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Three-Dimensional Spatiotemporal Wind Field Reconstruction Based on
Physics-Informed Deep Learning
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Abstract

In this work, a physics-informed deep learning model is developed to achieve the reconstruction of the three-dimensional (3-D)
spatiotemporal wind field in front of a wind turbine, by combining the 3-D Navier-Stokes equations and the scanning LIDAR mea-
surements. To the best of the authors’ knowledge, this is for the first time that the full 3-D spatiotemporal wind field reconstruction
is achieved based on real-time measurements and flow physics. The proposed method is evaluated using high-fidelity large eddy
simulations. The results show that the wind vector field in the whole 3-D domain is predicted very accurately based on only scalar
line-of-sight LIDAR measurements at sparse locations. Specifically, at the baseline case, the prediction errors for the streamwise,
spanwise and vertical velocity fields are 0.263m/s, 0.397m/s and 0.361m/s, respectively. The prediction errors for the horizontal
and vertical direction fields are 2.84◦ and 2.58◦ which are important in tackling yaw misalignment and turbine tilt control, respec-
tively. Further analysis shows that the 3-D wind features are captured clearly, including the evolutions of flow structures, the wind
shear in vertical direction, the blade-level speed variations due to turbine rotation, and the speed variations modulated by the turbu-
lent wind. Also, the developed model achieves short-term wind forecasting without the commonly-used Taylor’s frozen turbulence
hypothesis. Furthermore it is very useful in advancing other wind energy research fields e.g. wind turbine control & monitoring,
power forecasting, and resource assessments because the 3-D spatiotemporal information is important for them but not available
with current sensor and prediction technologies.

Keywords: Computational fluid dynamics, Light detection and ranging (LIDAR), Navier-Stokes equations, Physics-informed
deep learning, Wind field prediction

1. Introduction

As one of the largest sustainable energy resources, wind en-
ergy is under intense investment worldwide. It plays a more
and more important role in achieving carbon neutrality while
meeting the global power demand. However, the spatial and
temporal variability of the intermittent and chaotic wind still
poses great challenges for wind industry, in the scenarios such
as the control design for wind turbines [1, 2], the integration of
wind power into the power grid [3, 4], and the wind resource
assessment [5, 6]. To tackle these challenges, the accurate pre-
diction of detailed spatiotemporal wind velocity field is of vital
importance.

In recent years various measurement technologies, such as
wind turbine-mounted light detection and ranging (LIDAR) de-
vices [7], have been used on wind turbines to measure the in-
coming wind speed. The LIDAR measurement data can be
analyzed [8, 9] to provide preview wind information. Mean-
while numerous wind prediction approaches have been pro-
posed and recent advancements include the deep learning en-
semble model with data denoising [10], the recurrent neural
networks based approach with error correction [11], and the

Currently, the studies on wind predictions via the fusion of
measurement data with flow physics are still rare. In [15],
a wind field reconstruction method was proposed by combin-
ing a low-order dynamic wind model with LIDAR measure-
ments where an unscented Kalman filter (UKF) was used for
state estimations. In [16], to avoid the use of low-order wind
models, a spatiotemporal wind prediction framework was pro-
posed where a reduced-order nonlinear model was derived di-
rectly from NS equations and then a modified UKF algorithm 
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variational Bayesian deep learning based approach [12]. These
studies showed very promising results in wind speed predic-
tions. However, as the wind measurement data is normally only
available at sparse spatial locations, the whole flow field in front
of the wind turbines remains unknown. Numerical approaches
have been investigated to obtain the detailed spatiotemporal
wind field information [13, 6], by numerically solving the
Navier-Stokes (NS) equations. The integration of wind mea-
surements and numerical simulations has also been explored re-
cently [14]. However, numerical models were mainly designed
for forward simulations thus cannot take real-time wind mea-
surements into account. In order to achieve more accurate and
more detailed spatiotemporal wind predictions, a very promis-
ing direction is to develop a method that can take advantage of
both the real-time measurements and the flow physics, therefore
achieving superior prediction performance.
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was employed for state estimations. In [17], a wind field re-
construction method was developed based on computational
fluid dynamics (CFD) and proper orthogonal decomposition
(POD), where CFD simulations were carried out to generate
a database of wind fields and POD was employed to extract
the low-dimensional basis vectors. The flow field reconstruc-
tion was then carried out through these basis vectors based on
measurements from the optimally-placed sensors. The authors
of [17] further investigated the optimal design of the sensor ar-
rangement in order to improve the reconstruction performance
[18]. To summarize, all these studies showed very promising
results, by taking flow physics into account in the wind field re-
construction process (either through dynamic wind model, NS
equations or CFD simulations). However, due to the complex-
ity (e.g. the strong nonlinearity and the multi-scale characteris-
tics) of the wind dynamics, the aforementioned studies all in-
cluded an explicit model reduction process in reconstructing
the flow field (i.e. low-order wind model [15], reduced-order
model from NS equations [16], dimension reduction by POD
[17, 18]). Thus their prediction performances were limited by
the explicit model reduction errors. To address these, in our re-
cent study [19], a 2-D spatiotemporal wind field reconstruction
was achieved based on NS equations without model reductions,
which followed the physics-informed deep learning technique
[20] where the 2-D NS equations were incorporated in the deep
neural network (NN) structure. However, similarly to the above
studies, our work [19] only investigated the reconstructions of
the two-dimensional (2-D) flow field, while in practice the wind
field is three-dimensional (3-D) and the variation of wind speed
in vertical direction (e.g. the wind shear) has a clear impact on
the wind turbine loading (in particularly its spatial variations),
wind power generations and wind resource assessment [21, 22].
Thus a big research gap still exists.

In order to fill the gap, the present work extends our re-
search in [19] to develop a 3-D spatiotemporal wind field re-
construction method, through combining the 3-D NS equations
and the scanning LIDAR measurements into physics-informed
deep learning. In particular, a deep NN is first constructed, then
the 3-D NS equations are encoded into the deep NN to form the
NS residue terms, by using automatic differentiation. Next, the
measurement process of the scanning LIDAR is encoded into
the deep NN to map the full flow state and the real-time LIDAR
beam directions to LIDAR observations. The NN training is fi-
nally carried out to minimize the LIDAR observation errors and
the NS residues simultaneously. Because the 3-D NS equations
can describe the 3D unsteady wind very well (without relying
on any reduced-order models or dimension reductions such as
POD) while the scanning LIDAR provides sparse yet valuable
information about the incoming 3-D wind, the whole 3-D spa-
tiotemporal wind field can be predicted after training. To the
best of the authors’ knowledge, this is for the first time that the
prediction of 3-D spatiotemporal wind field is achieved based
on real-time scattered measurements and physics. From the
predicted spatiotemporal flow field, the mean wind quantities
(such as the effective wind speed at different heights) and the
instantaneous wind quantities (such as the wind speed at spe-
cific turbine blade locations) can be extracted.

In addition, the present work further improves the wind field
reconstruction performance by taking full advantage of the
physics-informed deep learning framework’s ability in solving
inverse problems. In particular, instead of incorporating the NS
equations with pre-determined parameters (i.e. the air viscosity
in the transport terms), as was done in [19], the present work
treats the parameters in the NS equations (i.e. the effective vis-
cosity which is the sum of the air viscosity and turbulent vis-
cosity) as training variables. Therefore, this work achieves the
inference of the turbulent viscosity and the reconstruction of the
3-D wind field simultaneously. The benefits of solving the in-
verse problem instead of directly specifying the NS equations
with the air viscosity are two-fold. First, the accuracy of re-
constructing the 3-D wind field is improved, as in this way the
turbulence effects are taken into account. Second, the turbulent
viscosity is obtained after training, which can be used for char-
acterizing the turbulence intensity in other applications such as
the modeling and numerical simulation of turbulent wind.

To evaluate the performance of the proposed method, a
large-scale CFD flow solver SOWFA (Simulator for On-
shore/Offshore Wind Farm Applications) developed by Na-
tional Renewable Energy Laboratory [23], is employed to carry
out high-fidelity numerical experiments for a set of wind speed
cases ranging from below-rated, rated, to above-rated condi-
tions of typical wind turbines. SOWFA can simulate the atmo-
spheric boundary layer flows under various conditions and has
been widely validated in many studies e.g. on the turbine dy-
namics [24], the control of wind farms [25, 26] and the wind
turbine load in atmospheric flows [27]. During SOWFA simu-
lations, the line-of-sight scalar wind speed at specific spatial
locations are extracted to simulate the measurement process
of the scanning LIDAR beams, while the 3-D flow fields are
recorded to provide ground truth for method validations. The
prediction results show that the proposed method can recon-
struct the 3-D spatiotemporal wind field (including both wind
magnitude and direction) in front of the wind turbine very accu-
rately based on only the scalar LIDAR measurements at sparse
spatial locations. In addition, as the deep learning model learns
both the spatial and temporal correlations of the evolving wind
from NS equations, a short-term wind forecasting without the
commonly-used Taylor’s frozen turbulence hypothesis [28] is
also achieved.

The main contributions and novelties of this paper are sum-
marized as follows:

(1) The prediction of 3-D spatiotemporal wind field in front
of a wind turbine is achieved for the first time, by comb-
ing 3-D NS equations and scanning LIDAR measure-
ments via physics-informed deep learning. In particular,
the whole 3-D dynamic wind vector field is reconstructed
using only the line-of-sight LIDAR measurements at sparse
spatial locations. Because LIDAR devices are becoming
widely available for modern wind turbines, and, to the best
of the authors’ knowledge, no other works can achieve sim-
ilar 3-D wind predictions, this work is very useful in ad-
vancing other research fields including wind turbine control
& monitoring, wind resource assessment, and wind power
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Ref. Method Explicit model reduction Spatial feature Temporal feature
[15] low-order wind model + UKF required 2-D dynamic

[17, 18] POD + CFD required 2-D static
[16] 2-D NS + UKF required 2-D dynamic
[19] 2-D NS + deep learning not required 2-D dynamic

this work 3-D NS + turbulent viscosity + deep learning not required 3-D dynamic

Table 1: The advantages of the wind field reconstruction method proposed in this work compared with existing works in the literature.

& load forecasting. The advantages of the wind field re-
construction method proposed in this work compared with
existing works in the literature are summarized in Table 1.
We mention that other machine learning based wind predic-
tion works are not included in this table as they usually can
only discover wind information that is present in the train-
ing data, while the objective of this paper is to discover the
detailed wind information that is not captured in the train-
ing data, via the fusion of physics and ”small” data.

(2) Instead of using pre-determined parameters for the
NS equations [19], the proposed method treats the un-
known parameters (i.e. the turbulent viscosity) in the
NS equations as training variables. In this way, the in-
ference of the turbulent viscosity is achieved which is very
useful for other wind applications such as wind modeling
and simulations. It also further improves the performance
of wind field reconstruction, as the turbulence effects have
been taken into account through the turbulent viscosity.

(3) The proposed method is validated using large-scale
high-fidelity numerical experiments for a set of wind
speed cases ranging from below-rated, rated, to above-
rated conditions of typical wind turbines. The results
show that the 3-D wind vector (including the streamwise,
spanwise and vertical velocity) field is predicted accurately
for all the cases. In particular, the wind directions in the
horizontal plane and vertical plane are both predicted accu-
rately, which is not trivial as only scalar LIDAR measure-
ments are used for the predictions. This demonstrates that
the proposed method can be applied to tackle yaw misalign-
ment and turbine tilt control simultaneously.

(4) The developed method can i) infer the turbulent viscos-
ity; ii) accurately capture the propagation and evolu-
tion of the 3-D flow structures, i.e. the high/low speed
zones; iii) accurately predict the vertical wind shear,
which is of great importance for various wind appli-
cations [21, 22]; iv) accurately predict the undisturbed
wind speed at specific turbine blade locations, including
the wind speed variation due to both turbine rotations
and spatially evolving turbulence. This detailed blade-
level wind prediction shows the great potential of the pro-
posed method in assessing turbine blade load and its spatial
variations, and in smart rotor design/control [29].

The remaining part of this paper is organized as follows: the
spatiotemporal wind field reconstruction problem is formulated
in Section 2. The physics-informed deep learning based method
which combines the 3-D NS equations and the LIDAR mea-
surements is described in Section 3, where the deep NN struc-

ture and its training are given in detail. The prediction perfor-
mance of the developed method is evaluated in Section 4, using
high-fidelity large eddy simulations. Finally the conclusions are
drawn in Section 5.

2. Problem Formulation

Currently, LIDAR devices are becoming widely available for
modern wind turbines. However, LIDAR can only measure the
line-of-sight (LoS) wind speed in the laser beam direction at
sparse spatial locations along the laser beams. As the incom-
ing wind in real-world condition is not uniform, the whole 3-D
wind field in front of wind turbines remains unknown. In order
to bridge the gap between the limitation of the current sensor
technology and the need of detailed wind field information, this
work develops a method to achieve the reconstruction of the
whole 3-D spatiotemporal wind field in front of a wind turbine,
based on LIDAR measurements and 3-D NS equations.

An illustration of LIDAR measurements is given in Figure
1, where the LIDAR beams (colored in red) are shown in front
of a wind turbine. At a given time instant, the LIDAR beams
can measure the LoS wind speed at the discrete spatial locations
(which are illustrated as the cross signs in Figure 1). The 3-D
spatiotemporal wind field reconstruction problem considered in
this work states as, based on the LIDAR measurements at these
sparse locations during certain time period T , how to predict
the wind velocity (including the wind velocity components in
downwind, crosswind, and vertical directions) at every location
in the 3-D spatial domain in front of the wind turbine at every
time instant. We mention that this task is not achievable without
taking flow physics into account, as only scalar measurements
(i.e. the LoS wind speed) at sparse locations are available.

Figure 1: The illustration of LIDAR measurements in front of a wind turbine.
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3. 3-D spatiotemporal wind field reconstruction method

A 3-D spatiotemporal wind field reconstruction method is
proposed in this section, where LIDAR measurements and 3-
D NS equations are combined via the physics-informed deep
learning technique. The whole reconstruction framework is
demonstrated in Figure 2. The NN structure and its training
are described in detail in the rest part of this section.

3.1. Neural network structure

The whole NN structure includes three sub NNs i.e. the
Base-NN, the LIDAR-NN and the NS-NN, as shown in Fig-
ure 2. The Base-NN is first constructed, based on which the
LIDAR-NN and the NS-NN are then derived to incorporate LI-
DAR measurements and NS equations respectively.

The Base-NN is constructed to approximate the mapping be-
tween the spatiotemporal coordinates and the flow state vari-
ables. Denote the spatiotemporal coordinates as X = [t, x, y, z]
(representing the time coordinate and the space coordinate in
the 3-D Cartesian coordinate system) and the flow state vari-
ables as Y = [u, v,w, p] (representing the velocity components
in the x, y, z directions and the air pressure, respectively), then
the Base-NN, denoted as F, can be expressed as

Y = F(X; W) (1)

where W represents all the training variables in the Base-NN.
As the LIDAR can only measure the LoS wind speed in the

LIDAR beam direction, no training target of Y is available. The
LIDAR-NN, denoted as Fµ, is constructed to incorporate the
LIDAR measurements. As the mapping between the flow state
variables to the LoS LIDAR measurements depends on the di-
rection of the LIDAR beam (which depends on the LIDAR con-
figurations and can also change with time in the case of the
scanning LIDAR), the LIDAR-NN takes two additional NN in-
puts i.e. the elevation angle θ and the azimuth angle φ of the
LIDAR beam. Denote the NN input of Fµ as Xµ = [X, θ, φ].
Denote the NN output of Fµ as Yµ = [ulos] which represents
the projection of the wind velocity vector in the LIDAR beam
direction. Then the LIDAR-NN can be expressed as

Yµ =Fµ(Xµ; W)
=F(X; W)[1]cos(θ) − F(X; W)[2]sin(θ)sin(φ)
− F(X; W)[3]sin(θ)cos(φ). (2)

As LIDAR only measures the wind information at sparse lo-
cations, the whole 3-D dynamic flow field in front of the wind
turbine remains unknown. Here the NS-NN, denoted as Fns,
is derived based on the Base-NN to incorporate the NS equa-
tions which provide a very good description of the wind dy-
namics. The derivation is based on the physics-informed deep
learning framework, a novel framework for solving forward
and inverse problems involving nonlinear PDEs. The applica-
tions of physics-informed deep learning in various research do-
mains have seen great successes recently such as in the study of
vortex-induced vibrations [30], the discovery of hidden physics
from flow visualizations [31] and the analysis of blood flows

[32], which demonstrates the great advantage of combining
physics (in terms of PDEs) and data in various scenarios. In
this work, for the wind field reconstruction, the 3-D NS equa-
tions
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Here Re is defined as U∞D/νe f f with D, U∞, and νe f f repre-
senting the turbine rotor diameter, the average freestream wind
speed, and the total effective viscosity respectively. The effec-
tive viscosity is defined as νe f f = νair + νt, where νair and νt are
the kinematic viscosity of air and the turbulent viscosity respec-
tively. As the effective viscosity νe f f (thus Re) is not known, it
is treated as training variables and is inferred through the train-
ing process. The NS equations are then used to form the NS
residue terms in the NS-NN. In particular, the differential terms
in the NS equations are derived based on the Base-NN using
automatic differentiation [33]. For example, to incorporate the
term ∂u/∂x in the NS-NN, the gradient of F(X; W)[1] with re-
spect to X[2], denoted as ∂F1(X,W)/∂X2, is derived using auto-
matic differentiation. Other first-order terms are obtained sim-
ilarly. Then the higher-order terms are obtained by the auto-
matic differentiation of the lower-order terms. For example,
to incorporate the term ∂2u/∂x2 in the NS-NN, the gradient of
∂F1(X,W)/∂X2 with respect to X[2] is derived. All the terms
are finally added to form the NS residue terms eu(X; [W, 1/Re]),
ev(X; [W, 1/Re]), ew(X; [W, 1/Re]) and ediv(X; W). Denote the
NN input and the NN output of Fns as Xns = [t, x, y, z] and
Yns = [eu, ev, ew, ediv], the NS-NN can then be expressed as

Yns =Fns(Xns; [W, 1/Re]). (3)

As can be seen from the above construction process, the Base-
NN, the LIDAR-NN and the NS-NN share the same training
variables W. The training of the whole NN involves the updat-
ing of W and 1/Re to minimize the NN loss function, which
will be described in detail in the next subsection.
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Figure 2: The demonstration of the proposed 3-D spatiotemporal wind field reconstruction method based on the physics-informed deep learning technique.

3.2. Neural network training

After constructing the whole NN structure, the loss function
needs to be specified for the NN training. In order to train
the NN such that it satisfies the constraints imposed by the
NS residue terms and fits the LIDAR measurements simulta-
neously, the loss function is specified to consist of two parts.
The first part is defined as

L1(W) =
1

Nµ

Nµ∑
i=1

|Fµ(tµi , x
µ
i , y

µ
i , z

µ
i , θ

µ
i , φ

µ
i ; W) − uµi |

2 (4)

where {[tµi , x
µ
i , y

µ
i , z

µ
i , θ

µ
i , φ

µ
i , u

µ
i ], 1 ≤ i ≤ Nµ} are the LIDAR

measurement data with each sample consisting of the time co-
ordinate, the measurement location, the elevation angle, the az-
imuth angle, and the corresponding value of the LoS wind speed

measured by LIDAR. The second part is defined as

L2(W, 1/Re) =
1

Nns

Nns∑
i=1

|Fns(tns
i , x

ns
i , y

ns
i , z

ns
i ; [W, 1/Re])|2 (5)

where {[tns
i , x

ns
i , y

ns
i , z

ns
i ], 1 ≤ i ≤ Nns} are the randomly-sampled

spatiotemporal coordinates corresponding to the spatial domain
in front of the wind turbine. It is at these spatiotemporal coor-
dinates that the NS constraints are enforced. The loss function
is then defined as

L(W, 1/Re) = L1(W) + L2(W, 1/Re). (6)

Finally, the proposed NN structure is trained to minimize the
loss function L(W, 1/Re), by updating the training variables W
and 1/Re. In this work, the Adam algorithm [34] is employed
for the NN training.

After the NN training, 1/Re (thus the effective viscosity νe f f )
can be obtained and the Base-NN can be used for the prediction
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of the wind velocity vector at a given location in front of the
wind turbine and a given time instant. The whole wind field at
a given time instant can thus be obtained by first generating a
3-D mesh corresponding to the flow domain in front of the tur-
bine and then propagating the 3-D mesh through the Base-NN.
Furthermore, because the deep learning model learnt the spa-
tiotemporal correlation of the wind field from the NS equations,
future time instant can be directly fed into the Base-NN for pre-
dictions. Therefore, the proposed method can also achieve a
short-term wind forecasting without the commonly-used Tay-
lor’s frozen turbulence hypothesis. The detailed training and
prediction procedure is summarized in Appendix A.

4. Results

The proposed wind field reconstruction method is evaluated
in this section, by using high-fidelity numerical experiments.
The simulation details and the prediction results are presented
in the following subsections.

4.1. Simulation setups

The numerical experiments are carried out using the high-
fidelity large eddy simulation solver SOWFA [23], which has
been widely validated and used for simulating atmospheric
boundary layer flows and wind farm wake flows [24, 25]. More
details regarding the simulation validations and comparisons
can be found in [26]. For the simulations in this work, a 3-D
mesh of 250× 250× 83 is generated in a 3km× 3km× 1km flow
domain, so that the atmospheric boundary layer flows can be
captured correctly [24]. The corresponding flow domain is il-
lustrated in Figure 3, where the contour shows the instantaneous
wind velocity field. For all the wind conditions considered in
this work, simulations of 20000s are first carried out with a time
step of 0.5s in order to establish the quasi-equilibrium flow state
which will be used as the initial flow field for the subsequent
simulations. Then the simulations of 400s with a time step of
0.02s are carried out where the whole 3-D wind velocity field
(including the wind speed in the x, y, z directions at every spa-
tial location) is recorded during the last 100s simulations. The
recorded wind field data is not used for training the developed
machine learning model and it is only used as the ground truth
for method validations. All the simulations are carried out using
256 CPU cores on local high-performance computing clusters
and each case requires around 17 hours for the total simulations
of 20400s.

In addition, a virtual LIDAR device is added to extract the
LoS wind speed at the LIDAR measurement locations. In par-
ticular, five LIDAR beams, with the measurement frequency of
1s, the spatial resolution of 20m and the measurement range of
220m, are included in the virtual measurement process. One
of five beams is configured towards the turbine yaw direction
i.e. the elevation angle equal to 0◦. The other four are config-
ured with an elevation angle of 15◦ and uniformly-distributed
azimuth angles (i.e. the four beams are uniformly distributed in
the cone surface as illustrated by the red lines in Figure 1). Fur-
thermore, the virtual LIDAR beams are designed to scan over

Figure 3: The illustration of the flow domain for the numerical simulations,
where the contour shows the instantaneous wind velocity field.

Effective viscosity Turbulent viscosity ratio
0.2m2/s 2.0 × 104

Table 2: The estimation of the effective viscosity by the proposed method.

the azimuth direction in order to provide the wind information
with better spatial coverage.

In the following subsections, the wind field prediction at a
baseline case is first investigated, where the freestream wind
speed is set as 8m/s (which corresponds to a Reynolds number
of 4.8 × 107) and the freestream turbulence intensity is set as
6%, then a parametric study is carried out to evaluate the per-
formance of the developed method for a set of wind speeds i.e.
13m/s, 18m/s, and 23m/s.

4.2. Prediction results and discussions
The LIDAR measurement data, which is described in Sec-

tion 4.1, is used to train the proposed deep learning model. In
this work, the structure of the Base-NN is set as 4-128-128-
128-128-128-128-128-4 with the hyperbolic tangent activation
for the intermediate layers and the linear activation for the last
layer. The learning rate of the Adam optimizer is set as 10−4.
The training is carried out using NVIDIA Tesla K80 GPU and
each training iteration requires around 0.14s, which illustrates
the ability of the proposed approach for real-time 3-D dynamic
wind field reconstruction through offline training and online up-
dating. The scanning speed of the LIDAR beams in the azimuth
direction still needs to be specified. In this work, the scanning
speed is determined by trial and error and is set as a constant
value of 15◦/s.

After training, the effective viscosity is obtained. The results
are given in Table 2, along with the turbulent viscosity ratio i.e.
the ratio between the turbulent viscosity and the air viscosity.
The results clearly show that the turbulent wind is characterized
primarily by the turbulent viscosity, as the effective viscosity is
much larger than the air viscosity. As the turbulent viscosity
can be used to describe the wind turbulence, it is very useful
for other wind applications such as wind modeling and simula-
tions. For example, it can be used to specify the turbulent inflow
conditions for numerical simulations of wind turbine wakes.

Next, the whole spatiotemporal 3-D flow field is predicted.
The results for three typical time instants are given in Figure 4
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and Figure 5, where the corresponding ground truth and error
distribution are also included. Figure 4 shows the visualiza-
tions of the wind speed magnitude in the x-y plane at the hub
height and in the x-z plane, while Figure 5 shows the flow vi-
sualizations in the y-z plane at various streamwise locations.
As can be seen from Figure 4, the flow structures (e.g. the
high-speed/low-speed flow zones) in both x-y and x-z planes
are predicted very accurately. The wind features in the verti-
cal direction, such as the wind shear (e.g. the increase of the
wind speed with height), are also captured very well. As can be
seen from Figure 5, the flow fields in the 2-D domain parallel to
the rotor plane are predicted very accurately at various stream-
wise locations before the turbine. This demonstrates that the
proposed method can provide detailed preview wind informa-
tion for the whole 2-D rotor plane, which is of great importance
for the control of wind turbines especially in the case of smart
rotors [29]. The error distribution further shows that the pre-
diction errors remain very small for the whole flow domain of
interest. The maximum error happens at the locations that are
far away from (thus of little importance for) the turbine struc-
tures, which is reasonable as no measurements are available in
the vicinity of these locations. In addition, the unsteady flow
visualizations including both the ground truth and the predic-
tion results are given in the supporting material of this paper
(see Video 1 & 2). As shown in the videos, the predicted flow
field matches with the ground truth very well, demonstrating
that the proposed approach captures the 3-D spatial variation
and the temporal evolution of the incoming turbulent wind suc-
cessfully. The results fully reveal the great performance of the
proposed approach.

To further quantify the prediction accuracy, the root mean
square error (RMSE) of the flow field prediction is calculated,
which is defined as

εq =
1
T

T∑
t=1

√√√
1

Ntest

Ntest∑
i=1

(q∗xi,yi,zi,t − q̂xi,yi,zi,t)2. (7)

Here the total time T is 100, {[xi, yi, zi], 1 ≤ i ≤ Ntest} is the grid
points corresponding to the 12m × 12m × 12m uniform mesh in
the 3-D flow domain in front of the wind turbine, and q repre-
sents the flow quantity such as the wind velocity components
in x, y and z directions (i.e. u, v, w). q∗ and q̂ represent the
true value and the corresponding predicted value of q. The re-
sults are given in Table 3. As can be seen, the predictions for
the streamwise velocity u, the spanwise velocity v and the ver-
tical velocity w are all quite accurate, with the RMSEs equal
to 6.5%, 11.9%, and 12.7% of the corresponding value ranges.
Furthermore, the directional information of the wind velocity
can also be predicted, by first projecting the 3-D velocity vector
to the 2-D plane and then calculating the angle between the 2-D
vector and the reference direction. The directions of the wind
vector projected in x− y and x− z planes, at any given location,
can be calculated by

γy = arctan(v/u) (8)

Case Quantity Value range RMSE (% of range)

8m/s

u (m/s) [6.08, 10.11] 0.263 (6.5%)

v (m/s) [-1.82, 1.53] 0.397 (11.9%)

w (m/s) [-1.48, 1.36] 0.361(12.7%)

γy (◦) [-11.4, 11.8] 2.84 (12.2%)

γz (◦) [-10.1, 9.77] 2.58(13.0%)

13m/s

u (m/s) [9.53, 16.07] 0.592 (9.1%)

v (m/s) [-2.89, 2.90] 0.625 (10.8%)

w (m/s) [-2.53, 2.56] 0.590 (11.6%)

γy (◦) [-12.6, 12.4] 2.76 (11.0%)

γz (◦) [-10.3, 10.9] 2.60 (12.3%)

18m/s

u (m/s) [13.14, 21.62] 0.958 (11.3%)

v (m/s) [-4.18, 4.47] 0.837 (9.7%)

w (m/s) [-4.04, 3.50] 0.774 (10.3%)

γy (◦) [-11.9, 14.9] 2.73 (10.2%)

γz (◦) [-12.1, 12.1] 2.52 (10.4%)

23m/s

u (m/s) [16.53, 28.44] 1.296 (10.9%)

v (m/s) [-4.57, 5.79] 1.098 (10.6%)

w (m/s) [-4.82, 5.12] 1.036 (10.4%)

γy (◦) [-11.2, 12.8] 2.72 (11.3%)

γz (◦) [-11.7, 13.1] 2.57 (10.4%)

Table 3: The RMSEs of the flow field predictions for a set of wind speed
cases ranging from below-rated, rated, to above-rated conditions of typical wind
turbines.

and

γz = arctan(w/u). (9)

The RMSEs of the γy and γz fields are also included in Table
3. As shown, γy, which is actually the conventional wind di-
rection, is predicted correctly. This demonstrates that the pro-
posed approach can be used for tackling the yaw misalignment
which is of great importance for improving the efficiency of
wind power generations [35]. The vertical wind direction γz

is also predicted correctly, which shows that the proposed ap-
proach can be used for the control of turbine tilt angles [36]. It
is concluded that the proposed method predicts the directional
wind information very well, given that only scalar information
is available in the original LIDAR measurements.

In addition, the 3-D spatiotemporal wind field reconstruction
is also carried out by using the pre-determined viscosity in the
NS equations. The prediction RMSEs are reported in Appendix
B for comparisons with Table 3. The results clearly demon-
strate that by including and inferring the effective viscosity in
the proposed model, the present work achieves better accuracy
for all the flow quantities.
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(a) t = 60s, prediction (b) t = 60s, true (c) t = 60s, difference

(d) t = 70s, prediction (e) t = 70s, true (f) t = 70s, difference

(g) t = 80s, prediction (h) t = 80s, true (i) t = 80s, difference

Figure 4: The 3-D velocity field (visualized in x-y and x-z planes) predicted by the proposed method at time (a) t = 60s, (d) t = 70s and (g) t = 80s. The
corresponding ground truth and the difference between prediction and true flow fields are shown in (b, e, h) and (c, f, i), respectively.

To further evaluate the prediction performance and to illus-
trate the use of the proposed method for wind turbine control
and wind power & load forecasting, the 2-D wind field near
the LIDAR, the effective wind speed, and the instantaneous
wind speed at specific turbine blade locations are extracted from
the predicted full spatiotemporal wind field and then compared
with the corresponding true values in the following parts.

First, the prediction of the 2-D wind field near the LIDAR
(which is located on turbine nacelle) is investigated. The pre-
diction results are given in Table 4. As shown, the predic-
tion RMSEs remain very small for all the main wind quanti-
ties including the wind velocity magnitudes and directions. The
corresponding unsteady flow visualizations including both the
ground truth and the prediction results are given in the support-
ing material of this paper (see Video 3). As shown in the video,
the spatiotemporal wind evolution in this region is predicted
very accurately.

Second, the effective wind speed, which is defined here as
the wind speed averaged over the y direction, is calculated as

Ūx0,t(z) =
1

Ny

Ny∑
i=1

ûx0,yi,z,t, (10)

where {yi, 1 ≤ i ≤ Ny} is a set of uniformly-distributed y coordi-

Quantity Value range RMSE (% of range)

u (m/s) [6.88, 9.44] 0.216 (8.4%)

v (m/s) [-1.57, 1.25] 0.392 (13.9%)

w (m/s) [-1.29, 1.24] 0.341 (13.5%)

γy (◦) [-10.1, 9.89] 2.76 (13.8%)

γz (◦) [-9.14, 8.55] 2.43 (13.7%)

Table 4: The RMSEs of the flow field predictions near the LIDAR.

nates in the interval [−30, 30]m. We mention that the effective
wind speed is defined here as the wind speed averaged only
over the y direction instead of over the y-z rotor plane, because
in this way the wind speed variation in vertical direction can
be shown clearly. The results are given in Figure 6 for several
streamwise locations i.e. x0 = [−50,−10, 30, 70, 110]m. As
shown, the profiles of the effective wind speed are predicted
accurately at all the streamwise locations and all time instants.
The wind shear, i.e. the increase of the wind speed magnitude
with height, is captured very well.

Third, the instantaneous wind speeds at the turbine blade
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(a) t = 60s, prediction (b) t = 60s, true (c) t = 60s, difference

(d) t = 70s, prediction (e) t = 70s, true (f) t = 70s, difference

(g) t = 80s, prediction (h) t = 80s, true (i) t = 80s, difference

Figure 5: The 3-D velocity field (visualized in y-z planes) predicted by the proposed method at time (a) t = 60s, (d) t = 70s and (g) t = 80s. The corresponding
ground truth and the difference between prediction and true flow fields are shown in (b, e, h) and (c, f, i), respectively.

root, 1/4 chord length, 1/2 chord length, 3/4 chord length and
the blade tip are predicted and compared with the correspond-
ing ground truth. For illustration purpose, here the rotational
speed of the wind turbine is set as 60◦/s, and the variable ro-
tational speed can be applied in the same way. The results are
given in Figure 7. As shown, the time series of the wind speed
are predicted very accurately, including both the slow variations
due to the freestream flow structures and the fast variations due
to the turbine rotations. In particular, the effect of the wind
shear increases clearly from the blade root to the blade tip lo-
cation, as shown by the increase of the oscillation magnitudes
from Figure 7(a) to 7(e). The magnitudes of wind speed oscil-
lations, which are modulated by the incoming turbulent wind
and differ for each turbine rotation period, are also predicted
accurately. In addition, the mean values and the standard devia-
tions of the prediction errors during the considered time period
are shown in Figure 7(f). As shown, the prediction errors are
very small for all the locations. It is also interesting to note
that the prediction errors increase slowly from the turbine blade
root to the blade tip locations, as the wind speed varies more
dramatically from the blade root to tip locations thus making
the prediction increasingly difficult from Figure 7(a) to 7(e).

Next, as the proposed deep learning model learns the tem-

poral correlations of the wind field from the NS equations,
it can be used directly for short-term wind forecasting. This
is achieved by directly feeding future time coordinates to the
Base-NN. The results for 15s-ahead wind speed forecasting are
included in Figure 7. Another 15s numerical simulations are
also carried out by SOWFA to obtain the corresponding ground
truth for comparisons. As shown by the last 15s time series in
Figure 7, the forecasting results match with the true values quite
well. We mention that the proposed method does not need any
prior parameter tunings to determine the forecasting time hori-
zon. The forecasting can be achieved with good accuracy as
long as the wind speed at the location and the time instant of
interest is correlated with the available LIDAR measurement
data. In practice, the maximum forecasting time horizon can
be estimated as the virtual time of the flow convection from the
upstream measurement points to the turbine location.

4.3. Sensitivity of prediction accuracy to wind speed

The above results show great accuracy of the proposed wind
prediction method at the baseline case. To further validate the
proposed method’s performance, this subsection is devoted to
the 3-D spatiotemporal wind field predictions for a set of wind
speed cases, i.e. 13m/s, 18m/s, and 23m/s.
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(a) x0 = -50m (b) x0 = -10m

(c) x0 = 30m (d) x0 = 70m

(e) x0 = 110m

Figure 6: The profile of the effective wind speed predicted by the proposed method (the dashed lines) and the corresponding true values (the solid lines), at
x0 = [−50,−10, 30, 70, 110]m and various time instants. The mean values and the standard deviations of the prediction errors during the considered time period are
also shown.

First, the prediction RMSEs are calculated and the results are
given in Table 3. As can be seen, for all the cases, the proposed
method achieves the accurate prediction of the wind velocity
fields for all the flow quantities including both wind magnitudes
and directions. Then, the unsteady 3-D flow field visualiza-
tions are compared with the corresponding ground truth. The
results are given in the supporting material of this paper (see
Video 4). Similar to the baseline case, the 3-D spatial variation
and the temporal evolution of the turbulent wind are predicted
very accurately for all these cases. Also, we mention that all
the parameters involved in the model construction and training
process are the same as the baseline case, showing that parame-
ter tuning is not needed for different wind speed scenarios. This
parametric study thus fully demonstrates the great accuracy and
robustness of the proposed method.

5. Conclusions

The 3-D spatiotemporal wind field reconstruction was inves-
tigated in this work, where a physics-informed deep learning
based method was proposed to combine the 3-D Navier-Stokes
equations and the scanning LIDAR measurements. The results
showed that, by combing the physics and data, the whole 3-D
dynamic wind velocity vector field (including the velocity com-
ponents in x, y, and z directions ) in front of the wind turbine
was predicted very accurately based on only the limited scalar
information at very sparse spatial locations (i.e. the line-of-
sight wind speed measured by LIDAR beams). In addition, the
inference of the turbulent viscosity was also achieved, which
can be used for characterizing the wind turbulence in other ap-
plications such as wind modeling and numerical simulations of
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(a) blade root (b) 1/4 chord length (c) 1/2 chord length

(d) 3/4 chord length (e) blade tip

(f) Prediction error

Figure 7: The instantaneous wind speeds predicted by the proposed method (the dashed lines) and the corresponding true values (the solid lines), at (a) the turbine
blade root, (b) 1/4 chord length, (c) 1/2 chord length, (d) 3/4 chord length, and (e) the blade tip. Subfigure (f) shows the mean values and the standard deviations
of the prediction errors during the considered time period.

wind turbine wakes.
The 3-D wind field predictions were first examined by vi-

sualizing the flow fields in x-y, x-z, and y-z planes. The re-
sults showed that the spatiotemporal flow field predicted by
the proposed approach matched with the corresponding ground
truth very well, where the 3-D spatial variation of the incoming
wind (such as the evolving flow structures and the vertical wind
shear) was successfully predicted. The prediction accuracy was
then quantified by the RMSEs of the reconstructed spatiotem-
poral wind fields. The RMSEs at the baseline case were only
0.263m/s, 0.397m/s, 0.361m/s for the streamwise velocity u,
the spanwise velocity v, and the vertical velocity w, demonstrat-
ing the great accuracy of the proposed method. To the best of
the authors’ knowledge, this is for the first time that this type
of accurate and detailed predictions of the unsteady 3-D wind
field in front of a wind turbine is achieved. Furthermore, the

directional wind information, including the conventional wind
direction (i.e. the wind direction in the x− y plane) and the ver-
tical wind direction ( i.e. the wind direction in the x − z plane),
was also predicted. The results showed that the RMSEs were
only 2.84◦ and 2.58◦ respectively, demonstrating the great po-
tential of the proposed method in tackling yaw misalignment
and turbine tilt control, which are of great interest in improving
the energy capture efficiency of wind turbines. For example,
the field test in [37] showed that the annual energy production
could be increased by 2.4% by applying yaw corrections, and
the study in [36] showed that turbine tilt control has a great im-
pact on the power generation of wind farms. Furthermore, a
parametric study was carried out for a set of wind speed cases
ranging from below-rated, rated, to above-rated conditions of
typical wind turbines. The results showed that the predicted 3-D
spatiotemporal wind field matched well with the corresponding
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ground truth for all the cases, demonstrating the great accuracy
and robustness of the proposed method.

The predicted wind field is of vital importance for wind en-
ergy applications e.g. wind turbine control design to further
increase the power generation efficiency, accurate forecasting
of wind power to assist its grid integration, and detailed and re-
liable wind resource assessments. To illustrate these points, the
2-D wind field near the LIDAR, the effective wind speeds at var-
ious streamwise locations, and the instantaneous wind speeds
at various turbine blade locations were extracted from the pre-
dicted wind field and then compared with the corresponding
ground truth. The results showed that they were all predicted
very accurately. In particular, the wind speed oscillations due
to the blade rotations and the variations of the oscillation mag-
nitudes at each rotation period due to the freestream turbulent
wind were both captured very well. The vertical wind shear was
also predicted accurately. Furthermore, a short-term wind fore-
casting was carried out and the results showed that the accurate
forecasting of the wind speeds at various locations ranging from
the turbine blade root to the blade tip was achieved.

To further improve the prediction performance, future works
include the design of the LIDAR configuration and its scanning
pattern to optimally arrange the measurement points, and the
incorporation of other flow sensors in the proposed method to
provide more versatile flow measurements.
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Appendix A. The detailed training and prediction proce-
dure

The detailed training and prediction procedure of the pro-
posed method is summarized below as Algorithm 1.

Appendix B. The prediction results using pre-determined
viscosity

The 3-D spatiotemporal wind field prediction at the baseline
case is also carried out by using pre-determined parameters (i.e.
the air viscosity) in the NS equations. The results are given in
Table B.5.
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