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Abstract: We study GL, (F)-invariant periods on representations of GL,(A), where F is a non-archimedean
local field and A/F a product of field extensions of total degree 3. For irreducible representations, a theorem
of Prasad shows that the space of such periods has dimension < 1, and is non-zero when a certain e-factor
condition holds. We give an extension of this result to a certain class of reducible representations (of Whittaker
type), extending results of Harris—Scholl when A is the split algebra F x F x F.
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1 Introduction

One of the central problems in the theory of smooth representations of reductive groups over non-archimed-
ean local fields is to determine when a representation of a group G admits a linear functional invariant under
a closed subgroup H (an H-invariant period).

The Gross—Prasad conjectures [5] give a very precise and elegant description of when such periods exist,
for many natural pairs (G, H), in terms of e-factors. However, the original formulation of these conjectures
applies to members of generic L-packets for G; and the analogous picture for representations in non-generic
L-packets is rather more complex. Although the e-factor is still well-defined for all such L-packets, the con-
jecture formulated in [4] only applies when the L-parameters satisfy an additional “relevance” condition,
raising the natural question of whether the e-factors for non-relevant L-packets have any significance in terms
of invariant periods.

In this short note, we describe some computations of branching laws in the following simple case: G is
GL,(A), where A/F is a cubic étale algebra, and H is the subgroup GL,(F). Our computations suggest an
alternative approach to the theory: rather than studying branching laws for non-generic irreducible repre-
sentations, we focus on representations which are possibly reducible, but satisfy a certain “Whittaker-type”
condition. We show that H-invariant periods on these representations are unique if they exist, and that their
existence is governed by e-factors, extending the results of Prasad [16, 17] for irreducible generic represen-
tations, and Harris and Scholl [7] for A the split algebra (in which case the e-factor is always +1). In this
optic, the “relevance” condition appears as a criterion for the H-invariant period to factor through the unique
irreducible quotient.

The result of the present paper, combined with other recent works such as that of Chan [3] in the case
(G, H) = (GL,(F) x GLp4+1(F), GLy(F)), would seem to suggest that many “Gross—Prasad-style” branching
results should extend to Whittaker-type representations, and we hope to explore this further in future works.
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We conclude with an application to global arithmetic. For 7t a Hilbert modular form over a real quadratic
field, the constructions of [6, 8, 9] give rise to a family of cohomology classes taking values in the 4-dimen-
sional Asai Galois representation associated to 7. We show that if 77 is not of CM type and not a base-change
from Q, then these elements all lie in a 1-dimensional subspace. This is the analogue for quadratic Hilbert
modular forms of the result proved in [7] for Beilinson’s elements attached to the Rankin convolution of two
modular forms.

2 Statements

Throughout this paper, F denotes a non-archimedean local field of characteristic 0. If G is a reductive group
over F, then a “representation” of G(F) shall mean a smooth linear representation on a complex vector space.

2.1 Epsilon-factors

We choose a non-trivial additive character y of F. For Weil-Deligne representations p of F, we define e-factors
e(p) = &(p, Y) following Langlands (the “£;” convention in [19, Section 3.6]), so that £(p) is independent of
y if det(p) = 1. We note that

e(p1 ®p2) = e(p1)e(pa),  &(p)e(pY) = (detp)(-1),

where det(p) is identified with a character of F* via class field theory.
We write sp(n) for the n-dimensional Weil-Deligne representation given by the (n — 1)-st symmetric
power of the Langlands parameter of the Steinberg representation, so that the eigenvalues of the Frobenius

n-1

element on sp(n) are q%" , q%" ,...,q 7 ,where q is the size of the residue field.

2.2 The generic Langlands correspondence for GL,

The classical local Langlands correspondence for GL, is a bijection between irreducible smooth representa-
tions of GL, (F), and 2-dimensional Frobenius-semisimple representations of the Weil-Deligne group of F.

In this paper, we will use the following modification of the correspondence. A representation of GL, (F)
is said to be of Whittaker type if it is either irreducible and generic, or a reducible principal series representa-
tion with 1-dimensional quotient. (These are precisely the representations of GL, (F) which have well-defined
Whittaker models.) The generic Langlands correspondence is a bijection between Whittaker-type representa-
tions of GL;(F) and 2-dimensional Frobenius-semisimple Weil-Deligne representations; it agrees with the
classical Langlands correspondence on irreducible generic representations, and maps a reducible Whittaker-
type principal series to the classical Langlands parameter of its 1-dimensional quotient.!

In particular, the unramified Weil-Deligne representation with Frobenius acting as ( q'? P ) corre-
sponds to the reducible principal series £ containing the Steinberg representation Str as subrepresentation
and trivial 1-dimensional quotient. (We omit the subscript F if it is clear from context.)

2.3 Statement of the theorem

We now state our main theorem. Let A/F be a separable cubic algebra, so A is a product of field extensions
of F of total degree 3. Let w4 be the quadratic character of F* determined by the class of disc(A) in F*/F*2.
We let G = GL,(A), and H = GL,(F), embedded in G in the obvious way.

1 This correspondence was introduced in [2]; but our conventions differ from [2] by a power of the norm character, in order that
our generic Langlands correspondence extend the classical one.
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The Langlands dual group of GL; /A has a natural 8-dimensional Asai, or multiplicative induction, repre-
sentation; in the case A = F? this is simply the tensor product of the defining representations of the factors.
We use this representation, and the generic Langlands correspondence for GL, above, to define Asai e-factors
&(As(IT)) for Whittaker-type representations of GL,(A).

Finally, we consider Jacquet-Langlands transfers. Let H' = D* where D/F is the unique non-split quater-
nion algebra. Let G’ = (D ®r A)*, and let IT’ be the Jacquet-Langlands transfer of IT to G’ if this exists, and
0 otherwise.

Remark 2.1. Note thatif A = E x F for E a quadratic field extension, then D* is split over E, and hence
G' = GLy(E) x DX(F).

Thus if II = 7 ® 0, for 71, 0 representations of GL, (E) and GL, (F), respectively, we have I1' = 7= ¢’. In partic-
ular, II' # 0 whenever o’ is discrete series (even if 7 is principal series, possibly reducible).

Main Theorem. Let II be a representation of GL,(A) of Whittaker type, whose central character is trivial on F*
(embedded diagonally in A*). Then we have

1 if e(As(Il))wa(-1) =1,

dim Hompg(II, 1) = {
0 if e(As(Il))wa(-1) = -1,

and
dim Hompg(I1, 1) + dim Homg(I1', 1) = 1.

If IT is an irreducible generic representation, then this is the main result of [16] for A the split algebra, and
[17] for non-split A (modulo the case of supercuspidal representations of cubic fields, completed in [18]). The
new content of the above theorem is that this also holds for reducible Whittaker-type II.

Remark 2.2. Any such II can be written as the specialisation at s = 0 of an analytic family of Whittaker-type
representations II(s) indexed by a complex parameter s, which are irreducible for generic s and all have
central character trivial on F*. For such families, the e-factors €(AsII(s)) are locally constant as a function
of s; hence, given the results of [17, 18] in the irreducible case, our theorem is equivalent to the assertion that
dim Hompy (TI(s), 1) and dim Homyy (II(s)’, 1) are locally constant in s.

2.4 Relation to results of Maeglin-Waldspurger

Note that [14, Proposition in Section 1.3] gives a formula for branching multiplicities for certain parabolically-
induced representations of special orthogonal groups SO(d) x SO(d") (with d — d’ odd), expressing these in
terms of multiplicities for irreducible tempered representations of smaller special orthogonal groups. These
results are applied in [14, Proposition in Section 1.3] to prove the Gross—Prasad conjecture for irreducible
representations in non-tempered generic L-packets (by reduction to the tempered case); but the results are
also valid for reducible representations.

Since the split form of SO(3) is PGL(2), and SO(4) is closely related to PGL(2) x PGL(2), one can derive
many cases of our Main Theorem from their result applied to various forms of SO(3) x SO(4). In fact, if A = F3
or A = E x F for E quadratic, we can obtain in this way all cases of the Main Theorem not already covered by
Prasad’s results.

However, the case when A is a cubic field extension does not appear to fit into the framework of
[14, Proposition in Section 1.3]; and the proof given in [14] is rather indirect, particularly in the case when
the SO(3) representation is reducible, in which case their argument requires a delicate switch back and forth
between representations of SO(3) x SO(4) and SO(4) x SO(5). So we hope that the alternative, more direct
approach given here will be of interest.
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3 Split triple products

We first put A = F x F x F.

Theorem 3.1 (Prasad, Harris—Scholl). Let 11, 15, 13 be representations of GL, (F) of Whittaker type, with cen-
tral characters w; such that wiw,ws3 = 1. Then we have
1 ife(m xm xm3) =+1,
dim Homgy, (r)(m1 ® M ® 113, 1) = f e(m 2 3)
0 ife(m xmxms3)=-1,
and
dim Homgr, r) (711 ® 712 ® 713, 1) + dim Homp«(p) (7] ® 1y ® 714, 1) = 1.

If the 71; are all irreducible, then the above is the main result of [16]. If one or more of the 7; is isomorphic
to a twist of X, then the e-factor is automatically +1, and 7'['1 ® 7'[’2 ® n'3 is the zero representation. So all that
remains to be shown is that in this case we have dim Homgr,(r)(711 ® m; ® 73, 1) = 1. This is established in
[7, Propositions 1.5, 1.6 and 1.7], except for one specific case, which is when all three of the 71; are twists of =
by characters.

In this case, by twisting we may assume m, = 13 = £ and m; = £Z® 1, where n is a character of F*
with n? = 1. The case n = 1 is covered by [7, Proposition 1.7], so we assume 7 is a non-trivial quadratic
character. In this case Homy(n ® £r ® 2f, 1) = Hompg(ZF, Z¥ ®1n) =0, so Hompy(m ® mp ® 3, 1) injects into
Homp (nStr ® £ ® X, 1), which has dimension 1 by [7, Proposition 1.6]. Thus Homp (711 ® 1, ® 713, 1) has
dimension < 1. Since one can easily write down a non-zero element of this space using the Rankin-Selberg
zeta integral, we conclude that its dimension is 1 as required.

4 Quadratic fields

We now suppose A = E x F with E/F quadratic, so Il = 7 ® ¢ for Whittaker-type representations 71 of GL, (E)
and o of GL,(F) such that wy|r - ws = 1. Since the case of 71, ¢ irreducible is proved in [17], it suffices to
consider the following cases:

(a) misirreducible and o = 2,

(b) oisirreducible and = X,

(c) m=ZXgando =X ®n, where 7 is a quadratic character.

In cases (a) and (c), we always have £(As(n) x 0)eg/r(-1) = 1, and ¢’ = {0}, so the Main Theorem amounts to
the assertion that dim Hompy (7 = 0, 1) = 1. In case (b), both signs can occur.

Theorem 4.1 (a). Let 1 be an irreducible generic representation of GL,(E) such that w|px = 1. Then we have
dimHompyg(n® X, 1) = 1.

Remark 4.2. Note that the case when E/F is unramified, and 77 is unramified and tempered, is part of [6, Theo-
rem 4.1.1]. However, the proof of this statement given in [6] has a minor error which means the argument does
not work when 7 is the normalised induction of the trivial character of Bg. So the argument below fixes this
small gap.

Proof. We first observe that Hompy (71 ® Xf, 1) is non-zero. Since 7 is generic, it has a Whittaker model W(r)
with respect to any non-trivial additive character of E. We may suppose that this additive character is trivial
on F, so that we may define the Asai zeta-integral

Z(W, @, 5) = j W(h)D((0, 1)h)|det h[* dh,
Ni\H

for W € W(rr) and @ € 8(F?) (the space of Schwartz functions on F). Here Ny is the upper-triangular unipotent
subgroup of H.
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It is well known that this integral converges for R(s) > 0 and has meromorphic continuation to the whole
complex plane; and the values of Z(-, —, s) span a non-zero fractional ideal of C[g°, g~°], generated by an
L-factor independent of @ and W, which is the Asai L-factor L(As(7), s). Thus the map

. Z(W,dD,s)

(W20 % s, 9 w
defines a non-zero, H-invariant bilinear form W(r) ® $(F?) — C. Since the maximal quotient of S(F?) on
which F* acts trivially is isomorphic to Zr (see for example [10, Proposition 3.3 (b)]), this shows that
Hompy(m = Xf, 1) # 0 as claimed.

So, to prove Theorem 4.1 (a), it suffices to show that dim Homg(m = Zf, 1) < 1. As 7 has unitary cen-
tral character, it is either a discrete-series representation, in which case it is automatically tempered, or an
irreducible principal series, which may or may not be tempered. We shall consider these cases separately.

Note that [1, Theorem 1.1] states that if 77 is an irreducible tempered representation of GL;(E), then
we have dim Homyr) (71, 1) = 1, where M(F) = {(§ 1)} is the mirabolic subgroup of GL,(F). If we assume
Wxlpx = 1, then since F* - M(F) = B(F) is the Borel subgroup of GL, (F), we have

Homyr)(m, 1) = Homp)(m, 1) = Hompg(r, Indg(F)(Il)).

As Indg( p(1) = %}, this proves Theorem 4.1 (a) for tempered 7.

We now consider the principal-series case. For a, § smooth characters of E*, we write Ig(a, 8) for the
normalised induction to GL;(E) of the character @ m  of B(E). Note that this representation is tempered if
and only if a and f are unitary. We suppose a/f8 # | - Ijig1 and af|px = 1. Then we have the following results:

o« Hompy(m®Stp, 1) is zero if af® =1, and 1-dimensional otherwise, where B¢ denotes the character

X — B(x€). See [17, Remark 4.1.1].

o« Homp(nrw1,1)is 1-dimensional if aB¢ = 1, orif a|px = B|px = 1; otherwise it is 0. See [13, Theorem 5.2].
We conclude that exactly one of Hompy (77 ® Stg, 1) and Hompy (77 ® 1, 1) isnon-zero (and Theorem 4.1 (a) there-
fore follows), unless m is of the form Ig(a, B) with a|p< = B|p< = 1 and a€ # 1. However, in this exceptional
case a and B are unitary, and thus 7 is tempered, so Theorem 4.1 (a) has already been established for 77 above.
This completes the proof of Theorem 4.1 (a). O

Remark 4.3. It follows, in particular, that for a generic irreducible representation 7 of GL,(E), we have
Hompg(7, 1) # O (i.e. i is “F-distinguished”) if and only if the zeta-integral (+) factors through the 1-dimen-
sional quotient of Xr, and thus vanishes on all ® with ®(0, 0) = 0; that is, s = 0 is an exceptional pole
of the Asai L-factor. This is the n = 2 case of a theorem due to Matringe [12, Theorem 3.1] applying to
GL,(E)-representations. See [10] for analogous results and conjectures regarding poles of zeta-integrals for
GSp, and GSp,, x GL,.

For case (b) of the main theorem, we need the following lemma:

Lemma 4.4. Let o be an irreducible generic representation of GL, (F) with ws = 1. Then
£(As(Zg) x 0) = £(0)e(0 x WE/F).
Moreover, if o + Stg, then we have
£(0)e(0o x wgyr) = €(As(Stg) x 0),
while for o = Stg we have
e(As(Stg) x Stp)wg/r(-1) =1 and &(As(Zg) x Stp)wg/r(-1) = -1.

Proof. If o is not a twist of Steinberg, then its Weil-Deligne representation has trivial monodromy action, so
we compute that

£(As(Stg) x 0) = £((sp(3) ® wg/r) X 0) = £(0 x wgp)e(0) det(~Frob : pF)2,
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Since o has trivial central character, £(0) = +1.If 0 is supercuspidal we are done, since in this case pff =0.Ifo
is principal series, then pff must be either 0, or all of p,, since p; has determinant 1. Thus det(-Frob : pff ) =1,
s0 £(As(Stg) x 0) = £(0)e(0 x wg/F), proving the claim in this case. The case when ¢ is a twist of the Steinberg
by a non-trivial (necessarily quadratic) character can be computed similarly. O

Theorem 4.1 (b). Let 0 be an irreducible generic representation of GL, (F) with w, = 1. Then:
(i) Ife(0)e(o x wesr) = we/r(-1), then dimHomp (g = 0, 1) = 1 and Homp (Zg = o', 1) = 0.
(il) Ife(o)e(o x wejr) = —wgr(-1), then Homy(2g = 0, 1) = 0 and dim Homy (Zg m o', 1) = 1.

Proof. We first consider the situation for H'. This case is relatively simple, since H' is compact modulo centre,
and hence the functor of H'-invariants is exact on the category of H'-representations trivial on F*. So we have

dim Homp (2 ® 0, 1) = dim Homg (¢', 1) + dim Hompy (Stg ® o', 1).

Using Prasad’s results for Homy (Stg ® 0', 1) and the preceding lemma, we see that dim Homy (2 ® ¢/, 1)
has dimension 1 if e(0)e(0 x wg/r) = —wEg/r(-1) and is zero otherwise, as required.

For the group H, the situation is a little more complicated: since o is generic, we have Homg (o, 1) is zero,
and hence there is an exact sequence

0 - Homgy (2 ® 0, 1) » Homy(Stg® 0, 1) — Extfl,GLz(F)(o, 1).
Claim. The group Ext})GLz( F)(a, 1) is 1-dimensional if o = Stg, and zero otherwise.

Proof of Claim. If o is supercuspidal, then the result is immediate, since o is projective in the category of
PGL, (F)-representations. The remaining cases can be handled directly using Frobenius reciprocity, or alter-
natively, one can appeal to Schneider—Stuhler duality (as reformulated in [15, Theorem 2]) to show that the
Ext groupis dual to Hompy(1, D(0)) where D is the Aubert-Zelevinsky involution, which sends Str to the trivial
representation. O

This gives the desired formula for dim Homg(Zg ® 0, 1) in all cases except when ¢ = Stg, in which case we
must show that the non-trivial H-invariant period of Sty ® Sty does not lift to g ® Str. This can be done
directly: we can compute Zg|gr,(r) via Mackey theory, using the two orbits of H on P1(E) to obtain the exact
sequence

0 - cIndS2 (1) > £g — Ie(| - g, | - [;) = O.

The latter representation is irreducible and has no homomorphisms to Str; and we saw in the proof of Theo-
rem 4.1 (a) that
Homp (cIndf (1) ® Stg, 1) = Homgx(St, 1) = 0.

This shows that Hompy(Zg = Stg, 1) = 0, completing the proof. O

Remark 4.5. We are grateful to the anonymous referee for pointing out the significance of the vanishing
of Extfl,GLz( (0, 1); the original version of this paper used a different and rather more complicated argument.

Theorem 4.1 (c). Let n be a quadratic character of F* (possibly trivial). Then we have
dimHompy (2 ® ZF, 1) = 1.

Proof. The computation of the e-factor is immediate; and by a zeta-integral argument as before, we can show
that Homgy(Zg ® ZF, ) # O (since the representation X, despite being reducible, has a well-defined Whittaker
model). So it suffices to show that the hom-space has dimension < 1.

If n is not the trivial character, then

Homp(l®Zp, 1) =0,

so the desired Hom-space injects into Homg(Stg ® £, 17), which is 1-dimensional by Theorem 4.1 (a).
If n is trivial, then we have seen above that Homp(Xf = StF, 1) is zero. So

Hompy (g ® Zf, 1) = Homg(Zg, 1).

From the Mackey decomposition of Zg|cL,(r) above, one sees easily that this space is 1-dimensional. O
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5 Cubic fields

We briefly discuss the case where A is a cubic extension of F.

Theorem 5.1. Let m be a Whittaker-type representation of GL, (E). Then the space Homp(mt, 1) has dimension 1
if e(As(m))w4(-1) = 1 and is zero otherwise.

Proof. The case of irreducible generic 7 is proved in [17] assuming 77 non-supercuspidal, and the supercus-
pidal case is filled in by [18]. In this case, the only example of a reducible Whittaker-type representation of G
is ¥f ® n, where n is a character of E*; and the central-character condition implies that A = 1| must be trivial
or quadratic.

The e-factors £(As(Stg) x A) are computed in [17, Section 8]. We find that £(As(Zg) x D)wg/r(-1) is
always +1. On the other hand, e(As(Stg) x A)wg/r(-1) is +1 if A is non-trivial quadratic, and -1 if A = 1. So it
follows that exactly one of Hompy(1, A) and Hompy (Stg, A) is non-zero, implying that dim Homy (¥ @ 17, 1) < 1.

To complete the proof, we must show that when A # 1, the H-invariant homomorphism Hompg(Stg, A)
extends to Xg. However, this is clear since the obstruction lies in Ext}{(ll, A), which is zero. O

This completes the proof of the Main Theorem.

6 An application to Euler systems

We now give a global application, a strengthening of some results from [9] and [6] on Euler systems for
quadratic Hilbert modular forms. Let K/Q be a real quadratic field and write G = Resg,q(GL;), H = GLy,q < G;
set Gr = G(Ay) = GL>(Ag,r) and Hy similarly.

6.1 Adelic representations

Let y be a finite-order character of A; and define a representation of Hy by
!
100 = Q) Jelxe),
¢

where J(x,) denotes the representation of H, given by normalised induction of the character | - |% X|- |‘%
of the Borel subgroup. For y = 1, we let J°(1) denote the codimension 1 subrepresentation of J(1). Exactly as
in [7, Section 2], the local results above imply the following branching law for G;-representations:

Proposition 6.1. Let it be an irreducible admissible representation of Gy, all of whose local factors are generic,

with wrlax = Xt

«  We have dim Homp, (m® J(x), 1) = 1.

o If x =1 and there exists some ¢ such that Hompg, (¢, 1) = O, then dim HOIan(T[®f]0(1), 1) = 1 and the
natural restriction map Homp, (m® (1), 1) — Homp, (1 ® 7°9(1), 1) is a bijection.

e Ifx=1andHomy,(m,, 1) # O for all ¢, then dim Homp, (7 ® 7°(1), 1) = co.

6.2 Hilbert modular forms

Suppose now that 7 is (the finite part of) a cuspidal automorphic representation, arising from a Hilbert
modular cusp form of parallel weight k + 2 > 2, normalised so that w, has finite order.

Proposition 6.2. Suppose 7 is not a twist of a base-change from GL;/q. Then, for any Dirichlet character T,
there exist infinitely many primes € such that Homp, (1, ® 7, 1) = 0.

Proof. See [6, Proposition 7.2.5]. O
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There is a natural Hy-representation O*(Y)¢ of modular units, where Y is the infinite-level modular curve (the
Shimura variety for GL,). Note that this representation is smooth, but not admissible. It fits into a long exact
sequence
0-(@)*®C - 0*(Ve - 1M e P I -0,
n#1

with Hy acting on (Q?)* via the Artin reciprocity map of class field theory, and the sum is over all even
Dirichlet characters 1.

There is a canonical homomorphism, the Asai—Flach map, constructed in [9] (building on several earlier
works such as [8]):

AFIEH (10 0%(Y)e)y, — H'(Q, V()" (-K)),

where VAS(7) is the Asai Galois representation attached to 77, and we have fixed an isomorphism ﬁp = C.The
subscript Hy indicates Hy-coinvariants.

Theorem 6.3. Suppose 7 is not a twist of a base-change from Q. Then the Asai—Flach map factors through
7 ® J(x), and its image is contained in a 1-dimensional subspace of H(Q, VAS(m)* (=k)).

Proof. Using Proposition 6.2, we see that AJ" (K must vanish on (Q#P)* & C, so it factors through 77 ® I
ify+1,or @ J°(y) if y = 1, where y = (w,| Afx)‘l as above. Using Proposition 6.1, combined with a second
application of Proposition 6.2 if w is trivial on Q, the result follows. O

As in the GSp, case described in [11, Section 6.6], one can remove the dependency on the test data
entirely: using zeta-integrals, we can construct a canonical basis vector Zcan € Hom(rrr ® J(x), 1), and define
AFER ¢ H1(Q, VAS(11)* (—k)) as the unique class such that

AT = Zan - AT,

We hope that this perspective may be useful in formulating and proving explicit reciprocity laws in the Asai
setting.

Remark 6.4. The constructions of [9] also apply to other twists of V2%(r7), and to Hilbert modular forms of
non-parallel weight; but in these other cases the input data for the Asai-Flach map lies in an irreducible
principal series representation of Hy, so the necessary multiplicity-one results are standard. (The delicate
cases are those which correspond to near-central values of L-series.)
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