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Influence of the Tetraalkoxysilane Crosslinker on the Properties of 
Polysiloxane-based Elastomers Prepared by the Lewis Acid-
Catalysed Piers-Rubinsztajn Reaction
Andrew M. Hickman,a,b Nikola Chmel,c Neil R. Cameron,b,d Daniel J. Keddie,e Tara L. Schiller* a,b 

We investigate the preparation of polysiloxane-based networks under solvent-free, ambient conditions using the Lewis acid 
catalysed Piers-Rubinsztajn (PR) reaction of hydride-terminated siloxanes with various tetrafunctional alkoxysilanes 
(tetraethoxysilane, tetrapropoxysilane, tetra-n-buxoxysilane, tetra-s-butoxysilane, tetra-s-butoxysilane, and tetrakis(2-
ethylbutoxy)silane) as crosslinkers. We explore the effects of polysiloxane chain length and crosslinker alkyl group on the 
rheological performance of the elastomers. By analysing the reaction progress by grazing angle Fourier-transform infrared 
spectroscopy (FTIR) and determining the rheological properties of the resulting materials, we show that the use of linear or 
branched alkoxysilanes strongly influences the morphology and properties of these network polymers. We have shown the 
PR process is can be tailored to reliably produce homogeneous, polysiloxane network materials. This work provides 
information on the relative rates of network formation under ambient conditions with an emphasis on the impact of 
crosslinker alkyl chain length. Our results show that electronics and sterics both play critical roles in influencing the the rate 
of the curing reaction. Crucially, we newly demonstrate the benefit of a having tertiary carbon α to the SiO reaction centre, 
as is the case for the tetra-s-butoxysilane crosslinker, for delivering exceptionally rapid network cure and a concomitant 
enhancement in storage modulus of the resultant materials. 

Introduction
Polysiloxanes (also commonly known as silicones) are 

polymers that consist of alternating covalently-linked silicon 
and oxygen atoms, with organic functionality on the silicon 
atoms. They are employed extensively in a range of applications 
such as sealants;1 contact lenses,2 adhesives,3 bakeware,4 
cosmetics5 and implants.6 This is due to the desirable properties 
of siloxane-based materials including hydrophobicity, thermal 
stability, oxygen permeability, biocompatibility, and optical 
transparency.7

Current methods of polysiloxane-based network 
preparation is comprised of three main techniques: tin-
catalysed moisture cure; high-temperature radical cure; and 
platinum-catalysed hydrosilylation.8 Achieving reproducibility 
in elastomeric properties is difficult through high-temperature 
radical cure.7 Tin-based catalysed reactions offer greater 
accuracy for material properties but as there is potential for 
environmental harm from tin residues, other routes are more 
desirable.4,9  Platinum-catalysed hydrosilylation is an efficient 
reaction, able to proceed at low catalyst loadings of ≤30 ppm 
and resulting in no by-products.10 Platinum-based catalysts are 
expensive, with Pt accounting for approximately 30% of the 
material cost.11 The catalyst is retrievable, however the 

recovery process is difficult and inefficient, with only 10-15% of 
Pt catalyst being reusable.12 

A newer method for making siloxane bonds is the Piers-
Rubinsztajn (PR) reaction. This reaction does not require  
transition metal catalysts and importantly proceeds efficiently 
at room temperature.13 Initial use of PR reaction for siloxane 
bond formation was displayed as polysiloxane production by 
coupling dihydridosilanes with dialkoxysilanes through a 
polycondensation reaction.13 

The PR reaction proceeds through the complexation of the 
Lewis acid, B(C6F5)3, with a Si-H intermediate A (see Scheme 
1).14-15 Addition of an alkoxysilane to this intermediate leads to 
the reversible formation of the hydridosilane oxonium complex 
B (Scheme 1). From intermediate B there are three potential 
pathways: i) dissociation back to starting reagents (black 
pathway, Scheme 1); ii) reductive elimination of the alkyl group, 
resulting in the desired siloxane formation and alkane by-
product (blue pathway, Scheme 1); and iii) undesired 
metathesis of the complex, transferring of the hydride to 
produce a new hydridosilane and alkoxysilane (red pathway, 
Scheme 1). Experimental evidence shows negligible metathesis, 
with siloxane formation the predominant outcome (pathway (ii) 
Scheme 1).16-17 

In the context of siloxane-based polymeric materials, the 
metal-free Lewis acid PR reaction has demonstrated utility for 
siloxane network formation.18-20 This reaction leads to a
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Scheme 1: The reaction pathways for Piers-Rubinsztajn reaction17
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gaseous alkane by-product, which influences network 
formation and can lead to fragile foams.21 With this is mind, we 
sought to develop methods for reproducible gels, without 
foaming, under atmospheric conditions with a view to a wider 
scope of application for these materials.

In this paper we consider the impact of crosslinker alkyl 
chain length on rates of solvent-free gel network formation. The 
resultant materials, characterised by rheometry and FTIR, 
provide insights on the factors which influence the properties 
of the resultant networks.

Experimental
Materials and methods 

α,ω-Hydride-terminated poly(dimethylsiloxane) (PDMS) 400-
500 g mol-1 (Mn ~800 g mol-1, 1a, calculated by end-group 
analysis from 1H NMR spectroscopy), α,ω-hydride-terminated 
poly(dimethylsiloxane) (PDMS) 1000-1100 g mol-1 (Mn ~1170 g 
mol-1, 1b, calculated by end-group analysis from 1H NMR 
spectroscopy), tetra-n-butoxysilane 4, tetra-s-butoxysilane 6, 
tetrakis(2-ethylbutoxy)silane 5 were purchased from Gelest 
(Germany). Tris(pentafluorophenyl)borane (B(C6F5)3, 
tetrapropoxysilane 3, n-hexane, n-heptane, toluene and 
ethanol were purchased from Sigma-Aldrich (UK). 
Tetraethoxysilane 2 was purchased from Fischer Scientific (UK). 
All were used as received.
Preparation of B(C6F5)3 Catalyst Solutions. 
A 0.1 M stock solution was prepared by adding B(C6F5)3 (0.512 
g) into a volumetric flask (10 mL) and filling up to the mark with 
toluene. A subsequent 0.01 M stock solution was made by 
adding an aliquot (1 mL) from the 0.1 M stock solution to a 
volumetric flask (10 mL) and filled up to the mark with toluene.
General Preparation of Silicone Elastomer. 
For silicone elastomer preparation, α,ω-hydride terminated 
PDMS (1a or 1b) was mixed with tetraalkoxysilane crosslinker 
(2,3,4,5, or 6) at a ratio of 2.125:1 (e.g. 1a = 1.7 mmol, 0.85 mL: 
4 = 0.8mmol, 0.285 mL) respectively, using a vortex mixer for 1 
min. The catalyst (B(C6F5)3) is added (20 μL, 0.01 M, 2 × 10-4 
mmol, 0.024 mol% to PDMS) to the silicone and crosslinker 
solution and immediately mixed on a vortex mixer for 10-20 
seconds. The reaction solution was then left to cure at room 
temperature for 5-30 minutes. The curing was monitored and 
determined by visual state change from liquid to solid and 
gentle probing of sample.
Characterisation

Fourier Transform Infrared Spectroscopy (FTIR). 
Infrared spectra of pre- and post-cured samples were obtained 
using a Jasco FTIR 4200 spectrometer, equipped with VeeMAX 
II with attenuated total reflectance (ATR), Pike Technologies 
accessory (grazing angle 30°; ZnSe crystal). Measurements were 
collected at a resolution of 2 cm-1 with 128 scans per sample. 
Background spectra was collected to remove atmospheric CO2 
and H2O peaks from sample measurements. Spectra were 
collected while continuous purging the instrument with N2 to 

minimise fluctuations in peaks for CO2 and atmospheric H2O. 
Spectra were analysed using Origin 2019b.
Rheology. 
Rheological measurements were taken on an Anton Paar 
MC501 rheometer (Graz, Austria) using a parallel plate with a 
diameter of 8 mm and a measuring gap of 0.18 mm. The change 
of phase from solution to gel was monitored by measuring the 
storage moduli and loss moduli. The force was kept constant at 
0 N, with the temperature of the Peltier plates was kept at 25 
°C during all measurements. Stock solutions for each 
composition, including initiator, were prepared and stored on 
ice to eliminate early onset of reaction. 25 μL aliquot of a stock 
solution was used for each measurement. The reaction was 
measured with constant frequency of 6.28 rad s-1 and constant 
strain of 10 %. The amplitude sweep was performed at a 
constant frequency of 6.28 rad s-1 was used and the strain was 
increased logarithmically from 1-500 %. The frequency sweep 
was conducted at a constant strain of 10 % and the frequency 
was increased logarithmically from 1-550 rad s-1. All data was 
analysed using the rheocompass (Anton Paar, Austria) software.
Nuclear Magnetic Resonance (NMR) spectroscopy. 
1H NMR spectra were collected for hydride-terminated 
polydimethylsiloxanes 1a and 1b, using a Bruker Avance 400 
MHz, at room temperature in deuterated chloroform (CDCl3). 
The number average molar mass (Mn) was calculated using the 
integration of Si-H peak at δ 4.7 ppm and Si-CH3 peaks between 
δ -0.1 – 0.25 ppm. The residual solvent peak (δ 7.26 ppm) was 
used as solvent.22

Results and discussion
Optimisation of network formation

Siloxane preparation catalysed by metal-free based 
compounds is a particularly attractive process, due to the cost 
and environmental issues metal-based catalysts can pose. Our 
initial examination of network formation involved experiments 
using a low molar mass hydride-terminated PDMS 1a, 
tetraethoxysilane 2 as crosslinker and n-hexane as solvent; 
foamed networks were formed (see experimental section for 
stoichiometry, Table S1, Entry 1). Following the success of 
the PR reaction 1a with 2, we investigated the effect of the alkyl 
group of the tetraalkoxysilane crosslinker using the ethyl 2, 
propyl 3, n-butyl 4, 2-ethylbutyl 5, and s-butyl 6 analogues for 
Piers-Rubinsztajn network formation (see Scheme 2). We 
observed that an increase in alkyl length of the crosslinker 
generally led to networks which were denser in appearance (see 
Figure S1). Preparation of materials with the bulkier 2-
ethylbutyl 5 proved unsuccessful; samples only partially cured 
with the materials remaining liquid. It is known that larger 
alkoxysilane ‘R’ groups result in a decrease in reaction rate due 
to the increase in sterics.21 

Following our initial successes, we then sought to prepare 
siloxane elastomers, without foaming, via the PR reaction. here 
we investigated the impact of the tetraalkoxysilane crosslinker 
alkyl chain length on rate of gelation as well as the resultant 
materials properties. To avoid the foaming seen in the previous 
samples, we ascertained that the rate of reaction needed to be 
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Scheme 2: (a) Polysiloxane-network formation via the Piers-Rubinsztajn reaction using hydride terminated siloxanes (1a, 1b) and tetraalkoxysilanes (2-6), and 
(b) the alkyl ‘R’ groups of the tetraalkoxysilanes (2-6) displayed in order of increasing relative rate of reaction. Note the formation of the alkane by-product RH

low enough to allow the bulk of gas evolved from the reaction 
to escape during network formation, but remain sufficiently 
high to allow for complete cure. In this context, we first sought 
to reduce the rate of reaction by lowering the B(C6F5)3 catalyst 
concentration, in relation to conditions reported in previous 
studies.21, 23 These experiments (see Table S1) showed that, as 
expected, the B(C6F5)3 catalyst concentration greatly influences 
the rate of reaction (including gaseous alkane production). The 
initial reactions discussed above were undertaken using a 
relatively high catalyst amount (2 × 10-3 mmol; 20 μL of 0.1 M 
stock solution). These resulted samples that were brittle 
andhighly-disordered, open celled foams (see Figure S1 (a)). 
Brook et al.21 have reported comparable outcomes when 
studying the same mechanism. In their study an increase in 
crosslinker alkyl chain length, from methyl to propyl, resulted in 
reduced foaming with the materials having a more closed cell, 
disordered appearance, as evidenced by SEM.21 

Upon decreasing the amount of B(C6F5)3 catalyst (5 × 10-4 
mmol; 50 μL of 0.01 M stock solution) we observed a reduced 
the rate of cure, with the reactions producing either partially 
foamed samples or gels with voids (see Figure 1 (a)). Further 
reduction of catalyst using aliquots (2 × 10-4 mmol; 20 μL of 0.01 
M stock solution) proved effective at reducing voids, enabling 
production of defect-free elastomers (see Figure 1 (b)). Thus, 
this was the amount of catalyst used for all subsequent 
elastomer preparations. 

In all of the reactions discussed above, n-hexane was used 
as a solvent; it also acts as a heat sink for the exothermic PR 
reaction. However, due to its volatility, n-hexane can affect the 
outcome of the polysiloxane material produced by acting as a 
blowing agent,21  increasing the likelihood of foamed products. 
This was observed for our samples. 
Upon changing the solvent from n-hexane to n-heptane we 
observed a reduction in visual gas evolution during the PR 
curing. This led to a decrease in voids present within the 
elastomers (not shown). Note, the boiling point of n-heptane is 
~30-40 °C greater than n-hexane,24 and the difference in the

(a) (b)

Figure 1: Digital photographs of bulk samples of PDMS-based polymer 
networks illustrating the further reduction of foaming upon optimisation of 
the reaction conditions. Samples were prepared by reacting hydride-
terminated PDMS 1a with tetra-n-butoxysilane 4 and: (a) 5 × 10-4 mmol 
B(C6F5)3 and (b) 2 × 10-4 mmol B(C6F5)3.

latent heats of vaporisation of approximately 10 kJ mol-1; n-
heptane reduces the volume of additional gas produced during 
the PR curing under otherwise the same reaction conditions. 

The cured samples prepared using either n-hexane or n-
heptane were found to contract following solvent evaporation 
which led to sample fracture (possibly due to increased strain 
present within the network in a contracted state). Omission of 
solvent from the reaction mixtures was investigated in an 
attempt to overcome this problem. Without solvent, a 
reduction in swelling and a decreased incidence of sample 
fracture was observed. While the occurrence of voids was not 
completely eliminated, solventless reactions were deemed the 
best approach for preparing our samples; all samples discussed 
in subsequent sections were prepared without solvent.
Investigating rate of network formation

To examine the effect of changing the alkyl R-groups of the 
tetraalkoxysilane crosslinker (i.e., ethyl 2, propyl 3, n-butyl 4, 2-
ethylbutyl 5, and s-butyl 6) on the rate and extent of PR network 
formation and the final mechanical properties these possess, 
the curing reactions were studied by both grazing-angle FTIR 
and rheology. Note, these systems display induction periods of
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Table 1: Results from FTIR and rheology measurements of elastomer systems

Entry Hydride-terminated 
PDMS Tetraalkoxysilane Conversion %c Gʹ

(kPa)d

1a 1a 2 (ethyl) 100 82.0

2a 1a 3 (propyl) 100 38.4

3a 1a 4 (n-butyl) 100 32.6

4a 1a 5 (2-ethylbutyl) 38 —e

5a 1a 6 (s-butyl) 99 137

6b 1b 2 (ethyl) 98 444

7b 1b 3 (propyl) 94 241

8b 1b 4 (n-butyl) 100 337

9b 1b 5 (2-ethylbutyl) 38 —e

10b 1b 6 (s-butyl) 98 428
aPDMS 1a Mn = 800 g mol-1, [1a] = 1.7 mmol, [alkoxysilane] = 0.8 mmol, [B(C6F5)3] = 2 × 10-4 mmol; bPDMS 1b Mn = 1170 g mol-1, [1b] = 0.85 mmol, [alkoxysilane] = 0.4 mmol, [B(C6F5)3] 
= 1 × 10-4 mmol; cConversion % based on consumption of Si-H (2126 cm-1) calculated by ; dPeak storage % = 100 ― (((𝑝𝑜𝑠𝑡 ― 𝑐𝑢𝑟𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒)/(𝑝𝑟𝑒 ― 𝑐𝑢𝑟𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒)) × 100)

modulus obtained from rheology analysis; e Not measured due to insufficient cure.

varying lengths of time prior to cure, consistent with that 
previously reported for the PR reaction.25 The commercial 
samples we used were not pre-dried and therefore contain 
unknown, varying amounts of moisture. This results in these 
differing induction periods.26 

Pre- and post-cure grazing-angle FTIR for the samples 
prepared from PDMS 1a was first undertaken. Absorbance 

peaks at 2126 cm-1 and 907 cm-1, were not found in the post-
cure measurements (see Figure 2, top), indicating 
consumption of Si-H27-28 groups. Complete cure was estimated 
for systems using 1a with ethyl 2, propyl 3, n-butyl 4 or s-butyl 
6 (see entries 1-3 & 5, Table 1), achieving almost full 
consumption of Si-H functional groups PDMS 1a with ethyl 2 
(see Entry 1, Table 1; Figure 3 (a)) reacted rapidly, indicated by 
sharp increase in modulus at ~30 seconds, this was followed by 
a gradual increase to a plateau modulus of 82 kPa.§

In contrast to the ethyl 2 sample (see Entry 1, Table 1; 
Figure 3 (a)), the propyl 3 and n-butyl 4 gelation curves 
displayed similar characteristics with a peak in G’ followed by 
a slight decrease to a plateau of 37.2 kPa and 32.1 kPa 
respectively (see Entries 2 & 3, Table 1; Figure 3 (b &c)). This 
suggests these are more homogeneous than the ethyl sample, 
lacking voids.§ This is also consistent with the qualitative 
evidence discussed above (For images see Figure S1).

The curing of the PDMS 1a/s-butyl 6 sample also displayed 
sharp increase in modulus (to 137.2 kPa); resulting, after a 
small decrease, in the highest modulus observed (129.6 kPa) 
(see Figure 3(d) and Entry 5, Table 1). It was observed that the 
reaction rate was higher, with the reaction able to proceed at 
0 °C; in contrast this temperature retarded the reactions using 

the crosslinkers 2-5. 
The clear difference between s-butyl 6 crosslinker and the other 
crosslinkers 2-5 is the presence of a tertiary carbon α to the SiO 
group; the other crosslinkers 2-5 all have secondary carbons in 
this position (see Scheme 2). Since the predominant reaction 
pathway (see Scheme 1, (ii)) proceeds via a hydride shift to the 

Figure 2: Absorbance normalised 30° grazing angle FTIR spectra for (top) 
PDMS system 1a propyl 3 pre- and post-cure measurements, Si-H peak at 
2126 cm-1 disappears from pre- to post-cure measurements, and (bottom) 
PDMS system 1a 2-ethylbutyl 5 pre- and post-cure measurements, Si-H peak 
found at 2126 cm-1 decreases from pre- to post-cure measurements.
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(a) (b)

(c) (d)

Figure 3: Time-resolved rheology gelation curves over 200 seconds shown by G’ and G’’ for elastomers derived from PDMS 1a and the (a) ethyl 2 note 
differing transition to plateau by gradual increase in modulus, (b) propyl 3, (c) n-butyl 4, and (d) s-butyl 6 alkoxysilane (also see Entries 1-5, Table 1). Note the 
omitted data as per Table 1

alkoxy carbon atom, we postulate that this difference in 
electronics between 6 and the other crosslinkers (i.e. 2-5) at this 
reaction centre is key. An enhanced ability for the tertiary 
carbon(s) on 6 to stabilise a (partial) positive charge, which is 
expected to contribute to the transition state, would account 
for the observed increase in reaction rate. Indeed, this crude 
hypothesis is consistent with a detailed mechanistic summary 
of the PR reaction published by Chojnowski et al.25 

Increasing the bulk of the crosslinker alkyl chain (with 
minimal change to electronics of the carbon α to the SiO- 
group)using the 2-ethylbutyl 5 (see Entry 4, Table 1) resulted in 
significantly lower % cure in the final ‘cured’ sample; it 
remained liquid, indicating only partial cure. The FTIR analysis 
supports this, displaying only partial consumption of Si-H (see 
Figure 2, bottom), with the calculated percentage of conversion 
being 38%.‡ A gelation curve was not obtained as 2-ethylbutyl 5 
did not cure on the rheometer, this is consistent with the FTIR 
data. s-butyl 6 exhibited an efficient reaction; resulting in an 
increased final G’ and a high conversion percentage. This was 
determined to be the optimal crosslinker (See Entry 5, Table 1; 
Figure3(d)).

Networks prepared with longer chain length PDMS 
Tailoring thermo-mechanical properties is vital to the 

application of polymeric materials. In this context, chain length 
between crosslinks is known to influence these properties.29-30 

The rate of cure is also influenced by the chain length of end-
group functional polymers. 

In this context, the reaction conditions optimised for lower 
molar mass PDMS 1a were adjusted for a higher molar mass 
hydride-terminate PDMS 1b (Mn 1170 g mol-1), to ensure 
reaction volume and stoichiometries were comparable. For 
these reactions we maintained a similar volume (~1 mL) and as 
such the amount of polymer, crosslinker and catalyst were 
halved (i.e., 0.85 mmol polymer, 0.4 mmol crosslinker and 1 × 
10-4 mmol catalyst). Keeping the reaction volume similar 
allowed for more direct comparison between the samples 
derived from 1a and 1b polymer groups; samples of larger 
volume (by using the same number of moles of 1b as 1a) led to 
more defects in the resultant elastomers, due to the greater 
distance the gaseous alkane by-product needed to travel to 
escape the network. 
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(a) (b)

(c) (d)

Figure 4: Time-resolved rheology gelation curves over 200 seconds shown by G’ and G’’ for elastomers derived from PDMS 1b and the (a) ethyl 2, (b) propyl 3, 
(c) n-butyl 4, and (d) s-butyl 6 alkoxysilane (also see Entries 6-10, Table 1). Note the omitted data as per Table 1

The PDMS 1b derived samples prepared using the ethyl 2, 
propyl 3, or n-butyl 4 crosslinkers readily cured, yielding 
conversions of 98%, 93% and 99%, respectively (see Table 1, 
entries 6, 7, and 8 respectively). These three samples post-cure 
were solid materials, with no tackiness from unreacted starting 
reagents. The PDMS 1b/2-ethylbutyl 5 sample did not 
completely cure, with the sample again remaining in a liquid 
state (see Entry 9, Table 1). From FTIR analysis, the conversion 
was calculated to be 38%, comparable to the PDMS 1a/2-
ethylbutyl 5 sample (see Entry 4, Table 1), which also exhibited 
partial curing. 

The ethyl 2 sample displayed the highest initial G’, with a 
steep increase to 444 kPa, followed by a gradual decrease to 
388 kPa (see Figure 4 (a) and Entry 6, Table 1). Changing the 
crosslinkers alkyl chain to propyl 3 resulted in a decrease in the 
initial gelation storage modulus, peaking at 241 kPa. The initial 
peak in G’ of the propyl 3 system (see Figure 4 (b) and Entry 7, 

Table 1) was followed by a decrease to 151 kPa, similar to 
observations for the ethyl 2 system. The storage modulus (G’) 
of the n-butyl 4 sample (peaked at 337 kPa see Figure 4 (c) and 
Entry 8, Table 1), however the transition from the initial steep 
period to peak G’ was more gradual, indicating a reduction in 
reaction rate in comparison to ethyl 2 and propyl 3 systems. 

After the modulus peaked, a gradual decrease was seen again, 
reaching 224 kPa. The s-butyl 6 sample initial curing led to a 
peak G’ of 428 kPa (see Figure 4 (d) and Entry 10, Table 1), the 
best from all crosslinkers tested. Interestingly, the gelation 
curve did not exhibit the same gradual decrease in storage 
modulus as seen in samples using PDMS 1b and the ethyl 2, 
propyl 3 and n-butyl 4 (see Entries 6-7, Table 1). This system 
(1b/6) does display a higher storage modulus relative to 
crosslinkers 3 & 4, similar to the analogous system using the 
smaller PDMS (1a/6). Further investigation is required into s-
butyl 6 systems to understand why this phenomenon occurs, 
which is outside the scope of our current work.

Conclusions
Parameters for reproducible, solvent-free PR systems for 

the synthesis of polysiloxane (silicone) elastomers were 
established. A range of alkoxysilane crosslinkers ethyl 2, propyl 
3, n-butyl 4, 2-ethylbutyl 5 and s-butyl 6 were investigated with 
two siloxane polymers 1a (Mn ~800 g mol-1) & 1b (Mn~1170 g 
mol-1).  Increasing the crosslinker alkyl chain length from ethyl 2 
to n-butyl 4 resulted in an observable change in reaction rate 
and the appearance of the final product. The propyl 3 and n-
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butyl 4 crosslinkers resulted in decreased foaming compared to 
ethyl 2, resulting in elastomers. The percentage cure, 
determined by FTIR, for crosslinkers ethyl 2, propyl 3, n-butyl 4 
and s-butyl 6 were estimated to be between 94-100% for both 
polymers 1a and 1b, whilst the branched 2-ethylbutyl 5 resulted 
in a much lower cure of 38%.

Time-resolved rheological studies showed gelation curves 
with a rapid increase in modulus, after a short induction period, 
followed by a plateau for each of the crosslinkers ethyl 2, propyl 
3, n-butyl 4 and s-butyl 6. The ethyl 2 derived samples displayed 
a noticeable difference in their gelation curves, exhibiting a 
more gradual transition to the plateau. Samples containing s-
butyl 6 displayed a larger increase in modulus comparative to 
any of the linear counterparts. Use of a larger branched alkyl 
chain crosslinker (2-ethylbutyl 5) reduced the rate of reaction 
considerably, leading to incomplete curing in both systems.

This work has provided an insight into the influence of 
crosslinker alkyl chain on PR silicone elastomer formation. We 
have shown that increasing the size of the alkyl group away 
from the SiO reaction centre, reduces the rate of reaction. In 
contrast we have demonstrated that altering the electronics of 
crosslinker, by changing the group directly bonded to the SiO 
reaction centre from secondary to tertiary, greatly enhances 
the reaction rate. In this context, the s-Butyl 6 displays both a 
more rapid cure and a higher storage modulus than the other 
crosslinkers tested and is the ideal choice for further 
investigations in PR elastomer preparation. 
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