedure gives
H as a minor, but not necessarily a topological minor.

Passing from a bounded average degree H to a bounded degree graph only
requires the addition of o(t) vertices, whereas ensuring that H ′ is bipartite typ-
ically changes the constant required, in a way that depends on the precise class
of graphs involved. Thus we obtain a range of different constants for different
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classes; nevertheless, many of these constants are optimal. In the following results
we use the notation

d�(F , t) := inf{c : d(G) ≥ c⇒ G � H, ∀H ∈ F with |H| ≤ t}

for a graph family F . We answer the first question above in a strong sense, giving
the optimal constant and showing that the answer is the same for graphs which
may be drawn on any fixed surface.

Theorem 2. Writing Fg for the class of graphs with genus at most g, we have
d�(Fg, t) = (3/2 + o(1)) t.

Many other important classes of graphs are naturally closed under taking
minors. The seminal graph minor theorem of Robertson and Seymour (proved
in a sequence of papers culminating in [18]) shows that every minor-closed family
can be characterised by a finite list of minimal forbidden minors. For example, the
linklessly-embeddable graphs are defined by a minimal family of seven forbidden
minors, including K6 and the Petersen graph [19]. We can extend the proof of
Theorem 2 to minor-closed families more generally; in fact our results also apply
to classes of polynomial expansion, which are not necessarily minor-closed. For
each k ∈ N, define αk(G) := max{|U | : U ⊆ V (G), χ(G[U ]) = k}. So α1(G) is
the usual independence number and α2(G) is the maximum size of the union of
two independent sets.

Theorem 3. Let F be a nontrivial minor-closed family, or, more generally, a
class of polynomial expansion. For each F ∈ F with t vertices, we have

2t− 2α(F )−O(1) ≤ d�(F ) ≤ 2t− α2(F ) + o(t).

Theorem 3 yields the following consequences, for all of which the constants are
best possible (note that the last example is not a minor-closed class).

– The class Tk of treewidth at most k satisfies d�(Tk, t) =
(

2k
k+1 + o(1)

)
t; in

particular, g1(k) = 2− ok(1).
– g2(k) = 2− ok(1).
– For any nontrivial minor closed family F , we have d�(F , t) ≤ (2 + o(1))t.
– The class L of linklessly embeddable graphs satisfies d�(L, t) = (8/5+o(1))t.
– The class P1 of 1-planar graphs satisfies d�(P1, t) = (5/3 + ot(1))t.

While for some families we are able to show that the upper and lower bounds
from Theorem 3 match, giving the precise constant, in others this is not clear.
In particular, for the Kk-minor-free graphs Hadwiger’s conjecture would imply
matching bounds.

3 Outline of the proof

Our proof utilises both pseudorandomness from Szemerédi’s regularity lemma
and expansions for sparse graphs. The particular expander that we shall make
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use of is an extension of the one introduced by Komlós and Szemerédi [8, 9],
which has played an important role in some recent developments on sparse graph
embedding problems, see e.g. [7, 11, 12].

To prove Theorem 1, we first pass to a robust sublinear expander subgraph
without losing much on the average degree. Depending on the density of this
expander, we use different approaches. Roughly speaking, when the expander
has positive edge density, we will utilise pseudorandomness via the machinery of
the graph regularity lemma and the blow-up lemma, and otherwise we exploit
its sublinear expansion property. Full proofs may be found in [6].

3.1 Embeddings in dense graphs

The regularity lemma essentially partitions our graph G into a bounded number
of parts, in which the bipartite subgraphs induced by most of the pairs of parts
behave pseudorandomly. The information of this partition is then stored to a
(weighted) fixed-size so-called reduced graph R which inherits the density of
G. We seek to embed H in G using the blow-up lemma, which boils down to
finding a ‘balanced’ bounded-degree homomorphic image of H in R. This is
where the additional separable assumption on H kicks in, enabling us to cut H
into small pieces to offer suitable ‘balanced’ homomorphic images. If the reduced
graph R is not bipartite, the density of R inherited from G is just large enough
to guarantee an odd cycle in R long enough to serve as our bounded-degree
homomorphic image of H. However, an even cycle of the same length would
not be sufficient, since H could be an extremely asymmetric bipartite graph. To
overcome this problem, when R is bipartite we make use of a ‘sun’ structure.
This is a bipartite graph consisting of a cycle with some additional leaves, which
help in balancing out any asymmetry of H.

3.2 Embeddings in robust expanders with medium density

The robust sublinear expansion underpins all of our constructions of H-sub-
divisions when the graph G is no longer dense. At a high level, in G, we anchor on
some carefully chosen vertices and embed paths between anchors (corresponding
to the edge set of H) one at a time. As these paths in the subdivision need to be
internally vertex disjoint, to realise this greedy approach we will need to build
a path avoiding a certain set of vertices. This set of vertices to avoid contains
previous paths that we have already found and often some small set of ‘fragile’
vertices that we wish to keep free.

To carry out such robust connections, we use the small-diameter property of
sublinear expanders. We aim to anchor at vertices with large ‘boundary’ com-
pared to the total size of all paths needed, that is, being able to access many
vertices within short distance. If there are d vertices of sufficiently high degree,
we can anchor on them. Assuming this is not the case essentially enables us to
view G as if it is a ‘relatively regular’ graph. We now use a web structure in
which each core vertex is connected by a tree to a large ‘exterior’. Using the rel-
ative regularity of G, together with the fact that it is not too sparse, we can pull
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out many reasonably large stars and link them up to find webs. We then anchor
on their core vertices and connect pairs via the exteriors of the corresponding
webs, while being careful to avoid the fragile centre parts of other webs.

3.3 Embeddings in sparse robust expanders

The method of building and connecting webs breaks down if the expander is too
sparse, and we need to use other structures in this case.

For the easier problem of finding minors, it suffices to find d large balls
and link them up by internally disjoint paths according to the structure of H;
contracting each ball gives H as a minor. In order to be able to find the paths,
we ensure the balls are sufficiently far apart that any given pair of balls can be
expanded to very large size, avoiding all others, and then connect the pairs one
by one.

Coming back to embedding H-subdivisions, we shall follow a similar general
strategy. However, an immediate obstacle we encounter is that we need to be able
to lead a constant number of paths arriving at each ball disjointly to the anchor
vertex. In other words, each anchor vertex has to expand even after removing a
constant number of disjoint paths starting from itself. Our expansion property
is simply too weak for this.

We therefore use a new structure we call a ‘nakji’. Each nakji consists of
several ‘legs’, which are balls pairwise far apart, linked to a central well-connected
‘head’. This structure is designed precisely to circumvent the above problem by
doing everything in reverse order. Basically, instead of looking for anchor vertices
that expand robustly, we rather anchor on nakjis and link them via their legs first
and then extend the paths from the legs in each nakji’s head using connectivity.
The remaining task is then to find many nakjis. This is done essentially by linking
small subexpanders within G, after removing the few high-degree vertices.
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15. Messuti, S., Rödl, V. and Schacht, M.: Packing minor-closed families of graphs
into complete graphs. J. Combin. Theory Ser. B 119, 245–265 (2016). doi:10.1016/
j.jctb.2016.03.003

16. Myers, J. S. and Thomason, A.: The extremal function for noncomplete minors.
Combinatorica 25(6), 725–753 (2005). doi:10.1007/s00493-005-0044-0

17. Reed, B. and Wood, D.: Forcing a sparse minor. Combin. Probab. Comput. 25,
300–322 (2016). doi:10.1017/S0963548315000073

18. Robertson, N. and Seymour, P. D.: Graph Minors. XX. Wagner’s conjecture. J.
Combin. Theory Ser. B 92(2), 325–357 (2004). doi:10.1016/j.jctb.2004.08.001

19. Robertson, N., Seymour, P. D. and Thomas, R.: Sachs’ linkless embedding conjec-
ture. J. Combin. Theory Ser. B 64(2), 185–227 (1995). doi:10.1006/jctb.1995.1032

20. Thomason, A.: An extremal function for contractions of graphs. Math. Proc.
Cambridge Phil. Soc. 95, 261–265 (1984). doi:10.1017/S0305004100061521

21. Thomason, A.: The extremal function for complete minors. J. Combinatorial
Theory Ser. B 81, 318–338 (2001). doi:10.1006/jctb.2000.2013


