
The Library
Witt vectors with coefficients and characteristic polynomials over non-commutative rings
Tools
Dotto, Emanuele, Krause, Achim, Nikolaus, Thomas and Patchkoria, Irakli (2022) Witt vectors with coefficients and characteristic polynomials over non-commutative rings. Compositio Mathematica, 158 (2). pp. 366-408. doi:10.1112/S0010437X22007254 ISSN 0010-437X.
|
PDF
WRAP-Witt-vectors-coefficients-characteristic-polynomials-over-non-commutative-rings-Dotto-2021.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (1270Kb) | Preview |
|
![]() |
PDF
WRAP-Witt-vectors-coefficients-characteristic-polynomials-over-non-commutative-rings-Dotto-2021.pdf - Accepted Version Embargoed item. Restricted access to Repository staff only - Requires a PDF viewer. Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0. Download (1231Kb) |
Official URL: https://doi.org/10.1112/S0010437X22007254
Abstract
For a not-necessarily commutative ring R we define an abelian group W(R;M) of Witt vectors with coefficients in an R-bimodule M. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that W(R):=W(R;R) is Morita invariant in R. For an R-linear endomorphism f of a finitely generated projective R-module we define a characteristic element χf∈W(R). This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment f↦χf induces an isomorphism between a suitable completion of cyclic K-theory K
cyc0(R) and W(R).
Item Type: | Journal Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alternative Title: | |||||||||||||
Subjects: | Q Science > QA Mathematics | ||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||||||||
Library of Congress Subject Headings (LCSH): | Commutative rings, K-theory, Noncommutative algebras, Algebra | ||||||||||||
Journal or Publication Title: | Compositio Mathematica | ||||||||||||
Publisher: | Cambridge University Press | ||||||||||||
ISSN: | 0010-437X | ||||||||||||
Official Date: | February 2022 | ||||||||||||
Dates: |
|
||||||||||||
Volume: | 158 | ||||||||||||
Number: | 2 | ||||||||||||
Page Range: | pp. 366-408 | ||||||||||||
DOI: | 10.1112/S0010437X22007254 | ||||||||||||
Status: | Peer Reviewed | ||||||||||||
Publication Status: | Published | ||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||
Date of first compliant deposit: | 21 July 2021 | ||||||||||||
Date of first compliant Open Access: | 22 July 2021 | ||||||||||||
RIOXX Funder/Project Grant: |
|
||||||||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year