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Abstract: We study GL
2
(F)-invariant periods on representations of GL

2
(A), where F is a non-archimedean

local field and A/F a product of field extensions of total degree 3. For irreducible representations, a theorem
of Prasad shows that the space of such periods has dimension ⩽ 1, and is non-zero when a certain ε-factor
conditionholds.Wegive anextensionof this result to a certain class of reducible representations (ofWhittaker

type), extending results of Harris–Scholl when A is the split algebra F × F × F.
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1 Introduction
One of the central problems in the theory of smooth representations of reductive groups over non-archimed-

ean local fields is to determine when a representation of a group G admits a linear functional invariant under

a closed subgroup H (an H-invariant period).
The Gross–Prasad conjectures [5] give a very precise and elegant description of when such periods exist,

for many natural pairs (G, H), in terms of ε-factors. However, the original formulation of these conjectures

applies to members of generic L-packets for G; and the analogous picture for representations in non-generic
L-packets is rather more complex. Although the ε-factor is still well-defined for all such L-packets, the con-
jecture formulated in [4] only applies when the L-parameters satisfy an additional “relevance” condition,

raising the natural question ofwhether the ε-factors for non-relevant L-packets have any significance in terms

of invariant periods.

In this short note, we describe some computations of branching laws in the following simple case: G is

GL
2
(A), where A/F is a cubic étale algebra, and H is the subgroup GL

2
(F). Our computations suggest an

alternative approach to the theory: rather than studying branching laws for non-generic irreducible repre-

sentations, we focus on representations which are possibly reducible, but satisfy a certain “Whittaker-type”

condition. We show that H-invariant periods on these representations are unique if they exist, and that their
existence is governed by ε-factors, extending the results of Prasad [16, 17] for irreducible generic represen-
tations, and Harris and Scholl [7] for A the split algebra (in which case the ε-factor is always +1). In this

optic, the “relevance” condition appears as a criterion for the H-invariant period to factor through the unique
irreducible quotient.

The result of the present paper, combined with other recent works such as that of Chan [3] in the case

(G, H) = (GLn(F) × GLn+1(F), GLn(F)), would seem to suggest that many “Gross–Prasad-style” branching

results should extend toWhittaker-type representations, and we hope to explore this further in future works.
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We conclude with an application to global arithmetic. For π a Hilbert modular form over a real quadratic

field, the constructions of [6, 8, 9] give rise to a family of cohomology classes taking values in the 4-dimen-

sional Asai Galois representation associated to π. We show that if π is not of CM type and not a base-change

from Q, then these elements all lie in a 1-dimensional subspace. This is the analogue for quadratic Hilbert

modular forms of the result proved in [7] for Beilinson’s elements attached to the Rankin convolution of two

modular forms.

2 Statements
Throughout this paper, F denotes a non-archimedean local field of characteristic 0. If G is a reductive group

over F, then a “representation” of G(F) shall mean a smooth linear representation on a complex vector space.

2.1 Epsilon-factors

We choose a non-trivial additive characterψ of F. ForWeil–Deligne representations ρ of F, we define ε-factors
ε(ρ) = ε(ρ, ψ) following Langlands (the “εL” convention in [19, Section 3.6]), so that ε(ρ) is independent of
ψ if det(ρ) = 1. We note that

ε(ρ
1
⊕ ρ

2
) = ε(ρ

1
)ε(ρ

2
), ε(ρ)ε(ρ∨) = (det ρ)(−1),

where det(ρ) is identified with a character of F× via class field theory.
We write sp(n) for the n-dimensional Weil–Deligne representation given by the (n − 1)-st symmetric

power of the Langlands parameter of the Steinberg representation, so that the eigenvalues of the Frobenius

element on sp(n) are q 1−n
2 , q 3−n

2 , . . . , q n−1
2 , where q is the size of the residue field.

2.2 The generic Langlands correspondence for GL2

The classical local Langlands correspondence for GL
2
is a bijection between irreducible smooth representa-

tions of GL
2
(F), and 2-dimensional Frobenius-semisimple representations of the Weil–Deligne group of F.

In this paper, we will use the following modification of the correspondence. A representation of GL
2
(F)

is said to be of Whittaker type if it is either irreducible and generic, or a reducible principal series representa-
tionwith 1-dimensional quotient. (These are precisely the representations of GL

2
(F)which havewell-defined

Whittaker models.) The generic Langlands correspondence is a bijection between Whittaker-type representa-

tions of GL
2
(F) and 2-dimensional Frobenius-semisimple Weil–Deligne representations; it agrees with the

classical Langlands correspondence on irreducible generic representations, andmaps a reducibleWhittaker-

type principal series to the classical Langlands parameter of its 1-dimensional quotient.¹

In particular, the unramified Weil–Deligne representation with Frobenius acting as ( q1/2 q−1/2 ) corre-
sponds to the reducible principal series ΣF containing the Steinberg representation StF as subrepresentation

and trivial 1-dimensional quotient. (We omit the subscript F if it is clear from context.)

2.3 Statement of the theorem

We now state our main theorem. Let A/F be a separable cubic algebra, so A is a product of field extensions

of F of total degree 3. Let ωA be the quadratic character of F× determined by the class of disc(A) in F×/F×2.
We let G = GL

2
(A), and H = GL

2
(F), embedded in G in the obvious way.

1 This correspondence was introduced in [2]; but our conventions differ from [2] by a power of the norm character, in order that

our generic Langlands correspondence extend the classical one.
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The Langlands dual group of GL
2
/A has a natural 8-dimensional Asai, ormultiplicative induction, repre-

sentation; in the case A = F3 this is simply the tensor product of the defining representations of the factors.

We use this representation, and the generic Langlands correspondence for GL
2
above, to define Asai ε-factors

ε(As(Π)) for Whittaker-type representations of GL
2
(A).

Finally, we consider Jacquet–Langlands transfers. Let H󸀠 = D× where D/F is the unique non-split quater-
nion algebra. Let G󸀠 = (D ⊗F A)×, and let Π

󸀠
be the Jacquet–Langlands transfer of Π to G󸀠 if this exists, and

0 otherwise.

Remark 2.1. Note that if A = E × F for E a quadratic field extension, then D× is split over E, and hence

G󸀠 = GL
2
(E) × D×(F).

Thus if Π = π ⊠ σ, for π, σ representations of GL
2
(E) and GL

2
(F), respectively, we have Π󸀠 = π ⊠ σ󸀠. In partic-

ular, Π

󸀠 ̸= 0 whenever σ󸀠 is discrete series (even if π is principal series, possibly reducible).

Main Theorem. Let Π be a representation of GL
2
(A) of Whittaker type, whose central character is trivial on F×

(embedded diagonally in A×). Then we have

dimHomH(Π, 𝟙) =
{
{
{

1 if ε(As(Π))ωA(−1) = 1,
0 if ε(As(Π))ωA(−1) = −1,

and
dimHomH(Π, 𝟙) + dimHomH󸀠 (Π󸀠, 𝟙) = 1.

If Π is an irreducible generic representation, then this is the main result of [16] for A the split algebra, and

[17] for non-split A (modulo the case of supercuspidal representations of cubic fields, completed in [18]). The

new content of the above theorem is that this also holds for reducible Whittaker-type Π.

Remark 2.2. Any such Π can be written as the specialisation at s = 0 of an analytic family of Whittaker-type

representations Π(s) indexed by a complex parameter s, which are irreducible for generic s and all have

central character trivial on F×. For such families, the ε-factors ε(As Π(s)) are locally constant as a function
of s; hence, given the results of [17, 18] in the irreducible case, our theorem is equivalent to the assertion that

dimHomH(Π(s), 𝟙) and dimHomH󸀠 (Π(s)󸀠, 𝟙) are locally constant in s.

2.4 Relation to results of Mœglin–Waldspurger

Note that [14, Proposition inSection1.3] gives a formula for branchingmultiplicities for certainparabolically-

induced representations of special orthogonal groups SO(d) × SO(d󸀠) (with d − d󸀠 odd), expressing these in
terms of multiplicities for irreducible tempered representations of smaller special orthogonal groups. These

results are applied in [14, Proposition in Section 1.3] to prove the Gross–Prasad conjecture for irreducible

representations in non-tempered generic L-packets (by reduction to the tempered case); but the results are

also valid for reducible representations.

Since the split form of SO(3) is PGL(2), and SO(4) is closely related to PGL(2) × PGL(2), one can derive

many cases of our Main Theorem from their result applied to various forms of SO(3) × SO(4). In fact, if A = F3

or A = E × F for E quadratic, we can obtain in this way all cases of the Main Theorem not already covered by

Prasad’s results.

However, the case when A is a cubic field extension does not appear to fit into the framework of

[14, Proposition in Section 1.3]; and the proof given in [14] is rather indirect, particularly in the case when

the SO(3) representation is reducible, in which case their argument requires a delicate switch back and forth

between representations of SO(3) × SO(4) and SO(4) × SO(5). So we hope that the alternative, more direct

approach given here will be of interest.
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3 Split triple products
We first put A = F × F × F.

Theorem 3.1 (Prasad, Harris–Scholl). Let π
1
, π

2
, π

3
be representations of GL

2
(F) of Whittaker type, with cen-

tral characters ωi such that ω1
ω
2
ω
3
= 1. Then we have

dimHom
GL

2
(F)(π1 ⊗ π2 ⊗ π3, 𝟙) =

{
{
{

1 if ε(π
1
× π

2
× π

3
) = +1,

0 if ε(π
1
× π

2
× π

3
) = −1,

and
dimHom

GL
2
(F)(π1 ⊗ π2 ⊗ π3, 𝟙) + dimHomD×(F)(π󸀠

1

⊗ π󸀠
2

⊗ π󸀠
3

, 𝟙) = 1.

If the πi are all irreducible, then the above is the main result of [16]. If one or more of the πi is isomorphic

to a twist of ΣF, then the ε-factor is automatically +1, and π󸀠
1

⊗ π󸀠
2

⊗ π󸀠
3

is the zero representation. So all that

remains to be shown is that in this case we have dimHom
GL

2
(F)(π1 ⊗ π2 ⊗ π3, 𝟙) = 1. This is established in

[7, Propositions 1.5, 1.6 and 1.7], except for one specific case, which is when all three of the πi are twists of Σ
by characters.

In this case, by twisting we may assume π
2
= π

3
= Σ and π

1
= Σ ⊗ η, where η is a character of F×

with η2 = 1. The case η = 1 is covered by [7, Proposition 1.7], so we assume η is a non-trivial quadratic

character. In this case HomH(η ⊗ ΣF ⊗ ΣF , 𝟙) = HomH(ΣF , Σ∨F ⊗ η) = 0, so HomH(π1 ⊗ π2 ⊗ π3, 𝟙) injects into
HomH(ηStF ⊗ ΣF ⊗ ΣF , 𝟙), which has dimension 1 by [7, Proposition 1.6]. Thus HomH(π1 ⊗ π2 ⊗ π3, 𝟙) has
dimension ⩽ 1. Since one can easily write down a non-zero element of this space using the Rankin–Selberg

zeta integral, we conclude that its dimension is 1 as required.

4 Quadratic fields
We now suppose A = E × F with E/F quadratic, so Π = π ⊠ σ for Whittaker-type representations π of GL

2
(E)

and σ of GL
2
(F) such that ωπ|F× ⋅ ωσ = 1. Since the case of π, σ irreducible is proved in [17], it suffices to

consider the following cases:

(a) π is irreducible and σ = ΣF,
(b) σ is irreducible and π = ΣE,
(c) π = ΣE and σ = ΣF ⊗ η, where η is a quadratic character.
In cases (a) and (c), we always have ε(As(π) × σ)εE/F(−1) = 1, and σ󸀠 = {0}, so the Main Theorem amounts to

the assertion that dimHomH(π ⊠ σ, 𝟙) = 1. In case (b), both signs can occur.

Theorem 4.1 (a). Let π be an irreducible generic representation of GL
2
(E) such that ωπ|F× = 1. Then we have

dimHomH(π ⊠ ΣF , 𝟙) = 1.

Remark 4.2. Note that the casewhen E/F is unramified, and π is unramified and tempered, is part of [6, Theo-

rem4.1.1]. However, the proof of this statement given in [6] has aminor errorwhichmeans the argument does

not work when π is the normalised induction of the trivial character of BE. So the argument below fixes this

small gap.

Proof. We first observe that HomH(π ⊠ ΣF , 𝟙) is non-zero. Since π is generic, it has a Whittaker modelW(π)
with respect to any non-trivial additive character of E. We may suppose that this additive character is trivial

on F, so that we may define the Asai zeta-integral

Z(W, Φ, s) = ∫
NH\H

W(h)Φ((0, 1)h)|det h|s dh,

forW ∈W(π) andΦ ∈ S(F2) (the space of Schwartz functions on F). HereNH is theupper-triangular unipotent
subgroup of H.
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It is well known that this integral converges forℜ(s) ≫ 0 andhasmeromorphic continuation to thewhole

complex plane; and the values of Z(−, −, s) span a non-zero fractional ideal of C[qs , q−s], generated by an

L-factor independent of Φ andW, which is the Asai L-factor L(As(π), s). Thus the map

(W, Φ) 󳨃→ lim

s→0

Z(W, Φ, s)
L(As(π), s)

(†)

defines a non-zero, H-invariant bilinear form W(π) ⊗ S(F2) → C. Since the maximal quotient of S(F2) on
which F× acts trivially is isomorphic to ΣF (see for example [10, Proposition 3.3 (b)]), this shows that

HomH(π ⊠ ΣF , 𝟙) ̸= 0 as claimed.

So, to prove Theorem 4.1 (a), it suffices to show that dimHomH(π ⊠ ΣF , 𝟙) ⩽ 1. As π has unitary cen-

tral character, it is either a discrete-series representation, in which case it is automatically tempered, or an

irreducible principal series, which may or may not be tempered. We shall consider these cases separately.

Note that [1, Theorem 1.1] states that if π is an irreducible tempered representation of GL
2
(E), then

we have dimHomM(F)(π, 𝟙) = 1, where M(F) = {( ⋆ ⋆0 1
)} is the mirabolic subgroup of GL

2
(F). If we assume

ωπ|F× = 1, then since F× ⋅M(F) = B(F) is the Borel subgroup of GL2(F), we have

HomM(F)(π, 𝟙) = HomB(F)(π, 𝟙) = HomH(π, IndHB(F)(𝟙)).

As Ind

H
B(F)(𝟙) = Σ

∨
F, this proves Theorem 4.1 (a) for tempered π.

We now consider the principal-series case. For α, β smooth characters of E×, we write IE(α, β) for the
normalised induction to GL

2
(E) of the character α ⊠ β of B(E). Note that this representation is tempered if

and only if α and β are unitary. We suppose α/β ̸= | ⋅ |±1E and αβ|F× = 1. Then we have the following results:
∙ HomH(π ⊠ StF , 𝟙) is zero if αβc = 1, and 1-dimensional otherwise, where βc denotes the character

x 󳨃→ β(xc). See [17, Remark 4.1.1].

∙ HomH(π ⊠ 𝟙, 𝟙) is 1-dimensional if αβc = 1, or if α|F× = β|F× = 1; otherwise it is 0. See [13, Theorem 5.2].

We conclude that exactly oneofHomH(π ⊠ StF , 𝟙)andHomH(π ⊠ 𝟙, 𝟙) is non-zero (andTheorem4.1 (a) there-

fore follows), unless π is of the form IE(α, β) with α|F× = β|F× = 1 and αβc ̸= 1. However, in this exceptional

case α and β are unitary, and thus π is tempered, so Theorem4.1 (a) has already been established for π above.
This completes the proof of Theorem 4.1 (a).

Remark 4.3. It follows, in particular, that for a generic irreducible representation π of GL
2
(E), we have

HomH(π, 𝟙) ̸= 0 (i.e. π is “F-distinguished”) if and only if the zeta-integral (†) factors through the 1-dimen-

sional quotient of ΣF, and thus vanishes on all Φ with Φ(0, 0) = 0; that is, s = 0 is an exceptional pole
of the Asai L-factor. This is the n = 2 case of a theorem due to Matringe [12, Theorem 3.1] applying to

GLn(E)-representations. See [10] for analogous results and conjectures regarding poles of zeta-integrals for
GSp

4
and GSp

4
×GL

2
.

For case (b) of the main theorem, we need the following lemma:

Lemma 4.4. Let σ be an irreducible generic representation of GL
2
(F) with ωσ = 1. Then

ε(As(ΣE) × σ) = ε(σ)ε(σ × ωE/F).

Moreover, if σ ̸= StF , then we have

ε(σ)ε(σ × ωE/F) = ε(As(StE) × σ),

while for σ = StF we have

ε(As(StE) × StF)ωE/F(−1) = 1 and ε(As(ΣE) × StF)ωE/F(−1) = −1.

Proof. If σ is not a twist of Steinberg, then its Weil–Deligne representation has trivial monodromy action, so

we compute that

ε(As(StE) × σ) = ε((sp(3) ⊕ ωE/F) × σ) = ε(σ × ωE/F)ε(σ)3 det(−Frob : ρIFσ )2.
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Since σ has trivial central character, ε(σ) = ±1. If σ is supercuspidalwe are done, since in this case ρIFσ = 0. If σ
is principal series, then ρIFσ must be either 0, or all of ρσ, since ρσ hasdeterminant 1. Thusdet(−Frob : ρIFσ ) = 1,
so ε(As(StE) × σ) = ε(σ)ε(σ × ωE/F), proving the claim in this case. The case when σ is a twist of the Steinberg
by a non-trivial (necessarily quadratic) character can be computed similarly.

Theorem 4.1 (b). Let σ be an irreducible generic representation of GL
2
(F) with ωσ = 1. Then:

(i) If ε(σ)ε(σ × ωE/F) = ωE/F(−1), then dimHomH(ΣE ⊠ σ, 𝟙) = 1 and HomH󸀠 (ΣE ⊠ σ󸀠, 𝟙) = 0.
(ii) If ε(σ)ε(σ × ωE/F) = −ωE/F(−1), then HomH(ΣE ⊠ σ, 𝟙) = 0 and dimHomH󸀠 (ΣE ⊠ σ󸀠, 𝟙) = 1.

Proof. Wefirst consider the situation forH󸀠. This case is relatively simple, sinceH󸀠 is compactmodulo centre,

and hence the functor of H󸀠-invariants is exact on the category of H󸀠-representations trivial on F×. So we have

dimHomH󸀠 (ΣE ⊗ σ󸀠, 𝟙) = dimHomH󸀠 (σ󸀠, 𝟙) + dimHomH󸀠 (StE ⊗ σ󸀠, 𝟙).

Using Prasad’s results for HomH󸀠 (StE ⊗ σ󸀠, 𝟙) and the preceding lemma, we see that dimHomH󸀠 (ΣE ⊗ σ󸀠, 𝟙)
has dimension 1 if ε(σ)ε(σ × ωE/F) = −ωE/F(−1) and is zero otherwise, as required.

For the group H, the situation is a little more complicated: since σ is generic, we have HomH(σ, 𝟙) is zero,
and hence there is an exact sequence

0→ HomH(ΣE ⊗ σ, 𝟙) → HomH(StE ⊗ σ, 𝟙) → Ext

1

PGL
2
(F)(σ, 𝟙).

Claim. The group Ext1
PGL

2
(F)(σ, 𝟙) is 1-dimensional if σ = StF , and zero otherwise.

Proof of Claim. If σ is supercuspidal, then the result is immediate, since σ is projective in the category of

PGL
2
(F)-representations. The remaining cases can be handled directly using Frobenius reciprocity, or alter-

natively, one can appeal to Schneider–Stuhler duality (as reformulated in [15, Theorem 2]) to show that the

Ext group is dual toHomH(𝟙, D(σ))whereD is theAubert–Zelevinsky involution,which sends StF to the trivial
representation.

This gives the desired formula for dimHomH(ΣE ⊗ σ, 𝟙) in all cases except when σ = StF, in which case we

must show that the non-trivial H-invariant period of StE ⊗ StF does not lift to ΣE ⊗ StF . This can be done

directly: we can compute ΣE|GL
2
(F) via Mackey theory, using the two orbits of H on P1(E) to obtain the exact

sequence

0→ cInd

GL
2
(F)

E× (𝟙) → ΣE → IF(| ⋅ |F , | ⋅ |−1F ) → 0.

The latter representation is irreducible and has no homomorphisms to StF; and we saw in the proof of Theo-

rem 4.1 (a) that

HomH(cIndHE× (𝟙) ⊗ StF , 𝟙) = HomE× (StF , 𝟙) = 0.

This shows that HomH(ΣE ⊠ StF , 𝟙) = 0, completing the proof.

Remark 4.5. We are grateful to the anonymous referee for pointing out the significance of the vanishing

of Ext

1

PGL
2
(F)(σ, 𝟙); the original version of this paper used a different and rather more complicated argument.

Theorem 4.1 (c). Let η be a quadratic character of F× (possibly trivial). Then we have

dimHomH(ΣE ⊠ ΣF , η) = 1.

Proof. The computation of the ε-factor is immediate; and by a zeta-integral argument as before, we can show

thatHomH(ΣE ⊠ ΣF , η) ̸= 0 (since the representation ΣE, despite being reducible, has awell-definedWhittaker

model). So it suffices to show that the hom-space has dimension ⩽ 1.
If η is not the trivial character, then

HomH(𝟙 ⊠ ΣF , η) = 0,

so the desired Hom-space injects into HomH(StE ⊠ ΣF , η), which is 1-dimensional by Theorem 4.1 (a).

If η is trivial, then we have seen above that HomH(ΣE ⊠ StF , 𝟙) is zero. So

HomH(ΣE ⊠ ΣF , 𝟙) = HomH(ΣE , 𝟙).

From the Mackey decomposition of ΣE|GL
2
(F) above, one sees easily that this space is 1-dimensional.
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5 Cubic fields
We briefly discuss the case where A is a cubic extension of F.

Theorem 5.1. Let π be aWhittaker-type representation ofGL
2
(E). Then the spaceHomH(π, 𝟙) has dimension 1

if ε(As(π))ωA(−1) = 1 and is zero otherwise.

Proof. The case of irreducible generic π is proved in [17] assuming π non-supercuspidal, and the supercus-
pidal case is filled in by [18]. In this case, the only example of a reducible Whittaker-type representation of G
is ΣE ⊗ η, where η is a character of E×; and the central-character condition implies that λ = η|F× must be trivial

or quadratic.

The ε-factors ε(As(StE) × λ) are computed in [17, Section 8]. We find that ε(As(ΣE) × λ)ωE/F(−1) is
always +1. On the other hand, ε(As(StE) × λ)ωE/F(−1) is +1 if λ is non-trivial quadratic, and −1 if λ = 1. So it
follows that exactly oneofHomH(𝟙, λ) andHomH(StE , λ) is non-zero, implying that dimHomH(ΣE ⊗ η, 𝟙) ⩽ 1.

To complete the proof, we must show that when λ ̸= 1, the H-invariant homomorphism HomH(StE , λ)
extends to ΣE. However, this is clear since the obstruction lies in Ext

1

H(𝟙, λ), which is zero.

This completes the proof of the Main Theorem.

6 An application to Euler systems
We now give a global application, a strengthening of some results from [9] and [6] on Euler systems for

quadratic Hilbertmodular forms. Let K/Q be a real quadratic field andwrite G = ResK/Q(GL2),H = GL2/Q ⊂ G;
set Gf = G(Af ) = GL2(AK,f ) and Hf similarly.

6.1 Adelic representations

Let χ be a finite-order character of A×f and define a representation of Hf by

I(χ) = ⨂󸀠

ℓ
Iℓ(χℓ),

where Iℓ(χℓ) denotes the representation of Hℓ given by normalised induction of the character χℓ| ⋅ |
1

2 ⊠ | ⋅ |−
1

2

of the Borel subgroup. For χ = 1, we let I0(1) denote the codimension 1 subrepresentation of I(1). Exactly as
in [7, Section 2], the local results above imply the following branching law for Gf -representations:

Proposition 6.1. Let π be an irreducible admissible representation of Gf , all of whose local factors are generic,
with ωπ|A×

f
= χ−1.

∙ We have dimHomHf (π ⊗ I(χ), 𝟙) = 1.
∙ If χ = 1 and there exists some ℓ such that HomHℓ (πℓ, 𝟙) = 0, then dimHomHf (π ⊗ I0(1), 𝟙) = 1 and the

natural restriction map HomHf (π ⊗ I(1), 𝟙) → HomHf (π ⊗ I0(1), 𝟙) is a bijection.
∙ If χ = 1 and HomHℓ (πℓ, 𝟙) ̸= 0 for all ℓ, then dimHomHf (π ⊗ I0(1), 𝟙) = ∞.

6.2 Hilbert modular forms

Suppose now that π is (the finite part of) a cuspidal automorphic representation, arising from a Hilbert

modular cusp form of parallel weight k + 2 ⩾ 2, normalised so that ωπ has finite order.

Proposition 6.2. Suppose π is not a twist of a base-change from GL
2/Q. Then, for any Dirichlet character τ,

there exist infinitely many primes ℓ such that HomHℓ (πℓ ⊗ τℓ, 𝟙) = 0.

Proof. See [6, Proposition 7.2.5].
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There is a natural Hf -representationO×(Y)C ofmodular units, where Y is the infinite-level modular curve (the

Shimura variety for GL
2
). Note that this representation is smooth, but not admissible. It fits into a long exact

sequence

0→ (Qab)× ⊗ C→ O×(Y)C → I0(1) ⊕⨁
η ̸=1

I(η) → 0,

with Hf acting on (Qab)× via the Artin reciprocity map of class field theory, and the sum is over all even

Dirichlet characters η.
There is a canonical homomorphism, the Asai–Flach map, constructed in [9] (building on several earlier

works such as [8]):

AF[π,k] : (π ⊗ O×(Y)C)Hf → H1(Q, VAs(π)∗(−k)),

where VAs(π) is the Asai Galois representation attached to π, and we have fixed an isomorphismQp ≅ C. The
subscript Hf indicates Hf -coinvariants.

Theorem 6.3. Suppose π is not a twist of a base-change from Q. Then the Asai–Flach map factors through
π ⊗ I(χ), and its image is contained in a 1-dimensional subspace of H1(Q, VAs(π)∗(−k)).

Proof. Using Proposition 6.2, we see that AF[π,k] must vanish on (Qab)× ⊗ C, so it factors through π ⊗ I(χ)
if χ ̸= 1, or π ⊗ I0(χ) if χ = 1, where χ = (ωπ|A×

f
)−1 as above. Using Proposition 6.1, combined with a second

application of Proposition 6.2 if ωπ is trivial on Q, the result follows.

As in the GSp
4
case described in [11, Section 6.6], one can remove the dependency on the test data

entirely: using zeta-integrals, we can construct a canonical basis vector Z
can
∈ Hom(πf ⊗ I(χ), 𝟙), and define

AF
[π,k]
can
∈ H1(Q, VAs(π)∗(−k)) as the unique class such that

AF[π,k] = Z
can
⋅AF
[π,k]
can

.

We hope that this perspective may be useful in formulating and proving explicit reciprocity laws in the Asai

setting.

Remark 6.4. The constructions of [9] also apply to other twists of VAs(π), and to Hilbert modular forms of

non-parallel weight; but in these other cases the input data for the Asai–Flach map lies in an irreducible

principal series representation of Hf , so the necessary multiplicity-one results are standard. (The delicate

cases are those which correspond to near-central values of L-series.)

Acknowledgment: I amgrateful toGiadaGrossi andDipendraPrasad for interesting conversations in connec-

tion with this paper, and especially to Nadir Matringe for his answer to a question of mine on MathOverflow,

which provided the key to Theorem 4.1 (a). I would also like to thank Kei Yuen Chan, for pointing out the rel-

evance of a result of Mœglin–Waldspurger recalled in Section 2.4; and the anonymous referee, for suggesting

a much cleaner proof of Theorem 4.1 (b).

Funding: The author was supported by Royal Society University Research Fellowship UF160511.

References
[1] U. K. Anandavardhanan, A. C. Kable and R. Tandon, Distinguished representations and poles of twisted tensor L-functions,

Proc. Amer. Math. Soc. 132 (2004), no. 10, 2875–2883.
[2] C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality, J. Reine Angew. Math. 610 (2007), 149–180.
[3] K. Y. Chan, Ext-multiplicity theorem for standard representations of (GLn+1 , GLn), preprint (2021),

http://arxiv.org/abs/2104.11528.
[4] W. T. Gan, B. H. Gross and D. Prasad, Branching laws for classical groups: The non-tempered case, Compos. Math. 156

(2020), no. 11, 2298–2367.
[5] B. H. Gross and D. Prasad, On the decomposition of a representation of SOn when restricted to SOn−1, Canad. J. Math. 44

(1992), no. 5, 974–1002.

http://arxiv.org/abs/2104.11528


D. Loeffler, Gross–Prasad periods for reducible representations | 9

[6] G. Grossi, On norm relations for Asai–Flach classes, Int. J. Number Theory 16 (2020), no. 10, 2311–2377.
[7] M. Harris and A. J. Scholl, A note on trilinear forms for reducible representations and Beilinson’s conjectures, J. Eur. Math.

Soc. (JEMS) 3 (2001), no. 1, 93–104.
[8] G. Kings, Higher regulators, Hilbert modular surfaces, and special values of L-functions, Duke Math. J. 92 (1998), no. 1,

61–127.
[9] A. Lei, D. Loeffler and S. L. Zerbes, Euler systems for Hilbert modular surfaces, ForumMath. Sigma 6 (2018), Paper No. e23.
[10] D. Loeffler, On local zeta-integrals for GSp(4) and GSp(4) × GL(2), preprint (2020), http://arxiv.org/abs/2011.15106.
[11] D. Loeffler and S. L. Zerbes, On p-adic regulators for GSp(4) × GL(2) and GSp(4) × GL(2) × GL(2), preprint (2020),

https://arxiv.org/abs/2011.15098.
[12] N. Matringe, Distinguished representations and exceptional poles of the Asai-L-function,Manuscripta Math. 131 (2010),

no. 3–4, 415–426.
[13] N. Matringe, Distinguished generic representations of GL(n) over p-adic fields, Int. Math. Res. Not. IMRN 2011 (2011),

no. 1, 74–95.
[14] C. Mœglin and J.-L. Waldspurger, La conjecture locale de Gross–Prasad pour les groupes spéciaux orthogonaux: le cas

général, in: Sur les conjectures de Gross et Prasad. II, Astérisque 347, Société Mathématique de France, Paris (2012),
167–216.

[15] M. Nori and D. Prasad, On a duality theorem of Schneider–Stuhler, J. Reine Angew. Math. 762 (2020), 261–280.
[16] D. Prasad, Trilinear forms for representations of GL(2) and local ϵ-factors, Compos. Math. 75 (1990), no. 1, 1–46.
[17] D. Prasad, Invariant forms for representations of GL2 over a local field, Amer. J. Math. 114 (1992), no. 6, 1317–1363.
[18] D. Prasad and R. Schulze-Pillot, Generalised form of a conjecture of Jacquet and a local consequence, J. Reine Angew.

Math. 616 (2008), 219–236.
[19] J. Tate, Number theoretic background, in: Automorphic Forms, Representations and L-Functions (Corvallis 1977), Proc.

Sympos. Pure Math. 33 Part 2, American Mathematical Society, Providence (1979), 3–26.

http://arxiv.org/abs/2011.15106
https://arxiv.org/abs/2011.15098

	Gross–Prasad periods for reducible representations
	1 Introduction
	2 Statements
	2.1 Epsilon-factors
	2.2 The generic Langlands correspondence for $\mathrm{GL}_2$
	2.3 Statement of the theorem
	2.4 Relation to results of Mœglin–Waldspurger

	3 Split triple products
	4 Quadratic fields
	5 Cubic fields
	6 An application to Euler systems
	6.1 Adelic representations
	6.2 Hilbert modular forms



