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Abstract

This thesis is concerned with revenue management problems related with
innovative products and services in two merging business sectors: attended home
delivery services and airline upgrading system. The attended home delivery service
is a fulfilment method offered by e-retailers; and the airline upgrading system is used
to resolve demand-capacity mismatch in business and economy cabins. In the first
research topic, we define the concept of flexible time slots as any fixed combinations
of regular delivery time slots. In exchange for cheap delivery charges, the customer
is informed shortly prior to the delivery day in which regular time window the
goods arrive. We evaluate the benefit of introducing flexible time slots in terms
of increasing total profit and improving delivery efficiency by deriving a dynamic
pricing policy. In practice, e-retailers present delivery time slots across multiple days
to customers. Different models can be adopted to capture the customer selection
behaviour depending on whether the model considers the substitutional effect of
delivery days on customer choice decision. We investigate the effect of embedding
different choice models within a dynamic slotting policy on the e-retailer’s profit
in the second research topic. Our third research topic discusses airlines’ capacity
allocation problem with upgrade options involving multiple flights. Within upgrade
options, airlines can postpone upgrade decisions until demand is fully realised and
customers only need to pay once their options are executed. However, customers
may anticipate the availability of upgrade options based on their past experience
and using them to obtain business capacity. Therefore, we address the importance
of correctly accounting customer anticipation in managing the capacity in economy
and business cabins in the long term.

Those problems are challenging as they all involve real-time decision making
under a stochastic customer arrival process and the uncertainty from customer
choice behaviour. Solving these problems involves modelling customer choice beha-
viour, forecasting demand, estimating displacement costs and considering constraints
imposed by innovative business models. Moreover, efficient solution methods are
required to make decisions in real time. In this thesis, we make contributions to the
literature by formulating those problems using DP models and proposing effective
choice-based pricing and capacity control policies that can be solved quickly. We also
address practical issues and derive managerial insights on those innovative products
and services by applying these policies in simulation studies.
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Chapter 1

Introduction and Background

This chapter briefly introduces the background on revenue management as well

as its recent applications and choice models used in capturing customer purchase

behaviour. Since Markov Decision Processes are widely adopted in the literature

to address dynamic decisions, we will also cover the basic methodologies used for

modelling and solving MDP problems. Then, key challenges involved in making

revenue management decisions are highlighted. Moreover, we will describe three

research topics discussed in this thesis along with their contributions. Finally, we

present the structure of this thesis.

This thesis aims to quantify the benefit of introducing three innovative

services/products offered in two business sectors. We firstly investigate the benefit

of offering flexible slots along with standard slots in attended home delivery services.

By introducing flexible slots, customers have more delivery options to select from

and the e-retailer gains flexibility in scheduling final delivery routes. Then, we focus

on managing time slots across consecutive delivery days, which grants customers

more service options but creates e-retailers complexity in managing their delivery

schedules. Finally, we consider airlines’ upgrade services offered via options to

customers who have repeat purchase behaviour. When upgrade options are offered,

the airline can potentially achieve higher revenue to fill its business cabin and

customers are able to obtain business cabin capacity through cheap upgrade options.

The underlying revenue management problems dealing with management of these

products and services are formulated with dynamic programming and solved by

linear-programming-based approximation methods. Simulation studies demonstrate

their value and contribution to business.
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1.1 Revenue Management and Applications

Revenue management (RM) is concerned with methodologies to make demand

management decisions such that businesses can improve selling decisions for their

products and services and maximise revenue (Huefner, 2011). The idea of RM was

first introduced by American Airlines after the flight deregulation in 1978 (Tudor

Bodea, 2014). As flights have fixed perishable service capacity and high operational

costs, flight ticket prices are strategically set by the airline in order to fill up the

flight and further increase revenue.

In general, RM focuses on three types of decisions including structural, price

and quantity decisions (Talluri, 2005). Price and quantity decisions are at a tactical

level, which are frequently adjusted by the business based on market conditions.

Price decisions mainly address the issue of setting differentiated prices to customers

over time while quantity related decisions generally deal with the capacity allocation

to different products (Ng, 2008). On the other hand, structural decisions are made

at the strategical level and related to the mechanism used for selling products and

involving commitment to certain price or quantity decisions. For example, the airline

is not able to make quantity or price decisions after it offers delayed purchase options,

which allow customers to reserve a seat with a fixed fare for a fixed duration before

making a final purchase decision (Aydın et al., 2016).

There are two main types of control mechanism used for price and quantity

decisions discussed in RM. The first one is static control mechanism which makes

the current decision without considering the possibility of updating decisions in the

later customer arrival process (Belobaba, 1987). For example, a static policy can set

a protection level for each fare class of a flight before accepting customers. Dynamic

control is another type of mechanism where decisions are made with respect to

each arrival under the consideration of future revenue opportunities (McGill and

Van Ryzin, 1999). Under such mechanism, the customer demand is modelled by a

stochastic arrival process of individual purchase requests (Gallego and Van Ryzin,

1994). For example, during the booking horizon of a single-leg flight, customers’

arrival process is assume to follow a Poisson process and the presented fare classes

are decided for each customer based on displacement costs (Burger and Fuchs, 2005,

Feng and Xiao, 2001). Compared to static control mechanism, policies derived based

on dynamic control mechanism are able to generate higher revenue (Maglaras and

Meissner, 2006, Wright et al., 2010).

In addition to airlines, RM has been applied in various industries, such as

hotels, restaurants and retails. Depending on the context of a specific application,

RM may focus on price or quantity decisions. As having similar characteristics with

airlines, hotel management is another sector that has implemented RM practices

2



earlier than others (Kimes, 2011). For example, hotels may use a pricing policy

to make adjustment over their seasonal reference price to maximise the revenue

(Bayoumi et al., 2013). However, restaurants have perishable capacity due to variable

service duration and tables with different sizes (Kimes et al., 2007). Therefore, unlike

airlines and hotels, RM in restaurants focuses on the turnover rate of tables and

the revenue per available seat-hour (Xiao and Yang, 2010). The most profitable

combination of tables and the quantity decision of assigning tables to customers are

the main concerns of RM practices in restaurants (Guerriero et al., 2014).

RM has been introduced by retailers who bear high variable operation costs

for managing their inventories (Lippman, 2003). Deciding which products to display

in the limited shelf-space, also known as the assortment problem, is one type of RM

problems to maximise revenue (Geismar et al., 2015). In the sales season, dynamically

setting the mark-downs on products is another RM problem for retailers that aims

to increase the total revenue (Heching et al., 2002).

Globally, business to consumer e-commerce has been growing. The attended

home delivery (AHD) services have been introduced by e-commerce as a fulfilment

method (Hays et al., 2005). The AHD services involve three processes: sales, purchase

and delivery (Agatz et al., 2008). In the sales step, an interface containing all available

time windows in one specific delivery day with corresponding prices is displayed to

the customer. Following that, the customer selects exactly one time window for the

delivery service during the purchase process. Customers can select time windows

until a certain cut-off time. At the final delivery stage, routes are generated to

accommodate all accepted customers’ delivery requests within corresponding time

windows.

Having delivery services with specific time windows makes customers’ online

shopping experience fast and convenient (Ehmke, 2012). However, it increases delivery

cost and reduces the total profit for e-retailers because there is little flexibility to

make delivery routes more efficient (Joel and Carol, 2006). At the same time, the

market report from Mintel (2017) has identified that customers tend to be very

sensitive to delivery charges. Therefore, it is not easy to compensate the cost increase

by increasing the delivery charge. Moreover, based on the real customer booking data

analysed by Yang et al. (2014), customers have preference towards time windows

within the delivery day.

Innovative services are also provided by airlines. Airlines are used to offer

customers upgrades when approaching the flight departure time in order to balance

the mismatched supply and demand among business and economy cabins in a flight

(Steinhardt and Gönsch, 2012). Alternatively, Optiontown (2018) has introduced a

new approach of offering upgrades via options. Specifically, upgrades are offered as

3



priced-options to customers who have just purchased economy tickets. The customer

needs to immediately decide whether to purchase the option or not. At the end of the

booking horizon, the airline executes a number of options based on the availability

of the capacity in the business cabin. In this way, an additional revenue can be

potentially obtained by the airline from executing upgrade options. However, in

the long term, offering upgrade options may lead to cannibalisation. Customers

may quickly learn and anticipate the availability of upgrade options such that they

would get the business cabin capacity by purchasing the economy cabin capacity and

booking the upgrade options (Wu and Chen, 2000). Then, the airline would face

the revenue loss from decreasing demand of business class. Therefore, it is essential

for airlines to consider customers’ anticipation when providing upgrade options such

that cannibalisation in business cabin can be avoided in the long term.

This thesis specifically investigates three problems related to novel products

and services introduced by e-retailers and airlines. More specifically, we study RM

problems in attended home delivery services and airline upgrades. As cost is the

main issue in attended home delivery services, our first topic discusses the benefit

of introducing flexible time slots in terms of improving profit and reducing cost.

Moreover, in practice, customers are presented with time slots across multiple days

when they request delivery services. Given such practice, in the second topic, we

compare the e-retailer’s profit when different choice models are adopted in the

dynamic capacity control policy. Finally, the third research addresses the importance

of accounting customer anticipation on upgrade options while allocating capacity for

a number of flights.

We need to deal with a number of challenges in order to address those

problems in two application contexts. For attended home delivery services studied in

this thesis, delivery costs are considered by e-retailers in addition to revenues within

their objective. As the customer arrival process is stochastic, we do not have full

information on all orders at the time when accepting each request. Accordingly, we

need to estimate total delivery costs without full order information when evaluating

the cost of accepting each request. This brings additional challenges, because these

costs are obtained by solving a vehicle routing problem with time windows (VRPTW),

which is a NP-hard problem (Golden et al., 2008). It requires large computational

efforts to anticipate delivery costs. When a number of delivery days is managed

simultaneously to accept customers, it imposes even more computational pressure to

the system as the delivery cost is anticipated for individual day. Moreover, when the

airline manages the capacity in a number of flights with upgrade options, customers’

anticipation is updated based on their previous purchase experience and going to

affect customer choice behaviour in their next flight purchase. It requires a sound

4



identification on factors; this does not only indicate the customer anticipation but

also can be linked with customer choice behaviour.

1.2 Customer Choice Models

A revenue management problem in any context requires knowledge on factors in-

fluencing customers’ price sensitivity and demand. Modelling customers’ purchase

behaviour using choice models has been well studied in the RM literature. An extens-

ive literature survey on the choice models used in the revenue management problems

is provided by Strauss et al. (2018). In an earlier study, the demand of a product is

assumed to be independent from the availability of other products (Belobaba and

Weatherford, 1996, Talluri and van Ryzin, 2008). Under this independent demand

assumption, the customer only considers the purchase of a specific product and leaves

the system only when the product is unavailable. On the other hand, dependent

choice models, such as the multinomial logit (MNL) choice model, are also widely

used to compute customer choice probabilities when availability of other products

affects the customer’s purchase decision of a specific product.

Suppose a decision maker faces J alternatives. Let Uj denote the utility

obtained by decision maker from alternative j. The utility of alternative j is

calculated as Uj = Vj + εj , where Vj is a known parameter and εj is an unknown part

presented by a random variable following a certain distribution. Note that each εj is

assumed to be independently, identically distributed following a Gumble distribution

to derive the MNL model. Under the MNL choice model, the probability of decision

maker selecting alternative i is defined by

pi =
eVi∑

j∈J
eVj

. (1.1)

The pioneer work of Talluri and van Ryzin (2004) analyses the quantity

decisions for a single-leg flight RM problem and models the customer purchase

behaviour using an MNL choice model. In order to deal with large-scale practical

problems, choice-based heuristics have been developed for the network revenue RM

problems involving multiple resources and products, for instance, see Gallego and

Phillips (2004), Liu and van Ryzin (2007). It is well known that taking customer

purchase behaviour into account for solving RM problems brings computational

challenges. However, accounting customer choice behaviour in the decision making

could create potential revenue increase (Tudor Bodea, 2014). For example, InterCon-

tinental Hotel Groups (IHG) has managed to increase the annual revenue by 2.7%

5



after implementing a choice-based RM system (Koushik et al., 2012).

Apart from the MNL choice model, there is also a Nested Logit (NL) choice

model when alternative products can be classified into a number of nests. Moreover,

for any two alternatives in the same nest, the ratio of probabilities is independent of

the attributes or existence of all other alternatives (Train, 2003). Assume that a set

of J alternatives can be partitioned into K non-overlapping subsets (nests) denoted

by B1, B2, . . . , BK . The utility obtained by decision maker from alternative j

denoted as Uj has the same definition as the one in the MNL model, which also

includes an observable parameter and an unobserved part. Let λk denote a parameter

measuring the degree of independence in un-observed utility among the alternatives

in nest k. A higher value of λk means greater independence and less correlation.

Accordingly, under the nested logit choice model, the probability of decision maker

selecting alternative i from nest k is defined by

pi =

e
Vi
λk (

∑
j∈Bk

e
Vj
λk )λk−1

K∑
l=1

(
∑
j∈Bl

e
Vj
λl )λl

. (1.2)

The NL choice model has also been used in revenue management literature.

For example, Anderson and Xie (2012) estimate customers’ behaviour for booking

hotels through an online platform based on an NL choice model where the nests are

defined by the geographic neighbourhood. In this thesis, we adopt both the MNL

and NL choice models in solving three different revenue management problems and

these models will be explained in details in the corresponding chapter accordingly.

1.3 Modelling and Solution Approaches

In practice, people make sequential decisions under uncertainty where each decision

leads to an immediate reward (Bellman, 1954). Markov decision processes (MDPs),

also named stochastic dynamic programming, is introduced by Howard (1960) to

formulate and solve multi-stage decision-making problems under uncertainty.

MDPs have been widely used in many applications. Sauré et al. (2012) adopt

it to formulate the patient appointment scheduling problem. They derive a policy

that allocates the treatment capacity to each incoming demand such that the waiting

time is reduced. Problems in supply chain management are also formulated as MDPs.

For instance, Tempelmeier (2007) focus on the production planning problem for

a single product under demand uncertainty. Based on the MDPs formulation, a

6



solution method is proposed to decide how many units of inventory to order at each

time period so that total cost consisting of setup and holding costs is minimised.

Furthermore, Kleywegt et al. (2004) formulate an inventory routing problem using

MDPs which combines the inventory management and the vehicle routing problem.

They find a policy that decides when and how much inventory should be restocked

for each customer to minimise the total cost in the long term. In this PhD thesis,

we are mainly concerned with formulating AHD and airlines revenue management

problems using MDPs and investigating policies to increase the profitability and

efficiency of the business operations.

MDPs consider a planning horizon consisting of T discrete time periods, and

include a state space S defining the system. At each time period t, t = 1, . . . , T ,

a decision xt from the feasible set (so-called action space) Xt needs to be taken at

given state St ∈ S. The decision leads to reward (cost) denoted by Rt(St, xt) and the

system is updated into a new state St+1 with probability P (St+1|St, xt). Note that

P (St+1|St, xt) is a conditional probability which only depends on the current state

and action taken at state St. The decision maker aims to find a decision policy such

that the expected total rewards is maximised. The optimal policy x∗ = (x∗1, . . . , x
∗
T )

can be obtained by solving:

Vt(St) = max
xt∈Xt

(
Rt(St, xt)+

∑
s′∈S

P (St+1 = s′|St, xt)Vt+1(s′)

)
,

t = 1, . . . , T − 1,

(1.3)

with the boundary condition VT (ST ) = RT (ST ) calculating the reward obtained at

the final time period.

Given a bounded state space S, backward recursion algorithm can be applied

to solve the MDPs in (1.3) to optimality (Bertsekas, 1995). The backward recursion

algorithm starts with computing VT (ST ) for all possible states ST at the last stage

T . Based on these values, as well as the state-dependent action xT−1, we move to

stage T − 1 and calculate VT−1(ST−1) for all possible states ST−1. Such calculation

process continues by considering all stages in a backward manner until it reaches

the first stage and all calculated values are kept in a table. Then, given initial state

S1 = Ŝ, the optimal value V1(Ŝ) and its corresponding optimal action x1 can be

easily obtained from the table. The backward recursion algorithm is useful when

there is no structural property in the MDPs model to exploit and the state space is

relatively small (Powell et al., 2005). However, when the problem is large-scale, the

state space S, the action space Xt and the outcome space for s′ may be too large to

evaluate the value function Vt(St) for all states within a reasonable time. This is

also known as curse of dimensionality.
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On the other hand, the MDPs in (1.3) can be rewritten as a linear program

(LP). Let σt,St denote the decision variable in the equivalent LP model which

represents the value of Vt(St) at St ∈ S for t = 1, . . . , T . Given the initial state

S1 = Ŝ, the equivalent LP can be formulated as follows:

min σ1,Ŝ

s.t. σT,ST = RT (ST ), ∀ ST ∈ S,

σt,St ≥ Rt(St, xt)+
∑
s′∈S

P (St+1 = s′|St, xt)σt+1,s′ ,

∀St ∈ S, xt ∈ Xt, t = 1, . . . , T − 1.

(1.4)

Algorithms, such as Simplex and Interior-Point algorithms, can be applied to obtain

optimal solution to the LP problem (1.4) (Murty, 1983). Then, its optimal solution

σ∗
1,Ŝ

is equivalent to the value V1(Ŝ) defined in MDPs problem (1.3). However, the

LP problem (1.4) may involve too many constraints when the underlying MDPs

problem in (1.3) is a large-scale problem with too many stages, states and potential

actions. The run time of solving the LP problem grows up exponentially in the

dimension. Accordingly, the approximate linear programming algorithms have been

proposed in the literature to improve the efficiency. Trick and Zin (1993) have

developed heuristics that construct an LP by aggregating state. Schuurmans and

Patrascu (2002) have proposed constraint generation methods to avoid considering

all constraints in the original LP (1.4).

1.4 Challenges in Revenue Management

Business makes pricing/acceptance decisions at every time whenever a request arrives.

Since customer requests arrive stochastically during the planning horizon, decisions

have to be made under a dynamic environment. Most importantly, a decision made

now (at real time) influences future decisions. Thus, those decisions cannot be

made independently. As stated by Puterman (2014), making decisions without

recognising the relationship between current and future decisions may fail to obtain

good overall performance. For example, in the case of selling tickets for one flight,

accepting a large number of customers in low-fare class at the beginning may fill up

the flight quickly but this may lead to high opportunity costs by rejecting customers

from high-fare class (Subramanian et al., 1999). Moreover, because business makes

decisions without knowing customers’ purchase decisions, uncertainties resulting

from customer choice behaviour are involved when the business receives the reward

(Morgan et al., 1992). As in the previous example, the customer will not book the

flight if the presented fare is higher than its willingness-to-pay (Sierag et al., 2015).
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Apart from huge impact of modelling issue related to stochastic multi-stage

decision making process, data plays an important role on the performance of dynamic

models. In particular, data related to customer booking histories is essential in

estimating customer arrival process and the customer choice model, which are further

used in the decision policy. However, the dataset may only contain the customers who

have made the booking but miss those who have decided to leave without booking. It

could create difficulty in defining no-booking customers when we estimate customer

behaviour models used in our policies. Moreover, the customer booking data may be

censored, also known as constrained demand. In this case, the data doesn’t include

customers who are rejected due to lack of capacity. Using such data to forecast

demand may under-estimate the real demand in solving the RM problems and may

lead to revenue decrease (Cooper et al., 2006). Moreover, selecting a suitable

customer choice model is important as a sophisticated choice model may not lead

to an LP-based decision policy, which can be solved efficiently in polynomial time

(Bront et al., 2009).

1.5 Main Objectives and Contributions of Thesis

This thesis consists of three research topics regarding original products and services

provided in two areas, more specifically attended home delivery systems and airline

upgrades. We evaluate the benefit of introducing each new product and service by

constructing dynamic pricing and capacity control policy used in revenue management.

We summarise the main objectives in each research topic and its corresponding

contributions as follows.

Flexible Time Slots in Attended Home Delivery Services: The mar-

ket of online grocery in the UK is estimated to grow 13.5% and reach £11.3 billion

in 2017 (Mintel, 2018c). Attended home delivery services are commonly used by

e-grocers within the market, such as Tesco and Ocado, to fulfil their customers

(Hays et al., 2005). Having such home delivery services is one of the top reasons for

customers to buy grocery online (Mintel, 2018c). However, the e-grocers’ profitability

can be affected by the cost of offering delivery services. For example, Amazon

failed to achieve its target profit because of the delivery costs increase in the third

quarter of 2016 (Dean, 2016). Under attended home delivery services, customers

can request a specific delivery time slot from the e-grocer. It has been a trend that

e-grocers provide narrower time slots to increase customers’ satisfaction (Mintel,

2016). However, it may cause delivery cost increase.

In the first research topic, we introduce flexible time slots to the attended

home delivery services. A flexible slot combines several standard slots such that the

9



e-grocer can decide which standard slot to accommodate the request after the booking

horizon. The flexible slots grant the e-grocer flexibility in scheduling deliveries when

all delivery requests are realised at the end of the booking horizon. By offering

flexible slots, the total delivery costs might be potentially reduced and the total

profit could be increased.

The main contributions of studying the dynamic pricing policy of flexible

time slots can be summarised as follows:

• A novel linear programming (LP) formulation is proposed to estimate the

opportunity cost, which reflects potentially displaced profits from future orders

and implications on routing costs.

• An online pricing approach is derived as a computationally tractable LP by

exploiting features of the choice model. Accordingly, this approach is able to

make pricing decisions within milliseconds.

• The proposed approach is applied in the simulation study under a realistically-

sized setting. The simulation study shows that introducing flexible delivery

slots can significantly improve e-retailers’ profitability by reducing total delivery

costs and attracting more customers.

Managing Time Slots Across Multiple Delivery Days: By offering

attended home delivery services, e-retailers improve customers’ online shopping

experience in terms of speed and convenience (Ehmke, 2012). Therefore, the delivery

services have been identified as an essential factor that contributes to the future

growth of online retailing (Mintel, 2018d). In order to provide more delivery options

to increase customer satisfaction, customers are offered with time slots from a number

of delivery days by the e-retailer, such as Tesco and Ocado. Presented with time slots

across different days, customers would like to compare delivery days as well as time

slots before they make purchase decisions. Therefore, it is important for an e-retailer

to construct an appropriate choice model reflecting customer choice behaviour.

Having a ’wrong’ choice model, the e-retailer is not able to influence customer

preference towards time slots in a manner of optimising its delivery operation. As

the demand is managed for a number of delivery days at the same time, the e-retailer

may even end up with inefficient delivery operation for all involved delivery days by

having a ’wrong’ choice model.

In our second research topic, we derive three policies, also known as slotting

policies, based on different choice models to decide which time slots to present every

time a delivery request arrives. These choice models are different from each other

based on how they treat the substitution effect of delivery days on customer slot
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decisions. We compare these policies in terms of the profit achieved by the e-retailer

of providing the delivery services within one specific day. Moreover, we exploit the

opportunity of offering same-day delivery services as an express delivery service to a

specific group of customers. These customers’ requests can be quickly prepared and

easily accommodated by the existing routing plan of the current day without routing

plan reconstruction. Therefore, offering such same-day services could potentially

increase customer satisfaction, generate more revenue and improve the efficiency of

the current routing plans.

The main contributions of studying the dynamic slotting policy of time slots

across multiple delivery days can be summarised as follows:

• We propose a dynamic program (DP) formulation to dynamically decide the

availability of each slot of multiple delivery days whenever a customer arrives

during the booking horizon. Specifically, we neglect the assumption that

each delivery day has its corresponding booking horizon but focuses on a

calendar-based booking horizon.

• We assume that a nested multinomial logit (NMNL) model is a ground true

customer choice model. Two choice models are proposed to estimate this true

choice model, which are used in the slotting policy. Both choice models are

based on the multinomial logit (MNL) model. However, one model accounts

the substitution effect among delivery days whereas the other model treats

delivery days independently.

• In the numerical experiments, we find that using the approximated choice

model with substitution effect attracts less customers than the case of using

the other approximated choice model when demand is relatively low. We also

demonstrate that using such choice model leads to inefficient routing plans

and increases the delivery cost per order. Moreover, we illustrate that offering

same-day delivery services generates extra profit-before-delivery and improves

the efficiency of the routing plans on the current day by reducing the delivery

cost per order.

Allocating Capacity for Airlines Upgrade Options: Upgrades are

offered by airlines to resolve the mismatch between demand and supply in their

economy and business cabins. Upgrades are sold as options to customers by an

airline. At the end of booking horizon of each flight, the airline executes a number of

upgrade options that maximises total revenue of the flight and also refunds payment

for unexecuted options. By offering upgrade options, airlines are able to obtain

additional revenue from executing upgrade options. Moreover, airlines can postpone

the upgrade decisions at the end of the booking horizon after demand is full realised.
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On the other hand, there are customers in airline management who regularly

purchase the flight and have a network to share their booking experiences. Therefore,

by frequent purchase experience and information network, these customers can

gradually establish anticipation toward upgrade options and behave strategically to

obtain capacity in business class using upgrade options. Moreover, at the end of

booking horizon of every flight, information on executed options is released within

the network, customers gain new knowledge on upgrade options and modify their

purchase decisions for the next purchase. As a result, airlines may have revenue loss

due to the introduction of upgrade option in the long term.

In the third research topic, we introduce the definition of customer anticipa-

tion level, which influences customer choice behaviour over business and economy

cabins. Then, we formulate capacity allocation problem of an airline by accounting

the customer anticipation level. We evaluate the benefit of accounting customer

anticipation in avoiding cannibalisation from introducing upgrade options in the long

term.

The main contributions of studying airlines’ upgrade options with customers’

anticipation can be summarised as follows:

• We introduce a novel DP model with continuous state space to formulate the

capacity allocation problem for consecutive flights offering upgrade options.

We define an anticipation level as the main factor evolved during the customer

learning process, which affects customer purchase behaviour towards different

cabins and options.

• As a solution method, we discretise this continuous state space and construct

a choice-based deterministic integer program (CDIP) model to approximate

the value function at all discrete states of the DP problem.

• In the numerical experiments, our results show that considering the customer

anticipation in allocating capacity with upgrade options can significantly im-

prove the total revenue in the long term. Moreover, based on our solution

method, there exists a steady state (customer anticipation level) in solving the

DP when the demand remains the same for all considered flights.

Overall, we can conclude that this thesis contributes to the revenue manage-

ment literature by introducing novel problem formulations and solution methods

for three interrelated research topics on innovative products and services introduced

in AHD system and airline upgrades. As potential impact of all research topics

discussed in the thesis on real-life applications, we construct dynamic control polices

to illustrate practical benefits of introducing those products and services in terms of

improving business revenue and creating flexibility in operations.
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1.6 Structure of Thesis

This thesis consists of five chapters. After summarising the background and high-

lighting the objectives of this thesis in Chapter 1, we organise its remaining chapters

as follows. Chapter 2 focuses on the dynamic pricing policy for flexible time slots

introduced in attended home delivery services. Chapter 3 evaluates the benefit

of using different choice models in the slotting policy to manage time slots from

multiple delivery days. Then, Chapter 4 proposes upgrade options in airlines and

discusses the importance of considering the customer learning effect in long-term

revenue management. Finally, Chapter 5 highlights the contributions of the thesis

and proposes further research directions could be investigated in home delivery

services and capacity planning in airlines.
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Chapter 2

Dynamic Pricing of Flexible

Time Slots for Attended Home

Delivery Management

In e-commerce, customers are usually offered a menu of home delivery time windows

of which they need to select exactly one, even though at least some customers may

be more flexible. To exploit the flexibility of such customers, we propose to introduce

flexible delivery time slots, defined as any combination of such regular time windows

(not necessarily adjacent). In selecting a flexible time slot (out of a set of windows

that form the flexible product), the customer agrees to be informed only shortly

prior to the dispatching of the delivery vehicle in which regular time window the

goods will arrive. In return for providing this flexibility, the company offers the

customer a reduced delivery charge.

In this chapter, we study dynamic pricing of regular and flexible time slots

in this context for attended home delivery. The vehicle routing problem (VRP) in

the presence of flexible time slots bookings corresponds to a VRP with multiple

time windows. The main methodological contribution is the development of a

tractable linear programming formulation that links demand management decisions

and routing cost implications, whilst accounting for customer choice behaviour. The

output of this linear program provides information on the (approximate) opportunity

cost associated with specific orders and informs a tractable dynamic pricing policy

for regular and flexible slots. Numerical experiments, based on realistically-sized

scenarios, indicate that expected profit may increase significantly depending on

demand intensity when adding flexible slots rather than using only regular slots.
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2.1 Home Delivery Services with Time Slots

Globally, business to consumer e-commerce is growing strongly. According to the

Ecommerce-Foundation (2016), global growth in turnover has been around 17.5%

in 2016. Online grocery retailing, in particular, is growing at a similar rate: in the

United Kingdom (UK), sales exhibit strong annual growth rates of 14.7% in 2016

with similar rates forecast over the next years by Mintel (2017). Attended home

delivery is commonly offered in e-commerce when the ordered items are either bulky

(like furniture), or in need of refrigeration (groceries), or for other reasons need to be

handed over to the customer in person. There is much competitive pressure over the

quality of the delivery service. In particular, shorter time windows increase customer

satisfaction. Most UK grocery retailers (such as Tesco, Sainsbury’s, Morrisons,

Ocado, Waitrose) are now offering narrow one-hour delivery time slots, as opposed

to the longer time windows offered in the past.

Such narrow delivery time windows lead to high fulfilment costs because there

is little flexibility to make vehicle routes more efficient. At the same time, the cost

cannot be easily passed on to the customers because they tend to be very sensitive

to delivery charges. This is also reflected by market research conducted by Mintel

(2017) showing that current online grocery shoppers, lapsed shoppers and non-users

would be most encouraged to buy more online if delivery prices were lower. In other

words, delivery charges are a major deterrent from online shopping. The combination

of high delivery cost and limited capability to recoup the cost via delivery charges

(or via increased product prices) indicates that there is a lot of pressure on making

delivery services as efficient as possible; but the high sensitivity to delivery prices

also means that delivery prices can be used to influence customers’ delivery time

slot choice behaviour.

Despite the competitive pressure over offering narrow delivery time slots, not

all customers actually require them to be so narrow. Some may be willing to accept

uncertainty over the exact delivery time slot within a given set of potential time

slots in return for an incentive. This has recently been exploited by the UK’s largest

retailer Tesco in that they offer so-called ’Flexi Saver Slots’ alongside their regular

one-hour slots. Flexi Saver Slots are four hours in length, and the customer is notified

on the day of delivery of a one-hour slot (within the booked four-hours window)

in which the delivery will be made. The customer pays less in delivery charges in

return for giving the retailer more flexibility in their fulfilment operations. This

may allow the retailer to accept more orders and/or to fulfil them more efficiently.

Accordingly, we generalise this concept further by defining a flexible time slot as any

fixed combination of regular delivery time slots, so they do not necessarily need to

be adjacent.
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We stress that it is not the concept of offering flexible slots that is the new

contribution here (this has been used by some retailers for a while already); instead,

the challenge lies in quantifying the savings potential of a flexible slot as well as in

dynamically pricing these slots under a model that incorporates customer choice

behaviour. When making a decision on how to price a flexible slot, we need to take

into account how much we may be able to save in the routing due to this flexibility,

which is difficult to assess because we do not have full information on all orders at

the time of making this pricing decision.

In this research, we study the dynamic pricing problem faced by a firm offering

regular and flexible delivery time slots for attended home delivery. We assume that

delivery requests for a specific day arrive randomly over a fixed time horizon prior

to the delivery day so that the delivery operation takes place after all orders have

been received. In other words, we do not consider the same-day delivery where

requests may arrive after some delivery vehicles have already been dispatched. The

decision problem of the firm arises every time a customer (from a known location

and with known order size) requests delivery, and consists of i) evaluating which time

windows can feasibly be offered, and ii) deciding which delivery prices to display

for all feasible slots. Order size refers to both the number of delivery totes and

order profit before delivery cost, and may be estimated from the previous purchasing

cases where delivery slots can be booked before completing the shopping session.

We assume that all feasible slots are offered so as to increase customer satisfaction,

but this assumption can easily be relaxed in our model without structural changes

(another dummy price point is needed that drives demand to zero). Delivery charges

are assumed to be chosen from a finite set of price points, in line with common

industry practice. In response to the firm’s decision, the customer chooses a slot or

decides to leave without purchase according to a discrete choice model that reflects

the set of available options and prices.

After all orders have been received, the firm needs to solve a capacitated

vehicle routing problem with multiple time windows for its fleet of delivery vehicles.

Note that ‘multiple time windows’ refers to having some customers with multiple

time windows within which the delivery may take place (namely those customers

with flexible slots). The objective is to maximise profit after delivery cost by dynamic

delivery slot pricing and routing of the delivery vehicles to serve the final set of

orders.

Our main contribution is a new approach of how to estimate the opportunity

cost associated with accepting a given order in the different delivery options. This

opportunity cost reflects the implications on routing costs and potentially displaced

profits from future orders in case constraints on the van capacity and/or driving
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time are binding. The estimation of opportunity cost is very difficult because the

calculation of the final delivery cost is challenging even if we already know the final

set of orders (which, however, we do not). To tackle this challenge, we propose

a novel linear programming (LP) formulation that accounts heuristically for both

delivery costs and future expected order revenue. This LP is solved offline and

should be re-optimised throughout the booking horizon so as to provide updated

estimates of the opportunity cost. Furthermore, pricing decisions need to be made in

a very short time interval. To that end, we propose an online pricing approach that

exploits the features of the choice model and the constraint structure and, thereby,

equivalently reduces the nonlinear optimisation problem to a small LP that can

be solved very quickly. We evaluate the proposed approach in a realistically-sized

simulation study and our results show that the concept of flexible delivery slots can

significantly improve profitability.

The chapter is organised as follows: in Section 2.2, we review the literature on

demand management in the context of attended home deliveries. In Section 2.3, we

define the problem as a Markov decision process and present an intractable dynamic

programming formulation that is useful to motivate approximate solution methods.

In Section 2.4, we formulate the pricing policy with flexible slots. In Section 2.5, we

develop our LP approach to opportunity cost approximation. Section 2.6 contains

the computational results and we draw conclusions and implications for managers in

Section 2.7.

2.2 Literature Review on Demand Management in At-

tended Home Delivery Services

We focus on the growing literature on combining demand management with delivery

slot booking for attended home deliveries. Demand management in our context is to

be understood as optimisation of actions that have a direct influence on demand,

specifically pricing, deciding on incentives or on the availability of certain offerings.

For the reader who is interested in a broader context of e-fulfilment, we refer to the

review of Agatz et al. (2008) covering the e-fulfilment literature from an operational

research perspective, and Hübner et al. (2016) who review the recent qualitative

fulfilment and distribution literature.

The first paper to consider aspects of both demand management and delivery

operations is Campbell and Savelsbergh (2005) who investigate a dynamic routing

and scheduling problem of a grocery vendor who needs to decide which deliveries to

accept or reject, and in which time slot to deliver the accepted orders. All customers

have a certain time slot profile; this contains all slots that they are willing to accept.
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If the grocer accepts the order, the company assigns one of these slots to the order.

In this first paper, Campbell and Savelsbergh (2005) represent demand as an

arrival process that is not affected by the firm’s decisions. In their subsequent work

Campbell and Savelsbergh (2006) use a relatively simple customer behaviour model

to include the effect of incentives (such as delivery charges) on the probability that

any particular time slot is being chosen. The objective is to influence delivery time

slot choices to minimise delivery costs, whereas in our work we focus on maximising

expected profit.

A more realistic customer choice model was employed by Asdemir et al. (2009),

namely the multinomial logit (MNL). They consider a dynamic time slot pricing

approach similar to our approach, but propose dynamic programming (DP) as a

solution method with fixed delivery costs rather than our LP-based approach. The

DP is formulated at the level of a delivery region (such as a postcode sector) under

the assumption that the delivery capacity in each time slot for this region is fixed

and known a priori. Practical application of this approach may be challenging when

there are many delivery time slots because the DP’s state space grows exponentially

with the number of slots. In our approach, we also make use of the MNL choice

model, but propose a new way of including dynamic delivery cost estimates into a

LP model which allows us to solve it for realistically-scaled problem instances.

In contrast to this work on dynamic pricing in attended home delivery,

Agatz et al. (2010) focus on the problem of which delivery time slots to offer in

which geographic delivery area so as to reduce delivery costs whilst meeting service

requirements. They do not consider customer choice behaviour, whereas our focus

is on pricing to influence customers’ time slot choices. However, there are some

common elements in that they also use the work of Daganzo (1987) to obtain a

continuous delivery cost approximation.

Another work that stresses the routing and scheduling aspects (as opposed to

demand management) in the attended home delivery context is Ehmke and Campbell

(2014). Their objective is to maximise the number of requests accepted for delivery,

subject to retaining feasible tours. The company makes decisions on accepting or

rejecting delivery slot bookings, and the customers’ slot choices are assumed to be

independent of these controls. In our work, we aim to maximise total expected profit

by deciding on prices for regular and flexible delivery slots which influence customers’

slot choices. Cleophas and Ehmke (2014) likewise consider accept/reject decisions

along with capacity reservations for certain delivery areas and time windows where

particularly valuable demand is being expected.

Yang et al. (2014) is more closely related to our work in that the authors

consider a dynamic pricing problem for delivery slots under the MNL choice model.
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Using real data, they estimate the choice model and find that demand is very sensitive

to delivery prices and slot availability. In their pricing policy, they only rely on

opportunity cost estimates based on marginal routing costs (derived by insertion

heuristics). They do not consider the effect of future lost revenues due to displaced

orders in the opportunity cost estimate. This is addressed by Yang and Strauss

(2017) who use an approximate dynamic programming approach to incorporate both

future revenue and routing cost effects in the opportunity cost. Likewise, Koch et al.

(2017) employ approximate dynamic programming to approximate opportunity cost

including revenue and cost effects. However, their paper is centred around the idea of

quantifying the free delivery time within each time slot for a given route plan. These

so-called time budgets are then used to construct value function approximations.

The estimation of routing cost is a major challenge in demand management

for attended home delivery. Bühler et al. (2016) discuss various linear mixed-integer

programs that approximate the delivery costs for a fixed pool of route candidates.

Klein et al. (2018) combine such a linear mixed-integer program (MIP) with the

dynamic pricing model of Yang et al. (2014) so as to anticipate future demand.

However, the MIP involves a very large number of decision variables for real-life

scaled problems, thus making it challenging to solve. Also Song et al. (2018) propose

an MIP approach to solving the last-mile delivery problem, however, they focus on

the additional requirement of customers having to be served by a specific driver

(so as to build trust in the company through repeated interaction with the same

individual).

The work of Köhler et al. (2019) is conceptually related in as far as they

investigate how to dynamically control the offering of long and/or short delivery time

windows to customers in an attended home delivery context. However, here the slots

are not ‘flexible slots’ in the sense that we propose in this chapter; instead, their

term ‘flexible time window management’ refers to deciding dynamically which short

and/or long slots shall be made available to a given customer (so some customers

may be shown only long time windows, other only short ones, and yet others a mix

of both). They assume fixed delivery fees for all deliveries regardless of time window

length or time of day whereas we use dynamic pricing that reflects both customer

preferences and opportunity costs associated with having a customer book any given

slot.

In the remainder of this section, we review the literature on flexible products.

A flexible product was first proposed by Gallego and Phillips (2004). They define it

as a product that can be provided in one of a small number of modes. Customers

are aware of this set of modes at the point of purchase, but only receive confirmation

of the actual mode at a pre-defined time after purchase (usually shortly prior to
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product consumption). The product is usually a service such as a flight; in this

case, potential modes could correspond to different flights between the same origin

and destination but at different departure times. Indeed, Gallego and Phillips

(2004) study the problem in the airline context and propose a booking limit control

policy for the flexible ticket under a static setting with two time periods and two

alternative flights. Gallego et al. (2004) extend this concept to networks, and also

consider customer choice modelling. They introduce a deterministic linear program

that can approximate the optimal objective of the stochastic optimisation problem.

Petrick et al. (2010b) likewise propose a deterministic linear program, but focus on

independent demand only. They explicitly incorporate the capacity requirements of

requests for flexible products that have been previously accepted and thereby allow

them to be rearranged.

Among these deterministic linear programming approaches, Petrick et al.

(2010a) investigate how they should be used over time to obtain dynamic control

mechanisms under independent demand. Gönsch et al. (2014) pursue this further

and find that the deterministic linear programming approximation fails to capture

the revenue generated from delaying resource allocation by using flexible products.

They propose to use the opportunity cost to obtain a dynamic booking limit policy

for general flexible products. Koch et al. (2017) take it a step further by developing

a dynamic programming approach for the network revenue management problem

with flexible products under customer choice behaviour (which naturally leads to

dynamic control policies).

Most studies on flexible products assume that the seller defines a set of

potential execution modes of a flexible product. In contrast to this, Mang et al.

(2012) investigate a flexible product for which customers self-select the level of

flexibility.

In summary, we can build on a growing body of literature on demand manage-

ment and vehicle routing for attended home delivery, as well as on flexible products.

These two concepts have not yet been combined, and indeed the results from the

flexible products literature do not carry over directly because future expected vehicle

routing implications need to be taken into account.

2.3 The Dynamic Pricing Model for Delivery Time Slots

In this section, we first present the dynamic time slot pricing problem for attended

home delivery services and then formulate the problem as a dynamic program

(involving both standard and flexible time slots) under a model of customer delivery

slot choice (namely the nested multinomial logit model).
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We consider an e-grocer having a fixed number of homogeneous trucks, each

with capacity c in terms of homogeneous transport totes. The e-grocer provides

delivery services to customers located in non-overlapping areas a ∈ A for one fixed

delivery day. The delivery slots can be offered from a set of non-overlapping standard

slots S, each of the same duration (say, one hour). Flexible slots can be offered from

a set M. Each flexible slot m has a certain set of standard slots Sm ⊆ S associated

with it that the delivery can be assigned by the retailer. No restriction is imposed

on constructing flexible slots. For brevity, we define F = S ∪M.

The dynamic slot pricing problem is modelled by a discrete dynamic program.

The problem has T stages denoted by t = 1, . . . , T corresponding to the time periods

in the booking horizon. The final period T denotes the cut-off time after which no

more bookings are accepted. We assume that the time periods chosen are sufficiently

small such that the probability of more than one request arrival per period is

negligible. Customers are classified into segments n ∈ N based on their slot choice

behaviour. We assume that an order from a segment-n customer is (on average)

worth rn in profit before delivery costs, and that each order consumes one unit of

truck capacity. Let λ represent the probability of a customer arrival in any given

time period (the arrival probabilities are assumed to be independent of time only to

simplify notation; notice that we can always reduce time-heterogeneous arrival rates

to a uniform rate by manipulating the underpinning discrete time grid). Given an

arrival, µa is the likelihood that the requested delivery address is in area a, and ηan

is the probability that the request is from customer segment n conditional on there

being a request from area a.

In stage t, the state of the system is defined by a matrix of accepted orders

x ∈ N|A|×|F|, and its component xas indicates the number of orders that have been

accepted for delivery in time slot s for area a until time t. At every stage t, given state

x, we need to make pricing decisions for all feasible delivery time slots when delivery

services can be provided. In line with common business practice, we assume prices are

chosen from a finite set of potential price points D = {dκ : κ ∈ K = {0, 1, . . . ,K}},
where d0 denotes the null price that drives demand to zero. We need d0 to model

unavailability of a slot. We also assume that a flexible slot is never higher priced

than any feasible standard slot.

Given accepted orders x, the set of slots in which we can feasibly schedule a

delivery in area a is denoted by Fa(x) consisting of feasible standard slots Sa(x) and

feasible flexible slots Ma(x). We assume that a flexible slot is feasible as long as

it involves at least one feasible standard slot. In practice, this is not an unrealistic

assumption; e.g. Tesco is indeed offering their flexible slots even when some of

the one-hour regular slots are marked as unavailable. We make this assumption
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because we are using a very conservative way of checking feasibility. All feasible slots

s ∈ Fa(x) will be offered at any stage and state (so we do not consider strategically

making certain feasible slots unavailable) because we assume that the retailer wants

to maximise the number of available options to improve customer satisfaction.

Let us introduce g ∈ {0, 1}|A|×|F|×|K| where gasκ = 1 represents assignment

of price point dκ to a feasible slot s for any order received from area a, and gas0 = 1

indicates the assignment of the null price d0 to a slot s in area a (which only happens

when s is infeasible due to our assumption that all feasible slots are always to be

offered to increase customer satisfaction). The action space at state x is defined as

G(x) := {g | dTamgam ≤ dTasgas, ∀m ∈Ma(x), s ∈ Sa(x), a ∈ A;∑
κ∈K\{0}

gasκ = 1, ∀s ∈ Fa(x), a ∈ A; gas0 = 1∀ s /∈ Fa(x), a ∈ A}.

Let C(x) denote the minimum cost of delivering orders x; this minimum cost is

the outcome of solving a capacitated vehicle routing problem with multiple time

windows. We set C(x) =∞ when there is no feasible solution for the set of orders x.

The transition probability to a new state in the next time period is defined

by the probability of a customer arrival combined with the customer’s slot selection

probability. Customers are faced with more delivery time uncertainty with flexible

slots than standard slots when booking their deliveries. Therefore, customers may

naturally partition presented time slots into standard ones and flexible ones when

selecting slots. Accordingly, we use the nested multinomial logit (nested MNL) model

to express the customers’ slot selection probability where the nests indexed by (ŝ, m̂)

are defined in terms of flexible and standard slots, respectively.

Let Unsκ denote the utility of booking slot s at price dκ for a customer from

segment n. We compute this utility as Unsκ = unsκ + εs where unsκ represents a fixed

linear predictor function and εs is a random variable generated from a Gumbel

distribution with zero mean. Not booking any time slot is associated with utility

un0 for a segment-n customer. Let ωŝ and ωm̂ denote the dissimilarity parameters of

standard slot nest ŝ and flexible slot nest m̂, respectively. The dissimilarity parameter

of no-purchase behaviour is set to 1. We assume that customers from the same

segment have the same price sensitivity towards standard and flexible slots. Note

that dissimilarity parameters represent the degree of independence in unobserved

utility among flexible slots and among standard slots, respectively.

Given the prices identified by g ∈ G(x) in area a, the selection probability of
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standard delivery slot s by a segment-n customer is computed as

pans(g) =
vTnsgas(

∑
i∈Sa(x) vTnigai)

ωŝ−1

(
∑

i∈Sa(x)

vTnigai)
ωŝ + (

∑
i∈Ma(x)

vTnigai)
ωm̂ + vn0

, (2.1)

where vns = {vnsκ = exp(unsκ/ωŝ) | ∀ κ ∈ K} for standard slot s ∈ Sa(x),

vnm = {vnmκ = exp(unmκ/ωm̂) | ∀ κ ∈ K} for flexible slot m ∈ Ma(x) and

gas = {gasκ | ∀κ ∈ K}. Note that vnsκ is interpreted as the preference weight of slot

s priced at dκ for a segment-n customer. If a customer from area a books slot s, the

state x transitions to state x + 1as. The reader is referred to Train (2003) for further

information on the characteristics of nested MNL.

Let λ define probability of customer arrival and µa represent probability of

that customer coming from area a. Given λ and µa, we can define ηan as conditional

probability of the customer’s order from segment n and area a. We can now introduce

the value function Vt(x) at state x in terms of future value functions Vt+1(x) as a

maximisation problem for action g;

Vt(x) = max
g∈G(x)

(1− λ)Vt+1(x)+
∑

a∈A,n∈N

λµaηan

( ∑
s∈Fa(x)

pans(g)
(
rn + dTgas

+ Vt+1(x + 1as)
)

+ pan0(g)Vt+1(x)

)
.

(2.2)

By substituting pan0(g) = 1−
∑

s∈Fa(x)

pans(g) in (2.2) for a customer’s order received

from segment n in area a, we can rewrite the value function at state x as follows:

Vt(x) = max
g∈G(x)

∑
a∈A,n∈N

λµaηan

( ∑
s∈Fa(x)

pans(g)
[
rn + dTgas

−
(
Vt+1(x)− Vt+1(x + 1as)

)])
+ Vt+1(x).

(2.3)

Once the booking horizon is finished (i.e., after the cut-off time T ), the delivery of

accepted orders (x) takes place. Since the company is concerned with the net profit

after delivery cost, the boundary condition at stage T + 1 is given by

VT+1(x) = −C(x). (2.4)

The dynamic program (2.3)-(2.4) is intractable because of its large state space.

Moreover, computing C(x) in the model is NP-hard since it involves solving a

capacitated vehicle routing problem with time windows (Savelsbergh, 1985). Whilst
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we cannot solve it directly, it is still useful as it motivates the shape of a pricing

policy. If we had at least an approximation of the opportunity cost for an order in

time slot s in area a as ∆t
as(x) ≈ Vt+1(x)− Vt+1(x + 1as), we should obtain price g

by solving:

arg max
gas∈G(x)

∑
s∈Fa(x)

pans(g)
[
rn + dTgas −∆t

as(x)
]
. (2.5)

This problem represents the so-called online decision problem: given state x at time

t, set of feasible delivery slots Fa(x) and opportunity costs ∆t
as(x), we need to obtain

the price points for all feasible delivery slots within a very short time period (within

a few hundred milliseconds as advised by an industry representative). Thus, an

efficient solution of (2.5) is crucial and depends to a great extent on the structure

underpinning the choice model. Under the nested MNL, this pricing problem is

difficult to be solved; however, general attraction models (including MNL as a special

case) have strong structural properties that can be exploited in obtaining tractable

optimisation routines. Accordingly, we propose to fit an MNL model to the data even

though a nested MNL model is a better representative of the actual choice behaviour.

As our numerical experiments demonstrate, this can lead to good results even though

the simulated customer decisions follow a nested MNL model. We discuss this further

in Section 2.4 with the estimated MNL choice model. In Section 2.5, we introduce

an approximation to the value function at each state that we use to calculate the

opportunity costs (again exploiting the structure of the estimated MNL model to

obtain efficient formulations).

2.4 Pricing Policy under MNL Choice Model

The online pricing policy (2.5) should ideally be solved every time a new booking

request arrives. Bookings typically arrive in large volume within a relatively short

amount of time, and therefore a swift solution method is required to ensure acceptable

runtime performance of the online booking system. This section presents an approach

of using an estimated MNL choice model in the online pricing policy such that the

policy can be equivalently reformulated as a compact linear program.

Given the historical booking data that is generated under an assumption of

customers choosing time slots according to a nested MNL model, we can obtain an

estimated MNL choice model which approximates the customer choice behaviour

under the nested MNL choice model. The reader is referred to Yang et al. (2014)

for further information about estimation of MNL choice model parameters from

transaction data. Let ûnsκ denote the the utility of booking time slot s at price dκ

for a segment-n customer in the estimated MNL model. Not booking any time slot
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has the utility ûn0 which is normalised to 1. The selection probability of delivery

time slot s by a segment-n customer under prices identified by g ∈ G(x) in area a is

computed as follows

p̂ans(g) =
v̂Tnsgas∑

j∈Fa(x)

v̂Tnjgaj + 1
, (2.6)

where v̂ns = {v̂nsκ = exp(ûnsκ) | ∀κ ∈ K}.
We consider the slot pricing problem (2.5) for a given state x at time t,

customer from area a, order value r and set of feasible slots F(x), and opportunity

cost estimates ∆s for all s ∈ F(x). Let us drop index a to reduce notational

clutter. In order to simplify (2.5), we want to linearise the objective function and

reformulate the constraints in a way such that the associated coefficient matrix is

totally unimodular. This allows us to solve the combinatorial problem exactly as a

linear program, and thus offers great advantages in solution speed.

Figure 2.1: Network structure for flexible slot m and a slot s ∈ S.

Let us first consider the constraints on admissible prices: prices should be

chosen from the discrete set D, and each flexible slot should always be priced no

higher than any standard slots since it is an inferior offering (we call the latter

price dominance constraints). To formulate the price dominance constraints in a

tractable fashion, we draw on a modelling approach of Davis et al. (2013): they

model such price dominance constraints as a unit flow problem on a network because

this results in a totally unimodular constraint structure which allows us to relax

the integer requirements. To do this, we define a network flow problem for each
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combination (m, s) of a feasible flexible slot m and one of the feasible standard slots

s ∈ S(x). There is one source node with unit supply, and one sink with unit demand.

Furthermore, we have a node for each combination of m with a price point κ, and

likewise for s and each price point κ. The nodes are connected by arcs, as illustrated

in Figure 2.1. Recall that the price points are ordered in increasing value in κ. The

flow on some arcs corresponds to pricing variables gmκ and gsκ, and on others we

have new variables zjκ where zjκ = 1 if time slot j is priced at dκ or higher; and 0

otherwise. Enforcing the balance constraints at each node of this network for binary

variables g and z ensures that the price for flexible slot m must be less than or

equal to the price of slot s. By defining such a network for all (m, s), m ∈ M(x),

s ∈ S(x), we obtain the required constraints to satisfy price dominance with a totally

unimodular constraint matrix. The resulting non-linear formulation RaNLP for a given

area a can be stated as follows:

RaNLP : max
g,z

∑
n∈N

µn

∑
s∈F(x)

∑
κ∈K(rn −∆t

s + dκ)v̂nsκgsκ

1 +
∑

s∈F(x) v̂
T
nsgs

s.t. gm1 + zm1 = 1, ∀m ∈M(x),

gmκ + zmκ = zm,κ−1, ∀m ∈M(x), κ ∈ K\{0, 1,K},

gmK = zm,K−1, ∀m ∈M(x),

gm1 = gs1 + zs1, ∀m ∈M(x), s ∈ S(x),

gmκ + zs,κ−1 =gsκ + zsκ,

∀m ∈M(x), s ∈ S(x), κ ∈ K\{0, 1,K},

gmK + zs,K−1 = gsK , ∀m ∈M(x), s ∈ S(x),

gjκ ∈ [0, 1], zjκ ∈ [0, 1], ∀j, κ ∈ K\{0}.

(2.7)

The first three groups of constraints state the flow balance at nodes (m,κ)

and the next three those of (s, κ). Note that we can drop the binary restrictions since

the constraint coefficient matrix of RaNLP is totally unimodular. This latter property

follows from the fact that the balance constraints of a unit network flow problem

with single source and sink satisfy the totally unimodular condition (Nemhauser and

Wolsey, 1988).

Proposition 1 (Reformulation of Slot and Price Assortment Problem) RaNLP is

equivalent to the online pricing problem (2.5).

Proof The proof of this proposition is analogous to the argument provided in Davis

et al. (2013). �

Next, we linearise the optimisation problem RaNLP by introducing the following
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decision variables for n ∈ N, m ∈M(x), s ∈ F(x) and κ ∈ K

ĝnsκ =
v̂nsκgsκ

1 +
∑

j∈F(x)

v̂Tnjgj
and ẑnmκ =

zmκ

1 +
∑

j∈F(x)

v̂Tnjgj
.

The linear optimisation model RaLP for area a can be formulated as follows:

RaLP : max
ĝ,ẑ

∑
n∈N

ηn
∑

s∈F(x)

∑
κ∈K

(rn −∆t
s + dκ)ĝnsκ

s.t.
∑

s∈F(x), κ∈K

ĝnsκ + ĝn0 = 1, ∀n ∈ N,

ĝnm1

v̂nm1
+ ẑnm1 = ĝn0, ∀n ∈ N,m ∈M(x),

ĝnmκ
v̂nmκ

+ ẑnmκ = ẑnm,κ−1, ∀n ∈ N,m ∈M(x), κ = 2, · · · ,K − 1,

ĝnmK
v̂nmK

= ẑnm,K−1, ∀n ∈ N,m ∈M(x),

ĝnm1

v̂nm1
=
ĝns1
v̂ns1

+ ẑns1, ∀n ∈ N,m ∈M(x), s ∈ S(x)

ĝnmκ
v̂nmκ

+ ẑns,κ−1 =
ĝnsκ
v̂nsκ

+ ẑnsκ,

∀n ∈ N,m ∈M(x), s ∈ S(x), κ = 2, · · · ,K − 1,

ĝnmK
v̂nmK

+ ẑns,K−1 =
ĝnsK
v̂nsK

, ∀n ∈ N,m ∈M(x), s ∈ S(x),

0 ≤ ĝ, z ≤ 1.

(2.8)

The price of slot s that is indicated by the optimal solution ĝ∗nasκ can be

obtained by solving RaLP. Specifically, it will be priced at dκ only if ĝ∗nasκ is non-zero.

Note that only one ĝnasκ is non-zero among all κ ∈ K for slot s ∈ F(x).

Proposition 2 (Linearisation of Slot and Price Assortment Problem) Both RaNLP
and RaLP problems are equivalent and possess the same optimal value.

Proof The proof is provided in Appendix A.1. �

Notice that the opportunity cost ∆t
as = Vt+1(x) − Vt+1(x + 1as) for each

customer’s order coming from area a needs to be estimated for all available slots s

at time t. Then, it becomes an input to RaLP to determine prices of available time

slots. As mentioned earlier, it is crucial that the approximation approach must be

computationally efficient to cope with the large-scale problems. The next section

introduces an approach by adopting a choice-based linear program to estimate related

value functions under the estimated MNL choice model.
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2.5 A Model-based Opportunity Cost Approximation

For simplicity, consider value function Vt(x) in (2.2) for a given state x at time t. We

first need to compute total delivery cost to be used for the approximated value function

V̂t(x). Let us introduce binary decision variables w = {wams | ∀a ∈ A, m ∈M, s ∈ Sm}
representing whether the accepted orders for flexible slot m are assigned to their

corresponding standard slots s or not. Moreover, let Ms define a set of flexible slots

covering standard slot s. The number of orders x′as from area a to be delivered during

time slot s is calculated as x′as = xas +
∑

m∈Ms

wams. We apply for the continuous

half-width routing method introduced by Daganzo (1987) in order to estimate the

total delivery cost. Note that the customer slot selection behaviour is captured by

the estimated MNL choice model such that we can obtain a tractable linear model

for the opportunity cost approximation. A brief description of this method follows.

We assume that only one vehicle is sent to each area; we emphasise that

this assumption does not extend to the solution of the full vehicle routing problem

at the end of a booking horizon. Instead, this assumption is only used in the

opportunity cost approximation where we anyway do not yet have full information

on all orders, but where we need to include forecasted orders so as to arrive at

reasonable opportunity cost estimates for all slots. Each vehicle has capacity c and

delivers customers’ orders within a pre-defined rectangular area (with length αa and

width βa) during the time window of the standard slot. These rectangles can be of

different sizes reflecting different densities of customer locations; this approach has

been proposed by Yang and Strauss (2017). If the average mile of any vehicle per

hour is ν and the average service time per order takes τ̄ , then the maximum number

of feasible orders Ba to be delivered within an area a for any standard slot s can be

calculated as

Ba =
t0 − 2αa

ν

τ̄ + βa
6ν

,

where t0 denotes the time window for each standard slot. Given a transportation

cost of δ per mile, the delivery cost of orders x′as from area a ∈ A and standard slot

s ∈ S is computed as

Cas(x
′
as) = δ

(
2αaL(x′as) +

βa
6
x′as

)
,

28



where the function L(x′as) is defined as

L(x′as) =


0 if x′as = 0,

1 if 0 < x′as ≤ Ba,

∞ if x′as > Ba.

Note that the cost δρa of travelling from the depot to area a (with ρa miles distance)

is independent from the customer orders, but still contributes to the total delivery

cost. We should also mention that these delivery-cost estimations are not used for

constructing the final delivery routes.

We are now ready to present the approximated linear programming model for

the dynamic pricing model. Let g′ = {g′iasκ | ∀i ∈ {t, · · · , T}, a ∈ A, s ∈ F , κ ∈ K}
represent pricing decisions made from time t until the end of planning horizon T .

The choice probability of a segment-n customer for slot s with price dκ is computed

as

p′iansκ(g′) =
v̂nsκg

′
iasκ∑

j∈F
v̂Tnjg

′
iaj + 1

, (2.9)

where p′ian0(g′) denotes the likelihood of not booking any time slot. Due to notational

simplifications, let us define Piansκ(g′) = λµaηanp
′
iansκ(g′) to denote the probability

of a segment-n customer from area a selecting slot s with price dκ at time i, and

accordingly Pian0(g′) = λµaηanp
′
ian0(g′) represents the probability of not booking

from a segment-n customer in area a. Then, the expected number of orders to be

allocated in standard slot s from area a becomes

xas +
T∑
i=t

∑
n∈N,κ∈K

Piansκ(g′)

.

Given the average profit-before-delivery (r̄an) received from the accepted

order of segment-n customer from area a, we can formulate a non-linear program
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(NLP) as follows:

(NLP ) : V̂t(x) = max
g′,w

T∑
i=t

∑
a∈A,s∈S

∑
n∈N,κ∈K

Piansκ(g′) (r̄an + dκ) −
∑

a∈A,s∈S
Cas(x

′
as)

s.t.
∑
s∈F

[
xas +

T∑
i=t

∑
n∈N,κ∈K

Piansκ(g′)
]
≤ c, ∀a ∈ A,

∑
s∈Sm

wams = xam +
T∑
i=t

∑
n∈N,κ∈K

Pianmκ(g′), ∀a ∈ A,m ∈M,

xas +
T∑
i=t

∑
n∈N,κ∈K

Piansκ(g′) +
∑

m∈Ms

wams ≤ Ba, ∀s ∈ S, a ∈ A,

T∑
i=t

∑
κ∈K

Piansκ(g′)

vnsκ
=

T∑
i=t

Pian0(g′), ∀a ∈ A, s ∈ F , n ∈ N.

g′ ∈ [0, 1], w ≥ 0.

(2.10)

The first set of constraints in (2.10) ensures that the capacity of vehicles

serving in each area is not exceeded. The second group of constraints expresses

the balance equations for allocating orders in flexible slots to standard slots while

the third set of constraints are time-window constraints for all standard slots after

allocating orders from flexible slots. The final set of constraints enforces to have a

single price for each time slot requested by a segment-n customer in any area at each

time period.

(NLP) is a difficult optimisation problem that involves the nonlinear choice

probability terms. We can decompose the problem in terms of areas via our routing

cost approximation using independent delivery areas. We build on the ideas of

Gallego et al. (2014) to reformulate (NLP) as a compact linear program. Let

y = {yasnκ | ∀a ∈ A, s ∈ F , κ ∈ K} denote new decision variables where yasnκ

represents the expected number of segment-n customers in area a to select time slot

s with price dκ. Using

yasnκ =

T∑
i=t

Piansκ(g′) and yan0κ =

T∑
i=t

Pian0(g′),

we obtain the model (LP) below. Note that the meaning of variables x′as and wams

remains the same. The constraints of the (NLP) model can be easily transformed

into the time-aggregated form as presented in (LP).
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(LP ) : Rt(x) = max
y,w

∑
a∈A,s∈F

∑
n∈N,κ∈K

(r̄an + dκ)yansκ −
∑

a∈A,s∈S
Cas(x

′
as),

s.t.
∑
s∈F

[
xas +

∑
n∈N,κ∈K

yansκ

]
≤ c, ∀a ∈ A,

∑
s∈Sm

wams = xam +
∑

n∈N,κ∈K
yanmκ, ∀m ∈M, a ∈ A,

xas +
∑

m∈Ms

wams +
∑

n∈N,κ∈K
yansκ ≤ Ba, ∀s ∈ S, a ∈ A,∑

κ∈K

yansκ
vnsκ

≤ yan0, ∀a ∈ A, s ∈ F , n ∈ N,∑
a∈A,s∈F

∑
n∈N,κ∈K

yansκ + yan0 = λ(T − t+ 1)

∑
κ∈K

dκ
yanmκ
vnmκ

≤
∑
κ∈K

dκ
yansκ
vnsκ

, ∀a ∈ A,m ∈M, s ∈ S, n ∈ N.

y ≥ 0, w ≥ 0.

(2.11)

Additionally, we impose a condition to ensure that total number of customers’

bookings over all time slots including no-bookings during the remaining time periods

must be equal to the expected number of arrivals. Finally, we have to make sure

that any flexible slot is not assigned with a higher price than any standard slots.

Proposition 3 (Linearisation of Value Function Estimation) If the MNL model is

considered to describe customer choice behaviour, then (LP) is equivalent to (NLP).

Thus, Rt(x) = V̂t(x).

Proof The proof of this proposition is provided in Appendix A.2. �

2.6 Computational Experiments

The central question that we seek to answer with the numerical studies in this

section is to what extent, and under what conditions may flexible slots be able to

improve profitability? Furthermore, we are interested in quantifying where potential

improvements are coming from. Are we saving on routing costs, or attracting more

revenue? How are the results affected by varying ratios of demand to capacity? We

begin by describing and justifying the scenarios to be analysed, then report our

results and discuss insights and limitations.

31



2.6.1 Data and Experimental Design

In our experiments, the delivery day has 14 one-hour non-overlapping standard slots.

We focus on a single customer segment and define the utility of booking slot s with

price dκ as usκ = us + γdκ where us is the utility of the slot and γ indicates the

price sensitivity. Table 2.1 presents those standard and flexible slots along with their

utility parameters defined under a nested MNL model. We construct 7 flexible slots

that can be offered to customers as presented in Table 2.2 along with their utility

parameters under the nested MNL model. Note that the utility parameter of each

flexible slot is set as the average utility of its covered standard slots.

We define two scenarios (abbreviated as P3 and A4) for the design of flexible

slots as shown in Table 2.2 in order to test their impact on various performance

measures. Scenario P3 features 3 flexible slots (hence ‘3’) covering non-adjacent

standard slots according to their popularity (hence the ‘P’). More specifically, each

flexible slot covers one popular standard slot and two less popular slots. Scenario

A4 provides four flexible slots (hence the ‘4’) each covering adjacent (hence the ‘A’)

standard slots. This is similar to current industry practice by Tesco in the UK as

they exclusively offer flexible slots consisting of adjacent standard slots. Recall that

we are interested in the effect of introducing flexible slots versus not having flexible

slots with a nested MNL choice model as the underlying ground truth choice model.

As benchmark decision policy, we use dynamic pricing of all 14 standard slots

without the ability to offer flexible slots. We report on the performance of being

able to use P3 or A4 relative to this benchmark. Note that we also tested a pricing

policy based on the nested MNL model. However, it has not significantly improved

on the performance measures compared to using the pricing policy with MNL model

(and in some cases even performed worse) and consequently we do not report the

corresponding results. It may seem counter-intuitive that using the correct choice

model in the policy actually may be worse than using an approximated one; we

believe that this effect arises from the fact that our opportunity cost estimation is

biased due to the use of MNL in its calculation.

Table 2.1: Utility parameters of standard slots under the nested MNL model

Slot 8–9 9–10 10–11 11–12 12–13 13–14 14–15

us 3.2 3.1 3.3 3.2 3.0 2.5 2.7

Slot 15–16 16–17 17–18 18–19 19–20 20–21 21–22

us 3.5 3.8 3.9 3.6 4.7 4.2 3.2

u0 = 3.5; γ = −0.45. Dissimilarity parameters: ωŝ = 0.8 and ω0 = 1.
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Table 2.2: Specification of flexible slots and their utility parameters

Time P3 A4

Slot m1 m2 m3 m4 m5 m6 m7

8–9

9–10

10–11

11–12

12–13

13–14

14–15

15–16

16–17

17–18

18–19

19–20

20–21

21–22

um 3.6 3.7 3.3 3.5 2.7 3.7 4.2

Dissimilarity parameters: ωm̂ = 0.5

To estimate the MNL-based choice models to be used to construct our decision

policies in the simulation studies, we generate booking histories involving 320,000

booking requests. We randomly generate for each request a set of standard and

flexible slots to represent the historic set of offered alternatives. Each standard time

slot has the probability of 70% to be included in the offer set and each flexible slot

(either of slots in P3 or A4) is offered when at least one of its covered standards

slots is offered. Half of the 320,000 synthetic offer sets were constructed involving

flexible slots sampled from P3 and A4, respectively. The price of each offered slot

is randomly selected from the set {£4, £5, £6, £7, £8} and flexible slots have

prices no higher than standard slots. Specifically, we firstly randomly select prices

for standard slots from the set. Then, we randomly pick prices for flexible slots from

a subset consisting of only price points that are lower or equal to the lowest prices of

standard slots.

We simulate each customer slot selection decision based on offered slots and

their prices following the nested MNL model in Tables 2.1 and 2.2 (but this model is

not known to our decision policy). Based on our generated booking histories, we use

the asclogit package provided in Stata/SE 15 to estimate the parameters of the MNL

choice model in Table 2.3 which are used in the opportunity cost estimation.

We focus on a delivery area with the size 15km× 15km with a depot located
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Table 2.3: Utility parameters in the estimated MNL model

Slot 8–9 9–10 10–11 11–12 12–13 13–14 14–15

ûs -0.3766 -0.1027 0.2605 -0.2616 -0.73287 -1.3731 -1.1300

Slot 15–16 16–17 17–18 18–19 19–20 20–21 21–22

ûs -0.0983 0.2494 0.1509 0.6240 0.7288 0.4977 -0.0984

Flexible m1 m2 m3 m4 m5 m6 m7

ûm 1.0681 0.1282 -1.8204 -0.2369 -2.3910 -0.4260 0.5592

Note: û0 = 0; γ̂ = −0.5507.

outside the area at (7km, 16km). The area can be equally divided into 25 sub-areas

and customers are evenly distributed within each sub-area. We create a pool of

customer locations where 75% of customers are located in the 15 shaded sub-areas

and 25% of customers located in the 10 white areas as illustrated in Figure 2.2.

This simple design mimics the situation of a grocery retailer dispatching from a

single depot in the outskirts of a city. Customer orders are always of unit size, and

their order profit r before delivery cost (excluding delivery charges) is drawn from a

normal distribution (truncated at zero) with mean 25 and standard deviation of 10.

Figure 2.2: Delivery service area provided with flexible slots

We use the number of time periods covered in one sales horizon to reflect the

demand level. We assume that exactly one booking request appears at every time

period. Based on the estimated capacity level considering the time window constraints

and vehicle capacity, we choose the base demand level with 1800 time periods where

the ratio of expected demand to capacity is 1. We apply scaling parameters from

the set {0.6, . . . , 1.7} to the demand level to evaluate the performance of our polices

under different demand levels. For example, we consider 1980 time periods when the

scaling parameter is 1.1.

Each simulation of the sales horizon iterates over all time periods sampling

customer slot booking decisions. Slot feasibility checks during the simulation run
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are performed based on the continuous delivery cost approximation (we stress that

this feasibility check is rather conservative). A standard slot is feasible if the vehicle

has available capacity and if the number of accepted orders does not exceed Ba.

A flexible slot is feasible if and only if at least one of its covered standard slots

is deemed feasible. During the booking horizon, opportunity costs are estimated

using the approach described in Section 2.5 and updated after every 100 customer

acceptances. When the scaling parameter is 1.0, opportunity costs are re-optimised

12 times during one booking horizon. Slot price points D range from £2 to £8 in

incremental steps of £1.

At the end of the booking horizon, we calculate the delivery costs C(x) by

solving a vehicle routing problem with multiple time windows (‘multiple’ because a

flexible slot can be composed by multiple feasible standard slots for a single customer).

The company has 25 delivery vans, each with capacity of c = 100 units. Travel

distance between any two adjacent orders’ locations is measured by the Euclidean

distance metric. We multiply the total travel distance with a fuel cost of £10 per

kilometre to obtain the total delivery costs (we ignore fixed costs). A van travels

with a fixed speed of 25km per hour. The service time for each order is 10 minutes.

We apply the simulated annealing approach of Belhaiza et al. (2014) to

minimise the total delivery costs. Starting from an initial delivery route, we make

iterative improvement steps by randomly reassigning orders within a route. Note

that we modify the cost function and the approach proposed by Belhaiza et al. (2014)

to evaluate each route by only considering the total delivery costs and penalties from

violating the vehicle capacity and time window constraints. Since we use an existing

method for constructing routes (and subsequently evaluating costs), we refrain from

re-producing the exact algorithm.

The simulation of each scenario runs 100 times and returns average perform-

ance measures on the number of accepted orders, revenue, total delivery costs and

total profit. Revenue consists of order revenue and delivery charges. Note that the

total profit is computed by subtracting total delivery costs from the total order and

delivery charge revenue.

2.6.2 Numerical Results and Analysis

In our experiments, we aim to measure the value of introducing flexible slots, and to

derive insights on what drives this value. The scenarios A4 and P3 only differ in

the definition of flexible products. We report the computational results in terms of

performance measure determined as percentage change relative to the base scenario

of having only standard slots (no flexible products). All other parameters remain

the same across all scenarios.
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First of all, we are concerned with determining the total profitability impact

of P3 versus having no flexible slots in dependence of the demand scaling parameter.

Total increase of profit corresponds to the product of relative increase in order volume

and relative increase in mean profit, both depicted in Figure 2.3. We plot them

on top of each other since their sum approximately corresponds to the total profit

increase, thus giving an impression of what drives profit. In all scenarios, adding the

three flexible slots increases total profit by at least 3%. Moreover, we can see where

these profitability increases are coming from: for low demand scenarios, it is through

both attracting more orders and higher profit per order; for high demand scenarios, it

is mainly from higher profit per order. Intuitively, what happens under low demand

is that more orders are attracted by offering flexible slots to fill up available capacity.

Delivery capacity stays constant throughout all experiments, meaning that the larger

the scaling parameter, the more congested the delivery routes become. Therefore,

we cannot attract many more orders under high demand. However, we may be able

to attract more high-value orders.
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Figure 2.3: Profit increase (%) under P3 relative to never using flexible slots

Let us drill down further on the increase of profit per order with the intention

of unearthing insights on what causes these profitability improvements. When we

consider the profit per order, we observe that flexible slots significantly increase

efficiency regardless of demand levels. We break the profit per order increases further

down into percentage changes in revenue per order and percentage changes in cost

per order as shown in Figure 2.4. Apparently, the main drivers of profit per order
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increases are routing cost savings at low demand, which demonstrates the value of

added flexibility in route planning. Under low demand, routes have relatively few

orders to serve, and the ability to move some customers can reduce the length of

routes considerably. Accordingly, significant delivery cost savings can be achieved.

Based on Figure 2.5, fleet utilisation improves for low demand scenarios. Note that

the utilisation is defined as total number of served orders of the vehicle. Under high

demand, efficiency of deliveries cannot be improved much because the routes are too

congested. We conclude that introducing flexible slots tends to be particularly cost

efficient when delivery capacity is large relative to demand.
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Figure 2.4: Revenue/order and cost/order increases (%) under P3 relative to never
using flexible slots
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Figure 2.5: Vehicle utilisation under different demand patterns under P3

On the other hand, the revenue per order decreases in low demand scenarios

when we introduce flexible slots. Note that the revenue per order consists of the

revenue from the order itself and the delivery service revenue. When demand is low,

the available capacity needs to be filled up by attracting more customers with low

priced delivery services. Since flexible slots cannot be priced higher than standard

slots, the delivery service revenue per order decreases in the low demand scenarios,

which results in an overall decrease of revenue per order. When demand is high, the

policy focuses on attracting high-value orders and both standard and flexible slots

are higher priced resulting in increased revenue per order.

Another interesting question is how to design flexible slots to gain more benefit

in reducing delivery costs, i.e., should we group adjacent standard slots together

to essentially plan for wider time windows within which the customer is ultimately

assigned to a specific standard slot as in scenario A4, or to combine some popular

with less popular slots as in scenario P3? We compare these scenarios, A4 versus P3,

to obtain some insights to that end. As shown in Figure 2.6, P3 performs significantly

better on profitability in almost all scenarios. When the scaling parameter is small,

the increase is mostly driven by additional order intake.
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Figure 2.6: Performance comparison of scenarios (A4 vs P3) relative to using only
standard slots

Figure 2.7 compares the changes in cost per order and revenue per order in

A4 and P3, respectively, relative to the scenario where no flexible slots are provided.

Revenue per order is also highly influenced by the underlying demand level, so we

concentrate on the change in cost per order. Both A4 and P3 can reduce cost per

order. At low demand levels, P3 results in more cost per order reduction than

A4. It makes sense since with P3 we can move customers from popular to less

popular slots so as to accommodate more orders on the delivery routes. Therefore,

we can conclude that providing wider time slots as flexible slots is not as efficient as

combining popular slots with less popular slots.
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Figure 2.7: Cost per order and revenue per order increases (%) under scenarios (A4
vs P3) relative to using only standard slots

Finally, another interesting practical question is whether customers would

typically be assigned to the same mode of a flexible slot (which means that customers’

valuations would be affected due to learning effects). To that end, let us classify each

standard slot covered by flexible slots as either ‘least popular’, ‘median popular’ or

‘popular’, based on its relative popularity compared to other standard slots covered

in the same flexible slots. Figure 2.8 presents final slot allocation decisions for orders

in all flexible slots offered in P3. These time slot assignments were made by the

routing algorithm at the end of each simulation run; thus, they are not driven by our

assumptions on customers’ utility parameters of flexible slots. Since popular slots

are more congested than other slots, orders in flexible slots are mostly allocated to

‘least popular’ and ‘median popular’ slots. As demand is scaled up, the proportion of

orders allocated to popular slots increases. When demand is low, our pricing policy

tries to retain orders by offering slots at low prices such that a substantial number of

customers book into popular standard slots straight away. It results in less delivery

(routing) capacity left for accommodating orders in flexible slots. When demand is

high, higher prices are charged for slots by our pricing policy, especially for these

popular standard slots. It reduces the number of customers who book directly into

standard slots but pick to select cheaper flexible slots. Accordingly, more delivery

capacity may be found within those popular standard slots such that increases the

likelihood of allocating orders in flexible slots to popular standard slots.
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Figure 2.9 demonstrates final slot allocation decisions for orders in all flexible

slots offered under A4. We can observe similar patterns as under P3 that the

likelihood of allocating flexible orders to popular standard slots increases as demand

level increases, apart from for flexible slot m5. Flexible slot m5 includes three less

popular standard slots (relative to others on the delivery day). When the demand is

low, only a small number of customers books directly into those standard slots and

we tend to have delivery capacity left even in popular slots. Therefore, most orders

are allocated to the popular standard slot such that the cost per order can be reduced.

Moreover, we also observe that orders in flexible slots are more evenly allocated to

standard slots under A4 than under P3. Hence, we conclude that a customer would

find it harder to anticipate in which slot their order will be executed if flexible slots

are simply constructed by combining adjacent standard slots as compared to P3.
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Figure 2.8: Final allocation for flexible orders under P3
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2.7 Conclusions

In this chapter, we propose a dynamic pricing approach for standard and flexible

time slots for attended home delivery. Flexible slots have recently been introduced

by a major retailer in the UK in the form of time windows that encompass four

hours; customers who choose such a slot are guaranteed to receive delivery in a

one-hour slot within this wider time window. Which slot exactly is communicated

only shortly prior to the delivery day. Our method can dynamically price such

constructs alongside regular narrow time slots under consideration of the customer

choice. The approach is based on tractable linear programming formulations and, as

such, is scalable to real-life applications.

Several managerial insights have been obtained via a simulation study. First,

flexible slots have significant potential in reducing delivery costs, especially when

demand is low relative to available delivery capacity. Moreover, we find that retailers

would be better off to construct flexible slots as combinations of some more and

some less popular slots, as opposed to the current industry practice of using adjacent

slots only. Especially, if demand is high relative to available delivery capacity such
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flexible slots have the advantage of being able to spread customers more equally

across the delivery time slots.

Because of a lack of real data, it is worthy of noting that all results and

analysis are derived by assuming that the utility of a flexible time slot is the

average utility of the standard slots that it covers. Modifying such assumption

only affects the customer choice behaviour. In other words, we may not be able to

attract additional customers or obtain more profit-before-delivery by changing the

underlying assumption. However, having flexible slots provide the e-retailer with

flexibility in scheduling delivery routes. Therefore, we can still observe significant

delivery cost savings from offering flexible slots under any assumptions. On the

other hand, customers could have low preference towards flexible slots because of the

delivery time uncertainty. Accordingly, the e-retailer would have to reduce prices of

those slots such that the lost revenue could not be offset by the cost benefit from

delivery flexibility. In other words, the overall profit of the e-retailer might not be

improved after introducing flexible slots.

A limitation of the proposed approach is that the solution approach makes

use of a rather crude approximation of the capacitated vehicle routing problem

with multiple time windows, which forms the boundary condition for the dynamic

pricing problem. Nevertheless, as the simulation study shows, flexible products still

bring significant routing cost savings (the latter being estimated using an established

heuristic taken from the existing literature). More refined approximations may

improve results, but at the risk of losing scalability. An interesting future research

question is how should these flexible slots be best designed, i.e., which regular slots

should be combined to form a flexible slot? Furthermore, how could we price flexible

slots when we allow customers to design the flexible slot themselves, i.e., if they can

freely combine regular slots to form a custom-made flexible slot?
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Chapter 3

Dynamic Delivery Time Slots

Management and Vehicle

Routing across Multiple Days

An e-retailer may offer customers more delivery options from a number of consecutive

delivery days. For example, leading UK e-grocers, such as Tesco, Morrisons and

Sainsbury’s, allow customers to select delivery time slots from 7 consecutive calendar

days. This may cause the e-retailer an operational burden from decision making

process and vehicle routing construction while it increases customer satisfaction. In

this case, customers compare available time slots and their delivery days before they

choose one of those time slots for delivery. The e-retailer adopts a certain control

policy to influence a customer’s choice on time slots such that the total profit of each

delivery day is maximised. As a result, it is essential for the e-retailer to establish

an appropriate choice model capturing the underlying customer’s choice behaviour.

In this chapter, we focus on the dynamic time slot management for multiple

consecutive delivery days. We propose three customer choice models to capture the

underlying customer choice behaviour and derive three slotting polices accordingly.

Specifically, we introduce two choices models to take into account the substitution

effect of delivery days by defining customer choice behaviour under a multinomial

logit choice model and a nested multinomial logit choice model. We also consider an

alternative model that ignores such effect. In this case, we apply an independent

multinomial logit choice model to each individual day. Our numerical results counter-

intuitively indicate that using the choice model excluding substitution effect of

delivery days in the slotting policy may generate higher profit than the other two

choice models, especially when the demand is low relative to the delivery capacity.

However, integrating such a choice model in the slotting policy does not improve
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the delivery efficiency by reducing delivery cost per order. Moreover, our results

show that offering same-day delivery services could benefit the e-retailer in terms of

attracting more orders and reducing delivery cost per order.

3.1 Delivery Service Booking System with Multiple Days

The UK’s online retail market has grown by 16% and reached £60billion during

2017 (Mintel, 2018d). The home delivery services offered by e-retailers as the main

fulfilment method aim to make customers’ online shopping experience become fast

and convenient (Ehmke, 2012). Moreover, the delivery services play an important

role on the future growth of online retailing. In order to boost sales, Mintel (2018d)

also highlights the importance for an e-retailer to offer a wider range of delivery

options due to more convenience to customers. In particular, offering time slots from

different delivery days expands further delivery options for customers.

Moreover, allowing customers to select delivery days has been empirically

found as an important attribute to increase consumer satisfaction in online retailing

(Nguyen et al., 2019). When a customer requests a delivery service, it is beneficial

for e-retailers to present a number of time slots from several consecutive delivery

days at the same time because of flexibility in managing their operations. It has

been indeed widely used by leading retailers in UK; for example, Tesco presents time

slots in 7 days including the current day for every customer request. Apart from

increasing customer satisfaction, e-retailers may also benefit from offering time slots

across multiple delivery days to customers. As more time slots are managed at the

same time, it creates more opportunities for the e-retailer to exploit the potential

low-cost time slots to accommodate each delivery request. As a result, a routing

plan with low delivery costs can be obtained by the e-retailer for each delivery day.

However, joint management of time slots across multiple delivery days jointly

is a challenging task as the complexity from both customer choice behaviour and

vehicle routing planning increases in comparison to single day delivery operations.

When the customer is presented with time slots from multiple delivery days, his/her

slot choice behaviour is affected not only by the presented time slots but also by the

delivery days. Therefore, a choice model including substitution effect of multiple

delivery days is required to capture the underlying customer behaviour in selecting a

specific day and a time slot. Moreover, such a choice model may not lead to a linear

program to decide slot availability, which can be solved efficiently in polynomial

time. In addition to the choice model, routing plans on presented delivery days are

also anticipated at the same time when considering the costs of accommodating one

request. Note that the cost of delivery for each order arriving during a specific day is
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obtained by solving a vehicle routing problem with time windows. Since the vehicle

routing problem is NP hard, a large computational effort is required to anticipate

routing plans for all presented delivery days at the same time.

Those challenging and practical issues in managing time slots from multiple

days have been ignored in majority of studies in the literature; they rather consider

that time slots from each delivery day are managed independently as shown in Figure

3.1. Independently managing slots from different delivery days largely reduces the

complexity of the problem, especially on the vehicle routing side. It is worthwhile to

address that if a customer does not select any slot from this delivery day, he/she

leaves the system since there is no option offered in other delivery days. This is a

strong assumption in those studies that eliminates a situation that the customer may

prefer other days. In this case, the substitution effect of delivery days is ignored and

consequently the customer choice is reflected inaccurately in the model.

Day 1 Day 2 Day K

Now
Booking horizon Day 1

Booking horizon Day 2

Booking horizon Day K
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Figure 3.1: Time slots from K delivery days presented to customers whose arrival
process separated into K booking horizons

In this chapter, we focus on a rolling-horizon based dynamic slotting problem

of an e-retailer presenting time slots from a number of consecutive delivery days. We

assume that a stream of customers arrive within a fixed calendar day requesting for

delivery services (i.e., they can choose any delivery day). The decision problem of

the e-retailer occurs whenever a customer coming from a known location requests

a delivery service. Specifically, the e-retailer needs to determine which time slots

can feasibly accommodate the request and which time slots need to be displayed

to the customer. In response, the customer either selects exactly one slot by

comparing all presented time slots and their corresponding days or decides to leave

the system. When all orders are received for the delivery day, a capacitated vehicle

routing problem with time windows is solved to construct the delivery routes. By

dynamically deciding the presented time slots, the objective of the e-retailer is to

maximise the total profit of all managed delivery days.

We also consider offering same-day delivery services as express delivery ser-

vices to a specific group of customers. These customers’ requests can be quickly

prepared and easily accommodated by the existing routing plan of the current day
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without routing plan reconstruction. Offering same-day services in such a way meets

customers’ demand for express delivery services and also increases their satisfaction

of shopping from the e-retailer. Additionally, extra profit-before-delivery can be

generated for the current delivery day. Most importantly, the efficiency of the routing

plans on the current day can be improved by serving more orders without causing

significant changes on the existing routing plan. Average delivery costs of serving

one request on the current day could be further reduced because of the improved

delivery efficiency.

Our contributions on managing time slots across multiple days can be sum-

marised as follows. Firstly, we propose a new perspective to manage time slots across

delivery days by dropping the assumption that each delivery day has its correspond-

ing booking horizon. We deal with the slot management for multiple delivery days as

a rolling-horizon problem where one calendar-based booking horizon for all involved

delivery days is considered. We propose a DP formulation to dynamically decide the

availability of each slot from all delivery days whenever a customer request arrives.

Additionally, we explore the opportunity of offering same-day delivery services along

with accepting customers for future delivery days. Same-day delivery services are

provided only when there is a capacity from the existing routing plan for the current

delivery day.

As the customer selects one slot by comparing among offered time slots and

delivery days, we propose different choice models to capture the underlying customer

choice behaviour based on the nested multinomial logit (NMNL) model and the

multinomial logit (MNL) model. They both include the substitution effect of delivery

days. Alternatively, we use the MNL models for all delivery days independently by

explicitly excluding the substitution effect. The slotting polices are derived based on

the proposed choice models using LP-based approximation models. In the numerical

experiments, we compare the profit achieved by the e-retailer under these policies.

Our results show that using a choice model without considering the substitution

effect attracts the highest number of customers if demand is low relative to the

delivery capacity. Results also demonstrate that using such choice models (without

substitution effect) leads to inefficient routing plans that increase the delivery cost

per order. On the other hand, offering same-day delivery services generates extra

profit-before-delivery and improves the efficiency of the routing plans on the current

day by reducing the delivery cost per order.

The chapter is organised as follows. A literature review is presented in Section

3.2. The problem is described and formulated in Section 3.3. We present the vehicle

routing problem in Section 3.4. Then, we describe the demand model and the slotting

policy in Section 3.5 and Section 3.6, respectively. Our computational results are
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demonstrated in Section 3.7. Conclusions are reported in Section 3.8.

3.2 Literature Review on Time Slot Management

The attended home delivery services can be classified into two groups (namely, the

next-day and same-day delivery services) according to specific days when the actual

delivery operations take place at the next-day or same-day, respectively. All studies

in the literature related to attended home delivery systems deal with management of

time slots offered in a specific delivery day. To the best of our knowledge, no study

in the literature is concerned with management of multi-days delivery systems.

In this section, we will review studies related to the same-day and next-day

delivery services within an attended home delivery system and also summarise

different choice models used in the literature to capture customers’ behaviour in

selecting time slots. We also highlight differences between single-day and multi-days

time slot management practices. For a review of the attended home delivery systems

and their challenging revenue management practices, the reader is referred to Agatz

et al., 2008 and Agatz et al., 2013.

Next-day Delivery Services: Delivery operations of the next-day services

begin after the booking process is completed (e.g., Agatz, 2007). Campbell and

Savelsbergh (2005) introduce a dynamic decision model that accepts or rejects

delivery requests and determines the time slot to accommodate each accepted order.

They assume delivery service demand to follow an independent process, not to

be affected by the e-retailer’s decisions. In their following work, Campbell and

Savelsbergh (2006) explore an opportunity of using incentives (such as delivery

charges) to influence customer demand for specific time slot such a way that the

total delivery cost is minimised. They consider a linear customer choice model to

reflect impact of incentives on the probability of a particular time slot being chosen.

The other stream of studies on next-day delivery services focuses on the

vehicle routing and scheduling types of decision-making problems with an objective

of minimising delivery cost whilst meeting service requirements (Agatz et al., 2010).

Another objective is to maximise the number of accepted requests for delivery services

by retaining feasible tours; for instance, see Cleophas and Ehmke (2014), Ehmke and

Campbell (2014). All these studies under this stream mainly focus on accepting or

rejecting delivery time-slot bookings for a single specific time slot. No choice model

is considered to reflect customer preference towards other slots.

In the most recent research paper Mackert (2019), the customer’s slot choices

are assumed to be affected by control decisions on the offered time slots. Specifically,

a linear program is developed for making dynamic time slot offering decisions based
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on the underlying general attraction model. Moreover, the probability of any specific

presented slot is determined from all available and unavailable slots.

The multinomial logit model (abbreviated as MNL) has been widely used

in various applications as a customer choice model in managing time slots for one

specific delivery day. For instance, Asdemir et al. (2009) consider a dynamic time-slot

pricing model using fixed delivery capacity for each time slot. They explore structural

properties of the dynamic programming model and solve it by the backward recursion

approach using fixed delivery costs. Due to the curse of dimensionality in the state

space as the number of time slots and delivery capacities increase, it is difficult to use

recursion approach to solve the model for a realistic size of the practical applications.

Yang et al. (2014) estimate the MNL choice model using a real data for the dynamic

time slot pricing problem for a next-day delivery services. Although the real data

involves multiple delivery days, they define the no-purchase event for a customer who

is not picking any time slots from a specific delivery day while estimating the MNL

model. Moreover, they estimate opportunity costs only based on marginal routing

costs. In their following work, Yang and Strauss (2017) use an approximate dynamic

programming (ADP) approach to take into account effects of both future revenue

and routing cost when estimating the opportunity cost. Moreover, they adopt a

continuous approximation model proposed by Daganzo (1987) in order to estimate

total delivery cost. In order to improve the conservative delivery costs approximation

obtained by the continuous approximation model, Lang et al. (2019) recently propose

a simulation-based approach by generating samples of arrival processes to obtain

anticipatory delivery routes. As an alternative approach to MNL, Klein et al. (2017)

propose a general non-parametric rank-based choice model that takes into account

impact of prices on utilities of time slot. Prices of time slots are determined by

solving a mixed-integer linear program anticipating future demand and estimate

delivery costs. As the underlying optimisation model includes large number of integer

decisions, an application of this method in practice remains challenging.

Same-day Delivery Services: The simultaneity of booking process and

delivery operation is the key feature of same-day delivery services. A majority of the

literature under same-day delivery context focuses on the vehicle dispatch decisions

under stochastic customer demand. Under the vehicle dispatch problems, customer

requests need to be delivered within specified time windows. Klapp et al. (2016)

focus on the dispatch decision made after every fixed time with a single vehicle,

where customers and the depot are located on a line. As an extension, Klapp et al.

(2018) further discuss the same dispatch problem by relaxing the assumption on

delivery locations. Voccia et al. (2017) propose an analytic approach that decides

dispatch operation for multiple vehicles by taking into account future requests and
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delivery deadlines.

As managing same-day delivery service requests, Ulmer (2017) focuses on

the dynamic pricing policy of delivery deadlines offered by the services. It adopts a

binary customer choice model where a deadline with the highest utility is picked by

the customer. The approximated dynamic programming method is used to estimate

opportunity costs used in the pricing policy. Their numerical results show that

the dynamic pricing policy provides a higher revenue than a fixed pricing strategy

and a geographical pricing policy. For a real application, one needs to consider

computational issues such as the curse dimensionality for the ADP approach and

the accurate estimation of customer’s slot choice behaviour.

Our Approach: As highlighted above, time-slot management across multiple

delivery days has not been yet studied in the literature. Indeed customers can select

time slots from a number of consecutive days to place their requests in real-life.

Comparing to those studies in the literature, our research is concerned with the

delivery time-slot management and vehicle routing problem of a retailer providing

attended home delivery services. In particular, we consider a choice-based dynamic

slotting policy (with a fix delivery price) involving available time slots across multiple

future days for both the next-day and same-day delivery services. As time slots

allocate across several consecutive days, the influence of presented time slots from

other delivery days is explicitly taken into account by the customer choice model.

We introduce the nested multinomial logit (abbreviated as NMNL) model as the

underlying true customer choice model where the nest is defined by the day. We also

use the MNL choice model as an approximation to the underlying true customer

choice model with the same definition of a no-purchase event for each delivery day

independently and marginal routing costs to estimate the opportunity cost as in

Yang et al. (2014).

3.3 The Dynamic Slot Assortment and Vehicle Routing

Problem

In this section, we first describe the slot assortment optimisation and vehicle routing

problem with multiple delivery days and then present its dynamic programming for-

mulation. We consider an e-retailer having one depot and |B| number of homogeneous

vehicles. Each vehicle is assumed to have a fixed capacity Qmax. Delivery operations

start from the warehouse and each delivery operation needs to be completed within

a certain duration Dmax (i.e., a vehicle visits all customers in a tour and returns to

the depot during the delivery duration). The e-retailer provides delivery services

to customers located within a number of non-overlapping areas a ∈ A. Customers
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are classified into segments n ∈ N and customers in the same segment have the

same slot selection behaviour. Note that customers can be segmented based on area,

occupation and size of the family. Accordingly, we further assume that an order

from a segment-n customer worth rn in profit-before-delivery on average and that

each order consumes one unit capacity in the vehicle.

Day 1 Day 2 Day K

Now Booking horizons for Day 1,...,K

b b b

|

| ||
Th1Ts10

|
Th20 Ts2

Planning horizon on Day 2

Planning horizon on Day 1

|

|

|
ThK0 TsK

| Planning horizon on Day K

Figure 3.2: An illustration of booking and planning horizons with time slots from
multiple delivery days

We assume that the retailer receives customer orders during a booking horizon

consisting of multiple delivery days. Let us consider K consecutive delivery days of

whom all available time slots need to be managed at the same time. As depicted

in Figure 3.2, k = 1 specifically represents the current delivery day while each of

the remaining K − 1 days is referred to the future delivery day. Time slots during

available delivery days are all presented to customers at the same time and the

customer can pick any day based on his/her preference. Customer requests for the

same-day delivery services, scheduled on the current day (k = 1), need to be all

fulfilled while new requests for the current day as well as the future K − 1 delivery

days (for k = 2, · · · ,K) are accepted as long as the delivery capacity permits.

We assume that each delivery day possesses the same number of non-overlapping

time slots. Let Sk denote a set of feasible time slots available on delivery day k. We

can now define a set H = {s| s ∈ Sk, k = 1, . . . ,K} which includes all time slots

from K delivery days.

The dynamic delivery slot assortment and vehicle dispatching problem is a

calendar based problem of the e-retailer; therefore, a discrete dynamic program is

used to model the problem during one specific delivery day that is also referred to

as the planning horizon. Each delivery day has its own planning horizon that is

discretised into T decision stages, denoted by time periods t = 1, . . . , Ts, Ts+1, . . . , Th

where Ts represents the cut-off time for accepting requests for same-day delivery

services and Th is the last time period of the delivery day to accept a request for

other future delivery days. These time periods are assumed to be sufficiently small

so that the probability of having more than one arrival during each time period can

be neglected. Next, we will present the dynamic programming formulation of the
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underlying problem for the current delivery day, k = 1. For other delivery days,

we can proceed with the same methodology (in terms of the dynamic programming

model) in a rolling horizon manner. This will be further explained in computational

experiments section.

Before proceeding to the dynamic programming model of the problem, we

introduce the necessary notations for state and action sets as well as system dynamics

of the system that will be used throughout this study.

States: A state of the system at stage t consists of two components. The

first component includes all yet-to-be-delivered orders during K delivery days and we

denote it by a vector of x ∈ N|A|×|H|. The element xas of x indicates the number of

accepted orders yet-to-be-delivered during time slot s ∈ H to area a ∈ A. The second

component involves information related to each vehicle’s earliest available departure

time period and is denoted by a vector q ∈ N|B| that only considers availability of

vehicles at the current delivery day. More specifically, qb represents the future time

period when vehicle b is available at the warehouse (depot).

Actions: The action space consists of delivery dispatching and slot assortment

decisions. Given state (x,q) at time t ≤ Ts (i.e., before the cut-off time for accepting

same-day delivery orders), the retailer needs to make dispatching decisions for all

available vehicles and also determine slot availability for all feasible delivery time

slots during K delivery days. Let w ∈ N|A|×|H| denote dispatching decisions where

its element was indicates the number of orders to be dispatched during time slot

s to area a. Since orders accepted for the current delivery day (k = 1) need to be

delivered to customers in area a ∈ A during time slot s ∈ S1, was ≥ 0. On the

other hand, for time slots s ∈ Sk during other delivery days k = 2, . . . ,K, we can set

was = 0.

Let H′at(x,q) = {s| s ∈ S ′k, k = 1, . . . ,K} ⊂ H denote a set of feasible time

slots, which needs to be determined at any state (x,q) at stage t to accommodate

customer’s request coming from area a ∈ A before the e-retailer makes a slotting

decision. The feasibility of each time slot is checked whether a new coming order

violates the specific constraints related to time windows, vehicle capacity and duration

of a tour. Time slots for same-day delivery services are only checked before the

cut-off time t ≤ Ts. We assume that no more delivery trips will be added into the

existing routing plan. On the other hand, the feasibility of time slots for the future

day delivery services needs to be checked at each time period 0 ≤ t ≤ Th and a

new tour could be created if no tour exists for the customer order. The process of

feasibility checking for time slots during the current and future delivery days will be

further discussed in Section 3.4. Let us introduce a binary decision variable gas for

each feasible time slot s and area a. If the feasible slot s is offered to the customer,
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then gas = 1. Otherwise, gas = 0. We can then define the slotting decisions of the

retailer as g ∈ {0, 1}|A|×|H′|.
We can now define the action space, denoted as Ψt(x,q) at state (x,q), in

terms of slotting and dispatching decisions taken at t ≤ Ts, before the cut-off time

for same-day delivery services, as follows;

Ψt(x,q) := {(g,w) | g ∈ {0, 1}|A|×|H′|; was ≤ xas, s ∈ S
′
1, a ∈ A;

was = 0, s ∈ S ′k, k = 2, . . . ,K, a ∈ A; w ∈ W}

where W involves a set of constraints of the vehicle routing problem. Similarly, for

Ts < t ≤ Th, the action space at state (x,q) includes only the slotting decisions;

therefore, we can write the action space as

Ψt(x,q) := {g | g ∈ {0, 1}|A|×|H′|}.

State Transitions: We define transition probability from state (x,q) at

stage t to another state (x′,q′) at next stage t+ 1 in terms of the probabilities of

customer arrivals and the customer’s slot selection as follows. Let us consider feasible

time slots g ∈ Ψt(x,q) at time t to be presented to the customer. Let pans(g) denote

the probability of time slot s being selected by a segment-n customer from area a.

Similarly, pan0(g) is the likelihood of not booking any time slot at time t. Since the

customer requests arriving by Ts need to be dispatched due to same-day delivery

services, state x is transformed to new state as x′ = x−w + 1as, if the customer

from area a books time slot s. On the other hand, if the customer from area a books

time slot s at time t > Ts, then the new state is obtained as x′ = x + 1as.

Next, we will explain how the earliest availability time of all vehicles is

updated (i.e., state transformation from q to q′) when the dispatching decisions are

made. Let ι denote time period when the delivery operation starts at the current

delivery day k = 1 such that 1 ≤ ι ≤ Ts. We also introduce τb to indicate duration of

a tour to be completed by vehicle b on the basis of the existing routing plan to deliver

orders. Note that if vehicle b is not included in the routing plan, this means that

either the vehicle is not being dispatched yet or it is still in use, then τb = 0. If the

earliest available time of vehicle b is in the future (qb > t) or the current time period

(qb = t), then vehicle b is either under use or at the depot, respectively. Depending

on the arrival of requests, beginning of delivery operation and the vehicle’s presence

in the routing plan, each element q′b in q′ is updated at stage t as follows.

For a customer arriving before the delivery operation starts (t < ι), the

earliest available time of vehicle b is updated as q′b = ι. On the other hand, if the

customer arrives after the delivery operation starts (t ≥ ι), one of the following two
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situations may arise.

• Case 1: When vehicle b is included in the routing plan (τb > 0), we can update

it as q′b = qb + τb.

• Case 2: Suppose that vehicle b is not included in the routing plan (τb = 0).

If vehicle b is at the depot (qb = t), then q′b = qb + 1. However, if vehicle b is

under use (qb > t), then q′b = qb.

Note that state q is not updated after the cut-off time Ts since dispatching

decision is considered until the cut-off time of accepting same-day delivery orders.

Dynamic Programming Model: Before presenting the value function at

time t, we first introduce notation for probabilities of customer arrival, request

coming from a customer segmentation and a time slot selection. Let λ denote the

probability of a customer arrival within any time period; this is assumed to be

homogeneous during the booking horizon. Given a customer arrival, we define νa

as a likelihood of the request is from area a and also µan as the probability of the

request is from segment n.

Given state (x,q), the value function, denoted by Vt(x,q), at stage t for

t = 1, · · · , Ts, Ts + 1, · · · , Th can be formulated as a profit maximisation problem for

actions g and w

Vt(x,q) =



max
w,g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x,q)

pans(g)
(
rn + Vt+1(x−w + 1as,q

′)
)

+pan0(g)Vt+1(x−w,q′) + (1− λ)Vt+1(x−w,q′)

−C1(w,q), 1 ≤ t ≤ Ts

max
g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x,q)

pans(g)
(
rn + Vt+1(x + 1as,q)

)
+pan0(g)Vt+1(x,q) + (1− λ)Vt+1(x,q), Ts < t ≤ Th

(3.1)

Notice that at time t for Ts < t ≤ Th, we continue accepting orders for future

K − 1 delivery days, but dispatching decisions are no longer considered until the end

of planning horizon. After the cut-off time for same-day delivery services, the cost

C1(w,q) of delivery of orders w to be dispatched on day k = 1 can be calculated

in the cost-minimised manner by solving a capacitated vehicle routing problem

with time windows. When no feasible routing solution for the set of orders w is

found, the delivery cost is set to be infinity; that is C1(w,q) = ∞. At the end of

planning horizon, we calculate the delivery costs of dispatching remaining orders on

the current day. Let Ck(x,q) denote the minimum cost of delivering orders in day
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k = 1, 2, . . . ,K. Therefore, the boundary condition at stage Th + 1 is

VTh+1(x,q) = −
K∑
k=1

Ck(x,q). (3.2)

When no feasible routing solution for set of orders x in delivery day k exists, we fix

Ck(x,q) =∞.

By substituting pan0(g) = 1−
∑

s∈H′at(x,q)

pans(g) in (3.1), we can rewrite the

value function for 1 ≤ t ≤ Th at given state (x,q) as

Vt(x,q) =



max
w,g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x,q)

pans(g)(rn −∆1
tas(x,q))

+Vt+1(x−w,q′)− C1(w,q), 1 ≤ t ≤ Ts

max
g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x,q)

pans(g)(rn −∆2
tas(x,q))

+Vt+1(x,q), Ts < t ≤ Th
(3.3)

with opportunity costs defined as ∆1
tas(x,q) = Vt+1(x−w,q′)−Vt+1(x−w+1as,q

′)

and ∆2
tas(x,q) = Vt+1(x,q)− Vt+1(x + 1as,q).

Due to the large state space, the dynamic program (3.3) is intractable.

Additionally, calculating delivery costs (C1(w,q) and Ck(x,q)) at each state in the

dynamic model is NP-hard because it involves solving a capacitated vehicle routing

problem with time windows. Although the problem is hard to be solved directly,

it provides some useful insights which motivate the slotting policy and the vehicle

dispatching policy. At time t for 1 ≤ t ≤ Ts, if we could make the dispatching decision

w independently before the slotting decision, and also estimate the opportunity cost

∆̂1
tas(x−w,q′) ≈ Vt+1(x−w,q′)− Vt+1(x−w + 1as,q

′) of a customer from area a,

then the slotting policy is obtained by simply solving the following model

g = arg max
g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x−w,q′)

pans(g)[rn − ∆̂1
tas(x−w,q′)], (3.4)

Notice that the action space is now simplified as Ψt(x,q) := {g | g ∈ {0, 1}|A|×|H′|}.
On the other hand, if the customer order arrives after cut-off time of the same-day

delivery services (that is Ts < t ≤ Th) and if we could just estimate the opportunity

cost ∆̂2
tas(x,q) ≈ Vt+1(x,q)− Vt+1(x + 1as,q), we should obtain the slotting policy
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by solving

g = arg max
g∈Ψt(x,q)

λ
∑

a∈A,n∈N
νaµan

∑
s∈H′at(x,q)

pans(g)[rn − ∆̂2
tas(x,q)]. (3.5)

Thus, if we could separate the vehicle dispatching decisions from the time slotting

policy at each time period, we could simplify the problem and obtain what time

slots to offer based on the dispatching decision as presented in (3.4) and (3.5). Next,

a brief summary of the decision making process follows. For any state (x,q) at

stage t ≤ Ts, we first decide orders w to be delivered and compute its delivery costs

associated with the decision. Then, for any request from area a, a set of feasible

delivery slots H′at(x−w,q′) needs to be identified on the basis of updated state and

the approximate opportunity cost ∆̂1
tas(x −w,q′) is computed in order to decide

slot availability by solving (3.4). On the other hand, for stage t > Ts, we only need

to find a set of feasible delivery slots H′at(x,q) and approximate opportunity cost

∆̂2
tas(x,q) to decide slot availability by solving (3.5). An efficient method to find w

is crucial for obtaining feasible slots and maximising total after-delivery-cost profit.

We will further discuss this in Section 3.4. The customer choice probabilities will be

presented in Section 3.5. Then, the slotting policy under a specified customer choice

model along with the method to approximate opportunity costs will be covered in

Section 3.6.

3.4 Construction of Delivery Routes

As mentioned earlier, delivery operations for each consecutive delivery day are

managed independently, and the orders xk yet-to-be-delivered during a specific

delivery day k can be determined at given state (x,q). We assume that the availability

of each vehicle and the lead time of same-day orders need to be taken into account if a

delivery request is fulfilled on the current delivery day. Moreover, fulfilling a same-day

delivery request does not increase the number of trips in the existing delivery plan.

On the other hand, vehicle delivery routes are modified to accommodate same-day

delivery services at the current day k = 1 and future delivery services taking place

during k = 2, . . . ,K. Recall that routes of current delivery day k = 1 need to be

updated based on state (x1,q) since dispatching decisions are also made for same-day

delivery services whereas the routes of future delivery days k = 2, . . . ,K are modified

based on only state xk since only slotting decisions are made for orders received for

future delivery days.

In this section, we first introduce necessary notation for the vehicle routing

problem with time windows (VRPTW) over multiple delivery days and then present
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our approach to solve the problem. In order to construct and update delivery routes

for the VRPTW, we adopt the algorithm introduced in Azi et al. (2012). The

optimal routes are determined by using the simulated annealing method. Let us

start describing key elements of the VRPTW along with notations.

Locations: We consider J number of customers who are located at different

locations (represented by indices i and j) within an area. In particular, the depot

where delivery operations begin and end is stated at location 0. Thus, we have a set

J = {0, 1, . . . , J} consisting of all locations at any state. Let cij and δij denote the

cost and duration of travelling from location i to j, respectively.

Vehicles: As stated before, there are |B| number of homogeneous vehicles each

of whom starts and finishes its delivery operation at times Es and Ee, respectively,

and involves the same amount of loading time δ̂.

Delivery Routes: Each vehicle can make several trips by following different

routes during a delivery day. Let us assume that vehicle b can conduct M trips

and σbm represent the m-th route (for m = 1, · · · ,M) to be conducted by vehicle b.

For notational convenience, we introduce 0− and 0+ to distinguish the beginning

and finishing points of routes although they geographically coincide with the same

location of the depot. For instance, if the vehicle follows the route m defined as

σbm = 〈0−, 1, . . . , I, 0+〉, then it departs from the depot located at 0− and visits all

customers at locations j for j = 1, . . . , I and then returns to the depot 0+. We use

i− and i+ to specify predecessor and successor locations of location i to be visited in

a delivery route, respectively.

Routing Plan: We define a routing plan at time t as a set of planned routes

for all vehicles and is denoted by Ωt = {Ωk,t(b) : b ∈ B, k = 1, · · · ,K}. Notice that

Ωt consists of only to-be-delivered orders and needs to be updated at each time t.

The total travel cost Ck(Ωt) of routing plan Ωt is calculated as

Ck(Ωt) =
∑
b∈B

∑
i∈Ωk,t(b)

cii+ , for k = 1, · · · ,K.

Pool of Routing Plans: Let Ωt denote a pool of feasible routing plans at time

t for all K delivery days and Ω∗t be the cheapest routing plan which is actually used

by the e-retailer. The routing plans in the pool Ωt are maintained for the time slot

feasibility check since it is possible that a new request cannot be feasibly inserted

into Ω∗t . The details of feasibility check is presented in the next section.

Model Constraints: We now describe model constraints to be included into

the vehicle routing problem with time windows. Note that the following constraints

are also considered in the feasibility check while accepting new customers.

• Route Capacity: We assume that each customer’s request from location i
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consumes ηi units of capacity and requires a service time δ̄i. We introduce

Q(σbm) =
∑
i∈σbm

ηi to denote the total capacity used by customers served on

route σbm. We have to ensure that total capacity required for any route does

not exceed the total available capacity, Qmax. Thus, a linear capacity constraint

that is formulated as Q(σbm) ≤ Qmax is imposed for each route σbm conducted

by vehicle b.

• Time Windows: Both customer orders and the depot have their own time

windows. Let an interval [ej , lj ] denote a time window with the earliest and

latest delivery times of customer from location j. Similarly, a time window of

the depot is given by an interval [Es, Ee] with the earliest start time Es and

latest completion times Ee of all delivery operations during day k. Given the

routing plan Ωt(b) of vehicle b, a forward sweep is applied to obtain the earliest

arrival time to the customer locations. Let zi denote the earliest arrival time

of vehicle to location i. We initialise the sweep by setting the earliest arrival

time to start delivery operation from the depot as the earliest available time of

vehicle b. Accordingly, the earliest arrival time for location i can be determined

recursively as

zi =


zi− if i− = 0+ and i = 0−

max{zi− + δ̂ + δi−i, ei} if i− = 0−

max{zi− + δ̄i− + δi−i, ei} otherwise.

(3.6)

This procedure is completed by finding the earliest completion time of all M

routes completed by vehicle b, that is denoted by zM,0+ . Similarly, we need to

determine the latest arrival time of vehicles to all customers. Let yi denote the

latest arrival time for location i. We can initialise it as the earliest completion

time of all operations conducted by vehicle b, that is zM,0+ . Then, the latest

arrival time for all customers i = 0, 1, · · · , J is computed recursively by moving

backwards as follows;

yi =


yi+ if i+ = 0− and i = 0+

min{yi+ − δii+ − δ̂, li} if i = 0−

min{yi+ − δii+ − δ̄i, li} otherwise.

(3.7)

When reached to the beginning of route Ωt(b), the latest starting time for

vehicle from the depot is obtained, As a result, a time window restriction,

zi ≤ yi, for each customer request coming from location i needs to imposed.
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Note that we record the latest arrival times ym,0− for position 0− in all routes

m = 1, · · · ,M since it will be used for calculating route duration.

• Route Duration: The shortest time that is required by a vehicle to finish a

route is called as route duration. Given route σbm from routing plan Ωt(b), let

ωi denote the real arrival time based on the route plan for customer i. The

dispatching time for route σbm is set by the latest arrival time as ωm,0− = ym,0− .

Then, the arrival time for customer i is computed recursively as

ωi =

max{ωi− + δ̂ + δi−i, ei} if i− = 0−

max{ωi− + δ̄i− + δi−i, ei} otherwise.
(3.8)

Let τ(σbm) denote the duration of the m-th route σbm conducted by vehicle

b. The duration is calculated as the difference between arrival time to 0+ and

departure time from 0−. We have to ensure that duration of the route cannot

exceed the maximum delivery completion time. This can be formulated as a

set of linear constraints: τ(σbm) ≤ Dmax for all routes v of vehicle b.

• Order Availability: This constraint is only applied for same-day delivery

requests. The same-day delivery orders scheduled on one route must be

available before the vehicle is dispatched. Let us introduce θi to represent the

time when a same day-delivery for location i is available to be dispatched. This

also includes the lead time of the order. We have to ensure that the latest

departure time of the route involving this order is no less than θi.

VRPTW Across Multiple Delivery Days: Given a pool of feasible plans

Ωkt at time t, the VRPTW for multiple delivery days aims to determine a routing

plan Ω∗kt for the accepted orders to be delivered during a specific delivery day k

such that the total delivery cost is minimised by satisfying the model constraints

such as capacity, duration, time windows restrictions. The order availability also

needs to be satisfied for the same-day delivery services. In order to find the optimal

delivery plan, one can apply an enumeration method where total delivery costs of

all feasible plans Ωkt are computed and the routing plan Ω∗kt with the minimum

cost is determined. Note that this pool of routing plans for each delivery day is also

used for the feasibility check. One slot becomes infeasible only when we cannot find

feasible insertion position from all routing plans maintained in the pool.

A Solution Approach for VRPTW Across Multiple Delivery Days:

When a new customer arrives at time t, we first apply an insertion heuristic to check

whether the request can be inserted with the cheapest insertion cost into the current

routing plan on day k. A new delivery route is added to the current routing plan if

59



the request cannot be feasibly inserted into the current plan. Otherwise, all routing

plans Ωk,t in the pool are also updated with the new request; this leads to Ωk,t+1.

Note that if any routing plan in the pool cannot feasibly incorporate the request,

then the request will be dropped out of the pool.

Given the updated routing plan Ωk,t+1, the structure of simulated annealing

is then adopted to re-optimise the routing plan such that the total delivery cost

Ck(Ωt+1) is minimised. In order to improve the initial routing plan Ωk,t+1 towards

the cost minimisation, we apply destruction and reconstruction procedures until the

stopping criteria is satisfied. A brief description of these procedures for VRPTW

across multiple delivery days follows. At each iteration, we randomly select one level

of destruction operation among workday, route and customer levels. All delivery

locations in routing plan Ωk,t+1(b) for randomly-selected vehicle b are removed from

Ωk,t+1 in the workday-level destruction whereas locations within one randomly-

selected route from Ωk,t+1 is removed in the route-level destruction. In the customer-

level destruction, only one randomly-selected location is withdrawn from Ωk,t+1.

Then, all these removed delivery locations are inserted back to the routing plan to

obtain a new routing plan Ω′kt with the new total delivery costs Ck(Ω
′
t+1). By the

end of this improvement process, a routing plan Ω∗k,t+1 is obtained with minimal

total delivery costs. The pseudocode of obtaining the optimal delivery routes is

presented in Algorithm 1.

Algorithm 1 Simulated Annealing for optimal delivery plan

1: Initialise the starting routing plan Ω, the starting temperature T = Tmax and
set the cooling rate r.

2: Generate a new routing plan Ω′ following destruction and reconstruction proced-
ures.

3: Compute change in delivery cost ∆ = C(Ω′)− C(Ω).
4: if ∆ ≤ 0 then
5: Update the current routing plan as Ω′.
6: else
7: Accept Ω′ as the current routing plan with a probability e

−∆
T .

8: end if
9: Set T = rT and repeat from Step 2 until a stop criterion is met.

10: return Current routing plan Ω.

It is important to note that, since the number of routes cannot be changed

for the same-day delivery services, we can only apply customer-level and route-level

destruction to improve the initial routing plan Ω1,t+1 towards the cost minimisation.

As the feature of same-day delivery services, the routing plan and the pool of feasible

plans are updated whenever a dispatch decision is made. More specifically, given a

vehicle departs from the depot to deliver orders at time t, the corresponding route is
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removed from the current routing plan Ω∗1t to obtain Ω∗1,t+1. All requests involved in

this dispatched route are removed from every feasible routing plan in the pool that

is updated as Ω1,t+1.

3.5 Demand Model

In this section, we firstly discuss the assumption we make to conduct the study and

present the underlying nested MNL model that customers follow when making the

slot selection. Then we illustrate three estimation methodologies of the choice model

used in our slotting policy.

Customer requests for the delivery services arrive over time according to a

time-dependent Poisson process. Customers are able to see the time slot availability

for K delivery days, including the current delivery day. It is also common in practice

that customers may be able to view the slot availability/pricing of several days.

We assume that the customer choice depends on alternative delivery days and

the availability of slots in these days. Admitting the interaction between delivery

days would move our study closer to the practice. Therefore, we assume that the

underlying customer slot selection behaviour follows a nested MNL model.

Let us consider K consecutive delivery days which are defined as nests. Each

delivery day has a set of time slots denoted by S1,. . . , and SK accordingly. We

define the utility that a segment-n customer obtains from selecting slot s from day k

as unks + εnsk where unsk describes the observable utility of slot s in delivery day

k and εnsk is a random variable generated from a Gumbel distribution with zero

mean. Not picking any slot belongs to another nest indexed by K + 1 and has the

observable utility u0. In addition, each delivery day k has a dissimilarity parameter

γk presenting the degree of dissimilarity of slots that can be offered within this day.

Note that the dissimilarity of no-purchase set is set as 1. For a segment-n customer,

we set the preference weight of slot s in delivery day k as vnsk = exp(unsk/γk).

Further details on the nested MNL model can be found in Train (2003). Given

slots (S ′1, . . . ,S ′K) we offer across K delivery days, the probability that a segment-n

customer picks slot s in day k is computed as follows:

pnsk(S ′1, . . . ,S ′K) =
vnsk(

∑
i∈S′k

vnik)
γk−1

v0 +
∑K

j=1(
∑

i∈S′j
vnij)γj

.

In order to determine the slotting policy by (3.4) and (3.5), we can use

the nested MNL model as the choice model, however, we are not able to reach an

equivalent slotting policy as a linear program. Therefore, we adopt the MNL model

as an alternative choice model that approximates customer choice behaviour captured
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by the nested MNL model. Such MNL model considers the day effect on the utility

of time slots by assuming that all time slots across all delivery days are different

from each other. Let ûns denote an estimated utility of the segment-n customer

obtains from choosing slot s. Note that the utility ûns has captured the delivery

day dependence in time slot s. Not booking any slot, denoted as ûn0, is assumed

to be 0 for all segments. The preference weight associated with slot s is defined

as v̂ns = exp(ûns). Accordingly, the probability of selecting slot s by a segment-n

customer under slotting policy g can be computed as

pns(g) =
v̂nsgs∑

j∈H′(x−w,q′)

v̂njgj + 1
. (3.9)

The probability of not booking any slot is determined as follows

pn0(g) =
1∑

j∈H′(x−w,q′)

v̂njgj + 1
. (3.10)

Next, we will use an example to explain how to obtain the MNL choice models

that approximate the nested MNL model when time slots from two consecutive

delivery days are offered to customers.

Example 3.5.1 Consider a case where a retailer offers customers with time slots

from two consecutive delivery days and there are 12 non-overlapping one-hour time

slots in each delivery day between 8am and 20pm. We assume that there is one

customer segment.

In order to compute the MNL model approximating the choice behaviour

under the nested MNL model, we first start obtaining the booking history by

randomly generating a set of available time slots to be presented to each customer.

Note that the retailer has recorded time slots that were offered to each delivery

request in practice, despite of whether or not the customer chose a time slot. When

generating a set of displayed time slots for one customer, we assume that each slot

in Day 1 is presented with the probability of 0.2 and 0.8 otherwise. Each slot in Day

2 is displayed with a probability of 0.7 and 0.3 otherwise. The customer’s decision is

drawn from the probability distribution defined by the nested MNL model presented

in Table 3.1. We repeat this process for 160, 000 times (customers) to generate a

stream of booking histories.
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Slot(s) 8 9 10 11 12 13 14 15 16 17 18 19 no-purchase

us 2.2 2.4 2.6 3.0 3.4 2.3 1.9 2.7 2.9 3.9 4.3 4.2 3.0

Note: each one-hour time slot is labelled by its starting time. Dissimilarity parameters

are 0.8, 0.6 and 1 for Day 1, Day 2 and no-purchase event.

Table 3.1: Parameters in the nested MNL model for slots offered in two delivery days

Based on sampled booking histories, we estimate ûs in the MNL model using

asclogit method in Stata/SE 15. The no-purchase option is selected as the reference

variable that û0 = 0 in the estimation process. When the no-purchase event is defined

as the customer doesn’t select any slot from any delivery day, the estimated value of

parameters on the MNL model, the robust standard error (RSE) and the p-value are

reported in Appendix B.1. Alternatively, we can estimate two independent MNL

models for two delivery days respectively by defining no-purchase event with respect

to delivery days. Under this case, for example, if a customer picks a slot from Day

2, the customer will be considered as no-purchase for Day 1. The corresponding

estimated parameters are presented in Appendix B.3. Note that we can retrieve

parameters for the nested MNL choice model from the same booking history. The

corresponding estimated parameters are presented in Appendix B.2.

We generate a set of offered time slots to test the ability of those two estimated

MNL choice models in approximating the true customer choice behaviour The set

includes 6 time slots from Day 1 and 12 time slots from Day 2. Given this set of

time slots, we simulate the slot selection process for 2,000 times (customers) under

the nested MNL model defined in Table 3.1, our estimated MNL model and the

estimated independent MNL model. Figure 3.3 presents the proportion of customers

in selecting each slot under these three choice models. One can easily observe that

the estimated independent MNL model overestimates the no-purchase ( abbreviated

as ’leave’) probability and under-estimates the probability of purchasing any slot.
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Figure 3.3: Choice probabilities for time slots in two delivery days defined under
different choice models

We conduct Kolmogorov–Smirnov (KS) test to evaluate whether probability

distributions defined our two estimated choice models are equivalent to the one

defined by the nested MNL model. By comparing the customer selections generated

from the estimated MNL and the true choice models, the p−value in KS test is

calculated as 0.0586 so the estimated MNL model is statistically the same as the

nested MNL choice model at 95% confidence level. On the other hand, from the

comparison of selections generated from the estimated independent MNL and the

true choice models, the p−value in KS test is found as less than 0.0001. This indicates

that the probability distribution of the estimated independent MNL choice model

is not the same as the one defined by the true nested MNL model. Overall, we

can conclude that the estimated MNL can effectively approximate the underlying

customer choice behaviour where time slots across multiple delivery days are offered.

However, the estimated independent MNL models fails to model the customer choice

behaviour and it overestimates the no-purchase event.

3.6 Online Problems

We refer to online problems as issues that need to be solved upon arrival of a customer

request for delivery. A request consists at this stage only of information on the

customer’s location and order volume (in terms of delivery totes) and order value.
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In practice, we may not yet have information on the order’s volume nor value since

some retailers allow customers to book their slot before choosing the goods to be

delivered; in that case, we assume that an estimate of this volume and value is

available (e.g. based on historic observations). The objective is to solve the slot

assortment problem, (3.4) and (3.5), for a customer request from area a and segment

n; we re-state this problem here for convenience:

ga =


arg max

ga∈Ψ(x,q)

∑
s∈H′at(x−w,q′)

pans(g)[rn − ∆̂1
tas(x−w,q′)], 1 ≤ t ≤ Ts.

arg max
ga∈Ψ(x,q)

∑
s∈H′at(x,q)

pans(g)[rn − ∆̂2
tas(x,q)], Ts < t ≤ Th.

(3.11)

To solve this, we first need to assess for which time slots in each potential

delivery day the insertion of this request is feasible; in other words, the set of feasible

slots H′at(x − w,q′) or H′at(x,q) is to be constructed. Accordingly, we have to

estimate the opportunity cost ∆̂1
tas(x−w,q′) or ∆̂2

tas(x,q). Finally, we use these

inputs to decide which of these feasible slots to display as being available by solving

the slot assortment problem above. We have discussed the feasibility check process

in Section 3.4. In this section, we focus on the opportunity cost estimation and

solution method to the slot assortment problem .

3.6.1 Opportunity Cost

The opportunity cost ∆̂1
tas(x−w,q′) or ∆̂2

tas(x,q) in (3.4) and (3.5) can be interpreted

as the cost arising when accepting an order in slot s for a corresponding delivery day

due to the marginal fulfilment cost incurred and due to potential revenue displacement

effects. This indicates that by accepting this order, we are not able to satisfy some

other orders in the future. In this work, we assume that the latter effect is negligible

and focus exclusively on the fulfilment costs. This has the advantage of not having to

estimate the expected revenue displacement, which is a hard optimisation problem.

The reader is referred to Yang and Strauss (2017) for an approach that takes this

into account. In this research, we focus on multi-day choice and investigate how

slotting policies can affect profitability by improving route efficiency.

We adopt an approach introduced by Yang et al. (2014) in order to estimate

marginal fulfilment costs dynamically. A brief description of this method follows.

The main idea to quantify insertion costs for a specific request and specific time

slot is to use a weighted average between an insertion cost estimate based only

on orders accepted to date and another one based on historic final routing plans.

Initially, all weights are on the insertion cost estimate, which is derived as an average

over all insertion costs based on historic final routing plans. This estimate is likely
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much more accurate at this point in time than the initial high insertion cost to add

orders to an (almost) empty tour. As we approach the end of the booking horizon,

increasingly more weight is attributed to the insertion cost derived on only accepted

orders.

More formally, let us define the insertion cost estimate based on the current

orders on the books. For every routing plan Ωt in the overall collection of routing

plans Ωt at time t in the booking horizon, we check whether the order in a given

slot s from day k can be feasibly inserted. If the request with time slot s in day k can

be feasibly inserted into the routing plan Ωkt with an incremental delivery cost c̄s,Ωkt ,

then the corresponding insertion cost is computed as csΩkt = c̄s,Ωkt +Ck(Ωt)−Ck(Ω∗t ),

where Ck(Ωt) represents the cost of routing plan Ωkt in day k and Ck(Ω
∗
t ) is the

cost of the cheapest routing plan in day k in our collection Ωt. This reflects that

insertion cost may be low, but the cost of the overall plan may be very high relative

to the cheapest available alternative plan. If the request cannot be feasibly inserted

into routing plan Ωkt, we will set csΩkt to a large value (we chose csΩkt = 50 in

our simulation study) so as to force the slot availability policy to make this slot

unavailable. The insertion cost for a service request in slot s at delivery day k for a

given location is computed by csΩkt
= min{csΩkt | Ωkt ∈ Ωkt}.

Similarly, we estimate insertion costs based on a set Φ of historical final

routing plans. For each historic plan Φ ∈ Φ, we set csΦ = 0 if a request in this

location already exists in this slot s. Otherwise, csΦ will be the insertion cost if the

insertion is feasible. In case of having infeasibility, we set the insertion cost to a high

value (we use csΦ = 20 in our simulation study). The insertion cost for the request

across all historic plans is calculated as the average csΦ =
1

|Φ|
∑
Φ∈Φ

csΦ.

Finally, the two estimates csΩkt
and csΦ are combined using a weighted average

that depends on the remaining time periods tk in the booking horizon Tk of day k

as follows:

∆̂ts = (1− tk
Tk

)csΩkt
+
tk
Tk
csΦ. (3.12)

3.6.2 Slot Assortment Optimisation Under Choice Models

According to the analysis in Section 3.5, we can use a MNL choice model to approxim-

ate a nested MNL model (which we will assume to represent actual customer choice

behaviour in our numerical experiments). Using the estimated opportunity costs

∆̂1
tas(x−w,q′) or ∆̂2

tas(x,q) in the manner discussed above, the online assortment

problem (3.11) under the standard MNL model for a given customer request arriving

at 1 ≤ t ≤ Ts from segment n and area a can be reformulated as a linear program

(this result is due to unimodularity of the constraint matrix in the optimisation
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(Davis et al., 2013)):

max
ĝa

∑
s∈H′a(x−w,q′)

ĝans(rn − ∆̂1
tas(x−w,q′))

s.t.
∑

s∈H′a(x−w,q′)

ĝans + ĝan0 = 1,

ĝans
v̂ns
≤ ĝan0, ∀s ∈ H′a(x−w,q′),

0 ≤ ĝ ≤ 1,

(3.13)

where

ĝans = (v̂nsgas)/(
∑

j∈H′a(x−w,q′)

v̂njgaj + 1) and ĝan0 = 1/(
∑

j∈H′a(x−w,q′)

v̂njgaj + 1).

Slot s will offered if ĝ∗ns in the optimal solution to (3.13) is non-zero. A similar

optimisation problem as in (3.13) is constructed to decide the set of slots to offer to

the customer from segment n and area a arriving at t, for Ts < t ≤ Th. In this case,

we consider the set of feasible slots H′a(x,q) and use the opportunity cost ∆̂2
tas(x,q)

in the objective function.

It is also possible in principle so optimise the slot assortment using a nested

MNL model; assuming that the true customer behaviour is indeed represented by

by a nested MNL model, one would expect that the resulting policy will perform

better than a policy using MNL. Given opportunity cost approximations, we adapt

the method proposed in Gallego and Topaloglu (2014) to solve the slot assortment

problem under the nested MNL for each request. This method re-formulates the

non-linear assortment optimization problem (3.11) into an equivalent linear program.

As we will present in our computational experiments in Section 3.7, this method is

practically implementable in an online environment and can be solved efficiently. Next,

we briefly describe the method for customer requests arriving at t, for 1 ≤ t ≤ Ts and

then highlight methodological differences for requests arriving at t, for Ts < t ≤ Th.

The method starts with obtaining a collection of slotting decision candidates

for each delivery day independently by applying the same method. We adopt

H′ak(x − w,q′) to indicate the set of feasible time slots in day k for area a. We

introduce a parametric optimisation with parameter ρ ∈ R+ to exploit all possible g

that gives an α−approximate solution to problem (3.11) where 1 ≤ t ≤ Ts . For any

given ρ ∈ R+, a slotting decision candidate g for delivery day k can be calculated by
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solving the following slot assortment optimisation model:

max
{ ∑
s∈H′ak(x−w,q′)

v̂ns(rn−∆̂1
tas(x−w,q′)−ρ)gs : gs ∈ {0, 1}, ∀s ∈ H′ak(x−w,q′)

}
.

(3.14)

Due to binary decisions in (3.14), it can be easily solved as an unconstrained

knapsack problem. Specially, we evaluate slots with respect to their values defined

as v̂ns(rn − ∆̂1
tas(x−w,q′)− ρ) and include the slot into the candidate set as long

as its value exceeds zero. A collection of candidates can be obtained by enumerating

all possible ρ ∈ R+ and solving (3.14) for every ρ. Based on the example presented

in Gallego and Topaloglu (2014), we can graphically obtain a set of intervals such

that the value v̂ns(rn − ∆̂1
tas(x−w,q′)− ρ) for slot s remains positive or negative if

ρ belongs to one of those intervals.

Having obtained a collection of slotting decisions candidates Θk for delivery

day k in this manner, the optimal slotting decision as a solution to (3.11) for

1 ≤ t ≤ Ts is found by combining candidates from each collection. To simplify

notation, let us introduce Ûk(g) to denote the expected total preference weight

of slots in delivery day k under slotting decisions g ∈ Θk, which is computed as

Ûk(g) = v̂Tng. Given that slots offered on day k are denoted by g ∈ Θk and the

customer has decided to book a slot from day k, then the expected profit obtained

from the customer request is computed as

R̂k(g) =

∑
s∈H′ak(x−w,q′)

(rn − v̂ns(rn − ∆̂1
tas(x−w,q′))v̂nsgs

Ûk(g)
. (3.15)

According the Lemma 1 in Gallego and Topaloglu (2014), if we could somehow

determine the value z∗ that satisfies:

v̂n0z
∗ =

K∑
k=1

max
g∈Θk

{
Ûk(g)γ̂k(R̂k(g)− z∗)

}
, (3.16)

then we can compute the best slotting decision for delivery day k based on

max
g∈Θk

{
Ûk(g)γ̂k(R̂k(g)− z∗)

}
. (3.17)

In order to compute z∗, we can linearise problem (3.16) by introducing decision

variables yk for k = 1, . . . ,K. Accordingly, we solve the corresponding linear program

min
{
z | v̂n0z ≥

K∑
k=1

yk; yk ≥ Ûk(g)γ̂k(R̂k(g)− z), ∀g ∈ Θk, k = 1, . . . ,K.
}
. (3.18)
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Then, we can have the slotting decision for each delivery day by solving problem

(3.17) based on the optimal solution z∗ from (3.18).

Similarly, at time t for Ts < t ≤ Th, the method considers a set of feasible

slots H′a(x,q) and uses the opportunity cost ∆̂2
tas(x,q) to compute the expected

profit as follows:

R̂k(g) =

∑
s∈H′ak(x,q)

(rn − v̂ns(rn − ∆̂2
tas(x,q),q′))v̂nsgs

Ûk(g)
. (3.19)

3.7 Numerical Experiments

The objective of our numerical study is to obtain insights into the performance of

different slotting policies to enable us to answer various research questions including

(but not limited to):

• To what extent and under which circumstances does a policy that incorporates

a more accurate model of customer choice across days improve performance?

• Are there constellations under which a more accurate representation of choice

is undesirable for some reason?

• Are the run times realistic for online decision making?

• What is the added value of allowing same day deliveries in addition to next

day ones?

3.7.1 Data and Experiment Design

We give a full description of the data and the setup in the experiments where time

slots from two future consecutive days are offered to customers (K = 3 without

same-day delivery services). In addition to next-day delivery, we will test the benefit

of offering same-day delivery services (K = 2).

We work with a simplified spatial distribution of customers that loosely

reflects the situation of a single depot at the outskirts of an urban area. Specifically,

we assume that customers are located within a 12 × 12 km2 area. The depot is

located outside of the delivery area. The delivery area is divided into two large

sub-areas, with a third of the total customer population being uniformly distributed

in the lightly shaded area and the rest being uniformly distributed over the remaining

white part as shown in Figure 3.4.

On the capacity side, we have 16 homogeneous vehicles located at the single

depot operating from 7am until 9pm. Each vehicle has 70 units of capacity and travels

at a speed of 20 km per hour. Preparing an order requires a 4-hours lead time and

serving one customer requires a service time of 15 minutes. The maximum duration
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Figure 3.4: Area of attended home delivery services

of each route for any vehicle is 4 hours and each vehicle can have 4 routes maximum

during one operation day. It takes 30 minutes for the vehicle to load customer orders

before departing from the depot. The total delivery costs are estimated based on the

travel distance multiplied by the fuel cost £1.5/km. We assume that the capacity for

each delivery day is more restricted (by the one-hour time window constraint) than

the vehicle capacity. By setting each vehicle having four trips during one specific

delivery day, we estimate the delivery capacity only with respect to time window

constraints based on the continuous approximation method from Daganzo (1987).

This results to a capacity of serving 30 customers for each vehicle. Note that it is a

really conservative capacity estimation.

Customers are modelled to choose a time slot according to the nested MNL

defined in Table 3.1. Each day, there are 12 non-overlapping one-hour time slots

starting from 8am until 8pm as defined in Example 3.5.1. For the sake of simplicity,

we use a single customer segment. The profit before delivery costs that is associated

with a given order is sampled from a normal distribution with mean of £20 and

standard deviation of £5; if a sample is negative, we replace it with zero. We

emphasise that this sampled quantity represents profit (before delivery costs) instead

of revenue; this is important in as far as using revenue figures distorts the optimisation

since revenue is typically much larger than routing costs. As discussed in Section 3.5,

we generate a history of booking records using the ground truth choice model so as to

estimate parameters for the choice models to be used in the different policies. Note

that the same booking history is used to estimate the choice model for same-day

slots as we adopt the same ground truth choice model.
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All experiments are conducted based on a computer with processor Intel(R)

Core(TM) i5-700 CPU 3.40GHz. The underlying optimisation models are imple-

mented in Java and solved by using CPLEX. We evaluate the performance of each

simulation scenario based on the average performance obtained by repeating the

corresponding experiments for 100 times.

Next-days Delivery Services: Let us assume that deliveries can be accep-

ted today for any of the next two days; however, deliveries cannot be fulfilled today.

In the construction of our scenarios, we focus on a rolling three-days time horizon

(today and the next two following days); this is because in e-grocery retailing most

demand typically arrives within three days prior to dispatch. This is a conceptual

difference to most other related work where there is a fixed booking horizon that

leads to a particular delivery day that is being optimised for.

In all scenarios, we already start with a fixed set of orders that we assume

to have been accumulated over previous days (note again that we do not work

with a fixed but a rolling time horizon). It does not matter at what time an order

comes in today since we do not anticipate potential displacement costs associated

with displacing future orders due to receiving an order now for a given time slot.

Therefore, we do not need to explicitly model a time grid. In the base scenario, we

assume that exactly 450 requests arrive each day, chosen such that the expected

demand equals total expected delivery capacity. We scale the number of requests

up and down to assess the behaviour of slotting policies relative to varying degrees

of capacity tightness. The base scenario corresponds to a scaling parameter of 1

(ratio of total expected demand equal to total expected delivery capacity having

taken time constraints and the spatial distribution of customers into account). Note

that the time constraints stemming from the delivery time windows are in e-grocery

retailing typically much more restrictive than vehicle capacity. In order to obtain

the pre-accepted orders in Day 1, we simulate one booking process for 450 customers

and each customer is only presented with all feasible time slots in Day 1. This leads

to 155 pre-accepted orders.

For our simulation experiments, we test four different slotting policies and a

brief description of these policies follows.

• Slotting policy with true choice model (TRUE): A nested MNL model is

used in this policy and its parameters are estimated from the booking histories.

The resulting parameters are presented in Appendix B.2.

• Slotting policy with merged choice model (MNL-DAY): We use the

MNL model with parameters estimated based on the booking histories where

only slots in Day 1 and Day 2 are offered. The resulting parameters are
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presented in Appendix B.1.

• Slotting policy with independent choice models (MNL-IND): This

slotting policy ignores interaction between delivery days as assumed in most

studies in the literature. To represent this approach, we estimate MNL models

for the two delivery days independently. The no-purchase event is defined as

in Yang et al. (2014) for each day so that the customer decides not to select

any slot of the day. In other words, no-purchase event is accounted for each

individual day. If the customer does not select any slot in one delivery day,

we classify such case as no-purchase for this delivery day. Parameters of MNL

models are presented in Appendix B.3.

• Offer all feasible slot policy (ALL-FEASIBLE): As a simple benchmark

against which we can assess the benefit of making slotting decisions, the ALL-

FEASIBLE policy consists of always offering all feasible slots across all delivery

days.

Same-day and Next-day Delivery Services: We then extend the pre-

vious experiments by combining same-day and next-days delivery services. The

models developed in the literature consider these two problems separately. Our

results show potential benefit of combining these two, even when same-day orders

are incorporated in a fairly simplistic way.

The setting of this experiment is different from the one described above since

we now have additionally the opportunity to offer same-day slots to customers as well

as slots on the next days. Specifically, we restrict the experiments to include only

one day into the future. At the beginning of today we will have already a number

of orders on the books for today, we always start from the same set of previously

accepted orders including 372 customers. We obtain this set of orders by presenting

500 customers with all feasible time slots in Day 2 and simulating their slot selection

decisions accordingly.

With the opportunity to offer same-day delivery, the lead time required to

assemble an order becomes important to determine which slots could potentially be

offered given a request at a particular point in time. We assume that the customer

arrival process follows the same non-homogeneous Poisson process during each day

with rates λ(t) defined as

λ(t) =


2.3, before 8am,

2.8, between 8am and 5pm,

2.5, after 5pm.

(3.20)
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We apply a scaling parameter to these arrival rates during one booking horizon

in order to generate different demand levels (ranging from 0.6 to 1.6 with step size

0.1, where level 1 corresponds to 620 requests).

In addition to polices MNL-IND (applied to slot options today and on the

next day), we specific introduce another policy to test with our setting:

• Slotting policy with next-day only (NEXT-ONLY): We never offer

same-day slots and use the MNL choice with utility parameters as in Ap-

pendix B.3 for Day 2.

3.7.2 Computational Results and Analysis

We discuss first the effects of modelling choice between delivery days as independent

(between days) versus modelling them using the (true) nested MNL model over

multiple (here two) days. Then, we quantify the effect of incorporating same-day

delivery with next-day delivery.

On Choice Modelling for Delivery Days Independently: Most literat-

ure in the domain of attended home delivery services assumes that deliveries are being

planned for a single delivery day. Figure 3.5 shows the percentage profit increases

of the various slotting policies relative to using the benchmark ALL-FEASIBLE

of always offering all feasible slots. A low scaling parameter (< 1) represents low

expected demand relative to available capacity, a large parameter (� 1) represents

tight capacity. We observe a somewhat counter-intuitive result: the independent

policy MNL-IND delivers profits at least as good as the benchmark across all scen-

arios (discounting statistically insignificant differences), whereas the TRUE policy

(using the true choice model) is performing very poorly under low demand and only

outperforms all others under high degrees of capacity tightness.
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Figure 3.5: Total profit increase (%) under MNL-IND, MNL-DAY and TRUE
compared to ALL-FEASIBLE

To explain this, let us drill a bit deeper. Profit increase may be driven

by increased the profit per order (Figure 3.6) and/or by increasing the number of

orders (Figure 3.7). As one would expect, using the true choice model (TRUE)

is superior to the other policies in its ability to attract highly profitable orders;

this is because TRUE can better steer customers towards slots with the lowest

opportunity costs (i.e. expected marginal routing costs). To see this, we plot the

percentage cost reduction per order relative to ALL-FEASIBLE in Figure 3.8: TRUE

dominates all other policies in cost reduction per order across all demand scenarios.

As demand increases, routes tend to become more congested and thus the potential

for routing cost savings diminishes, but for TRUE at a slower pace than for the

other policies. However, these advantages of TRUE are more than outweighed under

scenarios of low or medium demand by receiving up to 20% fewer orders as compared

to the benchmark ALL-FEASIBLE although we are using the true nested MNL

choice model. We emphasize that all policies are using the same opportunity cost

approximation method (which only anticipates delivery costs but not the expected

value of future orders and related displacement costs); the only difference is in the

choice model used in the dynamic slot availability decisions. For scenarios of low

demand, displacement costs associated with lost future revenue would typically be

zero anyway, and since TRUE uses the true choice model, the reason for its poor

performance must be in poor marginal routing cost estimates. This makes sense in

as far as marginal routing costs will be particularly difficult to predict when routes

are sparsely populated, and small changes in demand may lead to large changes
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in the marginal routing cost. TRUE is sensitive to these imperfect cost estimates

and tends to restrict the range of available slots so as to nudge customers towards

anticipated cheap ones, thereby however incurring a higher risk of non-purchase for

the perceived (but often overestimated) benefit of more efficient routes.
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Figure 3.6: Profit increase (%) per order under MNL-IND, MNL-DAY and TRUE
compared to ALL-FEASIBLE

MNL-IND on the other hand has the exact same difficulties with routing

cost estimation but happens to compensate them by the overestimation of the non-

purchase probability, leading overall to a higher volume of orders. In other words,

given a set of feasible slots with the same corresponding opportunity costs, MNL-IND

tends to make more slots available than TRUE or MNL-DAY. In fact, MNL-IND

attracts about as many orders as the benchmark.

Finally, we note that using an MNL model per day that includes a feature for

the attractiveness of the corresponding day (MNL-DAY) does perform poorly across

all scenarios. It models days independently (hence it does better than TRUE under

low demand) but it is not able to realise the cost improvements of TRUE under high

demand - therefore, it is overall not recommended.
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Figure 3.7: Accepted order increase (%) under MNL-IND, MNL-DAY and TRUE
compared to ALL-FEASIBLE

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Scaling parameter of arrival rates

8

6

4

2

0

Co
st

 p
er

 o
rd

er
 re

du
ct

io
n 

ag
ai

ns
t A

LL
-F

EA
SI

BL
E 

(%
)

MNL-IND
MNL-DAY
TRUE

Figure 3.8: Cost reduction (%) per order under MNL-IND, MNL-DAY and TRUE
comparing to ALL-FEASIBLE

In conclusion, our main finding is that modelling choice independent of cross-

delivery-day effects may actually be a better approach than using a model that

does take this dependency into account. The independent day policy MNL-IND

provided robust results across all demand scenarios, whereas using the true choice

model only performs well when capacity is very tight. If the business situation is

such that demand substantially varies (meaning that the capacity tightness varies

significantly), we may be better off by deploying a slotting policy that treats slotting

decisions for different delivery days as independent. Only if capacity is typically
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tight, or if we have a means of estimating accurately marginal routing costs, then we

should use a choice mode that includes cross-day effects.

Runtime: We consider two tasks to be necessarily online computations given

a specific incoming customer request for delivery: checking slot feasibility across all

slots on all days, and solving the slot availability optimisation problem. Calculation

of marginal routing costs is considered to be an offline task since we could maintain

this information in a look-up table for every combination of location and time slot.

In principle, the same holds for feasibility checks, but for these are more important

to get right since we must not end up in a situation where we commit to an infeasible

routing plan, whereas using poor marginal routing cost may only affect overall

profitability

Using the compact formulations as presented in this chapter, the slot optim-

isation turns out to be almost instantaneous for all policies. The feasibility check,

however, is more time-consuming and represents the lion’s share of the times reported

in Figure 3.9. The benchmark ALL-FEASIBLE does not involve any optimisation

yet still takes the most time, whereas TRUE has the most sophisticated optimisation

problem but is (on average) the fastest.

To explain, it may be useful to revisit the workings of the feasibility check:

for a given order request from a given location, checking feasibility of a specific slot

consists of attempting to insert the request into the current delivery plan and the

plans maintained in the pool. We stop the search as soon as a feasible insertion

location has been found. Therefore, routing plans that are better constructed (and

therefore have more slack for additional orders) or that have fewer orders (such that

there are fewer potential insertion positions) will be quicker to check. This can be

seen in the runtime results: although MNL-IND and TRUE have similar volumes,

TRUE is slightly faster.

Overall, MNL-IND and TRUE seem reasonably quick for practical deployment,

and it is worth highlighting the somewhat counter-intuitive finding that adding the

slot availability optimisation step actually tends to decrease runtime significantly

rather than increase it (relative to simply offering all feasible slots). We feel that

this is an important argument to present to practitioners who may be reluctant in

adopting slotting policies due to concerns over website loading speed implications.
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Figure 3.9: CPU time taken to check slot feasibility and decide slot availability for
each delivery request under different policies

Integrating Same-Day Delivery: In the literature, typically either next-

day or same-day services have been investigated. In this section, we consider to

combine same-day and next-day delivery services within multi-day delivery context.

To the extent, this has been already being implemented in practice by some retailers:

for example, Sainsbury’s (one of the leading retailers in the UK) offers both same-day

and next-day deliveries of groceries.

Now, we start to evaluate the benefit of offering same-day delivery services

along with next-day delivery services (still managing time slots in two consecutive

days). We are concerned with the total profit obtained on one specific day which

is computed by the total revenue-before-delivery from all pre-accepted orders and

same-day orders excluding the total delivery costs. Figure 3.10 presents the total

profit increase (%) in one delivery day after the introducing the same-day delivery

services. We see that offering same-day delivery services can increase total profit by

around 5% at all demand levels.

We further show how the total profit increase is broken into the number

of orders and the profit per order in Figure 3.11 and Figure 3.12, respectively.

Accordingly, we observe that the number of accepted orders increases, as well as the

profit per order, after offering same-day delivery services at varying demand levels.

As the opportunity cost estimation only involves delivery cost, the profit per order

increase (%) is mainly driven by obtaining a more efficient delivery plan. Figure 3.13

presents the cost reduction (%) per order after introducing same-day delivery services.
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Recall that same-day delivery requests are accepted without dramatically changing

the existing routing plan. Therefore, hypothetically, more requests are accepted

without causing total delivery costs increase in our settings such that the cost per

order decreases at varying demand levels.
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Figure 3.10: Total profit increases (%) after offering same-day delivery services
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Figure 3.11: Accepted order increase (%) after introducing same-day delivery services
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Figure 3.12: Profit per order increase (%) after introducing same-day delivery services
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Figure 3.13: Cost reduction (%) per order after introducing same-day delivery
services

3.8 Conclusions

In this chapter, we discussed a dynamic slotting problem of managing time slots

from multiple delivery days for attended home delivery services. When customers

request delivery services, they are presented with time slots from a number of

consecutive days and they need to select exactly one slot or leave without purchase.

The underlying customer choice behaviour is influenced by the presented delivery

days and the delivery time slots available within them. Depending on how the
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influence of delivery day on customer choice behaviour is captured, we investigate

three approaches to model customer choice and to dynamically decide the availability

of time slots from multiple delivery days accordingly.

Several managerial insights have been obtained via a simulation study using

the common industry practice of offering all feasible slots as a benchmark:

• First, actively managing slot availability using choice-model-based optimisation

can significantly reduce fulfilment costs. According to Figure 3.8, the cost per

order can be reduced by around 7% when the NMNL choice model is embedded

in optimisation.

• Second, this optimisation does not come at the expense of increased runtime

for online computations presented in Figure 3.9; in fact, it tends to reduce

runtime due to better routes that help to speed up the feasibility checks.

• Third, if the estimation of expected marginal cost-to-serve is difficult (e.g. when

demand is low relative to available capacity), then we are better off using an

MNL choice model that ignores the effect of other delivery days because its

overestimation of the non-purchase probability leads to higher slot availability

and thus higher order volume as presented in Figure 3.5. Only if we have a

means of obtaining high quality estimates of expected cost-to-serve (which

tends to be easier when demand is high relative to available capacity), then

using more sophisticated choice models that incorporate cross-day substitution

effects is beneficial as shown in Figure 3.8. As a consequence, if there is a high

degree of uncertainty over the level of demand, then it is better to use MNL

without accounting for cross-day substitution effects because the resulting

policy is more robust to demand level shocks and consistently performs at least

at the level of the benchmark or better.

• Fourth, offering same-day delivery services along with next-day delivery services

improves delivery efficiency and increases profit by around 5% at all demand

levels.

In this Chapter, we assume that the NMNL model is the ground true model

and customers naturally partition time slots with respect to delivery days. Under

this assumption, our discussions and conclusions are obtained because the probability

of no-purchase event in the specific delivery day is over-estimated when substitution

effect of delivery days is not considered in the policy. However, time slots may

be classified/nested based on different factors, such as morning, afternoon and

evening. Our conclusions may not be valid if the nest in the NMNL model is defined

differently and the probability of no-purchase event in the specific delivery day is not
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over-estimated. Moreover, our numerical experiments are conducted with a single

customer segment and each order has the same average profit-before-cost, which may

not be the case in practice. However, having one segment may have minor impact on

our conclusions because our choice model without substitution effect overestimates

the no-purchase probability regardless of segmentation.

A limitation of the proposed approach is that the opportunity cost approxim-

ation in our solution approaches only considers the future delivery costs. Including

displacement costs is beneficial when demand is high relative to available capacity,

but should not affect results in the opposite scenarios as displacement costs in that

case would typically be zero. Also, in our experiments we limited ourselves to choice

between slots over two delivery days. In practice, often 7 days or more are available

to choose from; however, in e-grocery the vast majority of orders arrives within three

days of delivery, so we feel that this limitation is minor. Naturally, it would be

most interesting to see whether these results could be replicated using real data to

calibrate multi-day choice models.
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Chapter 4

Dynamic Capacity Allocation

for Airline Upgrade Options

with Customer Anticipation

Upgrades are usually offered by airlines to balance the demand and capacity for

economy and business cabins as well as to increase customer satisfaction. To gain

more flexibility in upgrading customers, the airline can sell upgrade options that

allow reallocation decisions to be postponed until demand is fully realised. Moreover,

there exists some customers who regularly purchase the flight tickets and have a

network to share their booking experiences. After upgrade options are introduced

to the market, these customers are able to develop anticipation on the execution of

upgrade options and take advantage of obtaining a business cabin seat much cheaper

than the normal price. It may lead to potential revenue loss for the airline in the

long run.

In this chapter, we study a dynamic capacity allocation problem of an airline

issuing upgrade options for a sequence of identical single-leg flights. We propose

a novel dynamic program (DP) model to decide capacity allocation decisions for

economy and business cabins and upgrade options of each flight. The states of the

DP model are defined by customer anticipation level, which directly affects customer

purchase behaviour. By discretising the continuous state space of the DP model

by a finite number of specific anticipation levels, backward recursion algorithm is

adapted to approximate the value function at each discrete state of the DP model. A

choice-based deterministic integer program (CDIP) model is proposed to estimate the

revenue from one flight given the anticipation level. Moreover, the optimal solution

of the CDIP model is used for optimal capacity allocation decisions for each flight.

We design a series of computational experiments to evaluate the performance of the
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solution approach using simulation. We find that the airline could potentially obtain

additional revenue by offering upgrade options when the demand of business cabin

is low relative to its capacity. The results also show that considering the customer

anticipation in allocating capacity with upgrade options can significantly improve

the total revenue of the airline in the long term.

4.1 Cabin Upgrade System for Airlines

The UK airline market has been growing steadily by nearly 7% and the number of

passengers in domestic and international routes has reached to 264 million during

2017 (Mintel, 2018b). In particular, business travellers are the main contribution to

airlines and 38% business trips are through air traffic (Mintel, 2018a). In practice,

airlines offer upgrades to increase customer satisfaction and resolve supply-demand

mismatch between economy and business cabins (Yu et al., 2015). Upgrades can be

offered free of charge or at a certain price. In ’free of charge’ case, offering upgrades

increases customer satisfaction obviously (Mattila et al., 2013). However, this may

create unfairness perception among passengers who do not receive upgrades (Park and

Jang, 2015). Airlines more often provide cabin upgrades for passengers who purchase

economy tickets by charging a certain fee (Çakanyıldırım et al., 2017). Since it is up

to customers to accept or reject upgrade offers, the unfairness imposed to customers

by offering free upgrades is somehow overcome. However, implementing such strategy

requires a sound stopping rule for airlines to limit upgrade offers because they are

sold at low price. Offering too many upgrades may result in insufficient capacity for

demand of business cabin, which could reduce total revenue (Steinhardt and Gönsch,

2012).

Upgrades can also be alternatively offered through options to customers

who purchase economy tickets as introduced by Optiontown (2018). Presented

with the upgrade option, the customer needs to immediately decide whether to

purchase the option or not. If the airline does not execute upgrade options at the

end of the booking horizon, prices associated with options are refunded to customers.

Because there is a possibility of upgrading to business cabin at low cost, it could

steer customer demand for economy cabin but reduce demand of business cabin.

Additionally, customer satisfaction can be increased as options are only charged

when they are executed. For airlines, additional revenue can be earned by executing

upgrade options. Moreover, since option execution decisions are postponed until

demand is fully realised, it provides flexibility for airlines to allocate capacities of

economy and business cabins during the booking horizon.

On the other hand, offering upgrade options may lead to revenue loss for
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airlines in the long term. Especially, in short haul markets, a large proportion of

capacity in one flight are purchased by business travellers (Mason and Gray, 1995).

These business travellers are also regular customers commuting by one specific flight.

Based on the concept of customer learning proposed by Wu and Chen (2000), these

regular customers form attitudes and acquire beliefs on upgrade options, such as

the frequency of options being executed, from past purchase experience. Their

subsequent purchase behaviour is influenced by these attitudes and beliefs such

that they can behave strategically by purchasing economy tickets and waiting for

upgrade options being offered. As upgrade options are priced much lower than fares

of business cabin, airlines may lose revenue resulted from such customer strategic

behaviour. Therefore, it is important for airlines to consider customers’ strategic

behaviour when providing upgrade options such that cannibalisation in business

cabin can be avoided in the long term.

In this chapter, we focus on a capacity allocation problem with upgrade

options for a sequence of identical single-leg flights. A brief problem description is

as follows. We assume that customers regularly purchase flight tickets and have a

network to share their booking experience on upgrade options, such as whether the

option is provided and executed. Specifically, the capacity of the business cabin is the

same for all flights and the capacity of the economy cabin is the same for all flights.

Fixed fares are set for both cabins as well as upgrade options accordingly. During the

booking horizon of each flight, we assume that the airline presents available cabins to

every request and decides whether to offer upgrade options. Based on the presented

cabins and knowledge gained on upgrade options, the customer needs to purchase

a capacity or to leave the system. If the customer purchases the economy cabin

and the upgrade option is also offered, then the customer further decides whether

to purchase the option. At the end of booking horizon of each flight, the airline

executes a number of upgrade options that maximises total revenue of the flight and

also refunds payment of unexecuted options. As a result, the customer’s experience

adds new knowledge on upgrade options and this affects their purchase decisions

for the next flight. In the long term, the airline wishes to maximise total revenue

received over all flights under the consideration of customers’ strategic purchase

behaviour with upgrade options.

The main contributions of this chapter are summarised as follows. We consider

a customer learning process in a long-term capacity allocation problem for airlines.

This learning process enables customers i) to gradually establish belief towards

upgrade options, ii) to change their purchase behaviour in the future, and iii) to

cause possible cannibalisation in business class for airlines. However, formulating

customer learning in the capacity allocation problem of consecutive flights is difficult
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because learning is a dynamic and noisy process based on individual’s past experience.

In order to overcome this challenge, we propose a novel dynamic program (DP)

model focusing on the capacity allocation decisions for each flight where customer

learning process is reflected by the state of the DP model. Note that we do not

consider a dynamic capacity allocation problem at customer level in this chapter as a

number of consecutive flights is involved in our problem and customer belief is static

during the booking horizon of each flight. Specifically, the DP model involves the

capacity allocation decisions for each flight such that the discounted total revenue

over all flights is maximised.

Furthermore, the capacity allocation in view of customer learning about

upgrade options boils down to identifying key factors influencing customer purchase

behaviour. We assume that customers’ belief affects their purchase behaviour.

Accordingly, we introduce the concept of anticipation level defined as the ratio of

the number of executed upgrade options to the capacity of business cabin. This

anticipation level is then used to represent customer belief in our problem formulation.

Such customer anticipation level shares similar characteristics with the reference price

as they both consider the impact of customers’ purchase experience on the future

demand. However, reference prices address customers’ perceptions on historical

charged prices (Boer, 2015). In our problem, the customer anticipation levels focus

more on customers’ experience with upgrade options in terms of the number of

executed options. During the booking horizon of each flight, the anticipation level is

assumed to affect customer purchase behaviour, which is captured by an multinomial

logit (MNL) choice model in this chapter. The anticipation level is also used as the

system state in the DP formulation of this capacity planning problem.

Due to our approximation method to anticipation level, the state of dynamic

system is continuous. As a solution method, we first discretise this continuous state

space into a number of specific anticipation levels. We then construct a choice-based

deterministic integer program (CDIP) model to approximate the value function at

each discrete state in the DP model. Given the anticipation ratio, CDIP model is also

used to make capacity allocation decisions at the beginning of the booking horizon

of each flight. Based on realised demand, the airline executes upgrade options to

maximise the revenue of the current flight. We evaluate the proposed solution method

in a simulation study. Our results show that considering the customer anticipation

in allocating capacity with upgrade options can significantly improve the airline’s

total revenue in the long term.

The structure of this chapter is as follows. Literature review is presented in

Section 4.2 and the problem is formally described and formulated in Section 4.3.

We present the assortment optimisation model and the demand model at customer
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level in Section 4.4. Then, an approximation method is introduced in Section 4.5.

Our computational experiments and analysis of results are presented in Section 4.6.

Conclusions are reported in Section 4.7.

4.2 Literature Review on Service Upgrades

In this section, we review the most related studies in the literature on upgrade and

their use in different applications. Those studies are based on the dynamic service

upgrade problem. Moreover, we discuss studies concerned with strategic customer

behaviour under repeat purchase. Finally, contributions of this research in terms of

distinguishing features from the literature are highlighted.

The dynamic service upgrade problem deals with an optimisation of capacity

allocation among vertically differentiated products. The main objective is to develop

strategies to match demand and supply. Shumsky and Zhang (2009) focus on a

dynamic upgrade problem with customer requests arriving during a specific booking

horizon. In their problem, the initial capacity of each product needs to be decided

before accepting any customer request. When a customer request arrives, they also

decide whether to upgrade the customer. Specifically, they only consider single-step

upgrades and assume that customers always accept upgrades. A dynamic program

has been used to formulate the problem. In their solution method, the same-class

demand is always satisfied first before considering upgrades. A protection limit

is calculated for each product as the minimum capacity reserved for same-class

demand. Although we also consider single-step upgrade in our problem, our upgrade

decisions are made when demand is fully realised. Additionally, Shumsky and Zhang

(2009) extend their DP model to include multiple booking horizons by allowing

replenishment for each product. They assume that the remaining capacity left from

the previous booking horizon can also be used in the current booking horizon. Under

such a replenishment assumption, their solution method can be only applied for

general non-perishable products. Likewise, Yu et al. (2015) focus on dynamically

deciding multiple-step upgrade, where a number of protection limits are calculated

for each product with respect to the other products. As upgrades are generally used

to resolve the mismatch between demand and capacity for each product, they are

considered as free of charge in problems studied by Shumsky and Zhang (2009) and

Yu et al. (2015).

Recently, Ceryan et al. (2018) study a dynamic pricing and availability control

problem for upgrades with non-perishable products. This paper has the closest setting

to our problem. They discretise the booking horizon into time periods where the

pricing and replenishment decisions for all products and upgrades are made. They
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assume that a number of customers may appear during each time period and prices

of all products and upgrades are fixed for these customers. Moreover, Ceryan et al.

(2018) focus on upgrades as commitments rather than options; therefore, all customers

purchasing the upgrades are upgraded at the end of each time period. Similar to

our problem, Ceryan et al. (2018) offer upgrades after customers purchase standard

products. However, they don’t account for customer anticipation on upgrades since

they assume that customers don’t consider the possibility of being offered upgrades

while making their purchase decision.

The concept of free upgrading has also been considered for perishable products

or services, such as in airlines and car rental. Gönsch et al. (2013) formulate a DP

model to make upgrade decisions for a single-leg flight. In order to obtain an efficient

solution method to solve a real-size problem, they introduce a linear programming

(LP) approximation for the DP problem and calculate the protection level for each

product, which can be integrated into expected marginal seat revenue (EMSR) rules

used by airlines. As an alternative approach to the static method in Gönsch et al.

(2013), McCaffrey and Walczak (2016) propose a solution method for solving the

exact DP to decide upgrades under a single-leg flight.

When the upgrade decisions are made for customers requesting a multi-leg

flight or multi-day car rental, the problem becomes a network revenue management

problem (Oliveira et al., 2017). Steinhardt and Gönsch (2012) formulate a DP model

that accepts/rejects an upgrade request from a customer renting cars for multiple

days. As a solution method, Steinhardt and Gönsch (2012) decompose the network

DP problem with respect to resources and solve the small size DP model for each

resource.

The concept of upselling upgrades is introduced by Gallego and Stefanescu

(2011). They develop a DP model for dynamically pricing upgrades in network

revenue management using the MNL choice model. They derive the dynamic pricing

policy based on a deterministic linear program (DLP) approximation. Similar to our

work, Gallego and Stefanescu (2011) also offer upgrades through products rather than

commitments. However, these upgradable products are presented simultaneously

with other products and customers do not receive any refund in case of no upgrade.

Moreover, they only consider the problem during the booking horizon of one flight,

and they don’t consider customer strategic behaviour in using upgrades to obtain

premium products.

Upgrades offered as options have been only studied under hotel revenue

management context. Yılmaz et al. (2017) are concerned with finding an optimal

pricing policy for premium rooms and standby upgrades in the hotel sector. With

standby upgrades, the customer is only charged if the upgrade is available when the
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customer arrives at the hotel. Similar to our problem, they also assume that the

strategic customer behaviour is influenced by customer’s belief on the frequency of

getting upgraded through standby upgrades. However, Yılmaz et al. (2017) assume

that strategic customers always purchase standard products first in order to check the

price of standby upgrades and then purchase upgrade directly for premium products.

Moreover, their model does not consider the learning process behind customer belief

and only focuses on maximising the total revenue for a specific check-in date under

the given customer strategic behaviour.

In their following work, based on the hotel booking data, Yılmaz et al.

(2019) empirically show the existence of strategic customers when standby upgrades

are offered. They derive a pricing policy that differentiates strategic and myopic

customers. They capture customer purchase behaviour with a sequential logit model.

However, they only focus on the problem for one specific date without modelling the

customer learning process.

The customer learning process, as a result of repeat purchase, has been studied

by several researches in the marketing field. They address the learning process for the

purpose of improving the sales prediction. The concept of learning is first introduced

by Wu and Chen (2000) under the customer repurchase process. They capture

customer’s learning as the relationship among the repurchase probabilities displayed

at different times of purchase. According to an empirical study on consumer purchase

data for tea, they find that learning is an important factor influencing customer

purchase behaviour. The importance of learning in modelling customer purchase

behaviour has also been discussed by Fader et al. (2004) and Meade and Islam (2010)

under the context of launching new products.

Product pricing history has also argued to affect customer purchase decision.

Popescu and Wu (2007) have discussed the optimal pricing problem under the con-

sideration of reference price which is updated once a new price has been decided and

released to customers. By assuming a bounded and continuous reference-dependent

demand model, they have proved that the optimal pricing path is monotonic in the

long run and the optimal price reaches a steady state. In addition to loss-neutral

customers, they have extended their problem for loss-averse ones. However, due to

the strong assumption on the demand model, conclusions in Popescu and Wu (2007)

may not hold for the case where a number of substitutional products are offered and

a discrete choice model is required to capture customer behaviour.

The customer learning process has also been considered in order to determine

a dynamic pricing policy. For instance, Zhang et al. (2014) introduce the concept

of trust to explicitly reflect the knowledge gained during the learning process. A

hidden markov model is developed by using historical purchase data to indicate
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transition probabilities among trust levels. Under the uncertainty of trust levels,

Zhang et al. (2014) propose the pricing policy by assuming that customers have the

same purchase behaviour at the same trust level. Similar to our work, Zhang et al.

(2014) consider the evolution of trust influenced by the pricing policy. However,

they adopt a simulation-based optimisation as a solution method, which enumerates

over all feasible price paths to obtain the optimal pricing decisions. This can be a

computationally expensive solution method if a longer time horizon is considered or

the number of trust levels increases.

In summary, we can contribute to the literature on the capacity planning

problem for perishable products with upgrades by considering the customer learning

through repeat purchase. To the best of our knowledge, this research is the first study

combining these two main concepts. Therefore, the capacity planning approaches

studied in the literature cannot be adopted to solve the underlying DP problem as the

customer choice behaviour evolves through learning under repeat purchase. Unlike

the other studies in the literature, we introduce a dynamic program formulation

to the problem whose states reflect the customer learning process. As the solution

method, we introduce an approximation method based on the integer program model.

4.3 The Dynamic Capacity Allocation under Customer

Anticipation

Consider an airline providing single-leg identical flights (labelled by n = 1, . . . , N)

between the same origin and destination points. All flights provide seats from both

economy and business cabins. Specifically, the economy cabin in all flights has the

same capacity and so does their business cabin. Attached to the economy cabin, the

airline sells upgrade options. We denote economy and business cabins by indices of e

and b, respectively, and the upgrade option is represented by u.

The products are defined as combinations of seats from economy and business

cabins with upgrade options. A set of products in terms of flight tickets in both

business cabin, economy cabin and option that can be offered to customers are listed

in S = {∅, {e}, {b}, {e, b}, {e, u}, {e, b, u}}. Note that ∅ refers to the case of

rejecting a customer request (i.e., no product is offered). When a customer request

arrives, exactly one element s of set S is selected to display to the customer. We

name s for s ∈ S as offered products; for instance, {e, b, u} are offered products.

Note that when {e, b, u} are offered products, the upgrade option is not presented to

the customer at the same time with economy and business cabins. We assume that

the seat capacity of both economy and business cabins has fixed prices, represented

by re and rb, respectively. The upgrade option also has a fixed price ru.
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Each flight has its own booking horizon and these booking horizons are

independent and non-overlapping. During the booking horizon of one flight, customers

select one product or leave with no purchasing based on offered products. Note

that even if the customer buys an economy seat, then the upgrade option may not

be presented. Accordingly, the uncertainty resulting from each customer’s choice

behaviour is influenced by presented cabins and customer anticipation. At the end

of the booking horizon of the current flight, the airline executes upgrade options

given the remaining capacity of business cabin, which updates customers’ experience

with upgrade options. Note that customers’ anticipation remains constant within the

booking horizon of each flight. However, since our problem considers the long-term

revenue management with a number of flights, there is gradual change with respect

to flights. The airline needs to decide which products from set S to offer to each

customer request arriving during the booking horizon of each flight so that the

discounted total revenue to be gained over N flights is maximised.

We consider a Markov Decision Process (MDP) to formulate the airline’s

capacity allocation problem for economy and business cabins with upgrade options.

A decision stage is defined by flight n, which includes the entire booking horizon

of flight n for n = 1, . . . , N . Let Tn denote the number of time periods obtained

from discretising booking horizon n and at most one customer may request capacity

at each time period. A state at stage n, denoted by αn, represents customers’

anticipation on getting upgrades by using the option in flight n. At each state αn,

the airline decides a set of products from S to display to every request arriving

during the booking horizon of flight n. Note that we introduce a dynamic program

formulation for these decisions made at flight (macro) level and construct the link

between consecutive flights based on customer anticipation. Then in Section 4.4,

we formulate the dynamic assortment planning problem at customer (micro) level

during the booking horizon of each flight.

Let g ∈ G denote airline’s decisions during the booking horizon of flight n

at state αn, where G is the search space. Specifically, g includes all decisions on

which set of products from S should be offered to all requests arriving during the

booking horizon of flight n. In other words, the airline decides the number of time

periods in the booking horizon where they offer each set of products to customers.

We assume that the choice behaviour for each customer is stochastic and follows a

known distribution given presented cabins and upgrade option. Let d ∈ D(g) denote

one possible aggregated demand realisation for flight n under decisions g at state

αn, where D(g) is a set of aggregated demand realisations. Let P (d|g) represent

the probability of realising aggregated demand d under policy g. Note that realised

demand d contains information on accepted customers from both economy and
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business cabins and executed options. Based on demand d under decision g at state

αn, customer anticipation for the next flight α′n+1 is updated by a function φ(d, αn),

that will be explicitly defined in Section 4.4. In other words, α′n+1 = φ(d, αn). We

assume that the customer anticipation during the booking horizon of the first flight

α1 is initialised as a constant value. Let R(d|g, αn) denote the total revenue obtained

from demand d for flight n under policy g. Note that R(d|g, αn) includes the revenue

collected from flight tickets as well as the executed upgrade options. Accordingly,

the value function Vn(αn) at state αn for flight n can be formulated recursively as

follows:

Vn(αn) = max
g∈G

{ ∑
d∈D(g)

P (d|g)

[
R(d|g, αn) + γVn+1(α′n+1)

]}
, (4.1)

where γ is the discount factor on future revenue (pre-specified as γ < 1). The

boundary condition of the dynamic program at flight level is defined as VN+1(·) = 0.

The capacity planning problem involves N flights with individual booking

horizon. Accordingly, the dynamic program (4.1) suffers from the curse of dimen-

sionality because of its large state space. Moreover, it is crucial to understand the

distribution of demand realisation d for each flight, because it influences customer

anticipation for the following flight. However, identifying such a distribution is

complicated as it is affected by both the assortment planning policy and the choice

behaviour over all customers. Moreover, theoretically, the assortment problem should

be solved for every request for flight n at each state αn in order to compute Vn(αn)

in (4.1). In the next section, we will formulate the assortment planning problem at

customer level as a DP by using a sequential multinomial logit choice model.

4.4 The Assortment Problem using Sequential Choice

Model

In this section, we first present a DP formulation of the assortment optimisation

problem and then introduce the definition of the underlying anticipation levels as

well as a sequential multinomial logit (MNL) choice model. Note that we omit the

stage index in state αn in the following formulation for simplification.

Let us consider a flight n and the current customers’ anticipation level at α

for receiving upgrade options. The flight has fixed capacity in economy and business

cabins denoted as Ce and Cb, respectively. We assume that customers are classified

into a set of segments L such that customers from the same segment have the same

choice behaviour towards products (flight tickets and upgrade options). The arrival

of customers is uncertain and it follows a homogeneous Poisson process during the
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booking horizon of flight n. According to the arrival rate, the booking horizon is

discretised into time points t ∈ {1n, . . . , Tn} where the probability of having more

than one arrival during each time period can be neglected. After the cut-off time Tn

(that may coincide with the departure time), no more request can be admitted in

flight n.

A discrete-time, discrete-state MDP is used to formulate the dynamic assort-

ment planning problem for flight n. We consider Tn stages defined by arrival of a

customer request for a seat in flight n, where tn = 1n, . . . , Tn. A state of the system

at stage tn is denoted by (x, y), where x ∈ Z|2|+ represents the remaining capacity in

economy and business cabins and y ∈ Z represents the number of purchased upgrade

options.

Let λ denote the probability of one customer arriving at stage tn and µl

indicate the probability of the arriving customer from segment-l. As mentioned

before, the offered products for customers are selected from set S for customers. Let

s ∈ S denote the offered products at stage tn. Given the offered products (s ∈ S)

being presented at stage tn, a segment-l customer may select a business cabin (or an

economy cabin) seat with probability pαlsb (or pαlse). The state (x, y) is updated as

(x− 1b, y) at stage tn + 1 if a business capacity is sold. Accordingly, if the customer

has purchased an economy ticket, then he/she purchase an upgrade option, when

offered, with probability pαlsu. The state then becomes (x− 1e, y + 1) at stage tn + 1.

If the upgrade option is not offered or the customer prefers not to purchase even

though it is offered, the state is updated as (x− 1e, y) at stage tn + 1. The customer

may also leave the system without purchasing any ticket with probability pαls0. In

this case, the state remains as (x, y) at stage tn + 1. Therefore, the value function

Γαtn(x, y) at state (x, y) given anticipation α can be formulated recursively as follows:

Γαtn(x, y) = max
s∈S

{
λ
∑
l∈L

µl

[
pαlse[re + pαlsuΓαtn+1(x− 1e, y + 1) + (1− pαlsu)Γαtn+1(x− 1e, y)]

+ pαlsb[rb + Γαtn+1(x− 1b, y)] + pαls0Γαtn+1(x, y)

]
+ (1− λ)Γαtn+1(x, y)

}
.

(4.2)

We define the customer anticipation α′ during the booking horizon of the next

flight n+ 1 as the ratio of the number of executed upgrade options for the current

flight n to the capacity of business class. This basically indicates that the variable

space of customer anticipation level is a continuous interval [0, 1]. We can now

explicitly state the function α′ = φ(d, α) in the DP model (4.1) as α′ =
min{y, xb}

Cb
.

Accordingly, the boundary condition ΓαTn+1(x, y) of the DP problem (4.2) is

formulated as ΓαTn+1(x, y) = ru ·min{y, xb}+ γVn+1(α′) that includes the revenue

received by executing upgrade options as well as the discounted total revenue to
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be obtained from the remaining flights. Then, the value function at the first stage

Γα1n(x, y) consists of total revenue from selling the current flight n and the discounted

total revenue from the remaining flights. When the flight-level DP model (4.1) defined

in Section 4.3 is broken down to the customer-level, we can obtain Vn(α) = Γα1n(x, y).

Therefore, we can propose an approach to approximate Vn(α) by exploiting the

structure of the customer level DP model (4.2) .

The Choice Model: Given the definition of α, we first describe the sequen-

tial customer choice model defining probabilities in (4.2). Specifically, we discuss

two alternative approaches of defining the utilities used in the choice model. The

complexity of the DP model (4.2) will be revisited after we introduce the choice

model.

On the basis of the customer’s anticipation about receiving upgrade options

driven by his/her past experience, we assume that the customer could buy (or not) an

upgrade option. Therefore, the increase in anticipation ratio will lead to the increase

in utility of economy capacity and the increase in utility of upgrade options (full

anticipation effect). Let us define utilities gained by the customer request arriving

from segment l for each product type (including upgrade options). Let βlb, βle and

βlu denote utilities gained by a segment-l customer for economy, business cabins and

upgrade options, respectively. Let σl denote a sensitivity parameter with respect to

the given anticipation level α for a segment-l customer. Given the anticipation level

α, the utility functions of economy cabin, business cabin and upgrade option for a

segment-l customer are defined as follows:

vlb(α) = βlb − σlα+ ε,

vle(α) = βle + σlα+ ε, and

vlu(α) = βlu + σlα+ ε,

(4.3)

where ε represents the error term following a Gumbel distribution with mean 0.

Notice that when α approaches zero (α→ 0), the anticipation level has no influence

on utilities of any product. On the other hand, when α approaches one (α→ 1), the

anticipation increases the utility of economy cabin as well as the upgrade options,

but decreases the utility of business cabin accordingly. When the option execution

rate for the previous flight increases, customers’ anticipation for getting upgrade via

options increases so that customers prefer to purchase the economy class and also

book the upgrade option if it is offered.

Alternatively, as upgrade options can be refunded at the end of the booking

horizon, customer purchase behaviour might not be affected by their experience.

The value of the business class ticket should also be independent of the anticipation.
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Therefore, we assume that increase in anticipation ratio will only lead to the increase

in utility of economy capacity (partial anticipation effect). Moreover, we assume that

the utility value of an option should depend on the utility difference between business

class and economy class. Accordingly, given the utility parameters introduced

previously, the utility functions of economy cabin, business cabin and upgrade option

for a segment-l customer at anticipation level α are defined as follows:

vlb(α) = βlb + ε,

vle(α) = βle + σlα+ ε, and

vlu(α) = βlb − βle − βlu + ε,

(4.4)

where βlu indicate the utility change from the cost of options. Notice that when α

approaches zero (α → 0), the anticipation level has no influence on utility of any

product. On the other hand, when α approaches one (α→ 1), the anticipation only

increases the utility of economy cabin.

As mentioned before, the upgrade option cannot be observed by the customer

until an economy flight ticket is purchased. Thus, we employ a sequential choice

model to reflect an unobservable feature of the upgrade options, using a sequential

multinomial logit (MNL) choice model. We assume that no-purchase has 0 utility

for all customers. Given the offered products s ∈ S, let S1
s and S2

s define two sets of

products to be offered at the first and second stages, respectively. For instance, if

s = {e, b, u}, then S1
s = {e, b} and S2

s = {u}. Note that S2
s = ∅ if the upgrade option

is not included in the offered products s. Given α, the probability of segment-l

customers selecting product i from the offered products s ∈ S is computed as

pαlsi =



exp(vli(α))∑
j∈S1

s

exp(vlj(α)) + 1
, if i ∈ S1

s ,

exp(vle(α))∑
j∈S1

s

exp(vlj(α)) + 1
× exp(vli(α))

exp(vli(α)) + 1
, if i ∈ S2

s .

Based on the definition of those choice probabilities, as pαlse + pαlsb + pαls0 = 1,
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we can rewrite the customer-level DP problem in (4.2) as follows:

Γαtn(x, y) = max
s∈S

{
(1− λ)Γαtn+1(x, y) + λ

∑
l∈L

µl
[
pαlse[re + pαlsu(Γαtn+1(x− 1e, y + 1)

− Γαtn+1(x− 1e, y)) + Γαtn+1(x− 1e, y)− Γαtn+1(x, y)]

+ pαlsb[rb + Γαtn+1(x− 1b, y)− Γαtn+1(x, y)] + Γαtn+1(x, y)
]}
.

(4.5)

The DP model (4.5) is also intractable because of its large state space. However,

this formulation indicates a possible approach to derive a time slot assortment policy.

If we had the marginal revenue for accepting a customer into economy cabin (as

Γαtn+1(x−1e, y)−Γαtn+1(x, y)), business cabin (as Γαtn+1(x−1b, y)−Γαtn+1(x, y)) and

upgrade option (as Γαtn+1(x − 1e, y + 1) − Γαtn+1(x − 1e, y)), we should be able to

find an assortment policy by exactly computing Vn(α) defined in (4.1). Nonetheless,

since we want to maximise the discounted total revenue from a number of flights in

the problem, the approximated marginal revenue for each individual customer would

be too small that can be neglected. Therefore, it would be reasonable to consider

the capacity allocation problem at flight level rather than focus on the assortment

planning problem at customer level in order to approximate Vn(α). Furthermore,

due to our definition on α, the DP problem (4.1) has a continuous state space. To

overcome this issue, in Section 4.5, we first discretize the sate space in (4.1), and

then introduce a choice-based method to approximate the total revenue of flight

n. This approximation method provides the expected number of executed upgrade

options so that we can calculate the expected customer anticipation for flight n+ 1.

4.5 A Choice-based Linear Approximation Model

In this section, we focus on a solution method for the DP model (4.1) by approximating

the revenue gained from each flight under a given customer anticipation level. First of

all, the state space of (4.1) is continuous, α ∈ [0, 1], due to the definition of customer

anticipation in Section 4.4. Accordingly, we can discretize the state space into K

discrete states and denote the set of discrete anticipation levels as A = {α̂1, . . . , α̂K}
for all stages. Note that states in A are maintained in ascending order. Since the

state space only involves a finite number of discrete points due to discretization, we

can use the backward recursion algorithm to estimate the value function for flight n

at each state α̂k, k = 1, . . . ,K,.

We adopt a choice-based deterministic model to approximate the expected

revenue obtained from one flight. Given the anticipation level α for flight n, we can

compute the expected revenue when a segment-l customer is presented with offered
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products s as

rαls =
∑
i∈S1

s

ri × pαlsi.

Note that S1
s does not involve upgrade options, so the expected revenue only computes

revenue from selling the capacities of economy and business cabins, but not the

revenue from executing upgrade options. Let h = {hs | ∀s ∈ S} denote a vector

of decision variables representing the number of time periods that customers are

presented with offered products s ∈ S during the booking horizon of flight n. Recall

that the airline can also reject a customer’s request by not offering any product,

which is indicated by ∅ in S. Let w denote a decision variable representing the

number of upgrade options executed at the end of booking horizon of flight n. Given

w, we can exactly compute the updated anticipation for flight n+ 1 as α̂ = w
Cb

which

is continuous value arising between 0 and 1.

We assume that Vn+1( wCb ) can be approximated by a piece-wise linear function

defined by discrete states in A and the corresponding value functions are denoted

by Vn+1(α̂k). We use a special order set (SOS) constraint to model the continuous

piece-wise linear function by introducing non-negative continuous variables zk for

k = 1, . . . ,K and binary variables yk for k = 1, . . . ,K. Note that yk takes 1 if zk is

non-zero, and 0 otherwise. Let Ωi indicate one unique pair of non-adjacent zk, where

i = 1, . . . , 2CK − K + 1 for given K discrete anticipation levels. Note that 2CK

means the number of 2-combinations from K elements. For example, Ωi = {1, 3}
represents two non-adjacent z1 and z3. Accordingly, value function Vn(α) can be

approximated by the following integer optimization problem developed for flight n
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at anticipation level α:

CDIPn(α) : max
h,w,yk,zk

∑
l∈L

µl
∑
s∈S

r̄lshs + ruw +
K∑
k=1

zkVn+1(α̂k)

s.t.
∑
s∈S

hs = λTn,∑
l∈L

µl
∑
s∈S

pαlsehs ≤ Ce,∑
l∈L

µl
∑
s∈S

pαlsbhs + w ≤ Cb,

w ≤
∑
l∈L

µl
∑
s∈S

pαlsuhs,

K∑
k=1

zkα̂k =
w

Cb
,

K∑
k=1

zk = 1,

zk ≤ yk, k = 1, . . . ,K,

K∑
k=1

yk = 2,∑
j∈Ωi

yj ≤ 1, i = 1, . . . , 2CK −K + 1,

h ≥ 0, w ∈ Z+,

zk ≥ 0, yk ∈ {0, 1}, k = 1, . . . ,K.

(4.6)

The first constraint in CDIPn(α) describes the capacity allocation with

respect to the total demand. The second and third constraints, respectively, state

that the seat allocation for the economy and business cabins cannot exceed the

capacity. The forth constraint limits the demand on the number of executed upgrade

options. The next five sets of constraints impose SOS-2 restrictions: namely, i) at

most two of zk for k = 1, . . . ,K can be nonzero, and ii) these two nonzero zk must

be adjacent, which leads to 2CK + 4 integer constraints.

The complexity of solving CDIPn(α) is influenced by the number of integer

constraints, which depends on the number of discrete anticipation levels. As an-

ticipation level is assumed to range between 0 and 1, we maintain a reasonable

number of discrete anticipation levels, such as K = 10 in our experiments. Based on

backward recursion algorithm, we can maintain a table keeping the CDIPn(α)-based

estimations to the value function at each discrete state for all flights. According to

the maintained table, given anticipation level α for flight n, the assortment planning
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policy g defined in DP (4.1) can be expressed by the optimal solution h∗ obtained

by solving CDIPn(α).

4.6 Numerical Experiments

In this section, we first describe design of experiments and data issue. Then, we

present our computational results and analysis of these results. We design a set of

numerical experiments to illustrate performance of the capacity planning models and

impact of upgrade options on airline revenue management. In particular, we aim to

show the importance of accounting customers anticipation under the use of upgrade

options over a long-term planning horizon. Finally, we numerically investigate a

steady level of customer anticipation that the airline wishes to achieve to maximise

the total revenue at the given demand.

4.6.1 Design of Experiments and Data

We consider 200 single-leg flights of an airline that provides upgrade options. These

flights are identical in terms of capacity of economy and business cabins. On the

basis of the seating plan of an aircraft A380 operated by British Airways, we assume

that all flights have 97 and 313 seats in business and economy cabins, respectively.

The prices of flight tickets in economy and business cabins, respectively, are set to

be £50 and £150. An upgrade option is sold at price of £70 if offered. The booking

horizon of each flight consists of a number of discrete time periods. For simplicity,

we assume that there is exactly one customer requesting the flight capacity at each

time period.

Policies: The following three policies that the airline can adopt to allocate

flight capacity are obtained for the policy comparison purposes:

• Benchmark Policy (BP): We consider a benchmark policy to highlight the

value of upgrade option in airline RM. Under this policy, we assume that

the airline does not offer upgrade options to customers at all. Moreover, the

capacity allocation decisions are made for each flight to maximise the expected

revenue of the single flight based on the customer choice model without having

upgrade options.

• Independent Policy (IP): Customers’ anticipation on upgrade option is not

taken into account when computing the policy; thus, the third component in

the objective function of CDIPn(α) (4.6) is set to zero. The capacity allocation

decisions are made independently for each flight to maximise the total revenue
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of the flight, but customer anticipation is implicitly considered in the customer

choice behaviour during the simulation process.

• Anticipation-integrated Policy (AP): The policy is obtained by the capa-

city planning problem at flight level as proposed in this chapter. We involve

customers’ anticipation on upgrade option into the policy while managing the

capacity of a sequence of identical flights. The capacity allocation decisions

for each flight are made to maximise the discounted long-term total revenue

as formulated in (4.1). The discount factor is set to be 0.9 in the numerical

experiments.

Note that overbooking is not considered in all policies described above.

The Customer Choice Model: Without the support of real data, we con-

duct simulations under two utility definitions in (4.3) and (4.4), respectively. Under

each assumption, we consider one customer segment for our numerical experiments.

We assume that customers from this segment prefer the economy cabin to business

cabin, and this is captured by the MNL choice model. The utilities of no-purchase,

the economy and business seats, as well as upgrade option, are presented in Table 4.1.

According to the market research from Mintel (2019), around 80% of passengers in

UK fly with economy class. Therefore, utility parameters used in our experiments

are set in such a way that the conditional probability of a customer booking business

cabin given the customer has booked a ticket is around 80% when both cabins are

presented.

Economy Business Upgrade option No-purchase

-1.5 -2.5 0.3 0.0

Table 4.1: Utility parameters in the MNL choice model

Customers’ anticipation on upgrade option is scaled by sensitivity parameter

(σl) to reflect its impact in the choice models. Note that utilities of both normal

flight tickets and upgrade option have the same sensitivity parameter on customers’

anticipation, but their impact is differentiated by the (+ or −) sign in utilities. As

we wish to compare the importance of customer anticipation under different demand

scenarios, we focus on a fixed sensitivity parameter σl = 1.0.

Simulation Experiments: We conduct simulation experiments to evaluate

the benefit of customer anticipation in managing the cabin capacity with upgrade

options in the long term. In this study, we assume that each flight has the same

arrival process and the booking horizon of individual flight involves the same number

of time periods. As a base demand scenario, we use 1800 time periods so that
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the ratio of expected unconstrained demand to the total capacity (410 this case)

is around 1. Since upgrade options can be only beneficial when demand is lower

than the capacity, we vary the scaling parameters between 0.5 and 1.1 with the

incremental step 0.1 in the base demand scenario and evaluate our policies under

different demand levels.

The main steps of our simulation experiments are briefly explained below.

Each simulation consists of simulating customer arrivals during the booking horizon

of 200 flights, where the customer anticipation is always set to zero for the first

flight. Given the current level of customers’ anticipation, we determine capacity

planning decisions for each flight in terms of the number of time periods of of-

fering each set of products by solving the CDIPn(α) problem (4.6). During the

booking horizon, one set of products is offered to each customer in the sequence

of {e, b, u}, {e, u}, {e, b}, {e}, and {b}. We start to reject customers after there

is no remaining time period of offering {b}. Based on the offered set of products,

the customer booking decision is randomly generated based on the choice model.

At the end of the booking horizon of each flight, we make adjustments for the

accepted customer requests for both economy and business cabins. We first deal with

the overbooked seat for business cabin. Those customers overbooked the business

cabin are rejected. If the business cabin has more remaining capacity, then we start

executing options. In other words, customers who have already purchased options are

to be upgraded as long as the business cabin’s capacity permits; thus, more capacity

in the economy cabin is created. At the final stage, the economy cabin customers

are rejected if the economy cabin is overbooked, after executing the upgrade options.

The associated revenue from flight tickets and upgrade options is deducted from the

total revenue if any customer request is rejected. After the adjustment process, we

can compute the customer anticipation level during the booking horizon of the next

flight based on the number of executed upgrade options. This procedure is carried

out for 200 flights in the same manner by simulating their corresponding booking

horizons. In order to obtain robust results, we repeat the simulation process for 100

runs and use the average results to evaluate the performance of those polices under

each scaling parameter.

4.6.2 Computational Results and Discussion

We are firstly concerned with investigating the financial benefit of upgrades as one

of products for the airline’s revenue management. Then we aim to illustrate the

potential impact of taking the customer anticipation into account when the airline

makes the capacity allocation decisions over a long planning horizon. Figure 4.1

presents the average revenue increase in one flight under two policies AP and IP with
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respect to BP at different demand scaling parameters. Under both utility definitions

(4.3) and (4.4), we observe that offering upgrade options as additional products can

generate more revenue under AP and IP when the demand scaling parameters are

smaller than 1.0. The result seems counter-intuitive as using options is cheap/inferior

way of the airline to sell business capacity and it should cause revenue loss. However,

with the underlying MNL model, when anticipation is included in either of the utility

definition, introducing upgrade option could also attract more people to purchase

the capacity. In other words, the probability of no purchase may decrease when

anticipation ratio increases under our choice model. For example, when anticipation

has full effect on utilities defined in (4.3) and anticipation level is 0.5 under our

simulation setting, the no-purchase probability at the first stage increases by 5%

compared with the case of anticipation level of 0. When anticipation has partial effect

on utilities defined in (4.4) and anticipation level is 0.5, the no-purchase probability

at the first stage would increase by 8% compared with the case of anticipation level

of 0. Therefore, under both utility definitions, we can observe additional revenue is

obtained through offering upgrade options under AP and IP. Note that more utility is

added to the case where customers will purchase under the partial anticipation effect.

However, under full anticipation effect, some utility are removed from business and

some are added to economy. As utility of no-purchase stays the same, no-purchase

probability reduces more if the utility of overall purchase behaviour increases more

largely. Therefore, the benefit of considering anticipation has larger impact on

no-purchase probability in the partial anticipation effect than in the full effect.

As the demand scaling parameter increases (from 1.0 onwards) in Figure

4.1, there is no revenue benefit of offering upgrades in both AP and IP under both

assumptions. These results confirm that upgrade options should be offered only

when low demand realises. It intuitively makes sense that upgrade options should

be no longer offered when there is enough demand to fill up the business cabin at

full price. Figure 4.1 also shows that AP is able to create more revenue increase

than IP when the demand is less than the capacity. For instance, the gap between

revenue increase achieved by two policy is around 9% under when anticipation has

full effect on utilities and the demand scaling parameter is set to 0.6. Note that all

findings obtained under partial anticipation effect are consistent with results under

full anticipation effect, so we focus on our discussion on the results under definition

(4.3) with full anticipation effect in the remaining section.
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Figure 4.1: Impact of considering upgrade options and customer anticipation under
full and partial anticipation effects

We now illustrate what percentage revenue increase is received from selling

capacity in business and economy cabins and upgrade options by comparing two

policies AP and IP in Figure 4.2. When the demand scaling parameter increases from

0.9 onwards, AP obtains more revenue from selling business class tickets and less

revenue from executing upgrade option compared to IP. Moreover, it is worthwhile

mentioning that AP does not sell business capacity at full price when the demand

scaling parameters are set to 0.5 and 0.6. Under our setting, AP generally sells

less business capacity at full prices, but achieves higher revenue than IP by selling

economy capacity and upgrade options. Especially, when demand is low (such as 0.5

and 0.6), AP produces higher profit as it sells more business capacity via upgrade

options rather than business cabin tickets. Therefore, in comparison with IP, AP

achieves a better trade-off between promoting upgrade options by manipulating

customer anticipation and reserving the full-priced business capacity.
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Figure 4.2: Performance comparison of AP and IP in terms of percentage revenue
increase (%) generated from selling economy and business tickets and upgrade options

As the airline considers the long-term revenue over 200 flights, we intend

to numerically investigate how the customer anticipation evolves at each flight.

Figure 4.3 illustrates the evolution of customer anticipation under both policies, AP

and IP, for each individual flight when the demand scaling parameter is set to 0.7.

Given the same initial customer anticipation level at zero for the first flight, customer

anticipation level is stabilised at different levels under two policies. Recall that the

demand level remains the same for all flights in our computational experiments. As

IP always makes the same capacity allocation decision based on customer anticipation

as zero for all flights, it allows customers gradually learn about the execution rate of

upgrade option. This leads to a stable customer anticipation level as 0.6 in this case.

On the other hand, AP also achieves a stable anticipation level at around 0.7. As a

result, we can conclude that there exists a steady state (customer anticipation level)

in the DP problem (4.1) based on the CDIPn(α) approximation (4.6) for a given

the demand level.

Furthermore, we investigate the steady state conditions obtained by the

DP problem (4.1) at varying demand levels. Figure 4.4 presents how customer

anticipation evolves for each flight under AP at fixed demand scaling parameters as

0.7, 0.8 and 0.9. We can observe that the steady state exists at different demand

levels. Moreover, we notice that the customer anticipation level decreases as the

demand scaling parameter increases. For instance, the customer anticipation level is
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around 0.2 when the demand scaling parameter is set at 0.9. It increases to 0.7 when

demand scaling parameter is 0.7. Based on our assumption, one can easily state

that the higher anticipation is, the more likelihood that a customer books economy

cabin and purchase the upgrade option. Therefore, it intuitively makes sense that

AP manipulates customer anticipation at a higher level at low demand case (when

the scaling parameter is 0.7) in order to fill up the flight and obtain higher revenue

than at high demand case (when the scaling parameter is 0.9).

Theoretically, because anticipation can divert customers from business to

economy, anticipation level of 0 should always lead to a higher revenue than the case

where anticipation level is above 0. However, due to the underlying MNL choice

model, including anticipation in the utilities not only moves customers from business

to economy but also could attract more people to purchase the capacity. Therefore,

our simulation study shows that the steady anticipation level depends on the demand

level as shown in Figure 4.4. When customer arrival rate is relatively low to the

total capacity, the company may wish to maintain the anticipation rate at certain

level such that more customers are attracted and customers may ‘purchase’ upgrade

options.
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Figure 4.3: Customer anticipation levels achieved by AP and IP for each individual
flight at demand scaling parameter 0.7

Finally, we would like to report a numerical evidence that the existence of

a steady state (customer anticipation) achieved by the DP model (4.1) based on

the CDIPn(α) approximation (4.6) does not depend on the choice of the initial
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anticipation level. For this experiment, we fix the demand scaling parameter as

0.9 and the initial anticipation level for the first flight is chosen as 0.0, 0.5 and

1.0. As it can be easily seen from Figure 4.5, the same customer anticipation level

(around 0.2) is obtained regardless of the choice of initial anticipation level set for

the first flight. Moreover, when the initial customer anticipation level is selected as

smaller than the steady anticipation level, the DP model (4.1) achieves the steady

anticipation immediately after the first flight. However, when the initial anticipation

is higher than the steady state level, it takes a number of flight to reduce the customer

anticipation to the steady level. Such observation indicates that it would be easier

to increase the customer anticipation rather than decrease it within a short term.
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Figure 4.4: Customer anticipation levels maintained during the booking horizon of
each flight under AP
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Figure 4.5: Customer anticipation levels maintained by AP during the booking
horizon of each flight given different initial anticipation level

4.7 Conclusions

In this chapter, we have studied the airline’s capacity allocation problem involving

both economy and business cabins, where upgrade options are offered to address

the demand-capacity mismatch in both cabins. We specifically focus on a long

term capacity planning problem over a number of flights, where customers may take

advantage of upgrade options to obtain capacity in business cabin based on their

anticipation. We introduce a DP formulation for the capacity allocation problem for

all flights. As a solution method, we propose a value function approximation method

by discretizing state space on customer anticipation and apply the backward recursion

algorithm to compute the value function at each state. Given the anticipation level,

we adopt a choice-based approach to estimate the revenue of the current flight and

calculate the anticipation for the next flight based on expected number of executed

upgrade options. The capacity allocation decisions for a flight are also decided

by solving the CDIP with current anticipation level based on the estimated value

functions at each state from next stage (or flight).

We design a series of computational experiments to demonstrate performance

of the proposed policies and present the benefit of introducing upgrade options.

Then, we address the importance of including customer anticipation in the capacity

allocation policy, since it is able to achieve a better trade-off between reserving
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capacity in business cabin and promoting upgrade options given the demand. Finally,

we numerically investigate the existence of a steady level of customer anticipation.

Our results indicate that this steady state is only influenced by the underlying

demand, but not the initial anticipation level.

Due to the lack of real data, conclusions derived from the numerical study

are based on two different utility definitions and a specific parameter setting. Two

definitions mainly distinguish with each other on whether anticipation has influence on

the utility of upgrade option. However, under both definitions, including anticipation

in the MNL choice model can not only divert customer from business cabin to

economy cabin but also increase customer demand. Therefore, similar conclusions

are reached as more revenue are obtained from offering upgrade options. It requires

further study on the choice model to evaluate the revenue advantage of using upgrade

option where anticipation cannot increase customer demand.

Since we introduce a naive definition on customer anticipation as the percent-

age of business capacity used by options, there are also issues in whether it truly

reflects customer behaviour in the future purchase or not. In particular, when all

upgrade options are executed and there is still available capacity in the business

cabin, the anticipation level is calculated less than 1 by our approach. However,

customer anticipation level should be the highest, 1 in our case, as all upgrade options

are executed. Therefore, a more appropriate numerically approximating customer

anticipation, such as using the probability of a customer obtaining an upgrade option,

needs to be further explored. Note that using such definition of anticipation level may

lead to a case that our proposed solution method is no longer applicable. It might

be necessary to propose a solution approach for the new approximation method of

anticipation.

On the other hand, the assumption that booking horizons of flights are non-

overlapping is a very critical assumption made to simplify our problem such that

a LP-based approximation approach can be proposed. However, if we relax such

assumption, our conclusion on the benefit of including customer anticipation in our

capacity planning for consecutive flights with upgrade options will be still valid.

Since flight booking horizons are overlapping, there would be less time for each flight

to adjust its capacity allocation decision with respect to the latest anticipation level.

Accordingly, the revenue for each flight might decrease but the benefit of recognising

customer anticipation should remain significant.

As future study, in addition to theoretically proofing the existence of a steady

state, we aim to establish under which condition a steady state exists by relaxing

the underlying assumptions. Moreover, one can investigate capacity allocation policy

based on the structural property of the steady state.
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Chapter 5

Summary of Thesis and Future

Work

In this chapter, we briefly summarise our concluding remarks and the main findings

obtained from research topics studied in this PhD thesis. We then highlight limitations

of our studies. Finally, some potential research directions will be presented as

continuation and extension of this PhD study.

5.1 Summary of Research Questions

This thesis covers three research topics on innovative products and services provided

in attended home delivery services and airline upgrades. Specifically, we propose

dynamic control policies to manage these innovative products and services in order

to evaluate the benefit of introducing each of these products and services in terms of

improving business revenue and operations.

In Chapter 2, we introduce the concept of flexible time slots in attended

home delivery services. When purchasing a flexible slot, the customer is notified

just before the delivery day in which regular time window the delivery arrives in

exchange for cheap delivery charges. We aim to evaluate the profit improvement

after introducing flexible slots with an appropriate pricing policy. Chapter 3 focuses

on a dynamic slotting problem under a practical scenario in offering attended home

delivery services, where customers are presented with delivery time slots across

multiple days. We assume that customers compare time slots as well as delivery days

when selecting their slots. Different choice models can be adopted in the slotting

policy and we want to identify the choice model which can help the policy generating

the highest total profit. Chapter 4 discusses a long-term airlines’ capacity allocation

problem with a sequence of flights, where upgrade services are offered via options
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and upgrade charges are only taken when options are executed for one flight. This

research focuses on a specific group of customers who have repeat purchase behaviour

on a flight and they can learn from their past purchase experiences with upgrade

options and change their choice behaviour accordingly. We intend to verify whether

more revenue could be generated by the airline after introducing upgrade options

under the consideration of customer anticipation.

5.2 Contributions to Practice

When new products and services are introduced to the market, companies need to

decide the pricing policy and/or availability policy for these products and services.

Based on these policies, companies would then evaluate the impact of those innovative

products on the existing products such that policies can be modified to improve the

profitability of the business.

In Chapter 2, we numerically present the benefit of introducing flexible slots

in attended home delivery services with respect to increasing e-retailers’ profit and

reducing delivery costs. Specifically, we construct flexible slots from standard slots

by popularity (P3) and total profit increases by at least round 4% after introducing

flexible slots. When demand is low relative to the delivery capacity, using flexible

slots has significant potential in reducing delivery costs, e.g. delivery costs per order

decreases by around 1.5% after having flexible slots when demand to capacity ratio is

lower than 0.8. Moreover, we also introduce flexible slots by simply merging adjacent

slots (A4). Offering these flexible slots also increases the e-retailer’s profit by at least

2%. Compared to P3, using these slots has the advantage of being able to spread

customers more evenly across the delivery time slots, especially, if demand is high

relative to delivery capacity.

We compare the performance of using different choice models in the slotting

policy when offering time slots across multiple days in Chapter 3. Firstly, we find

that the choice model excluding the substitution effect of days over-estimated the

customers’ no-purchase probability by around 30%. However, we reach a conclusion

in the numerical experiments that using such a choice model could potentially increase

profit by almost 5% compared to the case of offering all feasible slots, when the

demand is low relative to the delivery capacity. However, using this choice model

might lead to inefficient delivery schedules. Delivery costs per order could have been

reduced further by around 5% if the true choice model is used, when demand to

capacity ratio is low. Therefore, we recommend that e-retailer should use a choice

model closely capturing the underlying customer choice behaviour in order to achieve

an efficient delivery plan with low delivery cost per order.
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In Chapter 4, we numerically address the benefit of introducing upgrade

options in generating potential revenue to the airline. When the customer demand

is relatively low to its capacity, revenue of each flight is increased by around 40%.

However, when customer demand approaches capacity, there is merely no additional

revenue created for each flight as business cabin capacity can be sold at full price.

Moreover, our results suggest that the airline could potentially generate higher revenue

(around 10% revenue increase) once its capacity allocation policy includes customer

anticipation. Accounting for customer anticipation in the capacity allocation policy

is able to achieve a better trade-off between reserving capacity in business cabin and

promoting upgrade options given the demand.

5.3 Contributions to Theory

RM problems discussed in the thesis are challenging as they all deal with the

uncertainty arising from the stochastic customer arrival process and customer choice

behaviour. Solving these problems involves estimating customer choice models and

anticipating future revenue. Moreover, it requires sophisticated methodologies that

can solve problems in real time.

In order to evaluate the benefit of using flexible time slots in attended home

delivery services, we propose a dynamic choice-based pricing policy in Chapter 2.

Specifically, we introduce a novel LP-based opportunity cost estimation approach,

which includes both delivery costs and displacement cost. Given estimated oppor-

tunity costs, we also derive an LP-based pricing policy such that slot prices can be

decided in milliseconds.

In Chapter 3, we firstly formulate the problem of offering time slots across

multiple consecutive delivery days as a dynamic program. Then, we assume that

customers compare time slots as well as delivery days when selecting their slots.

Depending on whether the substitution effect of delivery days is accounted, we

propose three different choice models to capture customer choice behaviour. Finally,

we construct three slotting policies with three choice models accordingly and each

policy decides slot availability in real time.

In Chapter 4, we introduce the concept customer anticipation to model such

learning process between flights as the result of introducing upgrade options to

customers. Then, under the consideration of customer anticipation, we propose a

novel dynamic policy to decide capacity allocations for a sequence of single-leg flights.

Based on our approximation method of customer anticipation, we finally develop a

capacity allocation policy for each flight by discretising the state space of DP and

estimating the value function using backward aggregation.
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5.4 Limitation of Thesis

There are limitations of policies and methodologies introduced in this thesis. Firstly,

we mainly use LP approximation methods to approximate value functions in our DP

models as solution methods. Using more refined approximation methods, such as an

approximated dynamic programming, may improve the performance of our proposed

policies. For research topics in attended home delivery services, more sophisticated

routing heuristics could be adopted in order to improve computational efficiency in

checking time slot feasibility and constructing delivery plans.

Moreover, the performance of all those policies determined in this thesis is

evaluated under specific numerical settings. For example, when customers have

pessimistic attitudes towards flexible slots, the e-retailer would have to reduce price

to attract customers. Then, the e-retailer might face more the revenue loss than

the cost reduction from delivery flexibility, which leads to a total profit decrease.

There are also issues in defining the true choice model when customers are selecting

slots from a number of delivery days. Customers might cluster slots with respect

to morning and afternoon. When upgrade options are offered by the airline, the

relationship between anticipation and utilities of products is debatable. The utility of

business cabin and the probability of purchasing upgrade option could be independent

from customer purchase experience (anticipation). The definition of anticipation

would be more appropriate to reflect a probability of an upgrade option being offered

and executed. Due to a lack of data, we are not able to test and evaluate our

solution methods with real cases. As continuation to the PhD study, we would like to

focus on applying our proposed policies with real data as case studies. By analysing

real data, we firstly would be able to derive some insights regarding to customer

arrival process and customer choice behaviour. Then, we could modify our solution

approaches with respect to the information revealed from the data and evaluate the

performance of our approaches in terms of improving business revenue and operation.

5.5 Future Work

This thesis specifically discusses research topics on revenue management in last-mile

logistics and airlines. Potential research directions under these two areas are listed

and discussed as follows:

• Innovative delivery technologies: Non-conventional vehicles have been

introduced for last-mile delivery in urban areas, such as electric cargo bikes,

parcel copters and self-driving parcels (Slabinac et al., 2015). It could lead

to a mixture of delivery fleet for the e-retailer and might bring additional
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complexity regarding to manage demand for each type of fleet. Once the

mixture of delivery vehicle types is determined, we could investigate a dynamic

pricing policy to influence customers’ choice on delivery fleet such that the

total profit of the delivery operation can be maximised.

• Capacity management in crowd-shipping: Crowd-shipping has been in-

troduced to last-mile delivery as a platform, which connects the customer

wanting to send a parcel with the driver willing to fulfil the delivery. As a

platform, given the delivery demand, it is important to understand incentives

of drivers to participate in a crowd-shipping system, such as drivers’ willingness

to work (Yildiz and Savelsbergh, 2019). In order to maximise the total profit

of the crowd-shipping platform, we can focus on a dynamic matching policy

that decides which to-be-delivered requests are shown every time a driver is

asking for delivery opportunity.

• Strategic customer behaviour: In airlines, capacities of one flight are

frequently updated over the booking horizon (Büsing et al., 2019). When a

choice-based revenue management model is adopted in this scenario, capacities

in low fare class are released to customers approaching the end of the booking

horizon. In the long term, customers are able to anticipate the time of capacity

update and strategically postpone their purchase in exchange for potential low

fare tickets. If the customer has high anticipation, the likelihood of him/her

leave the system with no purchase increases. This anticipation is also time

dependent as customer anticipation may increases approaching the end of

the booking horizon of a flight. Further research could consider customer

anticipation within a choice model to effectively address strategic customers

when setting the capacities for airline fare classes.

Remark: The main issue in last-mile logistics is the high delivery cost, so

revenue management concepts have been adopted to influence customers’ preference

towards delivery options in order to improve the business operation and reduce

delivery cost. With the development of new delivery technologies (systems), such as

crowd-shipping platforms and automated electronic vehicles, the complexity from

the transportation side brings challenges in anticipating delivery cost while applying

pricing and capacity control mechanisms to manage the logistic service demand. For

instance, a customer may require both pick-up and delivery services, or automated

vehicles need to go to a power station before their batteries run out.

On the other hand, customers’ choice behaviour is dynamic as customers

can learn from their past purchase experience. In most of the cases, apart from

price, we cannot identify factors, which change customers’ choice behaviour and can
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be influenced by a RM control policy. For instance, we may not be able to find

such a factor that affects customers’ preference towards different brands of cookies.

Therefore, the customer choice model is periodically reviewed and updated in the

RM policy to improve short-term profit. However, when we can explicitly identify

those factors, revenue management can be applied to improve business profit in the

long run.
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Appendix A

Proof of Propositions

A.1 Proposition 2 (Linearization of Slot and Price As-

sortment Problem)

Consider the nonlinear optimization problem RaNLP for area a and its optimal

solution (g∗, z∗). For notational simplicity, we introduce parameter cns = rn −∆t
s.

Let h = {hsκ | s ∈ F(x), κ ∈ K} and f = {fsκ | s ∈ F(x), κ ∈ K\{K}} represent

decision variables (corresponding to decisions of the nonlinear optimization model).

Given the optimal solution (g∗, z∗), we define V ∗n =

∑
s,κ(cns + dκ)v̂nsκg

∗
sκ

1 +
∑

s v̂
T
nsg
∗
s

. The

nonlinear problem (2.7) can then be rewritten as the following linear optimization

model:

max
h,f

∑
n

ηan
∑
s,κ

(cns + dκ − V ∗n )v̂nsκhsκ

s.t. hm1 + fm1 = 1, ∀m ∈M(x),

hmκ + fmκ = fm,κ−1, ∀m ∈M(x), κ ∈ K\{0, 1,K},

hmK = fm,K−1, ∀m ∈M(x),

hm1 = hs1 + fs1, ∀m ∈M(x), s ∈ S(x),

hmκ + fs,κ−1 = hsκ + fsκ, ∀m ∈M(x), s ∈ S(x), κ ∈ K\{0, 1,K}.

hmK + fs,K−1 = hsK , ∀m ∈M(x), s ∈ S(x)

h, f ∈ [0, 1].

(A.1)

We first prove that RaNLP is equivalent to (A.1), and thus
∑
n

ηanV
∗
n =∑

n

ηanW
∗
n . The optimal solution of (A.1) is (h∗, f∗) and the objective value is∑

n

ηanW
∗
n where W ∗n =

∑
s,κ

(cns + dκ − V ∗n )v̂nsκh
∗
sκ. Notice that the feasible sets of
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both problems (2.7) and (A.1) consist of the same set of constraints.

• Given the optimal solution (g∗, z∗) of RaNLP , one can easily write the following

inequality ∑
n

ηanW
∗
n ≥

∑
n

ηan
∑
s,κ

(cns + dκ − V ∗n )v̂nsκg
∗
sκ (A.2)

since the optimal solution is also feasible for (A.1). Furthermore, by substituting

V ∗n (1 +
∑
s

v̂Tnsg
∗
s) =

∑
s,κ

(cns + dκ)v̂nsκg
∗
sκ

in (A.2) we obtain ∑
n

ηanW
∗
n ≥

∑
n

ηanV
∗
n .

This basically implies that the optimal objective value of (A.1) is at least as

large as the optimal objective value of RaNLP .

• Next, let us consider the optimal solution (h∗, f∗) obtained from (A.1). This

is a feasible solution for the problem RaNLP because both problems have the

same search space. Then, we can write the following valid inequality

V ∗n ≥

∑
s,κ

(cns + dκ)v̂nsκh
∗
sκ∑

s

v̂Tnsh
∗
s + 1

that leads to

V ∗n (
∑
s

v̂Tnsh
∗
s + 1) ≥

∑
s,κ

(cns + dκ)v̂nsκh
∗
sκ ⇒ V ∗n ≥W ∗n . (A.3)

From this, one can obtain
∑
n

ηanV
∗
n ≥

∑
n

ηanW
∗
n . This shows that the

objective value of RaNLP is at least as large as the optimal objective value of

(A.1).

From these two cases, we find
∑
n

ηanV
∗
n =

∑
n

ηanW
∗
n that basically states that the

optimization problems RaNLP and (A.1) are to be equivalent.

Similarly, we can show that RaLP and (A.1) are equivalent and they produce

the same objective function value. Since V ∗n is a parameter in (A.1), we can remove

it from the objective function. This provides RaLP by exploiting the structural

property of MNL choice model. Let (ĝ∗, z∗) denote the optimal solution of RaLP . For
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K∗n =
∑
s,κ

(cns + dκ)ĝ∗nsκ, let us consider the following two cases.

• The optimal solution (h∗, f∗) of (A.1) constructs a feasible solution for RaLP as

ĝnsκ =
v̂nsκh

∗
sκ

(1 +
∑

j v̂
T
njh
∗
j )
, ĝn0 =

1

(1 +
∑

j v̂
T
njh
∗
j )
, and ẑκ =

f∗sκ
(1 +

∑
j v̂

T
njh
∗
j )
.

Thus, we can then state the following relationship∑
n

ηanK
∗
n ≥

∑
n

ηan
∑
s,κ

(cns + dκ)ĝnsκ

=
∑
n

ηan

∑
s,κ(cns + dκ)v̂nsκh

∗
sκ

1 +
∑

j v̂
T
njh
∗
aj

=
∑
n

ηanW
∗
n .

(A.4)

This indicates that the optimal value of RaLP is greater or equal to the optimal

value of (A.1).

• In the same way, one can show that (ĝ∗, ẑ∗) constructs a feasible solution of the

problem (A.1). In other words, hnsκ = ĝ∗nsκ
(ĝ∗n0v̂nsκ) and fnsκ = ẑ∗nsκ

ĝ∗n0
is a feasible

solution and satisfy the following inequality;∑
n

ηanW
∗
n ≥

∑
n

ηan
∑
s,κ

(cns + dκ − V ∗n )v̂nsκhnsκ

=
∑
n

ηan
∑
s,κ

(cns + dκ − V ∗n )
ĝ∗nsκ
ĝ∗n0

.
(A.5)

Using the relations (A.4) and
∑
n

ηanW
∗
n =

∑
n

ηanV
∗
n (as already proven above)

in (A.5), we obtain

∑
n

ηanW
∗
n ≥

∑
n

ηan
∑
s,κ

(cns + dκ)
ĝ∗nsκ
ĝ∗n0

−
∑
n

ηan
∑
s,κ

K∗n
ĝ∗nsκ
ĝ∗n0

≥
∑
n

ηan
K∗n
ĝ∗n0

−
∑
n

ηan
∑
s,κ

K∗n
ĝ∗nsκ
ĝ∗n0

=
∑
n

ηanK
∗
n

(
1

ĝ∗n0

−
∑
s,κ

ĝ∗nsκ
ĝ∗n0

)
.

Using ĝ∗n0 = 1−
∑
s,κ

ĝ∗nsκ, we obtain the following inequality

∑
n

ηanW
∗
n ≥

∑
n

ηanK
∗
n. (A.6)

This indicates that the optimal value of (A.1) is not less than the optimal value

of RaLP .

117



From (A.4) and (A.6), we achieve
∑
n

ηanK
∗
n =

∑
n

ηanW
∗
n , and thus RaLP and (A.1)

are equivalent. In a summary, we can conclude that RaNLP and RaLP are equivalent

and they possess the same objective value.

A.2 Proposition 3 (Linearization of Value Function Es-

timation)

Suppose that the MNL model is used to describe the customer choice behaviour. We

consider the NLP and LP problems given state x at time t. Let (g∗,w∗1) denote

the optimal solution of NLP with the optimal value V̂ ∗. Meanwhile, the optimal

solution of LP is denoted by (y∗,w∗2) and the optimal value is R∗. In order to show

that these models are equivalent and produce the same optimal value (i.e., V̂ ∗ = R∗)

under the MNL choice model, we follow steps in two cases:

Case 1: We first prove that (g∗,w∗1) constructs a feasible solution for LP so

that R(g∗,w∗1) ≤ R∗. Given (g∗,w∗1), let’s define the following decision variables

w′ = w∗1, y
′
asnκ =

T∑
i=t

Piansκ(g∗) and y′an0κ =
T∑
i=t

Pian0(g∗), ∀κ ∈ K, a ∈ A, n ∈ N, s ∈ F .

It can be easily shown that (y′,w′) satisfies the first four sets of constraints in LP .

For the last set of constraints, using
∑
a,n

µaηan = 1 and
∑
s,κ

p′iansκ(g∗) + p′ian0(g∗) = 1

in the left-side of the equality, we find

T∑
i=t

∑
a,n

(∑
s,κ

Piansκ(g∗) + Pian0(g∗)

)
= λ

T∑
i=t

∑
a,n

µaηan

(∑
s,κ

p′iansκ(g∗) + p′ian0(g∗)

)
= λ(T − t+ 1).

This implies that (g∗,w∗1) satisfies all constraints of the LP model. Therefore, it is

a feasible solution for LP and we can state that V̂ ∗ ≤ R∗.
Case 2: Let’s first reformulate NLP as a choice-based deterministic linear

model (CDLP). Then, using the duality theory, we show that the optimal solution

for the dual of CDLP is feasible for the dual problem of LP . Thus, R∗ ≤ V̂ ∗ holds.

Let set G consist of all possible pricing decisions g for all slots. We define new

decision variable υia(g) to represent the probability of offering price vector g at time

i in area a. For notational convenience, we introduce P ′iansκ =
∑

g∈G Piansκ(g)υia(g)

as the decision variable in CDLP which indicates the probability of slot s having

price dκ at time i for a segment-n customer from area a. Accordingly, CDLP can be
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formulated as follows:

CDLP : V̂t(x) = max
P′,w

T∑
i=t

∑
a∈A,s∈S

∑
n∈N,κ∈K

P ′iansκ (r̄an + dκ) −
∑

a∈A,s∈S
Cas(x

′
as)

s.t.
∑
s∈F

[
xas +

T∑
i=t

∑
n∈N,κ∈K

P ′iansκ

]
≤ c, ∀a ∈ A,

∑
s∈Sm

wams = xam +

T∑
i=t

∑
n∈N,κ∈K

P ′ianmκ, ∀a ∈ A,m ∈M,

xas +

T∑
i=t

∑
n∈N,κ∈K

P ′iansκ +
∑

m∈Ms

wams ≤ Ba, ∀s ∈ S, a ∈ A,

T∑
i=t

∑
κ∈K

P ′iansκ
vnsκ

=

T∑
i=t

P ′ian0, ∀a ∈ A, s ∈ F , n ∈ N.

P′ ∈ [0, 1], w ≥ 0.

(A.7)

Let σ1 = {σ1a | ∀a ∈ A}, σ2 = {σ2am | ∀a ∈ A, m ∈ M}, σ3 = {σ3as | ∀a ∈
A, s ∈ S} and σ4 = {σ4ans | ∀a ∈ A, n ∈ N, s ∈ F} denote dual decision

variables corresponding to constraints of the (primal) CDLP . We also introduce

σσσ = {σ1, σ2, σ3, σ4} for notational simplicity. The constraints of the dual problem

of CDLP are

σ1a + σ3as +
σ4ans

v̂ansκ
≥ r̄′anκ, ∀a ∈ A, s ∈ S, n ∈ N, κ ∈ K,

σ1a + σ2am +
σ4ams

v̂anmκ
≥ r̄′anκ, ∀a ∈ A,m ∈M, n ∈ N, κ ∈ K,

σ2am + σ3as ≥ 0, ∀a ∈ A,m ∈M, s ∈ Sm,

−
∑
s∈F

σ4ans ≥ 0, ∀a ∈ A, n ∈ N,

(A.8)

where r̄′anκ = r̄an + dκ − δβa
6 represents the marginal profit-after-delivery in area a

with slot price dκ. The optimal value V ∗D of the dual CDLP problem is achieved at

σσσ∗.

Similarly, we define dual decision variables φ1 = {φ1a | ∀a ∈ A}, φ2 =

{φ2am | ∀a ∈ A, m ∈M}, φ3 = {φ3as | ∀a ∈ A, s ∈ S}, φ4 = {φ4ans | ∀a ∈ A, n ∈
N, s ∈ F} and φ5 corresponding to constraints of the primal LP problem and

denote φφφ = {φ1, φ2, φ3, φ4, φ5}. The dual problem of LP involves the following
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constraints

φ1a + φ3as +
φ4ans

v̂ansκ
+ φ5 ≥ r̄′anκ, ∀a ∈ A, s ∈ S, n ∈ N, κ ∈ K,

φ1a + φ2am +
φ4ams

v̂anmκ
+ φ5 ≥ r̄′anκ, ∀a ∈ A,m ∈M, n ∈ N, κ ∈ K,

φ2am + φ3as ≥ 0, ∀a ∈ A,m ∈M, s ∈ Sm,

φ5 −
∑
s∈F

φ4ans ≥ 0, ∀a ∈ A, n ∈ N.

(A.9)

R∗D is obtained by the optimal solution φ∗ of the dual problem of LP . Next, from

the first two sets of constraints in (A.8), we define A∗ansκ = σ∗1a + σ∗3as +
φ∗4ans
v̂ansκ

− r̄′anκ,

and B∗anmκ = σ∗1a + σ∗2am +
φ∗4ams
v̂anmκ

− r̄′anκ. Then, the following relationship holds∑
s,κ

A∗ansκ +
∑
m,κ

B∗anmκ ≥ 0, ∀n ∈ N, a ∈ A. (A.10)

Notice that φ5 can take any value satisfying (A.10). Since φ5 ≥ 0 and
∑
s∈F

σ∗4ans ≤ 0

(that is obtained from (A.8)), one can easily observe that σσσ∗ and φ5 satisfy constraints

in (A.9). Therefore, R∗D ≤ V ∗D holds such that R∗ ≤ V ∗.
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Appendix B

Estimated Choice Models

B.1 Estimated MNL Model with Substitution Effect

Day 1 Day 2

Slot (s) ûs RSE p-value Slot (s) ûs RSE p-value

1 -1.5052 0.0258 0.00 1 -2.4908 0.0403 0

2 -1.2374 0.0230 0.00 2 -2.1623 0.0346 0

3 -1.0109 0.0210 0.00 3 -1.7942 0.0293 0

4 -0.5032 0.0174 0.00 4 -1.1224 0.0220 0

5 -0.0131 0.0149 0.38 5 -0.4647 0.0172 0

6 -1.3774 0.0244 0.00 6 -2.2600 0.0361 0

7 -1.8610 0.0302 0.00 7 -2.9664 0.0505 0

8 -0.8739 0.0199 0.00 8 -1.5948 0.0268 0

9 -0.6193 0.0182 0.00 9 -1.2752 0.0234 0

10 0.6092 0.0128 0.00 10 0.3532 0.0136 0

11 1.1044 0.0117 0.00 11 0.9841 0.0120 0

12 0.9722 0.0120 0.00 12 0.8314 0.0123 0

Note: utility of no-purchase is 0.

Table B.1: Estimated parameters of the MNL model involving two delivery days
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B.2 Estimated Nested MNL Model

Day 1 Day 2

Slot (s) ûs RSE p-value Slot (s) ûs RSE p-value

1 -0.7370 0.0606 0.00 1 -0.7586 0.0643 0.00

2 -0.5277 0.0558 0.00 2 -0.5663 0.0589 0.00

3 -0.3504 0.0519 0.00 3 -0.3514 0.0530 0.00

4 0.0460 0.0433 0.29 4 0.0439 0.0429 0.31

5 0.4302 0.0354 0.00 5 0.4319 0.0335 0.00

6 -0.6372 0.0583 0.00 6 -0.6231 0.0605 0.00

7 -1.0143 0.0671 0.00 7 -1.0365 0.0728 0.00

8 -0.2436 0.0495 0.00 8 -0.2343 0.0500 0.00

9 -0.0445 0.0453 0.33 9 -0.0452 0.0452 0.32

10 0.9209 0.0258 0.00 10 0.9214 0.0225 0.00

11 1.3133 0.0188 0.00 11 1.3113 0.0151 0.00

12 1.2081 0.0206 0.00 12 1.2153 0.0167 0.00

No-purchase utilityh is 0 with dissimilarity parameter 1.

Dissimilarity parameters for Days 1 and 2 are 0.7799 and 0.5840.

Table B.2: Estimated parameters of the nested MNL model for two delivery days
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B.3 Estimated MNL Model with No Substitution Effect

Day 1 Day 2

Slot (s) ûs RSE p-value Slot (s) ûs RSE p-value

1 -3.3918 0.0243 0.00 1 -4.6398 0.0393 0.00

2 -3.1243 0.0214 0.00 2 -4.3109 0.0334 0.00

3 -2.8978 0.0192 0.00 3 -3.9432 0.0279 0.00

4 -2.3904 0.0151 0.00 4 -3.2714 0.0201 0.00

5 -1.9003 0.0122 0.00 5 -2.6140 0.0147 0.00

6 -3.2644 0.0228 0.00 6 -4.4089 0.0350 0.00

7 -3.7484 0.0289 0.00 7 -5.1155 0.0498 0.00

8 -2.7611 0.0180 0.00 8 -3.7441 0.0253 0.00

9 -2.5064 0.0160 0.00 9 -3.4243 0.0216 0.00

10 -1.2790 0.0094 0.00 10 -1.7968 0.0103 0.00

11 -0.7846 0.0079 0.00 11 -1.1666 0.0080 0.00

12 -0.9166 0.0083 0.00 12 -1.3197 0.0085 0.00

Note: no-purchase has utility of 0 for both days.

Table B.3: Estimated parameters of two independent MNL models

123



Bibliography

N. Agatz. Challenges and Opportunities in Attended Home Delivery. In The vehicle

routing problem: Latest advances and new challenges, pages 1–20. Springer, 2007.

N. Agatz, M. Fleischmann, and J. A. E. E. Van Nunen. E-fulfillment and multi-

channel distribution–a review. European Journal of Operational Research, 187(2):

339–356, 2008.

N. Agatz, A. Campbell, M. Fleischmann, and M. Savelsbergh. Time slot management

in attended home delivery. Transportation Science, 45(3):435–449, 2010.

N. Agatz, A. M. Campbell, M. Fleischmann, J. Van Nunen, and M. Savelsbergh.

Revenue management opportunities for internet retailers. Journal of Revenue and

Pricing Management, 12(2):128–138, 2013.

C. K. Anderson and X. Xie. A choice-based dynamic programming approach for

setting opaque prices. Production and Operations Management, 21(3):590–605,

2012.

K. Asdemir, V. S. Jacob, and R. Krishnan. Dynamic pricing of multiple home delivery

options. European Journal of Operational Research, 196(1):246–257, 2009.
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S. Koch, J. Gönsch, and C. Steinhardt. Dynamic programming decomposition for

choice-based revenue management with flexible products. Transportation Science,

51(4):1046–1062, 2017.
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