Research Article

## David Loeffler*

# Gross-Prasad periods for reducible representations 

https://doi.org/10.1515/forum-2021-0089
Received April 18, 2021; revised July 21, 2021


#### Abstract

We study $\mathrm{GL}_{2}(F)$-invariant periods on representations of $\mathrm{GL}_{2}(A)$, where $F$ is a non-archimedean local field and $A / F$ a product of field extensions of total degree 3 . For irreducible representations, a theorem of Prasad shows that the space of such periods has dimension $\leqslant 1$, and is non-zero when a certain $\varepsilon$-factor condition holds. We give an extension of this result to a certain class of reducible representations (of Whittaker type), extending results of Harris-Scholl when $A$ is the split algebra $F \times F \times F$.


Keywords: Branching laws, Gross-Prasad conjectures
MSC 2010: 22E50

Communicated by: Freydoon Shahidi

## 1 Introduction

One of the central problems in the theory of smooth representations of reductive groups over non-archimedean local fields is to determine when a representation of a group $G$ admits a linear functional invariant under a closed subgroup $H$ (an $H$-invariant period).

The Gross-Prasad conjectures [5] give a very precise and elegant description of when such periods exist, for many natural pairs ( $G, H$ ), in terms of $\varepsilon$-factors. However, the original formulation of these conjectures applies to members of generic $L$-packets for $G$; and the analogous picture for representations in non-generic $L$-packets is rather more complex. Although the $\varepsilon$-factor is still well-defined for all such $L$-packets, the conjecture formulated in [4] only applies when the $L$-parameters satisfy an additional "relevance" condition, raising the natural question of whether the $\varepsilon$-factors for non-relevant $L$-packets have any significance in terms of invariant periods.

In this short note, we describe some computations of branching laws in the following simple case: $G$ is $\mathrm{GL}_{2}(A)$, where $A / F$ is a cubic étale algebra, and $H$ is the subgroup $\mathrm{GL}_{2}(F)$. Our computations suggest an alternative approach to the theory: rather than studying branching laws for non-generic irreducible representations, we focus on representations which are possibly reducible, but satisfy a certain "Whittaker-type" condition. We show that $H$-invariant periods on these representations are unique if they exist, and that their existence is governed by $\varepsilon$-factors, extending the results of Prasad $[16,17]$ for irreducible generic representations, and Harris and Scholl [7] for $A$ the split algebra (in which case the $\varepsilon$-factor is always +1 ). In this optic, the "relevance" condition appears as a criterion for the $H$-invariant period to factor through the unique irreducible quotient.

The result of the present paper, combined with other recent works such as that of Chan [3] in the case $(G, H)=\left(\mathrm{GL}_{n}(F) \times \mathrm{GL}_{n+1}(F), \mathrm{GL}_{n}(F)\right)$, would seem to suggest that many "Gross-Prasad-style" branching results should extend to Whittaker-type representations, and we hope to explore this further in future works.

[^0]We conclude with an application to global arithmetic. For $\pi$ a Hilbert modular form over a real quadratic field, the constructions of $[6,8,9]$ give rise to a family of cohomology classes taking values in the 4-dimensional Asai Galois representation associated to $\pi$. We show that if $\pi$ is not of CM type and not a base-change from $\mathbf{Q}$, then these elements all lie in a 1-dimensional subspace. This is the analogue for quadratic Hilbert modular forms of the result proved in [7] for Beilinson's elements attached to the Rankin convolution of two modular forms.

## 2 Statements

Throughout this paper, $F$ denotes a non-archimedean local field of characteristic 0 . If $G$ is a reductive group over $F$, then a "representation" of $G(F)$ shall mean a smooth linear representation on a complex vector space.

### 2.1 Epsilon-factors

We choose a non-trivial additive character $\psi$ of $F$. For Weil-Deligne representations $\rho$ of $F$, we define $\varepsilon$-factors $\varepsilon(\rho)=\varepsilon(\rho, \psi)$ following Langlands (the " $\varepsilon_{L}$ " convention in [19, Section 3.6]), so that $\varepsilon(\rho)$ is independent of $\psi$ if $\operatorname{det}(\rho)=1$. We note that

$$
\varepsilon\left(\rho_{1} \oplus \rho_{2}\right)=\varepsilon\left(\rho_{1}\right) \varepsilon\left(\rho_{2}\right), \quad \varepsilon(\rho) \varepsilon\left(\rho^{\vee}\right)=(\operatorname{det} \rho)(-1)
$$

where $\operatorname{det}(\rho)$ is identified with a character of $F^{\times}$via class field theory.
We write $\operatorname{sp}(n)$ for the $n$-dimensional Weil-Deligne representation given by the $(n-1)$-st symmetric power of the Langlands parameter of the Steinberg representation, so that the eigenvalues of the Frobenius element on $\operatorname{sp}(n)$ are $q^{\frac{1-n}{2}}, q^{\frac{3-n}{2}}, \ldots, q^{\frac{n-1}{2}}$, where $q$ is the size of the residue field.

### 2.2 The generic Langlands correspondence for $\mathrm{GL}_{2}$

The classical local Langlands correspondence for $\mathrm{GL}_{2}$ is a bijection between irreducible smooth representations of $\mathrm{GL}_{2}(F)$, and 2-dimensional Frobenius-semisimple representations of the Weil-Deligne group of $F$.

In this paper, we will use the following modification of the correspondence. A representation of $\mathrm{GL}_{2}(F)$ is said to be of Whittaker type if it is either irreducible and generic, or a reducible principal series representation with 1-dimensional quotient. (These are precisely the representations of $\mathrm{GL}_{2}(F)$ which have well-defined Whittaker models.) The generic Langlands correspondence is a bijection between Whittaker-type representations of $\mathrm{GL}_{2}(F)$ and 2-dimensional Frobenius-semisimple Weil-Deligne representations; it agrees with the classical Langlands correspondence on irreducible generic representations, and maps a reducible Whittakertype principal series to the classical Langlands parameter of its 1-dimensional quotient. ${ }^{1}$

In particular, the unramified Weil-Deligne representation with Frobenius acting as ( $q^{1 / 2} q^{-1 / 2}$ ) corresponds to the reducible principal series $\Sigma_{F}$ containing the Steinberg representation $\mathrm{St}_{F}$ as subrepresentation and trivial 1-dimensional quotient. (We omit the subscript $F$ if it is clear from context.)

### 2.3 Statement of the theorem

We now state our main theorem. Let $A / F$ be a separable cubic algebra, so $A$ is a product of field extensions of $F$ of total degree 3. Let $\omega_{A}$ be the quadratic character of $F^{\times}$determined by the class of $\operatorname{disc}(A)$ in $F^{\times} / F^{\times 2}$. We let $G=\mathrm{GL}_{2}(A)$, and $H=\mathrm{GL}_{2}(F)$, embedded in $G$ in the obvious way.

The Langlands dual group of $\mathrm{GL}_{2} / A$ has a natural 8-dimensional Asai, or multiplicative induction, representation; in the case $A=F^{3}$ this is simply the tensor product of the defining representations of the factors. We use this representation, and the generic Langlands correspondence for $\mathrm{GL}_{2}$ above, to define Asai $\varepsilon$-factors $\varepsilon(\operatorname{As}(\Pi))$ for Whittaker-type representations of $\mathrm{GL}_{2}(A)$.

Finally, we consider Jacquet-Langlands transfers. Let $H^{\prime}=D^{\times}$where $D / F$ is the unique non-split quaternion algebra. Let $G^{\prime}=\left(D \otimes_{F} A\right)^{\times}$, and let $\Pi^{\prime}$ be the Jacquet-Langlands transfer of $\Pi$ to $G^{\prime}$ if this exists, and 0 otherwise.

Remark 2.1. Note that if $A=E \times F$ for $E$ a quadratic field extension, then $D^{\times}$is split over $E$, and hence

$$
G^{\prime}=\mathrm{GL}_{2}(E) \times D^{\times}(F)
$$

Thus if $\Pi=\pi \boxtimes \sigma$, for $\pi, \sigma$ representations of $\mathrm{GL}_{2}(E)$ and $\mathrm{GL}_{2}(F)$, respectively, we have $\Pi^{\prime}=\pi \boxtimes \sigma^{\prime}$. In particular, $\Pi^{\prime} \neq 0$ whenever $\sigma^{\prime}$ is discrete series (even if $\pi$ is principal series, possibly reducible).

Main Theorem. Let $\Pi$ be a representation of $\mathrm{GL}_{2}(A)$ of Whittaker type, whose central character is trivial on $F^{\times}$ (embedded diagonally in $A^{\times}$). Then we have

$$
\operatorname{dim} \operatorname{Hom}_{H}(\Pi, \mathbb{1})= \begin{cases}1 & \text { if } \varepsilon(\operatorname{As}(\Pi)) \omega_{A}(-1)=1 \\ 0 & \text { if } \varepsilon(\operatorname{As}(\Pi)) \omega_{A}(-1)=-1\end{cases}
$$

and

$$
\operatorname{dim} \operatorname{Hom}_{H}(\Pi, \mathbb{1})+\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\Pi^{\prime}, \mathbb{1}\right)=1
$$

If $\Pi$ is an irreducible generic representation, then this is the main result of [16] for $A$ the split algebra, and [17] for non-split $A$ (modulo the case of supercuspidal representations of cubic fields, completed in [18]). The new content of the above theorem is that this also holds for reducible Whittaker-type $\Pi$.

Remark 2.2. Any such $\Pi$ can be written as the specialisation at $s=0$ of an analytic family of Whittaker-type representations $\Pi(s)$ indexed by a complex parameter $s$, which are irreducible for generic $s$ and all have central character trivial on $F^{\times}$. For such families, the $\varepsilon$-factors $\varepsilon$ (As $\left.\Pi(s)\right)$ are locally constant as a function of $s$; hence, given the results of $[17,18]$ in the irreducible case, our theorem is equivalent to the assertion that $\operatorname{dim} \operatorname{Hom}_{H}(\Pi(s), \mathbb{1})$ and $\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\Pi(s)^{\prime}, \mathbb{1}\right)$ are locally constant in $s$.

### 2.4 Relation to results of Mœglin-Waldspurger

Note that [14, Proposition in Section 1.3] gives a formula for branching multiplicities for certain parabolicallyinduced representations of special orthogonal groups $\mathrm{SO}(d) \times \mathrm{SO}\left(d^{\prime}\right)$ (with $d-d^{\prime}$ odd), expressing these in terms of multiplicities for irreducible tempered representations of smaller special orthogonal groups. These results are applied in [14, Proposition in Section 1.3] to prove the Gross-Prasad conjecture for irreducible representations in non-tempered generic $L$-packets (by reduction to the tempered case); but the results are also valid for reducible representations.

Since the split form of $\operatorname{SO}(3)$ is $\mathrm{PGL}(2)$, and $\mathrm{SO}(4)$ is closely related to $\mathrm{PGL}(2) \times \mathrm{PGL}(2)$, one can derive many cases of our Main Theorem from their result applied to various forms of $\mathrm{SO}(3) \times \mathrm{SO}$ (4). In fact, if $A=F^{3}$ or $A=E \times F$ for $E$ quadratic, we can obtain in this way all cases of the Main Theorem not already covered by Prasad's results.

However, the case when $A$ is a cubic field extension does not appear to fit into the framework of [14, Proposition in Section 1.3]; and the proof given in [14] is rather indirect, particularly in the case when the $\mathrm{SO}(3)$ representation is reducible, in which case their argument requires a delicate switch back and forth between representations of $\mathrm{SO}(3) \times \mathrm{SO}(4)$ and $\mathrm{SO}(4) \times \mathrm{SO}(5)$. So we hope that the alternative, more direct approach given here will be of interest.

## 3 Split triple products

We first put $A=F \times F \times F$.
Theorem 3.1 (Prasad, Harris-Scholl). Let $\pi_{1}, \pi_{2}, \pi_{3}$ be representations of $\mathrm{GL}_{2}(F)$ of Whittaker type, with central characters $\omega_{i}$ such that $\omega_{1} \omega_{2} \omega_{3}=1$. Then we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}(F)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{1}\right)= \begin{cases}1 & \text { if } \varepsilon\left(\pi_{1} \times \pi_{2} \times \pi_{3}\right)=+1 \\ 0 & \text { if } \varepsilon\left(\pi_{1} \times \pi_{2} \times \pi_{3}\right)=-1\end{cases}
$$

and

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}(F)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{1}\right)+\operatorname{dim} \operatorname{Hom}_{D^{\times}(F)}\left(\pi_{1}^{\prime} \otimes \pi_{2}^{\prime} \otimes \pi_{3}^{\prime}, \mathbb{1}\right)=1
$$

If the $\pi_{i}$ are all irreducible, then the above is the main result of [16]. If one or more of the $\pi_{i}$ is isomorphic to a twist of $\Sigma_{F}$, then the $\varepsilon$-factor is automatically +1 , and $\pi_{1}^{\prime} \otimes \pi_{2}^{\prime} \otimes \pi_{3}^{\prime}$ is the zero representation. So all that remains to be shown is that in this case we have $\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}(F)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{1}\right)=1$. This is established in [7, Propositions 1.5, 1.6 and 1.7], except for one specific case, which is when all three of the $\pi_{i}$ are twists of $\Sigma$ by characters.

In this case, by twisting we may assume $\pi_{2}=\pi_{3}=\Sigma$ and $\pi_{1}=\Sigma \otimes \eta$, where $\eta$ is a character of $F^{\times}$ with $\eta^{2}=1$. The case $\eta=1$ is covered by [7, Proposition 1.7], so we assume $\eta$ is a non-trivial quadratic character. In this case $\operatorname{Hom}_{H}\left(\eta \otimes \Sigma_{F} \otimes \Sigma_{F}, \mathbb{1}\right)=\operatorname{Hom}_{H}\left(\Sigma_{F}, \Sigma_{F}^{\vee} \otimes \eta\right)=0$, so $\operatorname{Hom}_{H}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{1}\right)$ injects into $\operatorname{Hom}_{H}\left(\eta \mathrm{St}_{F} \otimes \Sigma_{F} \otimes \Sigma_{F}, \mathbb{1}\right)$, which has dimension 1 by [7, Proposition 1.6]. Thus $\operatorname{Hom}_{H}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{1}\right)$ has dimension $\leqslant 1$. Since one can easily write down a non-zero element of this space using the Rankin-Selberg zeta integral, we conclude that its dimension is 1 as required.

## 4 Quadratic fields

We now suppose $A=E \times F$ with $E / F$ quadratic, so $\Pi=\pi \boxtimes \sigma$ for Whittaker-type representations $\pi$ of GL $L_{2}(E)$ and $\sigma$ of $\mathrm{GL}_{2}(F)$ such that $\left.\omega_{\pi}\right|_{F^{\times}} \cdot \omega_{\sigma}=1$. Since the case of $\pi, \sigma$ irreducible is proved in [17], it suffices to consider the following cases:
(a) $\pi$ is irreducible and $\sigma=\Sigma_{F}$,
(b) $\sigma$ is irreducible and $\pi=\Sigma_{E}$,
(c) $\pi=\Sigma_{E}$ and $\sigma=\Sigma_{F} \otimes \eta$, where $\eta$ is a quadratic character.

In cases (a) and (c), we always have $\varepsilon(\operatorname{As}(\pi) \times \sigma) \varepsilon_{E / F}(-1)=1$, and $\sigma^{\prime}=\{0\}$, so the Main Theorem amounts to the assertion that $\operatorname{dim} \operatorname{Hom}_{H}(\pi \boxtimes \sigma, \mathbb{1})=1$. In case (b), both signs can occur.

Theorem 4.1 (a). Let $\pi$ be an irreducible generic representation of $\mathrm{GL}_{2}(E)$ such that $\left.\omega_{\pi}\right|_{F^{\times}}=1$. Then we have $\operatorname{dim} \operatorname{Hom}_{H}\left(\pi \boxtimes \Sigma_{F}, \mathbb{1}\right)=1$.

Remark 4.2. Note that the case when $E / F$ is unramified, and $\pi$ is unramified and tempered, is part of [ 6 , Theorem 4.1.1]. However, the proof of this statement given in [6] has a minor error which means the argument does not work when $\pi$ is the normalised induction of the trivial character of $B_{E}$. So the argument below fixes this small gap.

Proof. We first observe that $\operatorname{Hom}_{H}\left(\pi \boxtimes \Sigma_{F}, \mathbb{1}\right)$ is non-zero. Since $\pi$ is generic, it has a Whittaker model $\mathcal{W}(\pi)$ with respect to any non-trivial additive character of $E$. We may suppose that this additive character is trivial on $F$, so that we may define the Asai zeta-integral

$$
Z(W, \Phi, s)=\int_{N_{H} \backslash H} W(h) \Phi((0,1) h)|\operatorname{det} h|^{s} \mathrm{~d} h,
$$

for $W \in \mathcal{W}(\pi)$ and $\Phi \in \mathcal{S}\left(F^{2}\right)$ (the space of Schwartz functions on $F$ ). Here $N_{H}$ is the upper-triangular unipotent subgroup of $H$.

It is well known that this integral converges for $\mathbb{R}(s) \gg 0$ and has meromorphic continuation to the whole complex plane; and the values of $Z(-,-, s)$ span a non-zero fractional ideal of $\mathbf{C}\left[q^{s}, q^{-s}\right]$, generated by an $L$-factor independent of $\Phi$ and $W$, which is the Asai $L$-factor $L(\operatorname{As}(\pi), s)$. Thus the map

$$
(W, \Phi) \mapsto \lim _{s \rightarrow 0} \frac{Z(W, \Phi, s)}{L(\operatorname{As}(\pi), s)}
$$

defines a non-zero, $H$-invariant bilinear form $W(\pi) \otimes \mathcal{S}\left(F^{2}\right) \rightarrow \mathbf{C}$. Since the maximal quotient of $\mathcal{S}\left(F^{2}\right)$ on which $F^{\times}$acts trivially is isomorphic to $\Sigma_{F}$ (see for example [10, Proposition 3.3 (b)]), this shows that $\operatorname{Hom}_{H}\left(\pi \boxtimes \Sigma_{F}, \mathbb{1}\right) \neq 0$ as claimed.

So, to prove Theorem 4.1 (a), it suffices to show that $\operatorname{dim} \operatorname{Hom}_{H}\left(\pi \boxtimes \Sigma_{F}, \mathbb{1}\right) \leqslant 1$. As $\pi$ has unitary central character, it is either a discrete-series representation, in which case it is automatically tempered, or an irreducible principal series, which may or may not be tempered. We shall consider these cases separately.

Note that [1, Theorem 1.1] states that if $\pi$ is an irreducible tempered representation of $\mathrm{GL}_{2}(E)$, then we have $\operatorname{dim} \operatorname{Hom}_{M(F)}(\pi, \mathbb{1})=1$, where $M(F)=\left\{\left(\begin{array}{cc}\star & \star \\ 0 & 1\end{array}\right)\right\}$ is the mirabolic subgroup of $\mathrm{GL}_{2}(F)$. If we assume $\left.\omega_{\pi}\right|_{F^{\times}}=1$, then since $F^{\times} \cdot M(F)=B(F)$ is the Borel subgroup of $\mathrm{GL}_{2}(F)$, we have

$$
\operatorname{Hom}_{M(F)}(\pi, \mathbb{1})=\operatorname{Hom}_{B(F)}(\pi, \mathbb{1})=\operatorname{Hom}_{H}\left(\pi, \operatorname{Ind}_{B(F)}^{H}(\mathbb{1})\right)
$$

As $\operatorname{Ind}_{B(F)}^{H}(\mathbb{1})=\Sigma_{F}^{\vee}$, this proves Theorem 4.1 (a) for tempered $\pi$.
We now consider the principal-series case. For $\alpha, \beta$ smooth characters of $E^{\times}$, we write $I_{E}(\alpha, \beta)$ for the normalised induction to $\mathrm{GL}_{2}(E)$ of the character $\alpha \boxtimes \beta$ of $B(E)$. Note that this representation is tempered if and only if $\alpha$ and $\beta$ are unitary. We suppose $\alpha / \beta \neq|\cdot|_{E}^{ \pm 1}$ and $\left.\alpha \beta\right|_{F^{\times}}=1$. Then we have the following results:

- $\operatorname{Hom}_{H}\left(\pi \boxtimes \mathrm{St}_{F}, \mathbb{1}\right)$ is zero if $\alpha \beta^{c}=1$, and 1-dimensional otherwise, where $\beta^{c}$ denotes the character $x \mapsto \beta\left(x^{c}\right)$. See [17, Remark 4.1.1].
- $\operatorname{Hom}_{H}(\pi \boxtimes \mathbb{1}, \mathbb{1})$ is 1-dimensional if $\alpha \beta^{c}=1$, or if $\left.\alpha\right|_{F^{x}}=\left.\beta\right|_{F^{\times}}=1$; otherwise it is 0 . See [13, Theorem 5.2]. We conclude that exactly one of $\operatorname{Hom}_{H}\left(\pi \boxtimes \operatorname{St}_{F}, \mathbb{1}\right)$ and $\operatorname{Hom}_{H}(\pi \boxtimes \mathbb{1}, \mathbb{1})$ is non-zero (and Theorem 4.1 (a) therefore follows), unless $\pi$ is of the form $I_{E}(\alpha, \beta)$ with $\left.\alpha\right|_{F^{\times}}=\left.\beta\right|_{F^{\times}}=1$ and $\alpha \beta^{c} \neq 1$. However, in this exceptional case $\alpha$ and $\beta$ are unitary, and thus $\pi$ is tempered, so Theorem 4.1 (a) has already been established for $\pi$ above. This completes the proof of Theorem 4.1 (a).

Remark 4.3. It follows, in particular, that for a generic irreducible representation $\pi$ of $\mathrm{GL}_{2}(E)$, we have $\operatorname{Hom}_{H}(\pi, \mathbb{1}) \neq 0$ (i.e. $\pi$ is " $F$-distinguished") if and only if the zeta-integral ( $\dagger$ ) factors through the 1-dimensional quotient of $\Sigma_{F}$, and thus vanishes on all $\Phi$ with $\Phi(0,0)=0$; that is, $s=0$ is an exceptional pole of the Asai $L$-factor. This is the $n=2$ case of a theorem due to Matringe [12, Theorem 3.1] applying to $\mathrm{GL}_{n}(E)$-representations. See [10] for analogous results and conjectures regarding poles of zeta-integrals for $\mathrm{GSp}_{4}$ and $\mathrm{GSp}_{4} \times \mathrm{GL}_{2}$.

For case (b) of the main theorem, we need the following lemma:
Lemma 4.4. Let $\sigma$ be an irreducible generic representation of $\mathrm{GL}_{2}(F)$ with $\omega_{\sigma}=1$. Then

$$
\varepsilon\left(\operatorname{As}\left(\Sigma_{E}\right) \times \sigma\right)=\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)
$$

Moreover, if $\sigma \neq \mathrm{St}_{F}$, then we have

$$
\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)=\varepsilon\left(\mathrm{As}^{\left.\left(\mathrm{St}_{E}\right) \times \sigma\right),}\right.
$$

while for $\sigma=\mathrm{St}_{F}$ we have

$$
\varepsilon\left(\mathrm{As}^{\left.\left(\mathrm{St}_{E}\right) \times \mathrm{St}_{F}\right) \omega_{E / F}(-1)=1 \quad \text { and } \quad \varepsilon\left(\operatorname{As}\left(\Sigma_{E}\right) \times \mathrm{St}_{F}\right) \omega_{E / F}(-1)=-1 . . . . ~}\right.
$$

Proof. If $\sigma$ is not a twist of Steinberg, then its Weil-Deligne representation has trivial monodromy action, so we compute that

$$
\varepsilon\left(\operatorname{As}\left(\mathrm{St}_{E}\right) \times \sigma\right)=\varepsilon\left(\left(\mathrm{sp}(3) \oplus \omega_{E / F}\right) \times \sigma\right)=\varepsilon\left(\sigma \times \omega_{E / F}\right) \varepsilon(\sigma)^{3} \operatorname{det}\left(- \text { Frob }: \rho_{\sigma}^{I_{F}}\right)^{2}
$$

Since $\sigma$ has trivial central character, $\varepsilon(\sigma)= \pm 1$. If $\sigma$ is supercuspidal we are done, since in this case $\rho_{\sigma}^{I_{F}}=0$. If $\sigma$ is principal series, then $\rho_{\sigma}^{I_{F}}$ must be either 0 , or all of $\rho_{\sigma}$, since $\rho_{\sigma}$ has determinant 1. Thus det(-Frob : $\left.\rho_{\sigma}^{I_{F}}\right)=1$, so $\varepsilon\left(\operatorname{As}\left(\mathrm{St}_{E}\right) \times \sigma\right)=\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)$, proving the claim in this case. The case when $\sigma$ is a twist of the Steinberg by a non-trivial (necessarily quadratic) character can be computed similarly.

Theorem 4.1 (b). Let $\sigma$ be an irreducible generic representation of $\mathrm{GL}_{2}(F)$ with $\omega_{\sigma}=1$. Then:
(i) If $\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)=\omega_{E / F}(-1)$, then $\operatorname{dim} \operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \sigma, \mathbb{1}\right)=1$ and $\operatorname{Hom}_{H^{\prime}}\left(\Sigma_{E} \boxtimes \sigma^{\prime}, \mathbb{1}\right)=0$.
(ii) If $\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)=-\omega_{E / F}(-1)$, then $\operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \sigma, \mathbb{1}\right)=0$ and $\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\Sigma_{E} \boxtimes \sigma^{\prime}, \mathbb{1}\right)=1$.

Proof. We first consider the situation for $H^{\prime}$. This case is relatively simple, since $H^{\prime}$ is compact modulo centre, and hence the functor of $H^{\prime}$-invariants is exact on the category of $H^{\prime}$-representations trivial on $F^{\times}$. So we have

$$
\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\Sigma_{E} \otimes \sigma^{\prime}, \mathbb{1}\right)=\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\sigma^{\prime}, \mathbb{1}\right)+\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\mathrm{St}_{E} \otimes \sigma^{\prime}, \mathbb{1}\right)
$$

Using Prasad's results for $\operatorname{Hom}_{H^{\prime}}\left(\mathrm{St}_{E} \otimes \sigma^{\prime}, \mathbb{1}\right)$ and the preceding lemma, we see that $\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\Sigma_{E} \otimes \sigma^{\prime}, \mathbb{1}\right)$ has dimension 1 if $\varepsilon(\sigma) \varepsilon\left(\sigma \times \omega_{E / F}\right)=-\omega_{E / F}(-1)$ and is zero otherwise, as required.

For the group $H$, the situation is a little more complicated: since $\sigma$ is generic, we have $\operatorname{Hom}_{H}(\sigma, \mathbb{1})$ is zero, and hence there is an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{H}\left(\Sigma_{E} \otimes \sigma, \mathbb{1}\right) \rightarrow \operatorname{Hom}_{H}\left(\mathrm{St}_{E} \otimes \sigma, \mathbb{1}\right) \rightarrow \operatorname{Ext}_{\mathrm{PGL}_{2}(F)}^{1}(\sigma, \mathbb{1})
$$

Claim. The group $\operatorname{Ext}_{\mathrm{PGL}_{2}(F)}^{1}(\sigma, \mathbb{1})$ is 1-dimensional if $\sigma=\mathrm{St}_{F}$, and zero otherwise.
Proof of Claim. If $\sigma$ is supercuspidal, then the result is immediate, since $\sigma$ is projective in the category of $\mathrm{PGL}_{2}(F)$-representations. The remaining cases can be handled directly using Frobenius reciprocity, or alternatively, one can appeal to Schneider-Stuhler duality (as reformulated in [15, Theorem 2]) to show that the Ext group is dual to $\operatorname{Hom}_{H}(\mathbb{1}, D(\sigma))$ where $D$ is the Aubert-Zelevinsky involution, which sends $\mathrm{St}_{F}$ to the trivial representation.
This gives the desired formula for $\operatorname{dim} \operatorname{Hom}_{H}\left(\Sigma_{E} \otimes \sigma, \mathbb{1}\right)$ in all cases except when $\sigma=\operatorname{St}_{F}$, in which case we must show that the non-trivial $H$-invariant period of $\mathrm{St}_{E} \otimes \mathrm{St}_{F}$ does not lift to $\Sigma_{E} \otimes \mathrm{St}_{F}$. This can be done directly: we can compute $\left.\Sigma_{E}\right|_{\mathrm{GL}_{2}(F)}$ via Mackey theory, using the two orbits of $H$ on $\mathbf{P}^{1}(E)$ to obtain the exact sequence

$$
0 \rightarrow \operatorname{cInd}_{E^{\times}}^{\mathrm{GL}_{2}(F)}(\mathbb{1}) \rightarrow \Sigma_{E} \rightarrow I_{F}\left(|\cdot|_{F},|\cdot|_{F}^{-1}\right) \rightarrow 0
$$

The latter representation is irreducible and has no homomorphisms to $\mathrm{St}_{F}$; and we saw in the proof of Theorem 4.1 (a) that

$$
\operatorname{Hom}_{H}\left(\operatorname{cind}_{E^{\times}}^{H}(\mathbb{1}) \otimes \operatorname{St}_{F}, \mathbb{1}\right)=\operatorname{Hom}_{E^{\times}}\left(\operatorname{St}_{F}, \mathbb{1}\right)=0 .
$$

This shows that $\operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \mathrm{St}_{F}, \mathbb{1}\right)=0$, completing the proof.
Remark 4.5. We are grateful to the anonymous referee for pointing out the significance of the vanishing of $\operatorname{Ext}_{\mathrm{PGL}_{2}(F)}^{1}(\sigma, \mathbb{1})$; the original version of this paper used a different and rather more complicated argument.

Theorem 4.1 (c). Let $\eta$ be a quadratic character of $F^{\times}$(possibly trivial). Then we have

$$
\operatorname{dim}_{\operatorname{Hom}_{H}}\left(\Sigma_{E} \boxtimes \Sigma_{F}, \eta\right)=1
$$

Proof. The computation of the $\varepsilon$-factor is immediate; and by a zeta-integral argument as before, we can show that $\operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \Sigma_{F}, \eta\right) \neq 0$ (since the representation $\Sigma_{E}$, despite being reducible, has a well-defined Whittaker model). So it suffices to show that the hom-space has dimension $\leqslant 1$.

If $\eta$ is not the trivial character, then

$$
\operatorname{Hom}_{H}\left(\mathbb{1} \boxtimes \Sigma_{F}, \eta\right)=0,
$$

so the desired Hom-space injects into $\operatorname{Hom}_{H}\left(\mathrm{St}_{E} \boxtimes \Sigma_{F}, \eta\right)$, which is 1-dimensional by Theorem 4.1 (a). If $\eta$ is trivial, then we have seen above that $\operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \mathrm{St}_{F}, \mathbb{1}\right)$ is zero. So

$$
\operatorname{Hom}_{H}\left(\Sigma_{E} \boxtimes \Sigma_{F}, \mathbb{1}\right)=\operatorname{Hom}_{H}\left(\Sigma_{E}, \mathbb{1}\right) .
$$

From the Mackey decomposition of $\left.\Sigma_{E}\right|_{\mathrm{GL}_{2}(F)}$ above, one sees easily that this space is 1-dimensional.

## 5 Cubic fields

We briefly discuss the case where $A$ is a cubic extension of $F$.
Theorem 5.1. Let $\pi$ be a Whittaker-type representation of $\mathrm{GL}_{2}(E)$. Then the space $\operatorname{Hom}_{H}(\pi, \mathbb{1})$ has dimension 1 if $\varepsilon(\operatorname{As}(\pi)) \omega_{A}(-1)=1$ and is zero otherwise.

Proof. The case of irreducible generic $\pi$ is proved in [17] assuming $\pi$ non-supercuspidal, and the supercuspidal case is filled in by [18]. In this case, the only example of a reducible Whittaker-type representation of $G$ is $\Sigma_{E} \otimes \eta$, where $\eta$ is a character of $E^{\times}$; and the central-character condition implies that $\lambda=\left.\eta\right|_{F \times}$ must be trivial or quadratic.

The $\varepsilon$-factors $\varepsilon\left(\operatorname{As}\left(\mathrm{St}_{E}\right) \times \lambda\right)$ are computed in [17, Section 8]. We find that $\varepsilon\left(\operatorname{As}\left(\Sigma_{E}\right) \times \lambda\right) \omega_{E / F}(-1)$ is always +1 . On the other hand, $\varepsilon\left(\operatorname{As}\left(\mathrm{St}_{E}\right) \times \lambda\right) \omega_{E / F}(-1)$ is +1 if $\lambda$ is non-trivial quadratic, and -1 if $\lambda=1$. So it follows that exactly one of $\operatorname{Hom}_{H}(\mathbb{1}, \lambda)$ and $\operatorname{Hom}_{H}\left(\mathrm{St}_{E}, \lambda\right)$ is non-zero, implying that $\operatorname{dim} \operatorname{Hom}_{H}\left(\Sigma_{E} \otimes \eta, \mathbb{1}\right) \leqslant 1$.

To complete the proof, we must show that when $\lambda \neq 1$, the $H$-invariant homomorphism $\operatorname{Hom}_{H}\left(\mathrm{St}_{E}, \lambda\right)$ extends to $\Sigma_{E}$. However, this is clear since the obstruction lies in $\operatorname{Ext}_{H}^{1}(\mathbb{1}, \lambda)$, which is zero.

This completes the proof of the Main Theorem.

## 6 An application to Euler systems

We now give a global application, a strengthening of some results from [9] and [6] on Euler systems for quadratic Hilbert modular forms. Let $K / \mathbf{Q}$ be a real quadratic field and write $G=\operatorname{Res}_{K / \mathbf{Q}}\left(\mathrm{GL}_{2}\right), H=\mathrm{GL}_{2 / \mathbf{Q}} \subset G$; set $G_{f}=G\left(\mathbf{A}_{f}\right)=G L_{2}\left(\mathbf{A}_{K, f}\right)$ and $H_{f}$ similarly.

### 6.1 Adelic representations

Let $\chi$ be a finite-order character of $\mathbf{A}_{f}^{\times}$and define a representation of $H_{f}$ by

$$
\mathcal{J}(\chi)=\bigotimes_{\ell}^{\prime} \mathcal{J}_{\ell}\left(\chi_{\ell}\right),
$$

where $\mathcal{J}_{\ell}\left(\chi_{\ell}\right)$ denotes the representation of $H_{\ell}$ given by normalised induction of the character $\chi_{\ell}|\cdot|^{\frac{1}{2}} \boxtimes|\cdot|^{-\frac{1}{2}}$ of the Borel subgroup. For $\chi=1$, we let $\mathcal{J}^{0}(1)$ denote the codimension 1 subrepresentation of $\mathcal{J}(1)$. Exactly as in [7, Section 2], the local results above imply the following branching law for $G_{f}$-representations:

Proposition 6.1. Let $\pi$ be an irreducible admissible representation of $G_{f}$, all of whose local factors are generic, with $\left.\omega_{\pi}\right|_{\mathbf{A}_{f}^{\times}}=\chi^{-1}$.

- We have $\operatorname{dim} \operatorname{Hom}_{H_{f}}(\pi \otimes \mathcal{J}(\chi), \mathbb{1})=1$.
- If $\chi=1$ and there exists some $\ell$ such that $\operatorname{Hom}_{H_{\ell}}\left(\pi_{\ell}, \mathbb{1}\right)=0$, then $\operatorname{dim} \operatorname{Hom}_{H_{f}}\left(\pi \otimes \mathcal{J}^{0}(1), \mathbb{1}\right)=1$ and the natural restriction map $\operatorname{Hom}_{H_{f}}(\pi \otimes \mathcal{J}(1), \mathbb{1}) \rightarrow \operatorname{Hom}_{H_{f}}\left(\pi \otimes \mathcal{J}^{0}(1), \mathbb{1}\right)$ is a bijection.
- If $\chi=1$ and $\operatorname{Hom}_{H_{\ell}}\left(\pi_{\ell}, \mathbb{1}\right) \neq 0$ for all $\ell$, then $\operatorname{dim} \operatorname{Hom}_{H_{f}}\left(\pi \otimes \mathcal{J}^{0}(1), \mathbb{1}\right)=\infty$.


### 6.2 Hilbert modular forms

Suppose now that $\pi$ is (the finite part of) a cuspidal automorphic representation, arising from a Hilbert modular cusp form of parallel weight $k+2 \geqslant 2$, normalised so that $\omega_{\pi}$ has finite order.

Proposition 6.2. Suppose $\pi$ is not a twist of a base-change from $\mathrm{GL}_{2 / \mathrm{Q}}$. Then, for any Dirichlet character $\tau$, there exist infinitely many primes $\ell$ such that $\operatorname{Hom}_{H_{\ell}}\left(\pi_{\ell} \otimes \tau_{\ell}, \mathbb{1}\right)=0$.

Proof. See [6, Proposition 7.2.5].

There is a natural $H_{f}$-representation $\mathcal{O}^{\times}(Y)$ c of modular units, where $Y$ is the infinite-level modular curve (the Shimura variety for $\mathrm{GL}_{2}$ ). Note that this representation is smooth, but not admissible. It fits into a long exact sequence

$$
0 \rightarrow\left(\mathbf{Q}^{\mathrm{ab}}\right)^{\times} \otimes \mathbf{C} \rightarrow \mathcal{O}^{\times}(Y) \mathbf{c} \rightarrow \mathcal{J}^{0}(1) \oplus \bigoplus_{\eta \neq 1} \mathcal{J}(\eta) \rightarrow 0
$$

with $H_{f}$ acting on $\left(\mathbf{Q}^{\mathrm{ab}}\right)^{\times}$via the Artin reciprocity map of class field theory, and the sum is over all even Dirichlet characters $\eta$.

There is a canonical homomorphism, the Asai-Flach map, constructed in [9] (building on several earlier works such as [8]):

$$
\mathcal{A} \mathcal{F}^{[\pi, k]}:\left(\pi \otimes \mathcal{O}^{\times}(Y) \mathbf{c}\right)_{H_{f}} \rightarrow H^{1}\left(\mathbf{Q}, V^{\mathrm{As}}(\pi)^{*}(-k)\right)
$$

where $V^{\text {As }}(\pi)$ is the Asai Galois representation attached to $\pi$, and we have fixed an isomorphism $\overline{\mathbf{Q}}_{p} \cong \mathbf{C}$. The subscript $H_{f}$ indicates $H_{f}$-coinvariants.

Theorem 6.3. Suppose $\pi$ is not a twist of a base-change from $\mathbf{Q}$. Then the Asai-Flach map factors through $\pi \otimes \mathcal{J}(\chi)$, and its image is contained in a 1-dimensional subspace of $H^{1}\left(\mathbf{Q}, V^{\text {As }}(\pi)^{*}(-k)\right)$.

Proof. Using Proposition 6.2, we see that $\mathcal{A} \mathcal{F}^{[\pi, k]}$ must vanish on $\left(\mathbf{Q}^{\text {ab }}\right)^{\times} \otimes \mathbf{C}$, so it factors through $\pi \otimes \mathcal{J}(\chi)$ if $\chi \neq 1$, or $\pi \otimes \mathcal{J}^{0}(\chi)$ if $\chi=1$, where $\chi=\left(\left.\omega_{\pi}\right|_{\mathbf{A}_{f}^{\times}}\right)^{-1}$ as above. Using Proposition 6.1 , combined with a second application of Proposition 6.2 if $\omega_{\pi}$ is trivial on $\mathbf{Q}$, the result follows.

As in the $\mathrm{GSp}_{4}$ case described in [11, Section 6.6], one can remove the dependency on the test data entirely: using zeta-integrals, we can construct a canonical basis vector $Z_{\text {can }} \in \operatorname{Hom}\left(\pi_{f} \otimes \mathcal{J}(\chi), \mathbb{1}\right)$, and define $\mathcal{A} \mathcal{F}_{\text {can }}^{[\pi, k]} \in H^{1}\left(\mathbf{Q}, V^{\text {As }}(\pi)^{*}(-k)\right)$ as the unique class such that

$$
\mathcal{A} \mathcal{F}^{[\pi, k]}=Z_{\mathrm{can}} \cdot \mathcal{A} \mathcal{F}_{\mathrm{can}}^{[\pi, k]}
$$

We hope that this perspective may be useful in formulating and proving explicit reciprocity laws in the Asai setting.

Remark 6.4. The constructions of [9] also apply to other twists of $V^{\mathrm{As}}(\pi)$, and to Hilbert modular forms of non-parallel weight; but in these other cases the input data for the Asai-Flach map lies in an irreducible principal series representation of $H_{f}$, so the necessary multiplicity-one results are standard. (The delicate cases are those which correspond to near-central values of $L$-series.)

Acknowledgment: I am grateful to Giada Grossi and Dipendra Prasad for interesting conversations in connection with this paper, and especially to Nadir Matringe for his answer to a question of mine on MathOverflow, which provided the key to Theorem 4.1 (a). I would also like to thank Kei Yuen Chan, for pointing out the relevance of a result of Mœglin-Waldspurger recalled in Section 2.4; and the anonymous referee, for suggesting a much cleaner proof of Theorem 4.1 (b).

Funding: The author was supported by Royal Society University Research Fellowship UF160511.

## References

[1] U. K. Anandavardhanan, A. C. Kable and R. Tandon, Distinguished representations and poles of twisted tensor $L$-functions, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2875-2883.
[2] C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality, J. Reine Angew. Math. 610 (2007), 149-180.
[3] K. Y. Chan, Ext-multiplicity theorem for standard representations of $\left(\mathrm{GL}_{n+1}, \mathrm{GL}_{n}\right)$, preprint (2021), http://arxiv.org/abs/2104.11528.
[4] W. T. Gan, B. H. Gross and D. Prasad, Branching laws for classical groups: The non-tempered case, Compos. Math. 156 (2020), no. 11, 2298-2367.
[5] B. H. Gross and D. Prasad, On the decomposition of a representation of $\mathrm{SO}_{n}$ when restricted to $\mathrm{SO}_{n-1}$, Canad. J. Math. 44 (1992), no. 5, 974-1002.
[6] G. Grossi, On norm relations for Asai-Flach classes, Int. J. Number Theory 16 (2020), no. 10, 2311-2377.
[7] M. Harris and A. J. Scholl, A note on trilinear forms for reducible representations and Beilinson's conjectures, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 1, 93-104.
[8] G. Kings, Higher regulators, Hilbert modular surfaces, and special values of L-functions, Duke Math. J. 92 (1998), no. 1, 61-127.
[9] A. Lei, D. Loeffler and S. L. Zerbes, Euler systems for Hilbert modular surfaces, Forum Math. Sigma 6 (2018), Paper No. e23.
[10] D. Loeffler, On local zeta-integrals for $G S p(4)$ and $G S p(4) \times G L(2)$, preprint (2020), http://arxiv.org/abs/2011.15106.
[11] D. Loeffler and S. L. Zerbes, On p-adic regulators for $\mathrm{GSp}(4) \times \mathrm{GL}(2)$ and $\mathrm{GSp}(4) \times \mathrm{GL}(2) \times \mathrm{GL}(2)$, preprint (2020), https://arxiv.org/abs/2011.15098.
[12] N. Matringe, Distinguished representations and exceptional poles of the Asai-L-function, Manuscripta Math. 131 (2010), no. 3-4, 415-426.
[13] N. Matringe, Distinguished generic representations of GL(n) over p-adic fields, Int. Math. Res. Not. IMRN 2011 (2011), no. 1, 74-95.
[14] C. Mœglin and J.-L. Waldspurger, La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général, in: Sur les conjectures de Gross et Prasad. II, Astérisque 347, Société Mathématique de France, Paris (2012), 167-216.
[15] M. Nori and D. Prasad, On a duality theorem of Schneider-Stuhler, J. Reine Angew. Math. 762 (2020), 261-280.
[16] D. Prasad, Trilinear forms for representations of $\mathrm{GL}(2)$ and local $\epsilon$-factors, Compos. Math. 75 (1990), no. 1, 1-46.
[17] D. Prasad, Invariant forms for representations of $\mathrm{GL}_{2}$ over a local field, Amer. J. Math. 114 (1992), no. 6, 1317-1363.
[18] D. Prasad and R. Schulze-Pillot, Generalised form of a conjecture of Jacquet and a local consequence, J. Reine Angew. Math. 616 (2008), 219-236.
[19] J. Tate, Number theoretic background, in: Automorphic Forms, Representations and L-Functions (Corvallis 1977), Proc. Sympos. Pure Math. 33 Part 2, American Mathematical Society, Providence (1979), 3-26.


[^0]:    *Corresponding author: David Loeffler, Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom, e-mail: d.a.loeffler@warwick.ac.uk. https://orcid.org/0000-0001-9069-1877

